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Referent: Prof. Dr. W. Hollik
Korreferent: Prof. Dr. Th. Mannel





Inhaltsverzeichnis

1 Einleitung 1

I On-Shell-Renormierung des elektroschwachen Standardmodells
auf Zwei-Schleifen-Niveau 5

2 Das elektroschwache Standardmodell 7

2.1 Lagrangedichte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Klassische Lagrangedichte . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Lagrangedichte der Quantentheorie . . . . . . . . . . . . . . . . . . 10

2.2 On-Shell-Renormierung des Modells . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Ein-Schleifen Renormierung . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Zwei-Schleifen Renormierung . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Polmasse und experimentell gemessene Masse . . . . . . . . . . . 27

3 Regularisierung 30

3.1 Dimensionale Regularisierung . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Definition von �� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 Brechung der Eichinvarianz . . . . . . . . . . . . . . . . . . . . . . 33

3.1.3 Kompensation von Anomalien im Standardmodell . . . . . . . . . 35

3.1.4 Nichtkompensierbare Terme . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Pauli-Villars Regularisierung . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Spurtrick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

i



ii
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III Die Präzisionsobservable ��� 84

7 Die Z-Resonanz und der effektive Mischungswinkel 86

7.1 Effektive Kopplungen und Mischungswinkel . . . . . . . . . . . . . . . . . 86

7.2 Theoretischer und experimenteller Status . . . . . . . . . . . . . . . . . . . 88
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Kapitel 1

Einleitung

”No amount of faith or philosophy is as convincing as a few dozen
successful two-loop calculations.“
Frank Wilczek [1]

Die Elementarteilchen und ihre Wechselwirkungen werden heute im Rahmen von Quan-
tenfeldtheorien behandelt. Das Standardmodell ist die derzeit erfolgreichste Quanten-
feldtheorie zur Beschreibung der starken und elektroschwachen Wechselwirkung.

Der Grundpfeiler für die Entwicklung des Standardmodells war die Quantenelektro-
dynamik (QED). Ein entscheidender Schritt war hierbei die Entwicklung einer renor-
mierten Störungstheorie für die QED Ende der 40er Jahre durch Tomonaga, Feynman,
Schwinger und Dyson [2]. Diese erlaubte viele sehr präzise theoretische Vorhersagen,
die experimentell ausgezeichnet verifiziert wurden. Die QED ist eine relativistische
Quantenfeldtheorie, die auf einer abelschen Eichsymmetrie basiert. Sie diente als Pro-
totyp bei der Entwicklung von Feldtheorien zur Beschreibung der anderen Wechselwir-
kungen.

1954 untersuchten Yang und Mills [3] nichtabelsche Eichsymmetrien mit dem Ziel, an-
dere Wechselwirkungen zu beschreiben. In den sechziger Jahren gelang es Glashow,
Salam und Weinberg, basierend auf den Arbeiten von Yang und Mills eine Theorie
für eine vereinheitlichte schwache und elektromagnetische Wechselwirkung der Lep-
tonen, das Glashow-Salam-Weinberg-Modell [4], zu entwickeln. Das Modell basiert auf
einer Eichtheorie der nichteinfachen, nichtabelschen, spontan gebrochenen Eichgruppe
������ � ��	�� . Entscheidend war dabei die Benutzung des Higgs-Mechanismus [5],
um die Eichbosonen der schwachen Wechselwirkung massiv zu machen. Dieser Me-
chanismus erlaubte die Verknüpfung von Eichsymmetrie und kurzreichweitiger Wech-
selwirkung. 1964 postulierten Gell-Mann und Zweig [6] Quarks als die fundamentalen
Bausteine der Hadronen. Um das Spin-Statistik-Problem des Quark-Modells der Ha-
dronen zu lösen, schlugen Fritzsch, Gell-Mann und Leutwyler [7] die Einführung eines
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zusätzlichen Freiheitsgrades ”Farbe“ für die Hadronen vor, was zur Quantenchromo-
dynamik (QCD) führte. QCD und das elektroschwache Standardmodell, eine Erweite-
rung des Glashow-Salam-Weinberg-Modells, welche Quarks einschließt [8, 9], bezeich-
net man zusammen als Standardmodell.

Die heutigen hoch präzisen Beschleuniger-Experimente liefern strenge Tests des Stan-
dardmodells. Neben den beeindruckenden Fortschritten bei der Bestimmung von Mas-
se, Lebensdauer und Kopplungen der massiven Eichbosonen, war die Entdeckung des
Top-Quarks [10], dessen Masse mit der indirekten Vorhersage aus Quantenkorrektu-
ren übereinstimmt, ein entscheidender Schritt. Mit der Kenntnis der Top-Masse ist die
Masse des Higgs-Bosons der letzte noch unbekannte Parameter des Standardmodells.

Da es aus Beschleuniger-Experimenten momentan keine direkten Signale für ”neue
Physik“ jenseits des Standardmodells gibt, sucht man nach indirekten Effekten, die sich
durch definierte Abweichungen der experimentellen Ergebnisse von den theoretischen
Vorhersagen dieses Modells äußern.

Die immer präziseren experimentellen Schranken an das Modell fordern theoretische
Vorhersagen mit einer mindestens dem Experiment entsprechenden Genauigkeit. Da-
bei sind im Fall der Präzisionsobservablen die führenden Quantenkorrekturen, soge-
nannte Ein-Schleifen Rechnungen, nicht mehr ausreichend, und es werden Ergebnisse
für die nächstführenden Quantenkorrekturen, sogenannte Zwei-Schleifen Rechnungen,
benötigt.

In dieser Arbeit werden zu zwei dieser Präzisionsobservablen bisher unbekannte Quan-
tenkorrekturen auf Zwei-Schleifen-Niveau berechnet. Zum einen wird die Quantenkor-
rektur �� zur Massenkorrelation zwischen dem�- und �-Boson bestimmt. Zum ande-
ren werden Berechnungen zum sogenannten effektiven leptonischen Mischungswinkel
��� durchgeführt.

Schleifen-Rechnungen erlauben die Herstellung einer Verbindung zwischen Observa-
blen aus dem Niederenergiebereich, wie der Myonlebensdauer, und aus der Energie-
skala der schweren Eichbosonen. Alle Quantenkorrekturen mit Außnahme der QED-
Korrekturen zu dieser Relation werden mit der Observable �� beschrieben. Durch Bei-
träge virtueller Teilchen in Schleifendiagrammen fließen die Eigenschaften schwerer
Teilchen in die Berechnung der Myon-Lebensdauer ein und eröffnen so die Möglichkeit
einer Konsistenzprüfung. Insbesondere kann aus den Ergebnissen dieser Rechnung ei-
ne theoretische Vorhersage für die Masse des�-Bosons in Abhängigkeit von der Masse
des Higgs-Bosons gewonnen werden.

Diverse Quantenkorrekturen zum Myon-Zerfall waren vor dieser Arbeit bereits be-
kannt. Neben den Ein-Schleifen Beiträgen sind sowohl die QED-Korrekturen auf Zwei-
Schleifen Niveau ����� [11], als auch QCD-Beiträge auf Drei-Schleifen Niveau �������
[12] bekannt. Elektroschwache Korrekturen zu �� jenseits des Ein-Schleifen Niveaus,
waren vor dieser Arbeit nur in Form von Aufsummationen bekannter Ein-Schleifen
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Beiträge oder Entwicklungen in der Higgs- und Top-Masse verfügbar. Besonders un-
befriedigend dabei war, daß bei den Entwicklungen in der Top-Masse die bekannten
führenden und nächstführenden Terme von gleicher Größenordnung sind.

In dieser Arbeit wird nun eine exakte Berechnung elektroschwacher Zwei-Schleifen-
Beiträge mit mindestens einer Fermion-Schleife durchgeführt. Diese präzise Berech-
nung von�� liefert aber nicht nur eine genauere Kenntnis der theoretischen Vorhersage
für die �-Masse, sondern die so ermittelte �-Masse dient auch als Eingabeparameter
für eine andere Präzisionsobservable, den effektiven leptonischen Mischungswinkel ��� .
Dieser Mischungswinkel hängt empfindlich von Variationen in der aus�� berechneten
�-Masse ab.

Auch zu ��� wurden in dieser Arbeit Berechnungen durchgeführt. Der effektive lep-
tonische Mischungswinkel ist eine Präzisionsobservable, die eng mit der Physik der
�-Resonanz verknüpft ist. An Elektron-Positron Beschleunigern kann der Prozeß der
Lepton-Paarproduktion auf der Z-Resonanz sehr gut durch effektive Kopplungen be-
schrieben werden. Dabei werden die Effekte der Quantenkorrekturen durch eine Ände-
rung der Stärke der Kopplungskonstanten für den Vektor und Axialvektorstrom be-
schrieben. Aus dem Verhältnis der Realteile dieser effektiven Kopplungen bestimmt
man einen effektiven Mischungswinkel. Dieses Verhältnis kann experimentell direkt
durch die Messung von Asymmetrien in Wirkungsquerschnitten bestimmt werden.

Der theoretisch berechnete Wert für den effektiven Mischungswinkel ist besonders sen-
sitiv auf Änderungen der Higgs-Masse. Eine genauere Kenntnis dieser Größe liefert
damit eine bessere Schranke an die Masse des Higgs-Bosons. Allerdings hängt der Mi-
schungswinkel auch empfindlich von Veränderungen in der �-Masse aufgrund der
hier berechneten Beiträge zu�� ab. Es ist jedoch zu erwarten, daß diese Sensitivität auf
die �-Masse durch die noch ausstehenden fermionischen Zwei-Schleifen Beiträge ab-
geschwächt wird. Zu diesen fermionischen Korrekturen wurde in der vorliegenden Dis-
sertation die Zwei-Schleifen Renormierung des �-Lepton-Lepton Vertex berechnet. Dies
ist ein wichtiger Schritt auf dem Weg zum vollständigen Ergebnis, denn das Problem
der Berechnung von ��� ist dadurch auf die Berechnung von sogenannten Zwei-Schleifen
Drei-Punkt-Funktionen reduziert.

Zur Berechnung von Korrekturen höherer Ordnung ist eine Renormierung des Stan-
dardmodells und die Benutzung eines Regularisierungsverfahrens nötig. Beides ist Ge-
genstand des ersten Teils dieser Arbeit. Kapitel 2 beschäftigt sich mit der Renormierung
des elektroschwachen Sektors des Standardmodells bis Zwei-Schleifen-Niveau. Dabei
wird besonders auf die verwendete Näherung verschwindender leichter Fermion-Mas-
sen und das Problem der Massendefinition für die instabilen massiven Eichbosonen
eingegangen. Kapitel 3 befaßt sich mit der Regularisierung. Hierbei wird für die hier
betrachteten Prozesse eine praktische Vorschrift zur Behandlung der ��-Matrix in den
fermionischen Dreiecks-Subgraphen in dimensionaler Regularisierung angegeben. Da-
neben wird auch kurz ein anderes Regularisierungsverfahren, die Regularisierung nach
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Pauli-Villars, vorgestellt.

Teil II beschäftigt sich mit der Präzisionsobservable ��. Im 4. Kapitel wird �� definiert
und die bisher bekannten Beiträge werden diskutiert. Kapitel 5 schildert dann Details
zur Berechnung der fermionischen Zwei-Schleifen Beiträge und in Kapitel 6 werden
schließlich die Ergebnisse dieser Arbeit präsentiert.

Im III. Teil wird der effektive leptonische Mischungswinkel ��� behandelt. Dazu wird
dieser in Kapitel 7 zunächst eingeführt und der theoretische und experimentelle Status
erläutert. Kapitel 8 befaßt sich mit den in dieser Arbeit durchgeführten Berechnungen
und erläutert anschließend die Ergebnisse.

Der IV. Teil ist schließlich eine Zusammenfassung der Arbeit.



Teil I

On-Shell-Renormierung des
elektroschwachen Standardmodells auf

Zwei-Schleifen-Niveau
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Kapitel 2

Das elektroschwache Standardmodell

2.1 Lagrangedichte

2.1.1 Klassische Lagrangedichte

Die Idee des Glashow-Salam-Weinberg-Modells ist es, die elektromagnetische und die
schwache Wechselwirkung im Rahmen einer Eichtheorie zu vereinigen, wobei die Er-
zeugung der Massen der Teilchen durch spontane Symmetriebrechung geschieht. Man
beginnt dabei mit einer Lagrange-Dichte für masselose Fermionen und Eichbosonen,
die invariant unter einer inneren Symmetriegruppe, also eichinvariant, ist. Dann führt
man ein skalares Higgs-Feld ein, welches einen nicht-verschwindenden Vakuumerwar-
tungswert hat. Die spontane Symmetriebrechung erzeugt dann Massenterme für alle
Teilchen bis auf das Photon.

Damit setzt sich die klassische Lagrangedichte des Standardmodells aus einem Yang-
Mills-, einem fermionischen und einem Higgs-Anteil, sowie den Yukawa-Kopplungen
zusammen:

������ 
 ��� � �	
�� � �
���� � ������� � (2.1)

Das Modell basiert auf einer Eichtheorie der Eichgruppe ������ � ��	�� . Die Genera-
toren der ������ werden mit �� und die zugehörigen Felder mit � �

� bezeichnet, wobei
a die Werte 1,2 und 3 annimmt. Die entsprechende Ladung ist der schwache Isospin.
Die Ladung zur ��	�� heißt Hyperladung, der Operator � und das zugehörige Feld
	�. Damit hat der Yang-Mills-Teil der Lagrangedichte die Form:

��� 
 ��
�

�

��

�
� � 
��

�
� � ���

��	� �
��

	
�

�� � �
�
�
�	� � 
�	��

� 
 (2.2)

wobei ���	 die Strukturkonstante der ����� ist, also der total antisymmetrische Tensor.
Die Kopplungskonstante der ��	� wird mit ��, die der ����� mit �� bezeichnet. Die
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Fermionen Bosonen
Leptonen Quarks Eichbosonen Higgs-Boson
� �
 � � � � �� �
� �� � �
� �� � �

el. Ladung �	 � �
� �

�
� � � �	 �

Spin �
�

�
�

�
�

�
� 	 	 	 �

Abbildung 2.1: Observable Teilchen des Standardmodells

elektrische Ladung wird definiert als

� 
 �� �
�

�

 (2.3)

und die kovariante Ableitung ergibt sich zu:

�� 
 
� � ����
�� �

� � ���
�

�
	� � (2.4)

Die Fermionen im Standardmodell sind in Familien entsprechend den Zeilen in Abb.
2.1 angeordnet. Die massiven Fermionen werden in links- und rechtshändige Anteile
zerlegt. Trotz experimenteller Hinweise auf eine nichtverschwindende Neutrinomas-
se [13] werden diese im folgenden als masselos betrachtet, da ihre Masse für die hier
betrachteten Prozesse unbedeutend ist. Der linkshändige Anteil des geladenen Leptons
und des Neutrinos aus seiner Familie werden zu einem Isodublett �� angeordnet, ebenso
werden die linkshändigen Anteile der Quarks einer Familie im Dublett �� zusammenge-
fasst. Die rechtshändigen Anteile bilden Singletts �

 ���
 und ���
. Die Hyperladung von
Singletts und Dubletts wird so gewählt, daß sich nach (2.3) die bekannten elektrischen
Ladungen ergeben. Somit erhält man den fermionischen Anteil der Lagrangedichte mit
kovarianter Ableitung als:

�	
�� 

�

	�����
�

�

����

����� � 
����
����� � 
�
��

����


�
���
��
������
 � 
���
��

������

�
� (2.5)

Mischungen zwischen verschiedenen Generationen sind für die in dieser Arbeit be-
trachteten Prozesse und Observable unerheblich und werden deshalb vernachlässigt.

Um die Renormierbarkeit des Standardmodells nicht zu zerstören, müssen Massenter-
me erzeugt werden ohne die Eichsymmetrie explizit zu brechen. Dies geschieht durch
die Einführung eines zusätzlichen Teilchens über den Higgs-Mechanismus [5]. Dazu
führt man ein skalares Higgs-Dublett � 
 ���
 ��� mit Hyperladung � 
 	 und einem
Potential

� ��� 

 

�
������ � ����� (2.6)
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in die Lagrangedichte ein:

�
���� 
 �����
������� � ��� � (2.7)

Aus dem Potential folgt ein nicht-verschwindender Vakuumerwartungswert des Higgs-
Dubletts

� ���� ��� �� 
 !�

�


���

 
� (2.8)

Die Störungsreihe wird um das Minimum des Higgspotentials entwickelt. Dazu spaltet
man den Vakuumerwartungswert des Higgsfeldes ab indem man die neutrale Kompo-
nente des Higgs-Dubletts schreibt als

�� 

! ���"� � �#�"�	

�

 �
 # 
 � � (2.9)

Alle vier Higgsfelder �
#
 �� und �� haben dann verschwindenden Vakuumerwar-
tungswert. Drei dieser Felder können durch die Wahl einer geeigneten Eichung aus der
Lagrangedichte eliminiert werden und sind somit nicht observabel. Eines der Felder,
� , entspricht einem neuen beobachtbaren Teilchen, dem Higgs-Boson, mit einer Masse
$
 


	
��.

Das Higgs-Potential enthält auch einen Term ���"� mit � 
 !��� � �
�
!��. In niedrigster

Ordnung verschwindet dieser Beitrag durch die Wahl ! 
 ���
�

, also genau dann, wenn !

das Minimum des Higgs-Potentials ist. In höheren Ordnungen erhält man durch Strah-
lungskorrekturen Beiträge, sogenannte Tadpole-Beiträge, die durch geeignete Renor-
mierungsbedingungen kompensiert werden können.

Der nichtverschwindende Vakuumerwartungswert des Higgs-Feldes (2.8) erzeugt die
Massen. Die Massenterme der Eichbosonen ergeben sich aus der kovarianten Ableitung
des Higgs-Feldes, und die Fermionmassen werden durch Yukawa-Kopplungsterme zwi-
schen dem Higgs-Dublett und den Fermionfeldern generiert:

������� 

�

	�����
�

%�

���
� �%�� 
�����
� �%�� 
�����
� � &��� � (2.10)

Die%� sind die Kopplungskonstanten der Yukawa-Wechselwirkung zwischen dem Higgs-
Feld und den Fermionen. Sie werden für jedes Fermion so gewählt, daß die sich aus
������� ergebenden Massenparameter

'� 

%�!	
�

(2.11)

den tatsächlichen Massen entsprechen.
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Die bisher in der Lagrangedichte eingeführten Eichfelder sind noch keine Massenei-
genzustände und entsprechen somit noch nicht den physikalischen Eichbosonen. Diese
erhält man erst durch eine Diagonalisierung der entstehenden Eichboson-Massenmatri-
zen gemäß

��
� 
 ��

�

�
� �

� � �� �
�

�
(2.12)�

��

(�

�



�
�� ��
��� ��

��
� �

�

	�

�
(2.13)

mit dem schwachen Mischungswinkel )�,

�� 
 ��� )� 

���

��� � ���

 �� 
 ��� )� � (2.14)

Die Kopplung des Photonfeldes an die Elektronen entspricht der elektrischen Ladung,
und es folgt:

� 

�����
��� � ���


 �� 

�

��

 �� 


�

��
� (2.15)

Die Massen der Eichbosonen können durch die Parameter des Standardmodells ausge-
drückt werden:

$� 

�!

�����

 $� 
 ��$�
 $� 
 � � (2.16)

2.1.2 Lagrangedichte der Quantentheorie

Die Quantisierung einer Eichtheorie ist nur möglich, nachdem die Eichung festgelegt
wurde. Dies ist nötig, um die Dynamik der unphysikalischen Freiheitsgrade festzule-
gen. Hierzu fügt man einen Eichfixierungsterm in die Lagrangedichte ein. Als günstig
für praktische Rechnungen hat sich dabei die *�-Eichung [14] erwiesen:

�	�� 
 ��
�

�
�+��

� � �+��
� � +�+� � +�+�

�
(2.17)

mit

+� 

	�
,��

�(

� �
,��

�

��

�

+� 

	�
,��

��

� �
�
,��$�#�

,��

�

�(

�

+� 
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Der Term �	�� entspricht einer Delta-Funktion bezüglich des Unterraums derjenigen
Feldkonfigurationen, die die Eichwahl erfüllen.

Die Eichinvarianz der Theorie drückt sich in der Unabhängigkeit der Observablen von
der Wahl von �	�� aus. Neben der *�-Eichung zur Überprüfung der Eichinvarianz wur-
de bei Berechnungen in dieser Arbeit auch die Feynman-Eichung verwendet, die man
als Spezialfall durch folgende Wahl der Eichparameter erhält:

,�� 
 ,�� 
 ,�� 
 	 
 � 
 �	
 �
 � (2.19)

Die Beliebigkeit in der Wahl der Dynamik der Eichfixierung bedingt eine Verletzung der
Unitarität. Um diese Beliebigkeit zu kompensieren, führt man Faddeev-Popov-Geistfel-
der ���"� und 
���"� [15] ein:

�	� 

�

�����������

���"�

Æ+ �

Æ)��"�
���"� � (2.20)

Dabei ist Æ+ �-Æ)��"� die Variation der Eichfixierungsterme unter infinitesimalen Eich-
transformationen und )�, . 
 ��
�
�
, sind die Parameter der infinitesimalen Eichtrans-
formation.

Die vollständige quantisierte Lagrangedichte des elektroschwachen Standardmodells
ist somit gegeben durch:

��� 
 ������ � �	�� � �	� � (2.21)

2.2 On-Shell-Renormierung des Modells

Bei der Berechnung von Termen höherer Ordnung in der Störungsreihe ändert sich die
Beziehung zwischen den Parametern und den Meßgrößen. Es ist jedoch möglich, die
Observablen als Funktionen der in der Lagrangedichte vorkommenden ”nackten“ Pa-
rameter eindeutig zu bestimmen. Die Renormierbarkeit des Standardmodells [16, 17]
stellt sicher, daß alle observablen Größen in allen Ordnungen der Störungstheorie als
Funktionen der endlich vielen ”nackten“ Parameter ermittelt werden können und daß
man dabei UV-endliche Ergebnisse erhält. In der Praxis wird meist der Satz der ”nack-
ten“ Parameter durch einen äquivalenten Satz von sogenannten renormierten Parame-
tern ersetzt, so daß die renormierten Parameter keine UV-Divergenzen aufweisen. Eine
Wahl eines solchen Satzes renormierter Parameter definiert ein Renormierungsschema.
Hier wird das On-Shell-Renormierungsschema [18] benutzt, da es erlaubt, die Ergebnis-
se direkt mit experimentell bestimmbaren Größen in Verbindung zu setzen. Es werden
die Konventionen aus [19] verwendet.
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2.2.1 Ein-Schleifen Renormierung

Alle freien Parameter der klassischen Lagrangedichte erhalten von nun an den Index 0,
um sie als ”nackte“, unrenormierte Parameter zu kennzeichnen. Der Zusammenhang
zwischen den unrenormierten und den physikalischen Größen wird mit einer Renor-
mierungskonstante beschrieben. Außerdem ist es nützlich, auch die Felder zu renor-
mieren, da dadurch eine zusätzliche Wellenfunktionsrenormierung der äußeren Teil-
chen vermieden werden kann. Feldrenormierungen von internen Teilchen entfallen für
physikalische Observablen, dienen aber dazu, endliche Bausteine, wie z.B. Selbstener-
gien, zu bilden. Zudem bietet das gegenseitige algebraische Wegheben dieser internen
Feldrenormierungskonstanten eine Kontrollmöglichkeit für Rechnungen.

