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Kapitel 1

Einleitung

N0 amount of faith or philosophy is as convincing as a few dozen
successful two-loop calculations.”
Frank Wilczek [1]

Die Elementarteilchen und ihre Wechselwirkungen werden heute im Rahmen von Quan-
tenfeldtheorien behandelt. Das Standardmodell ist die derzeit erfolgreichste Quanten-
feldtheorie zur Beschreibung der starken und elektroschwachen Wechselwirkung.

Der Grundpfeiler fur die Entwicklung des Standardmodells war die Quantenelektro-
dynamik (QED). Ein entscheidender Schritt war hierbei die Entwicklung einer renor-
mierten Storungstheorie fur die QED Ende der 40er Jahre durch Tomonaga, Feynman,
Schwinger und Dyson [2]. Diese erlaubte viele sehr prazise theoretische Vorhersagen,
die experimentell ausgezeichnet verifiziert wurden. Die QED ist eine relativistische
Quantenfeldtheorie, die auf einer abelschen Eichsymmetrie basiert. Sie diente als Pro-
totyp bei der Entwicklung von Feldtheorien zur Beschreibung der anderen Wechselwir-
kungen.

1954 untersuchten Yang und Mills [3] nichtabelsche Eichsymmetrien mit dem Ziel, an-
dere Wechselwirkungen zu beschreiben. In den sechziger Jahren gelang es Glashow,
Salam und Weinberg, basierend auf den Arbeiten von Yang und Mills eine Theorie
far eine vereinheitlichte schwache und elektromagnetische Wechselwirkung der Lep-
tonen, das Glashow-Salam-Weinberg-Modell [4], zu entwickeln. Das Modell basiert auf
einer Eichtheorie der nichteinfachen, nichtabelschen, spontan gebrochenen Eichgruppe
SU(2)y x U(1),-. Entscheidend war dabei die Benutzung des Higgs-Mechanismus [5],
um die Eichbosonen der schwachen Wechselwirkung massiv zu machen. Dieser Me-
chanismus erlaubte die Verknupfung von Eichsymmetrie und kurzreichweitiger Wech-
selwirkung. 1964 postulierten Gell-Mann und Zweig [6] Quarks als die fundamentalen
Bausteine der Hadronen. Um das Spin-Statistik-Problem des Quark-Modells der Ha-
dronen zu 18sen, schlugen Fritzsch, Gell-Mann und Leutwyler [7] die EinfUhrung eines
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zusatzlichen Freiheitsgrades ,,Farbe* fur die Hadronen vor, was zur Quantenchromo-
dynamik (QCD) fuhrte. QCD und das elektroschwache Standardmodell, eine Erweite-
rung des Glashow-Salam-Weinberg-Modells, welche Quarks einschlief3t [8, 9], bezeich-
net man zusammen als Standardmodell.

Die heutigen hoch prazisen Beschleuniger-Experimente liefern strenge Tests des Stan-
dardmodells. Neben den beeindruckenden Fortschritten bei der Bestimmung von Mas-
se, Lebensdauer und Kopplungen der massiven Eichbosonen, war die Entdeckung des
Top-Quarks [10], dessen Masse mit der indirekten Vorhersage aus Quantenkorrektu-
ren Ubereinstimmt, ein entscheidender Schritt. Mit der Kenntnis der Top-Masse ist die
Masse des Higgs-Bosons der letzte noch unbekannte Parameter des Standardmodells.

Da es aus Beschleuniger-Experimenten momentan keine direkten Signale ftr ,,neue
Physik* jenseits des Standardmodells gibt, sucht man nach indirekten Effekten, die sich
durch definierte Abweichungen der experimentellen Ergebnisse von den theoretischen
Vorhersagen dieses Modells auf3ern.

Die immer préaziseren experimentellen Schranken an das Modell fordern theoretische
Vorhersagen mit einer mindestens dem Experiment entsprechenden Genauigkeit. Da-
bei sind im Fall der Prazisionsobservablen die fuhrenden Quantenkorrekturen, soge-
nannte Ein-Schleifen Rechnungen, nicht mehr ausreichend, und es werden Ergebnisse
far die nachstfuhrenden Quantenkorrekturen, sogenannte Zwei-Schleifen Rechnungen,
bendtigt.

In dieser Arbeit werden zu zwei dieser Prazisionsobservablen bisher unbekannte Quan-
tenkorrekturen auf Zwei-Schleifen-Niveau berechnet. Zum einen wird die Quantenkor-
rektur Ar zur Massenkorrelation zwischen dem W- und Z-Boson bestimmt. Zum ande-
ren werden Berechnungen zum sogenannten effektiven leptonischen Mischungswinkel
s? durchgefuhrt.

Schleifen-Rechnungen erlauben die Herstellung einer Verbindung zwischen Observa-
blen aus dem Niederenergiebereich, wie der Myonlebensdauer, und aus der Energie-
skala der schweren Eichbosonen. Alle Quantenkorrekturen mit Au3Bnahme der QED-
Korrekturen zu dieser Relation werden mit der Observable Ar beschrieben. Durch Bei-
trage virtueller Teilchen in Schleifendiagrammen flielen die Eigenschaften schwerer
Teilchen in die Berechnung der Myon-Lebensdauer ein und eroffnen so die Moglichkeit
einer Konsistenzprufung. Insbesondere kann aus den Ergebnissen dieser Rechnung ei-
ne theoretische Vorhersage fur die Masse des W-Bosons in Abhangigkeit von der Masse
des Higgs-Bosons gewonnen werden.

Diverse Quantenkorrekturen zum Myon-Zerfall waren vor dieser Arbeit bereits be-
kannt. Neben den Ein-Schleifen Beitragen sind sowohl die QED-Korrekturen auf Zwei-
Schleifen Niveau O(a?) [11], als auch QCD-Beitrage auf Drei-Schleifen Niveau O(aa?)
[12] bekannt. Elektroschwache Korrekturen zu Ar jenseits des Ein-Schleifen Niveaus,
waren vor dieser Arbeit nur in Form von Aufsummationen bekannter Ein-Schleifen
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Beitrage oder Entwicklungen in der Higgs- und Top-Masse verfugbar. Besonders un-
befriedigend dabei war, dal3 bei den Entwicklungen in der Top-Masse die bekannten
fuhrenden und nachstfuhrenden Terme von gleicher GréRenordnung sind.

In dieser Arbeit wird nun eine exakte Berechnung elektroschwacher Zwei-Schleifen-
Beitrdage mit mindestens einer Fermion-Schleife durchgefuhrt. Diese prazise Berech-
nung von Ar liefert aber nicht nur eine genauere Kenntnis der theoretischen Vorhersage
fur die W-Masse, sondern die so ermittelte W-Masse dient auch als Eingabeparameter
fur eine andere Prézisionsobservable, den effektiven leptonischen Mischungswinkel s?.
Dieser Mischungswinkel hangt empfindlich von Variationen in der aus Ar berechneten
W-Masse ab.

Auch zu s? wurden in dieser Arbeit Berechnungen durchgefihrt. Der effektive lep-
tonische Mischungswinkel ist eine Prazisionsobservable, die eng mit der Physik der
Z-Resonanz verknupft ist. An Elektron-Positron Beschleunigern kann der Prozel3 der
Lepton-Paarproduktion auf der Z-Resonanz sehr gut durch effektive Kopplungen be-
schrieben werden. Dabei werden die Effekte der Quantenkorrekturen durch eine Ande-
rung der Starke der Kopplungskonstanten fur den Vektor und Axialvektorstrom be-
schrieben. Aus dem Verhaltnis der Realteile dieser effektiven Kopplungen bestimmt
man einen effektiven Mischungswinkel. Dieses Verhéltnis kann experimentell direkt
durch die Messung von Asymmetrien in Wirkungsquerschnitten bestimmt werden.

Der theoretisch berechnete Wert fiir den effektiven Mischungswinkel ist besonders sen-
sitiv auf Anderungen der Higgs-Masse. Eine genauere Kenntnis dieser GroRe liefert
damit eine bessere Schranke an die Masse des Higgs-Bosons. Allerdings hangt der Mi-
schungswinkel auch empfindlich von Veranderungen in der W-Masse aufgrund der
hier berechneten Beitrage zu Ar ab. Es ist jedoch zu erwarten, dal? diese Sensitivitat auf
die W-Masse durch die noch ausstehenden fermionischen Zwei-Schleifen Beitrage ab-
geschwacht wird. Zu diesen fermionischen Korrekturen wurde in der vorliegenden Dis-
sertation die Zwei-Schleifen Renormierung des Z-Lepton-Lepton Vertex berechnet. Dies
ist ein wichtiger Schritt auf dem Weg zum vollstandigen Ergebnis, denn das Problem
der Berechnung von s? ist dadurch auf die Berechnung von sogenannten Zwei-Schleifen
Drei-Punkt-Funktionen reduziert.

Zur Berechnung von Korrekturen hoherer Ordnung ist eine Renormierung des Stan-
dardmodells und die Benutzung eines Regularisierungsverfahrens notig. Beides ist Ge-
genstand des ersten Teils dieser Arbeit. Kapitel 2 beschéaftigt sich mit der Renormierung
des elektroschwachen Sektors des Standardmodells bis Zwei-Schleifen-Niveau. Dabei
wird besonders auf die verwendete Naherung verschwindender leichter Fermion-Mas-
sen und das Problem der Massendefinition fur die instabilen massiven Eichbosonen
eingegangen. Kapitel 3 befal3t sich mit der Regularisierung. Hierbei wird fur die hier
betrachteten Prozesse eine praktische Vorschrift zur Behandlung der ~s-Matrix in den
fermionischen Dreiecks-Subgraphen in dimensionaler Regularisierung angegeben. Da-
neben wird auch kurz ein anderes Regularisierungsverfahren, die Regularisierung nach
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Pauli-Villars, vorgestellt.

Teil 11 beschaftigt sich mit der Prazisionsobservable Ar. Im 4. Kapitel wird Ar definiert
und die bisher bekannten Beitrage werden diskutiert. Kapitel 5 schildert dann Details
zur Berechnung der fermionischen Zwei-Schleifen Beitrdge und in Kapitel 6 werden
schlieldlich die Ergebnisse dieser Arbeit prasentiert.

Im 111. Teil wird der effektive leptonische Mischungswinkel s? behandelt. Dazu wird
dieser in Kapitel 7 zunachst eingefuhrt und der theoretische und experimentelle Status
erlautert. Kapitel 8 befal3t sich mit den in dieser Arbeit durchgefihrten Berechnungen
und erlautert anschliel3end die Ergebnisse.

Der IV. Teil ist schlie3lich eine Zusammenfassung der Arbeit.



Teil |

On-Shell-Renormierung des
elektroschwachen Standardmodells auf
Zwel-Schleifen-Niveau






Kapitel 2 Das elektroschwache Standardmodell 7

Kapitel 2

Das elektroschwache Standardmodell

2.1 Lagrangedichte

2.1.1 Klassische Lagrangedichte

Die Idee des Glashow-Salam-Weinberg-Modells ist es, die elektromagnetische und die
schwache Wechselwirkung im Rahmen einer Eichtheorie zu vereinigen, wobei die Er-
zeugung der Massen der Teilchen durch spontane Symmetriebrechung geschieht. Man
beginnt dabei mit einer Lagrange-Dichte fur masselose Fermionen und Eichbosonen,
die invariant unter einer inneren Symmetriegruppe, also eichinvariant, ist. Dann fuhrt
man ein skalares Higgs-Feld ein, welches einen nicht-verschwindenden Vakuumerwar-
tungswert hat. Die spontane Symmetriebrechung erzeugt dann Massenterme fur alle
Teilchen bis auf das Photon.

Damit setzt sich die klassische Lagrangedichte des Standardmodells aus einem Yang-
Mills-, einem fermionischen und einem Higgs-Anteil, sowie den Yukawa-Kopplungen
zusammen:

LKlass = LYM + LFerm + LHiggs + LYukawa . (21)

Das Modell basiert auf einer Eichtheorie der Eichgruppe SU(2),,, x U(1),.. Die Genera-
toren der SU(2),;, werden mit /¢ und die zugehdrigen Felder mit 1V bezeichnet, wobei
a die Werte 1,2 und 3 annimmt. Die entsprechende Ladung ist der schwache Isospin.
Die Ladung zur U(1),. heit Hyperladung, der Operator Y und das zugehorige Feld
B,,. Damit hat der Yang-Mills-Teil der Lagrangedichte die Form:

Lym = _i (@Wf - 3VW; + QZGGbCWSWIS)Q N i (OuB, — aVBﬂ)Q ’ (2.2)

wobei ¢ die Strukturkonstante der SU(2) ist, also der total antisymmetrische Tensor.
Die Kopplungskonstante der U(1) wird mit ¢;, die der SU(2) mit g, bezeichnet. Die
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Fermionen Bosonen
Leptonen | Quarks | Eichbosonen | Higgs-Boson
e ve |ul| d v Z | wW* H
i Vy c S
T vy |t b
el.lLladung |—-1| 0 |2| -2 | O 0 | *1 0
Spin | 1 3 15| 3 1 1 1 0

Abbildung 2.1: Observable Teilchen des Standardmodells

elektrische Ladung wird definiert als

Y
Q=1+ bR (2.3)
und die kovariante Ableitung ergibt sich zu:
Y
D# = 8# — igglaW£ + igl_Bu . (24)

2

Die Fermionen im Standardmodell sind in Familien entsprechend den Zeilen in Abb.
2.1 angeordnet. Die massiven Fermionen werden in links- und rechtshandige Anteile
zerlegt. Trotz experimenteller Hinweise auf eine nichtverschwindende Neutrinomas-
se [13] werden diese im folgenden als masselos betrachtet, da ihre Masse fur die hier
betrachteten Prozesse unbedeutend ist. Der linkshdndige Anteil des geladenen Leptons
und des Neutrinos aus seiner Familie werden zu einem Isodublett /;, angeordnet, ebenso
werden die linkshandigen Anteile der Quarks einer Familie im Dublett ¢; zusammenge-
fasst. Die rechtshandigen Anteile bilden Singletts iz, ¢; r Und ¢ r. Die Hyperladung von
Singletts und Dubletts wird so gewahlt, daf sich nach (2.3) die bekannten elektrischen
Ladungen ergeben. Somit erhdlt man den fermionischen Anteil der Lagrangedichte mit
kovarianter Ableitung als:

Lrerm = D Familien (Z_LW#D;LZL + qriv"Duqr, + lrin" Dylg
+q1,rY" Dyuqi g + sz,RW“Du(h,R) . (2.5)

Mischungen zwischen verschiedenen Generationen sind fur die in dieser Arbeit be-
trachteten Prozesse und Observable unerheblich und werden deshalb vernachlassigt.

Um die Renormierbarkeit des Standardmodells nicht zu zerstdren, miussen Massenter-
me erzeugt werden ohne die Eichsymmetrie explizit zu brechen. Dies geschieht durch
die Einfuhrung eines zusatzlichen Teilchens tber den Higgs-Mechanismus [5]. Dazu
fuhrt man ein skalares Higgs-Dublett ® = (¢*, #°) mit Hyperladung Y = 1 und einem
Potential

V(®) = 2(@*@)2 — u2o'e (2.6)
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in die Lagrangedichte ein:
Litiggs = (D, @)1 (D,®) — V(@) . (2.7)

Aus dem Potential folgt ein nicht-verschwindender Vakuumerwartungswert des Higgs-
Dubletts

2

@y p =2 =20 (2.8)

Die Storungsreihe wird um das Minimum des Higgspotentials entwickelt. Dazu spaltet
man den Vakuumerwartungswert des Higgsfeldes ab indem man die neutrale Kompo-
nente des Higgs-Dubletts schreibt als

v+ H(x)+ix(x)

7 ,

Alle vier Higgsfelder H,y,¢* und ¢~ haben dann verschwindenden Vakuumerwar-
tungswert. Drei dieser Felder konnen durch die Wahl einer geeigneten Eichung aus der
Lagrangedichte eliminiert werden und sind somit nicht observabel. Eines der Felder,
H, entspricht einem neuen beobachtbaren Teilchen, dem Higgs-Boson, mit einer Masse
My = \/5/1-

Das Higgs-Potential enthalt auch einen Term ¢H (z) mit ¢ = v(u? — Jv?). In niedrigster
Ordnung verschwindet dieser Beitrag durch die Wahl v = 2—‘; also genau dann, wenn v
das Minimum des Higgs-Potentials ist. In hoheren Ordnungen erhalt man durch Strah-
lungskorrekturen Beitrage, sogenannte Tadpole-Beitrage, die durch geeignete Renor-

mierungsbedingungen kompensiert werden kénnen.

#° = HxeR. (2.9)

Der nichtverschwindende Vakuumerwartungswert des Higgs-Feldes (2.8) erzeugt die
Massen. Die Massenterme der Eichbosonen ergeben sich aus der kovarianten Ableitung
des Higgs-Feldes, und die Fermionmassen werden durch Yukawa-Kopplungsterme zwi-
schen dem Higgs-Dublett und den Fermionfeldern generiert:

'CYukawa = Z Gll_Lqu) + quqLQI,R(I) + quchqQ,R@ + h.C. . (210)

Familien

Die G; sind die Kopplungskonstanten der Yukawa-Wechselwirkung zwischen dem Higgs-
Feld und den Fermionen. Sie werden fur jedes Fermion so gewahlt, dal3 die sich aus
Lyvuawa €rgebenden Massenparameter

(2.11)

me =

Gro
NG

den tatséchlichen Massen entsprechen.
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Die bisher in der Lagrangedichte eingefuihrten Eichfelder sind noch keine Massenei-
genzustande und entsprechen somit noch nicht den physikalischen Eichbosonen. Diese
erhalt man erst durch eine Diagonalisierung der entstehenden Eichboson-Massenmatri-
zen gemal}

Wi = 5 (W FiWy) (2.12)

Z,\ _ cw oS wp
(Au> a <_SWW CXVV)<BM> (213

mit dem schwachen Mischungswinkel 6y,
g2
ViR + 3

Die Kopplung des Photonfeldes an die Elektronen entspricht der elektrischen Ladung,
und es folgt:

cw = cos by = sw = sin by . (2.14)

62& glzi, 92:i- (2.15)

N cw Sw

Die Massen der Eichbosonen kénnen durch die Parameter des Standardmodells ausge-
druckt werden:

MZ = v Mw = CwMz, M,y =0. (216)

2CW8W’

2.1.2 Lagrangedichte der Quantentheorie

Die Quantisierung einer Eichtheorie ist nur moglich, nachdem die Eichung festgelegt
wurde. Dies ist notig, um die Dynamik der unphysikalischen Freiheitsgrade festzule-
gen. Hierzu fugt man einen Eichfixierungsterm in die Lagrangedichte ein. Als guinstig
fur praktische Rechnungen hat sich dabei die R.-Eichung [14] erwiesen:

Lo = =% ((F,)’ + (F,)’ + Fy F_ + F_F) (217)
mit
1 RSP
F'Y — —\/aa‘uA + 78uZ
1., 7 &7 0
F, = ﬁaﬂz - 52 MZX + TGMA
Fo = —— 0, WEFiy/eW Mot . (2.18)

Ve
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Der Term Lg;, entspricht einer Delta-Funktion bezuglich des Unterraums derjenigen
Feldkonfigurationen, die die Eichwahl erfullen.

Die Eichinvarianz der Theorie drtckt sich in der Unabhangigkeit der Observablen von
der Wahl von Lr;, aus. Neben der R¢-Eichung zur Uberpriifung der Eichinvarianz wur-
de bei Berechnungen in dieser Arbeit auch die Feynman-Eichung verwendet, die man
als Spezialfall durch folgende Wahl der Eichparameter erhalt:

g=&=¢"=1, ie{1,2}. (2.19)

Die Beliebigkeit in der Wahl der Dynamik der Eichfixierung bedingt eine Verletzung der
Unitaritat. Um diese Beliebigkeit zu kompensieren, fuhrt man Faddeev-Popov-Geistfel-
der u®(z) und a*(x) [15] ein:

L= Y 0() s (a). (2.20)

a’/Be{’y7Z’:i:}

Dabei ist 6F*/§0°(x) die Variation der Eichfixierungsterme unter infinitesimalen Eich-
transformationen und 0%, 3 € {, Z, +}, sind die Parameter der infinitesimalen Eichtrans-
formation.

Die vollstandige quantisierte Lagrangedichte des elektroschwachen Standardmodells
ist somit gegeben durch:

Loy = Liiass + Lrix + Lrp - (2.21)

2.2 On-Shell-Renormierung des Modells

Bei der Berechnung von Termen héherer Ordnung in der Stérungsreihe andert sich die
Beziehung zwischen den Parametern und den MeRgrolien. Es ist jedoch mdglich, die
Observablen als Funktionen der in der Lagrangedichte vorkommenden ,,nackten” Pa-
rameter eindeutig zu bestimmen. Die Renormierbarkeit des Standardmodells [16, 17]
stellt sicher, daf3 alle observablen GroRRen in allen Ordnungen der Stérungstheorie als
Funktionen der endlich vielen ,,nackten* Parameter ermittelt werden kdnnen und daf
man dabei UV-endliche Ergebnisse erhalt. In der Praxis wird meist der Satz der ,,nack-
ten* Parameter durch einen aquivalenten Satz von sogenannten renormierten Parame-
tern ersetzt, so daf® die renormierten Parameter keine UV-Divergenzen aufweisen. Eine
Wahl eines solchen Satzes renormierter Parameter definiert ein Renormierungsschema.
Hier wird das On-Shell-Renormierungsschema [18] benutzt, da es erlaubt, die Ergebnis-
se direkt mit experimentell bestimmbaren Grof3en in Verbindung zu setzen. Es werden
die Konventionen aus [19] verwendet.
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2.2.1 Ein-Schleifen Renormierung

Alle freien Parameter der klassischen Lagrangedichte erhalten von nun an den Index 0,
um sie als ,,nackte”, unrenormierte Parameter zu kennzeichnen. Der Zusammenhang
zwischen den unrenormierten und den physikalischen GréRen wird mit einer Renor-
mierungskonstante beschrieben. AulBerdem ist es nttzlich, auch die Felder zu renor-
mieren, da dadurch eine zusatzliche Wellenfunktionsrenormierung der aufieren Teil-
chen vermieden werden kann. Feldrenormierungen von internen Teilchen entfallen fur
physikalische Observablen, dienen aber dazu, endliche Bausteine, wie z.B. Selbstener-
gien, zu bilden. Zudem bietet das gegenseitige algebraische Wegheben dieser internen
Feldrenormierungskonstanten eine Kontrollmdaglichkeit far Rechnungen.

Man bendtigt also Renormierungskonstanten als Ladungsrenormierung
eo =Zee=(14+06Z,)e, (2.22)
als Massen-Counterterme

Mo = Zyz My = My + 6My
M3, = ZyzMj = Mj +0M;
Miy = ZypMi = M+ Mg
meo = Zmmg = mg + 0mg (2.23)

und als Feldrenormierungskonstanten

B <1+%(5ZZZ L5777 ><z>
- 0277 145627 A
Hy = VZHH = (1+L2")H
fi = V2 =+ 30270
B = VZIRf = (14 L52/B) R (2.24)

wobei die Counterterme hier jeweils bis zur Ein-Schleifen-Ordnung entwickelt sind.

Die Renormierungskonstanten werden im On-Shell-Schema durch Renormierungsbe-
dingungen so festgelegt, daf3 die renormierten Parameter direkt mit physikalischen Ob-
servablen zusammenhangen. Dabei werden die Massen Uber die Pole der transversalen
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Freiheitsgrade der Propagatoren D; festgelegt:

(DF) 'M) = 0 (2.25)
(DZZ) f(M7) = 0, (DF)7H(M) =0 (2.26)
(DEN)7H0) = 0, (DF)7(0) (2.27)
(DT)H(Mf) = 0 (2.28)
(DT D) pope = 0 (2.29)
und die Feldrenormierungen Uber die Residuen dieser Pole bestimmt:
. 0 —1/7.2 _
R i 0N, b = 230
.0 ~1/7.2 _
%{—zw(D%Z) ( )WM%} =1 (2.31)
0 oy 12 _
3%{ ZW(DT) (/c)k2o} =1 (2.32)
.0 19 B
%{z@(DH) (k)ksz;} =1 (2.33)
0 1 B
%{Za_j(Df) (p) pz:Mg} = 1. (2.34)

DX bezeichnet den Propagator des Teilchens X, ein Index T meint den Transversal-
teil dieser GroRe und £ nimmt den Realteil. M3 bezeichnet den Propagatorpol des
Teilchens X. Dieser ist in niedrigster Ordnung identisch mit der Teilchenmasse, also
My = Mx und M; = m¢ in niedrigster Ordnung.

Die Propagatoren kénnen durch die renormierten 1-Teilchen-irreduziblen (1PI) Zwei-
punktfunktionen I'" ausgedruckt werden:

Dy = -9 (2.35)
(5 ) - ()
Z = —| & A
Dy Dp’ 72 Ty
o -1 f;rj _f%z
o f‘%zf‘%ﬁy . f\%Zf\%'y ( _fwgv f\%Z (2.36)
D = ()~} (2.37)
Dl = _(f\f)—l
= —(fw_T] + pw, + T} +mf) ™" (2.38)

Dabei kennzeichnet das Symbol ~ jeweils renormierte GroBen, und wy = (1 + 75)
sind die Projektoren auf rechts bzw. linkshandige Zustande. Die 1P1 Zweipunktfunktio-
nen setzen sich wiederum aus einem Born-Anteil und den Schleifenkorrekturen in den
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Selbstenergien X zusammen:

P2 = —i ((kz—M,f)éabJri‘}b(kz)) (2.39)
O ak) = i (143 4(8)) (2.40)
PL(k?) = i(1+i§(k2)) (2.41)
P2 = i((kZ—MI?I)JriH(k?)). (2.42)

Auf Ein-Schleifen-Niveau ergeben sich aus den Renormierungsbedingungen damit fol-
gende Bestimmungsgleichungen fur die Massencounterterme:

oMy = R {EYW(M\?V)}

oMz = R{X77(Mj)}

SMu = R{SH(ME)

m
omy = TR{SL (md) + Shmd) + 25h(md) | (2.43)
und die Feldrenormierungskonstanten:
02" = —R{Z(My)}
vz 2
6277 = —R{Z77 (M)}, 5272:—2m{w}
MZ
VA Z;’ZI(O) 4
5777 = 2R . . 027 = =%77(0)
MZ
sZz" = R{ZT(MH)}
5700 = R {2fmd) | — miR {2f (mt)2F (m) + 25 (m) }
52/% = —R{Shm) } - miR {SL ) S m) + 25 (i) }

(2.44)

Y ist die unrenormierte Selbstenergie und die Indizes T, S, L, R, stehen fur die transver-
salen, skalaren, links- und rechtshandigen Komponenten der entsprechenden Selbst-
energie. Als abkilrzende Schreibweise wird

(2.45)

verwendet.

