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Abstract

Cosmological observables beyond the two-point function of density perturbations may
hold the key to answering fundamental questions about inflation. One such observ-
able is the inflationary gravitational wave (GW) background, expected to arise in all
models of inflation. A detection of this GW background may reveal to us the energy
scale of inflation and even point us towards the fields and interactions present during
the inflationary epoch. In this thesis, I explore the GW signatures of inflationary
models beyond the simple single-field scenarios, focusing on their anisotropies, non-
Gaussianity and spectral shape.

For the anisotropies, I first study GW backgrounds with a sharply peaked spectral
shapes, which can arise in inflationary scenarios involving primordial black hole for-
mation and discuss the implications of this spectral shape for the detection of the
anisotropies. I then derive general results for cosmological gravitational wave back-
ground anisotropies arising from adiabatic initial conditions. I also discuss the impact
of isocurvature initial conditions through the representative example of the curvaton
mechanism and show how GW anisotropies and their cross-correlations with the CMB
provide an alternative handle on the curvaton dynamics.

On the subject on non-Gaussianity, I show how a sizeable squeezed limit tensor bispec-
trum can generate large GW anisotropies. Although the direct measurement of tensor
non-Gaussianity is not possible at interferometer scales, this method still provides an
indirect way to observe tensor non-Gaussianity with interferometers. I then discuss
the prospects of doing “cosmological collider physics” with such GW anisotropies,
showing that the correlators of these anisotropies are particularly sensitive to the
spin of additional fields that source the GW.

Finally, I turn to the GW spectral shape, focusing on large scale observations through
the temperature and polarisation anisotropies of the CMB. Using current CMB data,
I test for GW signatures of axion-gauge field models which typically produce a bump
like spectral shape and demonstrate the detectability of such signatures with future
experiments such as LiteBIRD and CMB-S4.
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Chapter 1

Introduction

1.1 The Standard Model of Cosmology

Cosmology, the study of the origins and evolution of the universe, has fascinated us

from time immemorial. The modern era of cosmology can be thought to have be-

gun in the early 20th century with development of the theory of General Relativity

and the discovery of expansion of the universe. Space-time was no longer the static

background in which events occurred, but itself now dynamical, bending and warping

to the will of the matter and energy contained within it. Since then, field of cos-

mology has made enormous progress and achieved significant milestones such as the

observation of the cosmic microwave background (CMB), the realisation that universe

contained more matter than could be seen and the theory of Big Bang Nucleosyn-

thesis (BBN). In the past few decades, the discovery of the accelerated expansion of

the universe [6, 7] and the precision measurement of the CMB and its anisotropies by

COBE [8, 9], WMAP [10] and the Planck satellite [11], have completely revolutionised

our understanding of the universe.

Altogether, this has culminated in a remarkably simple cosmological model – our uni-

verse appears to be homogeneous and isotropic on large scales (≳ 100Mpc) [12, 13],

its spatial geometry is flat [14, 15], and it is expanding at an accelerating rate. It

can be described by a handful of parameters representing the present day energy

densities of its primary constituents, baryonic matter, dark matter and dark energy

{Ωb,Ωc,ΩΛ}, and two parameters {As, ns} describing small initial deviations from ho-
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mogeneity and isotropy, believed to be generated during an early period of accelerated

expansion known as inflation. General Relativity provides the underlying theoretical

framework for this model, known as the ΛCDM (Lambda Cold Dark Matter) model

of modern cosmology.1 It has been tremendously successful in explaining a host of

cosmological observations, ranging from the abundances of light elements, temper-

ature and polarisation anisotropies of the CMB, the formation of galaxies and the

distribution of Large Scale Structure (LSS) to the late time accelerated expansion.

Despite the success and apparent simplicity of ΛCDM, it is well understood that the

model is not yet complete. Each parameter of the ΛCDM model is inextricably linked

to a major open question of modern cosmology:

• Ωc: What is the fundamental nature of dark matter?

• ΩΛ: What is the fundamental nature of dark energy and is it truly a cosmolog-

ical constant?

• Ωb: How did the matter anti-matter asymmetry of the universe arise?

• As,ns: What is the physics of inflation and the origin of the primordial pertur-

bations?

Recent observations also hint towards the fact that ΛCDM might need updating, with

disagreement between values of cosmological parameters such as H0 and S8 inferred

from late and early-time observations [16, 17].

Several theoretical and experimental endeavours are currently underway, aimed at

unravelling these mysteries and providing new insights into the laws that govern our

universe. The answer to these questions will likely involve physics beyond the Stan-

dard Model of Particle Physics or even require us to move beyond General Relativity

as our preferred theory of gravity. It is a great time to be a cosmologist, with the

field poised to make transformative discoveries in the future. Within this exciting

landscape, this thesis sets out on a modest but nevertheless important goal of under-

standing certain aspects of cosmic inflation, our most compelling explanation of the

origin of the primordial perturbations.

1The ΛCDM model is sometimes also referred to as the Standard Model or the Concordance
model of cosmology. Furthermore, in addition to the parameters mentioned above, the model also
consists of an astrophysical parameter τ , which represents the optical depth to reionization.
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1.2 The Inflationary Paradigm

Inflation refers to a period of accelerated, near-exponential expansion in the early uni-

verse and is currently the most widely accepted theory of how the primordial pertur-

bations originate. Historically,2 inflation was introduced in 1981 by Alan Guth [20] for

a different reason, namely to provide a solution to the horizon and flatness problems

of the ‘hot big bang’ model, which represented the dominant cosmological paradigm

at that time. Soon afterwards, it was realised that inflation provides a natural mech-

anism to produce the primordial perturbations [21–29], by stretching microscopic

quantum fluctuations to cosmological scales through the accelerated expansion.

In its simplest incarnation, inflation is driven by the nearly constant potential en-

ergy of a single scalar field, dubbed the inflaton. As the inflaton field slowly rolls

down its potential, it also experiences quantum fluctuations which get stretched out

to cosmological scales by the rapid expansion. Eventually the inflaton rolls towards

the minimum of its potential and inflation ends. The inflaton then decays into the

Standard Model particles in a process known as reheating, leading to a hot thermal

universe. The initial scalar field fluctuations thus source the density fluctuations that

later seed the anisotropies of the CMB and the large scale structure (LSS). This

minimal model, called single-field slow-roll (SFSR) inflation, predicts a nearly scale-

invariant and Gaussian spectrum of density perturbations arising from adiabatic ini-

tial conditions. Remarkably, the predictions of this model are in excellent agreement

with observations, with the strongest evidence for inflation coming from the precision

measurements of the CMB temperature and polarisation anisotropies (Figure 1.1).

Inflationary models also predict the existence of primordial gravitational waves (PGW),

arising from quantum fluctuations of the tensor degrees of freedom of the space-

time metric [30–33]. In SFSR models, the PGW spectum is nearly scale invariant

and Gaussian with an amplitude which is in one-to-one correspondence with the

energy scale of inflation. Such PGW would in fact be a signature of linearised quan-

tum gravity and detecting them would provide further strong evidence that inflation

did occur. Currently, CMB observations have allowed us to precisely measure the

primordial scalar power parameters {As, ns}, and put upper limits on the ampli-

tude of PGW [15, 34, 35]. Numerous single field models/potentials have been pro-

2The early history of the development of inflationary theory can be found in [18, 19].
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Figure 1.1: The angular power spectrum of the CMB temperature anisotropies: best-
fit from ΛCDM (blue) vs observed (red) [15].

posed (see [36] for an overview), with some such as Starobinsky [21, 37, 38] and Higgs

inflation [39] providing an excellent fit to the data while others such as Natural infla-

tion [40] and inflation with monomial potentials [27] are disfavoured or ruled out [41].

In the future, the improved sensitivity of next generation CMB experiments such as

the BICEP Array [42], Simons Observatory [43], CMB-S4 [44] and LiteBIRD [45],

will allow us to put further constraints on inflationary models or even detect PGW,

which will have significant implications for our understanding of inflation.

Inflation: single-field or multi-field?

Although the inflationary paradigm has been quite successful, the micro-physical de-

scription of inflation, i.e., its field content and interactions, still eludes us. Single field

inflation, which agrees well with current observations and is appealing due to its sim-

plicity, remains difficult to reconcile with more fundamental high energy theories such

as string theory. These theories generally predict a rather rich inflationary environ-

ment, with several fields and non-negligible interactions amongst them, markedly dif-

ferent from the single field description [46]. The swampland program, which attempts

to study the properties of low energy theories which can be consistently embedded

in theories of quantum gravity, also indicates that conventional single-field slow-roll

models could possibly be in the swampland, i.e. they do not possess a UV completion

allowed by quantum gravity [47, 48]. It is possible that multi-field inflation might

evade such conjectures [49].
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Another issue is the sensitivity of the inflationary potential to Planck scale physics,

resulting in the well known η-problem of inflation. For successful resolution of the

horizon problem, inflation must provide at least 50-60 e-folds of accelerated expan-

sion. This requires that the inflaton potential be extremely flat which is quantified in

terms of the smallness of the inflationary slow roll parameters ϵV , ηV ≪ 1 (defined in

eq. (2.64)). If we embed slow-roll inflation in an Effective Field Theory (EFT) frame-

work, one must include in the effective Lagrangian all possible operators compatible

with the symmetries of the theory. Integrating out the effects of high energy physics

above a certain cut-off Λ gives rise to operators of the form,

Leff ⊃ On

Λ4−n (1.1)

where n is the dimension of the operator. Identifying the cutoff scale with the Planck

scale and focusing on the dimension-6 operator O6 = cO4 φ
2 leads to an O(1) correc-

tion of the parameter ηV and ends inflation too quickly, assuming the coupling c is

O(1) and that the dimension-4 operator has a vacuum expectation value ⟨O4⟩ ∼ V .

Additionally, radiative corrections also drive the inflaton mass to the cut-off scale,

also leading to large corrections to the ηV parameter (see [46, 50] for a review of the

η-problem). A possible solution is to posit a shift symmetry, i.e., letting the inflaton

be a pseudo-Nambu-Goldstone boson such as an axion, to forbid such corrections.

The simplest model of inflation with an axion, Natural inflation [40], is already in

tension with observational data. However, a shift symmetric coupling of the axion to

additional fields, e.g. Abelian or non-Abelian gauge fields, can alleviate this tension

and potentially make such setups viable again [51].

Inflationary signatures beyond SFSR: Gravitational Waves

The difficulties in realising single field inflation in a more fundamental high energy

theory have naturally led to extensive interest in multi-field inflationary scenarios

(e.g see [36, 46, 52–54] and references therein). The richer dynamics of multi-field

inflation leads to a much more varied phenomenology in contrast to the single-field

case. These models can reproduce the desirable predictions of SFSR inflation on

CMB scales, while at the same time accommodate the possibility of distinct features

in the primordial scalar [55, 56] and GW spectra [57–60], non-Gaussianity [61, 62]

and even lead to the formation of primordial black holes [63, 64].
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Figure 1.2: Gravitational waves from inflation: theoretical predictions, current
bounds and future observational prospects. More details about the figure can be
found in section 3.3.2.

This thesis focuses on the study of gravitational waves from inflationary scenarios

beyond SFSR. Our goal is to explore the space of possible gravitational wave ob-

servables that can arise in these models and forecast their detectability with future

experiments. Understanding these two aspects is important not only from a point of

view of using GW observations to differentiate between single vs multi-field inflation,

but also to discriminate among various models in case of a multi-field realisation.

In terms of detection, the B-mode polarisation of the CMB remains a potential av-

enue to detect PGW. Analysis of the correlation functions of the B-modes, such as

⟨BB⟩, ⟨BBB⟩ and mixed correlators such as ⟨TB⟩, ⟨EB⟩ etc. can be used to probe

the spectral shape, non-Gaussianity and chirality of PGW.

The success of GW interferometers has also expanded the observational landscape

of inflationary signatures to small scales. Indeed, several inflationary models beyond

SFSR (see fig. 1.2) predict the existence of PGW with an amplitude sufficient to be

detectable by next generation interferometers, Laser Interferometer Space Antenna

(LISA) [65], Einstein Telescope (ET) [66] and Cosmic Explorer (CE) [67], to name

a few. Direct detection with interferometers also opens up the possibility to map
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the GW energy density across the sky and observe its anisotropies, in addition to its

spectral shape, non-Gaussianity and chirality.

Pulsar timing arrays (PTAs) represent another intriguing possibility to detect GW on

intermediate scales. Quite recently, several PTA collaborations have reported strong

evidence for a stochastic background of GW, likely of astrophysical origin [68–71].

Irrespective of the origin of the background, it can still be used to constrain the

parameter space of several cosmological mechanisms producing GW (e.g. inflation,

phase transitions, cosmic strings) [72, 73], demonstrating the ability of small-scale GW

experiments to probe the early universe. In the near future, the increasing number and

sensitivity of CMB, PTA and interferometer experiments will bring within our reach

an even larger number of inflationary models, making PGW an extremely promising

tool for understanding inflationary physics.

1.3 Thesis Outline

The outline of the thesis is as follows. The thesis is divided into two parts and in

Part I, I introduce the necessary background knowledge required for understanding

the original results of the thesis. In chapter 2, I review the dynamics of homogenous

and isotropic spacetimes, briefly present the ΛCDM model of cosmology and finally

introduce the paradigm of cosmic inflation. Next, in chapter 3, I review the generation

of quantum fluctuations during the inflationary epoch and the describe the connection

between these inflationary fluctuations and cosmological observables such as the CMB

and LSS.

The expert reader may skip directly to Part II, which represents the original work

of this thesis. In chapter 4, I first review the anisotropies of stochastic gravitational

wave backgrounds sourced by primordial perturbations using the line-of-sight formal-

ism. As an application of this formalism, I use it to examine the frequency depen-

dence of GW anisotropies arising in scenarios involving the production of primordial

black holes, and study the implication of this frequency dependence on the detection

prospects of these anisotropies with interferometers. Going back to the theoretical

formalism, I derive the anisotropies sourced by primordial adiabatic and isocurvature

perturbations, demonstrating along the way, how GW isocurvature can be generated

through the example of the curvaton mechanism.
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In chapter 5, I illustrate how gravitational wave anisotropies are sensitive to squeezed

limit primordial non-Gaussianity and how information about the masses and spins of

additional inflationary particles (‘cosmological collider physics’) could be extracted

from the detection of these anisotropies and their cross-correlation with the CMB.

Chapter 6 studies the detectability of GW produced in inflationary models involving

axions and gauge fields, using the temperature and polarisation anisotropies of the

CMB. In the same chapter, I also forecast the precision with which such GW signals

may be measured with the next generation of CMB experiments. The conclusions of

this thesis are presented in Chapter 7.
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Chapter 2

Homogeneous and Isotropic

Cosmology

Introduction

In this chapter, I begin by reviewing the dynamics of our homogeneous and isotropic

universe, describe the known and unknown components that contribute to its energy

content and finally conclude with a discussion of the most important stages in its

evolution. The presentation in this chapter draws largely from the textbooks by

Mukhanov [74], Dodelson and Schmidt [75], and the lecture notes by Baumann [76].

2.1 FLRW metric

Modern cosmology rests on the cosmological principle, which states that the universe

is homogeneous and isotropic, when averaged over large enough length scales. Ob-

servational evidence from the CMB and LSS supports the validity of this principle

on length scales L ≳ 100Mpc. Thus, as a first approximation we can safely assume

our universe to be spatially homogeneous and isotropic. To describe our universe and

gravitational effects within it, we turn to the theory of General Relativity in which

the geometrical properties of spacetime are encoded in the metric tensor gµν . Under
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the assumptions of homogeneity and isotropy, the metric takes the form,

ds2 ≡ gµνdx
µdxν = −dt2 + a2(t)

[
dχ2 + S2

k(χ)(dθ2 + sin2 θdφ2)
]
. (2.1)

Here, the xi are called comoving coordinates, t is the cosmic time and the scale factor

a is an arbitrary function of t and is independent of the spatial position. The metric

in this form is called the Friedman-Lemâitre-Robertson-Walker (FLRW) metric and

describes a uniformly expanding, homogeneous and isotropic universe. There exist

three distinct possibilities for term Sk(χ) which determines the spatial curvature of

the universe,

Sk(χ) =


sinhχ, k < 0

χ, k = 0

sinχ, k > 0

. (2.2)

These correspond to a negatively curved universe (k < 0), flat universe (k = 0) and

positively curved universe (k > 0). The space with k = 1 is finite in extent but

without a boundary, since it is equivalent to the 3-sphere S3. The k = 0,−1 cases

correspond to 3D Euclidean space and a hyperboloid embedded in 4D Lorentzian

space respectively and thus represent universes of infinite extent.

Inflationary cosmology predicts the spatial curvature to be extremely small (sec-

tion 2.6.1) and current observations do not indicate any preference for non-zero spa-

tial curvature [15]. Therefore, in what follows we will restrict ourselves to the case of

the spatially flat universe with k = 0,

ds2 = −dt2 + a2(t)δijdxidxj . (2.3)

Physical distances within the expanding universe are given by,

Dphys = a(t)∆x (2.4)

where ∆x denotes the spatial coordinate separation. Thus, we see that the physical

distances change with time, even if the coordinate separation remains fixed,

Ḋphys = H(t)Dphys︸ ︷︷ ︸
Hubble flow

+vpec. (2.5)

Here

H(t) = ȧ

a
, vpec = a

dx
dt
. (2.6)
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The quantity H(t) is called the Hubble parameter. The first term on the R.H.S of

eq. (2.5) represents the Hubble expansion law which states that objects further away

from us appear to be receding away at a faster rate compared to objects closer to

us. The second term is called the peculiar velocity and accounts for motion in the

comoving coordinates.

2.2 Kinematics

What are the trajectories followed by freely falling test particles in the FLRW uni-

verse? Under the action of purely gravitational forces, freely falling particles travel

along geodesics which are curves that extremise the the proper time ∆s =
∫
ds,

between two spacetime events.

2.2.1 Geodesics

The geodesic equation is given by,

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0 (2.7)

where λ is a parameter along the geodesic and Γµαβ denote the Christoffel symbols

which are defined in terms of the metric gµν as,

Γµαβ ≡ 1
2g

µν
[
∂gαν
∂xβ

+
∂gβν
∂xα

−
∂gαβ
∂xν

]
. (2.8)

Note that by definition, the Christoffel sybmols are symmetric in the lower indices

since gµν is also symmetric. For the FLRW metric, the only non-zero Christoffel

symbols are,

Γ0
ij = ȧaδij and Γi0j = Γij0 = Hδij (2.9)

The 4-momentum P = (E, P⃗ ) of the particle along the geodesic can be written as,

Pµ = dxµ

dλ
. (2.10)

In terms of Pµ the geodesic equation takes the form,

dPµ

dλ
+ ΓµαβP

αP β = 0. (2.11)
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The parameter λ can be eliminated by noticing that,

d

dλ
= dx0

dλ

d

dx0
= E

d

dt
. (2.12)

Now, the µ = 0 component of the geodesic equation becomes,

E
dE

dt
= −Γ0

ijP
iP j = −ȧaδijP iP j . (2.13)

Finally, defining the magnitude of the physical momentum

p2 ≡ gijP
iP j . (2.14)

and using gµνPµP ν = m2 we obtain

dp

dt
+Hp = 0. (2.15)

Thus, the physical momentum of all particles (massive or massless) decreases with

the expansion of the universe,

p ∝ a−1. (2.16)

For massless particles one has E = p and we see that their energy also decays with

the expansion.

Light propagation and Null Geodesics

The trajectories of photons are studied most conveniently by introducing the a new

time coordinate known as the conformal time η,

dη ≡ dt

a
. (2.17)

The metric in the new coordinates looks particularly simple,

ds2 = a2(t)
[
−dη2 + δijdx

idxj
]
, (2.18)

and is equivalent to the Minkowski metric up to an overall conformal factor. Let us

rewrite this metric in polar coordinates,

ds2 = a2(t)
[
−dη2 + dr2 + r2(dθ2 + sin2 θdφ2)

]
. (2.19)

Since photons travel along null geodesics ds2 = 0, if we consider light propagation in

the radial direction we find that the photon paths are defined by,

dη2 = dr2 =⇒ r = ±η + const., (2.20)

corresponding to straight lines at 45◦ in these η–r coordinates.

13
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2.2.2 Redshift

The expansion of the universe leads to a redshift of light emitted from distant objects.

Consider a signal emitted from a far away galaxy at conformal time ηe with duration

δη. We observe it at conformal time ηo and measure its duration to be ηo + δη.

The corresponding physical time intervals are,

δte = a(ηe)δη, δto = a(ηo)δη

We thus realise that for a wave with period δte and frequency at emission is fe = 1/δte,

the observed frequency is fo = 1/δto

fe
fo

= ao
ae

= 1
ae

≡ 1 + z . (2.21)

Here, z is called the redshift parameter and we have set the scale factor at the time

of observation to be ao = 1.

We see that the wavelength of the observed photons increases with the expansion

of universe as λ ∝ a. Equivalently, the frequency/energy of photons decreases as

E ∝ a−1, a result that we also derived in the previous section via the geodesic equa-

tion.

2.2.3 Distances

In a cosmological setting, defining distances requires careful considerations as multiple

notions of distances can exist, each being useful depending on the particular context.

We start by defining two natural distances – the comoving distance and the physical

distance. The comoving distance is simply the coordinate separation between two

fixed points on the comoving grid while the physical distance takes into account the

expansion of the universe. If a source emits a signal at te and is observed today at

time t0, its comoving distance is calculated as,

d = η0 − ηe =
∫ t0

te

dt

a(t) =
∫ z0

ze

dz

H(z) . (2.22)

The corresponding physical distance is then given by

dphys(t) = a(t)d. (2.23)
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It happens quite often that these two distances are not the most useful ones from the

point of view of observations. In fact, the comoving and physical distances turn out to

be unobservable on cosmological scales. Two additional definitions of observationally

relevant distances are reviewed below.

Luminosity distance

Consider a light source at a distance d in static Euclidean space. The relation between

the source luminosity and the observed flux at the distance d is given by,

F = L

4πd2 . (2.24)

The generalisation of this distance to expanding spacetimes is known as the luminosity

distance. The static space formula needs modification for three reasons, namely the

area of a sphere drawn around the source and passing through the observer position

scales as a2(t0)d2 rather than d2, the rate of photon arrival is reduced by a factor

1/(1 + z) and finally the energy of photons is again lower by 1/(1 + z) where z is the

redshift parameter of the source. Altogether, the observed flux is given by

F = L

4πa2(t0)d2(1 + z)2 ≡ L

4πd2L
, (2.25)

where dL is the luminosity distance and is related to the comoving distance d as,

dL = d(1 + z). (2.26)

Angular diameter distance

The angular diameter distance dA relates the observed angular size of an object ∆θ

to its physical size D

dA ≡ D

∆θ . (2.27)

The physical size can be written as,

D = a(te)d∆θ =
d∆θ
1 + z

, (2.28)

and thus,

dA = d

1 + z
= dL

(1 + z)2 . (2.29)
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2.3 Dynamics

The Einstein equation,

Gµν ≡ Rµν −
1
2gµνR = 8πGTµν , (2.30)

dictates the dynamics of our universe. It relates the spacetime curvature, encoded in

Gµν , to the matter-energy content of the universe. The requirements of homogeneity

and isotropy constrain the stress-energy tensor Tµν to be that of a perfect fluid1,

Tµν = (ρ+ P )UµUν + Pgµν (2.31)

where ρ and P denote the energy density and pressure of the fluid and Uµν is the

4-velocity of the observer. A comoving observer Uµ = (1, 0, 0, 0), will observe this

stress-energy tensor to be diagonal,

Tµν = gµαTαν = diag(−ρ, P, P, P ). (2.32)

The fluid stress-energy tensor also obeys a continuity equation for the energy density,

which can be derived from the first law of thermodynamics dE + PdV = 0. Since

V ∝ a3 and E = ρV , this takes the form

dρ = −3(ρ+ P )d ln a, (2.33)

or equivalently,

ρ̇+ 3H(ρ+ P ) = 0. (2.34)

Alternatively, this follows from the ν = 0 component of the general relativistic con-

servation equation ∇µT
µ
ν = 0.

The rate of dilution of the energy density with the expansion of the universe depends

crucially on the relation between the pressure and the energy density. In the next

section, we will specify this relation for the known constituents of the universe.

2.3.1 The cosmic inventory

Several different components contribute to the energy budget of the universe. To

describe these contributions, it is convenient to introduce the density parameters Ωi,

1Fluids which do not conduct heat and have zero viscosity are known as perfect fluids. They can
be completely characterised in terms of their rest frame energy density ρ and pressure P .
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defined as,

Ωi ≡
ρi
ρcr

, ρcr ≡
3H2

0
8πG. (2.35)

Here, H0 is the present day value of the Hubble parameter and ρcr is the critical

energy density needed to close the universe. For a flat (k = 0) universe, ρcr is the

same as the total energy density ρ =
∑
i ρi, ρ > ρcr leads to a a closed universe and

ρ < ρcr leads to an open universe. It is also customary to write H0 = 100h km/s/Mpc

and work with the combination Ωih2, due to the uncertainty in determination of H0

and also since many observations constrain this combination rather than H0 and Ωi
separately.

Now we look at the relative contributions of the different constituents of the universe

to the total energy density, focusing on the components that enter into the ΛCDM

model of modern cosmology – (i) Matter (ii) Radiation and (iii) Dark energy.

Matter

The term matter refers to any component whose pressure is negligible compared to

its energy density, |P | ≪ ρ. Matter can thus be represented by an equation of state

parameter wm = 0 with energy density decaying as,

ρm ∝ a−3 (2.36)

• Baryons

Baryonic matter encompasses all ordinary matter. As a matter of convention,

this term also includes all known non-baryonic particles of the Standard Model

e.g. electrons. Observations of the CMB by Planck constrain the baryon density

parameter to be Ωbh
2 = 0.02237± 0.00015 [15].

• Dark matter

A variety of cosomological observations also provide strong evidence for the

presence of non-baryonic matter [77] which does not couple (or couples ex-

tremely weakly) to electromagnetism. Its density parameter has been inferred

to be Ωch
2 = 0.1200± 0.0012 [15], making up about 80% of the total matter

content of the universe. Although several candidates for dark matter exist, the

fundamental nature of dark matter remains unknown.
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Radiation

Species which are relativistic have an equation of state wr = 1/3, implying that their

energy density decays as

ρr ∝ a−4 (2.37)

This can be understood as the dilution of the number density (n ∝ a−3, same as

matter) and the redshifting of the individual particle energy E ∝ a−1.

• Photons

The total radiation energy density is dominated by the CMB photons, which

have been observed to have a near perfect black-body spectrum with present

day temperature T = 2.72548± 0.00057 K [78] and hence Ωγh2 = 2.44× 10−5.

Since photons are massless, they always remain relativistic. The expansion

of the universe preserves the black-body distribution of the photons and the

distribution temperature redshifts as T ∝ a−1.

• Neutrinos

Much like the CMB, one also expects the existence of a primordial neutrino

background. Unlike photons however, neutrinos are not massless and at least

two of the neutrino species must be non-relativistic today. These background

neutrinos have not yet been directly observed yet but there is strong indirect ev-

idence of their existence from CMB/BBN. The current constraints on the effec-

tive number of relativistic species after e+e− annihilation read Neff = 2.92+0.36
−0.37

[15], entirely consistent with the Standard Model of particle physics expecta-

tion of Neff = 3.0440± 0.0002 [79] . The present neutrino density parameter is

expected to be Ωνh2 =
∑
imi/(94 eV), where the sum is over the three neutrino

species.

In addition to the above mentioned components, it is possible that the universe is

permeated by a background of relic gravitational radiation. These have also not been

detected yet and their energy density2 is constrained to be ΩGW < 1.2× 10−6h−2

from CMB and BBN observations [80].

2This bound is applicable to the total energy density in GW, not the usual frequency dependent
spectral energy density ΩGW(f). Furthermore, the BBN/CMB bound only concerns GW produced
before BBN/last scattering.
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Figure 2.1: Evolution of the energy density for matter, radiation and the cosmological
constant Λ. The black and orange lines denote the time of matter-radiation and
matter-Λ equality respectively.

Dark Energy

The above mentioned components only account for about 30% of the total energy

density of the universe. The late-time accelerated expansion of the universe requires

the presence of a mysterious dark energy component with wde < −1/3 (see eq. (2.43)),

which no matter or radiation source can have. In general, its energy density could

be time-dependent but current observations indicate a strong preference for a dark

energy equation of state wde ≃ −1 [15]. In this case the energy density of dark energy

remains constant with the expansion,

ρde ∝ a0. (2.38)

The simplest candidate for this is the cosmological constant term Λ. The fundamen-

tal nature of dark energy remains one of the most important unsolved mysteries of

modern cosmology [81, 82].

The time evolution of the energy densities of radiation, matter and Λ is depicted in

Figure 2.1 and the relative energy densities of the different components are shown

in Figure 2.2. As we go back in time the energy density of matter and radiation

increases while that of Λ remains constant. We also see that at very early times, the

energy density of the universe was completely dominated by that of radiation. Today,

about 70% of the total energy density is made up by the cosmological constant while

dark matter and baryonic matter combined account for the remaining 30%. Spatial

curvature, if at all present today, makes up only a small fraction |ΩK | < 0.01 of the

total energy budget [15]. Its energy density scales as ρK ∝ a−2 so it is subdominant
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Figure 2.2: The fraction of the total energy density in the different components of the
cosmic inventory. The energy density in photons, neutrinos and gravitational waves
is much smaller than the other components and is not shown here.

at earlier times compared to matter and radiation.

2.3.2 Friedmann equations

Using the Einstein equations, we can now relate these matter-energy sources to the

expansion rate of the universe,

H2 = 8πG
3

∑
i

ρi, (2.39)

where the sum is over all the components contributing the to energy budget of the

universe. Using the definition of the density parameters Ωi (2.35), one can rewrite

the above equation as,

H2 = H2
0
∑

Ωi a(t)−3(1+wi). (2.40)

A second equation concerns the acceleration of the expansion rate,

ä

a
= −4πG

3 (ρ+ 3P ). (2.41)

Together, equations (2.39) and (2.41) constitute the Friedmann equations3, and de-

scribe the evolution of the expansion rate of our FLRW universe. The behaviour of

3The second Friedmann equation is not an independent equation and can be derived from the
first equation and the continuity equation (2.34).
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the scale factor as a function of time for different scenarios is given below,

a(t) ∝


exp(Ht), w = −1,

t2/3, w = 0,

t1/2, w = 1/3.

(2.42)

It is also clear from the Friedmann equations that the present day accelerated expan-

sion of our universe requires that

ρ+ 3P < 0 ⇐⇒ w < −1/3. (2.43)

Hence, the presence of dark energy component is necessary since matter and radiation

necessarily have w ≥ 0.

2.4 A Brief Thermal History of the Universe

Having studied the geometrical and dynamical properties of our universe, we now

focus on its thermal history. The discussion here will be kept at a qualitative level

and the reader is referred to refs. [74, 83] for a more detailed treatment.

The thermal history of the universe depends crucially on the interactions between the

different particles that are present, characterised by the interaction rate Γ. If this

rate is larger than the expansion rate H, the interactions between particles occur on

a much shorter time scale 1/Γ compared to the timescale of expansion 1/H. The

interacting particles are then said to be in a state of local thermal equilibrium with

each other and share the same temperature T . At very early times, our universe was

extremely hot and dense making interactions between different particles extremely

efficient. In fact, at temperatures above a few hundred GeV, all the Standard Model

particles are ultra-relativistic and their interactions are strong enough for them to

be in local thermal equilibrium. This initial hot, dense state consisting of a ‘soup’ of

elementary particles is where the story of the hot big bang model begins.

As the universe expands, it cools down (T ∝ a−1) and the number density of elemen-

tary particles also decreases. The QCD phase transition occurs around T ∼ 150 GeV,

afterwards quarks and gluons no longer exist as free states but become confined within

baryons and mesons. At T ∼ 100 GeV, electroweak symmetry is broken and the gauge
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bosons acquire mass. The production of dark matter and the baryon asymmetry of

the universe is also expected to take place around such early times, but these are not

so well understood compared to the known Standard Model processes.

Several important events occur around MeV scales. First, neutrinos decouple from

the rest of the thermal plasma at T ∼ 1 MeV as weak interactions become inefficient.

These decoupled neutrinos then propagate freely throughout the universe and retain

their distribution at the time of coupling. Shortly after neutrino decoupling, the tem-

perature of the universe falls below the mass of electron and positron (T ∼ 0.5 MeV)

and these now begin to annihilate. Since neutrinos are already decoupled at this

state, this process only injects energy into the photon bath, raising its temperature

compared to that of neutrinos by roughly a factor (11/4)1/3.

Big bang nucleosynthesis begins around T ∼ 0.1 MeV, free protons and neutrons

combine to form light elements such as hydrogen, helium and lithium with the out of

equilibrium thermodynamics of these reactions playing an important role. Calcula-

tions of the abundances of light elements have turned out to be in excellent agreement

with observations and lend strong support to the hot big bang model. As the universe

cools down further, the energy density in relativistic particles falls below that of mat-

ter. This happens around T ∼ 1 eV and is known as the epoch of matter radiation

equality.