Man benötigt also Renormierungskonstanten als Ladungsrenormierung

�� 
 �
� 
 �	 � Æ�
�� 
 (2.22)

als Massen-Counterterme
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und als Feldrenormierungskonstanten
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 (2.24)

wobei die Counterterme hier jeweils bis zur Ein-Schleifen-Ordnung entwickelt sind.

Die Renormierungskonstanten werden im On-Shell-Schema durch Renormierungsbe-
dingungen so festgelegt, daß die renormierten Parameter direkt mit physikalischen Ob-
servablen zusammenhängen. Dabei werden die Massen über die Pole der transversalen
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Freiheitsgrade der Propagatoren �� festgelegt:
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und die Feldrenormierungen über die Residuen dieser Pole bestimmt:
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�� bezeichnet den Propagator des Teilchens 2 , ein Index T meint den Transversal-
teil dieser Größe und � nimmt den Realteil. ��

� bezeichnet den Propagatorpol des
Teilchens 2 . Dieser ist in niedrigster Ordnung identisch mit der Teilchenmasse, also
�� 
$� und �� 
 '� in niedrigster Ordnung.

Die Propagatoren können durch die renormierten 1-Teilchen-irreduziblen (1PI) Zwei-
punktfunktionen � ausgedrückt werden:
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 ������ ��� (2.35)�
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(2.36)
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 �������� (2.37)
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 ��������


 ��/03����� � /03� � ��
�

 �'�

�����
�� � (2.38)

Dabei kennzeichnet das Symbol � jeweils renormierte Größen, und 3� 
 �
�
�	 � ���

sind die Projektoren auf rechts bzw. linkshändige Zustände. Die 1PI Zweipunktfunktio-
nen setzen sich wiederum aus einem Born-Anteil und den Schleifenkorrekturen in den
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Selbstenergien � zusammen:
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Auf Ein-Schleifen-Niveau ergeben sich aus den Renormierungsbedingungen damit fol-
gende Bestimmungsgleichungen für die Massencounterterme:
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(2.43)

und die Feldrenormierungskonstanten:
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� ist die unrenormierte Selbstenergie und die Indizes T, S, L, R, stehen für die transver-
salen, skalaren, links- und rechtshändigen Komponenten der entsprechenden Selbst-
energie. Als abkürzende Schreibweise wird

�	�$�
�� 
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(2.45)

verwendet.

Die Tadpole werden so renormiert, daß sie sich zusammen mit ihrem Counterterm weg-
heben und werden hier nicht aufgeführt. Durch diese Renormierungsbedingung wird
erreicht, daß ! das Minimum des Higgs-Potentials bleibt.
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Im On-Shell-Schema ist der schwache Mischungswinkel definiert über die Eichboson-
massen:

��� 
 	� $�
�

$�
�

� (2.46)

Dadurch ist auch der Counterterm zum Mischungswinkel durch die Counterterme der
Eichboson-Massen festgelegt:
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� (2.47)

Um die renormierte elektromagnetische Ladung mit der im Experiment gemessenen zu
verknüpfen, fordert man, daß die Kopplung des Photons an das Elektron inklusive der
Strahlungskorrekturen im Grenzfall eines verschwindenden Impulsübertrags, also im
Thomson-Limes, mit der klassischen Ladung übereinstimmt:


��0���

�� �0
 0���0�
			
�����

�


 ��
��0�����0� � (2.48)

��

�� �0
 0� ist die renormierte Dreipunkt-Vertexfunktion zum Elektron-Photon-Vertex. Der
Ladungscounterterm muß also elektroschwache Strahlungskorrekturen zum ��� Vertex
im Thomson-Limes kompensieren. Die Renormierungsbedingung läßt sich unter Zuhil-
fenahme einer Verallgemeinerung der QED Ward-Identität [20] vereinfachen und man
erhält [19]:
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In dieser Arbeit werden soweit möglich alle Fermionen außer dem Top-Quark als mas-
selos genähert. Die QED-Beiträge der Photon-Vakuumpolarisation liefern jedoch loga-
rithmische Terme in den Fermion-Massen, wodurch eine Näherung verschwindender
Fermion-Massen nicht unmittelbar möglich ist. Den leptonischen Anteil kann man un-
ter Verwendung der Lepton-Massen berechnen. Die Massen der leichten Quarks sind
bei niedrigen Energien durch QCD-Effekte nicht wohldefiniert. Im Fall der Quarks wird
eine Dispersionrelation zur Hilfe genommen. Dazu spaltet man die Vakuum-Polarisation
bei einer ausreichend hohen Energie auf. Da für elektroschwache Prozesse die Masse
des �-Bosons eine natürliche Skala darstellt, wählt man 0� 
 $�

� als Energie für die
Aufspaltung:
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Der Realteil der renormierten Vakuum-Polarisation

������$�
�� 
 �����$�

��� ������ (2.51)

bildet eine UV-endliche Größe. Die fermionischen Beiträge können aufgespalten wer-
den in:
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Der Beitrag des Top-Quarks ist per Konvention nicht im hadronischen Anteil enthalten.
Da die Top-Masse groß genug ist, kann man die Beeinflussung durch nicht-störungs-
theoretische QCD-Effekte in ������ vernachlässigen und diesen Anteil der Vakuumpo-
larisation direkt berechnen:
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 (2.53)

wobei � die Dimension in dimensionaler Regularisierung ist (siehe Abschnitt 3.1) und
(��$� die skalare Einpunktfunktion bezeichnet (Konventionen wie in [19]).

Die Größe
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�� (2.54)

entspricht einer Verschiebung der elektromagnetischen Feinstrukturkonstante:
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Der leptonische Beitrag kann mit nichtverschwindenden Fermion-Massen direkt be-
rechnet werden. In ���� erhält man:
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und wenn Beiträge bis ����� berücksichtigt werden [21] ergibt sich:
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Der hadronische Beitrag ��"�# kann mittels einer Dispersionsrelation
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mit
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bestimmt werden. Hierin können die Beiträge hoher Energie im Rahmen der pertuba-
tiven QCD ermittelt werden. Bei niedrigen Energien, die nicht mehr im Rahmen der
pertubativen QCD behandelt werden können, müssen Meßdaten zur Hilfe genommen
werden. Das so erzielte Ergebnis [22]

��"�# 
 ����$��� �������
� �� 
 �������� ������� für $� 
 �	�	$��%�& (2.60)

hat einen Fehler, der fast ausschließlich durch die Ungenauigkeit des experimentellen
Inputs bestimmt ist. Eine alternative Rechnung hat die pertubative QCD bis zu einer
Energieskala '� angewandt [23], wodurch eine Reduzierung der Ungenauigkeit er-
reicht wurde:

��"�# 
 �������� �����	� � (2.61)

Die bisher aufgeführten Renormierungskonstanten sind für Berechnungen von physi-
kalischen S-Matrixelementen ausreichend. Da die unphysikalischen Geist- und Higgs-
Felder nur als innere Linien auftreten, fallen ihre Feldrenormierungskonstanten bei der
Berechnung physikalischer Größen heraus und werden deshalb nicht benötigt. Um aber
bei Zwei-Schleifen-Rechnungen eine zusätzliche Kontrolle zu haben, ist es sinnvoll,
auch für diese Felder Renormierungskonstanten einzuführen. Das Verschwinden die-
ser Konstanten im Endergebnis liefert dann eine zusätzliche Kontrolle. Da diese Felder
nur als innere Propagatoren in Feynman-Diagrammen auftauchen, genügt es für die
Zwei-Schleifen-Rechnungen die entsprechenden Renormierungskonstanten bis zur er-
sten Ordnung einzuführen.

Für die unphysikalischen Higgs-Felder führt man folgende Renormierungskonstanten
ein [29]:
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und für die Geistfelder benutzt man:
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Die im Eichfixierungssektor der Lagrangedichte auftretenden Eichparameter sind reelle
Zahlen die man frei wählen kann. Man kann diese Größen aber auch als unrenormierte
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Parameter der Lagrangedichte auffassen und eine Renormierung des Eichfixierungs-
sektors durchführen. Speziell kann man das Renormierungsschema so wählen, daß der
Eichfixierungsterm invariant unter Renormierung ist [24]. Damit ist gemeint, daß der
Eichfixierungsterm seine Form nicht ändert, egal ob man ihn in nackten oder renor-
mierten Größen schreibt. Im hier benutzten Schema genügen die renormierten Eichpa-
rameter der *�-Eichung:
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Eine Entwicklung bis zur ersten Schleifenordnung ergibt:
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Durch eine derartige Renormierung erreicht man, daß sich die Form der Feynman-Re-
geln für die Eichbosonen in höheren Ordnungen nicht ändert. Die Form der Counterterm-
Feynmanregeln im Geistsektor wird allerdings von der Renormierung der Eichbosonen
beeinflußt.

2.2.2 Zwei-Schleifen Renormierung

Für die hier betrachteten Prozesse benötigt man die Zwei-Schleifen-Counterterme der
Eichboson-Selbstenergien, sowie des����
�
-Vertex, des������-Vertex und des �����-
Vertex. Zusätzlich wurde der Zwei-Schleifen-Counterterm für den �����-Vertex bestimmt.
Diese bestimmt man, indem man in den hierfür relevanten Teilen der Lagrangedich-
te die nackten durch renormierte Parameter und Counterterme ersetzt und anschlie-
ßend den Counterterm-Anteil der Lagrangedichte abspaltet. Bei der Bestimmung der
Counterterme für die Selbstenergien der neutralen Eichbosonen muß man berücksich-
tigen, daß Photon und Z-Boson in der Lagrangedichte mischen. Deshalb muß man die-
se gemeinsam renormieren. Auf diese Weise erhält man folgende Counterterme zu den
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Selbstenergien [25]:
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Diese Counterterme müssen nun bis zur zweiten Ordnung in den Renormierungskon-
stanten entwickelt werden. Dabei wird die Notation Æ��

%�& bzw. Æ$�
�%�& für die Feld- bzw.

Massenrenormierungskonstante des Teilchens 2 in �-ter Schleifen-Ordnung verwen-
det. Wie bisher wird das Hut-Symbol � für renormierte Größen verwendet. Die Zwei-
Schleifen-Selbstenergien bzw. Vertexkorrekturen bezeichnen immer sämtliche irredu-
ziblen Beiträge �����, also die Summe aus echten Zwei-Schleifen-Diagrammen und
Sub-Schleifen-Renormierungen.

Mit den obigen Countertermen erhält man für die renormierten Zwei-Schleifen Trans-
versalteile der entsprechenden Selbstenergien:
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Die benötigten Vertex-Counterterme für den geladenen und neutralen Strom lauten:
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wobei die Vektor- und Axialvektorkopplung gegeben ist durch:

�# 

�� � �����
�����


 �"��# 

�� � ����� � Æ���

�

���� � Æ������ � Æ���



�� 

��

�����

 �"��� 


��
���� � Æ������ � Æ���

� (2.77)

�� ist die dritte Komponente des Isospins des Fermions und � ist seine Ladung in Ein-
heiten der Elementarladung, also � 
 �	 und �� 
 ��

�
für das Elektron.

Entwickelt man die Counterterme jeweils bis zur zweiten Schleifen-Ordnung, so ergibt
sich:
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Festlegung der Renormierungskonstanten:
Die Zwei-Schleifen-Renormierungskonstanten werden nun wie schon auf Ein-Schleifen-
Niveau durch Renormierungsbedingungen festgelegt, welche die renormierten Para-
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meter mit Observablen verknüpfen.

Massen der Eichbosonen:
Die Masse eines Eichbosons wird, wie in (2.25) bis (2.27), als Realteil des nun auf Zwei-
Schleifen-Niveau komplexen Pols der S-Matrix:

�� 
$
�
� �$ � � (2.81)

festgelegt. In Gleichung (2.81) bezeichnet �� den komplexen Pol der S-Matrix. $ und
�werden als die Masse und Breite des zugehörigen instabilen Eichbosons interpretiert.
Alternativ liefert auch eine Festlegung des Massenparameters als Nullstelle des Real-
teils der renormierten Selbstenergie

����� ��$�
��
 
 � 
 (2.82)

endliche renormierte Selbstenergien. Für den so definierten renormierten Massenpara-
meter wird das Symbol �$ verwendet. Die beiden Definitionen (2.81) und (2.82) unter-
scheiden sich aber in der Eichparameterabhängigkeit [27, 28].

In [28] wurde im Standardmodell mit Hilfe von Nielsen-Identitäten die Eichunabhängig-
keit des komplexen Pols der S-Matrix als Definition der physikalischen Masse für alle
Teilchen in allen Ordnungen der Störungstheorie bewiesen. In [29, 30] wurde explizit
auf Zwei-Schleifen-Niveau verifiziert, daß nur die Verwendung des komplexen Pols
ein eichparameterunabhängiges Resultat für den renormierten schwachen Mischungs-
winkel, welcher eine observable Größe darstellt, liefert.

Benutzt man, daß der Propagator gerade das negative Inverse der renormierten 1-Teil-
chen-irreduziblen Zweipunktfunktion ist, kann man die Renormierungsbedingung (2.25)
für die�-Masse schreiben als
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Setzt man nun Real-und Imaginärteil in (2.83) getrennt gleich Null, so erhält man mit
Hilfe von (2.66) und (2.70) Bedingungen für Æ$�

� und �� :
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Entwickelt man beide Gleichungen mit Hilfe von
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bis zur zweiten Schleifenordnung und eliminiert die Breite aus (2.84) und (2.85), so
kann man die Zwei-Schleifen Massen-Renormierungskonstante des W-Bosons durch
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den Transversalteil seiner unrenormierte Zwei-Schleifen Selbstenergie und Ein-Schleifen
Selbstenergien bzw. Renormierungskonstanten ausdrücken:
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Verwendet man statt des komplexen Pols die Bedingung (2.82):
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ergibt sich die Renormierungskonstante als:

Æ�$�
�%�& 
 ����

� %�&��$�
��
 � Æ��

%�&Æ�$�
�%�& � (2.89)

Die so definierte Masse liefert aber eichparameterabhängige Resultate für physikalische
Observable.

Bei der Berechnung der �-Massenrenormierung muß man die Mischung der neutralen
Eichbosonen (2.36) berücksichtigen. Man kann die Renormierungsbedingung mit Hilfe
von (2.39) als

����
� �

�����
�� 
 ��

�����
� �$

�

� � ��
��
� ���

���

�
����� ���

��

�

��
� �

����� ���
��

� � 
 � (2.90)

schreiben. Nun setzt man wieder Real-und Imaginärteil getrennt gleich Null und ent-
wickelt bis zur zweiten Schleifenordnung. Dabei wird ausgenutzt, daß der Term
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welcher der �-�-Mischung entspricht, keinen Ein-Schleifen-Beitrag zum �-Propagator
liefert:
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Schließlich erhält man für die Zwei-Schleifen Massen-Renormierungskonstante des �-
Bosons:
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Wird zur Definition der Masse (2.82) herangezogen,
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so erhält man als Massen-Renormierungskonstante:
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Diese Definition liefert, wie bei der �-Massenrenormierung, eichparameterabhängige
Resultate für physikalische Observable.

Ladungsrenormierung:
Die Ladungsrenormierung kann man aus Feldrenormierungskonstanten der neutra-
len Eichbosonen mittels der 6�	�-Ward-Identität bestimmen. In beliebigen Ordnungen
Störungstheorie lautet diese [24]:
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Entwickelt man diese Beziehung bis zur zweiten Schleifenordnung
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so sieht man, daß zur Bestimmung der Ladungsrenormierung noch die Zwei-Schleifen-
Feldrenormierungskonstanten Æ���

%�& und Æ���
%�& bestimmt werden müssen. Die Renormie-

rungsbedingungen (2.27) und (2.32) können umgeschrieben werden in Bedingungen,
die man an die renormierten Selbstenergien stellt:
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Mit (2.72) und (2.73) können die Feldrenormierungskonstenten bestimmt werden:
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und damit kann schließlich auch die Ladungsrenormierung nach (2.97) berechnet wer-
den.

Die reinen QED-Beiträge zur Photon-Vakuumpolarisation weisen Massensingularitäten
auf. Diese Beiträge sind aber in �� enthalten. Die Verschiebung der Feinstrukturkon-
stante enthält den mittels einer Dispersionrelation ermittelten Beitrag der leichten Quarks.
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Der auf diese nicht-störungstheoretische Weise ermittelte Wert für �� entspricht einer
theoretischen Berechnung der Korrekturen in allen Ordnungen. Wie im Ein-Schleifen
Fall muß man die QED-Diagramme beim Impulsübertrag $�

� berechnen. Diagramme
mit massiven Top-Quarks können direkt bei verschwindendem Impulsübertrag berech-
net werden.

Die schwachen Korrekturen zur Vakuumpolarisation, also die Diagramme mit �- und
�-Boson-Austausch inklusive zugehöriger Countertermdiagramme, liefern für verschwin-
dende Fermionmassen insgesamt einen endlichen Beitrag zur Photon-Vakuumpolarisa-
tion. Dabei entstehen allerdings bei der Berechnung von Teilbeiträgen künstliche Singu-
laritäten, die durch Fermion-Massen und Massen-Counterterme für alle Fermionen re-
gularisiert werden müssen. Erst nach Aufsummation aller Diagramme kann der Grenz-
fall verschwindender Fermionmassen betrachtet werden.

Feldrenormierung für�- und �-Boson:
Zur Berechnung der Feldrenormierung von �- und �-Boson muß die Ableitung der
transversalen Selbstenergie an der komplexen Polstelle bestimmt werden, denn die Re-
normierungsbedingungen (2.30) und (2.31) lassen sich umschreiben in:
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Mit Hilfe von
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erhält man die Feldrenormierungskonstanten:
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Verwendet man in Analogie zu (2.82) die Nullstelle der Ableitung der renormierten
Selbstenergie, so erhält man:
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Zur Berechnung der Vertex-Counterterme benötigt man die Feldrenormierungskon-
stante für die Photon-�-Mischung. Indem man eine Entmischung von Photon und �
auf der �-Massenschale fordert, erhält man aus (2.73):
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Für die Bestimmung der Vertex-Counterterme sind auch die Feldrenormierungskon-
stanten für die äußeren Fermionen bis zur zweiten Schleifen-Ordnung zu ermitteln.
Für die hier betrachteten Prozesse können diese Teilchen als masselos genähert werden
und QED-Beiträge bleiben unberücksichtigt (siehe Diskussion in Abschnitt 5.4.1 und
Abschnitt 7.3). Mit diesen Näherungen erhält man für den Counterterm der Fermion-
Selbstenergien:
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 (2.108)

woraus sich die renormierte Selbstenergie in zweiter Schleifen-Ordnung ergibt:
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Die Renormierungsbedingung läßt sich für '� 
 � schreiben als:
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Daraus folgen die Renormierungskonstanten:
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Der Imaginärteil der Selbstenergie muß in der Definition der Renormierungskonstan-
ten nicht berücksichtig werden, da die Leptonen in der Näherung, daß sie masselos
sind, nicht zerfallen können. Ein Imaginärteil der Selbstenergie würde mit der totalen
Zerfallsbreite des Leptons korrespondieren.

Für die Bestimmung der Vertex-Counterterme wird außerdem die Renormierungskon-
stante des Mischungswinkels auf Zwei-Schleifen-Niveau benötigt. Da der Mischungs-
winkel definiert ist über die Eichbosonmassen (2.46), ist seine Renormierungskonstante
eine Kombination aus den Massenrenormierungskonstanten der Eichbosonen:
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2.2.3 Polmasse und experimentell gemessene Masse

Im vorangegangenen Abschnitt wurde zwischen zwei Möglichkeiten die Masse der
Eichbosonen im On-Shell-Schema zu definieren unterschieden. Man kann den Massen-
parameter entweder als Realteil des komplexen Propagatorpols $ oder als Nullstelle
des Realteils der renormierten transversalen Selbstenergie (2.82) �$ festlegen, wobei nur
die Benutzung des komplexe Pols eichparameterunabhängige Resultate für physikali-
sche Observabele liefert. In diesem Abschnitt soll nun der Frage nachgegangen werden,
wie die beiden unterschiedlich definierten Massenparameter mit der experimentell ge-
messenen Masse in Beziehung stehen.

Experimentell wird die Masse von �- und �-Boson durch den Fit einer Breit-Wigner
Funktion mit energieabhängiger Breite:

5��� � �
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� (2.114)

an die Meßdaten bestimmt [46].

Theoretisch berechnet man den Wirkungsquerschnitt für die Produktion eines Vektor-
bosons über das Betragsquadrat des S-Matrixelements und damit über das Betragsqua-
drat des Transversalteils des 1-Teilchen-reduziblen Propagators �%�%
&

� :
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Der zusätzliche Faktor � resultiert dabei aus der Kinematik und Phasenraumintegration.

Summiert man alle reduziblen Beiträge zum �-Propagator auf, so erhält man für den
1-Teilchen-reduziblen Propagator:
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wobei ���
� der Transversalteil der irreduziblen �-Selbstenergie ist. Beim �-Propagator

muß man die �-Photon-Mischung beachten und erhält:
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wobei die effektive renormierte irreduzible �-Selbstenergie gegeben ist durch:

����
*
� ���� 
 ���

� ��
���

����� ��
��

�� � ����� ��
��
� (2.118)

Um einen Ausdruck zu erhalten, der mit (2.114) vergleichbar ist, muß nun der 1-Teilchen-
reduzible Propagator um die Polstelle entwickelt werden. Das Betragsquadrat des resul-
tierenden Ausdrucks kann dann mit der Breit-Wigner Funktion verglichen werden.
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Betrachten wir zunächst die Definition der Masse�$ über die Nullstelle des Realteils der
renormierten transversalen Selbstenergie (2.82. Der Nenner des 1-Teilchen-reduziblen
Propagators läßt sich mit �� 
 � schreiben als:
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Der Imaginärteil der Selbstenergie läßt sich mit der Zerfallsbreite des jeweiligen Eich-
bosons identifizieren. Diese hat in Born-Approximation unter Vernachlässigung der
Fermion-Massen eine lineare Impulsabhängigkeit [31]:
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wobei �� die Breite auf der Massenschale ist. Berücksichtigt man nun noch daß 	 �
����	� ��$��
 einer Feldrenormierungskonstanten � entspricht, so kann man den 1-Teil-
chen-reduziblen Propagator schließlich schreiben als:
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Dies liefert mit (2.115) die gleiche Breit-Wigner-Funktion, die auch zur Bestimmung der
�- bzw. �-Masse aus den experimentellen Daten benutzt wird. Verwendet man also die
Nullstelle des Realteils der renormierten transversalen Selbstenergie zur Festlegung des
Massenparameters �$ , so muß man diesen direkt mit dem experimentell gemessenen
Zahlenwert identifizieren.