Die Tadpole werden so renormiert, daB sie sich zusammen mit ihrem Counterterm weg-
heben und werden hier nicht aufgefuhrt. Durch diese Renormierungsbedingung wird
erreicht, dall v das Minimum des Higgs-Potentials bleibt.
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Im On-Shell-Schema ist der schwache Mischungswinkel definiert Gber die Eichboson-
massen:

s =1— =W (2.46)

Dadurch ist auch der Counterterm zum Mischungswinkel durch die Counterterme der
Eichboson-Massen festgelegt:

dsw Gy ((5]\/[% (5M$V>

= — 2.47
O VE R V) (2.47)

Um die renormierte elektromagnetische Ladung mit der im Experiment gemessenen zu
verknupfen, fordert man, daf? die Kopplung des Photons an das Elektron inklusive der
Strahlungskorrekturen im Grenzfall eines verschwindenden Impulstbertrags, also im
Thomson-Limes, mit der klassischen Ladung tGbereinstimmt:

u(p)L (p, p)u(p) = ieu(p)yuu(p) - (2.48)

p?=m2

f‘ze'y(p,p) ist die renormierte Dreipunkt-Vertexfunktion zum Elektron-Photon-Vertex. Der
Ladungscounterterm mulf3 also elektroschwache Strahlungskorrekturen zum eevy Vertex

im Thomson-Limes kompensieren. Die Renormierungsbedingung lait sich unter Zuhil-

fenahme einer Verallgemeinerung der QED Ward-Identitat [20] vereinfachen und man

erhalt [19]:

57, = —sgg W sz
2 QCVV
1 Sw A . 2 E’jy“’y(pQ)
— ZI(0) = Y5727 mit " = ) 2.49
2 (0) 2w ’ v p? (249)

In dieser Arbeit werden soweit moglich alle Fermionen aufer dem Top-Quark als mas-
selos gendhert. Die QED-Beitrage der Photon-Vakuumpolarisation liefern jedoch loga-
rithmische Terme in den Fermion-Massen, wodurch eine Naherung verschwindender
Fermion-Massen nicht unmittelbar moglich ist. Den leptonischen Anteil kann man un-
ter Verwendung der Lepton-Massen berechnen. Die Massen der leichten Quarks sind
bei niedrigen Energien durch QCD-Effekte nicht wohldefiniert. Im Fall der Quarks wird
eine Dispersionrelation zur Hilfe genommen. Dazu spaltet man die Vakuum-Polarisation
bei einer ausreichend hohen Energie auf. Da fur elektroschwache Prozesse die Masse
des Z-Bosons eine naturliche Skala darstellt, wéhlt man p? = M2 als Energie fur die
Aufspaltung:

M7(0) = —RI(MJ)+T177(0) + R (M)
= R (M2) + R (M2) . (2.50)
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Der Realteil der renormierten Vakuum-Polarisation
RIT (MZ) = RIT (M2) — I177(0) (2.51)

bildet eine UV-endliche Grol3e. Die fermionischen Beitrage konnen aufgespalten wer-
denin:

RTT)

ferm

(M) = R

lept

(M7) + RIT (M) + T, (M) - (2.52)
Der Beitrag des Top-Quarks ist per Konvention nicht im hadronischen Anteil enthalten.
Da die Top-Masse gro3 genug ist, kann man die Beeinflussung durch nicht-stérungs-
theoretische QCD-Effekte in I1"7(0) vernachléssigen und diesen Anteil der Vakuumpo-
larisation direkt berechnen:

Ao(mt)

m
9m?

wp(0) = —(D = 2) ) (2.53)

200

wobei D die Dimension in dimensionaler Regularisierung ist (siehe Abschnitt 3.1) und
Ao (M) die skalare Einpunktfunktion bezeichnet (Konventionen wie in [19]).

Die Grofie

Ao = AOélept + AOéhad = _gRﬂiYe’I)t

(M) — R, (M) (2.54)
entspricht einer Verschiebung der elektromagnetischen Feinstrukturkonstante:
Aa(M3) = a(l + Aa) + O(a?) . (2.55)

Der leptonische Beitrag kann mit nichtverschwindenden Fermion-Massen direkt be-
rechnet werden. In O(«) erhalt man:

« MZ 5 m?

Aalept = Z g (lﬂﬁ12 - g) + @) (ﬁ% = 0.031419. (256)

l=e,u,7
und wenn Beitrage bis O(a?) bericksichtigt werden [21] ergibt sich:
Acyep; = 0.0314976 . (2.57)

Der hadronische Beitrag Aay.q kann mittels einer Dispersionsrelation

« > RY(s")
Aopag = —=— M2R ds' 2.58
(had 3r 2 am2 ’ s'(s' — M2 — ie) (2.58)
mit
R(s) = o(ete” — v* — Hadronen) (2.59)

olete” = y* — ppt)
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bestimmt werden. Hierin kdnnen die Beitrage hoher Energie im Rahmen der pertuba-
tiven QCD ermittelt werden. Bei niedrigen Energien, die nicht mehr im Rahmen der
pertubativen QCD behandelt werden kénnen, missen Mefl3daten zur Hilfe genommen
werden. Das so erzielte Ergebnis [22]

Aapag = 0.02804 =+ 0.00065
— Aa = 0.05954 + 0.00065 fur My, = 91.1867 GeV (2.60)

hat einen Fehler, der fast ausschlie8lich durch die Ungenauigkeit des experimentellen
Inputs bestimmt ist. Eine alternative Rechnung hat die pertubative QCD bis zu einer
Energieskala m, angewandt [23], wodurch eine Reduzierung der Ungenauigkeit er-
reicht wurde:

Adpag = 0.02774 £ 0.00017 . (2.61)

Die bisher aufgefihrten Renormierungskonstanten sind far Berechnungen von physi-
kalischen S-Matrixelementen ausreichend. Da die unphysikalischen Geist- und Higgs-
Felder nur als innere Linien auftreten, fallen ihre Feldrenormierungskonstanten bei der
Berechnung physikalischer Grofien heraus und werden deshalb nicht ben6tigt. Um aber
bei Zwei-Schleifen-Rechnungen eine zusatzliche Kontrolle zu haben, ist es sinnvoll,
auch far diese Felder Renormierungskonstanten einzufuhren. Das Verschwinden die-
ser Konstanten im Endergebnis liefert dann eine zuséatzliche Kontrolle. Da diese Felder
nur als innere Propagatoren in Feynman-Diagrammen auftauchen, genugt es fur die
Zwei-Schleifen-Rechnungen die entsprechenden Renormierungskonstanten bis zur er-
sten Ordnung einzufthren.

Far die unphysikalischen Higgs-Felder fihrt man folgende Renormierungskonstanten
ein [29]:

0 = V20T =(1+302%)¢"

Xo = VZxxy=(1+ %(52"))( , (2.62)
und fur die Geistfelder benutzt man:
ui = VZrE =1+ 875, e =t wf =a?, aj=a",

(%) E 7 Ve ) ()

(2.63)

Die im Eichfixierungssektor der Lagrangedichte auftretenden Eichparameter sind reelle
Zahlen die man frei wahlen kann. Man kann diese GrofRen aber auch als unrenormierte
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Parameter der Lagrangedichte auffassen und eine Renormierung des Eichfixierungs-
sektors durchfuihren. Speziell kann man das Renormierungsschema so wahlen, dal3 der
Eichfixierungsterm invariant unter Renormierung ist [24]. Damit ist gemeint, da3 der
Eichfixierungsterm seine Form nicht &ndert, egal ob man ihn in nackten oder renor-
mierten GroRen schreibt. Im hier benutzten Schema gentigen die renormierten Eichpa-
rameter der R¢-Eichung:

& 0 Ve EN\ vz e
1 =
0 N %ng \/lg_Z %5ZZ7 777 ’
1
M2 + 6 M3
é—Z _ é—Z Z Z 7X ’
2 M%
fW MZ +(5M2
& = =gl WMVQV W 76 (2.64)

Eine Entwicklung bis zur ersten Schleifenordnung ergibt:

AL AR
iY:é"Y(]__*_(SZ’Y’Y)’ éJYZ:_ /—g,y ) £Z’Y:_—/§_27
& =& (1+0277), & =& (1+02" - —5M2%) :
MZ
= a),  = ey aze - D) (269
W%

Durch eine derartige Renormierung erreicht man, daf sich die Form der Feynman-Re-
geln far die Eichbosonen in héheren Ordnungen nicht dndert. Die Form der Counterterm-
Feynmanregeln im Geistsektor wird allerdings von der Renormierung der Eichbosonen
beeinfluft.

2.2.2 Zwei-Schleifen Renormierung

Far die hier betrachteten Prozesse bendtigt man die Zwei-Schleifen-Counterterme der
Eichboson-Selbstenergien, sowie des Wte™7.-Vertex, des W .~ v,-Vertex und des Zete -
Vertex. Zuséatzlich wurde der Zwei-Schleifen-Counterterm fir den ve™e™-Vertex bestimmt.
Diese bestimmt man, indem man in den hierftr relevanten Teilen der Lagrangedich-
te die nackten durch renormierte Parameter und Counterterme ersetzt und anschlie-
Rend den Counterterm-Anteil der Lagrangedichte abspaltet. Bei der Bestimmung der
Counterterme fur die Selbstenergien der neutralen Eichbosonen muf3 man bertcksich-
tigen, dal} Photon und Z-Boson in der Lagrangedichte mischen. Deshalb mul3 man die-
se gemeinsam renormieren. Auf diese Weise erhalt man folgende Counterterme zu den
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Selbstenergien [25]:

WV»V«A@WWM = —igu (62 (k* — Myy) — Z" My, + ik, k02" (2.66)
WZM@}NZVM = —igu (0277 (k* — M7) — Z770Mj + 1(627%)*k?)

+ ikyk, (6277 + 1(6277)?) | (2.67)
ot = g, (32T + HOZ7 (K — M — 6M))

+ikuk, (6277 + $(0277)%) (2.68)
W?“@NZW” = —igu (%52%/%(/# ~ M2 - oM2) + %52%/%/&)

+ikky (%6ZZ7\/ﬁ n gazvzm) . (2.69)

Diese Counterterme mussen nun bis zur zweiten Ordnung in den Renormierungskon-
stanten entwickelt werden. Dabei wird die Notation 6.2 bzw. M%) far die Feld- bzw.
Massenrenormierungskonstante des Teilchens X in i-ter Schleifen-Ordnung verwen-
det. Wie bisher wird das Hut-Symbol ~ fur renormierte GroRen verwendet. Die Zwei-
Schleifen-Selbstenergien bzw. Vertexkorrekturen bezeichnen immer samtliche irredu-
ziblen Beitrage O(«?), also die Summe aus echten Zwei-Schleifen-Diagrammen und
Sub-Schleifen-Renormierungen.

Mit den obigen Countertermen erhalt man ftr die renormierten Zwei-Schleifen Trans-
versalteile der entsprechenden Selbstenergien:

SV (k) = SWg) (k) + 625 (k> — My,) — 6 My

—0Z1) 6 My (2.70)
Sy () = SHay(F) + 025 (F — M3) ~ My — 52§ 5Mj,

+106205)7, (2.71)
Sa(K) = Sty (R)+ 02K + 0250 - 01)). @1)

S0 = Y0 + (3020 + 1203025]) (- 3)

+ (30720 + L0200 70 ) W — Loz oM (2.73)
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Die benotigten Vertex-Counterterme fur den geladenen und neutralen Strom lauten:

A
— i%%wg [ZW ZvL zeL (2.74)

W by (sw + dsw

f
W\Z“®< = ie%erZer’R ((nggv — Zg,9u)V Z%% — QV ZWZ)
f

+ieyw_Z, 700 ((Zg,,gv + 7, g )N 777 — Q\/ZvZ) . @75)

f
*NVV®< = ie%erZer’R ((nggv — Z4,9a)V 277 — QV ZW)
f

e 22 ((Zg,g0 + Zyg V2T —QVZT) . (276)

wobei die Vektor- und Axialvektorkopplung gegeben ist durch:

. 13 — 2QS%V . [3 — 2Q(SW + (5SW)2
v 2SWCW ’ Joov 2(SW + 5SW)(CW + 5CW) ’
I3 I3
a = ; a = . 2.77
9 28WCW 99 2(SW + 5SW)(CW + 5CW) ( )

I3 ist die dritte Komponente des Isospins des Fermions und @ ist seine Ladung in Ein-
heiten der Elementarladung, also @ = —1 und I; = — fur das Elektron.

Entwickelt man die Counterterme jeweils bis zur zweiten Schleifen-Ordnung, so ergibt
sich:

Ve~ . [§] 58 58 2 68
62\%;:;?2) = Z\/ﬁig%‘wf |:5Ze(2) — SW(Q) + < SW(I)) — 5Ze(1) SW(l) 4
w W W W
HOZgh + 025 +0218) = § (GZ)" + (6257 + 62

dsw)

+1 (628(1) — > (62(81% + 5ZE’1L) + 6Z(‘f))

Sw

+1 (0250205 + 6 2k 2 + 52{352{5)] , (2.78)
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ity = W {%52(7;) — 0 74,2) 9a + 6 Ze(2) (90 — 9a) + 0215 (90 — 90)
+§5Zzz (90 = 9a) + §6Z(5)? (90 = 90) + 6 Z4,00) 90 + 30201, 6 20y}
—0Z4,01 5Z +0Z4,1) 9o 5Z(f)R
O <_%5ZQG(” 9o+ 3024, 90 + % (90— 90) 25

+6Ze(1) <%6Z&Z) — 6Zga(1) Ja =+ 6ng(1) qg

HROZH (= 00) + 00— 00) 524 |
+ ey, w_ {%5Z(72Z) +02g,2) 9o +0Z4,2) 9

+6Ze(2) (9a+ 90) + 3205 (90 + 90)

+30205 (9o + 90) — $(6Z(5)? (90 + 90) + %62&% 6Z(f1’)L
+0Ze(1) (%5Z&Z> + 6 Zg,(1) Yo + 0Zg,1) 9

+30205 (90 + 90) + (9a + 90) 5Z{£)L)

+5Z(Zl% <%5Zga(1) ga + %5ng(1) g’U + % (ga + g’(}) 6th1,)[/>

+0Z4,(1) Ya (5Z(f1’)L +0Zg,(1) 9v 5Z(ff)L] : (2.79)
52\7,23;( 2 = evuwy [%52(727) +0Ze2) + 52{2’;3
+302.) 9a) — $(0200) + 5020 02}

(9o
+0Ze1) (30 Z’Y’Y 15227 (9o — ga) + 5Z(f1,)R)
+5Z(Zl"; <—% (6Z4,1) 9a) + 50Zg,1) 9o + 3 (9o — Ya) 5Z(f1’)R> }
+ ie%w, [%(52(72; + 528(2) + 5Z};L
+50Z05) (9a+ 90) + 3021 + 502621
+0 Zo(1) (%52&3 + 50285 (90 + 90) + 027 )
+6Z(]) (gézgam 9o+ 30Z4,1) 9o + 3 (9 + 9v) 52{1{)] . (2.80)
Festlegung der Renormierungskonstanten:

Die Zwei-Schleifen-Renormierungskonstanten werden nun wie schon auf Ein-Schleifen-
Niveau durch Renormierungsbedingungen festgelegt, welche die renormierten Para-
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meter mit Observablen verknupfen.

Massen der Eichbosonen:
Die Masse eines Eichbosons wird, wie in (2.25) bis (2.27), als Realteil des nun auf Zwei-
Schleifen-Niveau komplexen Pols der S-Matrix:

M2 =TT+ A (2.81)

festgelegt. In Gleichung (2.81) bezeichnet M? den komplexen Pol der S-Matrix. M und
A werden als die Masse und Breite des zugehorigen instabilen Eichbosons interpretiert.
Alternativ liefert auch eine Festlegung des Massenparameters als Nullstelle des Real-
teils der renormierten Selbstenergie

R{ZF (M)} =0, (2.82)

endliche renormierte Selbstenergien. Fur den so definierten renormierten Massenpara-

meter wird das Symbol M verwendet. Die beiden Definitionen (2.81) und (2.82) unter-
scheiden sich aber in der Eichparameterabhangigkeit [27, 28].

In [28] wurde im Standardmodell mit Hilfe von Nielsen-ldentitaten die Eichunabhangig-
keit des komplexen Pols der S-Matrix als Definition der physikalischen Masse fur alle
Teilchen in allen Ordnungen der Storungstheorie bewiesen. In [29, 30] wurde explizit
auf Zwei-Schleifen-Niveau verifiziert, dal nur die Verwendung des komplexen Pols
ein eichparameterunabhéangiges Resultat flr den renormierten schwachen Mischungs-
winkel, welcher eine observable GroRe darstellt, liefert.

Benutzt man, dal? der Propagator gerade das negative Inverse der renormierten 1-Teil-
chen-irreduziblen Zweipunktfunktion ist, kann man die Renormierungsbedingung (2.25)
fur die W-Masse schreiben als

PW(MZ) = —i (M%V I+ i;Y(M%V)) ~0. (2.83)

Setzt man nun Real-und Imaginarteil in (2.83) getrennt gleich Null, so erhalt man mit
Hilfe von (2.66) und (2.70) Bedingungen fur § V%, und Z":

R{ZY (M)} = oMy 2" (2.84)

S M)} = Z2VMWAY () . (2.85)
Entwickelt man beide Gleichungen mit Hilfe von

2

— ¢ A2 ~F *W ==
zﬂz)(M%v) = z;v(z)(MW) + zﬂl)(MW) (iMwAyy(Mw)) + ... (2.86)

bis zur zweiten Schleifenordnung und eliminiert die Breite aus (2.84) und (2.85), so
kann man die Zwei-Schleifen Massen-Renormierungskonstante des W-Bosons durch
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den Transversalteil seiner unrenormierte Zwei-Schleifen Selbstenergie und Ein-Schleifen
Selbstenergien bzw. Renormierungskonstanten ausdricken:

—2 —9 —2 Jp— —2
O My o) = §R{E:IVY(Q)(]V[VV)} - 5Z(W1)5MW(1) + %{EJVY(I)(MW)}%{EJVY(I)(MW)} : (2.87)

Verwendet man statt des komplexen Pols die Bedingung (2.82):
R{ZY (M)} =0, (2.88)
ergibt sich die Renormierungskonstante als:
SMy) = R{EW o) (ME)} — 0250 My, - (2.89)

Die so definierte Masse liefert aber eichparameterabhangige Resultate fur physikalische
Observable.

Bei der Berechnung der Z-Massenrenormierung mufd man die Mischung der neutralen
Eichbosonen (2.36) bertcksichtigen. Man kann die Renormierungsbedingung mit Hilfe
von (2.39) als

R 2
(E7 M)
M+ 57 (M)

(DY) N (MZ) = =i | M — My + 57 (M2) —0 (2.90)

schreiben. Nun setzt man wieder Real-und Imaginarteil getrennt gleich Null und ent-
wickelt bis zur zweiten Schleifenordnung. Dabei wird ausgenutzt, dald der Term

W) = —(~i5) o (Z ((—m) ;_)) &

_ <2%ZAU€2_)) , (2.92)
kQ_'_E;/:/(kZ)

welcher der Z-vy-Mischung entspricht, keinen Ein-Schleifen-Beitrag zum Z-Propagator
liefert:

(57, M)
M;

SchlieRlich erhalt man far die Zwei-Schleifen Massen-Renormierungskonstante des Z-
Bosons:

Gz (M7) =0, iz (M3) = (2.92)

2 2

—2 —2 — e —
OMyn) = §R{E%%z)(Mz)} - 6Z(Zl%5MZ(1) + %{E%%)(Mz)}%{xzzr%l)(Mz)}
—2
— 2 S, (M)}
+107, (52{3) TR A0S . (2.93)

My
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Wird zur Definition der Masse (2.82) herangezogen,
R{ZH (M7)} =0, (2.94)
so erhalt man als Massen-Renormierungskonstante:

S{27(,) (M7)}
M;

—~ —~ —~ —~ 2
SMZ ) = R{SHy (MZ)} — 62756 E ) + 10T (5233) n (2.95)
Diese Definition liefert, wie bei der W-Massenrenormierung, eichparameterabhéangige
Resultate fur physikalische Observable.

Ladungsrenormierung:

Die Ladungsrenormierung kann man aus Feldrenormierungskonstanten der neutra-
len Eichbosonen mittels der U(1)-Ward-Identitat bestimmen. In beliebigen Ordnungen
Storungstheorie lautet diese [24]:

Z% .
57, (vVzr + 2t Osw 9 —1, mit dew = —Visy . (2.96)
cw + ooy 2 Cw

Entwickelt man diese Beziehung bis zur zweiten Schleifenordnung

V/
(SZ(I’;(SSW(U

23 , (2.97)

Sw v/
072y = —30 7)) — so 02+ (6Ze1)* + 5(0Z0) +
so sieht man, dal? zur Bestimmung der Ladungsrenormierung noch die Zwei-Schleifen-
Feldrenormierungskonstanten 5Z(727) und 5Z(Z2; bestimmt werden mussen. Die Renormie-
rungsbedingungen (2.27) und (2.32) konnen umgeschrieben werden in Bedingungen,
die man an die renormierten Selbstenergien stellt:

oSy (k)
Ok?
Mit (2.72) und (2.73) konnen die Feldrenormierungskonstenten bestimmt werden:

=0, 270)=0. (2.98)

k2=0

oY (kz)
Y T(2) 1 Y72
12 (0)  SM2,,6277
z T(2) 2”7 (1) z
075 7~ P 302502 (2.100)

und damit kann schliel3lich auch die Ladungsrenormierung nach (2.97) berechnet wer-
den.

Die reinen QED-Beitrage zur Photon-Vakuumpolarisation weisen Massensingularitaten
auf. Diese Beitrage sind aber in A« enthalten. Die Verschiebung der Feinstrukturkon-
stante enthalt den mittels einer Dispersionrelation ermittelten Beitrag der leichten Quarks.
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Der auf diese nicht-storungstheoretische Weise ermittelte Wert fur Aa entspricht einer
theoretischen Berechnung der Korrekturen in allen Ordnungen. Wie im Ein-Schleifen
Fall mu man die QED-Diagramme beim Impulstbertrag M? berechnen. Diagramme
mit massiven Top-Quarks kdnnen direkt bei verschwindendem Impulstibertrag berech-
net werden.

Die schwachen Korrekturen zur Vakuumpolarisation, also die Diagramme mit W- und
Z-Boson-Austausch inklusive zugehoriger Countertermdiagramme, liefern ftr verschwin-
dende Fermionmassen insgesamt einen endlichen Beitrag zur Photon-Vakuumpolarisa-
tion. Dabei entstehen allerdings bei der Berechnung von Teilbeitragen ktnstliche Singu-
laritaten, die durch Fermion-Massen und Massen-Counterterme fur alle Fermionen re-
gularisiert werden mussen. Erst nach Aufsummation aller Diagramme kann der Grenz-
fall verschwindender Fermionmassen betrachtet werden.

Feldrenormierung fur W- und Z-Boson:

Zur Berechnung der Feldrenormierung von W- und Z-Boson muf} die Ableitung der
transversalen Selbstenergie an der komplexen Polstelle bestimmt werden, denn die Re-
normierungsbedingungen (2.30) und (2.31) lassen sich umschreiben in:

R {E}’Y’(M%V)} —0, ® {EZZ’(M )} ~0. (2.101)
Mit Hilfe von
Sy (ME) = S5 (M) + S0 (M y) - (M x Ay (Mx)) + ... (2.102)
erhalt man die Feldrenormierungskonstanten:
57 = %{EW(’)(MW)} {EW” (M } { (M )} (2.103)
57 = —%{2%) (M%)} {EZZ” } {EZZ M, }
—100215)7 . (2.104)

Verwendet man in Analogie zu (2.82) die Nullstelle der Ableitung der renormierten
Selbstenergie, so erhalt man:

62t = —R{SH ()} (2.105)
628 = -R{SEHOB)} - 162))* . (2.106)
Zur Berechnung der Vertex-Counterterme bendtigt man die Feldrenormierungskon-

stante fur die Photon-Z-Mischung. Indem man eine Entmischung von Photon und Z

auf der Z-Massenschale fordert, erhalt man aus (2.73):
7o §R {E’yz MQ }
5Z’YZ — 5ZZ’Y% _ 1527Z5Z77 _9 T(2)( Z)
(2) (1) 2 2742 )
Z

= (2.107)
M;
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FUr die Bestimmung der Vertex-Counterterme sind auch die Feldrenormierungskon-
stanten fur die duBeren Fermionen bis zur zweiten Schleifen-Ordnung zu ermitteln.
Fur die hier betrachteten Prozesse kdnnen diese Teilchen als masselos genghert werden
und QED-Beitrage bleiben unbericksichtigt (siehe Diskussion in Abschnitt 5.4.1 und
Abschnitt 7.3). Mit diesen Naherungen erhéalt man fur den Counterterm der Fermion-
Selbstenergien:

®

=i (fw_Z"" + g, ZV%) fur m =0, (2.108)

~

woraus sich die renormierte Selbstenergie in zweiter Schleifen-Ordnung ergibt:

Sp) = (Mo S, S
Sy @*) = Sg0°) + 07y
p’) = S ) +025 . (2.109)
Die Renormierungsbedingung lait sich ftr m; = 0 schreiben als:
sHo)y=0, SME@0)=0. (2.110)
Daraus folgen die Renormierungskonstanten:

ILL I,L
0Zy = —S(0), (2.111)

LR IR
075 = —Xp (0) . (2.112)
Der Imaginarteil der Selbstenergie muf3 in der Definition der Renormierungskonstan-
ten nicht bertcksichtig werden, da die Leptonen in der Naherung, dald sie masselos
sind, nicht zerfallen kdnnen. Ein Imaginarteil der Selbstenergie wiirde mit der totalen
Zerfallsbreite des Leptons korrespondieren.