Protons and electrons combine around T ∼ 0.1 eV, forming neutral hydrogen in a pro-

cess known as recombination. Around the same time, Thomson scattering of photons

becomes inefficient due to the sharp decrease in the free electron density. Photons

now decouple and free stream throughout the universe and this is referred to the

epoch of last scattering. Closer to the present day, gravitational instabilities become

significant leading to the formation of galaxies and clusters from small initial inhomo-

geneities in the matter distribution. These free-streaming photons are observed today

as the CMB, having a spectrum consistent with that of a black-body and having a

present day temperature T ≃ 0.23meV.
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2.5 Shortcomings of the Hot Big Bang model

The picture of cosmology described in the previous section, starting from a hot ther-

mal state is sufficient to explain several cosmological observations, if one imposes

certain initial conditions. However, the question of why the universe started with

this particular set of initial conditions, cannot be answered satisfactorily within the

framework of this model. These are typically stated as the horizon and the flatness

problems of hot big bang cosmology. To understand these, we need to first intro-

duce a quantity essential for studying causality in an expanding universe, the particle

horizon.

Particle horizon

The particle horizon χp is the boundary of our past light cone. Since we can only

receive signals from points within our past light cone, the particle horizon sets the

size of the region which is causally connected to us.

χp(η) = η − ηi =
∫ t

ti

dt̃

a(t̃)
=
∫ a

ai

dã

ã ˙̃a
=
∫ ln a

ln ai

d ln ã
ãH(ã) (2.44)

In terms of the redshift parameter z, this is

χp =
∫ z

zi

dz

H(z) . (2.45)

Whether or not the event and particle horizons are finite depends on the exact form

of a(t) and hence, the matter-energy content of the universe. In a universe dominated

by a component with equation of state w > −1/3, the scale factor and the Hubble

parameter evolve with time as

a ∝ t
2

3(1+w) , H ∝ t−1. (2.46)

The quantity aH decreases with time in a universe with w > −1/3. With the initial

singularity ai = 0, this tells us that the particle horizon at a given time t is finite

χp(t) ∝ a(t)1+3w. (2.47)

Analogously, one can define the event horizon χe, which sets the boundary of the

region which can receive signals from us in the future.

χe = ηf − η0 =
∫ tf

t0

dt

a(t) (2.48)

23



CHAPTER 2. HOMOGENEOUS AND ISOTROPIC COSMOLOGY

where ηf denotes the denotes the maximum conformal time, i.e., the final moment of

time which may or may not be finite, depending on the behaviour of a(t).

2.5.1 Horizon Problem

The finite size of the particle horizon implies that the near uniformity of the CMB

cannot be explained within the hot big bang model. In fact, a causally connected

region at the time of photon last scattering subtends an angle of about 1.2◦ on the

sky. This can be calculated as follows,

χp,lss =
∫ zlss≃1100

zi→∞

dz

Hz
. (2.49)

The angular size of the particle horizon on the sky can be estimated using,

θ =
χp,lss
dlss

≃ 1.2◦, (2.50)

where dlss is the present day comoving distance to the last scattering surface. There-

fore, regions separated by an angle θ ≳ 2◦ would never have had time to thermalise

previously and one would expect them to have significantly different temperatures.

However, the CMB on these and even larger angular scales is nearly uniform with

small temperature fluctuations δT/T ∼ 10−5. This is quite hard to explain if these

regions had never been causally connected in the past.

2.5.2 Flatness Problem

The second major issue is the observed flatness of the universe. We can understand

this by first writing the Friedmann equation in the presence of curvature k,

H2 = ρ

3M2
Pl

− k

a
. (2.51)

This can be re-written as,

1− Ω = − k

(aH)2 (2.52)

In this form, we realise that as long as (aH)−1 increases with time, the spatially flat

universe is not a dynamical attractor. Small perturbations of the density parameter

around Ω = 1 show that k = 0 is an unstable solution. The present day value

Ω ≈ 1 requires an extremely small value of the initial curvature and thus, extreme

fine-tuning of the initial conditions.
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time
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η ≈ 0 Reheating
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Figure 2.3: A present day observer sees two widely separated points A and B at
the last scattering surface to be at nearly the same temperature. Within the hot
big bang model, these points could never have been in causal contact in the past.
The introduction of the inflationary epoch pushes the initial singularity of the hot
big bang η = 0, to η = −∞, thereby allowing the past light cones of A and B to
intersect. Figure adapted from [76].

2.6 Inflation: homogeneous and isotropic dynamics

The inflationary scenario postulates that the early universe (t ∼ 10−34 s) went through

a period of accelerated, near exponential expansion before the hot big bang era [20,

27, 84–86]. In addition to providing a solution to the shortcomings of hot big bang

cosmology [20], inflation also provides a natural origin for the primordial fluctuations

that seed the CMB anisotropies and large-scale structure [21–29]. This section pro-

vides an overview of the homogeneous and isotropic dynamics of inflation, starting

with inflationary solution to the aforementioned horizon and flatness problems of big

bang cosmology.

2.6.1 Solution to the horizon and flatness problems

Notice that for w < −1/3, the expansion of the universe is accelerating (see (2.41)).

Equivalently, the the quantity (aH)−1 is increasing with time, suggesting that this

may provide a common solution to the horizon and flatness problems. In fact, a
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period of expansion before the hot big bang phase with

d

dt
(aH)−1 < 0, (2.53)

naturally solves both of these issues. For w < −1/3 the size of the comoving particle

horizon diverges, meaning that CMB photons coming from different directions were

causally connected in the past (see Figure 2.3), explaining the near uniformity of

the observed CMB temperature4. Similarly, when (aH)−1 decreases with time, the

effects of initial non-zero curvature also get diluted, as can be seen from (2.52). Ω = 1,

which is an unstable fixed point of the hot big bang phase now becomes an attractor

during the inflationary phase. Roughly speaking, one requires that the scale factor

grow about 50–60 e-folds, i.e. by a factor e50 – 60, during this period to solve both the

horizon and flatness problems.

2.6.2 Single-field slow-roll Inflation

In the simplest scenarios, inflation is driven by a single scalar field, called the inflaton,

whose classical background evolution drives the accelerated expansion. The action

for a minimally coupled scalar field φ with canonical kinetic terms can be written as,

S(φ) =
∫
d4x

√
−g

[
M2

Pl
2 R− 1

2g
µν∂µφ∂νφ− V (φ)

]
(2.54)

where R is the Ricci scalar and V (φ) the potential energy of the scalar field. Under

the assumptions of homogeneity and isotropy, the evolution of the the scalar field is

governed by the following equation,

φ̈+ 3Hφ̇+ V ′(φ) = 0, (2.55)

which is simply the Klein-Gordon equation in an expanding universe.

The stress energy tensor of the scalar field is,

T
(φ)
µν ≡ − 2√

−g
δS(φ)

δgµν
= ∂µφ∂νφ− 1

2gµν [∂
αφ∂αφ+ V (φ)] . (2.56)

Assuming a homogeneous field profile, the stress energy tensor takes the form of a

perfect fluid (eq. (2.31)) with

ρ = 1
2 φ̇

2 + V (φ), P = 1
2 φ̇

2 − V (φ). (2.57)

4In fact, inflation also explains why there exist correlations in the temperature fluctuations over
scales larger than the particle horizon at last scattering. The exact mechanism of how these fluctua-
tions are generated during inflation will be discussed in chapter 3.
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The resulting equation of state parameter is,

w = φ̇2 + 2V (φ)
φ̇2 − 2V (φ)

(2.58)

and we see that inflation can occur for φ̇2 ≪ 2V (φ) since that implies w < −1/3,

required for the accelerated expansion.

The background evolution during inflation is commonly characterised by the Hubble

‘slow-roll’ parameters ϵ and η, defined as

ϵ ≡ − Ḣ

H2 = 3
2

(
1 + P

ρ

)
, η ≡ ϵ̇

ϵH
(2.59)

For a sufficient number of e-folds of accelerated expansion to take place one requires

that these slow-roll parameters stay small ϵ, η ≪ 1. Thus the Hubble parameter

during inflation remains nearly constant, except towards the end of inflation when

the slow-roll parameters may become large. The Hubble parameter during inflation

is related to the scalar field profile using the Friedmann equation,

H2 = 1
3M2

Pl

[1
2 φ̇

2 + V (φ)
]

(2.60)

For the slow-roll conditions to hold we require,

ϵ = φ̇2

2M2
PlH

2 ≪ 1 (2.61)

to be satisfied for a long period of time. This means that the acceleration of the field

must also be small for which we define the parameter

δ ≡ − φ̈

Hφ̇
. (2.62)

The smallness of the second slow-roll parameter η = 2(ϵ − δ) is then enforced by

ϵ, |δ| ≪ 1. Under the slow-roll approximation we get the following set of equations,

3Hφ̇+ V ′(φ) = 0, H2 ≈ V (φ)
3M2

Pl
. (2.63)

Thus, in the simplest models inflation is driven entirely by the near constant potential

energy of the scalar field and the scale factor evolves grows almost exponentially with

time5.

5The universe having Ḣ = 0 is known as the de-Sitter universe with the scale factor growing as
a(t) = a(t0)eH(t−t0).
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Figure 2.4: Inflation occurs in the flat region of the potential.

The flatness of the potential during inflation can be quantified in terms of the potential

slow-roll parameters,

ϵV ≡
M2

Pl
2

(
V ′

V

)2
≪ 1, |ηV | ≡M2

Pl
|V ′′|
V

≪ 1. (2.64)

The potential slow-roll parameters are related to the previously introduced Hubble

slow-roll parameters η, ϵ as,

ϵV ≈ ϵ, ηV ≈ 2ϵ− η

2 (2.65)

Thus, slow-roll inflation occurs for any generic potential which is sufficiently flat. As

the inflaton field rolls down its potential, it eventually leaves the flat region of the

potential and inflation ends.

2.6.3 Reheating

Reheating refers to the post-inflationary era in which the matter and radiation com-

ponents of the universe are generated, typically from the decay of the inflaton. The

decay products then eventually scatter and thermalise, leading to a radiation domi-

nated universe. I provide here a brief qualitative description of how reheating may

occur. The interested reader may refer to [87–90] for a more comprehensive treatment

of the reheating process.

After inflation ends, the inflaton field oscillates coherently around the minimum of
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its potential φmin. We can Taylor expand the potential around the minima as,

V (φ) = 1
2m

2(φ− φmin)2 + . . . . (2.66)

During this oscillatory phase, the inflaton field behaves like pressureless matter (av-

eraged over several periods of oscillation) and dominates the energy density of the

universe.

We now introduce a coupling between the inflaton and a scalar field χ, which is a

surrogate for the known particles of the Standard Model. Let Γ be the decay rate of

the inflaton into χ. Then the equation of motion of the inflaton becomes

φ̈+ 3Hφ̇+ Γφ̇+m2φ = 0. (2.67)

AsH decreases with time after inflation, the interaction term takes over and reheating

is said to be completed when Γ = H. The temperature when this happens is called

the reheating temperature Trh and can be estimated, given a form for the coupling

between the inflaton and χ.

The simple description above ignores additional non-perturbative effects that can play

a crucial role in the reheating process. An important example is the fact that the

inflaton oscillations back-react on the evolution of χ and can exponentially enhance

the production of χ through resonance effects.

χ̈k + 3Hχ̇k +
(
k2

a2
+ f(φ)

)
χk = 0. (2.68)

Here, f is a function of φ determined by the coupling between φ and χ. These

resonance effects can dominate in the initial phase of reheating which is why this

phase is sometimes called preheating. Eventually, preheating becomes inefficient and

the perturbative effects described above may take over.
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Chapter 3

Primordial perturbations from

Inflation

Introduction

We now we turn to the study of the fluctuations of the inflaton field δφ(x, t), and how

they relate to cosmological observables such as the CMB and LSS. The content in this

chapter is adapted largely from the lecture notes by Baumann [91] and Riotto [92].

3.1 Quantum fluctuations in de-Sitter space

As a warm-up exercise, let us begin with a simple example and study the fluctuations

of a minimally coupled massless scalar field σ (not the inflaton) during inflation

described by the action of (2.54). For simplicity, we neglect the the back-reaction

of the field on the background1. Splitting the field into a homogeneous part and

a fluctuation we can write σ(x, t) = σ̄(t) + δσ(x, t). The evolution equation for the

homogeneous part is the same as (2.55), while for the fluctuations it is

δσ̈k + 3Hδσ̇k + k2

a2
δσk = 0. (3.1)

Here, we have used the following convention for the Fourier transform,

f(x, t) =
∫

d3x

(2π)3 fk(η)e
ik·x. (3.2)

1We will need to take this into account when we study the fluctuations of the inflaton field φ.
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Next, we define u = aδσ and switch to conformal time η to obtain2,

u′′k +
(
k2 − a′′

a

)
︸ ︷︷ ︸
time dep. ω(η)

uk = 0. (3.3)

This is the equation of motion of a harmonic oscillator with a time dependent fre-

quency ω(η) = k2 − a′′/a and can also be obtained from the following kind of action

S = 1
2

∫
dη d3x

[1
2(u

′)2 − (∂iu)2 +
a′′

a
u2
]
. (3.4)

It is instructive to study the sub-Hubble (k ≪ aH) and super-Hubble (k ≫ aH) limits

of equation (3.3). Assuming an exactly de-Sitter spacetime where a(η) = −1/(Hη),

we obtain an oscillatory behaviour for the short wavelength modes

u′′k + k2uk = 0 =⇒ uk ∝ exp{±ik · x}. (3.5)

For the long wavelength modes we obtain a growing and decaying mode solution

u′′k = a′′

a
uk =⇒ uk ∝ a, a−2. (3.6)

Focusing only on the growing mode solution, this implies that the original field fluc-

tuation δσ = u/a freezes on super-Hubble scales.

A general solution of (3.3) can be written as

uk = a−k uk(η) + a+−ku
∗
k(η) (3.7)

with uk(η) and u∗k(η) being two linearly independent solutions and a−k , a
+
k being some

constants. It will later turn out that these represent the creation and annihilation

operators, respectively. The Wronskian of the mode functions is independent of time

and can be taken to be

W [u,ku
∗
k] = u′ku

∗
k − uku

∗′
k = −i, (3.8)

since we can always rescale the mode functions uk → λuk.

Quantisation of these perturbations requires that we promote the field u and its

canonically conjugate momentum π = δL/δu′ = u′ to quantum operators û and π̂

with the standard commutation relation,

[û(η,x), π̂(η,y)] = iδ(x− y), [û(η,x), û(η,y)] = [π̂(η,x), π̂(η,y)] = 0. (3.9)

2Eq. (3.3), when applied to the inflaton field fluctuations, leads to the famous Mukhanov-Sasaki
equation of inflationary cosmology, e.g. see [91].

31
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The constants a±k now become operators â±k such that the field operator û can be

written as

û(η,x) =
∫

d3k

(2π)3
[
â−k uk(η)e

ik·x + â+k uk(η)e
−ik·x

]
. (3.10)

The commutation relation (3.9) and our normalisation of the Wronskian now ensures

that [
â−k , â

+
k′

]
= δ(k− k′) and

[
â−k , â

−
k′
]
=
[
â+k , â

−
k′

]
= 0. (3.11)

Thus, the operators â±k can be thought of as the usual creation and annihilation

operators with

â−k |0⟩ = 0, â+k |0⟩ = |k⟩. (3.12)

We can then proceed to create general quantum states through repeated actions of

the creation and annihilation operators.

3.1.1 Choice of vacuum

The vacuum state in our theory has not yet been uniquely defined. To do this, we

need to find a set of mode functions that minimises the expectation value of the

Hamiltonian. In general time dependent space-times, this is not so simple since the

minimum energy state can itself depend on the time at which it is defined, in this

case due to the time dependent frequency ω(η). One can still find a vacuum state

that minimises the energy at a given time t0, i.e. an instantaneous vacuum state

but this is not guaranteed to be the minimum energy state at a later time t1. For

(quasi)de-Sitter space-times, we can observe that at very early times all the k-modes

of interest were sub-Hubble,

k

aH
≪ 1 for |kη| ≪ 1. (3.13)

They have time independent frequencies ω = k2 − 2/η2 → k2 and do not feel the

effects of the expansion. Thus, the Minkowski vacuum state can be chosen as the

initial state for the fluctuations in de-Sitter spacetimes,

lim
kη→−∞

uk(η) =
1√
2k
e−ikη (3.14)

This choice of vacuum state is called the Bunch-Davies vacuum.
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The vacuum state in the far past:
When a given k-mode is sufficiently sub-horizon (|kη| ≪ 1), the equation of motion can

be written as,

u′′k + k2uk = 0, (3.15)

the same as that of a simple harmonic oscillator in flat space. Each mode has an energy

Ek = |uk|′ + k2|uk|2. Writing uk = rke
idk gives,

Ek = r′2k + r2kd
′2
k + k2rk, r2kd

′2
k = −1

2 . (3.16)

This is minimised with r′2k = 0, rk = 1/
√
2k. We integrate to obtain dk = −kη up to an

irrelevant phase factor and finally arrive at,

lim
kη→−∞

uk(η) =
1

√
2k
e−ikη, (3.17)

as the minimum energy state in the far past.

3.1.2 Power spectrum

Coming back to (3.3), we can write a general solution as,

uk(η) = A
e−ikη√

2k

(
1− i

kη

)
+B

eikη√
2k

(
1 + i

kη

)
. (3.18)

Imposing the Bunch-Davies vacuum sets A = 1, B = 0, thus the required mode

function is

uk(η) =
e−ikη√

2k

(
1− i

kη

)
. (3.19)

Finally, the power spectrum is defined as vacuum expectation value (vev) of the

two-point function,

⟨0|ukuk′ |0⟩ = (2π)3δ(k+ k′)|uk|2 (3.20)

In position space we have

⟨0|u(x, t)2|0⟩ =
∫

d3k

(2π)3 |uk|
2 ≡

∫
d ln kPu(k). (3.21)

Now, recalling that the field fluctuations δσ were frozen on super-Hubble scales, we

can evaluate the power spectrum Pδσ(k) at Hubble crossing to get,

Pδσ(k) =
Pu(k)
a2

∣∣∣∣
k=aH

=
(
H

2π

)2 ∣∣∣∣
k=aH

. (3.22)

Thus, the spectrum of fluctuations is scale invariant if the spacetime is exactly de-

Sitter.
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3.1.3 General field fluctuations in quasi de-Sitter

Let us build upon the previous result by first adding a mass term for the field fluctu-

ations. In the presence of a mass term, (3.1) becomes

u′′k + [k2 +M2(η)]uk = 0 (3.23)

where M2(η) = (m2 − 2H2)a2(η). We can rewrite this equation in the form,

u′′k +
[
k2 − 1

η2

(
ν2 − 1

4

)]
uk = 0, ν2 = 9

4 − m2

H2 (3.24)

For real values of νσ and imposing the Bunch-Davies vacuum condition, the solution

is

uk =
√
π

2 ei(ν+1/2)π2
√
−η H(1)

ν (−kη), (3.25)

where H(1)
ν is the Hankel function of the first kind. In terms of δσ, we have on

super-Hubble scales,

|δσk| ≃
H√
2k3

(
k

aH

) 3
2−ν

(3.26)

In this case, the fluctuations are not constant and have a small time-dependence on

super-Hubble scales due to the mass term.

Finally, we consider the case of inflationary backgrounds where the spacetime is not

exactly de-Sitter but has small deviations from it, quantified by the slow-roll parame-

ters of (2.59) which we assume to be small. At first order in the slow-roll parameters,

the relation between the scale factor and the conformal time is given by

a = − 1
Hη

(1 + ϵ), a′′

a
= 1
η2

(2 + 3ϵ). (3.27)

We can now solve (3.23) using these relations to find,

Pδσ =
(
H∗
2π2

)2 ( k
k∗

)3−2ν
(3.28)

where ν = 3/2− ϵ+m2/H2 for ϵ,m2/H2 ≪ 1, k∗ is a reference scale and H∗ is the

Hubble parameter evaluated at the time the reference scale crosses the horizon.

34
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3.2 Perturbations from inflation

Let us now calculate the inflaton field perturbations, taking the example of a single

field slow-roll model with action,

S =
∫
d4x

√
−g

[
R

2 − 1
2g

µν∂µφ∂νφ− V (φ)
]
. (3.29)

where φ is the inflaton field. We split the inflaton field into a homogeneous part φ̄(t)

and perturbations δφ(x, t). Here, one cannot proceed as in the previous section to

compute the perturbation spectrum. Since the inflaton dominates the energy budget

of the universe, its field fluctuations induce fluctuations in the stress-energy tensor Tµν
and consequently perturbations of the metric tensor gµν . The metric fluctuations then

back-react on the inflaton evolution through the perturbed Klein-Gordon equation –

in short, these fluctuations cannot be treated independently of each other. Let us

now take a look at these metric perturbations in more detail.

3.2.1 Metric Perturbations

The most general perturbations to the FLRW metric can be written as

ds2 = a2(τ)
[
−(1 + 2A)dη2 + 2Bidxidτ + (δij + hij)dxidxj

]
. (3.30)

Here, A,Bi and hij are some unknown functions of both space and time, to be deter-

mined by solving the Einstein equations. We split the metric into the homoegenous

FLRW metric with perturbations on top

gµν = ḡµν︸︷︷︸
FLRW

+ δgµν , |δgµν | ≪ |ḡµν | (3.31)

Working to linear order in the perturbations, the inverse metric and its perturbations

are given by

gµν = ḡµν + δgµν , δgµν = −ḡµαḡνβδgαβ. (3.32)

SVT decomposition

The metric perturbations can be decomposed into three independent kinds of fluc-

tuations based on their transformation properties under rotations – scalars, vectors
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and tensors (SVT). Scalars correspond to density perturbations, vectors to vorticity

and tensors correspond to gravitational waves.

A general vector field can be decomposed into the gradient of a scalar and a divergence-

less vector

Bi = ∂iB + B̄i, (3.33)

with ∂iB̄i = 0. Along similar lines, a general rank-2 symmetric tensor can be split

into the following

hij = 2Cδij + 2∂i∂jE − 2
3δij∇

2E︸ ︷︷ ︸
scalar

+ ∂(iĒj)︸ ︷︷ ︸
vector

+ 2Ēij︸ ︷︷ ︸
tensor

, (3.34)

where ∂iĒi = ∂iĒij = Ēii = 0. The significance of this decomposition can be under-

stood from the fact that scalars, vectors and tensors do not mix with each other at

linear order, thus we can solve for one kind of perturbation without needing to worry

about the other two [93, 94].

Gauge Issues

Consider a general transformation of coordinates,

xµ → x̃µ = xµ − ξµ, ξ0 = T and ξi = ∂iL+ L̄i (3.35)

where ∂iL̄i = 0 and the metric in the new coordinates now denoted as g̃µν . The

perturbations in the transformed metric can be calculated using

ds2 = gµνdx
µdxν = g̃µνdx̃

µdx̃ν (3.36)

so

gαβ(xµ) =
dx̃µ

dxα
dx̃ν

dxβ
g̃µν(x̃µ) (3.37)

As an example for the transformation A→ Ã, we find

g00 ≈
(
dx̃0

dx0

)2

g̃00 (3.38)

So for the metric in (3.30), one finds

a2(τ)(1 + 2A) = (1− 2T ′)a2(τ − T )(1 + 2Ã)

= a2(τ)(1− 2T ′ − 2HT )(1 + 2Ã), (3.39)
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such that

Ã = A+ T ′ +HT,

B̃i = Bi − ∂iT + L′
i, (3.40)

h̃ij = hij + 2HTδij + ∂iξj + ∂jξi.

Note that the quantity H = a′/a = aH is the conformal Hubble parameter. In terms

of the SVT decomposition introduced earlier, the transformations can be written as,

A→ A+ T ′ +HT, B → B + T − L′, B̄i → B̄i + L̄i

C → C +HT + 1
3∇

2L, E → E + L, Ei → Ei + Li,

Eij → Eij .

(3.41)

The tensor perturbation Eij is manifestly gauge invariant. At first glance, it would

appear that the metric gµν contains 10 degrees of freedom. However, the gauge

freedom of GR means that not all of these degrees of freedom are physical. The

coordinate transformations parameterised by (T, L, L̄i) allow us to eliminate 4 out

of 10 of the metric perturbations, leaving us with 6 degrees of freedom – 2 scalars,

2 vectors and 2 tensors. One can see this for instance, by defining gauge invariant

variables through linear combinations of the previously defined quantities,

ΦB ≡ A+H(B − E′) + (B − E′)′, Ψ̄i ≡ Ē′
i − B̄i, (3.42)

ΨB ≡ −C −H(B − E′) + 1
3∇

2E, Ēij . (3.43)

The potentials ΦB and ΨB here are the famous Bardeen potentials [95].

Gauge invariant quantities can be regarded as truly physical perturbations because

they cannot be removed by arbitrary gauge transformations. However, assigning a

clear physical meaning to these gauge-invariant quantities may not always be possible

and one may need to resort to fixing the gauge to relate these perturbations with

observable quantities. In what follows we shall only consider the case of scalar and

tensor perturbations, since these are the ones most relevant for inflation. Vector

perturbations decay in the absence of a source, thus their effects are rapidly washed

out by the inflationary expansion and can be ignored [94].

Newtonian gauge

The Newtonian or longitudinal gauge is defined by the conditions,

B = E = 0. (3.44)
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In this gauge, we have

ΦB = A, ΨB = −C. (3.45)

The gauge gets its name from the fact that evolution equations for the metric perturba-

tions in this gauge are most similar to their Newtonian counterparts.

Spatially flat gauge

The spatially flat gauge or the flat slicing gauge is defined by turning off the scalar

perturbations in the spatial part of the metric,

C = E = 0. (3.46)

This gauge will turn out to be quite convenient for the purpose of calculating the inflaton

field fluctuations in section 3.2.3.

Comoving gauge

Another commonly used gauge choice is the comoving gauge, defined by requiring the

momentum flux of the perturbed stress energy tensor to vanish,

δT 0
i = 0. (3.47)

For a scalar field, this is obtained by expanding the scalar field stress energy tensor (2.56),

to linear order in the perturbations

δT 0
i = − φ̄′

a2
∂iδφ. (3.48)

Thus the comoving gauge condition reads,

δφ = 0. (3.49)

An extensive review of cosmological perturbation theory can be found in [93, 94].

3.2.2 The curvature perturbation

An important quantity for the study of inflationary perturbations is the comoving

curvature perturbation R, which represents the curvature perturbation in the co-

moving gauge. The curvature perturbation C in a generic gauge is related to the

3-curvature of the spatial hypersurfaces as,

(3)R = − 4
a2

∇2C (3.50)

38



3.2.2 The curvature perturbation

Thus, one can define the gauge invariant curvature perturbation R as

R = −C +Hδφ

φ′
, R = −C|comoving . (3.51)

The comoving curvature perturbation has a remarkable property – it remains constant

on super-Hubble scales (k ≫ H) as long as the perturbations are adiabatic [96, 97].

Another useful quantity that one sometimes encounters in the literature is the cur-

vature perturbation in uniform density gauge,

ζ = −C +Hδρ

ρ′
. (3.52)

This quantity is also gauge invariant and represents the curvature perturbation in the

uniform density gauge. On super-Hubble scales, ζ ≈ R and thus the two variables

can be used interchangeably [92].

Adiabatic and Isocurvature perturbations:
In a universe with multiple matter components or fields, two types of perturbations may

arise. The first type, adiabatic perturbations, refer to perturbations that correspond to

common, local time shifts along the background solution, e.g.

δρi(x, η) = ρ̄i(η + δη(x))− ρ̄i(η). (3.53)

The time shift δη(x) is common to all components i. As a consequence of this, one can

write

δη = δρi
ρ̄′i
, ∀ i. (3.54)

Equivalently, this implies

δρi
1 + wi

=
δρj

1 + wj
(3.55)

for all i, j. The perturbations generated during SFSR inflation are always of an adiabatic

nature.

On the other hand, models with multiple fields can excite perturbations orthogonal to the

inflationary background trajectory in field space [94, 98]. This implies that the relative

overdensities of the different components are not fixed as in (3.55). These isocurvature

perturbations are defined as,

Sij ≡ 3H
(
δρi
ρ′i

−
δρj
ρ′j

)
= 3(ζi − ζj), (3.56)

and are gauge invariant by definition.
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3.2.3 Curvature power spectrum

To compute the power spectrum of the curvature perturbation, we will switch to the

spatially flat gauge C = 0. The advantage of using this gauge is that by setting the

perturbations δgij to zero, we need only work with the inflaton fluctuations whose

evolution equation is essentially the same as that of a massless field in quasi-de Sitter

spacetime3,

δφ̈+ 3Hδφ̇+ k2

a2
δφ = 0. (3.57)

By evaluating the power spectrum of the inflaton fluctuations at horizon crossing, we

can obtain the curvature power spectrum using,

R = Hδφ

φ′

∣∣∣∣
flat

=⇒ PR(k) =
(H
φ′

)2
Pδφflat(k). (3.58)

Using the results from section 3.1, we finally obtain

PR(k) =
1

8π2ϵ

(
H

MPl

)2 ∣∣∣∣
k=aH

≡ As

(
k

k∗

)ns−1
, (3.59)

where As and ns represent the amplitude and spectral index of the curvature power

spectrum and k∗ is a reference scale at which the inflationary quantities H, ϵ, η are

evaluated,

As =
1

8π2ϵ∗

(
H∗
MPl

)2
, ns − 1 ≡ d lnPR

d ln k = −2ϵ∗ − η∗ = 2ηV − 6ϵV . (3.60)

The parameter ns is known as the spectral tilt and measures the deviation from

perfect de-Sitter geometry during inflation. During the slow-roll phase, the scale/time

dependence of ns can be neglected since ϵ′ ∼ η′ ∼ O(ϵ, η)2.

3.2.4 Gravitational Waves

The case of gravitational waves is now quite straightforward to analyse. Expanding

the Einstein-Hilbert action to second order in hij , we obtain

Sh(2) =
M2

Pl
8

∫
dη d3x a2

[
(hij)2 − (∂mhij)2

]
. (3.61)

3More precisely, this is true up to subdominant slow roll corrections which give a small effective
mass (m ∝ ηV ≪ 1) to the inflaton field [99, 100]. In general, these corrections may not remain small
towards the end of inflation which is why it is convenient to switch to the curvature perturbation R
at the time of Hubble crossing.
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Fourier expanding hij as

hij(t,x) =
∫

d3k

(2π)3
∑
λ

ϵλij(k)hk(η)eik·x, kiϵ
ij
λ = 0 and ϵλijϵλ

′
ij = 2δλλ′ (3.62)

and defining the canonically normalised field

vk ≡ aMPlhk
2 , (3.63)

we obtain

Sh(2) =
1
2
∑
λ

∫
dη d3k

[
(vλk)

2 −
(
k2 − a′′

a

)
(vλk)

2
]
. (3.64)

This gives us essentially two copies of the scalar field action (3.1) that we have seen

previously. Thus, the tensor power spectrum can be written as

PT (k) = 2Ph(k) =
2H2

π2M2
Pl

∣∣∣∣
k=aH

(3.65)

Equivalently, one can write

PT (k) =
2H2

∗
π2M2

Pl

(
k

k∗

)nt

≡ At

(
k

k∗

)nt

, (3.66)

where nt ≃ −2ϵ∗ is the tensor tilt and At the amplitude of the tensor power spectrum.

As can be seen from (3.65), the amplitude of the tensor power spectrum depends

only on the the value of the Hubble parameter during inflation. Thus, a detection

of primordial tensor modes allows us to directly probe the energy scale of inflation,

within single field slow-roll (SFSR) models. SFSR models also predict a slightly red

tilted spectrum nt < 0 with the tensor tilt related to the tensor-scalar ratio,

r = At
As

= 16ϵ = −8nt. (3.67)

This is known as the tensor consistency relation of SFSR inflation.4

The tensor-scalar ratio can also be related to the field excursion during inflation [101],

∆φ
MPl

= O(1)
√

r

0.01 . (3.68)

Here, ∆φ is the difference in field values between the time the CMB scales exited the

horizon and the end of inflation. The above relation, known as the Lyth bound, tells us

that r ≳ 0.01 requires the inflaton field to traverse super-Planckian distances during

inflation. Obtaining such large field excursions is known to be quite challenging in

theories of quantum gravity [46].

4Models of inflation which are single field, but with non-canonical kinetic terms, non-minimal
couplings to gravity and more generally, the EFT of single-field inflation, may not necessarily obey
this one-to-one relation, see [58] for a review.
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comoving scale

time

1/aH

1/k

horizon exit horizon re-entry

Ṙ ≈ ḣij ≈ 0

inflation

ηend

radiation/matter era

Figure 3.1: Generation of perturbations during inflation, their super-horizon conser-
vation and subsequent horizon re-entry during the radiation and matter dominated
eras.

3.3 From Inflation to Observations

During inflation all modes are stretched to super-Hubble scales and the constancy

of R allows us to relate the curvature perturbation generated during inflation to the

large scale density fluctuations observed today. Essentially, Rk (and also hk) remains

constant after the mode k becomes super-Hubble during inflation. After inflation

ends, the universe reheats into a radiation dominated phase and the comoving Hubble

radius (aH)−1 starts increasing. Eventually the mode ‘re-enters’ the horizon (k = aH)

during radiation or matter domination as illustrated in Figure 3.1. This sets the

initial conditions for the perturbations of the matter and radiation components that

constitute the universe.

Observed quantities such as the CMB anisotropies or the inhomogeneities in the distri-

bution of large scale structure can be written in terms of the primordial perturbation

as

Ok(η) = Tk(η)Rprim
k . (3.69)

Here Tk denotes the transfer function that accounts for the post-inflationary evolution

of the perturbations.

In what follows I briefly describe the CMB anisotropies and discuss how their obser-

vations provide us the strongest evidence for inflation. An exhaustive treatment of

CMB anisotropies can be found in the textbook by Durrer [102].
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Figure 3.2: Map of temperature anisotropies from Planck [103].