Wenden wir uns nun der Definition der Eichboson-Masse über den komplexen Pol der
S-Matrix (2.81) zu. In diesem Fall läßt sich der Nenner des 1-Teilchen-reduziblen Propa-
gators mit �� 
 � schreiben als:
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wobei ausgenutzt wurde, daß die renormierte 1-Teilchen-irreduzible Zweipunkt-Funk-
tion an der komplexen Polstelle verschwindet:
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Identifiziert man 	 � ����	� ����
 wieder als Feldrenormierungskonstante und drückt
den Imaginärteil ����	� ����
 durch die Breite auf der Massenschale aus:
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so ergibt sich für den 1-Teilchen-reduziblen Propagator:
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Hieraus ergibt sich eine Breit-Wigner-Funktion mit konstanter Breite:
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Für die experimentelle Bestimmung der Eichboson-Massen wird aber eine Breit-Wigner-
Funktion mit energieabhängiger Breite (2.114) verwendet. Die beide Formeln (2.114)
und (2.126) lassen sich durch eine Parametertransformation ineinander überführen:
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Diese Parametertransformation liefert somit auch den Zusammenhang zwischen expe-
rimentell bestimmter Eichboson-Masse und dem Massenparameter in unseren Berech-
nungen $ .
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Kapitel 3

Regularisierung

Bei pertubativen Rechnungen in Quantenfeldtheorien, wie dem Standardmodell, tre-
ten oftmals divergente Integrale auf. Ist die Theorie renormierbar, so können die Di-
vergenzen mittels Renormierung mit Hilfe von Countertermen kompensiert werden.
Die divergenten Integrale müssen jedoch geeignet re-definiert werden, um die endli-
chen Anteile zu extrahieren. Dafür wird ein Verfahren, die sogenannte Regularisierung,
benötigt, welches die Theorie temporär so modifiziert, daß die Integrale endlich sind.
Nach Abspaltung der Divergenzen durch die Renormierung kann dann durch einen
Grenzübergang wieder zur physikalischen Theorie übergegangen werden.

Die regularisierte Theorie muß dabei unweigerlich physikalische Eigenschaften oder
Symmetrien der eigentlichen Theorie verletzen, sonst würde es sich ja um eine erfolg-
reiche endliche physikalische Theorie handeln. Ein ”gutes“ Regularisierungsverfahren
sollte dabei soviele physikalische Eigenschaften der Theorie erhalten wie möglich. Für
das Standardmodell bedeutet dies insbesondere, daß die regularisierte Theorie relativi-
stisch kovariant und eichinvariant bleiben sollte. Im folgenden werden zwei verschie-
dene Regularisierungsverfahren vorgestellt, die auch in dieser Arbeit verwendet wur-
den. Dabei wird besonders auf das Problem der Definition von �� in der dimensionalen
Regularisierung eingegangen.

3.1 Dimensionale Regularisierung

Die dimensionale Regularisierung ist eines der wichtigsten ”Werkzeuge“ bei pertuba-
tiven Berechnungen in nicht-abelschen Eichtheorien. Die Vorteile des Verfahrens beste-
hen darin, daß es zum einen alle Divergenzen, die durch Quantenkorrekturen auftreten,
also Infrarot- und UV-Divergenzen, regularisiert. Zum anderen werden in den meisten
Fällen die Symmetrien der Theorie, speziell relativistische Kovarianz und Eichinvari-
anz, erhalten.
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Das Verfahren beruht auf einer kontinuierlichen Fortsetzung der Anzahl der Dimen-
sionen in den Schleifenintegralen auf � Dimensionen. � ist dabei eine beliebige im
allgemeinen komplexe Zahl: �

��1

��4��
� ���&

�
�&1

��4�&
� (3.1)

Dabei wird ein beliebiger Massenparameter � eingeführt, damit die Dimensionen der
Kopplungskonstanten vor den Integralen unabhängig von � bleiben. Der metrische
Tensor hat die Eigenschaft
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 ����
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 � 
 (3.2)

und die Dirac-Algebra wird auf �-Dimensionen verallgemeinert:

���
 ��
 
 ����	� � (3.3)

Die physikalische Theorie erhält man nach der Renormierung durch den Grenzüber-
gang � � �.

3.1.1 Definition von ��

Schwierigkeiten bei der dimensionalen Regularisierung bekommt man immer dann,
wenn der total antisymmetrische Tensor 7��'( ”ins Spiel“ kommt. Bei diesem handelt
es sich um ein intrinsisch vierdimensionales Objekt, welches nicht auf � Dimensionen
verallgemeinert werden kann.

In vier Dimensionen ist die ��-Matrix definiert als:
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wobei �,��'(- das antisymmetrische Produkt von vier Gamma-Matrizen ist:
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Außerdem antikommutiert �� mit den ��-Matrizen:
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Aus (3.4) und (3.6) folgt die Spur-Relation
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Allein unter Benutzung der Dirac-Algebra in �-Dimensionen (3.3), des verschwinden-
den Antikommutators (3.6) und der Zyklizität der Spur kann aber in � �
 � Dimensio-
nen

�����'# ��������'�(
 
 � (3.8)

hergeleitet werden. Die Spur muß also für alle � �
 � verschwinden. Ein stetiger Über-
gang zum 4-dimensionalen Ergebnis (3.7) ist somit nicht möglich, und man erhält im
Grenzübergang �� � nicht die physikalische Theorie.

In dieser Arbeit wurden verschiedene Möglichkeiten der Behandlung von �� unter-
sucht. Dabei wurden nur Verfahren berücksichtigt, welche die Zyklizität der Spur re-
spektieren:

� Im naiv antikommutierenden Schema wird der Antikommutator (3.6) ausgenutzt.
Dies führt allerdings zu obiger Inkonsistenz (3.8). Die Spur über �� und vier �-
Matrizen wird im Grenzfall � � � Null gesetzt.

� Im gemischten (mixed) Schema werden die sich widersprechenden Relationen
(3.6) und (3.7) formal benutzt. Dabei wird der Antikommutator zur Vereinfachung
von Spuren ausgenutzt, und Spuren wie (3.7) werden per Konvention auf den
vierdimensionalen Wert gesetzt. Dies zwar ist mathematisch inkonsistent, es zeigt
sich aber, daß damit trotzdem in bestimmten Fällen praktische Rechnungen möglich
sind, und korrekte Ergebnisse erzielt werden können.

� t’Hooft und Veltman waren die ersten, die eine Möglichkeit zur mathematisch
konsistenten Behandlung von �� angaben [32] (HV-Schema). Hierbei wird �� durch
die Definition (3.4) ersetzt
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und der 4-dimensionale 7��'(-Tensor außerhalb der R-Operation gehalten, also
speziell außerhalb aller dimensional regularisierten Integrale. Nach erfolgter Re-
normierung ist der Grenzübergang zu vier Dimensionen möglich und anschlie-
ßend kann mit den 7��'(-Tensoren kontrahiert werden. Der Nachteil dieses Ver-
fahrens ist, daß man für jedes auftretende �� durch die Ersetzung vier neue Lor-
entzindizes erhält, was die Tensorreduktion aufwendig macht. Deswegen ist es
für praktische Rechnungen sehr nützlich zu wissen, daß die symmetrisierte Axi-
alkopplung hier auch direkt ersetzt werden kann:

�
�
����� � ������ �

�(
7��'(�

,�'(- 
 (3.10)

wodurch nur zwei neue Lorentzindizes auftreten. Diese Art der Behandlung wur-
de bereits in mehreren Arbeiten zur Berechnung physikalischer Prozesse verwen-
det [33].
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� Breitenlohner und Maison [34] haben das Verfahren von t’Hooft und Veltman for-
malisiert (BM-Schema). Alle D-dimensionalen Größen ", also �-Matrizen in Spu-
ren von internen Fermion-Linien und Integrations-Impulse in Schleifen werden
aufgespalten. Der eine Beitrag 
" enthält die ersten vier Dimensionen und der an-
dere Beitrag �" die übrigen � � � Dimensionen:
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Die metrischen Tensoren in 4 bzw. � � � Dimensionen dienen als Projektoren auf
die entsprechenden Räume:
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Die Matrix �� ist über (3.4) definiert und (3.7) ist damit erfüllt. Desweiteren gilt,
daß diese Matrix nilpotent ist und mit �-Matrizen in 4 Dimensionen antikommu-
tiert, mit �-Matrizen in den verbleibenden � � � Dimensionen aber kommutiert:
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Im Gegensatz zum HV-Schema tritt hier keine Verkomplizierung der Tensorstruk-
tur auf, allerdings muß man für eine Verwendung in Computerprogrammen vier
und � � � dimensionale Objekte speziell implementieren. Im Programmpaket
TRACER [35] ist dies zum Beispiel in der Programmiersprache MATHEMATICA [36]
realisiert.

Die Benutzung von BM- oder HV-Schema ist nicht nur technisch aufwendig, beide Sche-
mata führen darüber hinaus zu einer Brechung der Eichinvarianz. Es müssen deswegen
zusätzliche Counterterme eingeführt werden, die die Eichinvarianz wieder herstellen
(siehe Abschnitt 3.1.2).

Das BM-Schema ist eine Formalisierung des HV-Schemas und insofern mit diesem äqui-
valent. Beide Verfahren werden im Folgenden als HVBM-Schema zusammengefaßt, da
sie die gleichen Resultate liefern. Dies wurde auch durch Vergleich von Rechnungen im
HV-Schema mit Rechnungen im BM-Schema in [29, 30] verifiziert.

3.1.2 Brechung der Eichinvarianz

Im vorigen Abschnitt wurde gezeigt, wie man �� mathematisch konsistent definieren
kann. Eine solche konsistente Behandlung im HVBM-Schema führt allerdings zu einer
Verletzung der Eichinvarianz der regularisierten Theorie [37].

Spuren, die im HVBM-Schema berechnet werden, weichen gegenüber solchen, die in
vier Dimensionen behandelt wurden, um Terme der Ordnung������ ab. Solche Terme
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werden im folgenden als schwindende Terme bezeichnet. Beim Übergang � � � ent-
fallen sie. Ist diese Spur allerdings Teil einer geschlossenen Fermionschleife, so können
die schwindenden Terme auf einen �

)
-Pol (� 
 ��&

�
) treffen und dadurch einen endli-

chen Beitrag liefern. Es handelt sich dabei um Beiträge, die durch die mit der quanti-
sierten Theorie verbundenen Divergenzen entstehen und kein klassisches Äquivalent
besitzen. Solche Terme können Symmetrien der quantisierten Wirkung brechen. Diese
zeigt eine Invarianz unter verallgemeinerten Eichtransformationen, den Becchi-Rouet-
Stora-Transformationen (BRS-Invarianz), die zu den Slavnov-Taylor Identitäten führen.
Die schwindenden Terme führen nun dazu, daß die Slavnov-Taylor Identitäten von den
Schleifenkorrekturen nicht mehr erfüllt werden. Diese sind aber zum Beispiel im Stan-
dardmodell wesentlich für den Beweis der Renormierbarkeit dieser Theorie. Deswegen
müssen im HVBM-Schema zusätzliche endliche Counterterme eingeführt werden, um
die symmetriebrechenden Terme zu kompensieren. Die Form der schwindenden Terme
ist dabei vom verwendeten Regularisierungs-Schema abhängig. Verwendet man zum
Beispiel Pauli-Villars Regularisierung, so ist die Definition von �� problemlos, allerdings
wird die Eichinvarianz an anderer Stelle gebrochen, und es müssen ebenfalls Counter-
terme zur Kompensation eingeführt werden.

Im allgemeinen können allerdings auch symmetrieverletzende Terme auftreten, die nicht
durch Counterterme kompensiert werden können. Diese bezeichnet man als Anoma-
lien. Die anomale Symmetriebrechung tritt unabhängig vom Regularisierungs-Schema
auf. Sie hat einen physikalischen Inhalt. Diese symmetrieverletzende Terme können sich
aber wie im Standardmodell gegenseitig kompensieren (siehe Abschnitt 3.1.3).

Ein einfaches Beispiel zur Illustration ist der Zerfall eines neutralen Pions in zwei Photo-
nen. Hier spielt die Adler-Bell-Jackiw-Anomalie eine zentrale Rolle. Man kann das Pion
als Goldstone-Boson der spontan gebrochenen chiralen Symmetrie der QCD beschrei-
ben. Das Pion koppelt dann durch eine Axialvektor-Kopplung an zwei Quarks. Die
beiden Quarks vernichten sich gegenseitig und es werden zwei Photonen abgestrahlt.
Eine klassische Rechnung zeigt, daß aufgrund der Erhaltung des Axialvektorstroms
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dieser Zerfall nicht möglich ist. Eine Rechnung mit konsistent definiertem �� (siehe zum
Beispiel [38]) zeigt aber, daß die Adler-Bell-Jackiw-Anomalie die Erhaltung des Axial-
vektorstroms verletzt:
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Der klassisch verbotene Zerfall wird also durch die Anomalie in der Theorie ermöglicht.
Dies ist ein Beispiel für den physikalischen Gehalt von Anomalien.
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3.1.3 Kompensation von Anomalien im Standardmodell

Im Standardmodell treten Anomalien insbesondere in Verbindung mit fermionischen
Dreiecks-Diagrammen mit axialen oder chiralen Kopplungen auf. Beispiele sind die
Ein-Schleifen-Korrekturen zu den Vertizes ���� , ����, ���� , ���� und ���� . Die An-
omalien verletzen dabei die Slavnov-Taylor Identitäten der Theorie. Diese sind aber
essentiell für den Beweis der Renormierbarkeit der Theorie.

Bei der Betrachtung von Anomalien im Standardmodell genügt es, sich auf das Ein-
Schleifen-Niveau zu beschränken. In [39] wurde gezeigt, daß bei einer Anomalie-Freiheit
auf Ein-Schleifen-Niveau Anomalien in höheren Ordnungen nicht mehr möglich sind.

Wie im vorigen Abschnitt bereits erwähnt, handelt es sich bei den Anomalien gerade
um Terme, welche Slavnov-Taylor Identitäten verletzen und nicht durch Counterterme
beseitigt werden können. Wollte man die Anomalien mittels Addition von Counterter-
men beseitigen, so müßte man Counterterme wie
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für den �� � -Vertex bzw. �!�� -Vertex in die Lagrangedichte einführen. Das Problem
ist allerdings, daß diese Terme in der Lagrangedichte einer nichtrenormierbaren Wech-
selwirkung entsprechen, da die Konstanten :� eine negative Massendimension haben.
Solche Counterterme dürfen also nicht in die Lagrangedichte eingeführt werden, und
damit lassen sich die Anomalien so nicht beseitigen.

Im Standardmodell gibt es einen besonderen Mechanismus, der sicherstellt, daß die
Anomalien wegfallen. Die Anomalieterme heben sich gegenseitig weg, und die Renor-
mierbarkeit der Theorie bleibt erhalten. Betrachten wir zunächst allgemein eine nichta-
belsche Eichtheorie mit masselosen Fermionen. In [40] wurde gezeigt, daß die Anoma-
lieterme in einer solchen Theorie immer proportional
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sind. Hierbei bezeichnet die �� die Generatoren der Eichgruppe. Verschwindet nun ���	
so verschwindet auch die Anomalie.

Betrachten wir zunächst Dreiecks-Graphen im Standardmodell mit drei schwachen ;6����-
Kopplungen. Die �� sind dann ;6��� Generatoren. Bildet man nun die Spur und sum-
miert über ein Fermion-Dublett, so tragen die beiden Fermionen des Dubletts entgegen-
gesetzten schwachen Isospin und die Summe der beiden Anomaliebeiträge verschwin-
det. Bei Dreiecks-Graphen mit zwei schwachen ;6����-Kopplungen und einer 6�	�-
Kopplung ist (3.17) durch

'# )�� ���
 �	
* (3.18)

zu ersetzen. Die �� sind ;6��� Generatoren und �� ist die Ladung der Fermionen in
der Schleife. Nutzt man nun aus, daß im Standardmodell bei Summation über eine
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Fermion-Generation die Gesamtladung verschwindet, sieht man, daß durch eine Sum-
mation über alle Fermionen einer Generation in der Schleife auch die Anomalie ver-
schwindet.

Wenden wir uns nun dem Fall des Standardmodells mit massiven Fermionen zu. Die
Massen der Fermionen brechen die chirale Symmetrie und führen zu einer Mischung
der chiralen Eigenzustände. Wegen der unterschiedlichen Massen der Fermionen lassen
sich aus den Feynman-Diagrammen nicht immer Spuren wie (3.18) ausklammern, und
die Beiträge der Ladungen einer Generation heben sich in der Summe nicht mehr weg.
Es wären zusätzliche masseabhängige Anomalien denkbar. Allerdings bekommen die
Teilchen des Standardmodells ihre Massen durch den Higgs-Mechanismus. Die Higgs-
Kopplungen respektieren aber, abgesehen von der spontanen Symmetriebrechung, die
Symmetrien des Modells. Das führt dazu, daß der Higgs-Sektor zusätzliche Beiträge in
den ST-Identitäten liefert, welche masseabhängige Anomalien verhindern.

Die Kompensation der Anomalien auf Ein-Schleifen-Niveau wurde mit Hilfe folgender
ST-Identitäten [41], die im Standardmodell für fermionische Beiträge auf Ein-Schleifen-
Niveau gelten, für die einzelnen Vertizes verifiziert:
���-Vertex:
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���-Vertex:
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���-Vertex:
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�����-Vertex:
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�����-Vertex:
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Als Konvention werden alle Impulse als einlaufende Impulse angenommen. Die Im-
pulse werden den Feldern in den n-Punkt-Funktionen zugeordnet, indem von links be-
ginnend die Impulse den Feldindizes entsprechen. Für das rechte Feld wird bei den
Zwei-Punkt-Funktionen die Impulserhaltung verwendet und der Impuls nicht explizit
angegeben. Der Drei-Photon-Vertex muß natürlich nicht überprüft werden, da es sich
bei diesem um einen reinen QED-Vertex handelt, der keine chirale Kopplung enthält.

� Im naiv antikommutierenden Schema existieren keine Beiträge vom 7��'(-Tensor
und die ST-Identitäten sind trivial erfüllt. Dabei ist keine Summation über die
Fermionen einer Generation nötig.

� Im mixed-Schema sind die ST-Identitäten für einzelne Fermionen einer Generati-
on nicht erfüllt. Erst nach Summation über alle Fermionen einer Generation sind
die ST-Identitäten in diesem Schema erfüllt.

� Im HVBM-Schema werden die ST-Identitäten auch nach Summation über eine
Fermion-Generation nicht erfüllt. Für eine Rechnung in diesem Schema müssen
also tatsächlich endliche Counterterme eingeführt werden um die Symmetrie der
Theorie wieder herzustellen.

3.1.4 Nichtkompensierbare Terme

Zu den ST-Identitäten tragen nur die Kontraktionen von Drei-Eichboson-Vertizes mit
äußeren Impulsen der einlaufenden Vektorbosonen bei. Im allgemeinen gibt es aber bei
diesen Vertizes Beiträge vom 7��'(-Tensor, welche keine Symmetrien verletzen, da sie
nach einer Kontraktion mit einem äußeren Impuls verschwinden und damit die ST-
Identitäten nicht verletzen können. Da diese Terme keine Symmetrien verletzen, sich
aber auch nicht durch Counterterme beseitigen lassen, werden sie im folgenden nicht-
kompensierbare Terme genannt. Solche Terme existieren unabhängig vom Renormie-
rungsschema und haben deswegen physikalischen Gehalt. Sie können endliche Beiträge
zu Observablen im Standardmodell liefern, welche nicht vernachlässigt werden dürfen.
Verursacht werden die nichtkompensierbaren Terme durch die unterschiedlichen Fer-
mionmassen im Standardmodell. Für verschwindende Fermionmassen treten sie nicht
auf.

Da im naiv antikommutierenden Schema keine 7��'(-Tensoren durch Spuren erzeugt
werden, fehlen hier diese nichtkompensierbaren Terme. Damit ist dieses Schema für
Rechnungen in höheren Ordnungen im Standardmodell ungeeignet.

Das HVBM-Schema als mathematisch konsistentes Schema produziert diese Terme na-
türlich korrekt. Allerdings müssen in diesem Schema Counterterme zur Restaurati-
on der Eichinvarianz eingeführt werden. Im Rahmen der algebraischen Renormierung
kann man zeigen, daß diese Counterterme eindeutig sind [42].
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Das mixed-Schema und das HVBM-Schema unterscheiden sich nach der Addition der
endlichen Counterterme bei der Berechnung von Spuren nur um Terme der Ordnung
��� � ��. Diese können zusammen mit den �

*
-Polen aus den Schleifenintegralen endli-

che Beiträge liefern. Auf Ein-Schleifen-Niveau ist keine weitere Divergenz vorhanden,
die einen endlichen Unterschied zwischen beiden Schemata erzeugen könnte. Nach er-
folgter Renormierung fallen also alle Terme weg, in denen sich das mixed-Schema und
das HVBM-Schema unterscheiden. Wegen der mathematischen Konsistenz des HVBM-
Schemas kann man also auch mit dem mixed-Schema korrekte Resultate erhalten, spe-
ziell werden die Beiträge der nichtkompensierbaren Terme korrekt erzeugt. Dabei hat
man den Vorteil, keine zusätzlichen Counterterme einführen zu müssen.