FUr die Bestimmung der Vertex-Counterterme wird aul3erdem die Renormierungskon-
stante des Mischungswinkels auf Zwei-Schleifen-Niveau benétigt. Da der Mischungs-
winkel definiert ist Gber die Eichbosonmassen (2.46), ist seine Renormierungskonstante
eine Kombination aus den Massenrenormierungskonstanten der Eichbosonen:

2
Iswa M (5M§<2>_5Mv2vu>) My <5M§(1> 5Mv2vu>>

swo 2su M2\ M2 M2 | 8sk M) B

M3 M,
ME, OMg <5M§<1> 5Mv2vu>>

252, M2 M} a

2.113
2 iz, (2.113)




Abschnitt 2.2 On-Shell-Renormierung des Modells 27

2.2.3 Polmasse und experimentell gemessene Masse

Im vorangegangenen Abschnitt wurde zwischen zwei Moglichkeiten die Masse der
Eichbosonen im On-Shell-Schema zu definieren unterschieden. Man kann den Massen-
parameter entweder als Realteil des komplexen Propagatorpols M oder als Nullstelle

des Realteils der renormierten transversalen Selbstenergie (2.82) ]T/ffestlegen, wobei nur
die Benutzung des komplexe Pols eichparameterunabhangige Resultate fur physikali-
sche Observabele liefert. In diesem Abschnitt soll nun der Frage nachgegangen werden,
wie die beiden unterschiedlich definierten Massenparameter mit der experimentell ge-
messenen Masse in Beziehung stehen.

Experimentell wird die Masse von W- und Z-Boson durch den Fit einer Breit-Wigner
Funktion mit energieabhangiger Breite:

$
(s — M?)2 4+ $2A2/M?

o(s) ~ (2.114)

an die MefRRdaten bestimmt [46].

Theoretisch berechnet man den Wirkungsquerschnitt flr die Produktion eines Vektor-
bosons Uber das Betragsquadrat des S-Matrixelements und damit Uber das Betragsqua-

drat des Transversalteils des 1-Teilchen-reduziblen Propagators D{"™:
2

o(s)~s ‘Dg}PR)(s)‘ (2.115)

Der zusatzliche Faktor s resultiert dabei aus der Kinematik und Phasenraumintegration.

Summiert man alle reduziblen Beitrage zum W-Propagator auf, so erhdlt man fur den
1-Teilchen-reduziblen Propagator:

—i
¢2 = Mg + ¥ (¢?)

DG (g?) = (2.116)

wobei EIVY der Transversalteil der irreduziblen W-Selbstenergie ist. Beim Z-Propagator
mufR man die Z-Photon-Mischung beachten und erhalt:

—1

DUFR 42y = _ : 2.117
7T (q ) q2 . M% + E%,eﬁ (qz) ( )
wobei die effektive renormierte irreduzible Z-Selbstenergie gegeben ist durch:
. . in 2
S2(q?) = Sh(g") — =2 () (2.118)

q2 + 2%7((]2) )

Um einen Ausdruck zu erhalten, der mit (2.114) vergleichbar ist, muf3 nun der 1-Teilchen
reduzible Propagator um die Polstelle entwickelt werden. Das Betragsquadrat des resul-
tierenden Ausdrucks kann dann mit der Breit-Wigner Funktion verglichen werden.
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Betrachten wir zunichst die Definition der Masse M (iber die Nullstelle des Realteils der
renormierten transversalen Selbstenergie (2.82. Der Nenner des 1-Teilchen-reduziblen
Propagators laBt sich mit ¢> = s schreiben als:

s= M+ S(s) = 5= MR {8 ()} + R {501 } (s - 31?)
)

+iy {f)T(s)} +0 ((s — M?)?

~ |s—r+ : +%{ig(ﬁ2>}%{iT(s)} (1+n {0} .

(2.119)

Der Imaginarteil der Selbstenergie 1aR3t sich mit der Zerfallsbreite des jeweiligen Eich-
bosons identifizieren. Diese hat in Born-Approximation unter Vernachlassigung der
Fermion-Massen eine lineare Impulsabhangigkeit [31]:

s, = 224, (2.120)
{Er0m) =72
wobei A die Breite auf der Massenschale ist. Bertcksichtigt man nun noch dal3 1 +

§R{§’T(M2)} einer Feldrenormierungskonstanten Z entspricht, so kann man den 1-Teil-
chen-reduziblen Propagator schlie3lich schreiben als:

_,7-1
DUPR (g 2 (2.121)

Dies liefert mit (2.115) die gleiche Breit-Wigner-Funktion, die auch zur Bestimmung der
W- bzw. Z-Masse aus den experimentellen Daten benutzt wird. Verwendet man also die
Nullstelle des Realteils der renormierten transversalen Selbstenergie zur Festlegung des

Massenparameters M, so muB man diesen direkt mit dem experimentell gemessenen
Zahlenwert identifizieren.

Wenden wir uns nun der Definition der Eichboson-Masse Uber den komplexen Pol der
S-Matrix (2.81) zu. In diesem Fall 143t sich der Nenner des 1-Teilchen-reduziblen Propa-
gators mit ¢> = s schreiben als:

s=M +5p(s) = s— M +Sp(M2) + (M) (s — MO ((s — M?)?)
_ (s Y iM) (1 + i’T(M2)>

_ (s By y im) (1 TR {E’T(MQ)})

x| 1+

1+%{21T(M2)}%{2'T(M2)} : (2.122)
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wobei ausgenutzt wurde, dal3 die renormierte 1-Teilchen-irreduzible Zweipunkt-Funk-
tion an der komplexen Polstelle verschwindet:

Pr(M2) = —i (M2 iy 2T(M2)) . (2.123)

Identifiziert man 1 + R{%/.(M?)} wieder als Feldrenormierungskonstante und driickt
den Imaginarteil S{>/.(M?)} durch die Breite auf der Massenschale aus:

S {ET(MZ)} —ZM R, (2.124)
so ergibt sich fur den 1-Teilchen-reduziblen Propagator:

—\ —1
—iz7t (1+i5)

DY (5) N M/ (2.125)
R T I T
Hieraus ergibt sich eine Breit-Wigner-Funktion mit konstanter Breite:
S
o(s) ~ (2.126)

(s— M2+ A/

Far die experimentelle Bestimmung der Eichboson-Massen wird aber eine Breit-Wigner-
Funktion mit energieabhangiger Breite (2.114) verwendet. Die beide Formeln (2.114)
und (2.126) lassen sich durch eine Parametertransformation ineinander UberfUhren:

jy Ao 2 (2.127)

V1+2 V1t 5

Diese Parametertransformation liefert somit auch den Zusammenhang zwischen expe-
rimentell bestimmter Eichboson-Masse und dem Massenparameter in unseren Berech-
nungen M.
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Kapitel 3

Regularisierung

Bei pertubativen Rechnungen in Quantenfeldtheorien, wie dem Standardmodell, tre-
ten oftmals divergente Integrale auf. Ist die Theorie renormierbar, so kdnnen die Di-
vergenzen mittels Renormierung mit Hilfe von Countertermen kompensiert werden.
Die divergenten Integrale mussen jedoch geeignet re-definiert werden, um die endli-
chen Anteile zu extrahieren. Daftr wird ein Verfahren, die sogenannte Regularisierung,
benotigt, welches die Theorie temporar so modifiziert, dal} die Integrale endlich sind.
Nach Abspaltung der Divergenzen durch die Renormierung kann dann durch einen
Grenzubergang wieder zur physikalischen Theorie Uibergegangen werden.

Die regularisierte Theorie muf3 dabei unweigerlich physikalische Eigenschaften oder
Symmetrien der eigentlichen Theorie verletzen, sonst wtrde es sich ja um eine erfolg-
reiche endliche physikalische Theorie handeln. Ein ,,gutes* Regularisierungsverfahren
sollte dabei soviele physikalische Eigenschaften der Theorie erhalten wie moglich. Fur
das Standardmodell bedeutet dies insbesondere, dal die regularisierte Theorie relativi-
stisch kovariant und eichinvariant bleiben sollte. Im folgenden werden zwei verschie-
dene Regularisierungsverfahren vorgestellt, die auch in dieser Arbeit verwendet wur-
den. Dabei wird besonders auf das Problem der Definition von 5 in der dimensionalen
Regularisierung eingegangen.

3.1 Dimensionale Regularisierung

Die dimensionale Regularisierung ist eines der wichtigsten ,Werkzeuge* bei pertuba-
tiven Berechnungen in nicht-abelschen Eichtheorien. Die Vorteile des Verfahrens beste-
hen darin, dal3 es zum einen alle Divergenzen, die durch Quantenkorrekturen auftreten,
also Infrarot- und UV-Divergenzen, regularisiert. Zum anderen werden in den meisten
Fallen die Symmetrien der Theorie, speziell relativistische Kovarianz und Eichinvari-
anz, erhalten.
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Das Verfahren beruht auf einer kontinuierlichen Fortsetzung der Anzahl der Dimen-
sionen in den Schleifenintegralen auf D Dimensionen. D ist dabei eine beliebige im

allgemeinen komplexe Zahl:
d*k i D dPk
/ ) = U / 2m)P - (3.1

Dabei wird ein beliebiger Massenparameter n eingefuihrt, damit die Dimensionen der
Kopplungskonstanten vor den Integralen unabhangig von D bleiben. Der metrische
Tensor hat die Eigenschaft

gﬁ — guuguﬂ = TI'(]I) =D , (32)
und die Dirac-Algebra wird auf D-Dimensionen verallgemeinert:

{’V,ua 71/} = 29uu]1 . (33)

Die physikalische Theorie erhalt man nach der Renormierung durch den Grenztber-
gang D — 4.

3.1.1 Definition von 5

Schwierigkeiten bei der dimensionalen Regularisierung bekommt man immer dann,
wenn der total antisymmetrische Tensor ¢,,,, ,ins Spiel“ kommt. Bei diesem handelt
es sich um ein intrinsisch vierdimensionales Objekt, welches nicht auf D Dimensionen
verallgemeinert werden kann.

In vier Dimensionen ist die y5-Matrix definiert als:

i

’Ysza

E ooV (34)
wobei y#*7l das antisymmetrische Produkt von vier Gamma-Matrizen ist:
YUl = L (g Py TP gt — Pyt — y TPy (3.5)

AuBerdem antikommutiert v mit den ~,-Matrizen:

{757} =0. (3.6)

Aus (3.4) und (3.6) folgt die Spur-Relation

Tr {7571171/’%70} = 4i5uupa . (37)
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Allein unter Benutzung der Dirac-Algebra in D-Dimensionen (3.3), des verschwinden-
den Antikommutators (3.6) und der Zyklizitat der Spur kann aber in D # 4 Dimensio-
nen

(4 = D)Tr {57777} = 0 (3.8)

hergeleitet werden. Die Spur muR also fiir alle D # 4 verschwinden. Ein stetiger Uber-
gang zum 4-dimensionalen Ergebnis (3.7) ist somit nicht moglich, und man erhalt im
Grenzubergang D — 4 nicht die physikalische Theorie.

In dieser Arbeit wurden verschiedene Moglichkeiten der Behandlung von 5 unter-
sucht. Dabei wurden nur Verfahren bertcksichtigt, welche die Zyklizitat der Spur re-
spektieren:

¢ Im naiv antikommutierenden Schema wird der Antikommutator (3.6) ausgenutzt.
Dies fuhrt allerdings zu obiger Inkonsistenz (3.8). Die Spur Uber ~5 und vier ~-
Matrizen wird im Grenzfall D — 4 Null gesetzt.

¢ Im gemischten (mixed) Schema werden die sich widersprechenden Relationen
(3.6) und (3.7) formal benutzt. Dabei wird der Antikommutator zur Vereinfachung
von Spuren ausgenutzt, und Spuren wie (3.7) werden per Konvention auf den
vierdimensionalen Wert gesetzt. Dies zwar ist mathematisch inkonsistent, es zeigt
sich aber, dall damit trotzdem in bestimmten Fallen praktische Rechnungen maglich
sind, und korrekte Ergebnisse erzielt werden kdnnen.

e t’Hooft und Veltman waren die ersten, die eine Moglichkeit zur mathematisch
konsistenten Behandlung von 5 angaben [32] (HV-Schema). Hierbei wird ~; durch
die Definition (3.4) ersetzt

V5 — 4—&““,,,,07[“"””] , (3.9)
und der 4-dimensionale ¢,,,,-Tensor aullerhalb der R-Operation gehalten, also
speziell aulRerhalb aller dimensional regularisierten Integrale. Nach erfolgter Re-
normierung ist der Grenzibergang zu vier Dimensionen maoglich und anschlie-
Bend kann mit den ¢,,,,-Tensoren kontrahiert werden. Der Nachteil dieses Ver-
fahrens ist, dal man fur jedes auftretende 5 durch die Ersetzung vier neue Lor-
entzindizes erhalt, was die Tensorreduktion aufwendig macht. Deswegen ist es
far praktische Rechnungen sehr nutzlich zu wissen, dal3 die symmetrisierte Axi-
alkopplung hier auch direkt ersetzt werden kann:

0
!

7: vpo
% (7{175 - 75704) — Jgaupa’y[ d 9 (310)
wodurch nur zwei neue Lorentzindizes auftreten. Diese Art der Behandlung wur-

de bereits in mehreren Arbeiten zur Berechnung physikalischer Prozesse verwen-
det [33].
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e Breitenlohner und Maison [34] haben das Verfahren von t’"Hooft und Veltman for-
malisiert (BM-Schema). Alle D-dimensionalen Grof3en z, also v-Matrizen in Spu-
ren von internen Fermion-Linien und Integrations-Impulse in Schleifen werden
aufgespalten. Der eine Beitrag = enthalt die ersten vier Dimensionen und der an-
dere Beitrag & die Ubrigen D — 4 Dimensionen:

Yo = Vu+ ’?,ua Qu = qu + Cju . (3.11)

Die metrischen Tensoren in 4 bzw. D — 4 Dimensionen dienen als Projektoren auf
die entsprechenden Raume:

guy == guy + guy, gu,,!L’V - .'L’u, guy$y - i‘”" guyxll - i‘u . (3.12)

Die Matrix 5 ist Uber (3.4) definiert und (3.7) ist damit erfullt. Desweiteren gilt,
daR diese Matrix nilpotent ist und mit v-Matrizen in 4 Dimensionen antikommu-
tiert, mit v-Matrizen in den verbleibenden D — 4 Dimensionen aber kommutiert:

(75)2 = ]17 {755 ’V,u} = 07 [’757’7#] =0. (313)

Im Gegensatz zum HV-Schema tritt hier keine Verkomplizierung der Tensorstruk-
tur auf, allerdings muf3 man fur eine Verwendung in Computerprogrammen vier
und D — 4 dimensionale Objekte speziell implementieren. Im Programmpaket
TRACER [35] ist dies zum Beispiel in der Programmiersprache MATHEMATICA [36]
realisiert.

Die Benutzung von BM- oder HV-Schema ist nicht nur technisch aufwendig, beide Sche-
mata flihren dartiber hinaus zu einer Brechung der Eichinvarianz. Es mussen deswegen
zusatzliche Counterterme eingefuhrt werden, die die Eichinvarianz wieder herstellen
(siehe Abschnitt 3.1.2).

Das BM-Schema ist eine Formalisierung des HV-Schemas und insofern mit diesem aqui-
valent. Beide Verfahren werden im Folgenden als HVBM-Schema zusammengefaldt, da
sie die gleichen Resultate liefern. Dies wurde auch durch Vergleich von Rechnungen im
HV-Schema mit Rechnungen im BM-Schema in [29, 30] verifiziert.

3.1.2 Brechung der Eichinvarianz

Im vorigen Abschnitt wurde gezeigt, wie man ~; mathematisch konsistent definieren
kann. Eine solche konsistente Behandlung im HVBM-Schema fuhrt allerdings zu einer
Verletzung der Eichinvarianz der regularisierten Theorie [37].

Spuren, die im HVBM-Schema berechnet werden, weichen gegentiber solchen, die in
vier Dimensionen behandelt wurden, um Terme der Ordnung O(D—4) ab. Solche Terme
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werden im folgenden als schwindende Terme bezeichnet. Beim Ubergang D — 4 ent-
fallen sie. Ist diese Spur allerdings Teil einer geschlossenen Fermionschleife, so kdnnen
die schwindenden Terme auf einen 1-Pol (e = *52) treffen und dadurch einen endli-
chen Beitrag liefern. Es handelt sich dabei um Beitrage, die durch die mit der quanti-
sierten Theorie verbundenen Divergenzen entstehen und kein klassisches Aquivalent
besitzen. Solche Terme kbnnen Symmetrien der quantisierten Wirkung brechen. Diese
zeigt eine Invarianz unter verallgemeinerten Eichtransformationen, den Becchi-Rouet-
Stora-Transformationen (BRS-Invarianz), die zu den Slavnov-Taylor Identitaten fuhren.
Die schwindenden Terme fuhren nun dazu, daR die Slavnov-Taylor Identitaten von den
Schleifenkorrekturen nicht mehr erfullt werden. Diese sind aber zum Beispiel im Stan-
dardmodell wesentlich fur den Beweis der Renormierbarkeit dieser Theorie. Deswegen
mussen im HVBM-Schema zusatzliche endliche Counterterme eingefuhrt werden, um
die symmetriebrechenden Terme zu kompensieren. Die Form der schwindenden Terme
ist dabei vom verwendeten Regularisierungs-Schema abhéangig. Verwendet man zum
Beispiel Pauli-Villars Regularisierung, so ist die Definition von ~; problemlos, allerdings
wird die Eichinvarianz an anderer Stelle gebrochen, und es mussen ebenfalls Counter-
terme zur Kompensation eingefuhrt werden.

Im allgemeinen kdnnen allerdings auch symmetrieverletzende Terme auftreten, die nicht
durch Counterterme kompensiert werden kdnnen. Diese bezeichnet man als Anoma-

lien. Die anomale Symmetriebrechung tritt unabhéangig vom Regularisierungs-Schema

auf. Sie hat einen physikalischen Inhalt. Diese symmetrieverletzende Terme kdnnen sich

aber wie im Standardmodell gegenseitig kompensieren (siehe Abschnitt 3.1.3).

Ein einfaches Beispiel zur Illlustration ist der Zerfall eines neutralen Pions in zwei Photo-
nen. Hier spielt die Adler-Bell-Jackiw-Anomalie eine zentrale Rolle. Man kann das Pion
als Goldstone-Boson der spontan gebrochenen chiralen Symmetrie der QCD beschrei-
ben. Das Pion koppelt dann durch eine Axialvektor-Kopplung an zwei Quarks. Die
beiden Quarks vernichten sich gegenseitig und es werden zwei Photonen abgestrahit.
Eine klassische Rechnung zeigt, daR aufgrund der Erhaltung des Axialvektorstroms

0ujk =0, g5 ="y (3.14)

dieser Zerfall nicht moglich ist. Eine Rechnung mit konsistent definiertem ~; (siehe zum
Beispiel [38]) zeigt aber, daR die Adler-Bell-Jackiw-Anomalie die Erhaltung des Axial-
vektorstroms verletzt:

62

(k, K 9,2 [0) = e ke (k)KL () (3.15)

272

Der klassisch verbotene Zerfall wird also durch die Anomalie in der Theorie erméglicht.
Dies ist ein Beispiel fur den physikalischen Gehalt von Anomalien.
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3.1.3 Kompensation von Anomalien im Standardmodell

Im Standardmodell treten Anomalien insbesondere in Verbindung mit fermionischen
Dreiecks-Diagrammen mit axialen oder chiralen Kopplungen auf. Beispiele sind die
Ein-Schleifen-Korrekturen zu den Vertizes I'??7, 447, T'22Z TYWW yund I'4#"WW, Die An-
omalien verletzen dabei die Slavnov-Taylor Identitaten der Theorie. Diese sind aber
essentiell fir den Beweis der Renormierbarkeit der Theorie.

Bei der Betrachtung von Anomalien im Standardmodell gentgt es, sich auf das Ein-
Schleifen-Niveau zu beschréanken. In [39] wurde gezeigt, dal bei einer Anomalie-Freiheit
auf Ein-Schleifen-Niveau Anomalien in hoheren Ordnungen nicht mehr méglich sind.

Wie im vorigen Abschnitt bereits erwéahnt, handelt es sich bei den Anomalien gerade
um Terme, welche Slavnov-Taylor Identitaten verletzen und nicht durch Counterterme
beseitigt werden kdnnen. Wollte man die Anomalien mittels Addition von Counterter-
men beseitigen, so mufite man Counterterme wie

Ciet? §t0,W, 9,4, bzw. Coct*xa,W, 9,W, (3.16)

fur den T7*"-Vertex bzw. I'*"'W-Vertex in die Lagrangedichte einflihren. Das Problem
ist allerdings, dal3 diese Terme in der Lagrangedichte einer nichtrenormierbaren Wech-
selwirkung entsprechen, da die Konstanten C; eine negative Massendimension haben.
Solche Counterterme durfen also nicht in die Lagrangedichte eingefuihrt werden, und
damit lassen sich die Anomalien so nicht beseitigen.

Im Standardmodell gibt es einen besonderen Mechanismus, der sicherstellt, dal} die
Anomalien wegfallen. Die Anomalieterme heben sich gegenseitig weg, und die Renor-
mierbarkeit der Theorie bleibt erhalten. Betrachten wir zunéchst allgemein eine nichta-
belsche Eichtheorie mit masselosen Fermionen. In [40] wurde gezeigt, dal’ die Anoma-
lieterme in einer solchen Theorie immer proportional

dope = %Tr [Ta {7, Te} (3.17)

sind. Hierbei bezeichnet die ; die Generatoren der Eichgruppe. Verschwindet nun d;.
so verschwindet auch die Anomalie.

Betrachten wir zunéchst Dreiecks-Graphen im Standardmodell mit drei schwachen SU(2) .-
Kopplungen. Die 7; sind dann SU(2) Generatoren. Bildet man nun die Spur und sum-
miert Uber ein Fermion-Dublett, so tragen die beiden Fermionen des Dubletts entgegen-
gesetzten schwachen Isospin und die Summe der beiden Anomaliebeitrage verschwin-
det. Bei Dreiecks-Graphen mit zwei schwachen SU(2).-Kopplungen und einer U(1)-
Kopplung ist (3.17) durch

Tr (Qf {1, 7 }] (3.18)

zu ersetzen. Die 7; sind SU(2) Generatoren und @) ist die Ladung der Fermionen in
der Schleife. Nutzt man nun aus, dall im Standardmodell bei Summation Uber eine
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Fermion-Generation die Gesamtladung verschwindet, sieht man, da’ durch eine Sum-
mation Uber alle Fermionen einer Generation in der Schleife auch die Anomalie ver-
schwindet.

Wenden wir uns nun dem Fall des Standardmodells mit massiven Fermionen zu. Die
Massen der Fermionen brechen die chirale Symmetrie und fuhren zu einer Mischung
der chiralen Eigenzustande. Wegen der unterschiedlichen Massen der Fermionen lassen
sich aus den Feynman-Diagrammen nicht immer Spuren wie (3.18) ausklammern, und
die Beitrage der Ladungen einer Generation heben sich in der Summe nicht mehr weg.
Es waren zusatzliche masseabhangige Anomalien denkbar. Allerdings bekommen die
Teilchen des Standardmodells ihre Massen durch den Higgs-Mechanismus. Die Higgs-
Kopplungen respektieren aber, abgesehen von der spontanen Symmetriebrechung, die
Symmetrien des Modells. Das fuhrt dazu, da® der Higgs-Sektor zusatzliche Beitrage in
den ST-ldentitéten liefert, welche masseabhangige Anomalien verhindern.

Die Kompensation der Anomalien auf Ein-Schleifen-Niveau wurde mit Hilfe folgender
ST-ldentitaten [41], die im Standardmodell flr fermionische Beitrage auf Ein-Schleifen-
Niveau gelten, fur die einzelnen Vertizes verifiziert:

vZy-\Vertex:
Z _
k#FZpt;/(kapaq) - 07 (319)
Pk, pq) = iMgD)X (k,p,q) , (3.20)
vZ Z-\ertex:
Z7
K22 (kpoq) = 0, (3.21)
Pl (k,pg) = iM L)X (k,p,q) . (3.22)
Z 7 Z-\ertex:
K222 (kypog) = iMgUN 7 (k,p,q) (3.23)

YWHW ™~ -Vertex:
BT (ke k ) = e [T () = T (k)] (3.24)

upo po po

FATIW W (kb ko) = Mw T (k, ke ko)

ppo

_ C
+e {FZV;W (—k_) = T72(k) + %rgf (k)] : (3.25)

ZW W ~-Vertex:
FTZW W (b ko) = MDY (k kg k)

upo
—e 2 [T (k) =T (k)] (3.26)
W L

KIDZW S (kb ko) = MwTZ8™ ™ (k ky ko)

npo

W Wt 122\ 5W nzZy
eSW _FW (—k_) | R (k)CWFW(/ﬁ)} . (3.27)
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Als Konvention werden alle Impulse als einlaufende Impulse angenommen. Die Im-
pulse werden den Feldern in den n-Punkt-Funktionen zugeordnet, indem von links be-
ginnend die Impulse den Feldindizes entsprechen. Fur das rechte Feld wird bei den
Zwei-Punkt-Funktionen die Impulserhaltung verwendet und der Impuls nicht explizit
angegeben. Der Drei-Photon-Vertex mul3 nattrlich nicht Gberpruft werden, da es sich
bei diesem um einen reinen QED-Vertex handelt, der keine chirale Kopplung enthalt.

e Im naiv antikommutierenden Schema existieren keine Beitrdge vom **??-Tensor
und die ST-Identitaten sind trivial erfullt. Dabei ist keine Summation tber die
Fermionen einer Generation notig.

e Im mixed-Schema sind die ST-Identitaten fiir einzelne Fermionen einer Generati-
on nicht erfullt. Erst nach Summation Uber alle Fermionen einer Generation sind
die ST-ldentitaten in diesem Schema erfullt.

e Im HVBM-Schema werden die ST-lIdentitaten auch nach Summation Uber eine
Fermion-Generation nicht erfullt. Far eine Rechnung in diesem Schema mussen
also tatsachlich endliche Counterterme eingefuhrt werden um die Symmetrie der
Theorie wieder herzustellen.

3.1.4 Nichtkompensierbare Terme

Zu den ST-lIdentitaten tragen nur die Kontraktionen von Drei-Eichboson-Vertizes mit
auBeren Impulsen der einlaufenden Vektorbosonen bei. Im allgemeinen gibt es aber bei
diesen Vertizes Beitrdge vom =**??-Tensor, welche keine Symmetrien verletzen, da sie
nach einer Kontraktion mit einem aufBeren Impuls verschwinden und damit die ST-
Identitaten nicht verletzen kénnen. Da diese Terme keine Symmetrien verletzen, sich
aber auch nicht durch Counterterme beseitigen lassen, werden sie im folgenden nicht-
kompensierbare Terme genannt. Solche Terme existieren unabhangig vom Renormie-
rungsschema und haben deswegen physikalischen Gehalt. Sie kdnnen endliche Beitrage
zu Observablen im Standardmodell liefern, welche nicht vernachlassigt werden durfen.
Verursacht werden die nichtkompensierbaren Terme durch die unterschiedlichen Fer-
mionmassen im Standardmodell. Fur verschwindende Fermionmassen treten sie nicht
auf.