3.3.1 CMB anisotropies

In Figure 3.2, we show a map of the CMB temperature anisotropies as observed the

Planck [103]. The CMB temperature is seen to be nearly uniform across the sky

with small fluctuations having a typical magnitude ∆T/T ∼ 10−5. This temperature

anisotropy, being a function of the sky direction n̂, can be expanded in spherical

harmonics as,

Θ(n̂) ≡ ∆T
T

(n̂) =
∑
ℓm

aℓmYℓm(n̂). (3.70)

The aℓm are the multipole moments

aℓm =
∫
d2n̂ Y ∗

ℓm(n̂)Θ(n̂), (3.71)

and can be combined into the rotationally invariant angular power spectra

Cℓ =
1

2ℓ+ 1
∑
m

⟨aℓma∗ℓm⟩, or ⟨aℓma∗ℓ′m′⟩ = δℓℓ′δmm′Cℓ, (3.72)

assuming statistical isotropy of the background. The angular power spectrum is an

extremely useful quantity as it allows us to compress the millions of pixels carrying in-

formation about the temperature anisotropies into a much smaller set of numbers. For

Gaussian random fields, this compression is completely loss-less since the power spec-

trum contains all the information about the statistical properties of the fields [104].

Furthermore, since inflation predicts only the statistical properties of the primordial

perturbations and not the actual values of the perturbations themselves, the angular

power spectrum is the ideal quantity to work with. The aℓm and Cℓ can be written
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in terms of R5 as

aℓm
4π(−i)ℓ

=
∫

d3k

(2π)3 ∆
T
ℓ (k)RkYℓm(k̂), Cℓ =

2
π2

∫
k2dkPR(k)(∆T

ℓ )2(k). (3.73)

The harmonic transfer function ∆T
ℓ accounts for several different effects – namely the

gravitational redshift, coupled oscillations of the photon-baryon fluid and diffusion

damping effects on small angular scales. The formalism for CMB polarisation is

more mathematically involved, since polarisation is described by a spin-2 field on

the sphere rather than a scalar function and the corresponding transfer functions are

more complicated. The analytic expressions for the transfer functions can be found

in [105–108]. Typically, these are calculated numerically using Boltzmann codes such

as CLASS [109, 110] or CAMB [111].

The primordial fluctuations that source the CMB anisotropies are observed to be

nearly scale invariant with a slight red tilt, Gaussian and adiabatic. The CMB fluc-

tuations are correlated on scales much larger than the causal horizon at recombination

and were generated with coherent phases6, as evidenced by the acoustic peaks in the

angular power spectrum of the CMB anisotropies. All of these observations are ele-

gantly predicted by the simplest models of inflation. The primordial power spectrum

amplitude and the tilt have been inferred to be [15],

ln
(
1010As

)
= 3.044± 0.014, ns = 0.9649± 0.0042 , (3.74)

assuming the base ΛCDM model with no evidence for the running (scale dependence)

of the spectral index. The results quoted above are at 68% CL and obtained from

the Planck TT,TE,EE+lowE+lensing datasets [15].

B-mode polarisation

The linear polarisation of the CMB can be specified in terms of two fields E and B,

which represent the ‘gradient’ and ‘curl’ modes of the polarisation field (Figure 3.3).

While tensors generate both E and B-modes [107, 108], scalar perturbations cannot

generate B-mode polarisation at linear order [113]. This implies that the detection of

5One can also write similar expression for the temperature anisotropies from tensors. This con-
tribution is much smaller than the one from scalars (since r ≪ 1) and we shall study it further in
chapter 6.

6In other words, SFSR inflation excites the cosine mode of perturbations, i.e. the perturbations
start off as Ṙk = 0 on super-horizon scales and interfere coherently at recombination, producing the
characteristic peaks and troughs in the ⟨TT ⟩, ⟨EE⟩ and ⟨TE⟩ spectra [112].
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Figure 3.3: For a given point on the sky, B-modes appear to ‘curl’ around that point
whereas E-modes lie either parallel or perpendicular to the radial direction. Image
credit: APS/Michael Schirber.

a primordial B-mode polarisation would provide proof of the existence of inflationary

tensor perturbations, and give us access to the energy scale of inflation B-mode po-

larisation has not been detected so far and measurements from the CMB temperature

and polarisation have been able to place an upper bound on r, obtaining [35, 114]

r0.002 < 0.032, (95% C.L.) (3.75)

assuming the tensor consistency relation holds. The next generation of CMB exper-

iments such as the BICEP Array [42], Simons Observatory [43], LiteBIRD [45] and

CMB-S4 [115] will be sensitive to values of r ≳ 0.001, allowing for either a detection

or further constraints on inflationary models. So far, the non-detection of r, along

with the constraints on ns has already ruled several inflationary models, as depicted

in the inflationary ‘zoo’ plot in figure Figure 3.4. The Starobinsky (R2) model of

inflation [37, 38], is currently in excellent agreement with the data and intriguingly,

its prediction of r ≳ 0.002 will be within the reach of LiteBIRD and CMB-S4. Other

models of inflation such as the ones with monomial potentials φp [27], and natural

inflation [40] are strongly disfavoured by the data.

Deviations from the tensor consistency relation can also occur when one goes beyond

the slow roll scenarios or considers models with multiple fields, alternative symmetry

breaking patterns (see ref. [58, 59] for a review). Future CMB experiments will also

be able to test for these deviations from SFSR scenarios and an example of this is

studied in Chapter 6.
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Figure 3.4: Predictions of selected inflationary models assuming between 50-60 e-folds
vs 68% and 95% contours from Planck, BAO and BICEP in the ns – r plane. The
data for the figure is obtained from [35, 41].

3.3.2 GW at interferometer scales

The present day spectral energy density of gravitational waves, denoted by ΩGW,

is typically used to describe the sensitivities of interferometer experiments. This

quantity is defined as [116],

ΩGW(k, η)0) ≡
1
ρcr

dρGW
d ln k = PT (k)

12H2
0

[
T ′(k, η0)

]2
, (3.76)

where ρcr is the critical energy density (2.35). The transfer function T (k, η) accounts

for the time evolution of the primordial tensor perturbation [117], i.e.

hk(η) = T (k, η)hprimk . (3.77)

Taking into account the current constraints on r and extrapolating the SFSR tensor

spectrum to interferometer scales, we see that the GW amplitude is going to be

too small to be detectable in future experiments, with the possible exception of the

proposed Big Bang Observer (BBO) [118] (fig. 3.5). On the other hand, several models

of inflation beyond the SFSR paradigm do predict sizeable GW signals at small scales,

which may be observable with next generation experiments (see Figure 3.5). Possible

scenarios include the following:
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Figure 3.5: GW from inflation — the future observational landscape.

• Gravitational waves sourced by additional fields [119–134] (e.g. axion gauge

fields [125, 126] or an additional spin-2 field [127–129]), or due to enhanced

second order curvature perturbations on small scales [135–138].

h′′ij + 2Hh′ij + k2hij = 16πGa2ΠTTij (3.78)

Here, ΠTTij is the transverse-traceless part of the anisotropic stress. GW in the

latter scenario are sometimes called scalar-induced GW (SIGW) and may be

accompanied by primordial black hole formation, due to the enhancement of

the small scale curvature perturbation [63, 64].

• Inflationary models with alternative symmetry breaking patterns7 can lead to

a non-zero mass for the tensor modes and consequently a blue tilted tensor

spectrum [140–147],

Pt(k) = At

(
k

kp

)nt

, nt ≈
2
3
m2
h

H2 . (3.79)

The tensor mass in such cases is related to the (small) symmetry breaking

parameters of the theory.

7In contrast, standard single field inflation can be thought of as a theory of weakly broken time
translations, with the small symmetry breaking parameter ϵ [139].
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• A non-slow roll phase to enhance the would-be decaying mode [148, 149],

ḧij + 3f(t)Hḣij +
k2

a2
hij = 0. (3.80)

Inteferometeric observations will also open up the possibility to map the SGWB

intensity across the sky, much like the CMB and its anisotropies. The physics of

SGWB anisotropies and their detection prospects are studied in Chapters 4 and 5.

3.4 Primordial non-Gaussianity

Non-Gaussianities, i.e., correlations beyond the 2-point function encode the interac-

tions of the inflaton and allow us to probe the inflationary action beyond the free

field limit [150–158]. The additional information provided by non-Gaussianity can

also help to distinguish inflationary models from each other, beyond what can be

done using the power spectra alone.

The primary diagnostic of non-Gaussianity is the bispectrum8 BR, defined as the

3-point function in Fourier space [62],

⟨Rk1Rk2Rk3⟩ = (2π)3δ(k1 + k2 + k3)BR(k1,k2,k3) (3.81)

The delta function enforces momentum conservation and arises due to the translation

invariance of the background. Rotational invariance of the background further implies

that the bispectrum is independent of the orientation of the triangle formed by the ki.

3.4.1 Amplitude and shapes of non-Gaussianity

For scale-invariant perturbations9, it is customary to write the the bispectrum in the

following manner,

BR(k1, k2, k3) =
18
5 fNL

S(x2, x3)
(k1k2k3)2

P2
R. (3.82)

8At next order in the perturbations lies the trispectrum [159–165], which refers to the 4-point
function in Fourier space.

9Although we only focus on scale invariant examples here, the running of the bispectrum i.e. its
dependence on K = k1 + k2 + k3 can also be important [62].
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The amplitude of non-Gaussianity fNL is defined as,

fNL(k) ≡
5
18
BR(k, k, k)

P2
R

. (3.83)

On the other hand, the shape S of the bispectrum describes its dependence on the

momentum ratios x2 = k2/k1 and x3 = k3/k1 and is normalised as S(1, 1) = 1. Some

of the typical shapes of the bispectrum generated during inflation are described below:

Local shape

This shape gets its name from a local parametrisation of non-Gaussianity in real

space,

ζ(x) = ζg(x) +
3
5fNL

[
ζg(x)2 − ⟨ζ2g ⟩

]
, (3.84)

with ζg a Gaussian field. In Fourier space, the local bispectrum reads,

BR(k1,k2,k3) =
6
5fNL

A2
R

(k1k2k3)3

(
k21
k2k3

+ 2 perms.
)
. (3.85)

The shape function in this case is

Sloc =
1
3

(
k21
k2k3

+ 2 perms.
)
. (3.86)

Let us order the momenta as k1 ≤ k2 ≤ k3, without loss of generality. We now see

that the local shape is peaked for squeezed triangles with k1 ≪ k2 ∼ k3.

Equilateral shape

The equilateral shape bispectrum is peaked for equilateral triangles k1 = k2 = k3 and

can be described by the following template

Seq =
(
k1
k2

+ 5 perms.
)
−
(
k21
k2k3

+ 2 perms.
)
− 2. (3.87)

This type of non-Gaussianity is typically generated by higher derivative interactions

which are suppressed when any of the modes are outside the horizon, but are sizeable

when all the modes are the size of the horizon scale.
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Orthogonal shape

The orthogonal shape is defined phenomenologically as a shape that has minimal

overlap with the local and equilateral shapes,

Sortho = −3.84
(
k21
k2k3

+ 2 perms.
)
+ 3.94

(
k1
k2

+ 5 perms.
)
− 11.10. (3.88)

The overlap is checked by computing the cosine C(S1, S2) between two different shapes

S1 and S2 through,

C(S1, S2) =
S1 · S2√

(S1 · S1) (S2 · S2)
, S1 · S2 =

∫
S1(x2, x3)S2(x2, x3)dx2dx3. (3.89)

Here we defined x2 = k2/k1 and x3 = k3/k1.

In general, the level of non-Gaussianity within vanilla SFSR inflation,10 whether in

the local or equilateral shape, is expected to be quite small with fNL < 1 [150–

153]. On the other hand, single field models beyond the vanilla scenario, models

with multiple fields or models with alternative symmetry breaking patterns provide a

way to generate larger levels of non-Gaussianity, see e.g. [140–146, 156–158, 166–182].

The subject of non-Gaussianity from inflationary models is reviewed in further detail

in [61, 62].

3.4.2 In-In formalism

Let us now review how to calculate the bispectrum and other higher order correlation

functions in an inflationary background using the in-in formalism [183–189], which is

an application of quantum field theory to time dependent backgrounds.

Our goal is to calculate the expectation value of a general operator Q = δφ1δφ2 . . .,

which may be a product of several different field perturbations, at a given time t,

usually taken to be the end of inflation,

⟨Q(t)⟩ ≡ ⟨Ω|Q(t)|Ω⟩. (3.90)

Here Ω denotes the vacuum of the interacting theory at some point ti in the far

past. This is in contrast to the standard in-out formalism of particle physics used

to calculate transition amplitudes for a given state in the far past to evolve to a

10This refers to simplest class of SFSR models with the inflaton field minimally coupled to gravity,
having canonical kinetic terms and starting from Bunch-Davies initial conditions.
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different state in the far future. However, in cosmological space-times one cannot

define asymptotic free states in the far future since gravitational interactions will

always be present, even if all other interactions are switched off.

The in-in computation strategy can be summarised as follows. We split our Hamil-

tonian into a classical background, a quadratic kinematic part H0 and interactions

Hint. Working in the interaction picture, we evolve the fields Q(t) back to ti, using

the quadratic Hamiltonian H0 and then treat the interactions as a perturbative series

in Hint.

At the end (see Appendix A for the full derivation), we arrive at the following result

⟨Q(t)⟩ = ⟨0|T̄ ei
∫ t

−∞− Hint(t′)dt′Q(t)Tei
∫ t

−∞+ Hint(t′)dt′ |0⟩ , (3.91)

where T̄ represents anti time-ordering and the −∞± = −∞(1 ∓ iϵ). Here, both Q

and Hint are evaluated in terms of the interaction picture fields. The tree level effects

of the interaction are encapsulated in the expansion of the above expression to first

order in Hint, giving us

⟨Q(t)⟩tree = −i
∫ t

−∞
dt′⟨0|[Q(t), Hint(t′)]|0⟩. (3.92)

Using this formalism, one may then calculate the non-Gaussianity associated with a

given model of inflation.

3.4.3 Single field consistency relation

For SFSR inflation with canonical kinetic terms and Bunch-Davies initial conditions,

Maldacena used the in-in formalism to show that the the 3-point function in the

squeezed limit takes the following form [151],

lim
k1≪k2,k3

⟨Rk1Rk2Rk3⟩ = (2π)3δ3(k1 + k2 + k3)(1− ns)Pζ(k1)Pζ(k3) . (3.93)

Here, ns is the scalar spectral index. This result has been shown to be valid for

all single-field models [190–192] and is known as the consistency relation of single

field inflation.11 In general, the consistency relations of single-field inflation relate

the soft limits (k → 0 for one of the momenta) of N point correlation functions to

symmetry transformations of N−1 point correlation functions of the hard-momentum

11Not to be confused with the tensor consistency relation of eq. (3.67).
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modes [160–162, 193–200]. Similar relations also apply to the case of multiple soft

limits.

The consistency relation eq. (3.93) corresponds to the fact that when the inflaton is the

only dynamical field, the effect of a long wavelength mode can simply be reabsorbed

into a rescaling of the coordinates. Since de-Sitter correlation functions are scale

invariant due to the scale invariance of the background, this contribution is non-zero

only to the extent of the deviation of the background from a pure de-Sitter geometry,

quantified by (1− ns). In addition, it has been shown the consistency relation part

of the squeezed bispectrum is not observable. It is a gauge artifact and the physical

effects of the squeezed bispectrum in cosmological observables are highly suppressed,

appearing at O(k21/k23) [201–206].12

Thus, a detection of large non-Gaussianity in the squeezed limit would be highly

suggestive of a multi-field realisation of inflation. Observably large squeezed limit

non-Gaussianity may typically be generated if the consistency relations are violated,

which is possible in models with additional fields [127, 171, 208–213], non-Bunch

Davies initial states [178, 214–219] and alternative symmetry breaking patterns [140–

145], to name a few.13

3.4.4 Cosmological collider physics

Additional fields during inflation can leave distinctive signatures in the squeezed limit

non-Gaussianity, allowing us to probe their mass, spin and interactions during infla-

tion [208, 227–234]. For this reason inflation has sometimes been referred to as a

cosmological collider and the corresponding primordial non-Gaussianity as a parti-

cle detector. As an example, the contribution to the curvature bispectrum from an

additional field σ (Figure 3.6) has the following characteristics [229, 233]:

• Angular dependence arising from the spin s of σ

lim
k1≪k2∼k3

⟨Rk1Rk2Rk3⟩ ∝ Ps(k̂1 · k̂2), (3.94)

where Ps denotes the Legendre polynomial of degree s.

12However, see ref. [207] for a different take on this matter.
13A non-attractor period in single-field inflation may lead to a violation of Maldacena’s consistency

relation [220–225], but the size of observable squeezed limit non-Gaussianity is still expected to be
extremely small [226].
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σ

R R R

Figure 3.6: Cosmological collider example — inflationary correlation functions arising
from the exchange of an additional field σ.

• A non-analytic scaling and oscillatory behaviour in the squeezed limit

lim
k1≪k2∼k3

⟨Rk1Rk2Rk3⟩ ∝
1

k31k
3
2

(
k1
k2

)3/2
cos

[
mσ

H
ln
(
k1
k2

)
+ α

]
, (3.95)

for m2
σ/H

2 > (s− 1/2)2 and with α a phase factor.

Thus, we see that the squeezed bispectrum carries information about the masses

and spins of additional fields during inflation. We will revisit the subject of non-

Gaussianity in Chapter 5 where we shall study the ability of GW interferometers

to probe primordial tensor non-Gaussianity and observe certain cosmological collider

signatures.

Currently, primordial non-Gaussianity remains undetected with the most stringent

bounds on scalar non-Gaussianity coming from the Planck 2018 data. The ob-

tained constraints are f local
NL = −0.9± 5.1, f equil

NL = −26± 47, and f ortho
NL = 38± 24 at

68% CL [235]. Reaching experimental thresholds where the single field nature of in-

flation can actually be tested (σfNL ∼ 1) is an important target for future CMB and

LSS probes [236].
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Chapter 4

Gravitational wave anisotropies:

theory and applications

This chapter presents the results of the following articles:

• E. Dimastrogiovanni, M. Fasiello, A. Malhotra and G. Tasinato, “Enhancing

gravitational wave anisotropies with peaked scalar sources,”, JCAP 01 (2023),

018, [arXiv: 2205.05644] (appears as [4]).

• A. Malhotra, E. Dimastrogiovanni, G. Domènech, M. Fasiello and G. Tasinato,

“A new universal property of cosmological gravitational wave anisotropies,”

[arXiv: 2212.10316] (appears as [5]).

4.1 Introduction

The detection of stochastic gravitational wave backgrounds (SGWB) has long been

an important goal for gravitational wave astronomy. Several PTA collaborations have

recently reported strong evidence for a stochastic gravitational wave background, rep-

resenting a major triumph for the field [68–71]. Although the inferred properties of

the signal appear to be compatible with an astrophysical background arising from a

large number of supermassive black hole binaries in their inspiral phase, a possible cos-

mological origin cannot yet be discounted [72, 73]. Cosmological backgrounds may be

produced during high-energy processes in the early universe — inflation, phase tran-
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sitions, cosmic strings and primordial black holes, to name a few (see [59] for a review

of possible mechanisms). The discovery potential of such cosmological backgrounds

is immense, especially in light of the fact that the universe is transparent to gravita-

tional waves below the Planck scale, meaning that the detection of these backgrounds

may provide us a pristine snapshot of the early universe. Future experiments such as

ET [66], CE [67] (1–103Hz) and space-based experiments including LISA [65], Taiji

[237] (10−4–10−1Hz), are also well poised to observe such cosmological backgrounds

and are all expected to begin operations around 2035.

The possibility of detection with interferometers as well as PTAs provides us with

an opportunity to the measure the direction dependence of the SGWB [238–252]. In

general cosmological backgrounds are expected to be predominantly isotropic with a

small level of anisotropies (∼ 10−4 relative to the monopole) arising from the fact

that GW propagate in a perturbed universe [253–256]. The specific SGWB produc-

tion mechanism can also imprint an anisotropic component which can be much larger

depending on the model under consideration. Thus, these anisotropies carry pre-

cious information about the primordial perturbations, complementary to the CMB

anisotropies, and also the SGWB production mechanism.

Astrophysical backgrounds are also expected to be anisotropic, with the anisotropies

reflecting the inhomogeneous distribution of large scale structure [257–274]. As a

result they are strongly correlated with observables such as galaxy clustering, weak

lensing etc. [258, 259, 266, 269, 270, 274]. Techniques to separate the monopoles

of astrophysical and cosmological SGWB, based on their different frequency/time

dependence, have been proposed in [275–284]. Developing a comprehensive under-

standing of the different properties of cosmological and astrophysical background

anisotropies w.r.t their frequency and multipole dependence, and cross-correlations

with CMB/LSS, will be essential to also separating the different anisotropic compo-

nents in the SGWB map. Component separation techniques, which have proved to

be successful in the CMB case [103], may then be applied to the SGWB too, as shown

recently in [285].

Recent works have studied the anisotropies of cosmological backgrounds and their ef-

fectiveness in probing the early universe, focusing on phase transitions [286, 287, 287–

290], non-Gaussianity [1, 2, 291–296], cosmic strings [297–300], preheating [301,

302], ∆Neff [303], and various other pre-recombination scenarios [304]. Their cross-
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correlations with the CMB temperature and polarisation anisotropies have been in-

vestigated in [304–306] using numerical methods. A comprehensive review of these

scenarios was also carried out in [246].

To analyse these anisotropies, we first need a theoretical framework. This is provided

by the line-of-sight (los) formalism, which was recently applied to gravitational waves

in [254–256]. This extremely powerful formalism allows for a description of the SGWB

anisotropies in a manner similar to those of the CMB [75, 307], with the SGWB

anisotropies also feeling the familiar Sachs-Wolfe (SW) and an integrated Sachs-Wolfe

(ISW) effect. Another contribution arises from the model dependent initial condition

term, which represents the SGWB density perturbation at the time of production.

This chapter focuses on the physics of these gravitational wave anisotropies, starting

with a review of the los formalism in section 4.2. In the same section I then discuss

some aspects of the GW initial conditions for the case of adiabatic primordial pertur-

bations and draw a connection between the los results of [254–256] and the approach

of [253], as first presented in [4, 5].

Section 4.3 is based entirely on [4]. Here, I study the anisotropies of cosmological

SGWB induced via second order effects of the primordial curvature perturbation [135–

138]. Even though scalar and tensor perturbations are decoupled from each other at

linear order, at second order this is no longer true as the sub-horizon primordial scalar

perturbations source gravitational waves through their anisotropic stress. Significant

interest in such scalar induced gravitational waves (SIGW) stems from their strong

connection to the physics of primordial black holes (PBH), which are a candidate for

dark matter [308, 309]. The formation of PBH typically involves the enhancement

of the scalar perturbation on small scales [64], inevitably accompanied by SIGW

which may peak at frequencies relevant for LISA or ET, depending on the PBH

mass. Through the representative example of a log-normal, we demonstrate how a

sharply peaked curvature power spectrum imparts a distinctive frequency dependence

to the SIGW and its anisotropies. We then discuss the implications of the frequency

dependence for the anisotropy detection.

Section 4.4 presents the results of [5] where we go back to the topic of GW ini-

tial conditions for both adiabatic and isocurvature primordial perturbations. In the

adiabatic case we prove that the GW anisotropies are completely insensitive to the
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equation of state (eos) of the universe before BBN, leading to a completely universal

result for the anisotropies of all early universe SGWB. Indeed, there exist several

well-motivated early universe scenarios which lead to a departure from the standard

radiation dominated (RD) universe (ref. [310] provides a review of such scenarios). In

brief, the possibilities include a period of early matter domination due to the coherent

oscillations of a scalar field [311], a period of kinetic energy domination (‘kination’) in

quintessential inflation [312–316] or even a kination phase inside the RD epoch [317].

Our results demonstrate that for anisotropies sourced by adiabatic perturbations,

the effects of a non-standard expansion history can only be observed at the level

of the SGWB frequency spectrum [318–339]. Deviation from the above-mentioned

universal result would then hint towards the presence of non-adiabatic sources of

perturbations in the early universe.1 We then provide an example of this through the

curvaton mechanism [340–342] and derive the angular power spectrum of the SGWB

anisotropies for some representative curvaton scenarios, emphasising the differences

w.r.t the adiabatic case.

4.2 Line of sight formalism – a review

Following [254–256], we adopt the Newtonian gauge as the starting point for the

line-of-sight formalism,

ds2 = a2(η)
[
−(1 + 2Φ)dη2 + (1− 2Ψ)dx2

]
, (4.1)

with a(η) the scale factor in conformal time, and Φ, Ψ the gravitational potentials

(same as the Bardeen potentials of eq. (3.42) in this gauge). We describe the SGWB

by its distribution function f(xµ, pµ), with xµ the position and pµ the GW momen-

tum2. The total energy density of GW is given by an integral over the GW momenta,

ρGW =
∫
d3p pf(p). (4.2)

As is customary, we work not with ρGW but with the GW spectral energy density

1A similar point was first raised in ref. [253].
2The geometric optics approach to GW propagation forms the backbone of the line-of-sight for-

malism. This approach allows us to study the propagation of short-wavelength GWs in a background
that varies over length scales much larger than the GW wavelength [343–345].
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parameter ΩGW(q), defined as [116]

ΩGW = 1
ρcr

dρGW
d ln q , (4.3)

where q = |p|a is the comoving momentum of the gravitons and ρcr the critical

energy density of the universe. GW are massless, thus they propagate along the

null geodesics of the perturbed space-time. Let λ be the affine parameter along the

geodesic, then the distribution function along the geodesic evolves according to the

Liouville equation [254–256],

df

dλ
= C[f(λ)] + I[f(λ)], (4.4)

where C and I are the collision and injection terms. GW collisions can be safely ne-

glected at energies below the Planck scale, owing to the weakness of the gravitational

interaction. As for the injection term, this can be understood as the initial condition

of the GW distribution, for SGWB of cosmological origin [255, 256].

Then, one can show that the distribution function obeys the following Boltzmann-type

equation [254–256],

∂f

∂η
+ ∂f

∂xi
ni + q

∂f

∂q

[
∂Ψ
∂η

− ∂Φ
∂xi

ni
]
= 0, (4.5)

where we have kept terms up to first order in the scalar perturbations. The derivation

closely follows the similar one performed for the CMB anisotropies e.g. see [75]. The

contribution from large-scale tensors can also be calculated [255], but similarly to the

CMB, this is smaller than the scalar one by roughly a factor r ≪ 1.

We now split the distribution function into a homogeneous part and a perturbation

Γ as follows,

f(q,x) ≡ f̄(q)− Γ(η,x, q, n̂) d f̄

d ln q . (4.6)

The homogeneous part obeys,

∂f̄

∂η
= 0, (4.7)

and simply tells us that that the GW momentum redshifts as |p| ∝ 1/a and the

number density n ∝
∫
d3p f(q) decays as 1/a3. This is completely consistent with

what we already saw in section 2.3.1 for relativistic particles. The homogeneous part

of the energy density can be related to the zeroth order distribution function as,

ΩGW(q) = 4π
ρcr

(
q

a0

)4
f̄(q). (4.8)
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One can introduce a spatial dependence to this quantity as,

ΩGW(q,x) ≡ 1
4π

∫
d2n̂ ωGW(n̂,x, q) , (4.9)

where

ωGW(n̂,x, q) ≡ q4

a4ρcr
f(n̂,x, q) . (4.10)

The SGWB anisotropy δGW observed today is [255, 256],

δGW ≡ ωGW(n̂,x, q)− ΩGW(q)
ΩGW(q)

=
[
4− ∂ ln ΩGW(q)

∂ ln q

]
Γ(η0, n̂,x, q) (4.11)

= [4− nΩ]Γ, nΩ = ∂ ln ΩGW(q)
∂ ln q .

Moving on to the perturbation Γ, we find in Fourier space a CMB-like equation3,

Γ′ + ikµΓ = Ψ′ − ikµΦ, µ ≡ k̂ · n̂, (4.12)

with solution [255, 256],

Γ(η0, k, q, n̂) =
∫ η0

ηi
dη {δ(η − ηi)[Φ(k, η) + ΓI]

+ Φ′(k, η) + Ψ′(k, η)} e−ikµ(η0−η) , (4.13)

where η0 denotes the conformal time at present and n̂ ≡ p̂ is the direction of the GW

momentum. The initial perturbation to the distribution is denoted by ΓI ≡ Γ(ηi, k, q)

and δ(η − ηi) represents the Dirac-delta in conformal time, with ηi the time when

the GW are produced (or re-enter the horizon). For GW detectable at PTA or

interferometer scales, this corresponds to an initial time deep within the epoch of

radiation domination.

The quantity Γ can be expanded in spherical harmonics

Γ(n̂) =
∑
ℓm

ΓℓmYℓm(n̂). (4.14)

The spherical harmonic coefficients Γℓm can be obtained by inverting eq. (4.14)

Γℓm = 4π(−i)ℓ
∫

d3k⃗

(2π)3Y
∗
ℓm(k̂)TGW

ℓ (k), (4.15)

3In the CMB case, the perturbation Γ would correspond to the fractional temperature perturba-
tion, i.e. Γ = ∆T/T [75, 255].
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where the function TGW
ℓ (k) combines the initial condition, the Sachs-Wolfe (SW),

and the Integrated Sachs-Wolfe (ISW) terms [255, 256], completely analogous to the

CMB case,

TGW
ℓ (k) =

∫ η0

ηi
dη {δ(η − ηi)[Φ(k, η) + ΓI]

+ Φ′(k, η) + Ψ′(k, η)} jℓ[k(η0 − η)} . (4.16)

Here, jℓ is the spherical Bessel function which arises from the expansion of plane

waves in terms of spherical waves using the identity,

e−ik·x = 4π
∑
ℓ

ℓ∑
m=−ℓ

(−i)ℓjℓ(kx)Yℓm(k̂)Y ∗
ℓm(x̂). (4.17)

We can now calculate the correlators of Γ, defined as,

⟨ΓℓmΓℓ′m′⟩ ≡ CΓ
ℓ δℓℓ′δmm′ , (4.18)

where we assumed the statistical isotropy of the background.

Appendix B.1 relates this line-of-sight derivation, performed in the Newtonian gauge,

to the uniform density gauge calculation of [253].

4.2.1 Initial condition term

In general, the initial condition ΓI is model-dependent. Its physical meaning can

be understood as the perturbation to the GW distribution function at the time of

emission which can be related to the initial GW density perturbation. In analogy

with the CMB case [346], we write,

ρGW(x) =
∫
d3p pf̄(q)

[
1− ∂ ln f̄

∂ ln q Γ(ηi,x, q, n̂)
]

= 4π
a4

∫
dq f̄(q)q3 − 1

a4

∫
dq
∂f̄

∂q
q4
∫
d2n̂ΓI, (4.19)

Writing δρGW ≡ ρGW − ρ̄GW and integrating by parts4 on the R.H.S we find [4],

ρ̄GW + δρGW = 4π
a4

∫
dq f̄(q)q3

(
1 + 4

∫
d2n̂

4π ΓI

)

=⇒ δρGW
ρ̄GW

= 4
∫
d2n̂

4π ΓI ≡ 4Γ(0)
I . (4.20)

4Note that here we have assumed that ΓI is q-independent, just like the CMB. For the scenarios
we shall consider in this chapter, this assumption will indeed hold true. However, there do exist
scenarios where this q-dependence can be present with the specific form of the dependence related
to the SGWB production mechanism (see [255, 256] for an example).
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where 4Γ(0)
I denotes the monopole of ΓI and is the GW counterpart of the CMB

quantity Θ0, which describes the monopole of the temperature fluctuation at recom-

bination [75]. Since the large scale perturbations that will source ΓI are super-Hubble

at the initial time, higher order multipoles can safely be neglected and we shall identify

Γ(0)
I ≡ ΓI. For instance, the velocity perturbation is vi ∝ (k/H)Φ, thus is negligible

on superhorizon scales.

4.2.2 Adiabatic initial conditions

We now calculate ΓI for adiabatic initial conditions,5 set during the radiation domi-

nated epoch. Using the fact that the radiation density contrast during this epoch is

given by [346] (we have neglected the anisotropic stress and set Φ = Ψ),
δρr
ρ̄r

= −2Φ, (4.21)

and by the condition of adiabaticity we find [4]
δρGW
ρ̄GW

= δρr
ρ̄r

= −2Φ =⇒ ΓI =
1
4
δρGW
ρ̄GW

= −1
2Φ. (4.22)

All quantities are understood to be evaluated at the initial time ηi. More generally,

in case the initial time corresponds to an epoch where the dominant component ρ has

an equation of state w, we obtain [5]

δρGW
(1 + wGW)ρGW

= δρ

ρ(1 + w) =⇒ δρGW
ρGW

= − 8Φ
3(1 + w) . (4.23)

Here, we used δρ/ρ = −2Φ and wGW = 1/3. An alternative derivation of these results

is also presented in appendix B.2.

Collecting together the results of the previous section, the quantity TGW
ℓ defined in

eq. (4.16) for adiabatic initial conditions is,

TGW
ℓ (k) = 1

2Φ(k, ηi)jℓ[k(η0 − ηi)]︸ ︷︷ ︸
SW

+
∫ η0

ηi
dη
(
Φ′(k, η) + Ψ′(k, η)

)
jℓ[k(η0 − η)]︸ ︷︷ ︸

ISW

,

(4.24)

with the initial time ηi taken to be during radiation domination (w = 1/3). Note

that in this case we have combined the SW and initial condition term since they are

completely correlated.

5Adiabatic initial conditions may arise if the GW are sourced by a field which is also responsible
for generating the primordial curvature perturbation. As an example, if GW are sourced directly by
the dynamics of the inflaton and if the inflaton then reheats the universe, the GW initial conditions
would be adiabatic.
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Figure 4.1: GW anisotropies and a comparison with the CMB temperature
anisotropies. The relative contributions of the different terms are also shown. The
anisotropies are calculated using CAMB [111], assuming the best-fit values for the
ΛCDM cosmological parameters [15].