Bei der Berechnung von Korrekturen höherer Ordnung können Unterschiede zwischen
Berechnungen im mixed- und HVBM-Schema entstehen, wenn die Terme ��� � �� in
denen sich beide Schemata unterscheiden auf Divergenzen aus weiteren Schleifen tref-
fen und dadurch endliche Beiträge liefern. Bildet man die Differenz zwischen einem
Dreiecksdiagramm in HVBM und im mixed-Schema und summiert dabei über die Fer-
mionen einer Generation, so erhält man als Differenz Terme der Form�
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wobei 	0�
� den endlichen Anteil einer skalaren Zwei-Punkt-Funktion bezeichnet und

:� eine skalare Drei-Punkt-Funktion meint. Nun setzt man diesen Term anstatt des
Dreiecks-Subdiagramms in Zwei-Schleifen-Topologien ein und nutzt aus, daß sich die
skalaren Funktionen im Limes großer 1� durch den Logarithmus �� ��

��
abschätzen las-

sen. Beispielsweise erhält man für folgende Topologie, die bei der Berechnung von ��
und dem effektiven Mischungswinkel auftritt
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Dies wurde für alle fermionischen Zwei-Schleifen-Topologien, die ein Fermion-Dreieck
als Sub-Schleife haben, durchgeführt. Es zeigt sich, daß der Beitrag aus der Differenz
beider Schemata im Limes � � � immer verschwindet. Damit ist der korrekte Ge-
brauch des mixed Schemas für unsere Rechnungen sichergestellt. Man hat dadurch die
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Möglichkeit, mit einem sehr viel geringerem Aufwand als im HVBM-Schema trotzdem
die gleichen korrekten Resultate zu erzielen.

Korrekturen zum Dreiecksdiagramm, bei denen zum Beispiel die Fermionen im Dreieck
ein Boson austauschen wurden hier nicht untersucht, da diese Diagramme bei fermio-
nischen Zwei-Schleifen-Korrekturen nicht auftreten. Ebenso wurden Diagramme mit
mehr als zwei Schleifen nicht berücksichtigt.

3.2 Pauli-Villars Regularisierung

Bei der Pauli-Villars Regularisierung [43] handelt es sich um ein Verfahren, welches
die relativistische Kovarianz der Theorie respektiert, aber die Eichinvarianz verletzt. Es
wurde in dieser Arbeit bei der Abspaltung von QED-Beiträgen von den elektroschwa-
chen Beiträgen zu ��verwendet.

Der Vorteil der Pauli-Villars Regularisierung liegt darin, daß man weiterhin in vier Di-
mensionen rechnen kann. Im Gegensatz zur dimensionalen Regularisierung sind al-
so keine Probleme bei der Definition von �� vorhanden. Allerdings verletzt die Pauli-
Villars Regularisierung die Eichinvarianz. Wollte man also zum Beispiel �� im Stan-
dardmodell mittels dieses Regularisierungsverfahrens berechnen, müßte man zusätzli-
che Counterterme einführen, um die Eichinvarianz der Theorie wieder herzustellen. Die
Berechnung solcher im allgemeinen endlicher Counterterme mittels Slavnov-Taylor-
Identitäten ist aber nicht trivial.

In der Pauli-Villars Regularisierung werden Propagatoren folgendermaßen modifiziert:

	

1� �'�
� 	

1� �'�
�
�
�

:�

1� � +�
�

� (3.30)

Dabei werden zusätzliche Massen eingeführt, für die +�� � '� gelten soll. Die :� wer-
den als Funktionen von m und den +� so gewählt, daß das Integral konvergent ist.
Durch eine solche Substitution kann jedes gegebene Diagramm regularisiert werden
[44].

In dieser Arbeit wurde die Pauli-Villars Regularisierung nur verwendet, um einen Ein-
Schleifen Photon-Propagator zu regularisieren. In diesem Fall genügt es einen zusätzli-
chen Propagator mit der Masse + einzuführen, zusätzliche :� werden nicht benötigt:
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Durch diese Substitution ist der Photon-Propagator UV-endlich, und im Grenzübergang
+�� erhält man die unregularisierte Theorie zurück.
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Bei der Berechnung von �� wird speziell die Differenz aus einem dimensional- und
einem Pauli-Villars regularisierten Photon-Propagator benötigt. Die Bildung dieser Dif-
ferenz entspricht gerade dem Einführen einer Photon-Masse im Propagator:
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3.3 Spurtrick

Beim Myon-Zerfall lassen sich alle Strahlungskorrekturen auf einen Term proportio-
nal zum Born-Matrixelement zurückführen, und bei der leptonischen �-Breite lassen
sich die Strahlungskorrekturen in Termen proportional zur Vektor und zur Axialvek-
torkopplung zusammenfassen. Hier wird nun gezeigt, wie mittels eines Spurtricks auf
einfache Weise die Matrixelemente höherer Ordnung in diese Form gebracht werden
können.

Das Born-Matrixelement des Myonzerfalls ist:
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und die Matrixelemente der Schleifenkorrekturen haben die Form:
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Die ��� können nach einer vollständigen Orthonormalbasis im Raum der Dirac-Matrizen
entwickelt werden.
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Für masselose äußere Fermionen ist die Helizität bei allen Kopplungen erhalten, und
somit sind nur linkshändige Kopplungen möglich. Da die äußeren Impulse bei der Be-
rechnung von �� Null gesetzt werden, können die Koeffizienten nur von Kopplungs-
konstanten, Massen und der Metrik abhängen. Damit ist sichergestellt, daß alle Koeffi-
zienten bis auf einen in (3.35) verschwinden müssen, und man kann schreiben:
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Damit gilt auch:
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Der Koeffizient �� läßt sich entweder explizit durch eine Zerlegung von �� nach Ko-
varianten oder einfacher mittels eines Spurtricks bestimmen. Da man weiß, daß alle
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Koeffizienten bis auf �� Null sind, kann man durch die Berechnung einer Spur diesen
Koeffizienten aus der obigen Entwicklung direkt heraus projizieren:
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und �� ergibt sich zu:
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Analog kann man bei der Berechnung des effektiven Mischungswinkels aus der lepto-
nischen Z-Breite vorgehen. Der effektive Mischungswinkel ist über das Verhältnis der
effektiven Vektor- und Axialvektorkopplung des Z-Bosons an Leptonen definiert. Das
Born-Matrixelement des Z-Zerfalls ist:
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und die Matrixelemente der Schleifenkorrekturen haben die Form:
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�� kann wieder nach einer vollständigen Orthonormalbasis entwickelt werden:
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Durch eine Spurbildung erhält man wieder die Koeffizienten zur Vektor- und Axialvek-
torkopplung:
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Damit ergeben sich die effektiven Kopplungen zu:
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In dimensionaler Regularisierung ist allerdings Vorsicht geboten bei der Verwendung
des Spur-Tricks. Dieser beruht auf einer Zerlegung nach einer endlichdimensionalen
vollständigen Orthonormalbasis im Raum der Dirac-Matrizen. Damit diese existiert,
muß man �� als endlich dimensionale Matrix definieren können. Dies ist in � Dimen-
sionen nicht möglich. Trotzdem kann der Spurtrick auch auf dimensional regularisier-
te Diagramme angewandt werden, wenn die Summe der betrachteten Diagramme im
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Grenzfall � � � endlich ist. Dazu wird aus der endlichen Summe der betrachteten
Diagramme die Spur ausgeklammert und dann auf die einzelnen divergenten Teile auf-
geteilt.

Alternativ zum Spurtrick kann man auch ”von Hand“ eine Zerlegung der Tensorstruk-
tur eines Diagramms nach Kovarianten durchführen. Versucht man allerdings die Ten-
sorstruktur der �-Matrizen eines Boxdiagramms zu vereinfachen, so muß man auf die
Chisholm-Identität [45]

�����' 
 ��7��'(�(�� � ����' � ��'�� � ��'�� (3.45)

zurückgreifen. Diese ist aber auch nur in 4 Dimensionen gültig, da zur Herleitung der
selben ebenso die Existenz einer endlichdimensionalen vollständigen Basis nötig ist.
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Kapitel 4

Der Myon-Zerfall und die
Präzisionsobservable ��

4.1 Definition der Fermikonstante

Die Präzisionsobservable �� beschreibt Quantenkorrekturen zum Zusammenhang der
�-�-Massenkorrelation mit der Fermikonstante, welche aus dem Myon-Zerfall bestimmt
wird.

Myonen zerfallen mittels der elektroschwachen Wechselwirkung fast ausschließlich im
Zerfallskanal �� � ��
�
��. In nur etwa einem Prozent der Zerfälle wird ein zusätzliches
Photon abgestrahlt und die Erzeugung eines zusätzlichen Elektron-Positron-Paares liegt
gar im hundertstel Promille Bereich [46].

Zur phänomenologischen Beschreibung der schwachen Wechselwirkung entwickelte
Fermi sein später nach ihm benanntes Modell [47]. Zunächst für den .-Zerfall �� ,��
postulierte er eine effektive Vier-Fermion-Punktwechselwirkung:
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Im Rahmen dieser Strom-Strom-Wechselwirkung kann auch der Myon-Zerfall beschrie-
ben werden, und man erhält in niedrigster Ordnung folgendes Matrixelement:
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Abbildung 4.1: Myon-Zerfall im Fermi-Modell in Born-Ordnung

Hieraus kann nun die Zerfallsbreite des Myons berechnet werden zu
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Die Lebensdauer des Myons kann experimentell sehr genau bestimmt werden. Die Zer-
fallsbreite des Myons wird nun als Definition für die Fermi-Konstante %	 benutzt. Da-
bei ist es eine Konvention als Definitionsgleichung nicht etwa (4.3) zu verwenden, son-
dern zusätzlich zur niedrigsten Ordnung außerdem die QED-Korrekturen zum Vier-
Punkt-Vertex zu berücksichtigen. Dies ist möglich, denn obwohl �	
��� nicht renormier-
bar ist, sind diese QED-Korrekturen endlich [48].

Die elektromagnetischen Korrekturen, also Bremsstrahlung und Schleifenkorrekturen
zu (4.3) durch den Austausch virtueller Photonen, werden durch eine mit �� bezeich-
nete Größe beschrieben. Man erhält somit als Definitionsgleichung für die Fermi-Kon-
stante:
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Die QED-Korrekturen sind bis zum Zwei-Schleifen-Niveau bekannt. In erster Ordnung,
d.h. ����, ergeben sie sich zu [49]:
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Hierbei ist � 
 ���� die Feinstrukturkonstante im Thomson-Limes, und die Verwen-
dung von ��'�

�� berücksichtigt das Laufen der elektromagnetischen Kopplung.

Die QED-Korrekturen zweiter Ordnung ����� setzen sich aus mehreren unabhängi-
gen Teilbeiträgen zusammen, die getrennt betrachtet werden können [11]. Der Anteil
der rein photonischen Diagramme, die keine geschlossenen Fermion-Schleifen enthal-
ten ergibt sich zu:
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wobei =�"� die Riemannsche Zeta-Funktion ist. Diagramme mit einer Elektronschleife
oder einem ���� Paar im Endzustand ergeben:
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Außerdem tragen noch Myon-Schleifen
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und Tau-Schleifen bei
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Quark-Schleifen müssen über eine Dispersionsrelation aus Daten zum Prozeß ���� �
 !"#���� gewonnen werden, da die leichten Quark-Massen nicht eindeutig definiert
sind:
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Abbildung 4.2: Myon-Zerfall im Standard-Modell in Born-Ordnung

Faßt man alle diese Beiträge zusammen, so ergibt sich für die Zwei-Schleifen-Korrekturen
[11]:

��%�& 
 �
�
��'�

��

4

��

������� ������ 
 (4.12)

wobei der Fehler hauptsächlich aus der experimentellen Unsicherheit der hadronischen
Daten stammt. Faßt man Ein- und Zwei-Schleifen Korrekturen zusammen, so ergibt
sich unter Verwendung des experimentellen Wertes für die Myon-Lebensdauer �� 

���	����� ��������	��3� [46] die Fermikonstante zu:
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4.2 Definition der Observablen��

Beschreibt man den Myon-Zerfall im Standardmodell, so erhält man in niedrigster Ord-
nung einen Beitrag zweier Feynman-Diagramme (siehe Abbildung 4.2).

Dabei ist das Matrixelement, welches dem Austausch eines unphysikalischen gelade-
nen Higgs-Bosons entspricht, gegenüber dem Austausch eines�-Bosons um einen Fak-
tor ����

��
�

@ 	��) unterdrückt und kann vernachlässigt werden. Im Grenzfall kleiner
Impulsüberträge erhält man nun aus dem Standardmodell das im vorigen Abschnitt
besprochene Fermi-Modell als effektive Theorie:
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Ein Vergleich mit (4.2) ergibt eine Relation zwischen der Fermikonstante %	 und Pa-
rametern des Standardmodells, welche auf Born Niveau gültig ist, aber Korrekturen
durch Beiträge höherer Ordnung erhält:
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Würde man den Impulsübertrag berücksichtigen, so entspräche dies einer Entwicklung
in '�

� -$
�
�, wobei '� die Massen der äußeren Leptonen bezeichnet. Dieser Beitrag wird

üblicherweise �� zugeschlagen, ist aber vernachlässigbar, da er um eine Größenord-
nung kleiner ist als der Fehler der Fermikonstante.

Bei den elektroschwachen Korrekturen höherer Ordnung können die Massen aller Fer-
mionen außer der des Top-Quarks vernachlässigt werden, denn die Fermionmassen
können im Ergebnis nur in der Kombination '�

� -$
�
� auftreten. Mögliche Massensin-

gularitäten sind hierbei in der Ladungsrenormierung absorbiert. Dies hat zur Folge,
daß alle Higgs-Kopplungen und Massencounterterme für die leichten Fermionen ver-
nachlässigt werden können.

Bei Vernachlässigung der äußeren Impuls lassen sich alle Strahlungskorrekturen zur
Myon-Zerfallsamplitude (bis auf QED-Korrekturen) auf das Born-Matrixelement mul-
tipliziert mit einem Zahlenfaktor �� zurückführen (siehe dazu auch Abschnitt 3.3). Da-
mit erhält man aus (4.16) eine Beziehung, die auch auf Schleifen-Niveau gültig ist:
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Die Fermi-Konstante %	 ist sehr genau bekannt. Deshalb verwendet man %	 im all-
gemeinen als Eingabeparameter und benutzt (4.17), um die Masse des �-Bosons zu
bestimmen. Dazu wird die Gleichung nach der �-Masse aufgelöst:
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Da �� selbst wieder von $� abhängt, wird diese Gleichung iterativ gelöst. Dadurch
erhält man eine theoretische Vorhersage für die Masse des �-Bosons in Abhängigkeit
der Parameter des Standardmodells, insbesonder auch der Higgs-Masse. Die so ermit-
telte theoretische Vorhersage für die Masse des �-Bosons kann man dann mit dem
experimentellen Wert vergleichen und dadurch das Standardmodell testen.

4.3 Ein-Schleifen Beiträge zu ��

Die Beiträge erster Ordnung zu �� wurden zuerst von Sirlin und Marciano [26] be-
stimmt. Sie lassen sich schreiben als Summe aus Beiträgen aus der renormierten �-
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Selbstenergie, Vertexkorrekturen und Boxdiagrammen:
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W-Selbstenergie:
Der Transversalteil der renormierten�-Selbstenergie bei verschwindendem Impulsübert-
rag setzt sich aus der unrenormierten Selbstenergie und den entsprechenden Renormie-
rungskonstanten zusammen:
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Die �-Selbstenergie setzt sich aus Transversal- und Longitudinalteil zusammen:
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Da diese Selbstenergie für verschwindenen 0� bei konstantem 0� keine Singularität auf-
weisen darf, muß gelten:
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Folglich kann man den Transversalteil einfach direkt aus dem ���-Anteil bestimmen:
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Vertexkorrekturen:
Die Vertexkorrekturen setzen sich aus den Schleifen- und Counterterm-Diagrammen
zusammen. Die Schleifen-Diagramme können mit Hilfe des Spur-Tricks (siehe Abschnitt
3.3) auf die Struktur �/$���� gebracht und anschließend mit Hilfe des Mathematica
Pakets ONECALC [50] berechnet werden. In Feynman-Eichung (2.19) ergibt sich:
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Die Diagramme mit Counterterm-Einsetzungen an den Vertizes ergeben:
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Da das �-Boson nur als inneres Teilchen am Prozeß beteiligt ist, muß seine Feldrenor-
mierung im Endergebnis entfallen. Dabei heben sich die Feldrenormierungskonstanten



Abschnitt 4.3 Ein-Schleifen Beiträge zu�� 51

von W-Selbstenergie und Vertexkorrektur gegenseitig weg. Setzt man (4.20) und (4.25)
in (4.19) ein, so sieht man dies explizit.

Boxdiagramme:
Boxdiagramme bei denen kein virtuelles Photon ausgetauscht wird sind alle für sich
IR- und UV-endlich. Deswegen können diese Diagramme vierdimensional behandelt
werden und müssen nicht dimensional regularisiert werden. Damit ist es möglich, die
Tensorstruktur der �-Algebra mit Hilfe der Chisholm-Identität (3.45) auf die Form des
Born-Matrixelements zu bringen.

Für die Boxdiagramme, bei denen kein virtuelles Photon ausgetauscht wird, erhält man
als Summe:
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Das Boxdiagramm, bei welchem ein virtuelles Photon ausgetauscht wird, ist infrarot
divergent und muß gesondert betrachtet werden. Da die QED-Korrekturen bereits im
Fermi-Modell berücksichtigt wurden, muß hier eine Differenz aus diesem Boxdiagramm
und dem entsprechenden Diagramm im Fermi-Modell, bei dem der W-Propagator zu
einer Punkt-Wechselwirkung zusammengezogen ist, gebildet werden.

Das Diagramm im Fermi-Modell ist sowohl infrarot- als auch UV-divergent, wobei die
Infrarot-Divergenz gerade die des Boxdiagramms kompensiert. Wegen der UV-Diver-
genz berechnet man das Diagramm am einfachsten in Pauli-Villars Regularisierung. Da-
durch wird die Dimension der Raum-Zeit nicht verändert und man kann die Chisholm-
Identität zur Vereinfachung der Amplitude verwenden. Um das so erhaltene Ergeb-
nis zu den in dimensionaler Regularisierung erhaltenen Ergebnissen hinzufügen zu
können, muß man erst noch durch Subtraktion der photonischen Anteile der Feldre-
normierungen eine UV-endliche Größe bilden:
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Als Beitrag zu �� ergibt sich schließlich:
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Zusammenfassung:
Man kann den Ein-Schleifen-Beitrag kompakt schreiben als
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4.4 Bisher bekannte Beiträge höherer Ordnung

4.4.1 Aufsummation der führenden Beiträge erster Ordnung

Das Ein-Schleifen Ergebnis für �� läßt sich in folgender einfacher Form für die führen-
den Terme schreiben:

��%�& 
 ��� ���
���
�A ����
� � (4.30)

Die dominanten Korrekturen stammen von der Verschiebung der Feinstrukturkonstan-
ten �� aufgrund großer Logarithmen leichter Fermionen (� �.) und von den führen-
den Beiträgen des Top/Bottom Dubletts � '�

! , die über �A eingehen (� ���.). Die
Größe �A ist dabei definiert über den führenden Beitrag des Verhältnises des neutralen
zum geladenen schwachen Strom [51]:
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und liefert für das Top/Bottom-Dublett bei vernachlässigter Bottom-Masse:
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Alle weiteren Beiträge, insbesondere die volle $
-Abhängigkeit, sind im relativ kleinen
Restbeitrag ���
� (� 	.) enthalten.

Die verschiedenen Möglichkeiten, um die Korrekturen ����� durch die Beiträge aus��
und�A mittels Aufsummation zu erfassen wurden ausführlich in [25, 26, 52] diskutiert.
Insbesondere wurde gezeigt, daß durch die Aufsummation
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alle Terme der Art �����, ���A, ��A�� und �����
� bis ����� korrekt erfaßt werden
[52].
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4.4.2 QCD-Korrekturen

Die Beiträge der starken Wechselwirkung zu �� sind in Ordnung ����-� [57] und
�����-� [12] berechnet. Dabei sind die ����-� Korrekturen exakt bekannt. Die �����-�
Korrekturen beinhalten sowohl die Beiträge aus Top/Bottom-Schleifen als auch die Bei-
träge der leichten Fermionen. Hierbei wurde eine Entwicklung in $�

�-'
�
! verwendet

und es wurde gezeigt, daß die vernachlässigten Terme in der Entwicklung numerisch
klein sind [53].

4.4.3 Elektroschwache Zwei-Schleifen-Beiträge zu ��

Im Ein-Schleifen-Ergebnis dominieren die fermionischen Beiträge. Ähnliches erwar-
tet man auch auf Zwei-Schleifen-Niveau. Auch in Zwei-Schleifen-Ordnung gehen die
führenden Top-Korrekturen proportional zu '�

!-$
�
� über �A in �� ein. Die führenden

Beiträge durch ein schweres Top-Quark und ein schweres Higgs-Boson wurden in [58]
berechnet. Die volle Higgs-Abhängigkeit der ����'�

!-$
�
��-Beiträge wurde in [59] un-

tersucht. Die nächstführenden Beiträge ����'�
!-$

�
�� wurden in [60] berechnet, wobei

dieser Beitrag von der gleichen Größenordnung wie der führende Beitrag ist. Schon des-
halb war eine vollständige Bestimmung der fermionischen Beiträge wünschenswert.

Die Higgs-Abhängigkeit von Beiträgen zu ��%��&, welche das Top-Bottom-Dublett oder
leichte Fermionen enthalten, wurde exakt berechnet [61, 62]. Die Rechnungen im On-
Shell-Schema wurden ohne Entwicklung in der Top-Masse durchgeführt. Die exakte
Higgs-Abhängigkeit stimmt mit der Entwicklung der nächstführenden Beiträge in der
Top-Masse gut überein [62, 64].

4.4.4 Elektroschwache Korrekturen jenseits der Zwei-Schleifen-Ord-
nung

In Drei-Schleifen-Ordnung sind im elektroschwachen Sektor Teilresultate bekannt. Für
die rein fermionischen Beiträge wurde in [25] eine Rekursionsformel entwickelt, die
es erlaubt, das n-Schleifen Ergebnis durch Ein-Schleifen Ein-Punkt- und Zwei-Punkt-
Funktionen auszudrücken. Im On-Shell-Renormierungsschema wurden explizite Er-
gebnisse bis zur Vier-Schleifen-Ordnung bestimmt.

Die führende Beiträge der Top-Masse zum A-Parameter wurde in [65] in Drei-Schleifen-
Ordnung im masselosen Limes für das Higgs-Boson und die Eichbosonen berechnet.
Dies Entspricht Termen der Ordnung ��%�

	'
3
! � und ��%�

	��'
�
! �.