Da im naiv antikommutierenden Schema keine #*#?-Tensoren durch Spuren erzeugt
werden, fehlen hier diese nichtkompensierbaren Terme. Damit ist dieses Schema fur
Rechnungen in hoheren Ordnungen im Standardmodell ungeeignet.

Das HVBM-Schema als mathematisch konsistentes Schema produziert diese Terme na-
tarlich korrekt. Allerdings mussen in diesem Schema Counterterme zur Restaurati-
on der Eichinvarianz eingefuihrt werden. Im Rahmen der algebraischen Renormierung
kann man zeigen, dal} diese Counterterme eindeutig sind [42].
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Das mixed-Schema und das HVBM-Schema unterscheiden sich nach der Addition der
endlichen Counterterme bei der Berechnung von Spuren nur um Terme der Ordnung
O(D — 4). Diese kdnnen zusammen mit den 1-Polen aus den Schleifenintegralen endli-
che Beitrage liefern. Auf Ein-Schleifen-Niveau ist keine weitere Divergenz vorhanden,
die einen endlichen Unterschied zwischen beiden Schemata erzeugen kdnnte. Nach er-
folgter Renormierung fallen also alle Terme weg, in denen sich das mixed-Schema und
das HVBM-Schema unterscheiden. Wegen der mathematischen Konsistenz des HVBM-
Schemas kann man also auch mit dem mixed-Schema korrekte Resultate erhalten, spe-
ziell werden die Beitrdge der nichtkompensierbaren Terme korrekt erzeugt. Dabei hat
man den Vorteil, keine zusatzlichen Counterterme einfihren zu mussen.

Bei der Berechnung von Korrekturen héherer Ordnung kdnnen Unterschiede zwischen
Berechnungen im mixed- und HVBM-Schema entstehen, wenn die Terme O(D — 4) in
denen sich beide Schemata unterscheiden auf Divergenzen aus weiteren Schleifen tref-
fen und dadurch endliche Beitrage liefern. Bildet man die Differenz zwischen einem
Dreiecksdiagramm in HVBM und im mixed-Schema und summiert dabei Uber die Fer-
mionen einer Generation, so erhalt man als Differenz Terme der Form

f f
f HVBM f mixed

Generation
k* m
£—0
~ (D = 4)eumpa

e

B§“+Co+...] 0, (3.28)
wobei Bf® den endlichen Anteil einer skalaren Zwei-Punkt-Funktion bezeichnet und
Cy eine skalare Drei-Punkt-Funktion meint. Nun setzt man diesen Term anstatt des
Dreiecks-Subdiagramms in Zwei-Schleifen-Topologien ein und nutzt aus, daf3 sich die
skalaren Funktionen im Limes groRRer k2 durch den Logarithmus lnl’j—z abschatzen las-
sen. Beispielsweise erhalt man fur folgende Topologie, die bei der Berechnung von Ar
und dem effektiven Mischungswinkel auftritt

<k

/ 4, K¢ 7/€2 1 1 /4
N(D—4)8uypa/dkﬁ IHE k2—m%k2—m%k2—m%
dkk3k® poo
~ (D—4)/ s 0. (3.29)

Dies wurde fur alle fermionischen Zwei-Schleifen-Topologien, die ein Fermion-Dreieck
als Sub-Schleife haben, durchgefuihrt. Es zeigt sich, dal} der Beitrag aus der Differenz
beider Schemata im Limes D — 4 immer verschwindet. Damit ist der korrekte Ge-
brauch des mixed Schemas fur unsere Rechnungen sichergestellt. Man hat dadurch die
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Madglichkeit, mit einem sehr viel geringerem Aufwand als im HVBM-Schema trotzdem
die gleichen korrekten Resultate zu erzielen.

Korrekturen zum Dreiecksdiagramm, bei denen zum Beispiel die Fermionen im Dreieck
ein Boson austauschen wurden hier nicht untersucht, da diese Diagramme bei fermio-
nischen Zwei-Schleifen-Korrekturen nicht auftreten. Ebenso wurden Diagramme mit
mehr als zwei Schleifen nicht bertcksichtigt.

3.2 Pauli-Villars Regularisierung

Bei der Pauli-Villars Regularisierung [43] handelt es sich um ein Verfahren, welches
die relativistische Kovarianz der Theorie respektiert, aber die Eichinvarianz verletzt. Es
wurde in dieser Arbeit bei der Abspaltung von QED-Beitragen von den elektroschwa-
chen Beitragen zu Arverwendet.

Der Vorteil der Pauli-Villars Regularisierung liegt darin, dal man weiterhin in vier Di-
mensionen rechnen kann. Im Gegensatz zur dimensionalen Regularisierung sind al-
so keine Probleme bei der Definition von v5 vorhanden. Allerdings verletzt die Pauli-
Villars Regularisierung die Eichinvarianz. Wollte man also zum Beispiel Ar im Stan-
dardmodell mittels dieses Regularisierungsverfahrens berechnen, mufite man zusatzli-
che Counterterme einfuhren, um die Eichinvarianz der Theorie wieder herzustellen. Die
Berechnung solcher im allgemeinen endlicher Counterterme mittels Slavnov-Taylor-
Identitaten ist aber nicht trivial.

In der Pauli-Villars Regularisierung werden Propagatoren folgendermalien modifiziert:

1 1 C;
P kZ_m2+27k2_A?. (3.30)

i

Dabei werden zusétzliche Massen eingeftihrt, fur die A? > m? gelten soll. Die C; wer-
den als Funktionen von m und den A; so gewahlt, dal das Integral konvergent ist.
Durch eine solche Substitution kann jedes gegebene Diagramm regularisiert werden
[44].

In dieser Arbeit wurde die Pauli-Villars Regularisierung nur verwendet, um einen Ein-
Schleifen Photon-Propagator zu regularisieren. In diesem Fall gentigt es einen zusatzli-
chen Propagator mit der Masse A einzufuhren, zusatzliche C; werden nicht benétigt:

1 1 1
Durch diese Substitution ist der Photon-Propagator UV-endlich, und im Grenzlbergang
A — oo erhdlt man die unregularisierte Theorie zurtck.
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Bei der Berechnung von Ar wird speziell die Differenz aus einem dimensional- und
einem Pauli-Villars regularisierten Photon-Propagator bendtigt. Die Bildung dieser Dif-
ferenz entspricht gerade dem Einfuhren einer Photon-Masse im Propagator:

1 1 1 1
ﬁ_<ﬁ_k2—/\2>:k2—/\2' (3.32)

3.3 Spurtrick

Beim Myon-Zerfall lassen sich alle Strahlungskorrekturen auf einen Term proportio-
nal zum Born-Matrixelement zurtckfihren, und bei der leptonischen Z-Breite lassen
sich die Strahlungskorrekturen in Termen proportional zur Vektor und zur Axialvek-
torkopplung zusammenfassen. Hier wird nun gezeigt, wie mittels eines Spurtricks auf
einfache Weise die Matrixelemente héherer Ordnung in diese Form gebracht werden
konnen.

Das Born-Matrixelement des Myonzerfalls ist:
U=, el e’ _ _
MBOI‘H‘L = m(uuﬂv)\w,uu)(ue’yAwfvﬁe) ; (333)
und die Matrixelemente der Schleifenkorrekturen haben die Form:
Mt = (T, Ty au) (T3 vs,) (3.34)

Die I'} kdnnen nach einer vollstandigen Orthonormalbasis im Raum der Dirac-Matrizen
entwickelt werden.

'y = ayw_ + bywy + ey YHw- + dyy ws + exwo™™ . (3.35)

Fur masselose auRere Fermionen ist die Helizitat bei allen Kopplungen erhalten, und
somit sind nur linkshandige Kopplungen moglich. Da die dufl3eren Impulse bei der Be-
rechnung von Ar Null gesetzt werden, kdnnen die Koeffizienten nur von Kopplungs-
konstanten, Massen und der Metrik abhdngen. Damit ist sichergestellt, dai3 alle Koeffi-
zienten bis auf einen in (3.35) verschwinden mussen, und man kann schreiben:

I =iy w_ (3.36)
Damit gilt auch:

—vy,en —Vyev
'A/llSAchle‘iLfene = ATM“ L (337)

Born

Der Koeffizient ¢; 1aRt sich entweder explizit durch eine Zerlegung von I nach Ko-
varianten oder einfacher mittels eines Spurtricks bestimmen. Da man weil3, dal3 alle
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Koeffizienten bis auf ¢; Null sind, kann man durch die Berechnung einer Spur diesen
Koeffizienten aus der obigen Entwicklung direkt heraus projizieren:

Tr {F?w,vo‘} = 2¢,0", (3.38)
und Ar ergibt sich zu:
252, M2
Ay — CSLQWQCQ
e
252 M2 1
= %SV:% Tr{T \w_"a} Tr{F w_y*} . (3.39)

Analog kann man bei der Berechnung des effektiven Mischungswinkels aus der lepto-
nischen Z-Breite vorgehen. Der effektive Mischungswinkel ist Giber das Verhaltnis der
effektiven Vektor- und Axialvektorkopplung des Z-Bosons an Leptonen definiert. Das
Born-Matrixelement des Z-Zerfalls ist:

M%;E = ey (gv7A + gafYX'YS) 'Ufeé ) (340)

und die Matrixelemente der Schleifenkorrekturen haben die Form:
MG e = ETT\vre (3.41)
I'* kann wieder nach einer vollstandigen Orthonormalbasis entwickelt werden:

™ =a)l +apys + aV v+ a Hoptoys + a”‘”au,, . (3.42)

Durch eine Spurbildung erhalt man wieder die Koeffizienten zur Vektor- und Axialvek-
torkopplung:

Tr {F)‘fya} = dayg™®
Tr {F/\fyg,fya} = dasg™. (3.43)
Damit ergeben sich die effektiven Kopplungen zu:

1
w = g §—Tr{FA%}

§ 1
gr = gat —ETr{FA%w}- (3.44)

In dimensionaler Regularisierung ist allerdings Vorsicht geboten bei der Verwendung
des Spur-Tricks. Dieser beruht auf einer Zerlegung nach einer endlichdimensionalen
vollstandigen Orthonormalbasis im Raum der Dirac-Matrizen. Damit diese existiert,
muf man 5 als endlich dimensionale Matrix definieren kdnnen. Dies ist in D Dimen-
sionen nicht moglich. Trotzdem kann der Spurtrick auch auf dimensional regularisier-
te Diagramme angewandt werden, wenn die Summe der betrachteten Diagramme im
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Grenzfall D — 4 endlich ist. Dazu wird aus der endlichen Summe der betrachteten
Diagramme die Spur ausgeklammert und dann auf die einzelnen divergenten Teile auf-
geteilt.

Alternativ zum Spurtrick kann man auch ,,von Hand* eine Zerlegung der Tensorstruk-
tur eines Diagramms nach Kovarianten durchftihren. Versucht man allerdings die Ten-
sorstruktur der v-Matrizen eines Boxdiagramms zu vereinfachen, so mufd man auf die
Chisholm-Identitat [45]

ViV Yp = —EuvpeY’ V5 + GuVp + GupVu — Gup Vv (3.45)

zuruckgreifen. Diese ist aber auch nur in 4 Dimensionen gultig, da zur Herleitung der
selben ebenso die Existenz einer endlichdimensionalen vollstandigen Basis nétig ist.
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Kapitel 4

Der Myon-Zerfall und die
Prazisionsobservable Ar

4.1 Definition der Fermikonstante

Die Préazisionsobservable Ar beschreibt Quantenkorrekturen zum Zusammenhang der
W-Z-Massenkorrelation mit der Fermikonstante, welche aus dem Myon-Zerfall bestimmt
wird.

Myonen zerfallen mittels der elektroschwachen Wechselwirkung fast ausschlieflich im
Zerfallskanal y~ — e~ 7.v,. In nur etwa einem Prozent der Zerfalle wird ein zusétzliches
Photon abgestrahlt und die Erzeugung eines zusatzlichen Elektron-Positron-Paares liegt
gar im hundertstel Promille Bereich [46].

Zur phanomenologischen Beschreibung der schwachen Wechselwirkung entwickelte
Fermi sein spater nach ihm benanntes Modell [47]. Zuné&chst fur den g-Zerfall n — pev
postulierte er eine effektive Vier-Fermion-Punktwechselwirkung:

4Gy

4G
L ermi i - =
F o)

Jindy = NG

(1/;p7)\w—¢n) (77/7)9’)/)\&)_77/),,) . (41)

Im Rahmen dieser Strom-Strom-Wechselwirkung kann auch der Myon-Zerfall beschrie-
ben werden, und man erhalt in niedrigster Ordnung folgendes Matrixelement:

4
MFermi - %(a,}#%wu#)(ae%wv%) . (42)
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=Y

Abbildung 4.1: Myon-Zerfall im Fermi-Modell in Born-Ordnung

Hieraus kann nun die Zerfallsbreite des Myons berechnet werden zu

G25 2
r, = IW“FC%> (4.3)

19273 m_g

Fz) = 1—-8r—82" —z*—122°Inx

Die Lebensdauer des Myons kann experimentell sehr genau bestimmt werden. Die Zer-
fallsbreite des Myons wird nun als Definition fur die Fermi-Konstante G benutzt. Da-
bei ist es eine Konvention als Definitionsgleichung nicht etwa (4.3) zu verwenden, son-
dern zusatzlich zur niedrigsten Ordnung aufBerdem die QED-Korrekturen zum Vier-
Punkt-Vertex zu bertcksichtigen. Dies ist moglich, denn obwohl Lg,.,; hicht renormier-
bar ist, sind diese QED-Korrekturen endlich [48].

Die elektromagnetischen Korrekturen, also Bremsstrahlung und Schleifenkorrekturen
zu (4.3) durch den Austausch virtueller Photonen, werden durch eine mit Aq bezeich-
nete Grolie beschrieben. Man erhalt somit als Definitionsgleichung fur die Fermi-Kon-
stante:

19273 m?

G%m‘r’ Tn2
L, = £ (—e> (1+ Agq) . (4.4)

Die QED-Korrekturen sind bis zum Zwei-Schleifen-Niveau bekannt. In erster Ordnung,
d.h. O(«), ergeben sie sich zu [49]:

2y 79
Ag® — HM(E_H) | 45)
2 4
1 1 1 2
S LT (4.6)
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Hierbei ist « = «(0) die Feinstrukturkonstante im Thomson-Limes, und die Verwen-
dung von a(mi) berucksichtigt das Laufen der elektromagnetischen Kopplung.

Die QED-Korrekturen zweiter Ordnung O(a?) setzen sich aus mehreren unabhangi-
gen Teilbeitragen zusammen, die getrennt betrachtet werden kdnnen [11]. Der Anteil
der rein photonischen Diagramme, die keine geschlossenen Fermion-Schleifen enthal-
ten ergibt sich zu:

2)\? /11047 1030 9223
Agy = (a(f“)> (m—2—7<(2)—%<(3>
+%7¢(4) +53¢(2) ln(2)>
2 2
_ (70‘(7;1“)) 3.55887 4.7)

wobei ((z) die Riemannsche Zeta-Funktion ist. Diagramme mit einer Elektronschleife
oder einem e*e~ Paar im Endzustand ergeben:

@ a(mi))2 (1009 T 8 >
Aqelec - ( T 288 36<(2) 3C(3)

— (@)23.22034. (4.8)

Aulierdem tragen noch Myon-Schleifen

a(m?)\” /16987 85 64
@  _ n _ gy B2
Aqmyon - ( > ( 36C(2) 3 <(3)>

™ 576
2 2

= <M> 0.0364333 (4.9)

m

und Tau-Schleifen bei
2 2
Ag?) (M) 0.00058 . (4.10)
m

Quark-Schleifen mussen Uber eine Dispersionsrelation aus Daten zum Prozel} efe™ —
Hadronen gewonnen werden, da die leichten Quark-Massen nicht eindeutig definiert
sind:

a(m2)\?
Ag = —< “) 0.042 . (4.12)
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Abbildung 4.2: Myon-Zerfall im Standard-Modell in Born-Ordnung

Falit man alle diese Beitrage zusammen, so ergibt sich fur die Zwei-Schleifen-Korrekturen
[11]:

2

AP = —(@) (6.700 + 0.002) , (4.12)

wobei der Fehler hauptsachlich aus der experimentellen Unsicherheit der hadronischen
Daten stammt. FaRt man Ein- und Zwei-Schleifen Korrekturen zusammen, so ergibt
sich unter Verwendung des experimentellen Wertes fur die Myon-Lebensdauer 7, =
(2.19703 4 0.00004)10~%s [46] die Fermikonstante zu:

Gp = (1.16637 % 0.00001)10 > GeV 2. (4.13)

4.2 Definition der Observablen Ar

Beschreibt man den Myon-Zerfall im Standardmodell, so erh&lt man in niedrigster Ord-
nung einen Beitrag zweier Feynman-Diagramme (siehe Abbildung 4.2).

Dabei ist das Matrixelement, welches dem Austausch eines unphysikalischen gelade-
nen Higgs-Bosons entspricht, gegenuber dem Austausch eines W-Bosons um einen Fak-

memy

tor 57" < 108 unterdrtickt und kann vernachlassigt werden. Im Grenzfall kleiner

Impulgv[]bertrége erhalt man nun aus dem Standardmodell das im vorigen Abschnitt
besprochene Fermi-Modell als effektive Theorie:

e? 1

Msm = —E(Uuﬂ,\wwu)m
62

252, MZ,

(TGevAw-vp) (4.14)

Q

(t, Hw_uy) (Terrw_vy,) fUr ¢* < My . (4.15)
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Ein Vergleich mit (4.2) ergibt eine Relation zwischen der Fermikonstante Gr und Pa-
rametern des Standardmodells, welche auf Born Niveau gultig ist, aber Korrekturen
durch Beitrage hoherer Ordnung erhalt:

GF _ 62
V2 BRI,

Wirde man den Impulsiibertrag bertcksichtigen, so entspréache dies einer Entwicklung
in m{ /M3, wobei m, die Massen der duf3eren Leptonen bezeichnet. Dieser Beitrag wird
Ublicherweise Ag zugeschlagen, ist aber vernachlassigbar, da er um eine Grolienord-
nung kleiner ist als der Fehler der Fermikonstante.

(4.16)

Bei den elektroschwachen Korrekturen hoherer Ordnung kdnnen die Massen aller Fer-
mionen aulBer der des Top-Quarks vernachlassigt werden, denn die Fermionmassen
kdnnen im Ergebnis nur in der Kombination m? /M3, auftreten. Mogliche Massensin-
gularitaten sind hierbei in der Ladungsrenormierung absorbiert. Dies hat zur Folge,
daR alle Higgs-Kopplungen und Massencounterterme fur die leichten Fermionen ver-
nachlassigt werden kénnen.

Bei Vernachlassigung der daufReren Impuls lassen sich alle Strahlungskorrekturen zur
Myon-Zerfallsamplitude (bis auf QED-Korrekturen) auf das Born-Matrixelement mul-
tipliziert mit einem Zahlenfaktor Ar zurtuckfthren (siehe dazu auch Abschnitt 3.3). Da-
mit erhalt man aus (4.16) eine Beziehung, die auch auf Schleifen-Niveau gultig ist:

GF . 62
V2 8L,
Die Fermi-Konstante Gy ist sehr genau bekannt. Deshalb verwendet man Gy im all-

gemeinen als Eingabeparameter und benutzt (4.17), um die Masse des W-Bosons zu
bestimmen. Dazu wird die Gleichung nach der W-Masse aufgelost:

(1+Ar). (4.17)

1 1 aT

Da Ar selbst wieder von M,y abhangt, wird diese Gleichung iterativ gelost. Dadurch
erhalt man eine theoretische Vorhersage fur die Masse des W-Bosons in Abhangigkeit
der Parameter des Standardmodells, insbesonder auch der Higgs-Masse. Die so ermit-
telte theoretische Vorhersage fur die Masse des W-Bosons kann man dann mit dem
experimentellen Wert vergleichen und dadurch das Standardmodell testen.

4.3 Ein-Schleifen Beitrage zu Ar

Die Beitrage erster Ordnung zu Ar wurden zuerst von Sirlin und Marciano [26] be-
stimmt. Sie lassen sich schreiben als Summe aus Beitrdgen aus der renormierten W-
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Selbstenergie, Vertexkorrekturen und Boxdiagrammen:

W
Ar = # + 2A7vVertex + ATBox - (4.19)
W

W-Selbstenergie:

Der Transversalteil der renormierten W-Selbstenergie bei verschwindendem Impulstbert-
rag setzt sich aus der unrenormierten Selbstenergie und den entsprechenden Renormie-
rungskonstanten zusammen:

SW(0) =W (0) — 62V M2, — 6 M2, . (4.20)

Die W-Selbstenergie setzt sich aus Transversal- und Longitudinalteil zusammen:

PuPv PuDv
SV (p2) = (—gw ;2 )zwp?)— e ) (4.21)

Da diese Selbstenergie fuir verschwindenen p? bei konstantem p,, keine Singularitat auf-
weisen darf, mul3 gelten:

YV (0) = £Y(0) . (4.22)

Folglich kann man den Transversalteil einfach direkt aus dem g,,-Anteil bestimmen:

() = 59" (0) (4.23)

Vertexkorrekturen:

Die Vertexkorrekturen setzen sich aus den Schleifen- und Counterterm-Diagrammen
zusammen. Die Schleifen-Diagramme kdnnen mit Hilfe des Spur-Tricks (siehe Abschnitt
3.3) auf die Struktur Mg, Ar gebracht und anschlieBend mit Hilfe des Mathematica
Pakets ONECALC [50] berechnet werden. In Feynman-Eichung (2.19) ergibt sich:

Arveries %m (8D~ 1)1~ 263) A0(M) +
(L(D = 2)%(1 = 3¢) + (D* +4D — 4)ck) AO(MZ)) . (424)

Die Diagramme mit Counterterm-Einsetzungen an den Vertizes ergeben:

J 1 v
Arverte_cr = 2(6Z, — %) 4 62V 4 SOZE+ 62} + 625 + 02 +02) . (4.25)
Sw
Da das W-Boson nur als inneres Teilchen am ProzeR beteiligt ist, mul3 seine Feldrenor-
mierung im Endergebnis entfallen. Dabei heben sich die Feldrenormierungskonstanten
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von W-Selbstenergie und Vertexkorrektur gegenseitig weg. Setzt man (4.20) und (4.25)
in (4.19) ein, so sieht man dies explizit.

Boxdiagramme:

Boxdiagramme bei denen kein virtuelles Photon ausgetauscht wird sind alle fur sich
IR- und UV-endlich. Deswegen konnen diese Diagramme vierdimensional behandelt
werden und mussen nicht dimensional regularisiert werden. Damit ist es moglich, die
Tensorstruktur der v-Algebra mit Hilfe der Chisholm-Identitéat (3.45) auf die Form des
Born-Matrixelements zu bringen.

FUr die Boxdiagramme, bei denen kein virtuelles Photon ausgetauscht wird, erhdlt man
als Summe:

a 10 — 20s%; + 4sgy | M2
— n .
4T 4s% M,

(4.26)

ATBox =

Das Boxdiagramm, bei welchem ein virtuelles Photon ausgetauscht wird, ist infrarot
divergent und muf gesondert betrachtet werden. Da die QED-Korrekturen bereits im
Fermi-Modell berticksichtigt wurden, muR hier eine Differenz aus diesem Boxdiagramm
und dem entsprechenden Diagramm im Fermi-Modell, bei dem der W-Propagator zu
einer Punkt-Wechselwirkung zusammengezogen ist, gebildet werden.

Das Diagramm im Fermi-Modell ist sowohl infrarot- als auch UV-divergent, wobei die
Infrarot-Divergenz gerade die des Boxdiagramms kompensiert. Wegen der UV-Diver-
genz berechnet man das Diagramm am einfachsten in Pauli-Villars Regularisierung. Da-
durch wird die Dimension der Raum-Zeit nicht verandert und man kann die Chisholm-
Identitat zur Vereinfachung der Amplitude verwenden. Um das so erhaltene Ergeb-
nis zu den in dimensionaler Regularisierung erhaltenen Ergebnissen hinzufiigen zu
kénnen, mulR man erst noch durch Subtraktion der photonischen Anteile der Feldre-
normierungen eine UV-endliche GroR3e bilden:

Yy
H . W
- — 5 (02" +62°%)
v % .
€ PaVi
€
+1 (621 4 62°7) (4.27)
DimReg
Als Beitrag zu Ar ergibt sich schlie3lich:
o M2 1 ) 2
ATQED,sub = E (—A +In M—\%ZV + 5) mit A= m — v + Indm . (428)
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Zusammenfassung:
Man kann den Ein-Schleifen-Beitrag kompakt schreiben als

AF@ — T(0) — cy (OM7 oM YYW(0) — S M
cw $77(0) « T—dsk
— 6 1 . 4.29
* sw M2 * 4 st T g W (4.29)

4.4 Bisher bekannte Beitrage hoherer Ordnung

4.4.1 Aufsummation der fihrenden Beitrége erster Ordnung

Das Ein-Schleifen Ergebnis fur Ar 148t sich in folgender einfacher Form fur die fuhren-
den Terme schreiben:

2

Ar® = A — ETWA;) + ATpen . (4.30)

W
Die dominanten Korrekturen stammen von der Verschiebung der Feinstrukturkonstan-
ten A« aufgrund grolRer Logarithmen leichter Fermionen (~ 6%) und von den fUhren-
den Beitragen des Top/Bottom Dubletts ~ m?, die Uber Ap eingehen (~ 3.3%). Die
GrolRe Ap ist dabei definiert Gber den fuhrenden Beitrag des Verhaltnises des neutralen
zum geladenen schwachen Strom [51]:

_IF(0) %7 (0)

Ap = 4.31
=z M2, (4.31)
und liefert fir das Top/Bottom-Dublett bei vernachlassigter Bottom-Masse:
3Gpm2
Ap@ == o 4.32
P 8 2r (432

Alle weiteren Beitrage, insbesondere die volle My;-Abhangigkeit, sind im relativ kleinen
Restbeitrag Ar.em (= 1%) enthalten.