In fig. 4.1 we plot the GW anisotropies for adiabatic initial conditions. The fact that

the initial time ηi for GW is well before recombination results in striking differences

with the CMB. The large-scale modes of interest are all super-Hubble at the initial

time leading to negligible Doppler and quadrupolar anisotropies (not shown in the

figure). There are no acoustic peaks and the ISW effect is also larger in the GW case,

especially at higher-ℓ due to the much earlier initial time [303, 306]. The early-ISW

makes the difference here, whereas the late-ISW, which arises from the decay of the

potentials in a Λ-dominated universe, is the same for both GW and CMB anisotropies.

These GW anisotropies are also correlated with those of the CMB, both being sourced

by the primordial scalar perturbations. The resulting cross-correlation is defined as,

⟨Γℓm∆
T(E)
ℓ′m′ ⟩ ≡ C

ΓT(E)
ℓ δℓℓ′δmm′ (4.25)

where ∆T(E)
ℓm denotes the spherical harmonic coefficients of the CMB temperature

or E-mode polarisation anisotropies. A detailed numerical study of the SGWB

anisotropies and their cross-correlation with the CMB has been performed in refs. [303–

306]. Further aspects related to the initial conditions, including the case of isocurva-

ture fluctuations will be discussed in section 4.4.
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4.3 Application: anisotropies for peaked GW spectra

We now apply the formalism of Sec. 4.2 to calculate the propagation anisotropy

spectrum associated to SIGW [135–137]. The results shown here are based on Section

3 of [4].

We are interested in scenarios having an enhanced curvature power spectrum on small

scales with a sharply peaked spectral shape. Taking a phenomenological approach to

the shape, we parametrize it around the peak wavenumber k∗ by a log-normal, i.e.

we take

PR(k)|k≫kCMB = AR√
2π∆

exp
[
− ln2(k/k∗)

2∆2

]
. (4.26)

The parameter ∆ is the width of the log-normal and AR its amplitude.6 Our choice

of the log-normal shape for the power spectrum is motivated by the fact that it can

serve as a useful proxy for a peaked spectrum. Such a spectrum can be realised in

several inflationary models which also produce PBH, see [347] and references therein.

4.3.1 Scalar induced GW background and its anisotropies

The observed GW energy density today arising from a log-normal scalar power spec-

trum is given by [347],

ΩGW(k, η0)h2 ≃ 1.6× 10−5
(
g∗s(ηk)
106.75

)−1/3( Ωr,0h2

4.1× 10−5

)
ΩGW,r(k). (4.27)

Here g∗s(ηk) is the effective entropy degrees of freedom and ΩGW,r denotes the GW

energy density at the epoch of matter-radiation equality,

ΩGW,r(k) = 3
∫ ∞

0
dv
∫ 1+v

|1−v|
du

T (u, v)
u2v2

PR(vk)PR(uk) , (4.28)

with the function T (u, v) a complicated transfer function defined in Eq.(10) of [347].

We recall the definition of the SGWB anisotropies,

δGW(k, n̂) = [4− nΩ(k)] Γ(k, n̂), nΩ(k) ≡ ∂ ln ΩGW/∂ ln k , (4.29)

where Γ was defined in Eq. (4.6). The propagation anisotropies that we consider in

this section are frequency independent, i.e. Γ(k, n̂) = Γ(n̂) [255]. We do not include

6The Dirac-delta power spectrum PR = ARδ(ln(k/k∗)) is recovered in the limit ∆ → 0.
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Figure 4.2: The dashed curves show the spectral tilt factor 4 − nΩ, the solid curves
show the GW amplitude ΩGW,r/A

2
R.

other possible sources of anisotropies that could be present, e.g. anisotropies arising

from primordial non-Gaussianity due to a squeezed ⟨ζ3⟩ bispectrum [291, 296].

From (4.29), we can see that a sharply peaked spectrum (|nΩ(k)| ≫ 1) leads to an

enhancement of CGW
ℓ relative to CΓ

ℓ (see Eqs. 4.36) by a factor ∼ O(10–1000) at

certain frequencies. In Fig. 4.2, we plot the quantities ΩGW,r/A
2
R and the spectral

tilt factor nΩ for representative choices of the log-normal width ∆.

Frequency profile of the SIGW:

One can understand features in the frequency shape of the SIGW at a qualitative level

using the example of a Dirac-delta curvature power spectrum, peaked at a wavenumber

k∗. In this case, the resulting SIGW peaks at k/k⋆ =
√
4/3, and has a pronounced dip at

k/k⋆ =
√

2/3, where the SIGW spectrum goes exactly to zero for a Dirac-delta curvature

spectrum. The presence of these features is explained by interference and resonant effects

in the scalar modes sourcing these GW [136–138, 348]. For a curvature power spectrum

that is narrow but not a Dirac-delta these features are smoothed out, leading to the

results we see in Fig. 4.2.
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4.3.1.1 Inflationary models with peaked spectra

There exist several inflationary models capable of producing such narrow peaks in the

GW spectrum. These include models with modified gravity [349], multiple fields [350–

355], parametric resonance [356–360], particle production [361] or models with non-

standard kinetic terms [148, 149], all of which can produce the narrow spectra cor-

responding to ∆ ∼ 10−2. On the other hand, in single-field models with an ultra

slow-roll phase, the growth rate of the curvature power spectrum is bounded from

above (see e.g. [362–365]), thereby restricting the steepness of the induced GW spec-

trum and the enhancement of nΩ. In fact, these single-field scenarios generally lead

to the ∆ = 10−1 (or larger) case of Fig. 4.2.

4.3.1.2 Other sources of peaked GW spectra

Apart from inflation, other cosmological sources such as phase transitions cosmic

strings [366], can also produce peaked GW spectra. However, the enhancement from

the tilt is not as large as the SIGW case. As an example, we consider the sound

wave contribution for SGWB produced from cosmological phase transitions. It has a

steeper spectral shape compared to the other modes of GW production during phase

transitions with [367]

S(k, k∗) =
(
k

k∗

)3 ( 7
4 + 3(k/k∗)2

)7/2
, (4.30)

and

ΩGW(k) = ΩGW(k∗)S(k, k∗) , (4.31)

where ΩGW(k∗) is the GW amplitude at the peak wavenumber k∗. From Eq. (4.30)

we can easily see that the factor (4− nΩ(k)) is only O(1) in this case.

4.3.2 LISA GW-PBH scenario

We now study a representative example in which the peak of the curvature power

spectrum is at scales 10−4 Hz ≤ f ≤ 10−1 Hz such that the corresponding SIGW

may be detectable by LISA. The frequency and comoving wavenumber are related by

k

Mpc−1 ≃ 6.5× 1014 fHz . (4.32)
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∆ 10−2

f∗ 5× 10−3Hz
k∗ 3× 1012Mpc−1

AR 7.5× 10−3

Table 4.1: Parameter choice for the LISA GW scenario.

We plot the induced GW spectrum in the left panel of Fig. 4.3 for the parameter

choice of table 4.1. To avoid numerical artifacts arising due to the sharply peaked

spectrum, we have also smoothed the ΩGW spectrum using the peak width as the

smoothing scale,

Ω̃GW(f) = 1
2∆

∫ fe∆

fe−∆
ΩGW(f ′) d ln f ′ . (4.33)

with Ω̃GW the smoothed spectrum.

The enhancement of the curvature power spectrum is the most commonly invoked

mechanism to generate large density perturbations capable of collapsing into PBH.

We have ensured that the scenario considered here is allowed by current constraints

on the PBH abundance. The PBH mass at formation is related to the comoving scale

k re-entering the horizon (during the radiation era). This relation can be estimated

as [63, 368],

MPBH ≃ 30M⊙

(
γ

0.2

)(
g∗

10.75

)−1/6
(
2.9× 105Mpc−1

k

)2

. (4.34)

If we consider peak frequencies/wavenumbers in the LISA band, this leads to PBH

with masses in the range MPBH ∼ O(10−15 – 10−12)M⊙ (a comprehensive analysis of

the LISA PBH-GW scenario is presented in [369, 370]).

We plot the corresponding PBH abundance in the right panel of Fig. 4.3, with the

same choice of parameters as table 4.1. Along with the abundance, we also show

the corresponding constraints7, for which we use the tool provided in [399]. Our

calculation of the PBH mass function follows the method of ref. [400], using a simple

Press-Schechter approach and also accounting for critical collapse8. The PBH mass

7Strictly speaking, the constraints shown in Fig. 4.3 are valid only for an exactly monochromatic
mass function. For extended mass functions the constraints need to be calculated in a different
manner [398].

8Ref [401] presents a detailed comparison of different methodologies for calculating the PBH
abundances and mass distributions.
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Figure 4.3: Left - The induced GW spectrum at LISA scales for the parameter choice
given in table 4.1 and the smoothed spectrum defined in Eq. (4.33). The green dashed
curve shows power-law integrated sensitivity curve for LISA [371] (see [372] for the
updated sensitivity curves due to the impact of foregrounds and resolvable binaries).
Right - The PBH abundance for the same values of the parameters plotted along
with the constraints from microlensing [373–379], accretion [380–383], GW [384],
evaporation [385–395] and dynamical constraints [396, 397].

function fPBH(M), plotted in Fig. 4.3 is defined as,

ΩPBH
ΩDM

=
∫
fPBH(M) d lnM , (4.35)

where the L.H.S. denotes the total fraction of the dark matter density constituted by

PBH.

4.3.2.1 Angular power spectrum of GW anisotropies

Let us now calculate the angular power spectrum of the GW anisotropies for the

LISA GW scenario. The quantity relevant for GW detectors is the anisotropy in the

energy density CGW
ℓ whose angular power spectrum is defined as

CGW
ℓ (k) = (4− nΩ(k))2CΓ

ℓ , (4.36)

with nΩ given by Eq. (4.29) and CΓ
ℓ defined in Eq. (4.18). We recall here that

Γ (Eq. (4.24)), and consequently CΓ
ℓ , are frequency independent. The left panel of

Fig. 4.4 shows the auto-correlation of the GW anisotropies and their cross-correlation

with CMB temperature and E-mode polarisation anisotropies, defined in Eq. (4.25).

We use CAMB [111] to calculate the T and E transfer functions. The right panel shows

the frequency dependence of CGW
ℓ (for ℓ = 2) for the LISA GW scenario and for a

flat spectrum of GW for comparison. For simplicity, we have only considered the SW

contribution for GW anisotropies, Eq. (4.24) since this dominates on large angular
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Figure 4.4: Left - Angular power spectrum of the GW anisotropies and their cross-
correlation with CMB-T, E. Right - Frequency dependence of the angular power
spectrum, for ℓ = 2, for the LISA model of table 4.1 (blue line) and for a flat spectrum
(orange line) plotted in a frequency range where LISA has the highest sensitivity.

scales and can also be estimated analytically [303].9 It is worth pointing out here

that the frequency dependence of the anisotropies (CGW
ℓ ) arises for SGWB spectral

shapes different from power-laws. The latter have nΩ = constant.

4.3.2.2 SNR of the anisotropies

We now turn to the detectability of these anisotropies and show that the enhancement

of anisotropies for a peaked spectrum makes them easier to detect compared to the

case of a standard power-law spectrum.10 To perform this comparison, we consider

a flat power-law spectrum nΩ = 0 whose amplitude is such that the resulting SNR

of the monopole is the same in the LISA range. Since the results for a power law

with a small spectral tilt nΩ ∼ O(1) turn out to be quite similar, we do not present

them separately. We limit our analysis to the first few multipoles since in general

GW detectors are limited by their angular resolution ℓmax ∼ 15 [240, 243, 403–405],

making these large angular scales the most relevant ones from the point of view of

detection.

We plot the signal to noise ratio (SNR) for the individual multipoles in Fig. 4.5.

Our results demonstrate that the anisotropy is easier to detect in case of a peaked

spectrum as compared to a flat spectrum. We see that the ℓ = 2 multipole, although

the detectable with the LISA-Taiji network for the peaked spectra, is not detectable

9The inclusion of the ISW will not change our conclusions since the same factor 4−nΩ multiplies
this contribution as well.

10Ref. [402] also studied a related phenomenon in the context of kinematic anisotropies.
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Figure 4.5: Left - ΩGW(f) plotted for the two spectra. Right - SNR of the individual
multipoles with Tobs = 3years for observation with the LISA-Taiji network.
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Figure 4.6: Sensitivity of LISA-Taiji and BBO to the different multipoles of the
SGWB as a function of frequency. The time of observation is taken to be 3 years for
both plots.

for the flat spectra. The SNR of the individual multipoles is defined as [246]

SNR2
ℓ =

∫
df CGW

ℓ (f)
(

ΩGW(f)
ΩℓGW,n(f)

)2

, (4.37)

The quantity ΩℓGW,n(f) represents the effective angular sensitivity of the detector net-

work to the ℓ−th multipole and is defined in eq. (C.15). Fig. 4.6 presents a plot this for

the LISA-Taiji [406] and for the BBO configuration with 4 constellations [118]. More

details about the calculation of ΩℓGW,n(f) and the detector network specifications can

be found in appendix C.
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Figure 4.7: SNR of the cross-correlation between the GW anisotropies and the CMB-
T, E mode anisotropies.

SNR of the cross-correlation

The SNR of the cross-correlation with the CMB-T, E anisotropies is defined as11

SNR2 =
ℓmax∑
ℓ=2

∑
X=T,E

(2ℓ+ 1)

(
CXΓ

)2
(CXΓ)2 +

(
CΓ
ℓ +NΓ

ℓ

)
CX
ℓ

, (4.38)

where the quantity NΓ
ℓ is (for ℓ > 0)

NΓ
ℓ ≡

[∫
df

(4− nΩ(f))2ΩGW(f)2

ΩℓGW,n(f)2

]−1

. (4.39)

We plot the SNR with which LISA-Taiji and BBO will detect the cross-correlation in

Fig. 4.7 as a function of ℓmax. In the example considered here, the cross-correlation

will be detectable by a BBO (or equivalent sensitivity detector) but not with LISA-

Taiji. The contribution from the GW-T cross-correlation dominates the total cross-

correlation SNR while the the contribution of GW-E is negligible.

11In general, incomplete sky coverage will lead to correlations between nearby ℓ and degrade the
sensitivity to the individual multipoles. To estimate the cross-correlation, as in ref. [305], we have
assumed for simplicity full sky GW and CMB maps, which makes our estimate an optimistic one.
The SNR would be reduced by a factor

√
fsky < 1 in a more realistic case [407, 408].
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4.4 Initial conditions revisited

The results presented here are based on sections 3 and 4 of [5].

4.4.1 Universal relation for adiabatic initial conditions

In this section, we study the case of a non-standard early cosmological history and its

impact on the GW anisotropies through the initial condition term ΓI (see (4.23)). In

this scenario, we have a post-inflationary universe whose energy density is dominated

by a component with w0 ̸= 1/3, in contrast to the standard RD phase. It is known

that the spectral shape of GW generated or re-entering the horizon during this phase

is significantly affected by the non-standard equation of state [58, 317, 324, 332, 335].

We now investigate the effect on the anisotropies and show explicitly that the SGWB

anisotropies are completely unaffected by an early non-standard phase, assuming the

initial conditions are adiabatic. As we shall see next, this result can be physically

understood as arising from the conservation of the curvature perturbation on super-

horizon scales.

Our starting point is (4.16) for which we notice that the Newtonian gauge potential

Φ is related to the uniform density gauge curvature perturbation by [92],

Φ = −3(1 + w)
(5 + 3w)ζ , ζ ≡ −Ψ−Hδρ

ρ′
. (4.40)

Here, δρ denotes the perturbation in the total energy density. In case there are

multiple components, one can define the individual curvature perturbation for each

component

ζi = −Ψ+Hδρi
ρ′i
. (4.41)

The adiabatic condition implies ζ = ζi.

The initial value of Φ appearing in (4.16) is then related to the non-standard eos

through (4.40). Once the universe transitions into the radiation dominated epoch,

the potential again changes according to the same equation. As shown in section 4.2.2,

the initial condition term for a general w assuming adiabaticity is given by,

ΓI = − 2Φ
3(1 + w) = 2 ζ

5 + 3w , (4.42)
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where we also used Eq. (4.40). Collecting the results obtained so far, and applying

them to (4.16) we find,

TGW
ℓ (k) =

∫ η0

ηi
dη {Φ(η)[1− (2/3(1 + w0))]δ(η − ηi)

+ Φ′(k, η) + Ψ′(k, η)} jℓ[k(η0 − η)} . (4.43)

We split the the R.H.S of the above equation in two parts,

TGW
ℓ (k) =

∫ ηr

ηi
. . .︸ ︷︷ ︸

(I)

+
∫ η0

ηr
. . .︸ ︷︷ ︸

(II)

. (4.44)

Here, ηr denotes the conformal time at the transition to the standard RD era and

the dots represent the terms in the integrand of (4.44). The term (II) on the R.H.S

is common to all scenarios and has no dependence on the initial equation of state. It

represents the ISW effect associated to the standard ΛCDM universe and we calculate

it using CAMB [111] assuming the Planck bestfit values for the ΛCDM parameters [15].

Let us now focus on term (I). Notice that we will always have kη ≪ 1 for the large

scale modes of interest here.12 This in fact represents the condition for the mode

k to be super-horizon and is always satisfied during the non-standard phase which

happens before radiation domination. For instance, assuming a transition redshift of

z ∼ 108 (around the time of BBN), we find ηr ∼ 10−4. As a result of this, in the

arguments of the spherical Bessel functions appearing in the term (I) we can always

approximate k(η0 − η) ≃ kη0 (see also fig. 4.8). Consequently, we find

T
GW(I)
ℓ (k) ≈

(
Φ(ηi) + ΓI(ηi)

+ [Φ(k, η) + Ψ(k, η)]fi
)
jℓ[kη0]

+O(ηr/η0) . (4.45)

This holds even if there are intermediate phases between the two eras. Now, substi-

tuting the values of Φ,Γ in terms of w0, the above equation reads,

T
GW(1)
ℓ (k)
jℓ[kη0]

≈ΓI(w0)−Ψ(w0)

+ Φ(1/3) + Ψ(1/3) . (4.46)

12These are essentially the same as the large scale modes relevant for the CMB,
10−4 Mpc−1 ≲ k ≲ 0.1Mpc−1.
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Figure 4.8: A graphical demonstration of the validity of the approximation involv-
ing the spherical Bessel functions, as used in Eqs. (4.45) and (4.46). We selected
k = 0.1Mpc−1 as an example. For a given k, the Bessels are essentially constant as
long as kη ≪ 1, roughly corresponding to the duration over which the mode k remains
super-Hubble.

The first two terms taken together, represent the definition of the curvature pertur-

bation for gravitational waves. i.e.

ΓI −Ψ = −Ψ+ 1
4
δρGW
ρGW

≡ ζGW . (4.47)

Since by adiabaticity ζ = ζGW and the curvature perturbation is conserved on super-

horizon scales, we realise that (4.46) is independent of the initial equation of state

w0. This can be checked explicitly,

ΓI(w0)−Ψ(w0) = −Φ
[
1 + 2

3 + 3w0

]
= ζ, (4.48)

assuming no anisotropic stress at these early times so that Φ = Ψ. Using the fact

that Φ(1/3) = −2ζ/3, we conclude that

T
GW(1)
ℓ (k)
jℓ[k(η0)]

= −4
3ζ + ζ = −1

3ζ, (4.49)

Altogether, we can write the quantity TGW
ℓ as,

TGW
ℓ = −1

3ζ jℓ[kη0] +
∫ η0

ηr
dη [Φ(k, η)′ +Ψ(k, η)′]jℓ[k(η0 − η)] , (4.50)

completely independent of the initial non-standard phase of expansion.

The approximation involving the spherical Bessel functions that we utilised in Eqs. (4.45)

and (4.46) can also be understood physically. The integral along the GW geodesic ac-

counts for the (temporal and spatial) variation of the potential along the line-of-sight.
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Figure 4.9: The upper plot shows the effect of varying w0 on the SGWB anisotropies
without including the initial condition term. The lower plot includes the contribution
from the initial condition contribution ΓI.

Crucially, for a fast and early transition to RD, GW cover an infinitesimal comoving

distance with k∆η ≪ 1. This implies small potential gradients (∼ k∆η × Φ), which

can be neglected. Equivalently, in Fourier space it means that the arguments of the

Bessel functions in the first integral of Eq. (4.44) can be taken to be constant.

The result is valid for GW produced “early-enough”, when all the large-scale modes

of interest are still super-Hubble. Adiabaticity then implies the conservation of the

curvature perturbation, unaffected by any changes in the equation of state. The

fact that the non-standard phase must take place early in the cosmological evolu-

tion is not so stringent an assumption, since we know that the universe must be

radiation dominated already by the time of BBN. This process itself happens quite

early (z ∼ 108, T ∼ 100 keV).13 What matters here is the equation of state when long

wavelength mode re-enters the horizon: as long as the early phase does not change

that, the anisotropy spectrum remains unaffected. In the case of GW anisotropies,

the the relevant modes re-enter the horizon towards the end of radiation domination

or during matter domination.

Our result also emphasises the importance of the initial condition term ΓI, without

it one may end up with a spurious dependence on the initial equation of state (see

Fig. 4.9). We also briefly comment regarding the initial time ηi in Eq. (4.50), which

in general corresponds to the time when the GW are produced/emitted (see the dis-

cussion in section 4.2). For the CMB case, this corresponds to the time of photon

decoupling since that is when the CMB photons start propagating freely. Our deriva-

13Additionally, there exist lower bounds of O(MeV) on the reheating temperature, obtained using
constraints from BBN [409–411].
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tion here shows that for a given long wavelength mode k, ηi can also be set to be the

time when the mode re-enters the horizon and ζk starts evolving. For adiabatic initial

conditions, both choices lead to the same result.14 One point of difference from the

CMB anisotropies is that although changes in the expansion history at the epoch of

photon decoupling would affect the CMB anisotropies (especially on intermediate and

small angular scales), GW anisotropies remain impervious to changes in the initial

equation of state.

Implications

This result has implications for early universe scenarios involving only Standard

Model Physics. We know that during the QCD phase transition (T ∼ 100 MeV),

the background equation of state changes with significant implications for primordial

black hole formation [400, 412, 413] as well for the SGWB, see e.g. [414, 415]. Even

though the QCD phase transition affects the SGWB spectral shape, our results show

that it does not affect the anisotropies. Thus, the SGWB anisotropies cannot provide

any independent information about this phase transition.

Another implication of this result is that SGWB anisotropies cannot be used to break

degeneracies among different models that may produce the same frequency profile of

ΩGW. We provide an example of this below, showing the different production mech-

anisms that may produce a peaked broken power-law shape. These include SGWB

from first order phase transitions [416], kination [317], cosmic domain walls [417] and

SIGW. In fact, due to the absence of constraints on the shape of the small scale

curvature power spectrum, one can have different power law indices on either side of

the peak and replicate the SGWB from other mechanisms using SIGW.

SIGW have an approximately broken power-law shape with a peak in two cases: (a)

the curvature power spectrum is a broken power-law and (b) the eos at early times

is negative [330, 335, 418, 419]. We work here only with case (a) since it suffices to

demonstrate our point regarding the degeneracy in the spectral shape. In this case,

14The choice of ηi does matter for the SGWB-CMB cross-correlation, since the difference between
ηi for GW and SGWB becomes relevant (see e.g. section 5.2.2 or [305, 306]).
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if the primordial curvature power spectrum around the peak kpk is,

Pζ ∝



(
k

kpk

)nIR

(k ≪ kpk)(
k

kpk

)−nUV

(k ≫ kpk)
(4.51)

Then the corresponding SIGW spectrum is roughly [138, 419]

ΩGW ∝



(
k

kpk

)nind
IR

(k ≪ kpk)

(
k

kpk

)−nind
UV

(k ≫ kpk)

(4.52)

where

nindIR =


2nIR − 2b (nIR < 3/2)

3− 2|b| (nIR > 3/2)
(4.53)

and

nindUV =


2nUV + 2b (nUV < 4(2))

4(2) + nUV + 2b (nIR > 4(2))
(4.54)

We have defined here

b = 1− 3w
1 + 3w . (4.55)

In Eq. (4.54), the numbers in parenthesis represent the scenario c2s ∼ 1 [419]. At the

boundaries of the inequalities and for the case of nIR > 3/2 and w = 1/3, logarithmic

corrections appear which we can safely neglect here.

It is clear that for different values of the parameters b, cs, nIR and nUV , we can obtain

different UV and IR scalings of ΩGW (i.e. nindUV and nindIR ), allowing us to replicate

the SGWB shape produced by the other mechanisms mentioned previously. Thus,

the spectral shape and the anisotropies (under adiabatic initial conditions) cannot be

used to unambiguously determine the origin of the SGWB. To do so, one would need

independent constraints, e.g. on the amplitude of curvature power spectrum to avoid

PBH overproduction, or other non-GW constraints.

4.4.2 Isocurvature initial conditions

Having derived a robust prediction for the GW anisotropies in the adiabatic case,

we now explore the potential consequences of dropping the assumption of adiabatic-

ity and allowing for the presence of isocurvature perturbations. In contrast to the
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previous section, here we do not intend to explore the consequences of non-standard

equations of state for isocurvature perturbations, but rather we wish to investigate

the general implications of isocurvature initial conditions and see how they differ w.r.t

the adiabatic scenario.

We begin by reviewing the definition of GW isocurvature perturbations and consider

isocurvature initial conditions set during the radiation era. The GW isocurvature

component w.r.t the Standard Model radiation bath is defined as [287]

SGW,r = 3(ζGW − ζr), ζx = −Ψ−Hδρx
ρ′x

, (4.56)

where x = {GW, r}. This gives us [287]

ΓI = ζGW +Ψ = ζr +
1
3SGW,r −

2
3ζ , (4.57)

where we used the RD relation Ψ = −2ζ/3. We now relate ζr with the total curvature

perturbation ζ, assuming that we only have radiation and the GW background,

ζ = −Ψ−Hδρ

ρ′
= ζr +

1
3fGWSGW,r . (4.58)

Introducing the quantity,

fGW = (1 + wGW)ρGW∑
x(1 + wx)ρx

. (4.59)

with wx the equation of state parameter of the component x, we obtain [287]

ΓI =
1
4
δρGW
ρGW

= ζ

3 + 1
3(1− fGW)SGW,r. (4.60)

These isocurvature perturbations also affect the CMB anisotropies in a manner given

by ΘI = ζ/3− fGWSGW,r/3, where ΘI are the initial temperature fluctuations. How-

ever, their effects on the CMB anisotropies are suppressed by a factor fGW ≪ 1 w.r.t

the GW anisotropies [287].

Eq. (4.60) can also be extended to scenarios where the background is dominated by

a component with arbitrary equation of state w0. Since we always have fGW ≪ 1,

such that ζ ≈ ζx, using Eq. (4.40) we now define the GW isocurvature as

ΓI ≃
2ζx

5 + 3w0
+ 1

3SGW,x, SGW,x = 3(ζGW − ζx). (4.61)

which generalises Eq. (4.60).

We now study an early-universe scenario capable of generating GW isocurvature

perturbations and analyse its consequences for the angular power spectrum of the
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GW anisotropies. In refs. [287, 290] phase transitions during RD were invoked to

produce GW isocurvature perturbations. Our analysis will be based on a different

scenario, known as the curvaton mechanism.

4.4.2.1 Curvaton scenario

The curvaton model [340–342, 420] postulates the presence of a spectator field χ

which remains sub-dominant during the inflationary dynamics. The field χ remains

massless during inflation and has a non-vanishing vev χ∗. Curvaton fluctuations

generated during inflation, denoted as δχ are initially of an isocurvature nature. As

the universe expands further, inflation ends after which at some point the curvaton

mass overcomes the Hubble friction. The curvaton then oscillates coherently around

the minimum of its potential, its energy density decays just like that of pressure-less

matter and it comes to dominate the energy density of the universe. Eventually the

curvaton decays to the Standard Model particles and the universe begins its radiation

dominated phase.

Within the curvaton scenario, we foresee two possible mechanisms for generating GW

isocurvature perturbations. These are:

(i) The curvature perturbation arises from the curvaton itself, as in the original

curvaton scenario through the isocurvature-to-adiabatic conversion of the pri-

mordial perturbations which happens after the decay of the curvaton into the

Standard Model particles. In this case, GW are not a decay product of the

curvaton but are instead generated during inflation or another pre-curvaton

domination phase. As a result, the initial isocurvature perturbation survives

only in the density perturbation of the GW.

(ii) The curvaton itself sources GW on small scales, e.g. [421]. GW anisotropies

then inherit the curvaton fluctuations on large cosmological scales. The other

difference with case (i) arises from the fact that we assume the curvaton en-

ergy density to remain subdominant throughout, with negligible contribution

to the total curvature perturbation (otherwise there would be no GW isocurva-

ture!). This physics of the isocurvature perturbations in this scenario is similar

to other set-ups that have been analysed recently e.g. those involving phase

transitions [290] or the effects of dark radiation [422].
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Figure 4.10: Illustration of the curvaton mechanism and its implications for initial
GWB isocurvature fluctuations. We show the logarithm of energy density of a given
fluid (standard radiation r, GWs and the curvaton χ) normalised to the total energy
density as a function of e-folds or ln a. Note that we assume wχ = 0 and we take
arbitrary initial background densities for illustrative purposes. At some point, the
curvaton decays either to standard radiation (case (i)) or to GWs (case (ii)). The
fraction of the curvaton at the time of decay for (i) is fχ ∼ 1 while for (ii) is fχ ≪ 1.
Then the initial isocurvature fluctuations due to the curvaton are either transferred to
standard radiation in case (i) or to GWs in case (ii). Due to the asymmetric decay of
the curvaton, there remains an isocurvature component between radiation and GWs,
labelled SGW,r.

We now examine these two scenarios in more detail, starting with some general results

and the description of our set-up, common to both scenarios. The post-inflationary

universe is characterised by three components {r, χ,GW}, i.e. radiation, curvaton

and GW. The radiation component ρr dominates the energy density of the universe

after inflation.15 The curvaton component, ρχ decays at some point after inflation

and the final component ρGW always remains subdominant. The individual curvaton

perturbations are defined as in (4.41) and the isocurvature component between two

fluids i and j is given by,

Sij = 3(ζi − ζj) . (4.62)

The quantities ζi, Sij are gauge-invariant and we choose to evalaute them in the

spatially flat gauge (Ψ = 0). For the initial curvaton perturbation we find,

ζχ,ini =
1

3(1 + wχ)

(
δρχ
ρχ

)
∗
. (4.63)

The * signifies that the quantities are evaluated at horizon crossing during inflation.

To keep things as general as possible we do not yet fix the curvaton equation of state

15A more general approach would allow for an arbitrary equation of state after inflation but would
not significantly change our findings.
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parameter wχ.16 The decay product of the inflaton is assumed to be radiation so that

ζr,ini is the same as the inflaton curvature perturbation.

All the components here obey their individual energy conservation equations and do

not have any non-adiabatic pressure. Thus, the individual curvature perturbations

are conserved throughout [423, 424], except at the moment the curvaton decays. In

order to obtain analytic results for the SGWB anisotropies, we make the simplifying

assumption of instantaneous curvaton decay and denote ζ before and after the decay

as ζbdec and ζadec. In the uniform density gauge (
∑
x δρx = 0), we have

δρx/ρx = 3(1 + wx)(ζx − ζ) (4.64)

Thus, we can write

ζbdec = f bχζχ,ini + f bGWζGW,ini

+ (1− f bχ − f bGW) ζr,ini , (4.65)

where the fi are defined as in (4.59). The fractions faGW and f bGW can be different and

depend upon the end products of the curvaton decay. In what follows, we shall assume

f bGW ≪ 1 and no initial isocurvature between GW and radiation i.e. ζr,ini = ζGW,ini

(unless otherwise stated). After the decay, the curvature perturbation reads,

ζadec = faGWζ
a
GW,dec + (1− faGW) ζar,dec . (4.66)

The remnant isocurvature after the decay depends on what the curvaton decays into

which is different for cases (i) and (ii). We now study these cases in more detail.

Curvaton case (i)

Here, the curvaton decays completely into radiation implying

ζar,dec ≈ ζadec ≈ ζbdec , (4.67)

in the limit of instantaneous decay. Consequently, the final isocurvature perturbation

is

SaGW,r|dec ≡ 3(ζaGW,dec − ζar,dec)

≈ 3(ζGW,ini − ζbdec) ≈ f bχSGW,χ|ini . (4.68)

16Note that in general δρχ depends on χ through the form of the potential, e.g. for V = m2χ2 we
have δρχ/ρχ = 2δχ/χ∗.
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To arrive at this result, we used Eq. (4.65) and the fact that ζr,ini = ζGW,ini. The

resulting isocurvature is related to the initial isocurvature SGW,χ|ini multiplied by

a factor fχ, which denotes the fraction of the energy density of radiation that is

contributed by the curvaton decay.

One can understand the consequences of this scenario further, by taking a simple

example in which the initial conditions are such that ζχ,ini ≫ ζr,ini = ζGW,ini. When

the curvaton decays to radiation we will then have,

ζar,dec ≃ f bχζχ,ini . (4.69)

In this simple example, it is the curvaton which sources the curvature perturbation

ζar . Since ζar is the source of the CMB anisotropies, its amplitude and also that of

f bχζχ,ini is fixed. This perturbation is related to the initial curvaton density fluctuation

in the spatially flat gauge through Eq. (4.63). In principle there is a dependence on

the curvaton equation of state, but as we see from Eq. (4.63), observations are only

sensitive to the combination fχ(1 + 3wχ)−1δρχ/ρχ.