Die angesprochenen Beiträge bewirken je eine Verschiebung von etwa einem MeV in
der W-Masse.
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Kapitel 5

Fermionische Zwei-Schleifen-Beiträge
zu ��

5.1 Rechenmethoden

Die große Anzahl der zu berechnenden Feynman-Diagramme und die Komplexität der
Ergebnisse legen die Verwendung von Computeralgebra-Programmen nahe. Alle hier
verwendeten Programmpakete sind unter MATHEMATICA [36] programmiert.

Erzeugung der Diagramme und Amplituden:
Das Programmpaket FeynArts [54] erzeugt, nach Spezifikation der ein- und auslaufen-
den Teilchen, der Schleifenordnung und des Modells (hier ausschließlich der elektro-
schwache Sektor des Standardmodells), Feynman-Diagramme und die zugehörigen Am-
plituden. Für die in dieser Arbeit durchgeführten Berechnungen wurden die Versionen
2.1 und 3.0 benutzt.

Der elektroschwache Sektor des Standardmodells ist in FeynArts für Rechnungen����
vollständig implementiert. Für die hier durchgeführten Rechnungen�����mußten noch
einige Feynman-Regeln ergänzt werden. Insbesondere wurde die Renormierung im
Geist-Sektor in FeynArts implementiert.

Zurückführen der Amplituden auf Standardintegrale:
Die in den von FeynArts erzeugten Amplituden auftretende Tensorstruktur wurde mit
Hilfe der Programmpakete OneCalc, TwoCalc [50] und FeynCalc [55] vereinfacht. Ins-
besondere wurden diese Programme benutzt, um die Tensorintegrale auf einen Satz
skalarer Standardintegrale zu reduzieren.

OneCalc dient dabei der Behandlung von Ein-Schleifen Zwei-Punkt-Funktionen, und
mit Two Calc können Zwei-Schleifen Zwei-Punkt-Funktionen, also alle in dieser Arbeit
auftretenden Zwei-Schleifen-Integrale, auf skalare Integrale zurückgeführt werden.
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Bei der Berechnung des Ein-Schleifen-Beitrags zum effektiven Mischungswinkel und
bei der Untersuchung der Dreiecksanomalie wurden Ein-Schleifen Drei-Punkt-Funk-
tionen mit Hilfe von FeynCalc 2.2b3 vereinfacht.

Zur konsistenten Behandlung von �� in dimensionaler Regularisierung wurde zusätz-
lich das Programm TRACER [35] verwendet. Dieses bietet eine Implementierung des
Formalismus von Breitenlohner und Maison in MATHEMATICA.

Numerische Auswertung:
Die von OneCalc, TwoCalc oder FeynCalc erzeugten analytischen Ausdrücke wurden
mit dem ;�B-Programmpaket [56] numerisch ausgewertet. Dieses Programmpaket über-
führt die analytischen Ausdrücke in eine für die numerische Auswertung geeignete
Form, und ruft dann, von MATHEMATICA aus, numerische Integrationsroutinen auf, die
in C++ implementiert sind. Die numerische Integration beruht darauf, daß die auftre-
tenden Standardintegrale auf eine eindimensionale Integraldarstellung zurückgeführt
werden können. Die verbleibenden Integrale werden dann numerisch mit einem Gauß-
Algorithmus berechnet.

5.2 Reduzible Beiträge

Die am einfachsten zu berechnenden Zwei-Schleifen-Beiträge zu�� sind die reduziblen
Beiträge, da es sich bei diesen aus Produkten aus Ein-Schleifen-Beiträgen handelt. Bei
den hier berechneten fermionischen Beiträgen zu �� kommen als Ein-Schleifen-Dia-
gramme Vertexkorrekturen zum���
- bzw.����-Vertex und �-Selbstenergien, sowie
die zugehörigen Counterterm-Diagramme vor.

Diagramme, bei denen das zum �-Boson gehörige Goldstone-Boson � ausgetauscht
wird, tragen nicht bei. Counterterm-Diagramme zum ���
 bzw. ���� Vertex haben eine
Counterterm-Kopplung die proportional zur vernachlässigten Masse der äußeren Fer-
mionen ist. Diagramme mit einer�� Selbstenergie sind proportional zum durchlaufen-
den Impuls, dieser wird hier aber vernachlässigt. Die Ein-Schleifen Vertexkorrekturen
zum ���
 bzw. ���� Vertex führen nach Integration über den Schleifenimpuls zu einem
Ausdruck der Form 
�/13��, welcher für vernachlässigten Impulsübertrag 1 verschwin-
det.

Es bleiben schließlich Diagramme der Art wie sie in Abbildung 5.1 gezeigt sind als
reduzible Beiträge zu �� zu berechnen.
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Abbildung 5.1: Reduzible Beiträge zu ��. Schraffierte Kreise stehen symbolisch für Ein-
Schleifen-Teildiagramme oder Ein-Schleifen Countertermeinsetzungen.
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Abbildung 5.2: Beispiele für Zwei-Schleifen-Vertexkorrekturen. Das linke Diagramm kann pro-
blemlos in dimensionaler Regularisierung behandelt werden. Das rechte Diagramm enthält
einen Dreiecksgraphen mit Fermion-Schleife, welche Unterschiede zwischen einer naiven Be-
handlung von �� im Vergleich zu einer Rechnung im HVBM-Schema liefert.

5.3 Irreduzible Beiträge

Selbstenergien, Vertexkorrekturen und Boxdiagramme mit einer zusätzlichen����-Ein-
setzung tragen als irreduzible Zwei-Schleifen-Diagramme zu den fermionischen Kor-
rekturen zum Myon-Zerfall bei. Da die Berechnung der Boxdiagramme wegen der Ab-
spaltung der QED-Beiträge besonders aufwendig ist, werden diese Diagramme geson-
dert im Abschnitt 5.4 behandelt.

Die Vertexdiagramme können mit Hilfe des Spurtricks (siehe Abschnitt 3.3) auf Vaku-
umdiagramme zurückgeführt werden. Dabei sind die Diagramme mit Selbstenergie-
Einsetzungen problemlos in dimensionaler Regularisierung berechenbar. Es treten aber
auch Diagramme auf, die Dreiecksgraphen mit Fermion-Schleifen enthalten. Bei diesen
kommt es zu der in Abschnitt 3.1 behandelten ��-Problematik. Der Einfluß der korrek-
ten Behandlung von �� im Vergleich zum naiven Schema wurde hierbei untersucht. Wie
die numerische Auswertung zeigen wird (siehe Abschnitt 6.1), ist der Unterschied hier
numerisch nicht signifikant.

Der Transversalteil der Zwei-Schleifen �-Selbstenergie bei verschwindendem Impuls-
übertrag ��

� %�&��� liefert einen Beitrag zum Myon-Zerfall als Korrektur des �-Propaga-
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tors. Statt den Transversalteil der Selbstenergie bei verschwindendem Impulsübertrag
zu berechnen, kann man, wie im Ein-Schleifen Fall auch, den ���-Anteil der Selbstener-
gie bestimmen, der über (4.23) mit dem Transversalteil für 1� 
 � verknüpft ist. Dies
ermöglicht technisch die Berechnung von Vakuum-Diagrammen. Ein Grenzübergang
1� � �, der bei Teilausdrücken zu Singularitäten führt und nur für die gesamte Selbst-
energie existiert, wird so vermieden.

5.4 Abspaltung von QED-Beiträgen

Für die Berechnung von �� müssen die IR-divergenten Korrekturen, die bereits im
Fermi-Modell QED-Faktor �� (4.4) enthalten sind, abgespalten werden. Im folgenden
wird zunächst gezeigt, daß für die fermionischen Zwei-Schleifen-Beiträge zum Myon-
Zerfall eine derartige Aufspaltung möglich ist. Rein fermionische Beiträge mit zwei ge-
schlossenen Fermionschleifen existieren im Fermi-Modell in ����� nicht. Deshalb kann
man sich bei der folgenden Diskussion auf die fermionischen Beiträge mit genau einer
Fermionschleife beschränken.

Auf Zwei-Schleifen-Niveau bestehen die entsprechenden IR-divergenten Beiträge zum
Fermi-Modell aus folgenden virtuellen��( und reellen��7 photonischen Korrekturen
der Ordnung ���� und �����:
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Mit den eben eingeführten Größen kann man das betragsquadrierte Matrixelement für
den Myon-Zerfall im Fermi-Modell bis zur zweiten Schleifen-Ordnung schreiben als:
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(5.6)

Bei der Berechnung virtueller Korrekturen zum Myon-Zerfall im vollen Standard-Modell
(SM) treten IR-divergente Boxdiagramme auf, im folgenden mit�� bezeichnet. Auf Ein-
Schleifen-Niveau existiert als virtuelle Korrektur die photonische Box:
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Die Zwei-Schleifen-Diagramme kann man in rein elektromagnetische Korrekturen
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und gemischte Korrekturen mit einer QED und einer schwachen Schleife
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unterteilen. Führt man eine Tensorintegral-Zerlegung bei diesen Klassen von Diagram-
men durch, so sieht man, daß eine Aufspaltung in eine Summe aus virtuellen Korrek-
turen im Fermi-Modell und IR-endliche Restbeiträge ���� möglich ist:
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Die endlichen Restbeiträge���� werden mit allen verbleibenden virtuellen SM-Beiträgen
in ��%�& und ��%��& zusammengefaßt.

Wenden wir uns nun den reellen Bremsstrahlungs-Korrekturen zum Myon-Zerfall zu.
Im SM können diese, ähnlich den virtuellen Diagrammen, aufgeteilt werden in ����
Beiträge
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rein elektromagnetische ����� Beiträge
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und gemischte ����� Beiträge
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In der in dieser Arbeit benutzten Näherung, daß der Impulsübertrag durch das �-
Boson �� viel kleiner ist als dessen Masse (�� � $�

�), können die reellen Beiträge im
SM auf die Fermi-Modell-Beiträge zurück geführt werden:
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Insgesamt können die virtuellen und reellen Beiträge zum Betragsquadrat des Zwei-
Schleifen SM-Matrixelements geschrieben werden als:
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Diese Beziehung kann bis zur zweiten Schleifen-Ordnung in einer faktorisierten Form
geschrieben werden:
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Aus (5.5) und (5.22) folgt schließlich
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Damit ist gezeigt, daß eine Faktorisierung der elektromagnetischen Korrekturen ins
Fermi-Modell und der verbleibenden elektroschwachen Korrekturen ins SM, für die in
dieser Arbeit betrachteten fermionischen Zwei-Schleifen-Beiträge, möglich ist.

Die Berechnung der in�� enthaltenen Restbeiträge���� entspricht der Bildung der Dif-
ferenz aus SM-Diagrammen und den entsprechenden Diagrammen im Fermi-Modell
(siehe z.B. Abbildung 5.3). Diese Differenz ist zwar IR-endlich, aber UV-divergent und
muß deswegen regularisiert werden. Um die Tensorstruktur der Boxdiagramme zu zer-
legen, wird die Chisholm Identität benötigt. Diese ist aber nur in vier Dimensionen
gültig, und eine äquivalente Beziehung in � Dimensionen ist nicht bekannt.
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Abbildung 5.3: Differenz von SM Boxdiagramm und entsprechender Fermi-Modell Vertexkor-
rektur, die ��%�&�� entspricht.

Um dieses Problem zu umgehen, wird für die QED-Korrekturen zum Fermi-Modell Ver-
tex Pauli-Villars-Regularisierung (siehe Abschnitt 3.2) verwendet. Diese Vertexkorrek-
turen sind zusammen mit den QED-Teilen der Feldrenormierungen der äußeren Lep-
tonen Æ� ��


� UV-endlich. Deswegen ist es möglich diese Summe aus QED Fermi-Modell
Vertexkorrektur (mit� bezeichnet) und Feldrenormierungskonstanten nach Pauli-Villars
(PaVi) zu regularisieren. Der Rest, also QED Boxdiagramm im SM (mit � bezeichnet)
mit zugehöriger Feldrenormierung der äußeren Leptonen, kann dimensional regulari-
siert (DimReg) werden:
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Da die photonischen SM Boxdiagramme UV-endlich sind, können diese auch nach Pauli-
Villars regularisiert werden. Das gegenseitige Wegheben der IR-Divergenzen findet also
zwischen den SM Box- und Fermi-Modell Vertex-Diagrammen auf einfache Weise statt,
und es wird kein IR-Regulator benötigt.

Eine entsprechende Kompensation der IR-Divergenzen findet auch in der Differenz
der Feldrenormierungskonstanten statt. Hierzu ist die Differenz zwischen einer Pauli-
Villars und einer dimensional regularisierten QED Lepton-Selbstenergie zu bilden. Wie
bereits in Abschnitt 3.2 besprochen, entspricht die dabei auftretende Differenz aus Pauli-
Villars und dimensional regularisierten Photon-Propagatoren gerade der Einführung ei-
ner Masse für das Photon in einem Photon-Propagator (siehe (3.32)). Diese regularisiert
die IR-Divergenzen.

5.4.1 Fermion-Feldrenormierung

Der �����-Vertex-Counterterm enthält die Feldrenormierungskonstanten von Elektron
und Myon in zweiter Ordnung Æ�
��

%�& . Auch aus diesen Renormierungskonstanten müs-
sen die QED-Beiträge abgespalten werden. Die QED-Beiträge aus Æ�
��

%�& sind nämlich be-

reits in ��%�
�&

( berücksichtigt. Das bedeutet, daß bei der Berechnung dieser Konstanten
die reinen QED-Diagramme (siehe Abbildung 5.4) nicht berücksichtigt werden dürfen.
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Abbildung 5.4: Reine QED Beiträge zu Æ�
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Abbildung 5.5: Reiner QED Beitrag zu Æ�

��
%�& (� = � bzw. �)

Die Ein-Schleifen Feldrenormierungskonstanten Æ�
��
%�& treten als Produkt mit anderen

Ein-Schleifen-Renormierungskonstanten beim Vertexcounterterm auf. Außerdem ent-
halten die reduziblen Diagramme Beiträge bei denen Æ�
��

%�& als Produkt mit elektro-
magnetischen und schwachen Korrekturen auftritt. Produkte aus zwei elektromagne-
tischen Beiträgen wie zum Beispiel �Æ�
��

%�&� "$!�
� sind in ��%�

�&
( enthalten und müssen

weggelassen werden. Produkte aus Æ�
��
%�&� "$! mit schwachen Korrekturen finden sich

im Beitrag��%�&( ��
%�&
�
��. Damit können in sämtlichen fermionischen Feldrenormierungs-

konstanten die rein elektromagnetischen Diagramme weggelassen werden.

5.4.2 Boxgraphen ohne QED-Beitrag

Neben den bisher diskutierten Boxgraphen gibt es noch solche, bei denen kein QED-
Beitrag abzuspalten ist. Dazu zählen Diagramme, die eine ���� Einsetzung in Form
einer �-Photon-Mischung haben (siehe Abbildung 5.6). Diese Diagramme sind jedoch
nicht IR-divergent. Außerdem gibt es noch Boxdiagramme bei denen kein virtuelles
Photon ausgetauscht wird (siehe Abbildung 5.7). Alle diese Boxdiagramme (Abbildung
5.6 und 5.7) sind IR-endlich und, zusammen mit den entsprechenden Graphen, die
einen Counterterm statt der Selbstenergie-Einsetzung haben, auch UV-endlich. Deswe-
gen kann die Summe dieser Diagramme in dimensionaler Regularisierung mit Hilfe der
Chisholm-Identität (3.45) berechnet werden. Mögliche Fehler, wegen der Benutzung der
Identität, sind von der Ordnung ��� � �� und entfallen hier beim Grenzübergang auf
vier Dimensionen.
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Abbildung 5.6: Boxdiagramme in ����� mit virtuellem �-Boson und elektromagnetischer
���� Einsetzung
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Abbildung 5.7: Boxdiagramme in ����� ohne virtuelles Photon

Noch einfacher sind die Boxdiagramme mit einer Vertex-Counterterm-Einsetzung. Die-
se sind für sich endlich und können direkt in vier Dimensionen mittels Chisholm-Iden-
tität berechnet werden.

5.5 Rein fermionische Beiträge

Unter rein fermionischen Beiträgen��C�
��

�� sind die zu verstehen, bei denen alle Schlei-
fen ausschließlich fermionisch sind. Diese Beiträge wurden bereits in [25] berechnet und
bilden eine Untermenge der fermionischen Beiträge, bei denen mindestens eine Schleife
eine Fermionschleife ist.

Da im Standardmodell keine Drei- oder Vier-Fermion-Kopplungen existieren, gibt es
keine irreduziblen rein fermionischen Zwei-Schleifendiagramme, sondern nur Ein-Schlei-
fen-Diagramme mit Counterterm-Einsetzungen und reduzible Beiträge. Auch Box- und
Vertexkorrekturen lassen sich nicht als rein fermionische Zwei-Schleifendiagramme kon-
struieren. Das gleiche gilt für die Fermion-Feldrenormierung auf Ein- und Zwei-Schlei-
fen-Niveau. Deswegen existieren zu diesen Diagrammen auch keine entsprechenden
Ein-Schleifen-Diagramme mit Counterterm-Einsetzung. Es müssen also nur Vektorbo-
son-Selbstenergien als Korrektur des W-Propagators und für die Bestimmung der Coun-
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terterme berechnet werden.

Hier wurden die ��C�
��

��-Beiträge einmal unter Benutzung der Definition der Eich-
boson-Masse als reeller Propagatorpol (wie in [25]) berechnet. Außerdem wurde die
Rechnung mit der Eichboson-Masse als komplexer Propagatorpol durchgeführt.

Dabei zeigt sich, daß in Feynman-Eichung ein numerischer Unterschied zwischen bei-
den Möglichkeiten der Behandlung des Propagatorpols auftritt. In *�-Eichung unter-
scheiden sich beide Definitionen der Eichboson-Masse schon dadurch, daß nur die Ver-
wendung des komplexen Propagatorpols ein eichparameterunabhängiges Resultat lie-
fert. Bei den Beiträgen ��C��

�� mit nur einer Fermion-Schleife verschwinden die Un-
terschiede zwischen beiden Definitionen in Feynman-Eichung. Terme, die mögliche Un-
terschiede ausmachen, bestimmen sich über Imaginärteile von Selbstenergien bei Im-
pulsübertrag $�

� bzw. $�
�. Bei Selbstenergien mit bosonischen Schleifen können für

eine derartigen Impulsübertrag jedoch die virtuellen Bosonen in der Schleife nicht reell
erzeugt werden. Dies hat zur Folge, daß diese Selbstenergie-Diagramme nur einen Re-
alteil besitzen. Damit kann auch kein numerischer Unterschied zwischen beiden Sche-
mata bei den ��C��

�� in Feynman-Eichung auftreten. Dies ist jedoch bei den rein fer-
mionischen Beiträgen nicht der Fall und es tritt tatsächlich eine numerische Differenz
zwischen beiden Beiträgen auf.
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Kapitel 6

Ergebnisse für ��

In diesem Abschnitt werden die numerischen Ergebnisse für die in dieser Arbeit berech-
neten Beiträge zu�� präsentiert und mit den bisher bekannten Ergebnissen verglichen.
In 6.1 wird �� mit Hilfe der experimentell bestimmten �-Masse als Input-Parameter
bestimmt. Im folgenden Abschnitt 6.2 wird dann über eine Rekursionsformel aus ��
eine theoretische Vorhersage für die �-Masse berechnet. Anschließend wird ein Ver-
gleich mit den in Form einer Entwicklung in der Top-Masse bekannten elektroschwa-
chen Zwei-Schleifen-Beiträgen durchgeführt. In 6.4 wird als Test des Standardmodells
die theoretisch bestimmte �-Masse mit der experimentell gemessenen Masse vergli-
chen, die verbleibenden theoretischen Unsicherheiten in $� werden diskutiert und mit
der erwarteten experimentellen Genauigkeit an zukünftigen Beschleunigern verglichen.

Die Eichparameterunabhängigkeit der in dieser Arbeit berechneten Beiträge wurde ana-
lytisch überprüft. Gleiches gilt für die UV- und IR-Endlichkeit der Ergebnisse.

6.1 Aufschlüsselung der verschiedenen Beiträge zu ��

In diesem Abschnitt werden die numerischen Ergebnisse für die Präzisionsobservable
�� diskutiert. Folgende Beiträge zu �� werden dabei berücksichtigt:

�� 
 ��%�& ���%���& ���%��
�
�& ���%/	�

�& ���%/
�
	�

�& � (6.1)

��%�& ist das Ein-Schleifen Ergebnis (4.19).��%���& bzw.��%����& sind die Zwei-Schleifen
[57] bzw. Drei-Schleifen [12] QCD-Korrekturen. ��%/	�

�& ist der hier berechnete elek-
troschwache fermionische Zwei-Schleifen-Beitrag und ��%/

�
	�

�& enthält die rein fermio-
nischen elektroschwachen Zwei-Schleifen-Beiträge.

Die bekannten elektroschwachen Beiträge jenseits der Zwei-Schleifen-Ordnung [25, 65]
werden hier nicht berücksichtigt, da sie numerisch sehr klein sind verglichen mit al-



66 Kapitel 6 Ergebnisse für ��

len anderen bekannten Beiträgen. Dies betrifft die rein fermionischen Beiträge in Drei-
und Vier-Schleifen-Ordnung, die in [25] mit der reellen Polmassendefinition berechnet
wurden, sowie die führenden elektroschwachen Drei-Schleifen-Beiträge ��%�

	'
3
! � und

��%�
	��'

�
! �Diese wurden in [65] für eine große Top-Masse unter Vernachlässigung der

Higgs- und Eichbosonmassen berechnet. Beide Beiträge liefern aber nur einen Effekt
von etwa 	0�& in der �-Masse.

Für��%/	�
�& und��%/

�
	�

�& wurden die Beiträge der Top/Bottom-Schleifen und Schleifen
leichter Fermionen getrennt ermittelt. Getrennt davon wurde eine Rechnung angestellt,
bei der alle Fermionschleifen berücksichtigt wurden. In dieser Arbeit wird mit ��%/	�

�&

bzw. ��%/
�
	�

�& das kombinierte Ergebnis für Top/Bottom-Schleifen und Schleifen leich-
ter Fermionen bezeichnet.��%/
��

�& bzw.��%/�

��

�& meint nur Top/Bottom-Schleifen und
��%/�	�

�& bzw. ��%/
�
�	�

�& nur die Schleifen der leichten Fermionen. Diese Aufspaltung
wurde für einen besseren Vergleich mit bisherigen Rechnungen, speziell den Entwick-
lungen in der Top-Masse, vorgenommen.