Die verschiedenen Moglichkeiten, um die Korrekturen O(a?) durch die Beitrage aus Aa
und Ap mittels Aufsummation zu erfassen wurden ausfthrlich in [25, 26, 52] diskutiert.
Insbesondere wurde gezeigt, dal? durch die Aufsummation

1

L+ap= (1 - Aa) (1 + %m) ~ Ao

. (4.33)

alle Terme der Art (Aa)?, AaAp, (Ap)? und AaAr.., bis O(a?) korrekt erfalt werden
[52].
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4.4.2 QCD-Korrekturen

Die Beitrage der starken Wechselwirkung zu Ar sind in Ordnung O(aa;) [57] und
O(aa?) [12] berechnet. Dabei sind die O(aa;) Korrekturen exakt bekannt. Die O(aa?)
Korrekturen beinhalten sowohl die Beitrage aus Top/Bottom-Schleifen als auch die Bei-
trage der leichten Fermionen. Hierbei wurde eine Entwicklung in MZ%/m? verwendet
und es wurde gezeigt, dal} die vernachlassigten Terme in der Entwicklung numerisch
klein sind [53].

4.4.3 Elektroschwache Zwei-Schleifen-Beitrage zu Ar

Im Ein-Schleifen-Ergebnis dominieren die fermionischen Beitrage. Ahnliches erwar-
tet man auch auf Zwei-Schleifen-Niveau. Auch in Zwei-Schleifen-Ordnung gehen die
fuhrenden Top-Korrekturen proportional zu m /My, Gber Ap in Ar ein. Die fihrenden
Beitréage durch ein schweres Top-Quark und ein schweres Higgs-Boson wurden in [58]
berechnet. Die volle Higgs-Abhangigkeit der O(a?m/M%)-Beitrage wurde in [59] un-
tersucht. Die néchstfuhrenden Beitrage O(a?m?/M3;) wurden in [60] berechnet, wobei
dieser Beitrag von der gleichen GroRenordnung wie der fihrende Beitrag ist. Schon des-
halb war eine vollstandige Bestimmung der fermionischen Beitrdge wiinschenswert.

Die Higgs-Abhangigkeit von Beitragen zu Ar(®”), welche das Top-Bottom-Dublett oder
leichte Fermionen enthalten, wurde exakt berechnet [61, 62]. Die Rechnungen im On-
Shell-Schema wurden ohne Entwicklung in der Top-Masse durchgefuhrt. Die exakte
Higgs-Abhéangigkeit stimmt mit der Entwicklung der nachstfihrenden Beitrdge in der
Top-Masse gut Uberein [62, 64].

4.4.4 Elektroschwache Korrekturen jenseits der Zwei-Schleifen-Ord-
nung

In Drei-Schleifen-Ordnung sind im elektroschwachen Sektor Teilresultate bekannt. Fir
die rein fermionischen Beitrage wurde in [25] eine Rekursionsformel entwickelt, die
es erlaubt, das n-Schleifen Ergebnis durch Ein-Schleifen Ein-Punkt- und Zwei-Punkt-
Funktionen auszudriicken. Im On-Shell-Renormierungsschema wurden explizite Er-
gebnisse bis zur Vier-Schleifen-Ordnung bestimmt.

Die fuUhrende Beitrage der Top-Masse zum p-Parameter wurde in [65] in Drei-Schleifen-
Ordnung im masselosen Limes fur das Higgs-Boson und die Eichbosonen berechnet.
Dies Entspricht Termen der Ordnung O(G2m?) und O(GZasm}).

Die angesprochenen Beitrage bewirken je eine Verschiebung von etwa einem MeV in
der W-Masse.
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Kapitel 5

Fermionische Zwei-Schleifen-Beitrage
ZU Ar

5.1 Rechenmethoden

Die grol3e Anzahl der zu berechnenden Feynman-Diagramme und die Komplexitat der
Ergebnisse legen die Verwendung von Computeralgebra-Programmen nahe. Alle hier
verwendeten Programmpakete sind unter MATHEMATICA [36] programmiert.

Erzeugung der Diagramme und Amplituden:

Das Programmpaket FeynArts [54] erzeugt, nach Spezifikation der ein- und auslaufen-
den Teilchen, der Schleifenordnung und des Modells (hier ausschlieBlich der elektro-
schwache Sektor des Standardmodells), Feynman-Diagramme und die zugehérigen Am-
plituden. Fur die in dieser Arbeit durchgefihrten Berechnungen wurden die Versionen
2.1 und 3.0 benutzt.

Der elektroschwache Sektor des Standardmodells ist in FeynArts fur Rechnungen O(«)
vollstandig implementiert. Fur die hier durchgefiihrten Rechnungen O(a?) muBten noch
einige Feynman-Regeln erganzt werden. Insbesondere wurde die Renormierung im
Geist-Sektor in FeynArts implementiert.

Zuruckfuhren der Amplituden auf Standardintegrale:

Die in den von FeynArts erzeugten Amplituden auftretende Tensorstruktur wurde mit
Hilfe der Programmpakete OneCalc, TwoCalc [50] und FeynCalc [55] vereinfacht. Ins-
besondere wurden diese Programme benutzt, um die Tensorintegrale auf einen Satz
skalarer Standardintegrale zu reduzieren.

OneCalc dient dabei der Behandlung von Ein-Schleifen Zwei-Punkt-Funktionen, und
mit Two Calc kdnnen Zwei-Schleifen Zwei-Punkt-Funktionen, also alle in dieser Arbeit
auftretenden Zwei-Schleifen-Integrale, auf skalare Integrale zurtickgefuhrt werden.
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Bei der Berechnung des Ein-Schleifen-Beitrags zum effektiven Mischungswinkel und
bei der Untersuchung der Dreiecksanomalie wurden Ein-Schleifen Drei-Punkt-Funk-
tionen mit Hilfe von FeynCalc 2.2b3 vereinfacht.

Zur konsistenten Behandlung von ~5 in dimensionaler Regularisierung wurde zuséatz-
lich das Programm TRACER [35] verwendet. Dieses bietet eine Implementierung des
Formalismus von Breitenlohner und Maison in MATHEMATICA.

Numerische Auswertung:

Die von OneCalc, TwoCalc oder FeynCalc erzeugten analytischen Ausdrticke wurden
mit dem S2L-Programmpaket [56] numerisch ausgewertet. Dieses Programmpaket tber-
fahrt die analytischen Ausdrtcke in eine fur die numerische Auswertung geeignete
Form, und ruft dann, von MATHEMATICA aus, numerische Integrationsroutinen auf, die
in C++ implementiert sind. Die numerische Integration beruht darauf, dal die auftre-
tenden Standardintegrale auf eine eindimensionale Integraldarstellung zurtckgefuhrt
werden konnen. Die verbleibenden Integrale werden dann numerisch mit einem Gauf3-
Algorithmus berechnet.

5.2 Reduzible Beitrage

Die am einfachsten zu berechnenden Zwei-Schleifen-Beitrage zu Ar sind die reduziblen
Beitrage, da es sich bei diesen aus Produkten aus Ein-Schleifen-Beitragen handelt. Bei
den hier berechneten fermionischen Beitragen zu Ar kommen als Ein-Schleifen-Dia-
gramme Vertexkorrekturen zum Wer,- bzw. Wv,-Vertex und W-Selbstenergien, sowie
die zugehorigen Counterterm-Diagramme vor.

Diagramme, bei denen das zum W-Boson gehdrige Goldstone-Boson ¢ ausgetauscht
wird, tragen nicht bei. Counterterm-Diagramme zum ¢ev, bzw. ¢puv,, Vertex haben eine
Counterterm-Kopplung die proportional zur vernachlassigten Masse der auf3eren Fer-
mionen ist. Diagramme mit einer W¢ Selbstenergie sind proportional zum durchlaufen-
den Impuls, dieser wird hier aber vernachlassigt. Die Ein-Schleifen Vertexkorrekturen
zum ¢ev, bzw. ¢pv, Vertex fihren nach Integration Uber den Schleifenimpuls zu einem
Ausdruck der Form u#w_wu, welcher fur vernachlassigten Impulstibertrag £ verschwin-
det.

Es bleiben schliellich Diagramme der Art wie sie in Abbildung 5.1 gezeigt sind als
reduzible Beitrage zu Ar zu berechnen.
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Abbildung 5.1: Reduzible Beitrage zu Ar. Schraffierte Kreise stehen symbolisch fur Ein-
Schleifen-Teildiagramme oder Ein-Schleifen Countertermeinsetzungen.

Abbildung 5.2: Beispiele fiir Zwei-Schleifen-Vertexkorrekturen. Das linke Diagramm kann pro-
blemlos in dimensionaler Regularisierung behandelt werden. Das rechte Diagramm enthélt
einen Dreiecksgraphen mit Fermion-Schleife, welche Unterschiede zwischen einer naiven Be-
handlung von -5 im Vergleich zu einer Rechnung im HVBM-Schema liefert.

5.3 Irreduzible Beitrage

Selbstenergien, Vertexkorrekturen und Boxdiagramme mit einer zusatzlichen O(«)-Ein-
setzung tragen als irreduzible Zwei-Schleifen-Diagramme zu den fermionischen Kor-
rekturen zum Myon-Zerfall bei. Da die Berechnung der Boxdiagramme wegen der Ab-
spaltung der QED-Beitrage besonders aufwendig ist, werden diese Diagramme geson-
dert im Abschnitt 5.4 behandelt.

Die Vertexdiagramme konnen mit Hilfe des Spurtricks (siehe Abschnitt 3.3) auf Vaku-
umdiagramme zuruickgefuhrt werden. Dabei sind die Diagramme mit Selbstenergie-
Einsetzungen problemlos in dimensionaler Regularisierung berechenbar. Es treten aber
auch Diagramme auf, die Dreiecksgraphen mit Fermion-Schleifen enthalten. Bei diesen
kommt es zu der in Abschnitt 3.1 behandelten ~5-Problematik. Der Einflu3 der korrek-
ten Behandlung von ~5 im Vergleich zum naiven Schema wurde hierbei untersucht. Wie
die numerische Auswertung zeigen wird (siehe Abschnitt 6.1), ist der Unterschied hier
numerisch nicht signifikant.

Der Transversalteil der Zwei-Schleifen W-Selbstenergie bei verschwindendem Impuls-
Ubertrag Z%V(Q)(O) liefert einen Beitrag zum Myon-Zerfall als Korrektur des W-Propaga-
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tors. Statt den Transversalteil der Selbstenergie bei verschwindendem Impulstbertrag
zu berechnen, kann man, wie im Ein-Schleifen Fall auch, den g, -Anteil der Selbstener-
gie bestimmen, der Uber (4.23) mit dem Transversalteil fur £* = 0 verknlpft ist. Dies
ermdoglicht technisch die Berechnung von Vakuum-Diagrammen. Ein Grenzibergang
k? — 0, der bei Teilausdriicken zu Singularitaten fuhrt und nur fur die gesamte Selbst-
energie existiert, wird so vermieden.

5.4 Abspaltung von QED-Beitragen

FOr die Berechnung von Ar mussen die IR-divergenten Korrekturen, die bereits im
Fermi-Modell QED-Faktor Aq (4.4) enthalten sind, abgespalten werden. Im folgenden
wird zunéachst gezeigt, dald fur die fermionischen Zwei-Schleifen-Beitrage zum Myon-
Zerfall eine derartige Aufspaltung moéglich ist. Rein fermionische Beitrage mit zwei ge-
schlossenen Fermionschleifen existieren im Fermi-Modell in O(a?) nicht. Deshalb kann
man sich bei der folgenden Diskussion auf die fermionischen Beitrdge mit genau einer
Fermionschleife beschranken.

Auf Zwei-Schleifen-Niveau bestehen die entsprechenden IR-divergenten Beitrdge zum
Fermi-Modell aus folgenden virtuellen Agy und reellen Agr photonischen Korrekturen
der Ordnung O(«) und O(a?):

Agi? : , (5.1)
a2
Agg , (5.2)
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I

, (5.3)
5

. (5.4)
y

S
+M//Vi
e

Mit den eben eingeftihrten Grolien kann man das betragsquadrierte Matrixelement far
den Myon-Zerfall im Fermi-Modell bis zur zweiten Schleifen-Ordnung schreiben als:

|-A/lFermi|2 - |-A/lB0rn|2 (1 + AQ) (55)
= [ Maoml” (14 2¢0 + gl + g8 + Aqe”) (5.6)

Bei der Berechnung virtueller Korrekturen zum Myon-Zerfall im vollen Standard-Modell
(SM) treten IR-divergente Boxdiagramme auf, im folgenden mit A7 bezeichnet. Auf Ein-
Schleifen-Niveau existiert als virtuelle Korrektur die photonische Box:

(5.7)

(5.8)

und gemischte Korrekturen mit einer QED und einer schwachen Schleife
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a?) H

A7_\(/,ern/weak : W (59)

unterteilen. Fihrt man eine Tensorintegral-Zerlegung bei diesen Klassen von Diagram-
men durch, so sieht man, dal3 eine Aufspaltung in eine Summe aus virtuellen Korrek-
turen im Fermi-Modell und IR-endliche Restbeitrage Arg maglich ist:

Ary = Aq + A (5.10)
AT(QQ) = A (o?) + A (a?) 511
V,em Qv Tfr,l ’ ( )
Aféirl/wea,k = AGPARE +Ar). (5.12)

Die endlichen Restbeitrage Arg, werden mit allen verbleibenden virtuellen SM-Beitragen
in Ar(®) und Ar(®*) zusammengefaRt.

Wenden wir uns nun den reellen Bremsstrahlungs-Korrekturen zum Myon-Zerfall zu.
Im SM kdnnen diese, ghnlich den virtuellen Diagrammen, aufgeteilt werden in O(«)
Beitrage

(5.13)

(5.14)

und gemischte O(«a?) Beitrage
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AT (5.15)
R”

m/weak :

In der in dieser Arbeit benutzten Néaherung, dal} der Impulstbertrag durch das W-
Boson ¢? viel kleiner ist als dessen Masse (¢°> < Mg3;), kdnnen die reellen Beitrage im
SM auf die Fermi-Modell-Beitrage zuruck gefuhrt werden:

A = Ag®, (5.16)
AT = Al (5.17)
AT}:({C,KQ‘IZI/Weak = Aqgjim/wea,kAréi)m . (518)

Insgesamt konnen die virtuellen und reellen Beitrage zum Betragsquadrat des Zwei-
Schleifen SM-Matrixelements geschrieben werden als:

2

|MSM|2 = |MB0rn|2 |:(1 + Ar(a) _|_ A?”(az)) (519)
+ Aqs,a) + Aq@az) + AqE,O‘)ATISng (5.20)
+ A+ Aq + AqAr()] (5.21)

Diese Beziehung kann bis zur zweiten Schleifen-Ordnung in einer faktorisierten Form
geschrieben werden:

IMsul” = [Mpom|? (1 + Ag) (1 + Ar)* + O(a®) (5.22)
Aus (5.5) und (5.22) folgt schlielilich
Msu|* = [Mepermil” (1 + Ar)? (5.23)

Damit ist gezeigt, dal} eine Faktorisierung der elektromagnetischen Korrekturen ins
Fermi-Modell und der verbleibenden elektroschwachen Korrekturen ins SM, fur die in
dieser Arbeit betrachteten fermionischen Zwei-Schleifen-Beitrage, moglich ist.

Die Berechnung der in Ar enthaltenen Restbeitrage Ar. entspricht der Bildung der Dif-
ferenz aus SM-Diagrammen und den entsprechenden Diagrammen im Fermi-Modell
(siehe z.B. Abbildung 5.3). Diese Differenz ist zwar IR-endlich, aber UV-divergent und
muf deswegen regularisiert werden. Um die Tensorstruktur der Boxdiagramme zu zer-
legen, wird die Chisholm Identitat bendtigt. Diese ist aber nur in vier Dimensionen
gultig, und eine dquivalente Beziehung in D Dimensionen ist nicht bekannt.
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Abbildung 5.3: Differenz von SM Boxdiagramm und entsprechender Fermi-Modell Vertexkor-
rektur, die Arl® entspricht.

Um dieses Problem zu umgehen, wird fur die QED-Korrekturen zum Fermi-Modell Ver-
tex Pauli-Villars-Regularisierung (siehe Abschnitt 3.2) verwendet. Diese Vertexkorrek-
turen sind zusammen mit den QED-Teilen der Feldrenormierungen der auf3eren Lep-
tonen §Z'L UV-endlich. Deswegen ist es moglich diese Summe aus QED Fermi-Modell
Vertexkorrektur (mit F bezeichnet) und Feldrenormierungskonstanten nach Pauli-Villars
(PaVi) zu regularisieren. Der Rest, also QED Boxdiagramm im SM (mit B bezeichnet)
mit zugehoriger Feldrenormierung der dulBeren Leptonen, kann dimensional regulari-
siert (DimReg) werden:

ATfr = B - F

DimReg

A 30260 +0Z5) | = 5020 +0Z5,)| - (5.24)
PaVi DimReg PaVi

Da die photonischen SM Boxdiagramme UV-endlich sind, kdnnen diese auch nach Pauli-
Villars regularisiert werden. Das gegenseitige Wegheben der IR-Divergenzen findet also
zwischen den SM Box- und Fermi-Modell Vertex-Diagrammen auf einfache Weise statt,
und es wird kein IR-Regulator bendtigt.

Eine entsprechende Kompensation der IR-Divergenzen findet auch in der Differenz
der Feldrenormierungskonstanten statt. Hierzu ist die Differenz zwischen einer Pauli-
Villars und einer dimensional regularisierten QED Lepton-Selbstenergie zu bilden. Wie
bereits in Abschnitt 3.2 besprochen, entspricht die dabei auftretende Differenz aus Pauli-
Villars und dimensional regularisierten Photon-Propagatoren gerade der Einfuhrung ei-
ner Masse fur das Photon in einem Photon-Propagator (siehe (3.32)). Diese regularisiert
die IR-Divergenzen.

54.1 Fermion-Feldrenormierung

Der O(a?)-Vertex-Counterterm enthélt die Feldrenormierungskonstanten von Elektron
und Myon in zweiter Ordnung 5252")‘. Auch aus diesen Renormierungskonstanten mus-

sen die QED-Beitrage abgespalten werden. Die QED-Beitrage aus 5252")‘ sind namlich be-

reits in Aqﬁ,oﬁ) bertcksichtigt. Das bedeutet, dal3 bei der Berechnung dieser Konstanten
die reinen QED-Diagramme (siehe Abbildung 5.4) nicht bertcksichtigt werden durfen.
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7@f o el Ly Ly
™ f@f fOf fOf

Abbildung 5.4: Reine QED Beitrage zu 6Z§2")‘ (f = e bzw. p)

Y
?@L

Abbildung 5.5: Reiner QED Beitrag zu 6Z(el")‘ (f = e bzw. p)

Die Ein-Schleifen Feldrenormierungskonstanten ¢} treten als Produkt mit anderen
Ein-Schleifen-Renormierungskonstanten beim Vertexcounterterm auf. Aulerdem ent-
halten die reduziblen Diagramme Beitrage bei denen 67 als Produkt mit elektro-
magnetischen und schwachen Korrekturen auftritt. Produkte aus zwei elektromagne-

tischen Beitragen wie zum Beispiel ((SZ(QI”)‘phot)2 sind in Aq$2) enthalten und mussen

weggelassen werden. Produkte aus 67 . mit schwachen Korrekturen finden sich
im Beitrag Aq&,‘)‘)Argm. Damit konnen in samtlichen fermionischen Feldrenormierungs-

konstanten die rein elektromagnetischen Diagramme weggelassen werden.

5.4.2 Boxgraphen ohne QED-Beitrag

Neben den bisher diskutierten Boxgraphen gibt es noch solche, bei denen kein QED-
Beitrag abzuspalten ist. Dazu z&hlen Diagramme, die eine O(«) Einsetzung in Form
einer Z-Photon-Mischung haben (siehe Abbildung 5.6). Diese Diagramme sind jedoch
nicht IR-divergent. Aulierdem gibt es noch Boxdiagramme bei denen kein virtuelles
Photon ausgetauscht wird (siehe Abbildung 5.7). Alle diese Boxdiagramme (Abbildung
5.6 und 5.7) sind IR-endlich und, zusammen mit den entsprechenden Graphen, die
einen Counterterm statt der Selbstenergie-Einsetzung haben, auch UV-endlich. Deswe-
gen kann die Summe dieser Diagramme in dimensionaler Regularisierung mit Hilfe der
Chisholm-Identitat (3.45) berechnet werden. Mdgliche Fehler, wegen der Benutzung der
Identitat, sind von der Ordnung O(D — 4) und entfallen hier beim Grenzubergang auf
vier Dimensionen.
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Abbildung 5.6: Boxdiagramme in O(a?) mit virtuellem W-Boson und elektromagnetischer
O(«a) Einsetzung

Abbildung 5.7: Boxdiagramme in O(a?) ohne virtuelles Photon

Noch einfacher sind die Boxdiagramme mit einer Vertex-Counterterm-Einsetzung. Die-
se sind fur sich endlich und kdnnen direkt in vier Dimensionen mittels Chisholm-lden-
titdt berechnet werden.

5.5 Rein fermionische Beitrage

Unter rein fermionischen Beitragen O(N;«?) sind die zu verstehen, bei denen alle Schlei-
fen ausschlieRlich fermionisch sind. Diese Beitrage wurden bereits in [25] berechnet und
bilden eine Untermenge der fermionischen Beitrage, bei denen mindestens eine Schleife
eine Fermionschleife ist.

Da im Standardmodell keine Drei- oder Vier-Fermion-Kopplungen existieren, gibt es
keine irreduziblen rein fermionischen Zwei-Schleifendiagramme, sondern nur Ein-Schlei-
fen-Diagramme mit Counterterm-Einsetzungen und reduzible Beitrage. Auch Box- und
Vertexkorrekturen lassen sich nicht als rein fermionische Zwei-Schleifendiagramme kon-
struieren. Das gleiche gilt fur die Fermion-Feldrenormierung auf Ein- und Zwei-Schlei-
fen-Niveau. Deswegen existieren zu diesen Diagrammen auch keine entsprechenden
Ein-Schleifen-Diagramme mit Counterterm-Einsetzung. Es mussen also nur Vektorbo-
son-Selbstenergien als Korrektur des W-Propagators und fur die Bestimmung der Coun-
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terterme berechnet werden.

Hier wurden die O(N}o?)-Beitrdge einmal unter Benutzung der Definition der Eich-
boson-Masse als reeller Propagatorpol (wie in [25]) berechnet. AulRerdem wurde die
Rechnung mit der Eichboson-Masse als komplexer Propagatorpol durchgefiihrt.

Dabei zeigt sich, dal3 in Feynman-Eichung ein numerischer Unterschied zwischen bei-
den Moglichkeiten der Behandlung des Propagatorpols auftritt. In R.-Eichung unter-
scheiden sich beide Definitionen der Eichboson-Masse schon dadurch, daf nur die Ver-
wendung des komplexen Propagatorpols ein eichparameterunabhéngiges Resultat lie-
fert. Bei den Beitragen O(N;«a?) mit nur einer Fermion-Schleife verschwinden die Un-
terschiede zwischen beiden Definitionen in Feynman-Eichung. Terme, die mogliche Un-
terschiede ausmachen, bestimmen sich Uber Imaginarteile von Selbstenergien bei Im-
pulstibertrag Mg, bzw. M?Z. Bei Selbstenergien mit bosonischen Schleifen kénnen fur
eine derartigen Impulsiibertrag jedoch die virtuellen Bosonen in der Schleife nicht reell
erzeugt werden. Dies hat zur Folge, daB diese Selbstenergie-Diagramme nur einen Re-
alteil besitzen. Damit kann auch kein numerischer Unterschied zwischen beiden Sche-
mata bei den O(N;a?) in Feynman-Eichung auftreten. Dies ist jedoch bei den rein fer-
mionischen Beitragen nicht der Fall und es tritt tatsdchlich eine numerische Differenz
zwischen beiden Beitragen auf.
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Kapitel 6

Ergebnisse fur Ar

In diesem Abschnitt werden die numerischen Ergebnisse fur die in dieser Arbeit berech-
neten Beitrage zu Ar prasentiert und mit den bisher bekannten Ergebnissen verglichen.
In 6.1 wird Ar mit Hilfe der experimentell bestimmten W-Masse als Input-Parameter
bestimmt. Im folgenden Abschnitt 6.2 wird dann Uber eine Rekursionsformel aus Ar
eine theoretische Vorhersage fur die W-Masse berechnet. AnschlieBend wird ein Ver-
gleich mit den in Form einer Entwicklung in der Top-Masse bekannten elektroschwa-
chen Zwei-Schleifen-Beitragen durchgefiihrt. In 6.4 wird als Test des Standardmodells
die theoretisch bestimmte W-Masse mit der experimentell gemessenen Masse vergli-
chen, die verbleibenden theoretischen Unsicherheiten in My werden diskutiert und mit
der erwarteten experimentellen Genauigkeit an zukunftigen Beschleunigern verglichen.

Die Eichparameterunabhangigkeit der in dieser Arbeit berechneten Beitrage wurde ana-
lytisch Gberpruft. Gleiches gilt fur die UV- und IR-Endlichkeit der Ergebnisse.

6.1 Aufschlisselung der verschiedenen Beitrage zu Ar

In diesem Abschnitt werden die numerischen Ergebnisse fur die Prazisionsobservable
Ar diskutiert. Folgende Beitrage zu Ar werden dabei bertcksichtigt:

Ar = Ar@ 4 Aplees) 4 Apeed) o Ap(ONre?) o Ap(Nfo?) (6.1)

Ar@ st das Ein-Schleifen Ergebnis (4.19). Ar(@@s) bzw. Ar(®@%) sind die Zwei-Schleifen
[57] bzw. Drei-Schleifen [12] QCD-Korrekturen. Ar(¥re*) ist der hier berechnete elek-
troschwache fermionische Zwei-Schleifen-Beitrag und A7) enthalt die rein fermio-
nischen elektroschwachen Zwei-Schleifen-Beitrage.

Die bekannten elektroschwachen Beitrége jenseits der Zwei-Schleifen-Ordnung [25, 65]
werden hier nicht bertcksichtigt, da sie numerisch sehr klein sind verglichen mit al-
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len anderen bekannten Beitrdgen. Dies betrifft die rein fermionischen Beitrage in Drei-
und Vier-Schleifen-Ordnung, die in [25] mit der reellen Polmassendefinition berechnet
wurden, sowie die fuhrenden elektroschwachen Drei-Schleifen-Beitrage O(Gam?) und
O(G%agsm{) Diese wurden in [65] fur eine groRe Top-Masse unter Vernachlassigung der
Higgs- und Eichbosonmassen berechnet. Beide Beitrage liefern aber nur einen Effekt
von etwa 1 MeV in der W-Masse.