Now, we apply these results to small-scale GW re-entering the horizon during radia-

tion domination. Using Eq. (4.60) and fGW ≪ 1, we obtain

ΓI ≃
1
3ζ

a
r,dec +

1
3S

a
GW,r =

1
3ζ

a
r,dec +

1
3f

b
χSGWχ,ini

≃ −2
3f

b
χζχ,ini = −2

3ζ
a
r,dec . (4.70)

We can see that in this case, the initial condition term differs from the adiabatic result

of Eq. (4.42) which for radiation domination reads ΓI,ad = ζ/3. The total anisotropy

is now given by ,

TGW
ℓ = −4

3ζ
a
r,dec jℓ[kη0] +

∫ η0

ηr
[Φ(k, η)′ +Ψ(k, η)′]jℓ[k(η0 − η)] , (4.71)

where we used Eq. (4.16) with the isocurvature initial conditions of Eq. (4.70).

Notice that in this case, the first term on the R.H.S of Eq. (4.71) is 4 times the

adiabatic result. Since the first term dominates on large angular scales, this will lead

to roughly a 16 times enhancement of the anisotropies (in terms of CΓ
ℓ ), compared

to the adiabatic case. The SGWB map also exhibits strong correlations with the

CMB anisotropies, both being derived from the initial fluctuations of χ. This cross-

correlation is given by (4.25) and is approximately 4 times larger compared to the

adiabatic result. A detection of such a cross-correlation would strongly hint towards

this simple curvaton scenario.
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Curvaton case (ii)

In case (ii), the only source of GW is the curvaton, which itself remains subdom-

inant throughout the cosmic evolution. Taking the extreme example of the entire

energy density of the curvaton decaying into GW, we have ρaGW = ρbGW + ρbχ and

δρaGW = δρbGW + δρbχ such that

S
a,(ii)
GWr,dec = 3(ζaGW,dec − ζar,dec)

= 3
ρbχ + ρbr + ρbGW
ρbχ + ρbGW

[
f bχζχ,ini

+ f bGWζGW,ini − (f bχ + f bGW)ζr,ini
]
. (4.72)

If instead we assumed that only a fraction of the curvaton energy density decayed into

GW, i.e. ρaGW = ρbGW + σρbχ, we would have

Sa
GWr,dec = 3(ζaGW,dec − ζar,dec)

= 3
(ρbχ + ρbr + ρbGW)2

(ρbGW + σρbχ)(ρbr + (1− σ)ρbχ)

×
[
(σωb

r − (1− σ)ωb
GW)f bχζχ,ini

+ (ωb
r +

1 + wχ

1 + wr
(1− σ)ωb

χ)f bGWζGW,ini

− (ωb
GW +

1 + wχ

1 + wr
σωb

χ)f br ζr,ini
]
. (4.73)

The quantity ω is defined as,

ωx ≡ ρx
ρχ + ρr + ρGW

∣∣∣
dec

. (4.74)

Reassuringly, we recover case (i) in the limit σ → 0 and case (ii) when σ → 1.

Another assumption we make is that ζχ,ini ≫ ζr,ini, but f bχζχ,ini ≪ ζr,ini. This ex-

ample suffices to qualitatively understand the predictions of case (ii). Using these

assumptions we find for the GW isocurvature,

S
a,(ii)
GW,r|dec ≡ 3(ζaGW,dec − ζar,dec) ≈ 3(ζaGW,dec − ζbr,dec)

≈ 3
(1 + wχ)
(1 + wr)

ζχ,ini , (4.75)

Here we assumed that ζadec = ζbdec ≪ ζχ,ini and used the spatially flat gauge result
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stated below,

ζaGW,dec = ζadec +
1

3(1 + wr)
δρaGW
ρaGW

≈ 1
3(1 + wr)

δρbχ
ρbχ

≈
(1 + wχ)
(1 + wr)

ζχ,ini . (4.76)

The GW isocurvature in this case is derived entirely from the large initial curvaton

fluctuations. The energy density of the curvaton remains subdominant and does

not contribute appreciably to the total curvature perturbation, ensuring that CMB

constraints on isocurvature perturbations remain satisfied.

The resulting GW anisotropy can now be written as,

TGW
ℓ ≈

[(1 + wχ)
(1 + wr)

ζχ,ini −
1
3ζ

a
r,dec

]
jℓ[kη0]

+
∫ η0

ηr
[Φ′(k, η) + Ψ′(k, η)]jℓ[k(η0 − η)] , (4.77)

where we used that f bχζχ,ini ≪ ζr,ini. The CMB anisotropies here are sourced entirely

by ζr and one can accommodate large isocurvature perturbations, i.e. ζχ,ini ≫ ζar,dec,

for f bχ ≪ 1, so that their impact on the CMB is negligible. The CMB-GW cross-

correlation here is also smaller compared to that of case (i).17

We see that large GW isocurvature i.e. large ζχ,ini, requires f bχ ≪ 1. Importantly, this

can lead to large non-Gaussianities, as already pointed out for the standard curvaton

mechanism [424]. This happens because the decrease of f bχ requires a decrease of the

curvaton vev χ∗ (assuming a fixed curvaton mass). Thus, higher order terms in δχ/χ

become more and more relevant. Interestingly, similar non-Gaussianity can result

in scenarios that share features with the curvaton case (ii), i.e. whenever GW are

sourced by a subdominant field having large isocurvature, e.g. see [290].

Curvaton summary plot

Fig. 4.11 shows a plot of the quantity CΓ
ℓ , for cases (i) and (ii)(Eqs. (4.71) and

(4.77) respectively). It can be seen that the isocurvature perturbations lead to a

noticeable deviation from the adiabatic result shown in Fig. 4.9 with an enhancement

due to the larger isocurvature component. In case (ii), the amplitude and scale

17One can obtain a larger CMB-GW cross correlation for fb
χ ≪ 1 if we assume ζbχ ≪ ζbr in-

stead. The resulting isocurvature is now SGW,r ≈ −9(1 + wχ)ζr/4 with SGWB anisotropies larger
by roughly a factor 3 compared to those of the CMB for wχ = 0.
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Figure 4.11: The angular power spectrum of the SGWB anisotropies for cases (i) and
(ii). For case (i) the isocurvature amplitude is fixed (see Eq. (4.71)). For case (ii)
we have chosen |ζχ| = 10|ζr| and wχ = 0. The adiabatic prediction and a scenario
with the sign of SGW,r opposite to that of case (i) are also shown for comparison.
The quantity ζr is determined by the CMB amplitude Pζr = 2.09 × 10−9 and the
spectral tilt ns = 0.9649. The shaded regions denote the cosmic variance limited
error bars [104].

dependence of ζχ is fixed, leading to a flat spectrum throughout. For case (ii) we have

assumed an enhanced but flat spectrum of curvaton fluctuations, but in general this

is not constrained and features in the spectral shape of Pζχ(k) can lead to interesting

signatures in the ℓ-dependence of CΓ
ℓ (see [290] for an example). Finally, we have

also shown in the same plot a scenario with SGW,r = 3ζr, equal in magnitude but

having a sign opposite that of case (i). This leads to a contribution which is anti-

correlated with the rest of the GW anisotropy terms, leading to slightly smaller

amplitude on large angular scales and also an anti-correlation of the CMB and GW

maps. It may be possible to realise such an isocurvature component, which needs to

already be anti-correlated with the initial adiabatic perturbations, in two-field models

of inflation [425–427]. This requires further study which we leave for future work.

4.5 Summary

GW backgrounds can be produced by numerous early universe mechanisms such as

inflation, phase transitions, cosmic strings and even PBH. The backgrounds are ex-

pected to have a small anisotropy resembling that of the CMB, as a consequence of

GW propagation in an inhomogeneous universe. Additional anisotropies may arise

due to inhomogeneities in the production mechanism and can be highly model inde-
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pendent. A detailed characterisation of the anisotropies is essential to distinguishing

cosmological and astrophysical GW backgrounds and may also help in determining

the precise origin of a given cosmological background. In this chapter we have stud-

ied two aspects of these anisotropies, namely their frequency dependence and the role

played by the GW initial conditions.

We first reviewed reviewed the line-of-sight formalism for GW anisotropies and then

derived the initial conditions for the anisotropies, assuming adiabatic primordial per-

turbations. Then, in section 4.3 we applied the los formalism to analyse the prop-

agation anisotropies of SGWB induced at second order in the primordial curvature

perturbation. We showed that the if the curvature power spectrum happens to peak

at certain scales, as is common in scenarios associated to PBH formation, the SGWB

anisotropies around those scales may be enhanced by factor O(10 – 100) compared

to the anisotropies in the case of a power law ΩGW spectrum with nΩ ∼ O(1). The

enhancement can also make the anisotropies easier to detect and we illustrated this

through a representative scenario of SGWB at mHz scales, relevant for next genera-

tion detectors such as LISA and Taiji and even futuristic ones like BBO/DECIGO.

Section 4.4 dealt with additional aspects related to the initial conditions of the SGWB

anisotropies for both adiabatic and isocurvature initial conditions. We first studied

the dependence of the SGWB anisotropies on the initial (pre-BBN) equation of state

and found that under the assumption of adiabaticity, the anisotropies turn out to be

completely insensitive to the early universe eos. Physically, we understood this result

as a consequence of the curvature perturbation on super-horizon scales, and saw that

the anisotropies are affected by the equation of state when the curvature perturbation

re-enters the horizon, but not before.

We then looked at the generation of isocurvature GW perturbations through the

example of the curvaton mechanism. We found a roughly four-fold larger anisotropy

amplitude in the simplest curvaton scenario of case (i) while case (ii) turned out to

be more model-dependent. The CMB-GW cross-correlation in case (i) also provides

an additional handle on the curvaton scenario, complementary to CMB constraints

on non-Gaussianity and isocurvature. The generation of anisotropies in case (ii) as

well as the possibility of anti-correlated GW and CMB maps requires a model-specific

analysis and we plan to return to this topic in the near future.
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Chapter 5

Primordial tensor

non-Gaussianity at

interferometer scales

This chapter presents the results of the following articles:

• A. Malhotra, E. Dimastrogiovanni, M. Fasiello, M. Shiraishi, “Cross-correlations

as a Diagnostic Tool for Primordial Gravitational Waves", JCAP 03, 088 (2021),

[arxiv: 2012.03498] (appears as [1])

• E. Dimastrogiovanni, M. Fasiello, A. Malhotra, P. D. Meerburg and G. Or-

lando, “Testing the Early Universe with Anisotropies of the Gravitational Wave

Background", JCAP 02, 040 (2022), [arxiv: 2109.03077] (appears as [2])

5.1 Introduction

Having studied the anisotropies of gravitational wave backgrounds, we now look at

their non-Gaussianity. Such higher order correlations (n > 2) of the primordial

perturbations serves as an effective probe of the inflationary action, beyond the free

field limit. In addition to scalar non-Gaussianity (section 3.4), inflationary models

may also generate non-Gaussianity in the tensor sector. On CMB scales, this is
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searched for in the auto and cross-bispectra involving the B-mode polarisation1 e.g.

⟨BBB⟩, ⟨BTT ⟩ etc. (see [429] for a review). Tensor non-Gaussianity may also leave

imprints in the correlation functions involving the tracers of large scale-structure (so

called “fossil effects”) e.g. see [430–432].

In this chapter we focus on much smaller scales and analyse the detectability of ten-

sor non-Gaussianity at interferometer scales. References [369, 370, 433, 434] have

brought into question the feasibility of directly measuring the primordial bispectrum

at interferometers through the 3-point function of the GW strain ⟨h3⟩. The observed

3-point function at interferometers is highly suppressed as a consequence of propaga-

tion effects through large scale structure — incoming GW from different directions

get phase shifted by different amounts which destroys the phase coherence of the

inflationary GW. This renders not just the bispectrum, but also any odd n-point

function of the strain h, completely unobservable [369, 370, 434]. The suppression

occurs for all GW modes which re-enter the horizon during radiation domination and

are relevant for interferometer/PTA scales.

A possible workaround is to consider specific momentum configurations which are not

subject to such suppression. The ultra-squeezed limit is in one such configuration2,

with the long-wavelength mode being around the size of the present day cosmological

horizon and the short wavelength modes taken to be at interferometer scales. The

effect of the long-wavelength mode (which can either be a scalar or a tensor) is to

induce a large scale modulation in the GW energy density contained within the short

modes, leading to anisotropies in the GW background [292]. Thus, GW anisotropies

provide an indirect probe of tensor non-Gaussianity in the squeezed limit. From

a phenomenological point of view, the importance of the squeezed limit cannot be

understated since it knows about the spin and mass of additional fields present during

inflation (section 3.4). In the case of tensor non-Gaussianity, this implies the squeezed

limit can provide us a handle on the fields sourcing GW, beyond what we can learn

from the power spectrum alone.

This chapter is organised as follows. In section 5.2, I first describe the link be-

tween GW anisotropies and squeezed limit non-Gaussianity by deriving the result-

1Cross-correlations of µ-type spectral distortions with CMB anisotropies are also sensitive to
primordial tensor non-Gaussianity [428].

2Another exception is the folded configuration, where the 3 momenta are aligned [435].
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ing anisotropy and its cross-correlation with the CMB, extending to more general

cases the results of [293]. I then provide model independent forecasts for the detec-

tion prospects of the non-linear parameter fNL associated to squeezed tensor non-

Gaussianity, assuming a detection of such anisotropies by interferometers. To com-

plete the analysis and show that such scenarios can indeed by realised in nature, in

section 5.3.1 I provide examples of inflationary models that can produce sufficiently

large non-Gaussianity and consequently observable GW anisotropies which are larger

than the propagation anisotropies discussed in the previous chapter. Section 5.4

provides a summary of the chapter.

5.2 GW anisotropies from tensor non-Gaussianity

As we already saw in chapter 4, cosmological gravitational wave backgrounds can have

anisotropies arising from propagation or due to inhomogeneities in the production

mechanism. Anisotropies arising as a consequence of primordial non-Gaussianity fall

into the latter category and from here onward we shall refer to them as intrinsic

anisotropies. We can understand the generation of these intrinsic anisotropies as

follows. Let us consider primordial bispectra of the form ⟨hk1hk2 Xq⟩ where Xq can

be a long-wavelength scalar or tensor perturbation at CMB scales and hk1,2 are the

short-wavelength tensor modes taken to be at interferometer scales. We work in the

squeezed limit such that q → 0 and k1 ≃ k2.3 It is known that the existence of this

coupling between the long and short wavelength modes leads to a modulation of the

short mode power spectrum given by [292, 430–432, 436, 437],

Pmod
h (k,x) =

∑
λ

Pλ
h (k)

[
1 +

∫
q≪k

d3q

(2π)3 e
iq·xF λ,ttsNL (k, q)ζ(q)

]
, (5.1)

in the case of X = ζ. A formal derivation of this expression via the in-in formalism

can be found in [294].

3Note that here we are specifically interested in the part of the squeezed bispectrum that violates
the single-field consistency relations. Otherwise, when consistency relations are preserved, the phys-
ical effects of the squeezed bispectrum are highly suppressed (see section 3.4.3). These consistency
relations are indeed violated in the models that we consider in section 5.3. For instance, in the spin-2
model this can be seen due to the presence of certain cubic order coefficients which appear in the
bispectra but are absent in the tree level power spectra [127].
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The non-linear parameter F λ,ttsNL is defined as,

F λ,ttsNL (k, q) = Bλ
tts(k − q/2,−k − q/2, q)

Pζ(q)P λh (k)
, ⟨hλk1h

λ′

k2ζk3→0⟩′ = δλλ
′
Bλ

tts(k1,k2,k3) .

(5.2)

The prime here is used to denote the fact that we have omitted the momentum

conserving factor (2π)3 δ(3)(k1 + k2 + k3) from the corresponding 3-point function.

Before moving on to the case of the long-wavelength tensor mode (X = h), it is worth

understanding what eq. (5.1) here actually represents. The quantity Ph(k,x) has the

standard ‘homogeneous’ part, denoted by Ph(k) and a second part which is non-zero

only in the presence of this long-short mode coupling. The x-dependence, arising

from the latter term should be understood as the power spectrum being evaluated in

a volume which has linear dimension L≪ 1/q and is centered around the point x. As

a consequence of this modulation, the GW energy density, which itself is proportional

to the tensor power spectrum, varies across large-scales. The energy density in a

given region thus depends upon the realisation of the long-wavelength mode within

that region.4 The results are applicable whenever there is a large hierarchy of scales

between the long and short-wavelength modes.

Consequently, we can generalise the quantity ΩGW (defined in eq. (3.76)) to have an

isotropic and anisotropic component [293] with

ΩGW(k, η0) =
k2

12a20H2
0
T 2(k, η0)Ph(k, ηin) , (5.3)

and

δttsGW(k, n̂) =
∫
q≪k

d3q

(2π)3 e
−idn̂·qF tts

NL(k, q)ζ(q⃗) . (5.4)

Here T (k, η0) is the tensor transfer function (3.77), η0 is the present-day conformal

time, n̂ = k/k and d = −dn̂ with d = η0−ηi representing the conformal time elapsed

between the horizon re-entry of the mode k to the present.

Note that here we have discarded the polarisation dependence of the bispectra and

hence written F λ,ttsNL ≡ F tts
NL. In principle it is indeed possible to have a polarisation

dependent bispectrum, i.e. F λ1,ttsNL ̸= F λ2,ttsNL , however the models we shall consider in

this chapter will not exhibit such a dependence.

4Refs. [291, 296] study a related phenomena in the context of the ⟨ζ3⟩ bispectrum. The modu-
lation by the long mode can also lead to polarisation anisotropies of the GW background, as shown
in [295].
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ζL

ρGW ∝ ⟨hh⟩ζL

θ ∼ λL/d

d

Figure 5.1: A schematic illustration of anisotropies generated from squeezed non-
Gaussianity.

The case of the long-wavelength tensor can also be analysed similarly. In this case

the modulated power spectrum reads [292]

Pmod
h (k,x) = Ph(k)

[
1 +

∫
q≪k

d3q

(2π)3 e
iq·xF ttt

NL(k, q)
∑
λ

hλ(q)ϵλij(q̂)n̂in̂j
]
, (5.5)

where we have again ignored polarisation dependence in F ttt
NL,

F ttt
NL(k, q) =

Bttt(k − q/2,−k + q/2, q)
Ph(q)Ph(k)

. (5.6)

Bttt(k1,k2,k3) here is the squeezed-limit primordial bispectrum defined as

⟨hλ1k1
hλ1k2

hλ3k3→0⟩
′ = −δλ2λ3 ϵλ3ij (k3) k

i
2k
j
1Bttt(k1,k2,k3) . (5.7)

As a result, the anisotropies are now given by

δGW
ttt (k, n̂) = −

∫
q≪k

d3q

(2π)3
e−idn̂·qF ttt

NL(k, q)
∑
λ

hλ(q)ϵsij(q̂)n̂in̂j . (5.8)

From the expressions in eqs. (5.4) and (5.8), we can estimate the typical magnitude

of these anisotropies to be,

δGW
tts ∼ F tts

NL
√
As (5.9)

δGW
ttt ∼ F ttt

NL
√
rAs .

We can recall from chapter 4 that the propagation anisotropies have magnitude

δGW
prop ∼

√
As, thus for FNL ≫ 1 the intrinsic anisotropies can be much larger than

the ones from propagation for the inflationary GW. We now evaluate these explicitly,

for both the scalar and tensor case.
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Relation to line-of-sight approach:
The above results, combined with eq. (4.11) tell us that we can incorporate the intrinsic

anisotropy as an initial condition term in the line-of-sight formalism. For the anisotropies

from the TTS bispectrum, this reads[
4− ∂ ln ΩGW(k)

∂ ln k

]
ΓI(ηin, q, k, n̂) = F tts

NL(q,k)ζ(ηin, q⃗) , (5.10)

and similarly for the TTT bispectrum.

5.2.1 Angular power spectra

In this section we calculate the angular power spectrum of the intrinsic anisotropies

defined as

⟨δGW
ℓm δGW∗

ℓ′m′ ⟩ ≡ δℓℓ′δmm′CGW
ℓ , (5.11)

under the assumption of statistical isotropy of the background.

Here, δGW
ℓm denote the coefficients of the spherical harmonic expansion of δGW

δGW
ℓm =

∫
d2n̂ δGW(n̂)Y ∗

ℓm(n̂) . (5.12)

To obtain analytical estimates and understand the behaviour of the angular power

spectra, we make two simplifying assumptions: (i) a scale-invariant spectrum for the

large scale perturbations, i.e Pζ = As and Ph = rAs and (ii) scale-invariant F tts
NL, F

ttt
NL.

For brevity’s sake, we only state the final expressions and highlight the important

characteristics of the angular power spectra. The full derivations of the relevant

expressions can be found in appendix D where we also discuss how to calculate the

intrinsic anisotropies in a statistically anisotropic background.

5.2.1.1 Anisotropies from ⟨hhζ⟩ bispectrum

For this case we shall consider two possibilities. The first and the simplest one is when

there is no dependence of the bispectrum on the angle between q and k in eq. (5.4).5

The second one is where the bispectrum has a quadrupolar angular dependence in

5This kind of angular depence can arise in SFSR inflation [151], even though the signal is ex-
tremely small, and also in supersolid inflation in the regime where GW are sourced by second order
scalars [146, 294].
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q̂ · k̂, arising in inflationary models of the type considered in [127, 140, 141] which we

shall also describe in sections 5.3.1 and 5.3.2.

Monopolar TTS

Let us begin with the case of no angular dependence in the TTS bispectra, i.e. we

can write

F tts
NL(k, q) = F̃ tts

NL . (5.13)

The anisotropies for a bispectrum of this form were already calculated in ref [293]

with the result,

CGW,tts
ℓ = 2

π

∫
q≪k

q2dq jℓ(qd)2F̃ tts
NL(q, k)2Pζ(q) . (5.14)

The integration over q leads to,

CGW,tts
ℓ ≃

(
F̃ tts
NL

)2 2πAS
ℓ(ℓ+ 1) . (5.15)

In fact, the ℓ-dependence of these anisotropies is exactly the same as that of the SW

term in the propagation anisotropies of the CMB [75] and GW [255, 256].

Quadrupolar TTS

In the case where the bispectrum has a quadrupolar angular dependence in q̂ · k̂, we

parameterise F tts
NL as

F tts
NL(k, q) = F̃ tts

NL(q, k)
[
4π
5
∑
M

Y2M (k̂)Y ∗
2M (q̂)

]
= F̃ tts

NL P2(q̂ · k̂) , (5.16)

where P2 is the second Legendre polynomial. This leads to (see appendix D),

CGW,tts
ℓ = 16π2

∑
L1,L2

iL1−L2h2ℓL12h
2
ℓL22

HL1L2

(2ℓ+ 1)2 , (5.17)

where

hℓ1ℓ2ℓ3 ≡

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

ℓ1 ℓ2 ℓ3

0 0 0

 , (5.18)

and

HL1L2 ≡ 2
25π

∫
q≪k

q2dq jL1(qd)jL2(qd)F̃ tts
NL(k, q)2Pζ(q) . (5.19)

We can further simplify this assuming scale invariance and using the identity (D.18)

to obtain (for ℓ > 2)

CGW,tts
ℓ ≃ 2π

5
(F̃ tts

NL)2AS
(ℓ− 2)(ℓ+ 3) . (5.20)
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Figure 5.2: The auto-correlation of the SGWB anisotropies as a function of ℓ plotted
for |F̃ tts

NL| = |F ttt
NL| = 103 and the tensor-scalar ratio r = 0.05.6

5.2.1.2 Anisotropies from ⟨hhh⟩ bispectrum

In this case we find for the corresponding correlator (see appendix D)

CGW,ttt
ℓ = (ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)

2π
∑
s=±2

∫
q≪k

q2dq F ttt
NL(k, q)2P sh(q)

jℓ(qd)2

(qd)4 . (5.21)

Assuming scale independent F ttt
NL and a scale invariant Ph = (2π2/q3)rAS , this be-

comes

CGW,ttt
ℓ ≃

4π (F ttt
NL)2 rAS

15(ℓ− 2)(ℓ+ 3) , (5.22)

where we have used eq. (D.25).

5.2.1.3 Summary plot

The resulting anisotropies are plotted in fig. 5.2 taking |F̃ tts
NL| = |F ttt

NL| = 103 and

r = 0.05. The figure validates our estimate for the magnitude of the anisotropies in

eq. (5.9), for |FNL| ≫ 1, the intrinsic anisotropies are much larger than the propa-

gation anisotropies, roughly by a factor (F̃ tts
NL)2 in the TTS case and r(F ttt

NL)2 in the

TTT case.

6Note that this value of r is now excluded by CMB data with the current upper limit being
r < 0.032 at 95% CL [35, 114]. This will not significantly affect our analysis in section 5.3.1, as long
as rF ttt

NL ≫ 1 still holds true.
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5.2.2 CMB-GW cross-correlation

The intrinsic anisotropies, arising from the modulation of the small-scale tensor

power spectrum by the long-wavelength perturbations, are correlated with the CMB

anisotropies as well. We now calculate this correlation and discuss how the correla-

tion depends on the angular structure of FNL. Once again, for analytic estimates we

shall make the assumption of scale invariance throughout and only consider the SW

term of the CMB anisotropy.

SGWB anisotropies also have a non-zero correlation with the E-mode polarisation

anisotropies of the CMB. However, this has been found to be smaller than the GW-T

cross-correlation by at least one order of magnitude [304]. We also recall this from

section 4.3, where we saw that the GW-E cross-correlation provided a negligible

contribution to the total GW-CMB cross-correlation. Finally, since the B-modes are

parity-odd, the cross-correlation with CMB B-mode polarisation will be non-zero only

when there is parity violation. The same happens in the CMB case where ⟨TB⟩ = 0

if parity is preserved [438].

5.2.2.1 Anisotropies from ⟨hhζ⟩ bispectrum

Monopolar TTS

The monopolar case was first analysed in [293] with the result,

CGW−T
ℓ = 4π

5 F̃
tts
NLAS

∫
q≪k

dq

q
jℓ(qd)jℓ(qrlss) . (5.23)

where rlss is the distance to the last scattering surface. As a first approximation, we

can set d ≈ rlss to get

CGW−T
ℓ ≃ 4π

5 F̃
tts
NL

AS
2ℓ(ℓ+ 1) . (5.24)

If we do not make the above approximation and keep d ̸= rlss we find

CGW−T
ℓ = π3/2

5 F̃ tts
NLAS

(
rlss
d

)ℓ Γ(ℓ)
Γ(ℓ+ 3

2)
2F1

(
−1
2 , ℓ; ℓ+

3
2;
r2lss
d2

)
. (5.25)

in terms of the Gamma functions and the Hypergeometric function 2F1 (see ap-

pendix D). The cross-correlation scales with ℓ in the same manner as the cross-

correlation of the SW term of the GW propagation anisotropies with the CMB SW

term, which is not surprising given that they share the same ℓ-dependence.
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An interesting feature of this cross-correlation is that it decays strongly with ℓ as a

consequence of the factor (rlss/d)ℓ.7 This suppression results from the fact that GW

‘last scattered’ much earlier than the CMB (rlss/d < 1) which leads to the anisotropies

becoming uncorrelated on smaller angular scales (large ℓ). Since d ≈ rlss, the approx-

imate result of eq. (5.24) does work well for small ℓ but not for ℓ ≳ 20 (see Figure 5.3).

Numerically, we find the following scaling with ℓ

CGW−T,tts
ℓ ∝

(
rlss
d

)ℓ 1
ℓ2
. (5.26)

Quadrupolar TTS

In this case we find,

CGW−T,tts
ℓ = 4π

∑
L

iL−ℓh22Lℓ
GLℓ
2ℓ+ 1 , (5.27)

where

Gℓ1ℓ2 = 2
25π

∫
q≪k

q2dq jℓ1(qd)jℓ2(qrlss)F̃ tts
NL(k, q)Pζ(q). (5.28)

and the sum is over L = ℓ − 2, ℓ, ℓ + 2. This above expression can be analytically

estimated to be (appendix D)

CGW−T,tts
ℓ =

π3/2F̃ tts
NLAS

20

(
rlss
d

)ℓ (rlss
d

− 1
)(

rlss
d

+ 1
)
∆Fℓ , (5.29)

where ∆Fℓ is given by eq. (D.37).

Numerically, we obtain the following scaling with ℓ for the quadrupolar case,

CGW−T,tts
ℓ ∝

(
rlss
d

)ℓ 1
ℓ1/2

. (5.30)

In addition to the expected (rlss/d)ℓ that we saw previously, we also notice that when

d→ rlss, the cross-correlation drops to zero. Physically, this is explained by the fact

that the GW source term is locally a quadrupole while the CMB SW is a monopole.

If the sources are located at the same point (d = rlss), the cross-correlation will

be exactly zero due to the orthogonality of the Legendre polynomials Pℓ(k̂ · q̂) and

Pℓ′(k̂ · q̂) for ℓ ̸= ℓ′.

The results of this section indicate that the cross-correlation for the quadrupolar TTS

will be smaller than the monopolar TTS. This will have significant consequences

7This has also been pointed out in ref. [293] and in ref. [305] for the propagation anisotropies.
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Figure 5.3: The ratio CGW−T
ℓ /

√
CGW
ℓ CTT

ℓ plotted for the monopolar and the
quadrupolar TTS cross-correlation. The corresponding ratio for the induced
anisotropies follows the same curve as the one for the monopolar TTS.

for cross-correlation-based constraints on tensor non-Gaussianity through the GW

anisotropies. In the cosmic variance limit, the relative error in the estimates of the

individual CGW−T
ℓ are given by (e.g. see [439]),

δCGW−T
ℓ ∝

[
CTT
ℓ CGW

ℓ

(2ℓ+ 1)(CGW−T
ℓ )2

]1/2
. (5.31)

This ratio is shown in Fig. 5.3 for the monopolar and the quadrupolar cross-correlations.

For the low-ℓ range8 (CGW−T
ℓ )2 ≃ CGW

ℓ CTT
ℓ for the monopolar TTS. On the other

hand we have (CGW−T
ℓ )2 ≪ CGW

ℓ CTT
ℓ for the quadrupolar TTS. As a consequence,

we can expect cross-correlations to have more constraining power in the case of the

monopolar TTS which shall be confirmed when perform our forecasts in section 5.2.3.

Anisotropies from ⟨hhh⟩ bispectrum

The final cross-correlation that we study is that of the intrinsic anisotropies from

the TTT bispectrum with the CMB temperature anisotropies sourced by large scale

tensor perturbations. The latter can be written as [441],

δT(n̂) = −1
2
∑
s=±2

∫
dη

d3q

(2π)3
∂hsq
∂η

ϵsij(q̂)n̂in̂je−iχ(η)n̂·q , (5.32)

8The higher-ℓ range turns out to be not so relevant for current and near-future observations, due
to the limited angular resolution of current and future planned interferometers. Estimates indicate
that this will be limited to ℓmax ∼ 10 – 15 [243, 403–405, 440].
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Figure 5.4: The cross-correlation of the SGWB anisotropies as a function of ℓ plotted
for |F̃ tts

NL| = |F ttt
NL| = 103 and a tensor-to-scalar ratio r = 0.05.

The resulting cross-correlation is (see appendix D)

CGW−T,ttt
ℓ = (ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)

4π
∑
s=±2

∫
q≪k

q2dq F tttNL(k, q)P sh(q)
jℓ(qd)
(qd)2

×
∫
dη

∂T (k, η)
∂η

jℓ(qχ(η))
(qχ(η))2 . (5.33)

To evaluate this, we limit ourselves to large-scale modes which re-enter the horizon

after matter domination (k ≥ keq). Their post-horizon re-entry evolution can be

written in terms of the tensor transfer function as [442],

Th(k, η) =
3j1(k, η)
kη

. (5.34)

This gives

CGW−T,ttt
ℓ ≃ (ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)

4π
∑
s=±2

∫ keq

1/η0
q2dq F ttt

NL(k, q)P sh(q)
jℓ(qd)
(qd)2

×
∫ η0

ηrec
dη

∂T (k, η)
∂η

jℓ(qχ(η))
(qχ(η))2 . (5.35)

which we evaluate numerically.

The different cross-correlations are plotted in fig. 5.4 with the same parameter choices

as fig. 5.2.

5.2.3 Model independent forecasts

In this section we use the Fisher matrix formalism to present forecasts for the expected

error in measuring FNL with GW interferometers. We focus only on F tts
NL here and
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analyse the case of F ttt
NL separately in section 5.3.1.

The Fisher matrix is given by [443],

Fij =
∑
XY

ℓmax∑
ℓ=ℓmin

∂CXℓ
∂θi

(
CXY
ℓ

)−1 ∂CYℓ
∂θj

, (5.36)

where X,Y = {TT,GW,GW-T} and θ⃗i is the vector representing the parameters

being measured. The matrix Cℓ is defined as,

Cℓ =
2

2ℓ+ 1


(CTT

ℓ )2 (CGW−T
ℓ )2 CTT

ℓ CGW−T
ℓ

(CGW−T
ℓ )2 (CGW

ℓ )2 CGW
ℓ CGW−T

ℓ

CTT
ℓ CGW−T

ℓ CGW
ℓ CGW−T

ℓ
1
2(C

GW−T
ℓ )2 + 1

2C
TT
ℓ CGW

ℓ

 , (5.37)

with,

CTT
ℓ ≃ 2πAS

25ℓ(ℓ+ 1) ,

CGW
ℓ = CGW,tts

ℓ + CGW,prop
ℓ +NGW

ℓ , (5.38)

CGW−T
ℓ = CGW−T,tts

ℓ + CGW−T,prop
ℓ .