0 200 400 600 800 1000
0.0018

0.0019

0.002

0.0021

0.0022

0.0023

0.0024

0.0025

�
�

��
�
�
�
�

$
 ) %�&*

�! � ���		 GeV
�! � ���		 � 
	� GeV

Abbildung 6.1: Beitrag von in dieser Arbeit berechneten��
��
��-Termen zu �� in Abhängig-

keit von der Higgs-Masse�� . Das Fehlerband ergibt sich durch Variation der Top-Masse inner-
halb deren experimenteller Unsicherheit.

Zunächst soll der in dieser Arbeit bestimmte elektroschwache fermionische Beitrag��%/	�
�&

getrennt betrachtet werden. Hierzu wird die die experimentell bestimmte �-Masse als
Input-Parameter verwendet und damit �� bestimmt. Das Resultat für �� ist dann nur
noch von der Higgs-Masse als einzigem nicht gemessenem Parameter des Standardmo-
dells abhängig. Abbildung 6.1 zeigt den elektroschwachen Zwei-Schleifen-Beitrag aus
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Feynman-Diagrammen mit einer geschlossenen Fermionschleife (��C��
��) als Funkti-

on der Higgs-Masse.
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Abbildung 6.2: Beiträge von ��
��
��–Termen zu �� in Abhängigkeit von der Higgs-Masse

�� . Vergleich des Beitrags aller Fermionen in den Schleifen mit den separat ermittelten Bei-
trägen leichter Fermionen bzw. des Top/Bottom-Dubletts in den Schleifen. Eine teilweise Kom-
pensation der Sensitivität auf die Higgs-Masse ist zu erkennen. Die Kurve ”leichte Fermionen
sub.“zeigt die Differenz ��%/�	�

�&
� ���

%�&
:$���.

Die Higgs-Abhängigkeit von ��%/	�
�& stammt aus Beiträgen vom Top/Bottom-Dublett

und von den leichten Fermionen. In der Summe kompensieren sich diese Abhängi-
keiten zu einem großen Teil gegenseitig (siehe Abbildung 6.2, numerische Werte sie-
he Tabelle 6.1). Während der Beitrag des Top/Bottom-Dubletts zu �� mit steigender
Higgs-Masse sinkt, steigt der Beitrag der leichten Fermionen an. Insgesamt wird da-
durch die Higgs-Sensitivität zu einem großen Teil kompensiert, und es verbleibt eine
mildere Abhängigkeit von der Higgs-Masse mit einem Maximum bei ca. ���%�&.

Die Beiträge ��%/
�
	�

�& hängen bei fester �-Masse nicht von der Higgs-Masse ab. Das
gleiche gilt für die QCD-Korrekturen zum elektroschwachen Ein-Schleifen Ergebnis
��%���& und ��%����&.

In [61, 62] wurde die Higgs-Abhängigkeit der fermionischen Zwei-Schleifen-Beiträge
zu �� berechnet. Diese stimmt exakt mit der Higgs-Abhängikeit des hier berechneten
kompletten fermionischen Zwei-Schleifen-Beitrags überein.

Durch geignete Aufsummation von Ein-Schleifen-Beiträgen kann man Zwei-Schleifen-
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$
 ) %�&* ��%/	�
�& ��%/	
�

�& ���
%�&
:$��� ��%/���

�& � ���%�&:$��� ���
%�&
:$���

%/���&

100 0.002004 0.001406 0.000388 0.000223 0.000033

200 0.002150 0.001221 0.000672 0.000270 0.000056

400 0.002350 0.001023 0.001003 0.000336 0.000084

600 0.002415 0.000830 0.001213 0.000385 0.000102

1000 0.002382 0.000450 0.001489 0.000457 0.000125

Tabelle 6.1: Numerische Unterschiede der �� %/	�
�& Beiträge. In der zweiten Spalte sind die

Beiträge aller Fermionen in den Schleifen und in der dritten Spalte sind der Beitrag der Top-
Bottom-Schleifen separat aufgeführt. In den Spalten vier bis sechs wird der Beitrag der leichten
Fermion-Schleifen mit Beiträgen, welche die Aufsummation (6.3) liefert, verglichen.

Teilbeiträge berücksichtigen. Der Summand � �� aus dem Zwei-Schleifen Beitrag der
leichten Fermionen,��%/���

�&
+� , kann durch Aufsummation des Ein-Schleifen Ergebnisses

erhalten werden [63]:

��
%/���

�&
+� 
 ���

%�&
:$��� 
 (6.2)

wobei ��%�&:$� der bosonische Anteil des Ein-Schleifen Ergebnisses ist. Die Relation (6.2)
wurde mit Hilfe des Zwei-Schleifen-Ergebnisses analytisch verifiziert.

Bei der Berechnung der fermionischen Zwei-Schleifenbeiträge mit Hilfe einer Entwick-
lung in der Top-Masse [60] wurden die leichten Fermionen durch die Aufsummation

�	 � ���� 	

	��� (6.3)

berücksichtigt. Diese liefert zusätzlich zu (6.2) noch einen Beitrag ���
%�&
:$���

%/���&. In
Tabelle 6.1 sind die einzelnen Beiträge aus der Aufsummation mit dem kompletten
Zwei-Schleifen Ergebnis für die leichten Fermionen verglichen. Der bekannte Summand
� �� aus dem Zwei-Schleifen Beitrag der leichten Fermionen liefert maximal etwa ��.
des Gesamtergebnisses für die leichten Fermionen ��%/���& (siehe Spalten vier und fünf
in Tabelle 6.1). Der Beitrag ���%�&:$���

%/���&, welcher auch durch die Aufsummation von
Ein-Schleifen Beiträgen berücksichtigt wird, ist hingegen klein und trägt nur etwa �.
zum Ergebnis für die leichten Fermionen bei.

In Abbildung 6.2 sind die Beiträge der leichten Fermionen und des Top/Bottom-Dubletts
zusammen mit der Summe dieser Beiträge über der Higgs-Masse aufgetragen. Man
sieht, daß für leichte Higgs-Massen der Beitrag des Top/Bottom Dubletts-dominiert.
Außerdem ist eine teilweise Kompensation der Empfindlichkeit auf Änderungen in der
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Higgs-Masse zu erkennen. Zusätzlich zu ��%/�	�
�& ist auch die Differenz ��%/�	�

�& �
���

%�&
:$��� in das Diagramm eingetragen, da der Term ���

%�&
:$��� als Teilbeitrag zu��%/�	�

�&

[63] vor dieser Arbeit bekannt war.
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Abbildung 6.3: Ein- und Zwei-Schleifen Beiträge zu �� in Abhängigkeit von der Higgs-Masse,
wobei ��%�&846 � ��%���& � ��%��

�
�& und ��%�

�& � ��%/	�
�& � ��%/

�
	�

�&. Fermionische Zwei-
Schleifen-Beiträge liefern, wie die QCD-Korrekturen auch, Korrekturen von mehr als 10% zum
Ein-Schleifen-Resultat.

In Abbildung 6.3 sind der elektroschwache Ein-Schleifen-Beitrag, die QCD-Beiträge
und die elektroschwachen Zwei-Schleifen-Beiträge miteinander verglichen. Man sieht,
daß die Abhängigkeit von der Higgs-Masse durch die Hinzunahme der Zwei-Schleifen-
Beiträge leicht erhöht wird. Sowohl die QCD-Beiträge als auch die elektroschwachen
Zwei-Schleifen-Beiträge liefern eine Korrektur von mehr als 10% zum Ein-Schleifen-
Beitrag (siehe Tabelle 6.2).

Die Verwendung einer konsistenten Definition von �� in D-Dimensionen führt zu soge-
nannten nichtkompensierbaren Termen (siehe Abschnitt 3.1.4). Diese sind Eichparameter-
unabhängig und liefern auch einen numerischen Unterschied ����1$� zu Rechnungen
im naiven Schema. Es ist a priori nicht klar, ob dieser Unterschied numerisch signifikant
ist. Deshalb ist eine getrennte Untersuchung der Größe dieses Beitrags sinnvoll.

Die nichtkompensierbaren Terme hängen nicht von der Higgs-Masse, wohl aber von
der Top-Masse und den Eichboson-Massen ab. Eine Auftragung von ����1$� über der
Top-Masse (siehe Abbildung 6.4) zeigt dabei, daß dieser Beitrag für '! @ ���%�& eine
annähernd lineare Abhängigkeit von der Top-Masse hat. Für größere Top-Massen wird
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$
 ) %�&* ��%�& ��%�& ���
%�&
846 ��%�& ���

%�&
846 ���

%/�
�
��& �����

100 0.0282 0.0325 0.0333 0.0353

200 0.0306 0.0349 0.0357 0.0379

400 0.0334 0.0377 0.0385 0.0409

600 0.0352 0.0395 0.0403 0.0427

1000 0.0375 0.0418 0.0426 0.0450

Tabelle 6.2: Numerische Ergebnisse für verschiedene Ein- und Zwei-Schleifen-Beiträge zu ��

(siehe Abb.: 6.3). ��%�& ist der Ein-Schleifen-Beitrag, ��%�&846 sind die Ein- und Zwei-Schleifen-

QCD-Korrekturen und ��
%�&
��� ist das Ein-Schleifen-Ergebniss zusammen mit den QCD und den

fermionischen Zwei-Schleifen-Korrekturen.

'! ) %�&* ����1$� )	�
�3*

10 -0.7688

500 -2.0891

1000 -3.0585

3000 -5.2383

Tabelle 6.3: Numerische Ergebnisse für die Größe der Beiträge der nichtkompensierbaren Ter-
me zu ��%�

�& in Abhängigkeit von der Top-Masse.

die Kurve etwas flacher. Dies deutet darauf hin, daß es sich nicht um einen Teil der
führenden Korrekturen �����, die proportional zu '�

! bzw. '�
! sind, handelt.

Der Beitrag ist auch numerisch keine signifikante Korrektur zu ��.

����1$� 
 ��	���� ����� � 	��� für '! 
 �	����� ��	�%�&
Dies ist weniger als 1 % des gesamten Zwei-Schleifen Ergebnisses und damit sicherlich
keine führende Korrektur. In Tabelle 6.3 enthält numerische Ergebnisse für ����1$� in
Abhängigkeit von einer formal über einen Bereich von 	�%�& bis �'�& variierten Top-
Masse.

Prinzipiell ist es jedoch wichtig, solchen nichtkompensierbaren Termen Beachtung zu
schenken. Es war vor der expliziten Berechnung nicht abzusehen, daß diese Korrektur
numerisch klein im Vergleich zur gesamten ��C��

�� Korrektur ist. Auch für die Be-
rechnung elektroschwacher Mehr-Schleifen-Beiträge zu anderen Prozessen kann damit
nicht gefolgert werden, daß diese Beiträge zu vernachlässigen sind.
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Abbildung 6.4: Beitrag von nichtkompensierbaren Termen ����1$� zu ��%�
�& in Abhängig-

keit von der Top-Masse. Die Korrektur durch diese Terme beträgt weniger als 1% des gesamten
Zwei-Schleifen-Ergebnisses.

6.2 Berechnung der�-Masse

Die Fermi-Konstante ist experimentell sehr viel genauer bekannt als die�-Masse. Des-
halb ist es günstiger, die �-Masse aus (4.17) mit %	 als Input-Parameter zu berechnen.
Dazu wird (4.17) nach $�aufgelöst. Da �� selbst wieder von der �-Masse abhängt,
erhält man eine Gleichung (4.18), die man iterativ (z.B. mit der experimentellen �-
Masse als Startwert) lösen kann. Das Konvergenzverhalten ist sehr gut, und nach fünf
bis sechs Iterationen ist die verbleibende Abweichung kleiner als 	��).

In Abbildung 6.5 sind zum Vergleich numerische Ergebnisse für $�, die sich durch Ver-
wendung von Korrekturen verschiedener Ordnung ergeben, gegenübergestellt. Es wur-
de die komplexe Polmassen-Definition verwendet und die Ergebnis mit (A.1) (wie in
Abschnitt 2.2.3 beschrieben) umgerechnet. Der Unterschied zwischen der Ein-Schleifen
Vorhersage und der Bestimmung der $�-Masse unter Verwendung der QCD- und
elektroschwachen Zwei-Schleifen-Korrekturen beträgt etwa 	��0�& (siehe Tabelle 6.4).
Bei einer momentanen experimentellen Ungenauigkeit von ��0�& in der �-Massen-
bestimmung [70] sind diese Korrekturen also unbedingt notwendig für einen Vergleich
zwischen Theorie und Experiment. Alleine die Hinzunahme der��C��

�� und��C�
��

��
Korrekturen bewirkt eine Verschiebung der �-Masse um etwa ��0�&.
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$� ) %�&* aus $� ) %�&* aus $� ) %�&* aus $� ) %�&* aus

$
 ) %�&* ��%�& ��%�& ���
%�&
01& ��%�& ���

%�&
01& ���

%/�
�
��& ��%�

�&

100 80.5012 80.4266 80.4130 80.3791

200 80.4597 80.3858 80.3721 80.3359

400 80.4116 80.3383 80.3245 80.2853

600 80.3812 80.3083 80.2945 80.2542

1000 80.3414 80.2690 80.2552 80.2155

Tabelle 6.4: Numerische Unterschiede in der �-Masse bei Verwendung des Ein-Schleifen Er-
gebnissses ��%�&, des Ein-Schleifen Ergebnissses zusammen mit QCD-Korrekturen ��%�& �

��
%�&
01& und nach Hinzunahme der rein fermionischen schwachen Zwei-Schleifen Resultate

��%/
�
�
��&, sowie der fermionsichen schwachen Zwei-Schleifen-Resultate ��%�

�&. Es wurde die
komplexe Polmassendefinition benutzt. (siehe Abb. 6.5).

Abbildung 6.6 zeigt den Einfluß der leichten Fermionen in den fermionischen Zwei-
Schleifen-Korrekturen auf die berechnete �-Masse. Hierzu ist die �-Masse die sich
unter Verwendung aller Fermionen in den Schleifen der fermionischen Beiträge ergibt
zusammen mit der �-Masse, die man bei Berücksichtigung der schweren und leichten
Fermionen getrennt erhält. Auch hier kommt es wie schon bei�� zu einer gegenseitigen
Kompensation der Higgs-Massen-Abhängigkeiten aus den Beiträgen leicher Fermionen
und des Top/Bottom-Dubletts. Die numerischen Ergebnisse dieses Vergleichs können
Tabelle 6.5 entnommen werden. Für $
 @ ���%�& bewirkt die Vernachlässigung der
leichten Fermionen einen Fehler in der �-Masse von maximal ��0�&.

Da die Berechnung der Zwei-Schleifen-Integrale numerisch mit einer eindimensionalen
Integraldarstellung erfolgt, ist die Rechenzeit für die Bestimmung der �-Masse nach
dieser Methode zu groß, als daß man das exakte Result für globale Fits des Standard-
Modells verwenden könnte. Man kann aus dem exakten Resultat aber eine Fit-Formel
gewinnen, die das volle Resultat für die �-Masse mit hinreichender Genauigkeit para-
metrisiert.

Für verschiedene Higgs-Massen werden hierzu die Eingabeparameter innerhalb ihrer
�5 Grenzen variiert. Die so gewonnenen Punkte in einer Auftragung der�-Masse über
der Higgs-Masse werden dann mit der Methode der kleinsten Quadrate an eine einfa-
che Formel

$� 
$�
� � ��" � ��" 

� � ��" 
� � ��"� � ��"1� �3"1

� � �;" "1� �)"�� � �<"�
(6.4)
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die Variablen für die Variation mit den Teilchenmassen sind und

"� 

��

�������
� 	 
 "�� 


���$��

��		�
� 	 (6.6)

die Variablen für die Variation in den Kopplungen sind. Durch den Fit gewinnt man
folgende Werte für die Koeffizienten:

$�
� 
 $�����$%�& 
 �� 
 ������%�&

�� 
 �����	�%�& 
 �3 
 ������%�&

�� 
 ��������%�& 
 �; 
 �������%�&

�� 
 ���������%�& 
 �) 
 ������%�&

�� 
 	���$%�& 
 �< 
 ���	�$�%�&

(6.7)

Das vollständige Ergebnis für die�-Masse kann mit dieser Formel für ��%�& �$
 �
	'�& und �5 Variationen der Eingabe-Parameter besser als auf ���0�& genähert.
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Abbildung 6.6: Theoretische �-Masse unter Berücksichtigung von leichten Fermionen,
Top/Bottom oder allen Fermionen in den Schleifen der ��
 �

� �� Korrekturen. Zusätzlich ist die
Kombination aus Top/Bottom-Schleifen ��
 �

!:�� und leichten Fermionen, die durch die Auf-
summation ���

%�&
:$��� berücksichtigt werden, aufgetragen.

Das in dieser Arbeit berechnete Ergebnis wurde mit dem Ergebnis aus einer Entwick-
lung für asymptotisch große Werte der Top-Masse bis ��%�

	'
�
!$

�
�� [60] verglichen.

Hierfür wurde der in [60] verwendete Parametersatz benutzt, d.h. '! 
 	��%�&, $� 

�	�	$��%�&, �� 
 ������ und ���$�� 
 ��		$. Der Vergleich der �-Masse aus der
vollständigen Rechnung mit dem Ergebnis aus der Entwicklung in '! zeigt relativ gute
Übereinstimmung mit einer maximalen Differenz beider Werte von etwa �0�& (siehe
Æ$

%�&
� in Tabelle 6.6).

Das Ergebnis der vollständigen Rechnung und der Entwicklung in '! unterscheiden
sich aber nicht nur in den fermionischen Zwei-Schleifen-Beiträgen. Vielmehr wurden
auch die Beiträge höherer Ordnung unterschiedlich behandelt. Die Ergebnisse in [60]
berücksichtigen mit Hilfe der Ersetzung (6.3) einen Term ����:$��

�. Dieser ist in unserem
Ergebnis nicht enthalten. Außerdem wurden die QCD-Korrekturen unterschiedlich in
die Ergebnisse eingebaut. Deswegen wurde zusätzlich noch ein Vergleich durchgeführt,
bei dem die QCD-Korrekturen und Unterschiede in der Behandlung des ����:$��

� Terms
aus beiden Resultaten entfernt wurden (siehe Æ$ %�&

� in Tabelle 6.6). Außerdem wurde in
Æ$

%�&
� in der gleichen Tabelle zusätzlich der Beitrag der leichten Fermionen aus unserem

Ergebnis subtrahiert. Die maximale Abweichung in der �-Masse reduziert sich so auf
���%�& und die maximale Differenz in der Higgs-Massen Abhängigkeit $��$
� �
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$� ) %�&* aus $� ) %�&* aus $� ) %�&* aus $� ) %�&* aus

$
 ) %�&* ��%/	�
�& ��%/	
�

�& ��%/���
�& ��%/	
�

�& � ���%�&:$���

100 80.3791 80.3513 80.3496 80.3447

200 80.3359 80.3144 80.3033 80.3032

400 80.2853 80.2713 80.2493 80.2545

600 80.2542 80.2450 80.2151 80.2248

1000 80.2155 80.2127 80.1703 80.1880

Tabelle 6.5: Numerische Unterschiede in der �-Masse, je nachdem ob in den ��
��
�� nur

die leichten Fermionen, oder Top/Bottom oder alle Fermionen in den Schleifen berücksichtigt
werden (siehe Abb. 6.6).

$��$
 
 ��%�&� beträgt noch ���0�&.

6.3 Verbleibende Unsicherheiten in der Bestimmmung der
�-Masse

Bei der Berechnung der �-Masse gibt es zwei Quellen der Unsicherheit: zum einen
die Unsicherheit der experimentellen Eingabewerte und zum anderen die theoretische
Unsicherheit aufgrund der unbekannten Terme höherer Ordnung für ��.

Die Vorhersage der�-Masse wird hauptsächlich durch den experimentellen Fehler der
Top-Masse bestimmt. Aktuell ist der genaueste Wert für die Top-Masse 	����%�& mit
einem Fehler von ���	%�&. Dies schlägt sich in einer Unsicherheit von etwa ��0�&
bei der Vorhersage der �-Masse nieder. Die Unsicherheit in der Bestimmung von ��
(�� 
 �����		�������� [79]) führt zu einem weiteren möglichen Fehler, der aber kleiner
�0�& ist. Die Unsicherheiten der anderen Eingabeparameter ���$��, $� und %	 sind
dagegen zu vernachlässigen.

Die theoretische Unsicherheit stammt aus unbekannten Korrekturn höherer Ordnung,
insbesondere den unbekannten rein bosonischen Zwei-Schleifen Korrekturen, den Drei-
Schleifen elektroschwachen Korrekturen und den fehlenden QCD Korrekturen�������
und �����

��.

Teile der elektroschwachen Drei-Schleifen Korrekturen sind bekannt, nämlich die rein
fermionischen Korrekturen und die führenden Terme proportional '3

! und proportio-
nal ��'�

! für große Top-Massen [65]. Beide Beiträge liefern zusammen einen Effekt von
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$
 ) %�&* $9�!�
� ) %�&* Æ$

%�&
� )0�&* Æ$

%�&
� )0�&* Æ$

%�&
� )0�&*

65 80.4039 -4.2 -3.3 -0.2

100 80.3805 -3.4 -2.7 0.6

300 80.3061 -1.0 -1.4 2.5

600 80.2521 0.0 -1.5 3.3

1000 80.2129 0.5 -2.1 3.5

Tabelle 6.6: Numerische Unterschiede im Vergleich der Vorhersage für die Masse des�-Bosons
aus der Entwicklung bis zur nächtsführenden Ordnung in �! (siehe Abb. 6.7), �9�!�

� genannt.
In Æ�

%�&
� wurde die Differenz aus unserem Resultat und der Entwicklungsrechnung gebildet, in

Æ�
%�&
� wurden die QCD-Korrketuren und Unterschiede in der Behandlung von ����:$��

� korri-
giert und in Æ�

%�&
� wurde zusätzlich der Beitrag der leichten Fermionen aus unserem Ergebnis

entfernt.

etwa 	0�& in der �-Masse. Einen weiteren Hinweis auf die Größe der ����� Kor-
rekturen liefern verbleibende Schema-Abhängigkeiten in den ����� Ergebnissen. Um
zwischen den unterschiedlichen Breit-Wigner-Parametrisierungen bei Festlegung der
Polmasse �-Bosons über den reellen oder komplexen Pol zu transformieren, benötigt
man die Breite des �-Bosons. Je nachdem ob diese Breite mit � oder %	 parametri-
siert ist, erhält man einen Unterschied, der formell von ����� ist, und ebenfalls eine
Verschiebung in $� um etwa 	0�& bewirkt.