Fur Ar™se®) und ArM7") wurden die Beitrage der Top/Bottom-Schleifen und Schleifen
leichter Fermionen getrennt ermittelt. Getrennt davon wurde eine Rechnung angestellt,
bei der alle Fermionschleifen berticksichtigt wurden. In dieser Arbeit wird mit Ar(Vre?)

bzw. ArV7*) das kombinierte Ergebnis fur Top/Bottom-Schleifen und Schleifen leich-
ter Fermionen bezeichnet. Ar(Veee®) bzw, Ar(Vi®*) meint nur Top/Bottom-Schleifen und
Ar®ire®) pzw, Ar™ir®*) nur die Schleifen der leichten Fermionen. Diese Aufspaltung
wurde fur einen besseren Vergleich mit bisherigen Rechnungen, speziell den Entwick-

lungen in der Top-Masse, vorgenommen.
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Abbildung 6.1: Beitrag von in dieser Arbeit berechneten O(N ;a?)-Termen zu Ar in Abhéngig-
keit von der Higgs-Masse M. Das Fehlerband ergibt sich durch Variation der Top-Masse inner-
halb deren experimenteller Unsicherheit.

Zunéchst soll der in dieser Arbeit bestimmte elektroschwache fermionische Beitrag Ar(N7?)
getrennt betrachtet werden. Hierzu wird die die experimentell bestimmte W-Masse als
Input-Parameter verwendet und damit Ar bestimmt. Das Resultat fir Ar ist dann nur
noch von der Higgs-Masse als einzigem nicht gemessenem Parameter des Standardmo-
dells abhangig. Abbildung 6.1 zeigt den elektroschwachen Zwei-Schleifen-Beitrag aus
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Feynman-Diagrammen mit einer geschlossenen Fermionschleife (O(N;a?)) als Funkti-
on der Higgs-Masse.

0.0021 .
~ 0.0015f - i
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0.0005¢ S
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Abbildung 6.2: Beitrage von O(Na?)-Termen zu Ar in Abhéangigkeit von der Higgs-Masse
My . Vergleich des Beitrags aller Fermionen in den Schleifen mit den separat ermittelten Bei-
tragen leichter Fermionen bzw. des Top/Bottom-Dubletts in den Schleifen. Eine teilweise Kom-
pensation der Sensitivitat auf die Higgs-Masse ist zu erkennen. Die Kurve ,leichte Fermionen
sub“zeigt die Differenz Ar(Ms0®) — 2Ar( Y Aq,

bos

Die Higgs-Abhangigkeit von Ar(Mre*) stammt aus Beitragen vom Top/Bottom-Dublett
und von den leichten Fermionen. In der Summe kompensieren sich diese Abhangi-
keiten zu einem grof3en Teil gegenseitig (siehe Abbildung 6.2, numerische Werte sie-
he Tabelle 6.1). Wahrend der Beitrag des Top/Bottom-Dubletts zu Ar mit steigender
Higgs-Masse sinkt, steigt der Beitrag der leichten Fermionen an. Insgesamt wird da-
durch die Higgs-Sensitivitat zu einem grofRen Teil kompensiert, und es verbleibt eine
mildere Abhangigkeit von der Higgs-Masse mit einem Maximum bei ca. 700 GeV.

Die Beitrage Ar(NVie?) héngen bei fester W-Masse nicht von der Higgs-Masse ab. Das
gleiche gilt fur die QCD-Korrekturen zum elektroschwachen Ein-Schleifen Ergebnis
Ar(ees) und Ar(eed),

In [61, 62] wurde die Higgs-Abhangigkeit der fermionischen Zwei-Schleifen-Beitrage
zu Ar berechnet. Diese stimmt exakt mit der Higgs-Abhéangikeit des hier berechneten
kompletten fermionischen Zwei-Schleifen-Beitrags tiberein.

Durch geignete Aufsummation von Ein-Schleifen-Beitragen kann man Zwei-Schleifen-
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My [GeV] || Ar®Vre?) | ApNewo®) | 9 Ar & Ay | ArtViee®) — 9 Ar Y Aq || 2472 Ap(Nire)
100 0.002004 | 0.001406 | 0.000388 0.000223 0.000033
200 0.002150 | 0.001221 | 0.000672 0.000270 0.000056
400 0.002350 | 0.001023 | 0.001003 0.000336 0.000084
600 0.002415 | 0.000830 | 0.001213 0.000385 0.000102
1000 0.002382 | 0.000450 | 0.001489 0.000457 0.000125

Tabelle 6.1: Numerische Unterschiede der Ar(Nse*) Beitrage. In der zweiten Spalte sind die
Beitrége aller Fermionen in den Schleifen und in der dritten Spalte sind der Beitrag der Top-
Bottom-Schleifen separat aufgefiihrt. In den Spalten vier bis sechs wird der Beitrag der leichten
Fermion-Schleifen mit Beitrdgen, welche die Aufsummation (6.3) liefert, verglichen.

Teilbeitrage bertcksichtigen. Der Summand ~ A« aus dem Zwei-Schleifen Beitrag der

leichten Fermionen, Ar("*”) kann durch Aufsummation des Ein-Schleifen Ergebnisses

erhalten werden [63]:

Ar(ee®) — oAr ) Aq (6.2)
wobei Aré‘zi der bosonische Anteil des Ein-Schleifen Ergebnisses ist. Die Relation (6.2)
wurde mit Hilfe des Zwei-Schleifen-Ergebnisses analytisch verifiziert.

Bei der Berechnung der fermionischen Zwei-Schleifenbeitrage mit Hilfe einer Entwick-
lung in der Top-Masse [60] wurden die leichten Fermionen durch die Aufsummation

1
1—Ar

(1+Ar) = (6.3)

berticksichtigt. Diese liefert zusatzlich zu (6.2) noch einen Beitrag 2Ar(*) Ar(it@) In
Tabelle 6.1 sind die einzelnen Beitrage aus der Aufsummation mit dem kompletten
Zwei-Schleifen Ergebnis fur die leichten Fermionen verglichen. Der bekannte Summand
~ A« aus dem Zwei-Schleifen Beitrag der leichten Fermionen liefert maximal etwa 70%
des Gesamtergebnisses fur die leichten Fermionen Ar(M:®) (siehe Spalten vier und funf
in Tabelle 6.1). Der Beitrag 2Ar{”) Ar(@), welcher auch durch die Aufsummation von
Ein-Schleifen Beitragen bericksichtigt wird, ist hingegen klein und tragt nur etwa 6%
zum Ergebnis fur die leichten Fermionen bei.

In Abbildung 6.2 sind die Beitrage der leichten Fermionen und des Top/Bottom-Dubletts
zusammen mit der Summe dieser Beitrdge Uber der Higgs-Masse aufgetragen. Man
sieht, dal fur leichte Higgs-Massen der Beitrag des Top/Bottom Dubletts-dominiert.
Auferdem ist eine teilweise Kompensation der Empfindlichkeit auf Anderungen in der
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Higgs-Masse zu erkennen. Zusatzlich zu ArMiso®) st auch die Differenz Ar(Nise®) —

2Ar{*) A in das Diagramm eingetragen, da der Term 2Ar\%) Aq als Teilbeitrag zu Ar(Vire?)
[63] vor dieser Arbeit bekannt war.
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Abbildung 6.3: Ein- und Zwei-Schleifen Beitrage zu Ar in Abhangigkeit von der Higgs-Masse,
wobei Ar(ogD — Arles) L Ap(@0?) ynd Ar@®) = Ap(Nro®) L Ar(N7O)  Fermionische Zwei-
Schleifen-Beitrage liefern, wie die QCD-Korrekturen auch, Korrekturen von mehr als 10% zum
Ein-Schleifen-Resultat.

In Abbildung 6.3 sind der elektroschwache Ein-Schleifen-Beitrag, die QCD-Beitrage
und die elektroschwachen Zwei-Schleifen-Beitrage miteinander verglichen. Man sieht,
dal? die Abhangigkeit von der Higgs-Masse durch die Hinzunahme der Zwei-Schleifen-
Beitrage leicht erhdht wird. Sowohl die QCD-Beitrage als auch die elektroschwachen
Zwei-Schleifen-Beitrage liefern eine Korrektur von mehr als 10% zum Ein-Schleifen-
Beitrag (siehe Tabelle 6.2).

Die Verwendung einer konsistenten Definition von ~; in D-Dimensionen flhrt zu soge-
nannten nichtkompensierbaren Termen (siehe Abschnitt 3.1.4). Diese sind Eichparameter-
unabhangig und liefern auch einen numerischen Unterschied Ar.omp ZU Rechnungen
im naiven Schema. Es ist a priori nicht klar, ob dieser Unterschied numerisch signifikant
ist. Deshalb ist eine getrennte Untersuchung der Grof3e dieses Beitrags sinnvoll.

Die nichtkompensierbaren Terme hangen nicht von der Higgs-Masse, wohl aber von
der Top-Masse und den Eichboson-Massen ab. Eine Auftragung von Ary,com, Uber der
Top-Masse (siehe Abbildung 6.4) zeigt dabei, dal? dieser Beitrag fur m; < 300 GeV eine
anndhernd lineare Abhangigkeit von der Top-Masse hat. Fur grof3ere Top-Massen wird
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My [GeV] | Ar(® | Ap(@ 4 ATS‘C)D Ar(®) 4 Arg)gD + Ar(NEe?) | Ay
100 0.0282 0.0325 0.0333 0.0353
200 0.0306 0.0349 0.0357 0.0379
400 0.0334 0.0377 0.0385 0.0409
600 0.0352 0.0395 0.0403 0.0427
1000 0.0375 0.0418 0.0426 0.0450

Tabelle 6.2: Numerische Ergebnisse flr verschiedene Ein- und Zwei-Schleifen-Beitrage zu Ar
(siehe Abb.: 6.3). Ar(®) ist der Ein-Schleifen-Beitrag, M”@D sind die Ein- und Zwei-Schleifen-

QCD-Korrekturen und Ariﬁ) ist das Ein-Schleifen-Ergebniss zusammen mit den QCD und den
fermionischen Zwei-Schleifen-Korrekturen.

my [GeV] || Aruncomp [107°]
10 -0.7688
500 -2.0891
1000 -3.0585
3000 -5.2383

Tabelle 6.3: Numerische Ergebnisse fur die GroRe der Beitrage der nichtkompensierbaren Ter-
2

me zu Ar(®") in Abhangigkeit von der Top-Masse.

die Kurve etwas flacher. Dies deutet darauf hin, daf es sich nicht um einen Teil der
fuhrenden Korrekturen O(a?), die proportional zu m; bzw. m? sind, handelt.

Der Beitrag ist auch numerisch keine signifikante Korrektur zu Ar.
Aluncomp = —(1.26 £0.02) - 1075 far m, = (174.3 £ 5.1) GeV

Dies ist weniger als 1 % des gesamten Zwei-Schleifen Ergebnisses und damit sicherlich
keine fuhrende Korrektur. In Tabelle 6.3 enthalt numerische Ergebnisse fur Arucomp 1N
Abhéngigkeit von einer formal Uber einen Bereich von 10 GeV bis 3 TeV variierten Top-
Masse.

Prinzipiell ist es jedoch wichtig, solchen nichtkompensierbaren Termen Beachtung zu
schenken. Es war vor der expliziten Berechnung nicht abzusehen, dal? diese Korrektur
numerisch Kklein im Vergleich zur gesamten O(N;a?) Korrektur ist. Auch fir die Be-
rechnung elektroschwacher Mehr-Schleifen-Beitrage zu anderen Prozessen kann damit
nicht gefolgert werden, dal? diese Beitrage zu vernachlassigen sind.



Abschnitt 6.2 Berechnung der W-Masse 71

Or
-0.25}
5 -0.5[
| [
(@») L
y—{ L
—— -0.75}
=y [
g [
Qo L
= -1t
= [
< [
< -1.25}
-1.5}

1.7s b - ... ... T

0 50 100 150 200 250 300

my [ GeV]

Abbildung 6.4: Beitrag von nichtkompensierbaren Termen Arypcomp ZU Ar@) in Abhéngig-
keit von der Top-Masse. Die Korrektur durch diese Terme betragt weniger als 1% des gesamten
Zwei-Schleifen-Ergebnisses.

6.2 Berechnung der W-Masse

Die Fermi-Konstante ist experimentell sehr viel genauer bekannt als die W-Masse. Des-
halb ist es gunstiger, die W-Masse aus (4.17) mit G als Input-Parameter zu berechnen.
Dazu wird (4.17) nach Myaufgeldst. Da Ar selbst wieder von der W-Masse abhangt,
erhalt man eine Gleichung (4.18), die man iterativ (z.B. mit der experimentellen W-
Masse als Startwert) 16sen kann. Das Konvergenzverhalten ist sehr gut, und nach funf
bis sechs Iterationen ist die verbleibende Abweichung kleiner als 108,

In Abbildung 6.5 sind zum Vergleich numerische Ergebnisse fur My, die sich durch Ver-
wendung von Korrekturen verschiedener Ordnung ergeben, gegenubergestellt. Es wur-
de die komplexe Polmassen-Definition verwendet und die Ergebnis mit (A.1) (wie in
Abschnitt 2.2.3 beschrieben) umgerechnet. Der Unterschied zwischen der Ein-Schleifen
Vorhersage und der Bestimmung der My-Masse unter Verwendung der QCD- und
elektroschwachen Zwei-Schleifen-Korrekturen betragt etwa 120 MeV (siehe Tabelle 6.4).
Bei einer momentanen experimentellen Ungenauigkeit von 33 MeV in der W-Massen-
bestimmung [70] sind diese Korrekturen also unbedingt notwendig fur einen Vergleich
zwischen Theorie und Experiment. Alleine die Hinzunahme der O(N;ao®) und O(N7a?)
Korrekturen bewirkt eine Verschiebung der W-Masse um etwa 50 MeV.
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My [GeV]aus | My [GeV]aus My [GeV] aus My [GeV] aus
My [GeV] Ar(@ Ar® 4 ArSgD Ar® 4 ArSgD + Ar(Ne?) Ar(e?)
100 80.5012 80.4266 80.4130 80.3791
200 80.4597 80.3858 80.3721 80.3359
400 80.4116 80.3383 80.3245 80.2853
600 80.3812 80.3083 80.2945 80.2542
1000 80.3414 80.2690 80.2552 80.2155

Tabelle 6.4: Numerische Unterschiede in der W-Masse bei Verwendung des Ein-Schleifen Er-
gebnissses Ar(®), des Ein-Schleifen Ergebnissses zusammen mit QCD-Korrekturen Ar(®) +
Ar(ogD und nach Hinzunahme der rein fermionischen schwachen Zwei-Schleifen Resultate

Ar(Nie?) sowie der fermionsichen schwachen Zwei-Schleifen-Resultate Ar(@*), Es wurde die
komplexe Polmassendefinition benutzt. (siehe Abb. 6.5).

Abbildung 6.6 zeigt den Einflul3 der leichten Fermionen in den fermionischen Zwei-
Schleifen-Korrekturen auf die berechnete W-Masse. Hierzu ist die W-Masse die sich
unter Verwendung aller Fermionen in den Schleifen der fermionischen Beitrage ergibt
zusammen mit der W-Masse, die man bei Bertcksichtigung der schweren und leichten
Fermionen getrennt erhalt. Auch hier kommt es wie schon bei Ar zu einer gegenseitigen
Kompensation der Higgs-Massen-Abhangigkeiten aus den Beitragen leicher Fermionen
und des Top/Bottom-Dubletts. Die numerischen Ergebnisse dieses Vergleichs kdnnen
Tabelle 6.5 entnommen werden. Fur My < 500 GeV bewirkt die Vernachlassigung der
leichten Fermionen einen Fehler in der W-Masse von maximal 25 MeV.

Da die Berechnung der Zwei-Schleifen-Integrale numerisch mit einer eindimensionalen
Integraldarstellung erfolgt, ist die Rechenzeit fur die Bestimmung der W-Masse nach
dieser Methode zu grol3, als dal man das exakte Result fur globale Fits des Standard-
Modells verwenden kdnnte. Man kann aus dem exakten Resultat aber eine Fit-Formel
gewinnen, die das volle Resultat fur die W-Masse mit hinreichender Genauigkeit para-
metrisiert.

FUr verschiedene Higgs-Massen werden hierzu die Eingabeparameter innerhalb ihrer
20 Grenzen variiert. Die so gewonnenen Punkte in einer Auftragung der W-Masse tber
der Higgs-Masse werden dann mit der Methode der kleinsten Quadrate an eine einfa-
che Formel

My = My — dydH — dydH? + dydH?* — dyda + dsdt — dgdt® — d7dHdt — dgdas + dodZ
(6.4)



Abschnitt 6.2 Berechnung der W-Masse 73
—— Mywaus Ar(@
....... (a) (a)
80.5" Myaus Ar'® + Argép o
[ ---- Mwaus Ar(® 4 Ar(a()jD + Ar(Nga?)
= o T~ e Myaus Ar(® + Arl) 4 Ap(e®
z j ]
= i ‘\~\\ TTe= il
80.3F CTTeellUiiee
so.2t T
200 400 600 "800 1000

Abbildung 6.5: Theoretische W-Masse aus O(«), O(a) + O(aas) + O(aa?), O(a) + O(aas) +
O(aa?) + (’)(N?oﬂ) und O(a) + O(aas) + O(aa) + O(Nra?) + (’)(N]%aZ) im Vergleich.

gefittet, wobei

MH my 2 MZ
d " (100 GeV> i (174.3 Gev>  d (91.1875 GeV) (6.5)
die Variablen fur die Variation mit den Teilchenmassen sind und
A« ag(My)
da = -1 = — 6.6
= 0.05924 ST T g (6:6)

die Variablen fur die Variation in den Kopplungen sind. Durch den Fit gewinnt man
folgende Werte fur die Koeffizienten:

My, = 80.3768 GeV ,
d; = 0.05619 GeV
dy = 0.009305 GeV ,
d3 = 0.0005365 GeV ,
dy = 1.078 GeV

ds = 0.5236 GeV
ds = 0.0727 GeV
dr = 0.00544 GeV
ds = 0.0765 GeV
dy = 0.01383 GeV
(6.7)

Das vollstandige Ergebnis fur die W-Masse kann mit dieser Formel fir 65 GeV < My <
1TeV und 20 Variationen der Eingabe-Parameter besser als auf 0.3 MeV genéahert.
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Abbildung 6.6: Theoretische W-Masse unter Berticksichtigung von leichten Fermionen,
Top/Bottom oder allen Fermionen in den Schleifen der O(N?«) Korrekturen. Zuséatzlich ist die
Kombination aus Top/Bottom-Schleifen O(N3 «) und leichten Fermionen, die durch die Auf-

summation 2A7(% Aq bertcksichtigt werden, aufgetragen.

bos

Das in dieser Arbeit berechnete Ergebnis wurde mit dem Ergebnis aus einer Entwick-
lung fur asymptotisch groBe Werte der Top-Masse bis O(GZm?M?2) [60] verglichen.
Hierfar wurde der in [60] verwendete Parametersatz benutzt, d.h. m; = 175 GeV, My =
91.1863 GeV, Aa = 0.0594 und «ag(My) = 0.118. Der Vergleich der W-Masse aus der
vollstandigen Rechnung mit dem Ergebnis aus der Entwicklung in m; zeigt relativ gute
Ubereinstimmung mit einer maximalen Differenz beider Werte von etwa 4 MeV (siehe

SMY in Tabelle 6.6).

Das Ergebnis der vollstandigen Rechnung und der Entwicklung in m; unterscheiden
sich aber nicht nur in den fermionischen Zwei-Schleifen-Beitragen. Vielmehr wurden
auch die Beitrage hoherer Ordnung unterschiedlich behandelt. Die Ergebnisse in [60]
berticksichtigen mit Hilfe der Ersetzung (6.3) einen Term (Ar2 ). Dieser ist in unserem
Ergebnis nicht enthalten. Aulerdem wurden die QCD-Korrekturen unterschiedlich in
die Ergebnisse eingebaut. Deswegen wurde zusatzlich noch ein Vergleich durchgefuhrt,
bei dem die QCD-Korrekturen und Unterschiede in der Behandlung des (Ar{, .)? Terms

aus beiden Resultaten entfernt wurden (siehe 6MV(§) in Tabelle 6.6). AuRerdem wurde in

6M\(,3) in der gleichen Tabelle zusétzlich der Beitrag der leichten Fermionen aus unserem
Ergebnis subtrahiert. Die maximale Abweichung in der W-Masse reduziert sich so auf
3.5 GeV und die maximale Differenz in der Higgs-Massen Abhangigkeit My (My) —
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My [GeV]aus | My [GeV]aus | My [GeV]aus My [ GeV] aus
My [GeV] Ar(Npe?) Ar(Niwa?) Ar@ee?) | Ap(Nme?) L 9 AR A
100 80.3791 80.3513 80.3496 80.3447
200 80.3359 80.3144 80.3033 80.3032
400 80.2853 80.2713 80.2493 80.2545
600 80.2542 80.2450 80.2151 80.2248
1000 80.2155 80.2127 80.1703 80.1880

Tabelle 6.5: Numerische Unterschiede in der W-Masse, je nachdem ob in den O(Na?) nur
die leichten Fermionen, oder Top/Bottom oder alle Fermionen in den Schleifen bertcksichtigt
werden (siehe Abb. 6.6).

My (My = 65 GeV) betragt noch 3.7 MeV.

6.3 Verbleibende Unsicherheiten in der Bestimmmung der
W-Masse

Bei der Berechnung der W-Masse gibt es zwei Quellen der Unsicherheit: zum einen
die Unsicherheit der experimentellen Eingabewerte und zum anderen die theoretische
Unsicherheit aufgrund der unbekannten Terme hoherer Ordnung fur Ar.

Die Vorhersage der W-Masse wird hauptsachlich durch den experimentellen Fehler der
Top-Masse bestimmt. Aktuell ist der genaueste Wert fur die Top-Masse 174.3 GeV mit
einem Fehler von +£5.1 GeV. Dies schlagt sich in einer Unsicherheit von etwa 30 MeV
bei der Vorhersage der W-Masse nieder. Die Unsicherheit in der Bestimmung von A«
(A = 0.05911£0.00036 [79]) fuhrt zu einem weiteren moglichen Fehler, der aber kleiner
7MeV ist. Die Unsicherheiten der anderen Eingabeparameter a (M), My, und Gy sind
dagegen zu vernachlassigen.

Die theoretische Unsicherheit stammt aus unbekannten Korrekturn hoherer Ordnung,
insbesondere den unbekannten rein bosonischen Zwei-Schleifen Korrekturen, den Drei-
Schleifen elektroschwachen Korrekturen und den fehlenden QCD Korrekturen O(a?as)
und O(aa?).

Teile der elektroschwachen Drei-Schleifen Korrekturen sind bekannt, namlich die rein
fermionischen Korrekturen und die fuhrenden Terme proportional m¢ und proportio-
nal agm; fur grolRe Top-Massen [65]. Beide Beitrage liefern zusammen einen Effekt von
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My [GeV] || MER [GeV] | 6ME) [MeV] | §MS [MeV] | 605 [ MeV]
65 80.4039 4.2 -3.3 -0.2
100 80.3805 -3.4 2.7 0.6
300 80.3061 -1.0 -1.4 2.5
600 80.2521 0.0 ‘15 33
1000 80.2129 05 2.1 35

Tabelle 6.6: Numerische Unterschiede im Vergleich der Vorhersage fur die Masse des W-Bosons
aus der Entwicklung bis zur nachtsfiUhrenden Ordnung in m; (siehe Abb. 6.7), Mg’v“tw genannt.

In 5MV(\1,) wurde die Differenz aus unserem Resultat und der Entwicklungsrechnung gebildet, in
6MV(3) wurden die QCD-Korrketuren und Unterschiede in der Behandlung von (Ar& )2 korri-

giert und in 5MV((°}) wurde zusétzlich der Beitrag der leichten Fermionen aus unserem Ergebnis
entfernt.

etwa 1 MeV in der W-Masse. Einen weiteren Hinweis auf die GroRe der O(a?) Kor-
rekturen liefern verbleibende Schema-Abhangigkeiten in den O(a?) Ergebnissen. Um
zwischen den unterschiedlichen Breit-Wigner-Parametrisierungen bei Festlegung der
Polmasse W-Bosons uber den reellen oder komplexen Pol zu transformieren, bendtigt
man die Breite des W-Bosons. Je nachdem ob diese Breite mit . oder G parametri-
siert ist, erhalt man einen Unterschied, der formell von O(a?) ist, und ebenfalls eine
Verschiebung in My um etwa 1 MeV bewirkt.

Renormierungsskalen-Abhangikeiten bekannter Resultate konnen Aufschluf3 Gber die
Grolienordnung der fehlenden QCD-Korrekturen geben. Variiert man im elektroschwa-
chen Zwei-Schleifen Ergebnis die laufende MS Top-Masse an verschiedenen Skalen oder
variiert auf gleiche Weise die starke Kopplungskonstante, so erhélt man eine Abschatzung
fur den O(a”as) Beitrag von etwa 3.8 MeV. Aus der Skalen-Abhéngigkeit des O(aa?)
Ergebnisses kann man auf einen Effekt von ca. 0.7 MeV in der W-Masse aus den O(aa?)
Korrekturen schlie3en.

Eine alternative Mdglichkeit, die fehlenden QCD-Beitrage abzuschatzen, beruht auf der
Annahme, daB die Verhaltnisse aufeinanderfolgender Koeffizienten in der Stérungsrei-
he sich nicht stark verandern. Unter dieser Annahme sollte also gelten:

2

Ar(a‘ aS) Ar(aas)
Are® T Apl@

woraus man eine Unsicherheit von etwa 3.5 MeV in My aus dem O(a?ay) Beitrag erhélt.
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Abbildung 6.7: Vergleich mit der Vorhersage fur My aus der Entwicklung bis zur
nachtsfuhrenden Ordnung in m; (siehe Tabelle 6.6).
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folgt eine Unsicherheit von etwa 0.7 MeV aus dem O(«a«?) Beitrag. Diese Abschatzung
liefert also in etwa das gleiche Resultat wie die Abschatzung tber die Renormierungs-
skalen-Abhangikeiten bekannter Resultate.

Der fuhrende Beitrag ~ m; zu O(a?as) ist in einer Entwicklung fur groRe Top-Massen
im Limes einer verschwindenden Higgs-Masse ist bekannt [65]. Er liefert eine Verschie-
bung von nur etwa 0.5 MeV in der W-Masse, d.h. einen deutlich kleineren Wert, als
obige Abschatzung fur den O(a?as) Betrag. Dies scheint im Widerspruch zu den obi-
gen Abschatzungen fur den O(a?ag) Beitrag zu stehen. Allerdings weil man aus man
aus Entwicklungen in der Top-Masse bei den O(a?) Beitragen, daB dort der formell
fuhrende Term ~ m; von gleicher GroRenordnung, wie der nachstfiihrende Term ~ m?
ist [60]. Deswegen erscheint es gerechtfertigt, den O(a?ag) Beitrag um einiges groRer
als den m! Koeffizienten abzuschéatzen (siehe hierzu auch die Diskussion in [66]).