The NGW
ℓ represent the noise angular power spectra of the detector network being

used for the measurement. For our forecasts, we make use of the expected sensitivities

of ET-CE, LISA-Taiji, BBO and SKA and plot the NGW
ℓ for these in fig. 5.5. The

calculation of the noise spectra and the detector configurations used are described

further in appendix C.

Finally, the quantity ∆θi =
√
(F−1)ii then represents the minimum expected error in

the measurement of the parameter θi. In fig. 5.6 we plot the expected relative error,

defined as

δF̃ tts
NL ≡ ∆F̃ tts

NL/F̃
tts
NL , (5.39)

taking a scale independent F̃ tts
NL = 103 and for different values of ΩGW,9 which we

also take to be scale-independent in each case. We remind the reader that we have

defined

F tts
NL(k, q) = F̃ tts

NL Pℓ(q̂ · k̂) . (5.40)

9The effects of the parameters F̃ tts
NL and Ω̄GW are nearly degenerate, since observations are sen-

sitive to the combination Ω̄GW × F̃ tts
NL.
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Figure 5.5: NΩ
ℓ plotted for BBO, LISA-Taiji, ET-CE and SKA at fBBO

ref = 0.1 Hz,
fLISA−Taiji
ref = 0.01 Hz, fET−CE

ref = 63 Hz and fSKA
ref = 1year−1 Hz. The quantity NGW

ℓ

is defined as NGW
ℓ ≡ NΩ

ℓ /Ω
2
GW.
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Figure 5.6: The relative error in the measurement of F̃ tts
NL as a function of ℓmax

for BBO, SKA, LISA-Taiji and ET-CE. The dashed curves show the errors for an
idealised, cosmic variance limited measurement.
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We see from the figure that with larger ΩGW = 10−10 we can achieve a smaller

relative error δF̃ tts
NL. For instance, we obtain δF̃ tts

NL ≃ 10−2 with BBO for both the

monopolar and the quadrupolar F tts
NL and a slightly increased error with SKA. The

lower overall as well as angular sensitivity of the ET-CE and LISA-Taiji networks

means that the relative error turns out to be larger, of the order 10−1 and saturates

within the first few multipoles ℓmax ∼ 10. In fact, 3G detectors like LISA-Taiji and

ET-CE are unlikely to provide any constraints on the anisotropies for a monopole

amplitude ΩGW ≲ 10−10. For ΩGW = 10−12, we find that only BBO and SKA are

able to detect F tts
NL, reaching a relative error δF̃ tts

NL ∼ 10−1. In fact, for both values

of ΩGW BBO is almost cosmic variance limited, especially for the monopolar TTS.

Finally, as expected from the arguments of the previous section, the error is smaller

in the case of the monopolar TTS as compared to the quadrupolar one.

Astrophysical foregrounds

The forecasts of the previous section assumed only the presence of cosmological back-

grounds in the total SGWB. However, gravitational wave backgrounds of astrophysi-

cal origin, arising from the superposition of signals from numerous unresolved mergers

are also expected to be present and contribute to the anisotropies [257–274]. Tech-

niques to separate the astrophysical and cosmological background monopoles using

their different properties — frequency range, spectral shape, time dependence — have

been proposed in [275–284].

Astrophysical anisotropies trace the distribution of large-scale structure and are

strongly correlated with observables such as galaxy clustering and weak-lensing [258,

259, 266, 269, 270, 274]. The cross-correlation of astrophysical anisotropies with those

of the CMB has also been studied recently in [305]. The results of ref. [305] suggest

that cosmological background anisotropies have a stronger correlation with the CMB,

compared to astrophysical ones. This fact may be exploited to detect cosmological

background anisotropies in the presence of astrophysical backgrounds.

To test the effectiveness of this idea, we compute the signal to noise ratio of the cross-

correlation of the CMB anisotropies with the intrinsic GW anisotropies studied in this

chapter, in the presence of an astrophysical GW background. We make the simplifying

assumption of negligible astrophysical-CMB cross-correlation. The resulting SNR is
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Figure 5.7: The CGW
ℓ for the astrophysical background (yellow shaded region) and for

the CGWB with ΩGW = 10−12, |F̃ tts
NL| = 5 × 103. We have assumed an astrophysical

background of the form (ℓ+1/2)Cℓ = AGWB. For comparison the CGW
ℓ of the CGWB

have been rescaled as CGW
ℓ → Ω2

GWC
GW
ℓ .

defined as

SNR =

ℓmax∑
ℓmin

(2ℓ+ 1)

(
CGW−T,signal
ℓ

)2
(
CGW−T,total
ℓ

)2
+ CGW,total

ℓ CTT
ℓ


1/2

, (5.41)

where

CGW−T,signal
ℓ = CGW−T,tts

ℓ

CGW−T,total
ℓ = CGW−T,signal

ℓ + CGW−T,prop
ℓ , (5.42)

CGW,total
ℓ = CGW,tts

ℓ + CGW,prop
ℓ + CGW,astro

ℓ +NGW
ℓ .

Based on the results of [259–261], we assume an astrophysical background of the type

(ℓ+ 1/2)CGW,astro
ℓ ≈ AGWB , (5.43)

with AGWB = {10−25, 10−30}. The upper and lower limits correspond to the expected

amplitude around f = 63 Hz and f = 0.01 Hz respectively [260, 261].10 We plot the

resulting SNR in fig. 5.8 where, once again, we find the SNR for the monopolar case

to be greater than the quadrupolar one.

We also see that the intrinsic anisotropies can still be detected even assuming the

upper limit for the astrophysical anistropies, even though in this case the astro-

physical signal is larger than the intrinsic anisotropies CGW,tts
ℓ if ΩGW < 10−12 and

|F̃ tts
NL| < 5× 103 (see Fig. 5.7). In the quadrupolar case, a similar magnitude for the

SNR arises only when AGWB ≤ 10−27.

10Note that these Cℓ are not defined relative to the monopole, in contrast to the Cℓ of the
primordial GW background.
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Figure 5.8: Left : SNR for the GW-CMB cross-correlation arising from the monopolar
TTS bispectrum plotted as a function of ΩGW and |F̃ tts

NL|, taking (ℓ+1/2)Cℓ = AGWB
for the astrophysical background. Right: SNR for the same cross-correlation but for
the quadrupolar TTS bispectrum.

5.3 Inflationary models

We now discuss two specific models of inflation capable of generating the character-

istic non-Gaussian signatures studied in this chapter. The first model is based on a

the presence of an additional light (compared to H) spin-2 field present during infla-

tion [127]. The second model, dubbed Solid inflation, features the breaking of space

reparametrisation symmetry during inflation [140].

5.3.1 Spin-2 Model

The spin-2 model, first introduced in [127] and also studied in [128, 129], presents an

effective field theory approach to the dynamics of the light spin-2 field σij , which is

taken to be non-minimally coupled to the inflaton.11

The model is described by the action

S = Sπ + Sσ + Sint , (5.44)

where Sπ denotes the slow-roll dynamics in the single-field EFT of inflation [139],

Sσ is the free-field action for the spin-2 field and Sint containts quadratic and cubic

order interaction terms between π and σ.12 The interaction Lagrangian takes the

11Coupling σij directly to the inflaton allows it to be light compared to the inflationary Hubble
scale, thereby circumventing the Higuchi bound [444].

12As in ref. [127], we assume a negligible background value for the σ field.
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form [127],

Sint =
∫
dη d3x a4

[
− g√

2ϵH
a−2∂i∂jπcσ

ij + 1
2a

−1g h′c,ijσ
ij
]

+
∫
dη d3x a4

[
− g

2ϵH2MPl
a−2(a−1∂iπc∂jπcσ

′ij (5.45)

+ 2H∂iπc∂jπcσij)− µ(σij)3 + . . .
]
.

Here, we defined the canonically normalised fields, hc ≡ hMPl, with hij the usual

tensor perturbations of the metric and πc ≡
√
2ϵHMPl π. The field πc is linearly

related to the curvature perturbation via ζ ≃ −Hπ [139]. The parameters g, µ are

coupling constants and the dots in eq. (5.45) represent higher order interaction terms.

The spin-2 field can be expanded in terms of its helicity modes,

σij = σ
(0)
ij + σ

(1)
ij + σ

(2)
ij . (5.46)

We focus on the dynamics of helicity-0 and helicity-2 states, since the helicity-1 modes

are washed away by the inflationary expansion (see chapter 3). The transverse and

traceless modes, hij and σ(2)ij can be expanded in the chiral basis,

hij =
∫

d3k

(2π)3 e
ik·x ∑

λ=R/L
ϵλij(k̂)hλk(η) , (5.47)

σ
(2)
ij =

∫
d3k

(2π)3 e
ik·x ∑

λ=R/L
ϵλij(k̂)σ

2,λ
k (η) , (5.48)

where

ϵ
R/L
ij = 1

2
(
ϵ+ij ± iϵ×ij

)
, (5.49)

The polarisation tensors are normalised such that

ϵ
R/L
ij (k̂) · ϵL/Rij (k̂) = 1 , (5.50)

ϵ
R/L
ij (k̂) · ϵR/Lij (k̂) = 0 , (5.51)

ϵ
R/L∗
ij (k̂) = ϵ

L/R
ij (k̂) = ϵ

R/L
ij (−k̂) . (5.52)

For the helicity-0 modes, we can write

ζ =
∫

d3k

(2π)3 e
ik·xζk(η) , (5.53)

σ
(0)
ij =

∫
d3k

(2π)3 e
ik·xϵ0ij(k̂)σ0k(η) , (5.54)

where

ϵ0ij(k̂) =
√

3
2

(
k̂ik̂j −

δij
3

)
, ϵ0ij(k̂) · ϵ0ij(k̂) = 1 . (5.55)
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Following the standard procedures (chapter 3), we obtain the mode functions of ζ

and h,

uζk(η) =
iH

2MPl

√
ϵk3

(1 + ikη)e−ikη , (5.56)

uhk(η) =
2iH

MPl

√
2k3

(1 + ikη)e−ikη , (5.57)

and for the σij field,

uσ
(2)

k (η) =
√
π

2H(−η)3/2
(
c2(η)
c2i

)1/2
H(1)
ν (−c2(η)kη) , (5.58)

uσ
(0)

k (η) =
√
π

2H(−η)3/2
(
c0(η)
c0i

)1/2
H(1)
ν (−c0(η)kη) . (5.59)

The parameter ν =
√
9/4− (m2

σ/H
2) is related to the mass of spin-2 field mσ, H(1)

ν is

the Hankel function of the first kind, and c0/2 are the sound speeds of the helicity-0/2

components, with c0i and c2i the initial sound speeds. We have verified that these

solutions for the mode functions13 reproduce Bunch-Davies initial conditions at early

times (cskη ≪ 1) and reduce to those obtained in the c0,2 = constant case for time-

independent sound speeds considered in [127]. The individual sound speeds obey the

following relation [127]

c21 =
1
4c

2
2 +

3
4c

2
0 , (5.60)

We shall assume that the above relation remains valid for slowly varying sound speeds.

We have assumed slowly varying sound speeds with our parametrisation for the sound

speed of the helicity mode-j being,

cj(η) = cij

(
η

ηi

)sj
+ cfj . (5.61)

The case of time dependent sound speeds for the spin-2 model was first considered

in [129]. We have chosen to add an asymptotic value cfj on top of what was adopted

in [129], which is convenient when it comes to imposing perturbativity bounds on the

sound speeds (cj ≳ 10−3) [127].

In terms of calculating the relevant cosmological correlators, this choice is approxi-

mately equivalent to taking (see appendix D.3.1 for more details),

cj(k) = cij

(
k

k0

)−sj
+ cfj , (5.62)

where k0 = a0H0 is a reference scale.

13The complete derivation of the mode in the case of a slowly varying sound speed can be found
in [157] and our solutions for the mode-functions match in terms of canonically normalised fields. For
cases where the time dependence of the sound speeds is significant, the solutions need to be obtained
in a different manner (see e.g. [445]).
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Figure 5.9: Leading σ-mediated contributions to ⟨hhζ⟩ and ⟨hhh⟩. Straight lines
correspond to ζ, wiggly lines correspond to h, red (black) dashed lines correspond to
σ(0) (σ(2)) fields.

5.3.1.1 Tensor bispectra and power spectra

In terms of the helicity fields, the interaction vertices of interest for our analysis are

the following

Hσ(2)h = −
∫
d3x

g

2MPl a
3h′ijσ

(2),ij , (5.63)

H(σ(2))3 =
∫
d3xµa4 σ

(2)
ij · σ(2)jk · σ(2)ki , (5.64)

H(σ(2))2σ(0) =
∫
d3x 3µa4 σ(2)ij · σ(2)jk · σ(0)ki , (5.65)

Hσ(0)ζ = −
∫
d3x

g

H
MPl a

2∂i∂jζ σ
(0),ij . (5.66)

These lead to σ-mediated contributions to primordial correlators (Fig. 5.9), which

we calculate using the in-in formalism [188]. The diagrams under consideration give

contribution to the correlations that are leading and physical, i.e. they cannot be

gauged away unlike the squeezed limit bispectrum in SFSR inflation [191, 201, 202].

Of particular interest to us are the three point functions ⟨hhζ⟩ and ⟨hhh⟩ and the

tensor power spectrum ⟨hh⟩.

The full technical details related to the calculation of these correlators can be found

in ref. [2]. I provide a summary of the computation strategy in appendix D and only

report here the final results for the correlators.

The main σ-mediated diagram in the ⟨hhh⟩ bispectrum leads to

⟨hλ1k1h
λ2
k2
hλ3k3 ⟩ = (2π)3δ(3)(k⃗1 + k⃗2 + k⃗3)Aλ1λ2λ3Bttt(k1, k2, k3) , (5.67)
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where Bttt(k1, k2, k3) in the squeezed limit (kL = k3 ≪ k1 ≃ k2 = kS) is given by

Bttt(kS , kS , kL) =
24× 2νπ2

k
9/2−ν
S k

3/2+ν
L

µ

H

(
g

MPl

)3 (c2(kS)
c2i

)5/2 (c2(kL)
c2i

)1/2
I(c2, ν) ,

(5.68)

and in the same limit we also have

Aλ1λ2λ3 |sq. = −1
2 k̂

i
S k̂

j
S ϵ

λ1
ij (k̂L)×


1 if λ1 = λ2

0 if λ1 ̸= λ2

. (5.69)

The function I(c2, ν) can be well-fit by a power law, given by

I(c2, ν) ≃
a(ν)

c2(kL)νc2(kS)3ν
, (5.70)

where a is a ν-dependent parameter (see table D.1 for a set of possible values).

Similarly, for the σ-mediated contribution to ⟨hhζ⟩ we find [2]

⟨hλ1k1h
λ2
k2
ζk3⟩ = (2π)3δ(3)(k⃗1 + k⃗2 + k⃗3)Aλ1λ2Btts(k1, k2, k3) . (5.71)

In the squeezed limit we have Btts(k1, k2, k3)

Btts(kL, kS , kS) =− 2π2

ϵ

µ

H

(
g

MPl

)3 2ν

k
9/2−ν
S k

3/2+ν
L

(
c2(kS)
c2i

)2 (c0(kS)
c0i

)1/2 (c0(kL)
c0i

)1/2

× I(c0, c2, ν) , (5.72)

and

Aλ1λ2
sq. = 4π

5
∑
M

Y2M (k̂L)Y ∗
2M (k̂S)×


1 if λ1 = λ2

0 if λ1 ̸= λ2

. (5.73)

The function I(c0, c2, ν) is fit by

I(c0, c2, ν) ≃
a(ν)

c0(kL)νc0(kS)νc2(kS)2ν
. (5.74)

The scalar and tensor power spectra of this model are given by (see also [127, 128])

Pζ(k) =
H2

4M2
Plϵk

3

[
1 +

Cζ(ν)
ϵc2ν0 (k)

(
c0(k)
c0i

)(
g

H

)2
]
, (5.75)

Ph(k) =
4H2

M2
Plk

3

[
1 +

Cγ(ν)
c2ν2 (k)

(
c2(k)
c2i

)(
g

H

)2
]
. (5.76)

The exact analytical form of Cζ(ν) and Cγ(ν) can be found in Ref. [127].

We are interested in scenarios where (i) the GW spectrum is sufficiently enhanced

at small and intermediate scales to be observable, and (ii) we have large squeezed
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Figure 5.10: An example of scale-dependence of the sound speeds cs(k) taking
c2i = 2.5× 10−1, c2f = 10−3, s2 = 1.8× 10−1, c0i = 1, s0 = 0. The black and grey
dashed lines show the bounds from perturbativity and CMB non-Gaussianity re-
spectively.

non-Gaussianity with FNL ≫ 1 so as to have a detectable anisotropic component

of ΩGW. This is obtained in the c2 ≪ 1 regime, which keeping in mind the CMB

constraints, suggest that the interesting region of parameter space is the one with c0
nearly constant throughout and c2 decreasing towards smaller scales in terms of the

scale dependent sound speeds of eq. (5.62) (see fig. 5.10). Thus, we can approximate

Pζ(kL) ≃
H2

4M2
Plϵk

3
L

, Ph(kL) ≃
4H2

M2
Plk

3
L

, (5.77)

Ph(kS) ≃
4H2

M2
Plk

3
S

Cγ(ν)
c2ν2 (kS)

(
c2(kS)
c2i

)(
g

H

)2
, (5.78)

where we have kL at CMB scales and kS corresponding to e.g. PTA or interferometer

scales. The non-linear parameters as defined in Eqs. (5.6) and (5.16), can finally be

obtained as

F ttt
NL(kS , kL, ν) =3π2 2ν a(ν)

Cγ(ν)

(
MPl

H

)(
c2(kS)

3
2−ν

c2(kL)ν−
1
2 c22i

)(
g

H

)(
µ

H

)(
kL
kS

)3/2−ν
,

(5.79)

F̃ tts
NL(kS , kL, ν) =− 4π2 2ν a(ν)

Cγ(ν)

(
MPl

H

)(
c2(kS)

c0(kL)ν−
1
2 c0(kS)ν−

1
2 c2i c0i

)(
g

H

)(
µ

H

)(
kL
kS

) 3
2−ν

.

(5.80)

The common (kL/kS)3/2−ν scaling suggest that a small exponent (i.e. a light field)

will provide large GW signatures that may be observable. Combining Eq. (5.79) with

Eq. (5.80) we obtain

F ttt
NL(kS , kL, ν) = −3

4

(
c0i
c2i

)(
c0(kS)c0(kL)
c2(kS)c2(kL)

)ν− 1
2
F̃ tts
NL(kS , kL, ν) . (5.81)
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Figure 5.11: Left : The scalar power spectrum for the spin-2 model along with
the measured power spectrum from CMB observations [41] and the constraints from
various experiments (see [446–450] for the exact constraints). Right: The different
contributions to the tensor power spectrum for the spin-2 model. The choice of
parameters for both panels is c2i = 2.5 × 10−1, c2f = 10−3, s2 = 1.8 × 10−1, c0i =
1, s0 = 0, g/H = 4× 10−3, ν = 1.45.

This shows us that for c2 ≪ c0 and a sufficiently light field, the TTT non-linear

parameter will be enhanced with respect to the TTS one and can provide the dominant

contribution to the GW anisotropies.

We plot the resulting scalar and tensor power spectra for this model in Fig. 5.11.

We choose the parameter set c2i = 2.5 × 10−1, c2f = 10−3, s2 = 1.8 × 10−1, c0i =

1, s0 = 0, g/H = 4 × 10−3, ν = 1.45, H/Mpl = 10−5 which is within the allowed

range for this model, both in terms of theoretical consistency (gradient instabilities,

perturbativity) [127, 128], and in terms of observational constraints on scalar and

tensor perturbations from the CMB [41, 129, 451] (a more detailed discussion of

these points can be found in [2]).

Finally, in Fig. 5.12, we plot the spectrum of ΩGW for different values of c2f . For

c2f = 10−3, we observe that the GW spectrum is well within the sensitivity range of

next generation CMB experiments like CMB-S4 as well as SKA, Taiji and BBO.

5.3.1.2 Angular power spectra of GW anisotropies

Equipped with the results of section 5.2 and keeping the same choice of parameters

as mentioned above, we calculate the angular power spectra of the GW anisotropies

and plot them in fig. 5.13 at BBO frequency scales. As expected, both CGW
ℓ and

CGW−T
ℓ turn out to be dominated by the TTT bispectrum, due to the smallness of

the parameter c2.
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Figure 5.12: ΩGW(k) for different values of c2f plotted alongside the power law sen-
sitivity curves for SKA, LISA, Taiji, BBO and ET. We also plot the current bound
from the CMB as well as the expected sensitivity of CMB-S4 [115].

As a consequence of the (kL/kS)3/2−ν scale dependence, CGW,tts
ℓ is suppressed on

large angular scales (compare to fig. 5.4). Although this can be a signature of the

mass of the spin-2 field (ν =
√
9/4−m2

σ/H
2), the TTS cross-correlation being much

smaller than the TTT one makes this difficult to observe. The sign CGW−T,ttt
ℓ < 0

can also be understood from the fact that tensor perturbations decay on sub-horizon

scales, therefore dh/dη < 0. Thus, when F ttt
NL > 0 we will have CGW−T,ttt

ℓ < 0.

If we fix all parameters except µ/H and c2f to the values considered previously (same

TTT TTS induced

10 20 30 40 50

10-9

10-6

10-3

100

5 10 15 20 25 30

-10
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0

5

10
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20

Figure 5.13: The different contributions to the auto-correlation CGW
ℓ and cross-

correlation CGW−T
ℓ plotted for the spin-2 model. For comparison we also plot the

induced anisotropies from propagation.
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Figure 5.14: The relative error in the measurement of F ttt
NL as a function of ℓmax with

BBO for different values of µ, c2f . The dashed curves show the errors for an idealised,
cosmic variance limited measurement.

as fig. 5.11), we can approximate

ΩGW(kBBO) ≃ 1.3× 10−13
(
c2f
10−3

)−1.7
,

F ttt
NL(kBBO, kp) ≃ 1.2× 106

(
µ

H

)
, (5.82)

F̃ tts
NL(kBBO, kp) ≃ −3.5× 102

(
µ

H

)
,

in terms of µ/H and c2f .14 The angular power spectra inherit the scale dependence

of the FNL, resulting in

CGW
ℓ (kref) ≃ CGW

ℓ (kBBO)×
(
kBBO
kref

)3−2ν
,

CGW−T
ℓ (kref) ≃ CGW−T

ℓ (kBBO)×
(
kBBO
kref

)3/2−ν
, (5.83)

for the anisotropies arising from non-Gaussianity where ν =
√
9/4−m2

σ/H
2 was re-

lated to the mass of the spin-2 field.

5.3.1.3 Projected constraints on FNL

We are now able to forecast the minimum expected error in the measurement of F ttt
NL,

knowing that the anisotropies from the TTT bispectrum are enhanced relative to

those from the TTS one. We proceed in the same manner as section 5.2.3 and plot

the relative error δF ttt
NL ≡ ∆F ttt

NL/F
ttt
NL in fig. 5.14 for different value of µ, c2f . The

corresponding F ttt
NL and ΩGW can be approximated at BBO scales using (5.82).

14Note that at these interferometer scales we have c2 ≃ c2f (see fig. 5.10).
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Figure 5.15: Left: The CGW
ℓ for the astrophysical background (yellow shaded region)

and for the CGWB anisotropies in the spin-2 model for different values of µ/H taking
c2f = 10−3. Right: Signal to noise of the total cross-correlation for the spin-2 model
as a function of c2f , µ/H.

We observe that for the parameter set c2f = 10−3, µ/H = 10−1, a relative precision

of δF ttt
NL ∼ 10−2 is achievable. This is similar to the cosmic variance limited error, ex-

pected due to the fact that in this case we have CGW,ttt
ℓ ≫ NGW

ℓ . For values of µ, c2f
that lead to smaller F ttt

NL,ΩGW, the error saturates around ℓmax ∼ 10, which is conse-

quence of the detector noise increasing rapidly after the first few multipoles (fig. 5.5).

SNR of the CMB-GW cross-correlation

As in section 5.2.3, we also provide here an estimate of the cross-correlation SNR as-

suming that an astrophysical background is also present. In this case the detectability

of the cross-correlation is much lower, due to the fact that the tensor contribution

to the CMB temperature anisotropies is much smaller (since r ≪ 1). This implies

that CGW−T,signal
ℓ ≪ (CGW,total

ℓ CTT
ℓ )1/2, leading to a signifanct reduction in the SNR

compared to the TTS case considered in section 5.2.3.

SNR ≃

∑
ℓ

(2ℓ+ 1)

(
CGW−T,signal
ℓ

)2
CGW,total
ℓ CTT

ℓ


1/2

. (5.84)

5.3.2 Solid Inflation

The second inflationary model that we studied in [1], is Solid Inflation. In this

model [140, 141], the inflationary expansion is driven by three scalar fields having
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derivative couplings and particular symmetries that are similar to an effective field

theory description of a homogeneous and isotropic solid [452]. The three fields φI
here break space-reparametrization symmetry, i.e., they have space-dependent but

time independent background configurations

⟨φI⟩ = xI , (5.85)

where x are the comoving coordinates. Internal shift and rotational symmetries of

the φI allow for the homogeneity and isotropy of the background space-time,

φI → φI + aI , aI = const. , (5.86)

φI → OIJφ
J , OIJ ∈ SO(3) . (5.87)

Finally, allowing for an approximate internal dilation symmetry

φI → λφI . (5.88)

ensures that (i) the EFT of the solid does not break down in an expanding background,

and (ii) the solid can accommodate ρ + p ≪ ρ and thereby drive the accelerated

expansion.

Bispectra and power spectra

The solid inflation tensor bispectra are given by [141]

⟨ζq→0h
λ
kh

λ′

−k⟩
′ = 16

9
FY
F

Pζ(q)Ph(k) log
(
k

aH

)(
ϵλijϵ

λ′
ij − 3q̂iϵλijϵλ

′

jkq̂k
)
, (5.89)

⟨hλq→0h
λ′

k h
λ′′

−k⟩
′ = 8

9
FY
F

Ph(q)Ph(k) log
(
k

aH

)
ϵλijϵ

λ′

jkϵ
λ′′

ki . (5.90)

Here, FY , F are model parameters with FY /F < 1.

Another important feature of this model is that that the tensor power spectrum is

necessarily blue tilted [140]

Ph(k) = AT

(
k

kp

)nT

, (5.91)

AT ≃
H2

p

π2M2
Pl

(
ηp
ηe

)8c2
T
ϵ/3

, (5.92)

nT ≃ 2ϵpc2L . (5.93)
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The subscript ‘p’ denotes that these quantities are evaluated at the time when the

pivot scale exits the horizon and ηe is the end of inflation. The quantities (cT , cL) are

the tranverse and longitudinal sound speeds, related via c2T ≃ 3/4
(
1 + c2L − 2ϵ/3

)
[140].

We can see that in this model, since we have

F ttt
NL
F tts
NL

= Ph(q)
2Pζ(q)

= r

2 , (5.94)

it is the TTS bispectrum that will provide the leading contribution to the GW

anisotropies (since r ≪ 1). Thus, the forecasts performed in section 5.2.3 can be

directly applied and I shall not repeat the same analysis for this model here. The

specific forecasts as well as further details about the constraints on the parameter

space of this model can also be found in [1].

5.4 Summary

In this chapter we have studied the anisotropies of inflationary gravitational wave

backgrounds, induced to the presence of a non-trivial tensor bispectrum in the squeezed

limit. These can be the leading source of the anisotropies, if the underlying tensor

bispectrum is sufficiently large, i.e. F tts
NL ≫ 1 and/or

√
r F ttt

NL ≫ 1. Naturally, for

these anisotropies to be useful as a probe of inflationary interactions, the isotropic

background also needs to be enhanced to a level that can be detected at PTA/inter-

ferometer scales.

In the first part of this chapter, we took a phenomenological approach to these

anisotropies and calculated their angular power spectra, providing analytical ex-

pressions wherever possible by means of some simplifying assumptions. We used

this to study the detectability of such signals and highlighted the parameter space

(ΩGW, FNL) that will be within the reach of upcoming GW probes. The angular

dependence of the mixed bispectra, which would hint to the presence of additional

spinning fields during inflation, turned out to be especially important for GW-CMB

cross-correlations. Our analysis showed that having a monopolar vs a quadrupolar

angular dependence in the ⟨hhζ⟩ bispectrum can make a significant difference when

it comes to the detectability of the cross-correlation. In general we estimate that

signals with ΩGW ∼ 10−10, FNL ∼ 103 will be within the reach of 3G detectors such
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as LISA, Taiji, ET and CE while futuristic detectors such as BBO may even reach

ΩGW ∼ 10−12, FNL ∼ 103.

We have also accounted for the presence of the AGWB and its anisotropies, albeit in

a fairly simplistic manner, by allowing the amplitude of its large scale (low-ℓ) angu-

lar power spectrum to vary between 10−30 and 10−25 (in the 10−2Hz ≲ f ≲ 100Hz

range). Our results show that cross-correlations with the CMB are likely to be

the most important tool in this case to detect the primordial gravitational wave

anisotropies. As more and more compact binary mergers and possibly even the

AGWB are detected in the future, models of the AGWB anisotropies will become

increasingly accurate and will lead to an even better understanding of the detectabil-

ity of these primordial anisotropies.

In the second part of this chapter, we have shown through two representative ex-

amples, that there exist inflationary models which can indeed produce such GW

signatures, namely large amplitudes of ΩGW, FNL. In one of the models, we even find

that the TTT bispectrum generates the leading contribution to the GW anisotropies,

despite the fact that the corresponding angular power spectra CGW,ttt
ℓ is suppressed

by a factor r w.r.t CGW,tts
ℓ . For the same model, we demonstrated that a futuristic

GW experiment with BBO-level sensitivity will be able to constrain F ttt
NL to the level

of a few percent (for F ttt
NL ∼ 104).
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Chapter 6

Constraining primordial tensor

features with the anisotropies of

the Cosmic Microwave

Background

This chapter is an exact reproduction of the following article:

• J. Hamann and A. Malhotra, “Constraining primordial tensor features with the

anisotropies of the cosmic microwave background,” JCAP 12 (2022), 015,

[arXiv:2209.00827].

After having studied inflationary GW signatures at interferometer scales, we now turn

to CMB scales and discuss the potential of future CMB experiments to constrain the

PGW frequency spectrum. A detection of features in the PGW spectrum beyond

a simple power law with a small red-tilt (as expected in SFSR) would provide us a

powerful window into inflationary dynamics.

Abstract

It is commonly assumed that the stochastic background of gravitational waves on cos-

mological scales follows an almost scale-independent power spectrum, as generically
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6.1. INTRODUCTION

predicted by the inflationary paradigm. However, it is not inconceivable that the

spectrum could have strongly scale-dependent features, generated, e.g., via transient

dynamics of spectator axion-gauge fields during inflation. Using the temperature and

polarisation maps from the Planck and BICEP/Keck datasets, we search for such

features, taking the example of a log-normal bump in the primordial tensor spectrum

at CMB scales. We do not find any evidence for the existence of bump-like tensor

features at present, but demonstrate that future CMB experiments such as LiteBIRD

and CMB-S4 will greatly improve our prospects of determining the amplitude, loca-

tion and width of such a bump. We also highlight the role of delensing in constraining

these features at angular scales ℓ ≳ 100.

6.1 Introduction

The inflationary paradigm [20, 27, 84–86] is not only a compelling solution to the

horizon and flatness problems of hot big bang cosmology, but also provides a means

to naturally generate the seeds of the observed Cosmic Microwave Background (CMB)

anisotropies and the Large Scale Structure (LSS) [21–24, 28] via quantum fluctuations.

Cosmological observations are consistent with a power spectrum of scalar (density)

fluctuations that is adiabatic, Gaussian and nearly (but not exactly) scale-invariant,

in excellent agreement with the predictions of the simplest single field slow roll (SFSR)

models [41]. Another universal prediction of inflation is the existence of a stochastic

gravitational wave background produced during this epoch [30–33].

Although such primordial gravitational waves (PGW) have not yet been detected,

their effects could show up in a wide variety of cosmological observables. Most no-

tably, PGW contribute to both the temperature and polarisation anisotropies of the

CMB [33, 105–108, 453–455], and this fact can be used to constrain their ampli-

tude [35, 114, 456–460]. Indeed, the most stringent bounds on the amplitude of these

PGW come from the CMB which constrains the tensor-scalar ratio to r < 0.032 [114]

at 95% CL for a nearly scale-invariant power spectrum of tensor fluctuations, as

expected in SFSR models.

Interferometric detection with next generation detectors like ET [66] and LISA [65]

may also be a possibility, but only for inflationary models departing strongly from

SFSR dynamics on direct detection scales [60, 461]. Additionally, PGW could also
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be detected via Pulsar Timing arrays, through their imprints on large scale structure

(‘tensor fossils’), spectral distortions of the CMB, as well as through the gravitational

lensing effects of PGW, see [58] for an overview.

The B-mode polarisation of the CMB remains the most promising avenue to detect

these primordial tensor perturbations, keeping in the mind the projected sensitivities

as well the foreground/noise sources affecting the various probes mentioned above.

A detection of these primordial tensor perturbations would be extremely significant

since their amplitude in SFSR models is directly related to the energy scale of inflation

Vinf ≃ 3π2AsM
4
pl r/2 [58] and would allow a precise reconstruction of the inflaton

potential in the observable window [462–464]. Interestingly, certain well-motivated

single field inflationary models are currently in excellent agreement with the CMB

data [41], e.g. the Starobinsky model [37, 38, 465], and predict values of r within

the reach of next generation of CMB experiments. For these reasons, it is easy to

understand why the search for PGWs is an important science goal for future probes

like the BICEP array [42], Simons Observatory [43], CMB-S4 [44] and LiteBIRD [45].