Renormierungsskalen-Abhängikeiten bekannter Resultate können Aufschluß über die
Größenordnung der fehlenden QCD-Korrekturen geben. Variiert man im elektroschwa-
chen Zwei-Schleifen Ergebnis die laufende0� Top-Masse an verschiedenen Skalen oder
variiert auf gleiche Weise die starke Kopplungskonstante, so erhält man eine Abschätzung
für den ������� Beitrag von etwa ��$0�&. Aus der Skalen-Abhängigkeit des �������
Ergebnisses kann man auf einen Effekt von ca. ���0�& in der�-Masse aus den�������
Korrekturen schließen.

Eine alternative Möglichkeit, die fehlenden QCD-Beiträge abzuschätzen, beruht auf der
Annahme, daß die Verhältnisse aufeinanderfolgender Koeffizienten in der Störungsrei-
he sich nicht stark verändern. Unter dieser Annahme sollte also gelten:

��%�
���&

��%��&
� ��%���&

��%�&



woraus man eine Unsicherheit von etwa ���0�& in$� aus dem������� Beitrag erhält.
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Abbildung 6.7: Vergleich mit der Vorhersage für �� aus der Entwicklung bis zur
nächtsführenden Ordnung in �! (siehe Tabelle 6.6).

Aus

��%��
�
�&

��%���&
� ��%��

�
�&

��%��
�
�&

folgt eine Unsicherheit von etwa ���0�& aus dem ������� Beitrag. Diese Abschätzung
liefert also in etwa das gleiche Resultat wie die Abschätzung über die Renormierungs-
skalen-Abhängikeiten bekannter Resultate.

Der führende Beitrag � '�
! zu ������� ist in einer Entwicklung für große Top-Massen

im Limes einer verschwindenden Higgs-Masse ist bekannt [65]. Er liefert eine Verschie-
bung von nur etwa ���0�& in der �-Masse, d.h. einen deutlich kleineren Wert, als
obige Abschätzung für den ������� Betrag. Dies scheint im Widerspruch zu den obi-
gen Abschätzungen für den ������� Beitrag zu stehen. Allerdings weiß man aus man
aus Entwicklungen in der Top-Masse bei den ����� Beiträgen, daß dort der formell
führende Term � '�

! von gleicher Größenordnung, wie der nächstführende Term � '�
!

ist [60]. Deswegen erscheint es gerechtfertigt, den ������� Beitrag um einiges größer
als den '�

! Koeffizienten abzuschätzen (siehe hierzu auch die Diskussion in [66]).

Eine Abschätzung der rein bosonischen Beiträge����� kann man durch Aufsummation
der bosonischen Ein-Schleifen Beiträge mittels der Ersetzung 6.3 erhalten. Dies liefert

einen Beitrag
�
��

%�&
:$�


�
, der stark von der Higgs-Masse abhängt. Er bewirkt eine Ver-
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Abbildung 6.8: Fehlerband durch die theoretische Unsicherheit in der Vorhersage der �-
Masse. Hierbei wurden die unbekannten Korrekturen höherer Ordnung abgeschätzt.

schiebung der�-Masse um weniger als ���0�& für eine Higgs-Masse von 	��%�&. Für
eine Higgs-Masse von 	'�& erhält man hingegen einen Beitrag von mehr als ���0�&
in der �-Masse.

Um eine konservative Abschätzung zu erhalten, summiert man die einzelnen theoreti-
schen Unsicherheiten linear auf. Dadurch erhält man insgesamt eine Unsicherheit von
etwa �0�& in der�-Masse für ein leichtes Higgs-Boson und ca. $0�& für $
 
 	'�&.

6.4 Tests der Standardmodell-Vorhersage

Die Quantekorrektur �� zur Beziehung zwischen der Masse des �-Bosons und des
�-Bosons wird mit Hilfe der Myon-Lebensdauer und damit der Fermi-Konstante %	

bestimmt. Die präzisen Berechnungen zu �� und %	 erlauben genaue Tests des Stan-
dardmodell. Im Gegensatz zur �-Masse, die mit einer Unsicherheit von ��	0�& bekannt
ist, ist der experimentelle Fehler in der �-Masse mit ��0�& relativ groß. Deshalb wer-
den die Rechnungen dazu benutzt, eine möglichst genaue theoretische Vorhersage für
die�-Masse zu erhalten. Die experimentell wesentlich genauer bekannten Größen, wie
�-Masse und Fermi-Konstante, werden dabei als Eingabe-Parameter verwendet.

Bevor wir die Situation an zukünftigen Beschleunigern untersuchen wollen, wenden
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wir uns zunächst der aktuellen Situation zu. In Abbildung 6.9 ist die theoretische Vor-
hersage für die �-Masse als Funktion der Higgs-Masse aufgetragen. Das Fehlerband
ergibt sich dabei durch quadratische Addition der Fehler, die sich aus den Unsicherhei-
ten in der Top-Masse '! 
 	����� ��	%�& und der Verschiebung der Feinstrukturkon-
stante �� 
 �����		 � �������%�& berechnen. Zum Vergleich ist der aktuelle experi-
mentell gemessene Wert für die �-Masse zusammen mit seiner Unsicherheit und die
Untergrenze für die Higgs-Masse auf 95% Vertrauensniveau ($
 � 		��	%�& aus der
direkten Suche [67]) aufgetragen.
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Abbildung 6.9: Standardmodell-Vorhersage für �� als Funktion von �
 für �! � ���		 �


	���� im Vergleich mit dem gegenwärtigen Wert für die �-Masse, � 
� 
� � 
�	�
���	�		���

[70]. Die experimentelle Untergrenze für die Higgs-Masse liegt bei �
 � ���	���� [67].

Wie auch schon in anderen Präzisionstests, zum Beispiel dem bekannten ”Blauen Band
Diagramm“[68], so sieht man auch diesem Diagramm deutlich die Präferenz für ein
leichtes Higgs-Boson im Standardmodell an. Insbesondere kann die theoretische Vor-
hersage inklusive der Unsicherheit nicht mit dem experimentellen Ergebnis und seiner
	5 Unsicherheit sowie der Unterschranke für die Higgs-Masse in Einklang gebracht
werden.

Durch Vergleich der Fehlerintervalle aus theoretischer Rechnung und experimentel-
ler Messung kann man eine indirekte Vorhersage für die Higgs-Masse innerhalb des
Standard-Modells gewinnen. Die Standardabweichung dieser Vorhersage wird durch
die Standardabweichungen der theoretischen Vorhersage für $� und des experimen-
tell gemessenen Wertes $ 
� 

� bestimmt. Dabei werden jeweils die Schnittpunkte der
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	5-Grenzkurven mit den Kurven der Zentralwerte genommen und durch Addition der
Quadrate der erhaltenen Fehler kombiniert. Da die �-Masse im wesentlichen logarith-
misch von der Higgs-Masse abhängt, muß man zunächst Zentralwert und Standarab-
weichung für den Logarithmus der Higgs-Masse bestimmen. Mit diesem Wert kann
schließlich eine Vorhersage für die Higgs-Masse angegeben werden:

��
$


	��%�&

 ������ ��	� (6.8)

$
 
 	��)��� %�& � (6.9)

Aus den �5-Grenzen kann man eine obere Grenze an die Higgs-Masse bei 95% Vertrau-
ensniveau berechnen:

$
 @ �	�%�& bei 95% C.L. (6.10)

Grenzen für $
 können auch aus Strahlungskorrekturen zu anderen Observablen her-
geleitet werden. Die Ergebnisse für alle Observablen lassen sich mit Hilfe eines globalen
Fits an alle Daten kombinieren. In Abschnitt 6.2 wurde bereits angegeben, wie mittels ei-
ner einfachen Formel die in dieser Arbeit theoretisch bestimmte�-Masse in ein solches
Fit-Programm, ZFITTER [69], eingebunden werden kann. In der letzten elektroschwa-
chen LEP Analyse wurde die hier berechnete theoretische �-Masse mit ihrer Unsicher-
heit von etwa �0�& verwendet [70]. Wichtiger als der direkte Fehler in der Bestimmung
von $� ist dabei sein Einfluß auf die Vorhersage des effektiven Mischungswinkels ��� .
Aufgrund der neuen, hier berechneten, Zwei-Schleifen-Beiträge von �� zeigt der Mi-
schungswinkel eine starke Abhängigkeit von Veränderungen in der �-Masse. Man er-
wartet, daß diese Sensitivität auf Veränderungen in $� durch die fermionischen Zwei-
Schleifen-Beiträge zum effektiven Mischungswinkel reduziert werden. Solange hierfür
aber kein vollständiges Resultat vorliegt, sollte der Effekt als theoretische Unsicherheit
behandelt werden. Dieser Effekt stellt ein relativ breites Band innerhalb des ”Blauen
Band Diagramms“[68] dar.

Die experimentelle Unsicherheit der Eingabeparameter bestimmen hier den Fehler in
der theoretisch bestimmten �-Masse. Eine höhere experimentelle Genauigkeit bei der
Messung der �-Masse und der Eingabeparameter für �� liefert eine niedrigere obere
Massen-Schranke für das Higgs-Boson. Deswegen ist es besonders interessant, einen
Blick auf die Situation an zukünftigen Beschleunigern zu werfen. Insbesondere wer-
den hier der bereits im Bau befindliche Hadronkollider LHC und ein zukünftiger ����

Linearbeschleuniger betrachtet. Es ist zu erwarten, daß sich dort die experimentellen
Unsicherheiten deutlich reduzieren. Verwendet man die aktuellen Zentralwerte für al-
le Eingabeparameter und die �-Masse und kombiniert man diese mit den zu erwar-
tenden Unsicherheiten in der Top- und �-Masse, so kann man einen Eindruck davon
gewinnen, ob die Genauigkeit in der theoretischen Bestimmung der �-Masse auch mit
der experimentellen Genauigkeit an zukünftigen Beschleunigern konkurrieren kann.
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Abbildung 6.10: Standardmodell-Vorhersage von �� als Funktion von �
. Es werden die
zu erwartenden experimentellen Fehler bei LHC (Æ�� � �
��� und Æ�! � �	
���) zusam-
menm mit den aktuellen Zentralwerten benutzt.

Der LHC, ein Hadron-Collider der am CERN aufgebaut wird und 2006 in Betrieb ge-
hen soll, wird eine deutlich genauere experimentelle Bestimmung der Standardmodell-
Parameter ermöglichen. In Abbildung 6.10 ist die Situation gezeigt, wie sie am LHC zu
erwarten ist. Der zu erwartende Fehler in der �-Masse wird auf 	�0�& reduziert und
die Top-Masse soll dort mit einer Ungenauigkeit von etwa 	��%�& gemessen werden
[71]. Dies wirkt sich bei Verwendung des gegenwärtigen Zentralwerts für die�-Masse
folgendermaßen auf die Higgs-Masse aus:

��
$


	��%�&

 ������ 	�	� (6.11)

$
 
 	������ %�& � (6.12)

Hieraus kann wieder eine Oberschranke für die Masse des Higgs-Bosons bestimmt wer-
den:

$
 @ ��%�& bei 95% C.L. (6.13)

Die Oberschranken für die Higgs-Masse, die aus den am LHC zu erwartenden Meß-
genauigkeiten gewonnen werden konnten, sind durch die unteren Grenzen aus der di-
rekten Higgs Suche bereits ausgeschlossen. Ein Standardmodell Higgs-Boson mit einer
Masse, wie sie globale Fits an das Modell vorhersagen, wäre am LHC natürlich auch
direkt beobachtbar.
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Abbildung 6.11: Standardmodell-Vorhersage von �� als Funktion von �
. Es werden die zu
erwartenden experimentellen Fehler bei TESLA (Æ�� � ���� und Æ�! � ������) zusam-
men mit den aktuellen Zentralwerten benutzt.

Eine nochmalige deutliche Steigerung in der Präzision der Massen-Bestimmung sollen
zukünftige Lepton-Collider liefern. Besonders ein Elektron-Positron-Linearbeschleuni-
ger, wie das TESLA-Projekt [72], wäre hierfür geeignet. Die hohe Luminosität eines sol-
chen Beschleunigers von etwa ���/��� pro Jahr und möglicher Satelliten-Moden wie
GigaZ und MegaW [72] würden die Ungenauigkeiten in der Massen-Bestimmung noch-
mals stark reduzieren. An diesem Beschleuniger könnte man etwa Æ$� 
 �0�& und
Æ'! 
 ���0�& erreichen (siehe Abbildung 6.11). Dies kann bei Verwendung des jetzi-
gen Zentralwerts für die �-Masse wieder in ein Vorhersage für die Higgs-Masse um-
gerechnet werden:

��
$


	��%�&

 ������ ���� (6.14)

$
 
 	���3�3 %�& (6.15)

und

$
 @ ��%�& bei 95% C.L. (6.16)

Diese experimentellen Genauigkeiten liefern eine sehr gute indirekte Vorhersage für die
Higgs-Masse. Der Meßfehler von $� liegt dann aber in der gleichen Größenordnung,
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wie die theoretische Unsicherheit aufgrund von Korrekturen höherer Ordnung. Des-
wegen wäre die Berechnung weiterer Korrekturen zur �-Masse und dem effektiven
Mischungswinkel wünschenswert.
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Kapitel 7

Die Z-Resonanz und der effektive
Mischungswinkel

7.1 Effektive Kopplungen und Mischungswinkel

Um elektroschwache Korrekturen höherer Ordnung zum Prozeß ���� � 2
2 in der Nähe
der �-Resonanz zu beschreiben, ist es nützlich, diese soweit wie möglich in effektive
Kopplungen zu absorbieren. Dabei handelt es sich um eine Approximation, die sich
aber in der Praxis als sehr tragfähig erweist.

Das Matrixelement zum Prozeß

���� � ��
��� / 
/
 / �
 � (7.1)

hat in niedrigster Ordnung Störungstheorie folgende Form:
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 (7.2)

wobei die abkürzende Schreibweise
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�!� * � (7.3)

verwendet wird und der Z-Propagator durch

# 

�

��$�
� � �� =�

��

� (7.4)

beschrieben wird. �� und �
 sind die Ladungen der Fermionen in Einheiten der Ele-
mentarladung und �# und �� sind die Vektor- und Axialvektor Kopplungen des Z-
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Abbildung 7.1: Der Prozeß (7.1) in Born-Näherung
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Abbildung 7.2: Feynman-Diagramme für Korrekturen höherer Ordnung zum Prozeß (7.1)

Bosons an die Fermionen, also
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 (7.5)

und ��� ist der schwache Isospin.

Schwache Korrekturen höherer Ordnung führen zu einer komplizierteren Struktur des
Matrixelements. In der Näherung vernachlässigter Massen der äußeren Fermionen kön-
nen die Effekte der Schleifenkorrekturen in Formfaktoren �
�

�5 absorbiert werden, die
von den Mandelstam-Variablen � 
 �0
 � 0��

� und � 
 �0
 � 0��
� abhängen:

��1"�
��
� � 	

�

%
������ � �� � #

�� 
�
## ��
 ���� � �� � � 
�

#� ��
 ���� � ����

�� 
�
�# ��
 ������ � �� � � 
�

�# ��
 ������ � ����
�&

� (7.6)

Im folgenden wird gezeigt, daß man unter bestimmten Voraussetzungen die Abhängig-
keit der Formfaktoren von den Mandelstam-Variablen vernachlässigen kann. Dann kön-
nen die Formfaktoren durch Produkte effektiver Kopplungen ersetzt werden.

Die �-Abhängigkeit der Formfaktoren stammt von den Boxdiagrammen, die in höheren
Ordnungen beitragen. In der Nähe der Z-Resonanz sind diese Diagramme vernachlässig-
bar und liefern auf Ein-Schleifen-Niveau nur einen relativen Beitrag von 	��� [73]. Ver-
nachlässigt man zusätzlich auch alle anderen nichtresonanten Beiträge, wie bosonische
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Einsetzungen im Photon-Propagator und Korrekturen zum Photon-Lepton-Lepton-Ver-
tex, so ist ein Faktorisieren der Formfaktoren sichergestellt.

� 
�
�5 ��
 � 
 �� 
 �
� ����

�
5 ��� � (7.7)

Diese Näherung ist gerechtfertigt, da die vernachlässigten Beiträge von der Ordnung
��� =�

��
� sind.

Um von der Schwerpunktsenergie unabhängige Formfaktoren zu erhalten, benutzt man
die �-Pol Approximation, d.h. man setzt � 
$�

� in den Formfaktoren

�
��+�,���� �
��+�,�$
�
�� � (7.8)

In der gerade beschriebenen Näherung kann man durch die Ersetzung der Kopplungen
durch effektive Kopplungen

�
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��+�,�$
�
�� 
 (7.9)

aus dem Born-Matrixelement zum Z-Zerfall in zwei Fermionen dasjenige erhalten, wel-
ches auch Korrekturen höherer Ordnung berücksichtigt
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In Anlehnung an die Born-Struktur kann man einen effektiven schwachen Mischungs-
winkel einführen, der die Strahlungskorrekturen berücksichtigt [73]:
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Aufgrund der Lepton-Universalität des Standardmodells haben alle Leptonen, solan-
ge man Masseneffekte vernachlässigt, den gleichen effektiven leptonischen Mischungs-
winkel:
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Im folgenden wird der Index ”lept“ zur Kennzeichnung leptonischen Kopplungen nicht
mehr explizit angegeben.

7.2 Theoretischer und experimenteller Status

Neben den Ein-Schleifen-Beiträgen zum effektiven leptonischen Mischungswinkel ���
sind auch Teilbeiträge zu den Zwei-Schleifen-Korrekturen bekannt. Die führenden Zwei-
Schleifen-Korrekturen � '�

! sind mit dem A-Parameter verknüpft. Zusätzlich kennt
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man aus der Entwicklung von ��� in der Top-Masse die Korrektur � %�
	'

�
!$

�
� [60]. Die-

se Korrektur � '�
! liefert einen beträchtlichen positiven Beitrag zu ��� . Da ein leichtes

Higgs-Boson mit einem niedrigen Wert von ��� verknüpft ist, verstärkt die Berücksich-
tigung dieses Beitrags die obere Schranke an $
 beträchtlich. Dieser deutliche Einfluß
des Top-Beitrags auf die Schranke an die Higgs-Masse zeigt, daß eine genaue Kenntnis
der fermionischen Zwei-Schleifen-Korrekturen wünschenswert ist.

Für die Higgs-Abhängigkeit der fermionischen Beiträge existiert ein exaktes Resultat
[25]. Damit kann die endliche Differenz ����$
� � ����$
 
 	��%�&� ausgewertet wer-
den.

Neben den elektroschwachen Zwei-Schleifen-Teilbeiträgen sind auch die QCD-Korrek-
turen ������ zum Ein-Schleifen-Ergebnis und in nächster Ordnung QCD ������� be-
kannt [12].

Die verbleibende theoretische Unsicherheit in ��� wird in [66] auf � � 	��� abgeschätzt.

Bevor im nächsten Abschnitt auf die hier durchgeführten Berechnungen zu ��� einge-
gangen, wird noch ein kurzer Überblick über den experimentellen Status:

Im Experiment bestimmt man ��� durch die Messung von Vorwärts/Rückwärts- oder
Links/Rechts-Asymmetrien in Wirkungsquerschnitten.

Beim Beschleuniger LEP am CERN wird ausgenutzt, daß die leptonische Vorwärts/
Rückwärts-Asymmetrie auf der Z-Resonanz direkt vom Verhältnis der effektiven Kopp-
lungen und damit vom effektiven leptonischen Mischungswinkel abhängt. Aus den
LEP-Daten ergibt sich ein effektiver leptonischer Mischungswinkel:

��� 
 ����	��� ������� )68* � (7.13)

Für die hadronischen Endzustände ergibt sich aus den LEP Daten:

��� 
 �������� ������� )68* � (7.14)

Die SLD-Kollaboration am SLAC benutzt die Links/Rechts-Polarisationsasymmetrie
bei der Hadron- und Lepton-Produktion auf der Z-Resonanz. Diese Asymmetrie wird
kombiniert mit der Vorwärts/Rückwärts-Asymmetrie für leptonische Endzustände, und
es ergibt sich:

��� 
 ������$� ������� )75* � (7.15)

Eine Kombination aller Messungen des effektiven Mischungswinkels ergibt:

��� 
 ����	��� �����	� )68* � (7.16)

Interessant ist noch ein Blick auf die Situation an zukünftigen Beschleunigern und den
dort zu erwartenden experimentellen Unsicherheiten bei der Bestimmung von ��� . Der
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im Bau befindliche LHC läßt eine zusätzliche Messung mit vergleichbarer Genauigkeit
wie LEP erwarten [77]. Durch einen Linearbeschleuniger, wie TESLA, läßt sich im so-
genannten GigaZ-Modus die Genauigkeit auf etwa 	�� � 	��� [78] steigern. Um diese
Genauigkeit theoretisch zu erreichen, wären eine komplette Zwei-Schleifen-Rechnung
und die führenden Drei-Schleifen-Beiträge nötig.

7.3 Beiträge zum effektiven Mischungswinkel

In dieser Arbeit wird ein fermionischer Zwei-Schleifen Beitrag zum effektiven Mischungs-
winkel für Leptonen berechnet, also zum Verhältnis der Realteile der effektiven Kopp-
lungen. Dies hat zur Folge, daß eine Reihe von Beiträgen, die bei einer seperaten Be-
rechnung der effektiven Kopplungen berücksichtigt werden müßten, sich im Verhältnis
wegheben und damit nicht berechnet werden müssen.

Da die äußeren Leptonen als masselos genähert werden, werden Terme
��
��
	

��
�

vernach-
lässigt. In dieser Näherung ergibt die IR-divergente QED-Vertexkorrektur zusammen
mit den QED-Korrekturen der Z-Faktoren des ����-Paares den gleichen UV-endlichen
Beitrag zur effektiven Vektor- und Axialvektor-Kopplung und hebt sich deswegen bei
der Berechnung des effektiven Mischungswinkels ��� weg.

Statt den effektiven Mischungswinkel direkt als Verhältnis aus den effektiven Kopp-
lungen zu berechnen, kann man die Beziehung (7.12) auch bis zur zweiten Schleifen-
Ordnung entwickeln:
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wobei

�# 

��

�
� ����

�����
�� 


�	
�����

(7.18)

die Vektor- und Axialvektor-Kopplungen für Leptonen sind. Die Differenz Æ�%�&+ � Æ�
%�&
,

ist der Ein-Schleifen-Beitrag zum effektiven Mischungswinkel. Zu dem analogen Zwei-
Schleifen-Beitrag Æ�%�

�&
+ � Æ�%�

�&
, tragen in dieser Ordnung auch noch Produkte aus Ein-

Schleifen-Ordnung bei, die dann auch von Ordnung ����� sind, nämlich �Æ�%�&, �� und
Æ�

%�&
+ Æ�

%�&
, .