Eine Abschétzung der rein bosonischen Beitrage O(a?) kann man durch Aufsummation
der bosonischen Ein-Schleifen Beitrdge mittels der Ersetzung 6.3 erhalten. Dies liefert

2
einen Beitrag (Arfgi) , der stark von der Higgs-Masse abhangt. Er bewirkt eine Ver-
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Abbildung 6.8: Fehlerband durch die theoretische Unsicherheit in der Vorhersage der W-
Masse. Hierbei wurden die unbekannten Korrekturen héherer Ordnung abgeschatzt.

schiebung der W-Masse um weniger als 0.5 MeV fur eine Higgs-Masse von 100 GeV. Fur
eine Higgs-Masse von 1 TeV erhélt man hingegen einen Beitrag von mehr als 2.5 MeV
in der W-Masse.

Um eine konservative Abschatzung zu erhalten, summiert man die einzelnen theoreti-
schen Unsicherheiten linear auf. Dadurch erhalt man insgesamt eine Unsicherheit von
etwa 6 MeV in der W-Masse fur ein leichtes Higgs-Boson und ca. 8 MeV fur My = 1 TeV.

6.4 Tests der Standardmodell-Vorhersage

Die Quantekorrektur Ar zur Beziehung zwischen der Masse des W-Bosons und des
Z-Bosons wird mit Hilfe der Myon-Lebensdauer und damit der Fermi-Konstante Gg
bestimmt. Die prazisen Berechnungen zu Ar und G erlauben genaue Tests des Stan-
dardmodell. Im Gegensatz zur Z-Masse, die mit einer Unsicherheit von 2.1 MeV bekannt
ist, ist der experimentelle Fehler in der W-Masse mit 33 MeV relativ grof3. Deshalb wer-
den die Rechnungen dazu benutzt, eine moglichst genaue theoretische Vorhersage fur
die W-Masse zu erhalten. Die experimentell wesentlich genauer bekannten GréR3en, wie
Z-Masse und Fermi-Konstante, werden dabei als Eingabe-Parameter verwendet.

Bevor wir die Situation an zuktnftigen Beschleunigern untersuchen wollen, wenden
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wir uns zunachst der aktuellen Situation zu. In Abbildung 6.9 ist die theoretische Vor-
hersage fur die W-Masse als Funktion der Higgs-Masse aufgetragen. Das Fehlerband
ergibt sich dabei durch quadratische Addition der Fehler, die sich aus den Unsicherhei-
ten in der Top-Masse m; = 174.3 + 5.1 GeV und der Verschiebung der Feinstrukturkon-
stante Aa = 0.05911 + 0.00036 GeV berechnen. Zum Vergleich ist der aktuelle experi-
mentell gemessene Wert fur die W-Masse zusammen mit seiner Unsicherheit und die
Untergrenze fur die Higgs-Masse auf 95% Vertrauensniveau (My > 114.1 GeV aus der
direkten Suche [67]) aufgetragen.
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Abbildung 6.9: Standardmodell-Vorhersage fir My als Funktion von My fur my = 174.3 +
5.1 GeV im Vergleich mit dem gegenwaértigen Wert fur die W-Masse, M;" = 80.451+0.033 GeV
[70]. Die experimentelle Untergrenze fur die Higgs-Masse liegt bei My = 114.1 GeV [67].

Wie auch schon in anderen Prazisionstests, zum Beispiel dem bekannten ,,Blauen Band
Diagramm®“[68], so sieht man auch diesem Diagramm deutlich die Praferenz fir ein
leichtes Higgs-Boson im Standardmodell an. Insbesondere kann die theoretische Vor-
hersage inklusive der Unsicherheit nicht mit dem experimentellen Ergebnis und seiner
1o Unsicherheit sowie der Unterschranke fur die Higgs-Masse in Einklang gebracht
werden.

Durch Vergleich der Fehlerintervalle aus theoretischer Rechnung und experimentel-
ler Messung kann man eine indirekte Vorhersage ftr die Higgs-Masse innerhalb des
Standard-Modells gewinnen. Die Standardabweichung dieser Vorhersage wird durch
die Standardabweichungen der theoretischen Vorhersage fur My, und des experimen-
tell gemessenen Wertes A" bestimmt. Dabei werden jeweils die Schnittpunkte der
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1lo-Grenzkurven mit den Kurven der Zentralwerte genommen und durch Addition der
Quadrate der erhaltenen Fehler kombiniert. Da die W-Masse im wesentlichen logarith-
misch von der Higgs-Masse abhéangt, muf3 man zunachst Zentralwert und Standarab-
weichung fur den Logarithmus der Higgs-Masse bestimmen. Mit diesem Wert kann
schliefilich eine Vorhersage fur die Higgs-Masse angegeben werden:

My
In— 2 — 234421 6.8
1100 GeV s s (6:8)
My = 1073 GeV . (6.9)

Aus den 20-Grenzen kann man eine obere Grenze an die Higgs-Masse bei 95% Vertrau-
ensniveau berechnen:

My < 219GeV  bei 95% C.L. (6.10)

Grenzen fur My kdnnen auch aus Strahlungskorrekturen zu anderen Observablen her-
geleitet werden. Die Ergebnisse fur alle Observablen lassen sich mit Hilfe eines globalen
Fits an alle Daten kombinieren. In Abschnitt 6.2 wurde bereits angegeben, wie mittels ei-
ner einfachen Formel die in dieser Arbeit theoretisch bestimmte W-Masse in ein solches
Fit-Programm, ZFITTER [69], eingebunden werden kann. In der letzten elektroschwa-
chen LEP Analyse wurde die hier berechnete theoretische W-Masse mit ihrer Unsicher-
heit von etwa 6 MeV verwendet [70]. Wichtiger als der direkte Fehler in der Bestimmung
von My ist dabei sein Einfluf auf die Vorhersage des effektiven Mischungswinkels s?.
Aufgrund der neuen, hier berechneten, Zwei-Schleifen-Beitrdge von Ar zeigt der Mi-
schungswinkel eine starke Abhangigkeit von Veranderungen in der W-Masse. Man er-
wartet, dal? diese Sensitivitat auf Veranderungen in My durch die fermionischen Zwei-
Schleifen-Beitrage zum effektiven Mischungswinkel reduziert werden. Solange hierftr
aber kein vollstandiges Resultat vorliegt, sollte der Effekt als theoretische Unsicherheit
behandelt werden. Dieser Effekt stellt ein relativ breites Band innerhalb des ,,Blauen
Band Diagramms*“[68] dar.

Die experimentelle Unsicherheit der Eingabeparameter bestimmen hier den Fehler in
der theoretisch bestimmten W-Masse. Eine hohere experimentelle Genauigkeit bei der
Messung der W-Masse und der Eingabeparameter fur Ar liefert eine niedrigere obere
Massen-Schranke fur das Higgs-Boson. Deswegen ist es besonders interessant, einen
Blick auf die Situation an zukinftigen Beschleunigern zu werfen. Insbesondere wer-
den hier der bereits im Bau befindliche Hadronkollider LHC und ein zukilnftiger ete™
Linearbeschleuniger betrachtet. Es ist zu erwarten, dal? sich dort die experimentellen
Unsicherheiten deutlich reduzieren. Verwendet man die aktuellen Zentralwerte fur al-
le Eingabeparameter und die W-Masse und kombiniert man diese mit den zu erwar-
tenden Unsicherheiten in der Top- und W-Masse, so kann man einen Eindruck davon
gewinnen, ob die Genauigkeit in der theoretischen Bestimmung der W-Masse auch mit
der experimentellen Genauigkeit an zuktinftigen Beschleunigern konkurrieren kann.
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Abbildung 6.10: Standardmodell-Vorhersage von My, als Funktion von My. Es werden die
zu erwartenden experimentellen Fehler bei LHC (§Mw = 15MeV und ém; = 1.5 GeV) zusam-
menm mit den aktuellen Zentralwerten benutzt.

Der LHC, ein Hadron-Collider der am CERN aufgebaut wird und 2006 in Betrieb ge-
hen soll, wird eine deutlich genauere experimentelle Bestimmung der Standardmodell-
Parameter ermoglichen. In Abbildung 6.10 ist die Situation gezeigt, wie sie am LHC zu
erwarten ist. Der zu erwartende Fehler in der W-Masse wird auf 15 MeV reduziert und
die Top-Masse soll dort mit einer Ungenauigkeit von etwa 1.5 GeV gemessen werden
[71]. Dies wirkt sich bei Verwendung des gegenwartigen Zentralwerts fur die W-Masse
folgendermaRen auf die Higgs-Masse aus:

My
M 984411 11
" 100 GeV 3 g (6.11)

My = 1073°GeV . (6.12)

1

Hieraus kann wieder eine Oberschranke fur die Masse des Higgs-Bosons bestimmt wer-
den:

My < 59GeV  bei 95% C.L. (6.13)

Die Oberschranken fur die Higgs-Masse, die aus den am LHC zu erwartenden Mel3-
genauigkeiten gewonnen werden konnten, sind durch die unteren Grenzen aus der di-
rekten Higgs Suche bereits ausgeschlossen. Ein Standardmodell Higgs-Boson mit einer
Masse, wie sie globale Fits an das Modell vorhersagen, ware am LHC natarlich auch
direkt beobachtbar.
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Abbildung 6.11: Standardmodell-Vorhersage von My als Funktion von My. Es werden die zu
erwartenden experimentellen Fehler bei TESLA (6Mw = 6 MeV und dm; = 200 MeV) zusam-
men mit den aktuellen Zentralwerten benutzt.

Eine nochmalige deutliche Steigerung in der Prazision der Massen-Bestimmung sollen
zukunftige Lepton-Collider liefern. Besonders ein Elektron-Positron-Linearbeschleuni-
ger, wie das TESLA-Projekt [72], ware hierfur geeignet. Die hohe Luminositét eines sol-
chen Beschleunigers von etwa 500fb~! pro Jahr und mdoglicher Satelliten-Moden wie
GigaZ und MegaW [72] wurden die Ungenauigkeiten in der Massen-Bestimmung noch-
mals stark reduzieren. An diesem Beschleuniger kdnnte man etwa é My = 6 MeV und
omy = 200 MeV erreichen (siehe Abbildung 6.11). Dies kann bei Verwendung des jetzi-
gen Zentralwerts fur die W-Masse wieder in ein Vorhersage fur die Higgs-Masse um-
gerechnet werden:

My
My = 1073°GeV (6.15)
und
My < 25GeV  bei 95% C.L. (6.16)

Diese experimentellen Genauigkeiten liefern eine sehr gute indirekte Vorhersage fur die
Higgs-Masse. Der MeRfehler von My, liegt dann aber in der gleichen Grolienordnung,
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wie die theoretische Unsicherheit aufgrund von Korrekturen hdherer Ordnung. Des-
wegen ware die Berechnung weiterer Korrekturen zur W-Masse und dem effektiven
Mischungswinkel wiinschenswert.
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Kapitel 7

Die Z-Resonanz und der effektive
Mischungswinkel

7.1 Effektive Kopplungen und Mischungswinkel

Um elektroschwache Korrekturen hoherer Ordnung zum ProzeR ete~ — ff in der Néhe
der Z-Resonanz zu beschreiben, ist es nutzlich, diese soweit wie moglich in effektive
Kopplungen zu absorbieren. Dabei handelt es sich um eine Approximation, die sich
aber in der Praxis als sehr tragfahig erweist.

Das Matrixelement zum ProzeRR

efe” = (1,2) = ff,  [#e (7.1)

hat in niedrigster Ordnung Stérungstheorie folgende Form:

MBem é [QeQrva ® Y + X (95977 ® 7™ — 959170 © Y5
— 909375 @ V" + 9ogi Vs @ 7*5)] (7.2)
wobei die abklrzende Schreibweise
Ay ® B = [veAque] [usB%vy] . (7.3)

verwendet wird und der Z-Propagator durch

S

— M2 — gtz
s — Mj —is3f

X = (7.4)

beschrieben wird. @, und . sind die Ladungen der Fermionen in Einheiten der Ele-
mentarladung und ¢, und g, sind die Vektor- und Axialvektor Kopplungen des Z-
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Abbildung 7.2: Feynman-Diagramme fuir Korrekturen hoherer Ordnung zum ProzeR (7.1)

Bosons an die Fermionen, also

. v QSWcW ’ .

9 Qchw,

und I{ ist der schwache Isospin.

Schwache Korrekturen hoherer Ordnung fuhren zu einer komplizierteren Struktur des
Matrixelements. In der Naherung vernachlassigter Massen der duf3eren Fermionen kon-
nen die Effekte der Schleifenkorrekturen in Formfaktoren ffjf absorbiert werden, die
von den Mandelstam-Variablen s = (p, + p;)? und ¢ = (p. — pr)* abhangen:

: 1
MSchlelfen ~ g [Oé(S)’)/a®7a+X(.7'—51{(8,25)7a®7a—7:5,{(8,25)%@’)/0‘75
—Fed (5,775 ® 7 + Fel (5, )7a75 © 7*75) ] - (7.6)

Im folgenden wird gezeigt, dal man unter bestimmten Voraussetzungen die Abhangig-
keit der Formfaktoren von den Mandelstam-Variablen vernachlassigen kann. Dann kon-
nen die Formfaktoren durch Produkte effektiver Kopplungen ersetzt werden.

Die t-Abhangigkeit der Formfaktoren stammt von den Boxdiagrammen, die in héheren
Ordnungen beitragen. In der Néhe der Z-Resonanz sind diese Diagramme vernachléassig-
bar und liefern auf Ein-Schleifen-Niveau nur einen relativen Beitrag von 10~* [73]. Ver-
nachldssigt man zusétzlich auch alle anderen nichtresonanten Beitrage, wie bosonische
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Einsetzungen im Photon-Propagator und Korrekturen zum Photon-Lepton-Lepton-Ver-
tex, so ist ein Faktorisieren der Formfaktoren sichergestelit.

Fil (st =0) = g(s)g] () - (7.7)

2

Diese Naherung ist gerechtfertigt, da die vernachlassigten Beitrage von der Ordnung
O(a3£) sind.

Um von der Schwerpunktsenergie unabhangige Formfaktoren zu erhalten, benutzt man
die Z-Pol Approximation, d.h. man setzt s = M2 in den Formfaktoren

gvh(s) = guh (M7) . (7.8)

In der gerade beschriebenen Néherung kann man durch die Ersetzung der Kopplungen
durch effektive Kopplungen

guh = gvh(M7) | (7.9)

aus dem Born-Matrixelement zum Z-Zerfall in zwei Fermionen dasjenige erhalten, wel-
ches auch Korrekturen hdherer Ordnung berutcksichtigt

MET = Gy, (gl (M2) — gl (M2)ys | vse . (7.10)

In Anlehnung an die Born-Struktur kann man einen effektiven schwachen Mischungs-
winkel einfuhren, der die Strahlungskorrekturen bertcksichtigt [73]:

Roy (M7)
Ryl (M)
Aufgrund der Lepton-Universalitat des Standardmodells haben alle Leptonen, solan-

ge man Masseneffekte vernachlassigt, den gleichen effektiven leptonischen Mischungs-
winkel:

4|Qy|sin? 0l =1 - (7.12)

1 R lept
52 = sin? §P" = 1 (1 — #) : (7.12)
A

Im folgenden wird der Index ,,lept“ zur Kennzeichnung leptonischen Kopplungen nicht
mehr explizit angegeben.

7.2 Theoretischer und experimenteller Status

Neben den Ein-Schleifen-Beitragen zum effektiven leptonischen Mischungswinkel s?
sind auch Teilbeitrage zu den Zwei-Schleifen-Korrekturen bekannt. Die fUhrenden Zwei-
Schleifen-Korrekturen ~ m! sind mit dem p-Parameter verknUpft. Zusatzlich kennt
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man aus der Entwicklung von s? in der Top-Masse die Korrektur ~ G&m?2 M2 [60]. Die-
se Korrektur ~ m? liefert einen betrachtlichen positiven Beitrag zu s?. Da ein leichtes
Higgs-Boson mit einem niedrigen Wert von s7 verknUpft ist, verstarkt die Berlcksich-
tigung dieses Beitrags die obere Schranke an My betrachtlich. Dieser deutliche Einflul
des Top-Beitrags auf die Schranke an die Higgs-Masse zeigt, dal? eine genaue Kenntnis
der fermionischen Zwei-Schleifen-Korrekturen winschenswert ist.

FUr die Higgs-Abhangigkeit der fermionischen Beitrage existiert ein exaktes Resultat
[25]. Damit kann die endliche Differenz s?(My) — s7(My = 100 GeV) ausgewertet wer-
den.

Neben den elektroschwachen Zwei-Schleifen-Teilbeitragen sind auch die QCD-Korrek-
turen O(aag) zum Ein-Schleifen-Ergebnis und in nachster Ordnung QCD O(aa?) be-
kannt [12].

Die verbleibende theoretische Unsicherheit in s wird in [66] auf 7 - 10~° abgeschatzt.

Bevor im nachsten Abschnitt auf die hier durchgefuhrten Berechnungen zu s? einge-
gangen, wird noch ein kurzer Uberblick Uber den experimentellen Status:

Im Experiment bestimmt man s? durch die Messung von Vorwérts/Ruckwarts- oder
Links/Rechts-Asymmetrien in Wirkungsquerschnitten.

Beim Beschleuniger LEP am CERN wird ausgenutzt, dal? die leptonische Vorwarts/
Ruckwarts-Asymmetrie auf der Z-Resonanz direkt vom Verhéltnis der effektiven Kopp-
lungen und damit vom effektiven leptonischen Mischungswinkel abhéngt. Aus den
LEP-Daten ergibt sich ein effektiver leptonischer Mischungswinkel:

s7 = 0.23137 £ 0.00033 [68] . (7.13)
Far die hadronischen Endzustande ergibt sich aus den LEP Daten:

57 = 0.23230 + 0.00029 [68] . (7.14)
Die SLD-Kollaboration am SLAC benutzt die Links/Rechts-Polarisationsasymmetrie
bei der Hadron- und Lepton-Produktion auf der Z-Resonanz. Diese Asymmetrie wird

kombiniert mit der Vorwarts/Ruckwarts-Asymmetrie fur leptonische Endzustéande, und
es ergibt sich:

s2 = 0.23098 £ 0.00026 [75] . (7.15)

Eine Kombination aller Messungen des effektiven Mischungswinkels ergibt:

s? = 0.23152 + 0.00017 [68] . (7.16)

Interessant ist noch ein Blick auf die Situation an zukunftigen Beschleunigern und den
dort zu erwartenden experimentellen Unsicherheiten bei der Bestimmung von s?. Der
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im Bau befindliche LHC laRt eine zusatzliche Messung mit vergleichbarer Genauigkeit
wie LEP erwarten [77]. Durch einen Linearbeschleuniger, wie TESLA, 1aBt sich im so-
genannten GigaZ-Modus die Genauigkeit auf etwa 1.3 - 10~° [78] steigern. Um diese
Genauigkeit theoretisch zu erreichen, wéaren eine komplette Zwei-Schleifen-Rechnung
und die fuhrenden Drei-Schleifen-Beitrage notig.

7.3 Beitrage zum effektiven Mischungswinkel

In dieser Arbeit wird ein fermionischer Zwei-Schleifen Beitrag zum effektiven Mischungs-
winkel fur Leptonen berechnet, also zum Verhaltnis der Realteile der effektiven Kopp-
lungen. Dies hat zur Folge, daR eine Reihe von Beitragen, die bei einer seperaten Be-
rechnung der effektiven Kopplungen bertcksichtigt werden mufiten, sich im Verhaltnis
wegheben und damit nicht berechnet werden mussen.

Da die aulieren Leptonen als masselos genahert werden, werden Terme “’Pt vernach-

lassigt. In dieser Naherung ergibt die IR-divergente QED- Vertexkorrektur zusammen
mit den QED-Korrekturen der Z-Faktoren des ete -Paares den gleichen UV-endlichen
Beitrag zur effektiven Vektor- und Axialvektor-Kopplung und hebt sich deswegen bei
der Berechnung des effektiven Mischungswinkels s7 weg.

Statt den effektiven Mischungswinkel direkt als Verhaltnis aus den effektiven Kopp-
lungen zu berechnen, kann man die Beziehung (7.12) auch bis zur zweiten Schleifen-
Ordnung entwickeln:

]' v «
57 = —<1 P (1+5gv 5951)

4 Ya

+ag) — 095 + (5g)2 — dgi° )595?))) : (7.17)
wobei

e (7.18)

die Vektor- und Axialvektor-Kopplungen fur Leptonen sind. Die Differenz 695})‘) — 5g£1°‘)
ist der Ein-Schleifen-Beitrag zum effektiven Mischungswinkel. Zu dem analogen Zwei-

Schleifen-Beitrag 6g§f‘2) — 5g£f‘2) tragen in dieser Ordnung auch noch Produkte aus Ein-
Schleifen-Ordnung bei, die dann auch von Ordnung O(a?2) sind, namlich (5¢'*)2 und
5oy 5gs.

Benutzt man als EingabegroRRe fur die Masse des W-Boson statt des experimentellen
Wertes den theoretisch aus Gr und Ar berechneten, so hat man bereits auf Born-Niveau
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Abbildung 7.3: Diagramme welche zum effektiven Mischungswinkel auf Zwei-Schleifen-
Niveau beitragen.

eine Abhangigkeit des Mischungswinkels von der Higgs-Masse

M2 — My (My)?
P gs?, =142 VQV( n)?”
Ja MZ

(7.19)

Da sich der effektive Mischungswinkel aus den Realteilen der effektiven Kopplungen
berechnet, tragen Diagramme, die nur einen Imaginarteil liefern, nicht bei. Insbesondere
folgt aus der Renormierungsbedingung fur die Z-Photon-Mischung, da der Realteil
der renormierten Z-Photon-Selbstenergie auf der Z-Resonanz verschwinden muf3

R {ii(g)(Mg)} =0. (7.20)
Damit liefert die irreduzible Zwei-Schleifen Z-Photon-Selbstenergie nur einen Beitrag
zum Imaginarteil der effektiven Kopplungen und muf} fur den effektiven Mischungs-
winkel nicht berechnet werden.

Auf Zwei-Schleifen-Niveau tragen somit zum effektiven Mischungwinkel der irredu-
zible Zwei-Schleifen Z-Lepton-Lepton Vertex (siehe Abschnitt 2.2.2 Gleichungen (2.75)
und (2.79)) und reduzible Diagramme aus der Z-Photon-Mischung bei (siehe Abbildung
7.3).
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Kapitel 8

Renormierung des
Z-Lepton-Lepton-Vertex und s7

8.1 Renormierung des Vertex im On-Shell-Schema

Die fermionischen Zwei-Schleifen-Beitrage zum effektiven Mischungswinkel setzen sich
aus den Beitragen reduzibler Zwei-Schleifen-Diagramme und dem Beitrag des irredu-
ziblen Z-Lepton-Lepton-Vertex auf Zwei-Schleifen-Niveau zusammen. Wahrend die re-
duziblen Beitrage einfach als Produkte aus Ein-Schleifen-Diagrammen berechnet wer-
den konnen, ist die Berechnung des irreduziblen Vertex technisch anspruchsvoller.

Bei der Berechnung des irreduziblen Z-Lepton-Lepton-Vertex treten vor allem zwei
Schwierigkeiten auf:

e die Berechnung irreduzibler Zwei-Schleifen-Vertexkorrekturen bei auflieren Im-
pulsen ungleich Null

e die On-Shell-Renormierung dieses Vertex

Mit den in dieser Arbeit verwendeten Methoden ist es nicht moglich, irreduzible Zwei-
Schleifen-Vertexkorrekturen fur auere Impulse ungleich Null zu berechnen. Das hier
verwendete Programmpaket zur Berechnung von Zwei-Schleifen-Integralen [24] erlaubt
auf Zwei-Schleifen-Niveau nur die Berechnung von Vakuumintegralen und Selbstener-
gien, also Zwei-Schleifen Ein- und Zwei-Punkt-Funktionen. Mit den hierzu verwende-
ten Methoden ist eine Erweiterung auf Zwei-Schleifen-Vertexkorrekturen, also Zwei-
Schleifen Drei-Punkt-Funktionen nicht einfach moglich.

Man kann den renormierten Zwei-Schleifen Z-Lepton-Lepton-Vertex in zwei endliche
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Beitrage aufspalten:
Zete™ ete~ ete™
F(Zz) ") = F(Zz) (»°) +5Z(Zz)
= I () +0Z +T5 () — T (0) - (8.1)

endlich endlich

Als erster Schritt zur Berechnung des fermionischen Zwei-Schleifen Beitrags zu s? wird
in der vorliegenden Arbeit die Summe F(def (0) + 5Z(Z2‘3+e* bestimmt. Die Berechnung
des Vertex bei verschwindendem auf3eren Impuls ist dabei mit unseren Methoden mog-
lich, dasich in diesem Fall die Zwei-Schleifen Drei-Punkt-Funktionen auf Zwei-Schleifen
Zwei-Punkt-Funktionen reduzieren lassen. In einem zweiten Schritt kann dann die eben-
falls endliche Differenz aus dem Vertex bei p> = M2 und p? = 0 berechnet werden.
Addiert man die Zahlen, die man in den beiden Schritten fur einen festen Satz von Ein-
gabeparametern erhalt, so ergibt sich daraus der On-Shell-Beitrag dieses Vertex zum

effektiven Mischungswinkel.

Die hier duchgefuhrte Berechnung des effektiven Vektor-und Axialvektorkopplungsan-
teils des renormierten Z-Lepton-Lepton-Vertex bei p? = 0 stellt fur sich nur einen Teil-

beitrag zu sf(az) dar. Erst in der Summe mit dem Ergebnis aus dem oben beschriebenen
zweiten Schritt erhdlt man einen vollstandigen fermionischen Zwei-Schleifen Beitrag
zum effektiven leptonischen Mischungswinkel.

Die technischen Details zur Renormierung des Vertex sind bereits in Abschnitt 2.2.2
beschrieben. Der Counterterm fur den Z-Lepton-Lepton-Vertex ist in (2.79) angegeben.
Zusatzlich zu den fur den Myon-Zerfall bendtigten Renormierungskonstanten sind hier
noch die Feldrenormierung fur das Z-Boson, 52(25 (siehe (2.106)), fur die Photon-Z-Mi-

schung, 62(72% (siehe (2.107)), und fiir rechtshandige Fermionen, 522’2’){ (siehe (2.112)), auf
Zwei-Schleifen-Niveau zu berechnen.