While a detection of PGW in itself would be extremely valuable, additional infor-

mation on the production mechanism could be gleaned from measuring the shape

of the GW spectrum. For PGW generated from vacuum fluctuations, the shape of

the spectrum is a power law with spectral index related to the tensor-scalar ratio as

nt ≃ −r/8. This ‘tensor consistency relation’ is valid for PGW arising from SFSR

dynamics [466] and in the event of a B-mode detection, provides a way to confirm

whether the observed PGW are arising from vacuum fluctuations or not. Unfortu-

nately however, testing this relation appears out of reach with CMB data alone, even

with the sensitivity of CMB-S4 [44] or LiteBIRD [130, 457]. On the other hand,

large deviations from the consistency relation could still be observed with these ex-

periments. Such deviations would signal a departure from SFSR dynamics at CMB

scales which is possible in inflationary models with additional fields capable of sourc-

ing PGW, e.g. [119, 123–126, 130, 132, 467–471].

In this paper we study one such example of a deviation from a power-law spectrum

of tensor perturbations, namely a bump-like PGW feature at CMB scales. Such a

feature is typical of GW sourced from spectator axion-gauge fields during inflation,

leading to a strong scale-dependence. Parameterising the spectrum of these sourced

PGW as a log-normal function, we present constraints on the amplitude, width and
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location of the peak of the log-normal using temperature and polarisation data from

the Planck and BICEP/Keck datasets and forecast the discovery potential of CMB-S4

and LiteBIRD for this scenario.

The paper is organised as follows: in Section 6.2 we describe the tensor power spec-

trum parameterisation and discuss possible inflationary models where such a spec-

trum may arise. We also describe the effects of such a tensor power spectrum shape

on the CMB temperature and polarisation anisotropies. In Section 6.3 we present

constraints on the model parameters from current data and forecast sensitivities of

future CMB experiments. Finally, we conclude in Section 6.4.

6.2 Tensor modes from Inflation

In this section we first present the tensor power spectrum parameterisation used to

describe the bump-like feature. We then discuss the effect of such a tensor spec-

trum shape on the CMB temperature and polarisation anisotropies and conclude this

section with a discussion of inflationary models where one can expect such power

spectrum shapes.

6.2.1 Log-normal spectrum

We parameterise the tensor power spectrum on CMB scales as a log-normal with

Pt(k) = rpkAs exp
[
−
(ln (k/kpk))2

2σ2

]
. (6.1)

Here σ denotes the width of the log-normal, kpk the location of the peak and rpk the

rescaled amplitude of the tensor power spectrum at the peak scale in terms of the

scalar amplitude As = 2.09× 10−9 at the pivot scale kp = 0.05Mpc−1. When σ ≫ 1,

the power spectrum becomes degenerate with a flat spectrum on scales

−σ ≲ log k/kpk ≲ σ. (6.2)

For comparison, the power spectrum of tensor perturbations from vacuum fluctuations

during inflation has the following form,

Pvac
t (k) = rAs

(
k

kp

)nt

(6.3)
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Figure 6.1: Left : Power spectra with tensor spectrum parameters rpk = 0.1, σ = 1
and kpk = 10−3. Right: The temperature and B-mode anisotropies for the same
value of the tensor power spectrum parameters.

where r denotes the vacuum tensor to scalar ratio and nt the tensor spectral tilt. The

two power spectra are plotted in the left panel of Figure 6.1 taking r = 0.03 and nt
given by the consistency relation for the SFSR spectrum and rpk = 0.1, σ = 1 and

kpk = 10−3 for the log-normal.

6.2.2 CMB anisotropies

Much like the scalar perturbations, tensors also contribute to the CMB anisotropies

and this contribution can be expressed as

CXYℓ,t = 4π
∫
d ln kPt(k)∆X

ℓ,t(k)∆Y
ℓ,t(k). (6.4)

Here X,Y = T,E,B and ∆X
ℓ,t denotes the corresponding transfer function for the

tensor source. The analytical expressions for these transfer functions can be found

in [105–108], and they can be numerically computed using Boltzmann codes such as

CLASS [110] or CAMB [111].

Physically, tensor modes generate a quadrupolar anisotropy in the radiation den-

sity field at last scattering and reionisation, and thus tensor perturbations lead to

anisotropies in both temperature and polarisation of the CMB. Note that for non-

chiral primordial tensor spectra, the correlations ⟨TB⟩ and ⟨EB⟩ vanish due to the

fact that B-modes are parity-odd whereas T and E are not [438].

In general, the tensor contribution is relevant mainly on the largest angular scales

since tensor modes decay rapidly on sub-horizon scales (ℓ ≳ 100 at recombination).
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Figure 6.2: Effect of varying σ and kpk on CBBℓ taking rpk = 0.1. The black dotted
lines show the B-modes from lensing.

For the temperature anisotropies, the tensor contribution is smaller than the scalar

one by a factor of the tensor-scalar ratio r on these large scales. As for the B-mode

polarisation, for r ≳ 0.001 this is dominated by the primordial tensor perturbations

on these scales since scalars cannot source B-modes at linear order.

However, scalars do generate B-mode polarisation at second order via the lensing of

the E-modes [113] and these lensing-induced B-modes dominate the primordial B-

mode spectrum at smaller scales (ℓ ≳ 100). In the B-mode polarisation angular power

spectrum one can also see the reionization bump (ℓ ≤ 10) [107] and the recombination

bump (ℓ ∼ 80) [472], corresponding to scales that re-enter the horizon at those times.

We plot the tensor contribution to the temperature and B-mode angular power spec-

tra in the right panel of Figure 6.1. The difference between the SFSR prediction and

the log-normal spectrum can also be understood from the same figure. The addi-

tional power on scales close to the peak scale k = 10−3 leads to an enhancement of

the temperature as well as the polarisation anisotropies on large angular scales. Away

from the peak scales, the anistropy power spectrum in the log-normal case falls off

rapidly relative to the SFSR one.

The effect of varying the log-normal parameters on the B-mode spectrum is illustrated

in Figure 6.2. The location of the peak scale kpk can be directly related to the angular

scale at which the anisotropies are enhanced, whereas the peak width σ controls the

range of scales around the peak where this happens. Roughly speaking, peaks at

kpk = 10−4, 10−3, 10−2 can be mapped to an enhancement of power centered around

angular scales of ℓ ∼ 2, 10 and 100 respectively.
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6.2.2.1 Inflationary Models

A peaked primordial tensor power spectrum is characteristic of transient phenom-

ena occurring during inflation that source gravitational waves on scales of order the

horizon size at that time. The prototypical examples of this type are inflationary

models with a spectator sector involving an axion coupled to a gauge field [123–

126, 130, 132, 469–471]. The spectator sector Lagrangian in this case can be written

as

Lspec = −1
2(∂χ)

2 − U(χ)− 1
4FµνF

µν + λχ

f
FµνF̃

µν (6.5)

where χ represents the axion-like field, U(χ) is the axion potential, f the decay

constant, Fµν the field strength tensor of the gauge field and λ a coupling constant.

The specific shape of the GW spectrum in such models arises from the fact that one

of the gauge field helicities experiences a transient instability at horizon crossing and

gets enhanced relative to the other. Thus, in general the GW spectrum sourced in

these models is chiral, i.e. PR ̸= PL. Although one can test for chirality through the

observation of non-zero ⟨TE⟩ or ⟨EB⟩ cross-spectra [126, 438, 473], in our analysis

we only concern ourselves with the overall shape and amplitude of the tensor power

spectrum and neglect these parity violating correlations in obtaining the constraints

in Section 6.3. In general the signal is much weaker in the cross-spectra than in the

corresponding ⟨BB⟩ spectrum, making them harder to detect [126].

6.3 Constraints on model parameters

Constraints on the axion gauge-field model parameters of equation (6.5), specifically

upper bounds on the effective coupling between the axion and the gauge field were

also obtained in [471] for two different models of the axion potential U(χ). The

analysis of [471] was carried out for fixed values of the peak width and location using

the profile likelihood approach. However, our analysis cannot be directly compared

with theirs since varying the effective coupling also affects the sourced scalar spectra

whereas here we work at the level of the log-normal parameters which affects only

the primordial tensor power spectrum through equation (6.1).
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Parameter range
rpk [0, 1/5]
σ [1/10, 10]

log10 kpk [−5,−1]

Table 6.1: Prior ranges for the log-normal tensor power spectrum parameters.

6.3.1 Constraints from Planck + BK18

For the analysis of our model comprising the base ΛCDM parameters plus our ad-

ditional tensor power spectrum parameters {rpk, kpk, σ}, we use the following data:

Firstly, the Planck low-ℓ temperature+polarisation and high-ℓ TTTEEE likelihood [474]

and the Planck lensing likelihood [475]. We shall refer to this combination as Planck

hereafter. Secondly, we also use the most recent BICEP/Keck data release (BK18

hereafter) which contains polarisation data in the multipole range 20 < ℓ < 330

obtained from the BICEP2, Keck Array and BICEP3 experiments [35].

We impose flat priors on the base ΛCDM parameters as well as flat priors on rpk, σ

and log10 kpk in the ranges shown in Table 6.1. The CMB power spectra are computed

with CAMB [111] and the parameter space is explored using a Markov Chain Monte

Carlo sampler [476, 477], through its interface with Cobaya [478]. The resulting chains

are analysed with GetDist [479].

Note that we assume in our analysis that the scale-independent vacuum contribution

to the tensor power spectrum has a much lower amplitude than the log-normal sourced

one, so we do not include the variation of r and instead set it to zero. Current data

do not indicate the presence of such vacuum tensor perturbations and for values of

r much smaller than rpk the constraints on rpk will not be significantly affected. We

will revisit this assumption when doing the Fisher forecasts in Section 6.3.2.

The joint posterior distributions for the scalar and tensor power spectrum parameters

are shown in Figure 6.3 (for posterior contours of all 9 parameters we refer the reader

to Figure E.1 in the Appendix). The tensor spectrum parameters are found to be

mostly uncorrelated with the scalar spectrum ones. We also see that the strongest

constraints on r come from the region 10−3 < kpk < 10−2 which is not surprising since

features at these scales mainly affect anisotropies in the multipole range 20 ≲ ℓ ≲ 300,

i.e., exactly the range covered by the BK18 B-mode data.
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Figure 6.3: Marginalised 68% and 95% contours for the scalar and tensor power
spectrum parameters. For comparison we also show the same contours obtained
using only the Planck data, this mainly relaxes the constraints on rpk.

Parameter 68% limit
σ < 4.83
rpk < 0.0460

Table 6.2: Parameter limits for the tensor log-normal parameters from Planck+BK18
data. Note that these upper limits are prior dependent and may change considerably
for different choices of the prior ranges for the three tensor power spectrum parame-
ters.

For large σ the constraints on r reduce to the flat/power-law constraints, as expected.

Figure 6.4 also shows that large values of r ≳ 0.1 are only allowed in the region

kpk ≲ 10−4 or kpk ≳ 10−2 and for σ ≲ 2. The parameter limits are presented in

Table 6.2. The best fit point is found to be {rpk = 0.04, σ = 0.43, kpk = 2 × 10−2}

with a ∆χ2 relative to base ΛCDM of ∆χ2 = −0.22. This result is fully compatible

with the absence of tensor modes in the Planck+BK18 data.
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6.3.2 Forecasts with LiteBIRD + CMB-S4

In this section we present forecasts of the ability of next generation CMB experi-

ments to constrain the log-normal tensor parameters. We first take the example of

LiteBIRD which is a proposed space-based CMB experiment led by JAXA with the

goal of mapping the temperature and polarisation anisotropies of the CMB in the

multipole range 2 ≤ ℓ ≤ 200 [45]. Thus, the reionization bump (ℓ ≲ 10) as well as

the recombination bump (ℓ ∼ 80) will both be accessible to LiteBIRD. Note that

a similar analysis of the detectability of such signals with LiteBIRD was also per-

formed in Ref. [126], but only for values of σ in the range 2 ≤ σ ≤ 10 and taking

kpk = 7× 10−5, 5× 10−3Mpc−1.

To estimate the constraining power of LiteBIRD, we perform a simple Fisher matrix

forecast1 to evaluate the detection prospects of the log-normal tensor spectrum. The

Fisher matrix for the parameters θ⃗ = (rpeak, σ, kpk) can be written as [480],

Fij = fsky

ℓmax∑
ℓ=2

2ℓ+ 1
2 Tr

[
C−1
ℓ

∂Cℓ

∂θi
C−1
ℓ

∂Cℓ

∂θj

]
, (6.6)

with the marginalised 1σ error on the parameter θi given by

σi =
√
(F−1)ii. (6.7)

1The results presented in this paper are based on only varying the tensor parameters in the Fisher
forecast. We checked that including the ΛCDM parameters does not significantly affect the estimates
for the tensor parameters’ expected uncertainties.
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The matrix Cℓ is defined as,
CTTℓ +NTT

ℓ CTEℓ 0

CTEℓ CEEℓ +NEE
ℓ 0

0 0 CBBℓ +NBB
ℓ

 (6.8)

We also have

1
NX,inst
ℓ

=
∑
νi

1
NX
ℓ,νi

(6.9)

where the instrument noise spectra at an observing frequency ν can be written as,

NX
ℓ,ν = ∆X

ν exp
[
ℓ(ℓ+ 1)

θ2FWHM
8 log 2

]
(6.10)

with X = TT,EE,BB. We take fsky = 0.65, ℓmax = 200 and adopt the LiteBIRD

instrument noise specifications given in Eq. (3.1) of Ref. [481] for temperature. For

the B-mode polarisation we also include foregrounds in addition to the instrument

noise and then use the residual foregrounds plus post component separation noise as

described in [130].2 The lensing B-modes also act as a noise component in the search

for the primordial signal and are included in the calculation of the Fisher matrices.

Much like the instrument noise, the presence of foregrounds and the lensing B-modes

also hinders our ability to cleanly detect the primordial B-mode signal. Separating

the contributions of these foregrounds and lensing B-modes is crucial for the detection

of the inflationary gravitational wave background . Synchrotron and thermal dust

emission from diffuse sources in the galaxy constitute the two main types of polarised

foregrounds on large angular scales. Typically, one utilises the fact that the frequency

dependence of these foregrounds is different from the CMB signal to separate their

contributions to the observed polarisation and temperature maps [482]. Thus, having

a large frequency coverage is vital to accurately constrain the primordial B-modes.

Removing the lensing contaminant instead requires high-resolution maps of the E-

mode polarisation as well as the CMB lensing potential [483, 484] (or even the cosmic

infrared background [485]). These are used to first estimate the lensing B-modes and

then this estimate is used to delens the B-mode signal. The feasibility of this proce-

dure in reducing the lensing B-mode power (and also in acoustic peak sharpening)

has already been demonstrated with Planck [475] and will be greatly improved with

next generation experiments like CMB-S4 [44, 115].

2The corresponding noise data were made available by the authors of Ref. [130] at https://
github.com/pcampeti/SGWBProbe.
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Figure 6.5: Fisher forecast for the tensor parameters assuming fiducial models with
tensor features that have a chance of being detected by LiteBIRD and CMB-S4,
taking rpk = 0.05, σ = 2, kpk = 10−3 (left) and rpk = 0.04, σ = 0.5, kpk = 2 × 10−2

(right). The blue ellipses show the estimates in the case where the CMB-S4 data are
delensed with Adelens = 0.8.

In the left panel of Figure 6.5 we present the forecast for the parameter set {rpk = 0.04,

σ = 2, kpk = 10−3}. Although this parameter set is quite close to the upper limits

from the Planck+BK18 data, it is useful to understand the constraining ability of

LiteBIRD.

One can see that the tightest constraints can be achieved for rpk whereas precise

measurements of σ require a significant amount of delensing. This should be clear

from the fact that to measure the width of the primordial spectrum accurately, we

need to detect the primordial B-mode signal over a larger range of scales. However,

significant delensing using CMB data is not possible with LiteBIRD alone since it

requires information at small scales which are inaccessible to the experiment. This

issue could however be overcome by using future external datasets such as those from

CMB-S4.

In the right panel of Figure 6.5, we also present forecasts for the case of {rpk =

0.04, σ = 0.5, kpk = 2 × 10−2}, corresponding to a parameter set which produces

features on scales ℓ ∼ 100. In this case, using LiteBIRD data alone, the constraints

on rpk are weaker since this corresponds to scales where the B-mode signal is lensing

dominated. Significant delensing needs to be achieved to precisely constrain this

scenario. For this purpose, we consider the possibility of delensing using the high-

resolution capabilities of CMB-S4 [44, 115].
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CMB-S4 forecasts for r typically assume fsky = 0.03 and we take the same value here

for the Fisher forecasts of the lognormal parameters. This specific choice of fsky arises

from an optimisation procedure which takes into account delensing requirements,

foreground mitigation and reproducibility of results across the sky [115]. We also

take a delensing fraction Adelens = 0.8 which represents an 80% reduction in the

lensing B-mode power spectra. The analysis of [115] suggests that achieving this

value is not entirely unrealistic. The CMB-S4 multipole range for the delensed B-

mode data is taken to be 30 < ℓ < 300 and the instrument noise specifications are

those corresponding to the ‘SAT’ configuration and are available at this link3. We do

not take into account foreground residuals for CMB-S4 and assume that these have

been perfectly subtracted from the data. In reality, imperfect subtraction will lead

to the presence of foreground residuals which will again act as an additional noise

towards the detection of the primordial signal but this will not degrade sensitivity to

the tensor-scalar ratio by more than 10−3 [115], which is smaller than the B-mode

amplitudes in our fiducial models. The resulting estimates for this setup are shown

in the same figure. We can see that a significant increase in constraining power is

obtained with the addition of CMB-S4 and a delensing level Adelens = 0.8.

We conclude this section with two more examples. The left panel of Figure 6.6

presents forecasts assuming the presence of the vacuum contribution to the tensor

power spectrum with r = 0.03, 0.01 which effectively acts as a ‘noise’ for the log-

normal tensor spectrum detection. For the r = 0.01 scenario, the forecasts are not

very different from the case of r = 0 which is expected since in this case the sourced

tensor spectrum is much larger than the vacuum contribution on the relevant scales.

As expected, for larger r, the sensitivity to the log-normal tensor spectrum parameters

is slightly reduced. The right panel of the same figure shows how the degeneracy

between the parameters r and rpk increases as the peak width σ increases, which

leads to significantly worse estimates of rpk. This is not unexpected, since for larger

σ the lognormal spectrum starts to resemble a flat spectrum on the relevant scales.

Finally, the bottom panel presents a scenario with a smaller amplitude of the sourced

tensors rpk = 0.02, σ = 0.5 and kpk = 2× 10−2. In this case the signal is detectable

only if a significant amount of delensing can be achieved. For this value of rpk, the

B-mode signal is entirely lensing dominated on angular scales ℓ > 100.

3https://cmb-s4.uchicago.edu/wiki/index.php/Delensing_sensitivity_-_updated_
sensitivities,_beams,_TT_noise
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Figure 6.6: Left: Fisher forecast for the tensor parameters taking rpk = 0.04, σ = 2,
kpk = 10−3 for three different values of the vacuum tensor scalar ratio r. No delensing
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6.4 Conclusions

In the event of a future B-mode detection associated to primordial tensor pertur-

bations, the natural next step would be to understand the production mechanism

behind these perturbations. This information is contained in the amplitude, shape,

chirality and non-Gaussianity of the primordial tensor spectrum.

Our focus here has been on the shape of the tensor spectrum, taking the example

of a bump-like feature typical of GW sourced by axion-gauge fields during inflation.

This shape deviates sharply from the SFSR prediction which is bound by the tensor

consistency relation to be a power law with a slightly red tilted spectrum.

Naturally, a detection of such a feature in the primordial tensor spectrum would hint

to inflationary dynamics richer than those of SFSR and could be used to constrain the

parameter space of such axion-gauge field models. On the other hand, even the non-

detection of such a spectrum would be quite informative since that would strengthen

our confidence in the SFSR model, especially given the difficulty in directly verifying

the SFSR tensor consistency relation with future CMB probes.

In this paper, we first searched for the presence of such features using the temperature

and polarisation anisotropy data from the Planck + BICEP/Keck experiments. While

the current data do not provide any evidence for the presence of such features, they

do place constraints on the tensor power spectrum parameters. In particular, strong

constraints on the peak amplitude are obtained in the region 10−3 ≲ k ≲ 10−2 which

is main sensitivity range of the BICEP/Keck B-mode data.

We also presented forecasts of the ability of two future CMB experiments, namely

LiteBIRD and CMB-S4, to detect such features. LiteBIRD’s unprecedented accuracy

in measuring polarisation at large angular scales gives it an excellent sensitivity to

the amplitude of such features and will improve upon current sensitivity by at least a

factor of two. However, accurate measurements of the width will require a significant

amount of delensing, which could be provided by high-resolution CMB experiments

such as CMB-S4.

If primordial tensor power spectrum features were realised in Nature, their detection

would represent a fascinating window into the earliest moments of the Universe, and

help us get closer to a more complete understanding of the physics of inflation. With
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the CMB experiments coming online in the next decade, we might just be able to

take a peek.
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Chapter 7

Conclusions

Four decades since its inception, inflation remains the leading paradigm to describe

the physics of the early universe and has established itself as a cornerstone of ΛCDM

cosmology. It provides a compelling solution to the shortcomings of the hot big bang

model and naturally sets the initial conditions for the density perturbations of matter

and radiation.

Despite these successes, the physics of inflation still remains a mystery to us. Ob-

servations of the CMB and LSS suggest a vanilla single field realisation, at least on

the largest scales. Indeed, several observationally compatible single-field models ex-

ist, but none have yet emerged as the unequivocal choice to describe the physics of

the inflationary era. There exist several embeddings of the inflationary mechanism in

canditate theories of quantum gravity, e.g. string theory [46]. In this context however,

multi-field realisations appear to be more likely to emerge compared to single-field

ones.

Models beyond SFSR exhibit a much richer phenomenology compared to their single-

field counterparts, they can break the inflationary consistency relations, generate large

non-Gaussianity and produce observable GW signals on small scales. A detection of

such signatures could definitively rule out all single-field models of inflation and may

even point towards the specific multi-field realisation. Therefore, understanding the

phenomenology of these models is essential for extracting crucial information about

inflationary physics from observations.

This thesis has focused on gravitational wave signatures of multi-field models, with
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particular attention paid to GW anisotropies and non-Gaussianity on interferometer

scales, and the spectral shape on CMB scales. We started in chapters 2 and 3 with

a brief introduction to the ΛCDM model and inflation, prioritising the main results

and concepts necessary to understand the original work of this thesis.

In chapter 4, we studied the anisotropies of primordial gravitational wave backgrounds

using the line-of-sight formalism, a standard tool originally developed to describe

CMB anisotropies. As an application of this formalism, we computed the anisotropy

spectrum associated to a GW background with a highly peaked spectral shape. Typ-

ically, such shapes arise in GW induced from sharply enhanced scalar perturbations

on small scales, possible in several multi-field inflationary models and often invoked

in scenarios involving the formation of primordial black holes. We found the spectral

shape strongly affects the detectability of the anisotropies, leading to a strong en-

hancement and a non-trivial frequency dependence of the anisotropies in the case of

a peaked spectral shape as opposed to a power-law background with nΩ ∼ O(1). The

frequency dependence of the anisotropies may prove to be an essential tool for the

task of separating the anisotropies of different cosmological and astrophysical back-

grounds in the SGWB map, similar to component separation methods used for the

CMB.

The second part of chapter 4 explores the role of the initial condition term in the GW

line-of-sight formalism with some representative applications. We first demonstrated

that in the case of adiabatic initial conditions the anisotropies are insensitive to the

presence of a non-standard equation of state before the standard radiation dominated

era. We saw that physically, the result can be understood as a consequence of the

conservation of the curvature perturbation ζ on super-horizon scales.

We then turned to the case of isocurvature initial conditions, generated through the

curvaton mechanism in which the curvature perturbation is generated not by the

inflaton, but by an additional light scalar field that dominates the energy budget of

the universe after inflation. We found a four-fold enhancement of the GW anisotropies

(w.r.t. the adiabatic case) in the simplest curvaton scenario. Understanding how

large the GW isocurvature can be in a concrete realisation of the curvaton scenario,

while keeping in mind the current constraints on isocurvature perturbations is a

possibility worth looking into further. Another interesting direction of research would

be to explore the cross-correlation of the GW anisotropies with those of the CMB for

133



CHAPTER 7. CONCLUSIONS

different kinds of curvaton scenarios.

Chapter 5 is devoted to the generation of inflationary tensor non-Gaussianity and

its detectability on interferometer scales. We showed that even though propagation

effects forbid a direct detection of the tensor bispectrum (⟨h3⟩) for most momentum

configurations, the anisotropies of the energy density still retain information about

squeezed limit tensor non-Gaussianity. These anisotropies and their cross-correlation

with the CMB are sensitive to the mass, spin and couplings of the additional fields

active during inflation. Importantly, we saw that models predicting enhanced GW

signals at small scales can also accommodate large squeezed non-Gaussianity, with the

resulting anisotropy a promising probe of the “cosmological collider”. Exploring how

such cosmological collider signals could also be extracted from the CMB temperature

and polarisation anisotropies is a research direction that warrants further investigation

and complements the work presented in this chapter.

The possibility of detecting large scale GW produced in axion-gauge field models of

inflation, through their effects on the CMB anisotropies, was the subject of chapter 6.

These models can violate the tensor consistency relation (nt = −r/8) of single-field

inflation and typically predict a bump like GW spectral shape. We first derived con-

straints on the parameters describing the shape of this bump, using a combination

of the Planck and the most recent BICEP/Keck datasets. We then presented fore-

casts of the precision with which LiteBIRD and CMB-S4 will be able to measure the

spectral shape of the inflationary GW. In the future, it would also be important to

explore the other types of GW features that inflationary models can generate and how

well these experiments might be able to constrain them. Data analysis techniques

that may be better suited for more complicated features (e.g. oscillatory) will also

be worth exploring [486].

In summary, gravitational waves represent a missing piece of the inflationary puzzle

and their detection has the potential to completely transform our picture of the pri-

mordial universe. The study of these gravitational waves carried out in this thesis

serves as a contribution to a much broader effort, involving both theory and exper-

iment, with the aim of developing a comprehensive understanding of inflation and

the physical laws that govern the universe in its earliest stages. Hopefully, future

cosmological observations will bring us closer to this ultimate goal.
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In-In Formalism

In the Heisenberg picture, the time evolution of an operator O is derived from the

full Hamiltonian H with

d

dt
Q(t) = i[H,Q]. (A.1)

The Hamiltonian is a functional of the fields and their conjugate momenta, defined

as

H[ψ(t), π(t)] =
∫
d3xH[ψ(x, t), π(x, t)]. (A.2)

We now split our fields ψ, π into a homogeneous background ψ̄(t), π̄(t) and a space-

time dependent perturbation δψ(x, t), δπ(x, t). In our perturbative approach, the

background fields are c-numbers and obey the classical equation of motion while the

perturbations obey the usual commutation relations

[δψ(x, t), δπ(y, t)] = iδ(x− y), [δψ(x, t), δψ(y, t)] = [δπ(x, t), δπ(y, t)] = 0. (A.3)

We expand the Hamiltonian around the classical solution

H[ψ(t), π(t)] = H[ψ̄(t), π̄(t)] +
∫
d3x

δH
δψ

∣∣∣∣
ψ̄,π̄

δψ(x, t) +
∫
d3x

δH
δπ

∣∣∣∣
ψ̄,π̄

δπ(x, t)

+ H̃[δψ(x, t), δπ(x, t)], (A.4)

where the linear order terms vanish on the classical background solution and we collect

in H̃ terms of quadratic or higher order in δψ(x, t), δπ(x, t). The perturbations evolve

according to

d

dt
δψ = i[H̃[δψ(t), δπ(t)], δψ], d

dt
δπ = i[H̃[δψ(t), δπ(t)], δπ], (A.5)
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which has the solution

δψ(t) = U−1(t, t0)δψ(t0)U(t, t0), δπ(t) = U−1(t, t0)δπ(t0)U(t, t0). (A.6)

The unitary evolution operator U obeys,

d

dt
U(t, t0) = −iH̃(t0)U(t, t0), U(t0, t0) = 1. (A.7)

Unfortunately in this form the equations of motion become non-linear making it hard

to obtain a solution. This necessitates a perturbative approach for which we further

split H̃ into a quadratic kinematical part and interactions

H̃ = H0 +Hint. (A.8)

The leading time evolution of the perturbations now is governed by the their (free)

quadratic Hamiltonian H0 resulting in linear equations of motion. We label these

interaction picture fields as δψI , δπI with

d

dt
δψI = i[H0[δψI(t), δπI(t)], δψI ],

d

dt
δπI = i[H0[δψI(t), δπI(t)], δπI ], (A.9)

and initial conditions

δψI(x, t0) = δψ(x, t0), δπI(x, t0) = δπ(x, t0). (A.10)

Notice that since H0 generates their time evolution, the interaction picture fields

are the same free fields we encountered when calculating the power spectrum in the

previous sections. The interaction Hamiltonian Hint can then be used to compute the

corrections to the correlation functions, perturbatively in Hint. Notice that in (A.9),

we can evaluate H0 at any arbitrary time t. Taking this to be t = t0, the solution to

(A.9) is

δψI(t) = U−1
0 (t, t0)δψI(t0)U0(t, t0) (A.11)

and similarly for δπ(t). Here

d

dt
U0(t, t0) = −iH0[δψ(t0), δπ(t0)]U0(t, t0), U0(t0, t0) = 1. (A.12)

Now, we introduce F (t, t0) ≡ U−1
0 (t, t0)U(t, t0) as the evolution operator associated

to Hint, i.e.

d

dt
F0(t, t0) = −iHint[δψI(t), δπI(t)]U0(t, t0), F (t0, t0) = 1, (A.13)
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with the solution

F (t, t0) = Te
−
∫ t

t0
Hint(t′)dt′

. (A.14)

This allows us to write the expectation value of the operator Q(t) as

⟨Q(t)⟩ = ⟨Ω|Q[δψ(t), δπ(t)]|Ω⟩

= ⟨Ω|U−1(t, t0)Q[δψ(t0), δπ(t0)]U(t, t0)|Ω⟩

= ⟨Ω|F−1(t, t0)Q[δψI(t0), δπ(t)]U(t, t)F (t, t0)|Ω⟩

= ⟨Ω|
(
T̄ e

−i
∫ t

t0
Hint(t′)dt′

)†
Q[δψI(t), δπI(t)]Te−i

∫ t

t0
Hint(t′)dt′ |Ω⟩ (A.15)

The final step is to relate the interaction vacuum |Ω⟩ to the vacuum of the free

theory |0⟩. Let t0 → −∞+ ≡ −∞(1 + iϵ) in (A.15). This effectively turns off the

interaction in the far past so that we can identify |Ω⟩ → |0⟩. Thus, we finally arrive

at the in-in master formula,

⟨Q⟩ = ⟨0|T̄ ei
∫ t

−∞− Hint(t′)dt′Q(t)Tei
∫ t

−∞+ Hint(t′)dt′ |0⟩ , (A.16)

where T̄ represents anti time-ordering and the −∞− = −∞(1− iϵ) limit arises from

the complex conjugation.
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Appendix B

GW anisotropies

B.1 Uniform density gauge calculation

To relate the Newtonian gauge results of section 4.2 with the calculation of [253],

we provide here a simplified calculation of the anisotropies using the uniform density

gauge. The starting point of the calculation of [253] is the metric in the uniform

density gauge during matter domination. This is given by [487],

ds2 = a2(η)
[
−dη2 + (1 + 2ζ)δijdxidxj −

4
5aH ∂iζdηdx

i
]
. (B.1)

We are now looking to solve the Boltzmann equation,

df

dη
= ∂f

∂η
+ ∂f

∂xi
dxi

dη
+ ∂f

∂q

dq

dη
= 0, (B.2)

in this gauge.

Let λ be the affine parameter along the graviton geodesic. The graviton 4-momentum

is then Pµ = dx/dλ. We can express this in terms of the physical momentum p defined

as p2 ≡ gijP
iP j , and n̂, the unit vector along the GW direction. To this end, we first

write P i = Cn̂, where C can be determined in terms of p as,

p2 = gijP
iP j = a2(1 + 2ζ)C2δijn

inj

=⇒ C = p

a
(1− ζ) . (B.3)

Next, using gµνPµP ν = 0 we find,

P 0 = p

a

(
1− 2

5aH ∂iζn
i
)
. (B.4)
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We can now write the graviton 4-momentum Pµ in terms of the magnitude of the

physical momentum p and the direction of propagation n̂ as

Pµ = p

a

(
1− 2

5aH ∂iζn
i, (1− ζ)n̂

)
. (B.5)

To solve the Boltzmann equation (B.2) we need to calculate dq/dη with q = |p⃗|a.