Analog zur Methode des Spurtricks beim Myon-Zerfall kann auch hier aus den Matri-
xelementen mittels Spurbildung der Vektor- bzw. Axialvektoranteil gewonnen werden
(siehe Abschnitt 3.3).

Auch die Methode zur Bestimmung des nichtkompensierbaren Beitrags (siehe Abschnitt
3.1.4), den man bei einer konsistenten Behandlung von v5 in D-Dimensionen erhalt, ist
analog zum Myon-Zerfall. Allerdings sind hierfur eine Reihe zusatzlicher Ward-Identi-
taten ((3.19) bis (3.23)) zu Uberprufen.

8.2 Ergebnisse flr den Z-Lepton-Lepton-Vertex

Im Folgenden werden Beitrage zu einer effektiven Kopplung, die aus dem Z-Lepton-
Lepton-Vertex bei p? = 0 gewonnen werden, mit einem Uberstrich gekennzeichnet.
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Genauso wird der aus den Uberstrichenen GroRen gewonnene Beitrag zum effektiven
Mischungswinkel auch mit einem Uberstrich gekennzeichnet:

{g(a2)} {
_2(a?) 1 gy A
K 4 g

aZ
% )}

Ya

v

(8.2)

Man kann nun das Ergebnis flr 53(0‘2) mit dem Born- bzw. Ein-Schleifen-Ergebnis ver-

Mgy[GeV] | 100 200 400 600 | 1000
57 P 0.22298 | 0.22381 | 0.22479 | 0.22538 | 0.22613
s | 0.00935 | 0.00889 | 0.00831 | 0.00793 | 0.00743
# 10.00162 | 0.00156 | 0.00148 | 0.00144 | 0.00141

Tabelle 8.1: Vergleich der Abhéangigkeit von der Higgs-Masse von verschiedenen Beitragen zum
effektiven Mischungswinkel. In der zweiten Zeile ist das Born Ergebnis angegeben, die dritte
Zeile enthalt den Ein-Schleifen-Beitrag und die vierte Zeile den Zwei-Schleifen-Teilbeitrag des

Vertex bei p? = 0

0.0019
0.0018F}.
0.0017}
0.0016F
.0015}
0.001a}
0.0013F

0.0012¢

— my = 174.3 GeV

my = 174.3 £ 5.1 GeV ]

200

400

660

800

1000

Abbildung 8.1: Der in dieser Arbeit berechnete Zwei-Schleifen-Teilbeitrag zum effektiven Mi-
schungswinkel in Abhangigkeit von der Higgs-Masse.
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gleichen. Dazu ist zunachst anzumerken, daf? schon das Born-Resultat fur den effekti-
ven Mischungswinkel abhangig von der Higgs-Masse ist, wenn man als Eingabepara-
meter fur die W-Masse den mit Hilfe von Ar bestimmten theoretischen Wert benutzt.
In Tabelle 8.1 sieht man, dal? der Ein-Schleifen-Beitrag um etwa einen Faktor 6 grolier
ist, als das Zwei-Schleifen-Teilresultat. Daraus kann man aber nicht auf einen zu erwar-
tenden relativ grol3en Zwei-Schleifen-Beitrag schlieen, da eine Kompensation mit dem
zu addierenden Beitrag aus der Differenz des Vertex bei Impuls p?> = M2 und bei Im-

puls p? = 0 maoglich ist. In Abbildung 8.1 ist 5?‘”‘2) Uber der Higgs-Masse zusammen mit
dem Fehlerband durch Variation der Top-Masse innerhalb deren experimenteller Unsi-
cherheit aufgetragen. §§(°‘2) wird mit zunehmender Higgs-Masse kleiner und schwécht

damit, wie auch schon der Ein-Schleifen Beitrag, den Anstieg von s.””"™) mit der Higgs-
Masse ab.

12 ¢

10

.107°

,uncomp

A

0 50 100 150 200 250 300
my [ GeV]

Abbildung 8.2: Beitrag von nichtkompensierbaren Termen Agz(lffc)omp zu 53(0‘2) in Abhéngigkeit
von der Top-Masse.

Interessant ist es, den nichtkompensierbaren Beitrag Ag?,(l?nzc)omp zu betrachten. Dieser
war bei den Rechnungen zum Myon-Zerfall numerisch klein. Damit kann jedoch nicht
auf die Grolie dieses Beitrags bei einer anderen Observable geschlossen werden. Fur
den in dieser Arbeit berechneten Teilbeitrag zum effektiven Mischungswinkel stellt sich

dennoch heraus, daf3 der nichtkompensierbaren Beitrag, verglichen mit gﬁ(az), nume-
risch klein ist:

A (970 +£0.18)-10° fUr m, = (174.3 £ 5.1) GeV

f,uncomp ~
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In Abbildung 8.2 ist die Abhangigkeit von Agﬁ(lf‘:gomp von der Top-Masse aufgetragen.
Wie auch beim Myon-Zerfall wird der Betrag des Beitrags numerisch mit der Top-Masse
groier. Das Wachstum von Agz(fjc)omp erfolgt aber langsamer als linear mit der Top-
Masse. Es deutet also nicht darauf hin, daf es sich um einen Teil der flihrenden Korrek-
turen in der O(a?), die proportional m; bzw. m? sind, handelt.
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Zusammenfassung

In der vorliegenden Dissertation wurden die kompletten fermionischen Zwei-Schleifen
Beitrage zur My -Mz-Massenkorrelation, die durch die Myon-Lebensdauer zusammen
mit der Quantenkorrektur Ar beschrieben wird, berechnet. AuRerdem konnte auch ein
Teilergebnis fur die entsprechenden Zwei-Schleifen-Beitrdge zu einer weiteren Prazisi-
onsobservable, dem effektiven leptonischen Mischungswinkel sZ, erzielt werden.

Da bisher noch keine vollstandige diagrammatische Zwei-Schleifen-Rechnung im elek-
troschwachen Sektor des Standardmodells durchgefuihrt wurde, muf3ten im Verlauf der
in dieser Arbeit durchgeflihrten Betrachtungen zunéachst einige grundsatzliche Proble-
me geldst werden.

Zum einen war eine Zwei-Schleifen Renormierung erforderlich, die im On-Shell-Schema
durchgefuhrt wurde. In diesem Zusammenhang wurde auch die Frage nach der korrek-
ten Definition der renormierten Eichboson-Massen untersucht. Durch konkrete Rech-
nung konnte dabei die Eichparameter-Unabhangigkeit des Resultats bei Verwendung
des komplexen Pols der S-Matrix verifiziert werden.

Aulierdem ist bei der Berechnung von Zwei-Schleifen-Korrekturen im elektroschwa-
chen Standardmodell eine konsistente Definition von v in dimensionaler Regularisie-
rung unabdingbar. In dieser Arbeit wurde eine praktische Vorschrift hierfir angegeben.
Diese erlaubt es den benétigten Rechenaufwand betrachtlich zu reduzieren und damit
die hier bendtigten Rechnungen auf Zwei-Schleifen-Niveau in dimensionaler Regulari-
sierung effizient durchzufihren.

Diese Methoden kénnen nun als Grundlage fur weitere Zwei-Schleifen-Rechnungen im
Standardmodell dienen.

Die hier angestellten Berechnungen zu Ar erlauben eine prazise Bestimmung der W-
Masse aus anderen Standardmodell-Parametern und der Fermi-Konstante. Die verblei-
benden theoretischen Unsicherheiten aufgrund unbekannter Korrekturen hoherer Ord-
nung konnten auf My ~ 6 MeV abgeschatzt werden. Das komplette Resultat wurde
durch eine einfache Formel mit ausreichender numerischer Genauigkeit angenahert,
so daB eine Verwendung desselben in dieser Form fur globale Standardmodell Fits
maoglich ist. Diese numerische Parametrisierung des Resultats, die fur Higgs-Massen
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bis zu 1 TeV mit einer Unsicherheit von weniger als 0.3 MeV behaftet ist, findet inzwi-
schen bei den elektroschwachen LEP Analysen Anwendung [69, 70]. Dies stellt einen
wichtigen Beitrag zur Verbesserung der globalen Tests des Standardmodells dar, denn
d My beeinfluBt auch die Vorhersage des effektiven Mischungswinkels s7. Dieser Effekt
stellt ein relativ breites Band innerhalb des ,,Blauen Bandes“dar. Hieran sieht man, daf3
eine genauere theoretische Kenntnis sowohl von Ar als auch von s wiinschenswert ist.

Auch zum effektiven leptonischen Mischungswinkel s? konnte ein wichtiger Teilbeitrag
berechnet werden. Ein grof3es Problem bei der Bestimmung von s? auf Zwei-Schleifen
Niveau ist die Berechnung von Zwei-Schleifen Drei-Punkt-Funktionen. Diese kdnnen
mit den hier verwendeten Methoden nicht komplett behandelt werden. Fur die Berech-
nung von s? wird eine Renormierung des Z-Lepton-Lepton-Vertex bendétigt. Diese Re-
normierung wurde hier im On-Shell-Schema durchgefuhrt.

Abschlief3end laRt sich festhalten, daR die in dieser Arbeit gewonnenen Erkenntnisse
einen weiteren wichtigen Schritt auf dem Weg zu immer genaueren Tests des Standard-
modells darstellen.
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Anhang A

Eingabeparameter

FUr die numerische Auswertung wurden in dieser Arbeit folgende Werte verwendet:

Eingabeparameter Quelle
M, = (91.1875 =+ 0.0021) GeV [46]
My = (80.451 %+ 0.033) GeV [70]
my = (174.3+5.1) GeV [46]
my, = (4.7+0.2)GeV [46]
é = 137.03599976 £ 0.00000050 [46]
Aa = 0.05911 £+ 0.00036 [79]
Gr = (1.16637 £+ 0.00001)10~°=L || [11, 46]
asg(Mz) = 0.119 =+ 0.002 [46]

Tabelle A.1: Experimentelle Werte fur Teilchenmassen und Kopplungen.

FUr Rechnungen unter Verwendung der komplexen Poldefinition bei der Massenre-
normierung der Eichbosonen missen die oben angegebenen experimentell bestimm-
ten Massen My, und My erst, wie in Abschnitt 2.2.3 beschrieben, in die entsprechenden
Eingabeparameter M, und M umgerechnet werden:

2

_ A
M, =M . A.l
7,W 7w + DMy (A1)

Da es sich bei der Z-Masse um einen experimentell gemessenen Eingabewert handelt,
wird die Verschiebung der Masse hier mit dem experimentellen Wert fur die Breite des
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Z-Bosons, Ay = (2.944+£0.024) GeV, berechnet. FUr die theoretisch berechnete W-Masse
wird hingegen der theoretischen Wert fur die Breite des W-Bosons

3G M3 20[5
Ay = —2W (1 + —)
W 22 3m

verwendet um die Massenverschiebung zu bestimmen. Die entsprechenden numeri-
schen Werte sind in Tabelle A.2 abzulesen.

(A.2)

exp. gemessene Masse Breite komplexe Pol-Masse

M, = 91.1875 GeV 2.944GeV | M, =91.1534 GeV
My = 80.451 GeV 2.100GeV | My = 80.424 GeV

Tabelle A.2: Shift zwischen experimentell bestimmter Eichboson-Masse und dem Eingabepa-
rameter My und er berechneten GroRe Myy.
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Anhang B

Skalare Selbstenergie-Integrale

Um die Endlichkeit und Eichparameterunabhangigkeit einzelner Ergebnisse zu Uber-
prufen, ist notwendig, die dimensional regularisierten skalaren Selbstenergie-Integrale
auf eine minimalen Satz von Standard-Integralen zurtickzufihren. Es wird folgende
abktrzende Notation verwendet:

_ d’q
(...) = /i7r2(27ru)D4"' (B.1)
_ d"q, dP g
((...)) = /in2(27m)D4/i7r2(27m)D4"' : (B.2)

Fur die skalaren Ein-Schleifen-Integrale werden die Konventionen von [19] verwendet
und bei den skalaren Zwei-Schleifen-Integralen werden die von [80] benutzt.

B.1 Ein-Schleifen-Integrale

B.1.1 Ein-Schleifen-Integrale mit gleichen Massen

Far die skalaren Ein-Schleifen-Integrale werden eine Reihe von Formeln fur Spezialfalle
gleicher Massen oder verschwindender Impulse benotigt. Hierzu werden die Integrale
partiell integriert:

D) = o) ) =~ (o mmy ) - @9

wobei ausgenutzt wird, dalR das Integral Gber eine totale Divergenz

[ #az-rt@) =0 (B.4)
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verschwindet.

Durch sukzessives Anwenden von partieller Integration kann man ftir Vakuum-Integrale,
die nur von einer Masse abhéngen, eine Rekursionsformel gewinnen, die diese auf Ay-
Integrale zuruckfuhrt:

TN iy = D= 2N I'm) _ 1 (9 - 1) (9 - N> Ao(m) (B.5)

ON  m?2 NI\ 2 9 m2N

Mit partieller Integration kann man aufRerdem zeigen, dal3 die Funktion By (0, 0,0) ver-
schwindet:

9 1
DB, (0,0,0) = — <qu£¥> — 4 <q”%> — 4B,(0,0,0)
I

— (4= D)B,(0,0,0) = 0. (B.6)

Allerdings muf} man hierbei beachten, daR die dimensionale Regularisierung sowohl
IR- als auch UV-Divergenzen unter Kontrolle halt und diese damit nicht mehr unter-
schieden werden kdnnen. Es ist deswegen in Rechnungen sinnvoll, diese Funktion bis
zum Schluf3 als Symbol stehen zu lassen.

B.1.2 Drei-Punkt-Funktionen mit einem auf3eren Impuls

Diese Klasse von Funktionen laft sich vollstandig auf Zwei-Punkt-Funktionen zurtck-
fuhren. Dabei gelten folgende Symmetrierelationen:

Co(p27p27 07 my, ma, m2) = 00(07p27p2; miy, My, m2) = CO(p27 Oapz; my, Mmay, m2) . (B7)
Die Drei-Punkt-Funktionen lassen sich als Ableitungen nach einer Masse von B,-Funk-
tionen schreiben:

0
a(m3)

Im Fall von drei verschiedenen Massen kann man eine Partialbruchzerlegung vorneh-
men und erhalt:

Bo(p27m17m2) = CO(O,pQ,pQQ ml,mmmz) . (5-8)

Bop(pZa my, m2) =

C’O(O,pZ,pZ;ml,mg,mg,) = m (Bo(pQ,ml,m?,) - Bo(pZ,mz,m:s)) . (B.9)
1 2

Bei zwei verschiedenen Massen folgt mittels partieller Integration:

1

2 2 2 2
)\(m%’ m%,pg) ((p + my — ml)(3 - D)BO(p , M1, m2)

Co(oapQ,pQQ my,my, mz)

+(p® —m3 — m?)Bo(p?, ma, my)
+2m3 Bo(0, ma, my)) (B.10)
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wobei

Mz,y,2) =22 +y* + 22 = 2(wy + 22 +y2) . (B.11)
die Kallén-Funktion ist.
B.1.3 Ableitungen der skalaren Selbstenergie-Integrale

Ableitungen an der Stelle verschwindenden Impulsquadrats

Die Impuls-Ableitungen von Zwei-Punkt-Funktionen kann man mittels partieller Inte-
gration nach dem Impuls erhalten. Unter Verwendung von

0* 9? By 0By 0By
Boy(p?,mi,m :( 4p* + 2D ) =2D—— B.12
om0 )| = e TP ) |, = e e, B
kann man folgende Formeln herleiten:
, 1
By(0,my,ms) = m ( (m;Ao(mﬂ - m?Ao(mz))
4—-D , , 5
D (mle(ml) - mon(m2)) ’ (B.13)
' . 1 /D D Ao(m)
. 0
t B = ——
T

Durch Ableitung nach der ersten Masse folgen entsprechende Formeln ftr die Drei-
Punkt-Funktionen:
1

2Dm?2(m? — m3)* '

[((D —4)(D — 6)m* + 2D(D — 6)m>m2 + D(D — 2)mg)A0(m1)

B(l)p(oa my, mZ)

+(4Dm§ 4D - 6)m§m§)Ao(m2)] , (B.15)
wonn - SENEHE )L o

Ableitungen an der Stelle nicht-verschwindenden Impulsquadrats

1
B[I)(p27m17m2) = 2—p2<B0(07m27m2) _BO(p27m17m2)

+(m? —m3 — p*)Co(0, p?, p*; Mg, My, ml)) ) (B.17)
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Die Drei-Punkt-Funktion lait sich wieder mit (B.10) als Kombination von Zwei-Punkt-
Funktionen schreiben.

Zweite Ableitungen

Die zweiten Ableitungen ergeben sich aus den ersten Ableitungen durch erneute parti-
elle Integration. Speziell fur verschwindenden aufReren Impuls erhalt man:

84 82 aZBO 830
Bo(p?, my,m = ( 42+2D—)
0p,Op+dp,Op* ol a1, m2) P20 Opudp" \ ) " (p?)/ |20
0By
= (8D +4D? , B.18
( )a(pz)2 . (B.18)
woraus
" 2
BO(O,ml,mg)

D(D +2)(m? —m2)®

((ng(D +2) +mi(D — 4)(D — 6) — 2m?m2(D +2)(D — 6)) Ag(m;)

—(m*D(D +2) + mi(D — 4)(D — 6) — 2m2m3(D + 2)(D — 6))A0(m2)>
(B.19)

folgt.

Ableitung nach der ersten Masse liefert wieder die entsprechende Formeln fur die Drei-
Punkt-Funktionen:

0
B(I)lp(oamlamQ) = 37 o\ B(,),(OamlamQ)

o(m3)
1

D(D + 2)mi(m? — m3)®

{ (GD(D +2)mS +6D(D — 6)(D — 8)m?m;
—12(D — 8)(D + 2)m‘1*m§> Ao (ms)
+ ((D —4)(D — 6)(D — 8)m$ — 3(D — 6)(D — 8)(D + 2)mim3

+3D(D — 8)(D + 2)mims — D(D — 2)(D + 2)mg) Ao(ml)} :
(B.20)
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Abbildung B.1: Ein-Teilchen-Irreduzible Topologien fiur Zwei-Schleifen-Selbstenergien, die
nicht in Ein-Schleifen Beitrage faktorisieren

B.2 Zwei-Schleifen-Integrale

Die Feynman-Amplitude einer Zwei-Schleifen-Selbstenergie hat die Form

<Q%—mmg%25?wﬁwﬁo>’ (B.21)

wobei f(k,, m,, D) ein Polynom in den Impulsen, Massen und der Raum-Zeit-Dimension
ist. Die Impulse k; sind die internen Impulse der Propagatoren mit der Masse m;. Nutzt
man die Impulserhaltung aus, so kann man die Impulse &; durch den &ufReren Im-
puls p und die Integrationsimpulse ¢; ausdrucken. Fir Zwei-Schleifen-Selbstenergie-
Diagramme ergibt sich:

ki=q, k=qg+p k=@g—-—q, k=q¢, k=¢+p. (B.22)

Die skalaren Zwei-Schleifen-Integrale lassen sich damit schreiben als:

1
772'1,722,...73 (p27 m27 mQa sy m2) = << >> . (823)
(P50 = A\ e = ] —

1,1_

Diese Integrale werden auch einfach als T-Integrale bezeichnet. Hat ein Propagator die
Masse Null, so wird dies einem Strich am entsprechenden Index angedeutet und die
Null fur die verschwindende Masse wird in der Argumentliste weggelassen, z.B.

1
T, 2 02 2 2y _ ) B.24
ol i 1 ) «%wﬂw%—@m—wﬁ> (524

Die Diagramme in Abbildung B.1 entsprechen den skalaren Integralen 19345, 111234,
T1234, T34 UNd T734. Der analytische Ausdruck fur 77,23, kann durch Partialbruchzer-
legung oder Ableitung nach der Masse m; aus Tj»3, gewonnen werden. Andere Inte-
grale mit Propagatoren in einer hoheren Potenz kdnnen auf die gleiche Art behandelt
werden. Fur den allgemeinen Fall mussen also nur vier unterschiedliche Typen von
skalaren Zwei-Schleifen-Integralen behandelt werden [80].
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Bei skalaren Vakuum-Integralen treten nur die Impulse k;, k3 und k, auf. Diese haben
die Form:

1
I : — . B.25
(v1, v3, Va3 mi, m3, M) << (k2 — m3][k3 — m3]ve[k? — m3)v >> ( )

Diese Art von Notation wird auch verwendet, um ein allgemeines Zwei-Schleifen-Selbst-
energie-Integral zu beschreiben:

. 2 _
I(Z/lal/QaV371/471/57m17m27m37m47m57p) -

1
. B.26
<< 1 [ — e — e (R — R — >> (8.26)

Die wesentlichen Formeln fur spezielle Massen- und Impulskonfigurationen, sowie Ab-
leitungen dieser Integrale, wie sie in dieser Arbeit benutzt wurden, finden sich in [24]
und [29].

Zur numerischen Auswertung der Schleifen-Integrale wurde das Programmpaket s2/
von S. Bauberger [24] verwendet. Da sich massive Zwei-Schleifen-Integrale im Gegen-
satz zu den Ein-Schleifen-Integralen im allgemeinen nicht durch Polylogarithmen aus-
drtcken lassen [81], wurden als Ansatz fur die numerische Auswertung dieser Integrale
eindimensionale Integraldarstellungen benutzt, die mit der Hilfe von Dispersionsrela-
tionen gewonnen werden kdnnen.



Anhang C Feynman-Regeln im Geistsektor 111

Anhang C

Feynman-Regeln im Geistsektor

In Zwei-Schleifen-Ordnung wird eine Ein-Schleifen Renormierung im Geistsektor beno-
tigt. Diese wird kann so durchgefuihrt werden, dal} der Eichfixierungsteil der Lagran-
gedichte invariant unter Renormierung ist. Hierzu werden die Eichparameter in der
Eichfixierung

g=¢, d=g=¢ =6 =¢", g7=¢"=0. (C.1)

so renormiert, dal® die Renormierung der Parameter und Felder im Eichfixierungssektor
genau weggehoben wird (siehe Abschnitt 2.2.1).

Auf Zwei-Schleifen-Niveau mussen auch Counterterm-Beitrage aus dem Geistsektor
berucksichtigt werden. Diese folgen aus der Variation des F* Terms im Eichfixierungs-
term der Lagrangedichte:

L= Y Wub— /d4yz 8Fay) u(y) (C.2)

a,b=v,7Z,%+

Durch diese Counterterme ist es moglich, die Endlichkeit einzelner unter Umstanden
eichparameterunabhangiger Bausteine, wie Selbstenergien, zu Gberprifen.

Die Feynman Regeln im Geistsektor wurden in das Programm FeynArts [54] implemen-
tiert.

Im folgenden werden die Counterterme im Geistsektor angegeben. Dabei wird die ge-
nerische Bezeichnung G, G € {u”,u?,u*}, fur die Geistfelder und V, V € {v,Z, W#},
fur die Eichbosonen verwendet. Die auftretenden Renormierungskonstanten sind in
Abschnitt 2.2.1 festgelegt.
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Geist-Propagator

G ¢ i(¢)
. e . (C.3)
k2 — €GNIZ
ey
ﬂVUV : ﬁ
k2 — £
.
s &)
k2 — €202
i §W>§
L i
Y T (C4)
GG Counterterm
G G
------ | R SRR R :Z(Cle—Og) (CS)
i O = (57)_§ (1-1527) Cy=0
wut s Co= () T (-127) =0
W O = (€4) T (=1027) =0
~7. 7 _Z% 15777 _Z% 21 lsoy Leasr2
it = () T (1-1627) Gy = (€9)" (ME(1 - 307%) + JoM3)
it Co=(€V) T (1-402Y) = (€))7 (ME( - 1627%) + JoME)  (CH)
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G1G,V Kopplung

= iek,C (C.7)

_1
wruty s C=%(eV) (1 + 07, + L6777 — L5V - ;S—W62Z7>
W

1

itz = (V)

1467, +Ls7%2 _l57W 08w _ W 5707
2 2 SwCh 28w

N

WEWE D C=£(87) T (14020 + 202 - J627) £ 2 (€7) Tz
28W

uFWE: 0= FX (gz)_%

Sw

M

<1 + 07, + 167V — L5777 — 55_@) +1(g) ozt

SWCyy

N

FOWE: O = ;(gw) T (1+62.)

autwWE . 0 =4+W (gw)ﬁ <1 167, — ‘5‘9—V§> (C.8)
Sw Swly
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Anhang D

Generische Zwel-Schleifen-Diagramme
far die Prazisionsobservablen

Auf generischer Ebene unterscheiden sich die Diagramme, die fr Ar bzw. den effekti-
ven Mischungswinkel bendtigt werden, nur dadurch, dal’ far die Berechnung des Mi-
schungswinkels keine Boxkorrekturen benétigt werden. Als generische Bezeichnungen
finden F far Fermionen, S fur Skalare und V' fur Vektorbosonen Verwendung.
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Eichboson-Selbstenergien

Zwei-Schleifen Eichboson-Selbstenergien:

F F F F
F F slz‘(':) s F s O S S’/% \W\?{FD‘\‘S
v AR VR AV S VA
F s s s
F F F F
S, Vv v NS Vv Vv v v y F VAR
., F F oy F v Foto
Y, VARV v VARV VARNEY, Y, ]
P ——F s
Vv Y, S Y,
S-I~F F E+V Ve F -tV Vot F
—d y V Y V y v
Vo \ \ L \ARN \% \Y
S <F F——F Fe-'s S~+F F v vV +"F
F F
\\S S// W\@vw
AN ANAANAN
v Vv Vv Vv

(/)

Ein-Schleifen Eichboson-Selbstenergien mit Counterterm-Einsetzung:

F F s*s U.-x-u v \ S .- MV/*\\S

F 5 U v é
X

st s v
NSNS SN
W v )
E S LU \ \ =
Voo od e o el Voo R v
Vv Vo Vo v VoS v
F s U Vv S F

s u. v s S v
o WY Voo v Qv G
v RV Y v
U \ \%

<<

\YARN Py \%

S
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Fermion-Selbstenergien

Irreduzible Zwei-Schleifen Fermion-Selbstenergien:

AR AT AT

Ein-Schleifen Fermion-Selbstenergien mit Counterterm-Einsetzung:

F F S,-%.8 F F S, %V V_%.8 v v
{ § F / L F F / F v F F
F 4 S F F F F
s F v F F F
S \Y F F
F F ¥ \_F F
FL S F FRo F
F S v
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Vertexkorrekturen

Zwei-Schleifen-Vertexkorrekturen:
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Boxkorrekturen

Zwei-Schleifen Boxkorrekturen:

F F

Tl m
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