Using Eqs. (B.3) and (B.4) one finds P0 = −q. Thus, it only remains to solve the

geodesic equation for P0. This equation is given by [74],

dP0
dλ

= 1
2∂0gαβP

αP β . (B.6)

Using the fact that d/dλ = P 0d/dη one can re-write the above equation as

P 0dP0
dη

= 1
2∂0gαβP

αP β. (B.7)

To simplify things further, we can work with the re-scaled metric without the scale

factor which we denote by g̃µν , i.e. gµν = a2g̃µν . The null geodesics remain the same;

the affine parameters and the tangent vectors in the rescaled metric, on the other

hand, are respectively given by dλ̃ = a−2dλ and P̃µ = a2Pµ [488]. One also finds

Pµ = P̃µ. Using these relations the geodesic equation reads,

dP̃0
dη

= −2
5 P̃

0
(
a

a′

)′
∂iζn

i , (B.8)

where the prime denotes a partial derivative with respect to conformal time. Using

P0 = P̃0 and re-writing the above expression using the quantities defined in the

original metric gµν , one obtains at linear order in ζ,

dP0
dη

= −1
5a

2P 0 ∂iζn
i

= −1
5q ∂iζn

i . (B.9)

From this one can simply read off the derivative

dxi

dη
= P i

P 0 = ni . (B.10)

Note that we only need this term at zeroth order, since it multiplies ∂f/∂xi which is

a first order quantity. For dq/dη we also have

dq

dη
= 1

5q ∂iζn
i . (B.11)
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Using the above results, one can finally write the Boltzman equation as

∂f

∂η
+ ∂f

∂xi
ni + 1

5q∂iζn
i∂f

∂q
= 0 . (B.12)

In terms of the perturbation to the distribution function

δf = −qΓ(η, x⃗, q, n̂)∂f̄
∂q
, (B.13)

one obtains,

∂Γ
∂η

+ ni
∂Γ
∂xi

= 1
5
∂ζ

∂xi
ni . (B.14)

In Fourier space,

∂Γk
∂η

+ ikµΓk =
ikµ

5 ζk , (B.15)

with µ ≡ k̂ · n̂. This can be solved to give

Γk(η) = eikµ(ηin−η)
[
Γk(ηin, q, n̂)−

1
5ζk(ηin)

]
, (B.16)

Since the gauge of Eq. (B.1) is the uniform matter density gauge, it must also be the

uniform GW density gauge, i.e. for adiabatic initial conditions we must have

δρGW
ρ̄GW

= 0 =⇒ ΓI = 0. (B.17)

The present day observed anisotropy then becomes,

Γ(x⃗0, η0, n̂) = −1
5ζ(x⃗in, ηin) (B.18)

with x⃗in = x⃗0 + n̂(ηin − η0). In terms of δGW, we have

δGW(q, n̂) = 1
5ζ(ηi, x⃗i)

∂ ln f̄(q)
∂ ln q (B.19)

SFSR inflation produces a power law distribution function with

f̄(q) ∝ (q0/q)2(ν+1+ϵ) (B.20)

where q0 is a reference momentum, ϵ the standard slow-roll parameter during inflation

and ν = 2/(1+3w) with w being the equation of state when the GW mode q re-enters

the horizon [253]. This gives

δGW(q, n̂) = −2
5(ν + 1 + ϵ)ζ(ηi, x⃗i) . (B.21)

which is the result of ref. [253].
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This matches the Newtonian gauge results of section 4.2 if the initial conditions are

set during matter domination. To see this, we make use of eqs. (4.40) and (4.42), and

the fact that the Newtonian gauge potentials Φ and Ψ are constant during matter

domination. From the results of section 4.4, we know that this choice of initial

conditions works fine for modes re-entering the horizon during matter domination,

i.e., modes with k < keq, but not for modes with k > keq.

Additionally, as already pointed out by the authors of [253], it does not take into

account the effect of the late-time ISW arising from the transition to Λ-dominated

universe which provides a relatively smaller but non-negligible contribution to the

anisotropies (fig. 4.1).

B.2 Alternate derivation of the initial condition term

We present here an alternative method to derive the initial condition term (eq. (4.23))

in terms of the primordial perturbation ζ, based on the separate universe approach.

We follow the derivation of ref. [489] which used this to derive the initial conditions

for the CMB anisotropies.

The perturbed Newtonian gauge metric of eq. (4.1) can be can be brought to an

unperturbed form

ds2 = a2(η̃)
[
−dη̃2 + δijdx̃

idx̃j
]
, (B.22)

using the coordinate transformation xµ → x̃µ ≡ xµ + ξµ with

ξ0 =


−1
5ζη, M.D.

−1
3ζη, R.D.

(B.23)

and

ξi = −ζxi . (B.24)

In fact, for a general equation of state w, the required time transformation is [489],

ξ0 = − ζ

a2

∫
a2 dη. (B.25)

Since the scale factor evolves as a ∝ η2/(1+3w) for w > −1/3, we obtain the solution

ξ0 = −ζη1 + 3w
5 + 3w , (B.26)
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which reduces to eq. (B.23) for w = 0, 1/3. The GW density perturbation is δρ̃GW = 0

in the unperturbed coordinates. By reversing the coordinate transformation, we can

obtain the required Newtonian gauge GW density perturbation as

δρGW = δρ̃GW + ρ̄′GWξ
0

= −4Hρ̄GWξ
0 , (B.27)

where ρ̄′GW = −3H(1 + wGW)ρ̄GW. Now, with ξ0 given by eq. (B.26), we get the

required result of eq. (4.23).
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Appendix C

Noise Angular Power Spectra of

GW Experiments

In this appendix we describe the calculation of the noise angular power spectra of

GW detectors which is based on the analytical formalism of [403] and is used to

perform the forecasts in chapters 4 and 5. We first review the basic definitions of the

quantities involved in GW anisotropy detection and then list the detector networks

and specifications used for the forecasts.

C.1 Formalism and definitions

We start by expanding the SGWB in plane waves,

hij(x⃗, t) =
∑

s=+,×

∫
df
∫
d2n̂ hs(f, n̂)ei2πf(t−n̂·x)esij(n̂) , (C.1)

where s denotes the GW linear polarisation, f is the GW frequency and n̂ the direction

of propagation. The strain power spectra for unpolarised GW can be written as,

⟨hs(f, n̂)hs′(f ′, n̂′)⟩ =
1
2δ(f − f ′)δ

2(n̂− n̂′)
4π δss′I(f, n̂) , (C.2)

where I is the SGWB intensity. The observed detector response at a position x is

the convolution of the detector response tensor aij with the GW strain plus a noise

term n(t, f),

d(f, t) =
∫
d2n̂

∑
s

hs(f, n̂)aijesij(n̂)e−i2πfn̂·x + n(t, f) . (C.3)
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The noise has its own power spectral density given by

⟨n(f)n(f ′)⟩ = 1
2δ(f − f ′)Nf , (C.4)

for stationary i.e. time-independent noise. The detector response tensor, for a Michel-

son interferometer, can be written as

aij = 1
2
[
ûiûjT (n̂ · û, f)− v̂iv̂jT (n̂ · v̂, f)

]
, (C.5)

where û, v̂ are the unit vectors along the detector arms and the transfer function

T (n̂ · û, f) is [241]

T (n̂ · û, f) =1
2

[
sinc

(
πfL

c
(1− n̂ · û)

)
e−i

πfL
c

(3+n̂·û) (C.6)

+ sinc
(
πfL

c
(1 + n̂ · û)

)
e−i

πfL
c

(1+n̂·û)
]
. (C.7)

The SGWB and its anisotropies are detected by cross-correlating data across different

detector pairs where the noise can safely be assumed to be uncorrelated [241]. One

can then glean from this cross-correlation estimator, the statistics of the isotropic and

anisotropic parts of the SGWB energy density map e.g. see [238, 241, 248, 251, 490,

491].

To define a noise angular power spectrum, we first assume that the intensity is separa-

ble into a the product of a direction dependent part and a frequency dependent part1,

I(f, n̂) = I0(n̂)ξ(f), with ξ(fref) = 1 at a reference frequency fref . The resulting noise

angular power spectrum is [403],

N−1
ℓ ≡1

2
∑

ABCD

∫
df
∫
dt

(2ξ(f)
5

)2
(N−1

f )AB(N−1
f )CD

×
∑
mRe(ABC,ℓm(t, f)A∗

DA,ℓm(t, f))
2ℓ+ 1 , (C.8)

where the sum is over combinations of detector pairs AB and CD. The NAB
f denote

the noise covariance matrix and AAB,ℓm the spherical harmonic transform of the

antenna pattern for the detector pair AB

AAB(n̂, f) =
5
8π
[
Tr(aTAe+)Tr(aTBe+)∗ +Tr(aTBe×)Tr(aTAe×)∗

]
︸ ︷︷ ︸

overlap function for detector pair AB

e−i2πfn̂·(xA−xB) .

(C.9)

1Equivalently, this implies that the anisotropy δGW and the monopole ΩGW share the same
frequency dependence.
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We assume that that network of detectors under consideration behaves like a rigid

body under 3D rotations so that eq. (C.8) simplifies to [403]

N−1
ℓ =Tobs2

∑
ABCD

∫
df

(2ξ(f)
5

)2
(N−1

f )AB(N−1
f )CD

×
∑
mRe(ABC,ℓm(f)A∗

DA,ℓm(f))
2ℓ+ 1 . (C.10)

Here, Tobs denotes the total observation time. For uncorrelated noise across detector

pairs i.e. where NAB
f = δABN

A
f , eq. (C.10) further simplifies to

N−1
ℓ = Tobs

∑
A,B ̸=A

∫
df

(2ξ(f)
5

)2 ∑
m |AAB,ℓm(f)|2

NA
f N

B
f (2ℓ+ 1)

. (C.11)

This denotes the angular power spectrum of the detector noise for the quantity I

which is related to the spectral energy density parameter as [241],

ΩGW(f, n̂) = 4π2f3

3H2
0
I(f, n̂) , (C.12)

The corresponding anisotropy and noise angular power spectra are thus related by,

CΩGW
ℓ (f) =

(
4π2f3

3H2
0
ξ(f)

)2

CI0ℓ , NΩGW
ℓ (f) =

(
4π2f3

3H2
0
ξ(f)

)2

Nℓ . (C.13)

For the forecasts in chapter 5, we work with the quantity NGW
ℓ defined as,

NGW
ℓ =

NΩ
ℓ (f)

Ω2
GW(f)

. (C.14)

In section 4.3 of chapter 4 we have a situation where the frequency dependence of the

monopole and anisotropy are not the same. For this, we need to define the frequency-

dependent angular sensitivity of the detector network to the ℓ−th multipole [404],

ΩℓGW,n(f)−1 ≡ Tobs
∑
AB

(2
5

)2
(
4π2f3

3H2
0

)−2 1
NA
f N

B
f

∑
m |Aℓm

AB(f)|2

(2ℓ+ 1) . (C.15)

C.2 Detector Networks

The noise angular spectra for ET-CE were already calculated in ref. [403] and we

adapted the corresponding code schNell to perform the same calculations for LISA-

Taiji, BBO and PTAs.
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ET-CE

In the case of ET-CE, we use cross-correlations among the ET vertices with noise

correlation matrices NAB
f = 0.2

√
NA
f N

B
f for A ̸= B as well as the ET-CE cross-

correlations for which the noise is uncorrelated. We do not consider ET or CE

self-correlations. The detector locations are assumed to be the same as the ones

considered in [403] and the total time of observations is taken to be Tobs = 4 years

and fET−CE
ref = 63 Hz. The corresponding noise curves for ET2 and CE3 are publicly

available.

LISA-Taiji

LISA and Taiji are assumed to be in earth-like orbit around the sun and separated

from each other by an angle of 40◦ [406]. We include all LISA-Taiji cross-correlations

as well as self-correlations with the noise curves taken from [371] for LISA and

[406] for Taiji. The total time of observation is assumed to be Tobs = 4 years and

fLISA−Taiji
ref = 0.01 Hz.

BBO

For BBO we consider the configuration consisting of four LISA-like constellations,

with two of them in the form of a hexagon. The other two outer constellations will

lead and lead the hexagon by 120◦, all of them orbiting the sun in an earth-like

orbit [118]. The BBO noise curves are obtained from [492] and for the observation

and reference frequency, we take Tobs = 3 years, fBBO
ref = 0.1Hz.

PTA

The PTA response function is slightly different since unlike interferometers, the Earth-

pulsar system only has a one-way transmission of radiation and acts like an arm of

2http://www.et-gw.eu/index.php
3https://dcc.ligo.org/LIGO-T1500293/public
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an interferometer. The corresponding detector response tensor is [241],

aij = 1
2 û

iûjT (n̂ · û, f) , (C.16)

with

T (n̂ · û, f) = L

c
sinc

(
πfL

c
(1 + n̂ · û)

)
e−i

πfL
c

(1+n̂·û) . (C.17)

For the forecasts with PTA, we assume a futuristic experiment like SKA collecting

data from Npsr pulsars distributed uniformly over the sky with timing noise of the

form [493],

Nf = 2σ2t∆T . (C.18)

Here 1/∆T is the cadence of the observations and σt is the rms error of the timing

residuals. The following parameter set, based on the analysis of [494], is chosen for

the forecasts:

∆T 2 weeks
Npsr 50
σt 30 ns
Tobs 20 years

Table C.1: SKA parameters.

For simplicity, we have not include additional noise sources such as red timing noise

or clock or solar system ephemeris errors, which are expected to be present in a

more realistic case [495]. In the future, the addition of more pulsars is also expected,

e.g. Npsr ∼ 100 – 1000 for SKA2 [496], which may further bring down the noise and

improve angular resolution.
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Appendix D

Tensor non-Gaussianity and GW

anisotropies

D.1 Computation of the angular power spectra

In this section we report the intermediate steps in the calculation of the angular power

spectra of the intrinsic anisotropies.

D.1.1 Auto-correlation

D.1.1.1 Monopolar TTS

We start with eq. (5.4),

δttsGW(k, n̂) =
∫
q≪k

d3q

(2π)3 e
−idn̂·qF tts

NL(k, q)ζ(q⃗) . (D.1)

In this case we have for the spherical harmonic coefficient,

δttsGW,ℓm =
∫
d2n̂ δttsGW(k, n̂)Y ∗

ℓm(n̂) (D.2)

Now, using

eiq·x = 4π
∑
LM

iLjL(qd)YLM (q̂)Y ∗
LM (x̂), (D.3)

and the fact that there is no angular dependence in q̂ · k̂

F tts
NL(k, q) = F̃ tts

NL(k, q) , (D.4)
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D.1.1 Auto-correlation

we obtain

CGW,tts
ℓ = 2

π

∫
q≪k

q2dq jℓ(qd)2F̃ tts
NL(q, k)2Pζ(q) . (D.5)

where we applied the definition of the auto-correlation from eq. (5.11). Finally, as-

suming scale invariance and applying the identity,∫ ∞

0
j2ℓ (x)

dx

x
= 1

2ℓ(ℓ+ 1) , (D.6)

we arrive at the desired result of eq. (5.15)

CGW,tts
ℓ ≃

(
F̃ tts
NL

)2 2πAS
ℓ(ℓ+ 1) . (D.7)

D.1.1.2 Quadrupolar TTS

Here we have,

F tts
NL(k, q) = F̃ tts

NL(q, k)
[
4π
5
∑
M

Y2M (k̂)Y ∗
2M (q̂)

]
= F̃ tts

NL P2(q̂ · k̂) , (D.8)

which gives,

δGW
ℓm = 16π2

5
∑

LM,m′

iL
∫
d2n̂ Y ∗

ℓm(n̂)Y ∗
LM (n̂)Y ∗

2m′(n̂)

×
∫

d3q

(2π)3 F̃NL(q, k)jL(qd)YLM (q̂)Y2m′(q̂)ζ(q⃗) . (D.9)

The resulting auto-correlation is

⟨δGW
ℓ1m1δ

∗GW
ℓ2m2⟩ =

32π
25

∑
L1M1m′

1

∑
L2M2m′

2

iL1−L2Gm1M1m′
1

ℓ1L12 Gm2M2m′
2

ℓ2L22

∫
q2dq F̃ 2

NL(q, k)jL1(qd)jL2(qd)Pζ(q)

×
∫
d2q̂ YL1M1(q̂)Y2m′

1
(q̂)Y ∗

L2M2(q̂)Y
∗
2m′

2
(q̂) , (D.10)

where Gm1m2m3
ℓ1ℓ2ℓ3

is the Gaunt integral,

Gm1m2m3
ℓ1ℓ2ℓ3

≡
∫
d2q̂ Yℓ1m1(q̂)Yℓ2m2(q̂)Yℓ3m3(q̂)

=

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

ℓ1 ℓ2 ℓ3

0 0 0


 ℓ1 ℓ2 ℓ3

m1 m2 m3

 . (D.11)

We now apply the identity

∑
m,M

 ℓ L ℓ1

m M m1


 ℓ L ℓ2

m M m2

 =
δℓ1,ℓ2δm1,m2

2ℓ1 + 1 . (D.12)

149



APPENDIX D. TENSOR NON-GAUSSIANITY AND GW ANISOTROPIES

to perform the sum over the Wigner 3j-symbols and obtain

⟨δGW
ℓ1m1δ

∗GW
ℓ2m2⟩ = 16π2

∑
L1,L2

∑
L′M ′

iL1−L2h2ℓ1L12h
2
ℓ2L22

δℓ1L′δm1M ′

2ℓ1 + 1
δℓ2L′δm2M ′

2ℓ2 + 1 HL1L2

= 16π2
∑
L1,L2

iL1−L2h2ℓ1L12h
2
ℓ2L22

δℓ1ℓ2δm1m2

(2ℓ1 + 1)2 HL1L2 , (D.13)

where

hℓ1ℓ2ℓ3 ≡

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

ℓ1 ℓ2 ℓ3

0 0 0

 , (D.14)

and

HL1L2 ≡ 2
25π

∫
q≪k

q2dq jL1(qd)jL2(qd)F̃ tts
NL(k, q)2Pζ(q) . (D.15)

The properties of the 3j-symbols are explained in [497].

Equivalently we can write,

CGW,tts
ℓ = 16π2

∑
L1,L2

iL1−L2h2ℓL12h
2
ℓL22

HL1L2

(2ℓ+ 1)2 , (D.16)

The final steps involve the use of the identity [498],

∫ ∞

0
dx Jν(ax)Jµ(ax)x−λ =

aλ Γ(λ)Γ(µ+ν−λ+1
2 )

2λ Γ(µ−ν+λ+1
2 )Γ(−µ+ν+λ+1

2 )Γ(µ+ν+λ+1
2 )

, (D.17)

[for Re{(µ+ ν + 1)} > Re{λ} > 0, a > 0]

The spherical Bessel functions jn are related to the Bessel functions Jn+1/2 as

jn(x) =
√
π

2xJn+1/2(x) . (D.18)

Thus, we finally get

CGW,tts
ℓ ≃ 2π

5
(F̃ tts

NL)2AS
(ℓ− 2)(ℓ+ 3) , (D.19)

which is valid for ℓ > 2.

D.1.1.3 TTT bispectrum

The starting point is now eq. (5.8),

δGW
ttt (k, n̂) = −

∫
q≪k

d3q

(2π)3
e−idn̂·qF ttt

NL(k, q)
∑
λ

γλ(q)ϵsij(q̂)n̂in̂j . (D.20)
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D.1.2 CMB-GW cross-correlation

We expand the GW in the helicity basis, i.e. λ = R,L and use the following expan-

sion [441, 499],

γ
R/L
ij (q)ninj e−idn̂·q = −(2π) γR/L(q)

∑
LM

(−i)L
√

(L+ 2)!
(L− 2)!

jL(qd)
(qd)2 ∓2Y

∗
LM (q̂)YLM (n̂) .

(D.21)

where the ∓2YLM are the spin-weighted spherical harmonics which satisfy∫
S2

sYℓm(n̂) sY ∗
ℓ′m′(n̂) d2n̂ = δℓℓ′δmm′ . (D.22)

This allows us to write

δGW
ℓm = (2π)(−i)ℓ

√
(ℓ+ 2)!
(ℓ− 2)!

∑
s=±2

∫
d3q

(2π)3 F
ttt
NL(k, q)γsq

jℓ(qd)
(qd)2 −sY

∗
ℓm(q̂) . (D.23)

The auto-correlation is thus given by

CGW,ttt
ℓ = (ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)

2π
∑
s=±2

∫
q≪k

q2dq F ttt
NL(k, q)2P sγ (q)

jℓ(qd)2

(qd)4 . (D.24)

To get to eq. (5.22) we assume scale invariance and use the following identity∫ ∞

0
dx

j2ℓ (x)
x5

= 4
15

(ℓ− 2)!
(ℓ+ 2)!(ℓ+ 3)(ℓ− 2) . (D.25)

D.1.2 CMB-GW cross-correlation

To obtain analytic formulae for the cross-correlations we only consider the CMB SW

term given by [75],

δTℓm = 4π
5 i

ℓ
∫

d3p

(2π)3Y
∗
ℓm(p̂)jℓ(prlss)ζ(p) , (D.26)

The cross-correlation is defined as,

⟨δGW
ℓ1m1δ

∗T
ℓ2m2⟩ ≡ CGW-T

ℓ1 δℓ1ℓ2δm1m2 (D.27)

D.1.2.1 Monopolar TTS

In the monopolar case we obtain,

CGW−T
ℓ = 2

5π

∫
q≪k

q2dq jℓ(qd)jℓ(qrlss)F̃ tts
NL(k, q)Pζ(q) . (D.28)

151



APPENDIX D. TENSOR NON-GAUSSIANITY AND GW ANISOTROPIES

Assuming scale invariance, this becomes

CGW−T
ℓ = 4π

5 F̃
tts
NLAS

∫
q≪k

dq

q
jℓ(qd)jℓ(qrlss) . (D.29)

Now, if we approximate d = rlss and use eq. (D.6) we get

CGW−T
ℓ ≃ 4π

5 F̃
tts
NL

AS
2ℓ(ℓ+ 1) . (D.30)

However, we can obtain a better result if we use the actual values for rlss and d. These

can be calculated using,

rlss =
∫ zlss

0

dz

H(z) ≃ 1
H0

∫ 1100

0

dz√
Ωm(1 + z)3 +ΩΛ

(D.31)

≃ 3.15
H0

,

where we set the density parameters to their Planck bestfit values [15]. For d we can

let z → ∞ and obtain d ≃ 3.26/H0.

The next step is to use the following identity [498],∫ ∞

0
dx Jν(ax)Jµ(bx)x−λ =

aν Γ(µ+ν−λ+1
2 )

2λ bν−λ+1Γ(µ−ν+λ+1
2 )Γ(ν + 1)

× 2F1

(
µ+ ν − λ+ 1

2 ,
ν − µ− λ+ 1

2 ; ν + 1; a
2

b2

)
,

(D.32)

[for Re{(µ+ ν − λ+ 1)} > 0, Re{λ} > −1, 0 < a < b]

on eq. (D.29) to obtain

CGW−T
ℓ = π3/2

5 F̃ tts
NLAS

(
rlss
d

)ℓ Γ(ℓ)
Γ(ℓ+ 3

2)
2F1

(
−1
2 , ℓ; ℓ+

3
2;
r2lss
d2

)
. (D.33)

in terms of the Hypergeometric function 2F1.

D.1.2.2 Quadrupolar TTS

The calculation for this case proceeds similarly to what was done for the quadrupolar

CGW,tts
ℓ . We find

CGW−T,tts
ℓ = 4π

∑
L

iL−ℓh22Lℓ
GLℓ
2ℓ+ 1 , (D.34)

where

Gℓ1ℓ2 = 2
25π

∫
q≪k

q2dq jℓ1(qd)jℓ2(qrlss)F̃ tts
NL(k, q)Pζ(q), (D.35)
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D.2. STATISTICALLY ANISOTROPIC CASE

Now we use eq. (D.32) to get

CGW−T,tts
ℓ =

π3/2F̃ tts
NLAS

20

(
rlss
d

)ℓ (rlss
d

− 1
)(

rlss
d

+ 1
)
∆Fℓ , (D.36)

where ∆Fℓ is given by

∆Fℓ ≡
Γ(ℓ)

Γ(ℓ+ 3/2)

[
(ℓ+ 1) 2F1

(
−1
2 , ℓ; ℓ+

3
2;
r2lss
d2

)
− 2F1

(
1
2 , ℓ; ℓ+

3
2;
r2lss
d2

)]
.

(D.37)

The function ∆Fℓ is well fit by

∆Fℓ ≃
0.2

(ℓ+ 2)0.45 . (D.38)

TTT bispectrum

We start from eqs. (5.8) and (D.23). Using eq. (D.21), the spherical harmonic coeffi-

cients for the tensor contribution to δT can be written as

δTℓm = π (−i)ℓ
√

(ℓ+ 2)!
(ℓ− 2)!

∑
s=±2

∫ η0

ηrec
dη

d3q

(2π)3
∂γsq
∂η

jℓ(qχ(η))
(qχ(η))2 −sY

∗
LM (q̂) . (D.39)

The resulting cross-correlation is the one given in eq. (5.33).

D.2 Statistically anisotropic case

The correlators discussed in the previous section are calculated under the assumption

of statistical isotropy of the background space-time. It is also interesting to consider

the correlators in a background where statistical isotropy is violated. We studied this

in [1] and I provide here an overview of the main results for the correlation functions.

Such statistical anisotropy can arise in inflationary models involving vector fields,

with the vev of the vector field picking out a preferred direction v̂ in space [500–506].

The exact form of the STT (or TTT) bispectra would depend on the specifics of the

inflationary model under consideration. Here, we perform a phenomenological analy-

sis, modelling the STT bispectra in a form similar to existing examples of statistically

anisotropic scalar bispectra, e.g. see [501]. The non-linearity parameter is taken to

be

F tts
NL(q,k) =

∑
LM

λLM (k, q, v̂)YLM (q̂). (D.40)
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Additional terms involving the quantities (v̂ · k̂) as well as contributions such as

(v̂ · q̂)(v̂ · k̂)(k̂ · q̂) may also arise, as shown for ⟨ζ3⟩ in [501, 507–510] and ⟨γ3⟩ in [511].

The power spectra in such models may be anisotropic itself, e.g. of the form Pγ(k) =

Pγ(k)(1+
∑
LM gLM (k, v̂)YLM (k̂)) [506, 512–515]. We focus on the effects of the term

in eq. (D.40), the contribution of the other terms to the correlators can be calculated

similarly.

BipoSH formalism

The resulting correlations in this case are statistically anisotropic which produces non-

zero off-diagonal elements of the angular power spectra CGW-T
ℓℓ′mm′ . Using eq. (D.40), we

find

⟨δGW
ℓ1m1δ

T
ℓ2m2⟩ =4πiℓ1

∫
d3q

(2π)3Y
∗
ℓ1m1(q)jℓ1(qd)

∑
LM

λLMYLM (q̂)

× 4π
5 i

ℓ2

∫
d3p

(2π)3Y
∗
ℓ2m2(p̂)jℓ2(prlss)⟨ζ(q)ζ(p)⟩

= 2
5π i

ℓ1−ℓ2
∑
LM

[ ∫
d2q̂ Y ∗

ℓ1m1(q̂)YLM (q̂)Y ∗
ℓ2m2(q̂)

×
∫
q2dq jℓ1(qd)jℓ2(qrlss)Pζ(q)λLM

]
. (D.41)

This becomes

⟨δGW
ℓ1m1δ

T
ℓ2m2⟩ =

2
5π i

ℓ1−ℓ2
∑
LM

[∫
q2dq jℓ1(qd)jℓ2(qrlss)Pζ(q)λLM

]

× (−1)Mhℓ1ℓ2L

 ℓ1 ℓ2 L

m1 m2 −M

 , (D.42)

with hℓ1ℓ2L defined in eq. (5.18). The properties of the Wigner 3j symbols dictate that

this cross-correlation is non-zero when ℓ1+ ℓ2+L = even and |ℓ1 − ℓ2| ≤ L ≤ ℓ1 + ℓ2.

Thus, for L > 0, there will be off-diagonal elements in the CGW−T
ℓ1ℓ2

. Statistically

anisotropic correlators of this form can be analysed with the BipoSH formalism [516,

517]. The bipolar harmonic coefficients, denoted as ALM,f1f2
ℓ1ℓ2

are defined in terms of

the real-space correlation function of the observables δf1 , δf2 as

⟨δf1(x̂1)δf2(x̂2)⟩ =
∑

ℓ1ℓ2,LM

ALM,f1f2
ℓ1ℓ2

{Yℓ1(x̂1)⊗ Yℓ2(x̂2)}LM , (D.43)

where {Yℓ1(x̂1)⊗ Yℓ2(x̂2)}LM are the bipolar spherical harmonics

{Yℓ1(x̂1)⊗ Yℓ2(x̂2)}LM ≡
∑
m1m2

CLMℓ1m1,ℓ2m2Yℓ1m1(x̂1)Yℓ2m2(x̂2) , (D.44)
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with

CLMℓ1m1,ℓ2m2 = (−1)ℓ1−ℓ2+M
√
2L+ 1

 ℓ1 ℓ2 L

m1 m2 −M

 (D.45)

as the Clebsch-Gordan coefficients. Inverting (D.43) and performing an angular in-

tegration over (x̂1, x̂2) gives the BipoSH coefficients

ALM,f1f2
ℓ1ℓ2

=
∑
m1m2

CLMℓ1m1,ℓ2m2⟨δ
f1
ℓ1m1

δf2ℓ2m2
⟩ . (D.46)

As a consistency check, we see that in the statistically isotropic case, the BipoSH

coefficients vanish for L > 0 while the L = 0 term reduces to the usual CGW−T
ℓ . In

the statistically anisotropic case, we obtain

ALM,GW−T
ℓ1ℓ2

= iℓ2−ℓ1
hℓ1ℓ2L√
2L+ 1

[ 2
5π

∫
q2dq jℓ1(qd)jℓ2(qrlss)Pζ(q)λLM

]
. (D.47)

The auto-correlation of the anisotropies can be calculating in the same manner, with

the result

ALM,GW
ℓ1ℓ2

= iℓ2−ℓ1
hℓ1ℓ2L√
2L+ 1

[ 2
π

∫
q2dq jℓ1(qd)jℓ2(qd)Pζ(q)λ2LM

]
. (D.48)

Finally, working similarly to section 5.2.3, one can also obtain Fisher forecasts for the

λLM parameter as also done in [1].

D.3 Spin-2 Model

D.3.1 Sound speed(s) scaling

We provide here additional details regarding the time/scale dependence of the sound

speeds considered in section 5.3.1. We parameterised the weakly time dependent

sound speed for the helicity mode-j as,

cj(η) = cij

(
η

ηi

)sj
+ cfj . (D.49)

In the limit cfj ≪ cj(η), the parameter sj reduces to the usual slow-roll parameter

associated to the time-dependence of the sound speeds, defined as sj = ċj/cjH [153].

In section 5.3.1, we had stated that the above choice of sound speeds was equivalent

to employing scale dependent sound speeds, (eq. (5.62)), in terms of calculating the

relevant cosmological correlators using the in-in formalism. The reason behind that
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can be understood as follows. It is known that the main contribution to correlators

arises around the time the relevant modes cross the horizon (cj(η)kη ∼ 1). This is

because deep inside the horizon (cj(η)kη ≫ 1) the mode functions, which are of the

type H(1,2)
ν [−cj(τ) kτ ], are rapidly oscillating. In particular, for the scenarios we are

interested in here we shall have

c2(ηCMB) ≃ ci2 , cj(ηBBO) ≃ cf2 , (D.50)

where ηCMB/BBO denote the conformal times when the CMB/BBO scales cross the

horizon. This is also what one obtains in using the scale-dependent sound speeds of

eq. (5.62).

One final point relevant to the calculation of the cosmological correlators is the choice

of the horizon. This is obvious when the modes functions within the integral corre-

sponding to a given vertex share the same horizon. When there are mode functions

with different arguments one needs to choose the horizon corresponding to the mode

which exited last (see e.g. [151, 171]). The reason behind this is the same as discussed

above, at earlier times the integral is again highly oscillatory1 due to presence of this

mode.

D.3.2 Computation of the bispectra

Keeping these points in mind, we then calculate the tensor bispectra using the in-in

formalism. The dominant contributions in c2 ≪ 1 limit, are given by the diagrams

fig. 5.9 leading to e.g.

⟨γλ1k1
(η)γλ2k2

(η)ζk3(η)⟩ =
∫ η

−∞
dη1

∫ η1

−∞
dη2

∫ η2

−∞
dη3

∫ η3

−∞
dη4×

× ⟨[HI(η4), [HI(η3), [HI(η2), [HI(η1), γλ1k1
(η)γλ2k2

(η)ζk3(η)]]]]⟩ ,

(D.51)

in the commutator form [171, 188]. We then sum over all the terms one can form by

replacing one of the HI with H(σ(2))2σ(0) (eq. (5.65)), another with Hσ(0)ζ (eq. (5.66)),

and the rest with Hσ(2)γ (eq. (5.63)). Using the mode functions of eqs. (5.56)-(5.59)

and taking the squeezed limit kL = k3 ≪ k1 ≃ k2 = kS , we obtain (after a very lengthy

calculation) the result of eqs. (5.68) and (5.72) [2].

1In fact, applying the iϵ prescription in the far past to the project the interacting vacuum of
the full theory on to the vacuum of the free theory turns this oscillatory behaviour into exponential
decay (see e.g. [62, 91]). This suppresses the integrals in the |cjkη| ≫ 1 limit.
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ν a

0.7 0.96
1.1 2.99
1.4 506.2
1.45 7879.3
1.48 238800.

Table D.1: Values of a (eq. (5.70)) for different values of the mass in terms of the
parameter ν = (9/4− (m2

σ/H
2))1/2. See [2] for more details.

157



APPENDIX E. ΛCDM PARAMETER ESTIMATES

Appendix E

ΛCDM parameter estimates
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Figure E.1: Marginalised 68% and 95% contours for ΛCDM and tensor spectrum
parameters.
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Parameter 68% limits
log

(
1010As

)
3.045± 0.014

ns 0.9649± 0.0040
H0 67.3± 0.53
Ωbh

2 0.02237± 0.00014
Ωch

2 0.1201± 0.0012
τreio 0.054± 0.0073

Table E.1: ΛCDM parameter means and 68% limits for the log-normal model using
Planck+BK18 data.
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