Benutzt man als Eingabegröße für die Masse des �-Boson statt des experimentellen
Wertes den theoretisch aus %	 und�� berechneten, so hat man bereits auf Born-Niveau
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Abbildung 7.3: Diagramme welche zum effektiven Mischungswinkel auf Zwei-Schleifen-
Niveau beitragen.

eine Abhängigkeit des Mischungswinkels von der Higgs-Masse
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Da sich der effektive Mischungswinkel aus den Realteilen der effektiven Kopplungen
berechnet, tragen Diagramme, die nur einen Imaginärteil liefern, nicht bei. Insbesondere
folgt aus der Renormierungsbedingung für die Z-Photon-Mischung, daß der Realteil
der renormierten Z-Photon-Selbstenergie auf der Z-Resonanz verschwinden muß

�
�
����� %�&�$

�
��
�

 � � (7.20)

Damit liefert die irreduzible Zwei-Schleifen �-Photon-Selbstenergie nur einen Beitrag
zum Imaginärteil der effektiven Kopplungen und muß für den effektiven Mischungs-
winkel nicht berechnet werden.

Auf Zwei-Schleifen-Niveau tragen somit zum effektiven Mischungwinkel der irredu-
zible Zwei-Schleifen Z-Lepton-Lepton Vertex (siehe Abschnitt 2.2.2 Gleichungen (2.75)
und (2.79)) und reduzible Diagramme aus der Z-Photon-Mischung bei (siehe Abbildung
7.3).
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Kapitel 8

Renormierung des
�-Lepton-Lepton-Vertex und �

�

�

8.1 Renormierung des Vertex im On-Shell-Schema

Die fermionischen Zwei-Schleifen-Beiträge zum effektiven Mischungswinkel setzen sich
aus den Beiträgen reduzibler Zwei-Schleifen-Diagramme und dem Beitrag des irredu-
ziblen �-Lepton-Lepton-Vertex auf Zwei-Schleifen-Niveau zusammen. Während die re-
duziblen Beiträge einfach als Produkte aus Ein-Schleifen-Diagrammen berechnet wer-
den können, ist die Berechnung des irreduziblen Vertex technisch anspruchsvoller.

Bei der Berechnung des irreduziblen �-Lepton-Lepton-Vertex treten vor allem zwei
Schwierigkeiten auf:

� die Berechnung irreduzibler Zwei-Schleifen-Vertexkorrekturen bei äußeren Im-
pulsen ungleich Null

� die On-Shell-Renormierung dieses Vertex

Mit den in dieser Arbeit verwendeten Methoden ist es nicht möglich, irreduzible Zwei-
Schleifen-Vertexkorrekturen für äußere Impulse ungleich Null zu berechnen. Das hier
verwendete Programmpaket zur Berechnung von Zwei-Schleifen-Integralen [24] erlaubt
auf Zwei-Schleifen-Niveau nur die Berechnung von Vakuumintegralen und Selbstener-
gien, also Zwei-Schleifen Ein- und Zwei-Punkt-Funktionen. Mit den hierzu verwende-
ten Methoden ist eine Erweiterung auf Zwei-Schleifen-Vertexkorrekturen, also Zwei-
Schleifen Drei-Punkt-Funktionen nicht einfach möglich.

Man kann den renormierten Zwei-Schleifen �-Lepton-Lepton-Vertex in zwei endliche
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Beiträge aufspalten:
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Als erster Schritt zur Berechnung des fermionischen Zwei-Schleifen Beitrags zu ��� wird
in der vorliegenden Arbeit die Summe ��
�
�%�& ��� � Æ��
�
�

%�& bestimmt. Die Berechnung
des Vertex bei verschwindendem äußeren Impuls ist dabei mit unseren Methoden mög-
lich, da sich in diesem Fall die Zwei-Schleifen Drei-Punkt-Funktionen auf Zwei-Schleifen
Zwei-Punkt-Funktionen reduzieren lassen. In einem zweiten Schritt kann dann die eben-
falls endliche Differenz aus dem Vertex bei 0� 
 $�

� und 0� 
 � berechnet werden.
Addiert man die Zahlen, die man in den beiden Schritten für einen festen Satz von Ein-
gabeparametern erhält, so ergibt sich daraus der On-Shell-Beitrag dieses Vertex zum
effektiven Mischungswinkel.

Die hier duchgeführte Berechnung des effektiven Vektor-und Axialvektorkopplungsan-
teils des renormierten �-Lepton-Lepton-Vertex bei 0� 
 � stellt für sich nur einen Teil-
beitrag zu �

�%��&
� dar. Erst in der Summe mit dem Ergebnis aus dem oben beschriebenen

zweiten Schritt erhält man einen vollständigen fermionischen Zwei-Schleifen Beitrag
zum effektiven leptonischen Mischungswinkel.

Die technischen Details zur Renormierung des Vertex sind bereits in Abschnitt 2.2.2
beschrieben. Der Counterterm für den �-Lepton-Lepton-Vertex ist in (2.79) angegeben.
Zusätzlich zu den für den Myon-Zerfall benötigten Renormierungskonstanten sind hier
noch die Feldrenormierung für das Z-Boson, Æ���

%�& (siehe (2.106)), für die Photon-�-Mi-
schung, Æ���

%�& (siehe (2.107)), und für rechtshändige Fermionen, Æ���

%�& (siehe (2.112)), auf

Zwei-Schleifen-Niveau zu berechnen.

Analog zur Methode des Spurtricks beim Myon-Zerfall kann auch hier aus den Matri-
xelementen mittels Spurbildung der Vektor- bzw. Axialvektoranteil gewonnen werden
(siehe Abschnitt 3.3).

Auch die Methode zur Bestimmung des nichtkompensierbaren Beitrags (siehe Abschnitt
3.1.4), den man bei einer konsistenten Behandlung von �� in �-Dimensionen erhält, ist
analog zum Myon-Zerfall. Allerdings sind hierfür eine Reihe zusätzlicher Ward-Identi-
täten ((3.19) bis (3.23)) zu überprüfen.

8.2 Ergebnisse für den �-Lepton-Lepton-Vertex

Im Folgenden werden Beiträge zu einer effektiven Kopplung, die aus dem �-Lepton-
Lepton-Vertex bei 0� 
 � gewonnen werden, mit einem Überstrich gekennzeichnet.
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Genauso wird der aus den überstrichenen Größen gewonnene Beitrag zum effektiven
Mischungswinkel auch mit einem Überstrich gekennzeichnet:
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Man kann nun das Ergebnis für 
��%�
�&

� mit dem Born- bzw. Ein-Schleifen-Ergebnis ver-

$
) %�&* 100 200 400 600 1000

�
�%/$��&
� 0.22298 0.22381 0.22479 0.22538 0.22613

��%�&� 0.00935 0.00889 0.00831 0.00793 0.00743


�
�%��&
� 0.00162 0.00156 0.00148 0.00144 0.00141

Tabelle 8.1: Vergleich der Abhängigkeit von der Higgs-Masse von verschiedenen Beiträgen zum
effektiven Mischungswinkel. In der zweiten Zeile ist das Born Ergebnis angegeben, die dritte
Zeile enthält den Ein-Schleifen-Beitrag und die vierte Zeile den Zwei-Schleifen-Teilbeitrag des
Vertex bei �� � �

200 400 600 800 1000

0.0012

0.0013

0.0014

0.0015

0.0016

0.0017

0.0018

0.0019

��
�
	�
�



�

$
 ) %�&*

�! � ���		���

�! � ���		 � 
	����

Abbildung 8.1: Der in dieser Arbeit berechnete Zwei-Schleifen-Teilbeitrag zum effektiven Mi-
schungswinkel in Abhängigkeit von der Higgs-Masse.
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gleichen. Dazu ist zunächst anzumerken, daß schon das Born-Resultat für den effekti-
ven Mischungswinkel abhängig von der Higgs-Masse ist, wenn man als Eingabepara-
meter für die �-Masse den mit Hilfe von �� bestimmten theoretischen Wert benutzt.
In Tabelle 8.1 sieht man, daß der Ein-Schleifen-Beitrag um etwa einen Faktor 6 größer
ist, als das Zwei-Schleifen-Teilresultat. Daraus kann man aber nicht auf einen zu erwar-
tenden relativ großen Zwei-Schleifen-Beitrag schließen, da eine Kompensation mit dem
zu addierenden Beitrag aus der Differenz des Vertex bei Impuls 0� 
 $�

� und bei Im-
puls 0� 
 �möglich ist. In Abbildung 8.1 ist 
��%�

�&
� über der Higgs-Masse zusammen mit

dem Fehlerband durch Variation der Top-Masse innerhalb deren experimenteller Unsi-
cherheit aufgetragen. 
��%�

�&
� wird mit zunehmender Higgs-Masse kleiner und schwächt

damit, wie auch schon der Ein-Schleifen Beitrag, den Anstieg von �
�%634$&
� mit der Higgs-

Masse ab.
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Abbildung 8.2: Beitrag von nichtkompensierbaren Termen��
�%�
�&

����1$� zu �

�%��&
� in Abhängigkeit

von der Top-Masse.

Interessant ist es, den nichtkompensierbaren Beitrag �
��%�
�&

����1$� zu betrachten. Dieser
war bei den Rechnungen zum Myon-Zerfall numerisch klein. Damit kann jedoch nicht
auf die Größe dieses Beitrags bei einer anderen Observable geschlossen werden. Für
den in dieser Arbeit berechneten Teilbeitrag zum effektiven Mischungswinkel stellt sich
dennoch heraus, daß der nichtkompensierbaren Beitrag, verglichen mit 
��%�

�&
� , nume-

risch klein ist:

�
�
�%��&
����1$� 
 ������ ��	$� � 	��� für '! 
 �	����� ��	�%�&
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In Abbildung 8.2 ist die Abhängigkeit von �
��%�
�&

����1$� von der Top-Masse aufgetragen.
Wie auch beim Myon-Zerfall wird der Betrag des Beitrags numerisch mit der Top-Masse
größer. Das Wachstum von �
�

�%��&
����1$� erfolgt aber langsamer als linear mit der Top-

Masse. Es deutet also nicht darauf hin, daß es sich um einen Teil der führenden Korrek-
turen in der �����, die proportional '�

! bzw. '�
! sind, handelt.
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Zusammenfassung

In der vorliegenden Dissertation wurden die kompletten fermionischen Zwei-Schleifen
Beiträge zur $�-$�-Massenkorrelation, die durch die Myon-Lebensdauer zusammen
mit der Quantenkorrektur �� beschrieben wird, berechnet. Außerdem konnte auch ein
Teilergebnis für die entsprechenden Zwei-Schleifen-Beiträge zu einer weiteren Präzisi-
onsobservable, dem effektiven leptonischen Mischungswinkel ��� , erzielt werden.

Da bisher noch keine vollständige diagrammatische Zwei-Schleifen-Rechnung im elek-
troschwachen Sektor des Standardmodells durchgeführt wurde, mußten im Verlauf der
in dieser Arbeit durchgeführten Betrachtungen zunächst einige grundsätzliche Proble-
me gelöst werden.

Zum einen war eine Zwei-Schleifen Renormierung erforderlich, die im On-Shell-Schema
durchgeführt wurde. In diesem Zusammenhang wurde auch die Frage nach der korrek-
ten Definition der renormierten Eichboson-Massen untersucht. Durch konkrete Rech-
nung konnte dabei die Eichparameter-Unabhängigkeit des Resultats bei Verwendung
des komplexen Pols der S-Matrix verifiziert werden.

Außerdem ist bei der Berechnung von Zwei-Schleifen-Korrekturen im elektroschwa-
chen Standardmodell eine konsistente Definition von �� in dimensionaler Regularisie-
rung unabdingbar. In dieser Arbeit wurde eine praktische Vorschrift hierfür angegeben.
Diese erlaubt es den benötigten Rechenaufwand beträchtlich zu reduzieren und damit
die hier benötigten Rechnungen auf Zwei-Schleifen-Niveau in dimensionaler Regulari-
sierung effizient durchzuführen.

Diese Methoden können nun als Grundlage für weitere Zwei-Schleifen-Rechnungen im
Standardmodell dienen.

Die hier angestellten Berechnungen zu �� erlauben eine präzise Bestimmung der �-
Masse aus anderen Standardmodell-Parametern und der Fermi-Konstante. Die verblei-
benden theoretischen Unsicherheiten aufgrund unbekannter Korrekturen höherer Ord-
nung konnten auf Æ$� � �0�& abgeschätzt werden. Das komplette Resultat wurde
durch eine einfache Formel mit ausreichender numerischer Genauigkeit angenähert,
so daß eine Verwendung desselben in dieser Form für globale Standardmodell Fits
möglich ist. Diese numerische Parametrisierung des Resultats, die für Higgs-Massen
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bis zu 	'�& mit einer Unsicherheit von weniger als ���0�& behaftet ist, findet inzwi-
schen bei den elektroschwachen LEP Analysen Anwendung [69, 70]. Dies stellt einen
wichtigen Beitrag zur Verbesserung der globalen Tests des Standardmodells dar, denn
Æ$� beeinflußt auch die Vorhersage des effektiven Mischungswinkels ��� . Dieser Effekt
stellt ein relativ breites Band innerhalb des ”Blauen Bandes“dar. Hieran sieht man, daß
eine genauere theoretische Kenntnis sowohl von�� als auch von ��� wünschenswert ist.

Auch zum effektiven leptonischen Mischungswinkel ��� konnte ein wichtiger Teilbeitrag
berechnet werden. Ein großes Problem bei der Bestimmung von ��� auf Zwei-Schleifen
Niveau ist die Berechnung von Zwei-Schleifen Drei-Punkt-Funktionen. Diese können
mit den hier verwendeten Methoden nicht komplett behandelt werden. Für die Berech-
nung von ��� wird eine Renormierung des Z-Lepton-Lepton-Vertex benötigt. Diese Re-
normierung wurde hier im On-Shell-Schema durchgeführt.

Abschließend läßt sich festhalten, daß die in dieser Arbeit gewonnenen Erkenntnisse
einen weiteren wichtigen Schritt auf dem Weg zu immer genaueren Tests des Standard-
modells darstellen.
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Anhang A

Eingabeparameter

Für die numerische Auswertung wurden in dieser Arbeit folgende Werte verwendet:

Eingabeparameter Quelle

$� = ��	�	$��� �����	�%�& [46]

$� = �$����	� ������%�& [70]

'! = �	����� ��	�%�& [46]

': = ����� ����%�& [46]
�
�

= 	������������ ���������� [46]

�� = �����		� ������� [79]

%	 = �	�	����� ������	�	��� �
.
(

[11, 46]

���$�� = ��		�� ����� [46]

Tabelle A.1: Experimentelle Werte für Teilchenmassen und Kopplungen.

Für Rechnungen unter Verwendung der komplexen Poldefinition bei der Massenre-
normierung der Eichbosonen müssen die oben angegebenen experimentell bestimm-
ten Massen $� und $� erst, wie in Abschnitt 2.2.3 beschrieben, in die entsprechenden
Eingabeparameter $� und $� umgerechnet werden:

$��� 
$��� �
��

���

�$���

� (A.1)

Da es sich bei der �-Masse um einen experimentell gemessenen Eingabewert handelt,
wird die Verschiebung der Masse hier mit dem experimentellen Wert für die Breite des
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�-Bosons,�� 
 �������������%�&, berechnet. Für die theoretisch berechnete�-Masse
wird hingegen der theoretischen Wert für die Breite des �-Bosons

�� 

�%�$

�
�

�
	
�4

�
	 �

���
�4

�
(A.2)

verwendet um die Massenverschiebung zu bestimmen. Die entsprechenden numeri-
schen Werte sind in Tabelle A.2 abzulesen.

exp. gemessene Masse Breite komplexe Pol-Masse

$� 
 �	�	$��%�& �����%�& $� 
 �	�	���%�&

$� 
 $����	%�& ��	��%�& $� 
 $�����%�&

Tabelle A.2: Shift zwischen experimentell bestimmter Eichboson-Masse und dem Eingabepa-
rameter �� und er berechneten Größe ��.



Anhang B Skalare Selbstenergie-Integrale 105

Anhang B

Skalare Selbstenergie-Integrale

Um die Endlichkeit und Eichparameterunabhängigkeit einzelner Ergebnisse zu über-
prüfen, ist notwendig, die dimensional regularisierten skalaren Selbstenergie-Integrale
auf eine minimalen Satz von Standard-Integralen zurückzuführen. Es wird folgende
abkürzende Notation verwendet:

�� � �� 


�
�&�

�4���4��&��
� � � (B.1)

��� � ��� 


�
�&��

�4���4��&��

�
�&��

�4���4��&��
� � � � (B.2)

Für die skalaren Ein-Schleifen-Integrale werden die Konventionen von [19] verwendet
und bei den skalaren Zwei-Schleifen-Integralen werden die von [80] benutzt.

B.1 Ein-Schleifen-Integrale

B.1.1 Ein-Schleifen-Integrale mit gleichen Massen

Für die skalaren Ein-Schleifen-Integrale werden eine Reihe von Formeln für Spezialfälle
gleicher Massen oder verschwindender Impulse benötigt. Hierzu werden die Integrale
partiell integriert:

�
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��
��
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��� �'�� � � �
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 (B.3)

wobei ausgenutzt wird, daß das Integral über eine totale Divergenz�
�&�





��
/��� 
 � (B.4)
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verschwindet.

Durch sukzessives Anwenden von partieller Integration kann man für Vakuum-Integrale,
die nur von einer Masse abhängen, eine Rekursionsformel gewinnen, die diese auf (�-
Integrale zurückführt:

D/��
� �'� 


� � �C
�C

D/
� �'�

'�



	

C (

�
�

�
� 	
�
� � �

�
�

�
�C

�
(��'�

'�/
� (B.5)

Mit partieller Integration kann man außerdem zeigen, daß die Funktion 	���
 �
 �� ver-
schwindet:

�	���
 �
 �� 
 �
,
��
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��
��
�3

-

 �	���
 �
 ��
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 � � (B.6)

Allerdings muß man hierbei beachten, daß die dimensionale Regularisierung sowohl
IR- als auch UV-Divergenzen unter Kontrolle hält und diese damit nicht mehr unter-
schieden werden können. Es ist deswegen in Rechnungen sinnvoll, diese Funktion bis
zum Schluß als Symbol stehen zu lassen.

B.1.2 Drei-Punkt-Funktionen mit einem äußeren Impuls

Diese Klasse von Funktionen läßt sich vollständig auf Zwei-Punkt-Funktionen zurück-
führen. Dabei gelten folgende Symmetrierelationen:

:��0
�
 0�
 �3'�
 '�
 '�� 
 :���
 0

�
 0�3'�
 '�
 '�� 
 :��0
�
 �
 0�3'�
 '�
 '�� � (B.7)

Die Drei-Punkt-Funktionen lassen sich als Ableitungen nach einer Masse von 	�-Funk-
tionen schreiben:

	���0
�
 '�
 '�� � 



�'�
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 0
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 '�
 '�� � (B.8)

Im Fall von drei verschiedenen Massen kann man eine Partialbruchzerlegung vorneh-
men und erhält:
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 '�
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Bei zwei verschiedenen Massen folgt mittels partieller Integration:
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wobei

 �"
 E
 F� 
 "� � E� � F� � ��"E � "F � EF� � (B.11)

die Källén-Funktion ist.

B.1.3 Ableitungen der skalaren Selbstenergie-Integrale

Ableitungen an der Stelle verschwindenden Impulsquadrats

Die Impuls-Ableitungen von Zwei-Punkt-Funktionen kann man mittels partieller Inte-
gration nach dem Impuls erhalten. Unter Verwendung von
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kann man folgende Formeln herleiten:
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mit 		
� 
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Durch Ableitung nach der ersten Masse folgen entsprechende Formeln für die Drei-
Punkt-Funktionen:
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Ableitungen an der Stelle nicht-verschwindenden Impulsquadrats
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Die Drei-Punkt-Funktion läßt sich wieder mit (B.10) als Kombination von Zwei-Punkt-
Funktionen schreiben.

Zweite Ableitungen

Die zweiten Ableitungen ergeben sich aus den ersten Ableitungen durch erneute parti-
elle Integration. Speziell für verschwindenden äußeren Impuls erhält man:
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woraus
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folgt.

Ableitung nach der ersten Masse liefert wieder die entsprechende Formeln für die Drei-
Punkt-Funktionen:
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Abbildung B.1: Ein-Teilchen-Irreduzible Topologien für Zwei-Schleifen-Selbstenergien, die
nicht in Ein-Schleifen Beiträge faktorisieren

B.2 Zwei-Schleifen-Integrale

Die Feynman-Amplitude einer Zwei-Schleifen-Selbstenergie hat die Form,,
/�1$
 '$
 ��

)1�� �'�
�*)1

�
� �'�

�* � � � )1
�
� �'�

� *

--

 (B.21)

wobei /�1$
 '$
 �� ein Polynom in den Impulsen, Massen und der Raum-Zeit-Dimension
ist. Die Impulse 1� sind die internen Impulse der Propagatoren mit der Masse '�. Nutzt
man die Impulserhaltung aus, so kann man die Impulse 1� durch den äußeren Im-
puls 0 und die Integrationsimpulse �� ausdrücken. Für Zwei-Schleifen-Selbstenergie-
Diagramme ergibt sich:

1� 
 ��
 1� 
 �� � 0
 1� 
 �� � ��
 1� 
 ��
 1� 
 �� � 0 � (B.22)

Die skalaren Zwei-Schleifen-Integrale lassen sich damit schreiben als:
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Diese Integrale werden auch einfach als D -Integrale bezeichnet. Hat ein Propagator die
Masse Null, so wird dies einem Strich am entsprechenden Index angedeutet und die
Null für die verschwindende Masse wird in der Argumentliste weggelassen, z.B.
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Die Diagramme in Abbildung B.1 entsprechen den skalaren Integralen D�����, D�����,
D����, D��� und D����. Der analytische Ausdruck für D����� kann durch Partialbruchzer-
legung oder Ableitung nach der Masse '� aus D���� gewonnen werden. Andere Inte-
grale mit Propagatoren in einer höheren Potenz können auf die gleiche Art behandelt
werden. Für den allgemeinen Fall müssen also nur vier unterschiedliche Typen von
skalaren Zwei-Schleifen-Integralen behandelt werden [80].
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Bei skalaren Vakuum-Integralen treten nur die Impulse 1�, 1� und 1� auf. Diese haben
die Form:
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Diese Art von Notation wird auch verwendet, um ein allgemeines Zwei-Schleifen-Selbst-
energie-Integral zu beschreiben:
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Die wesentlichen Formeln für spezielle Massen- und Impulskonfigurationen, sowie Ab-
leitungen dieser Integrale, wie sie in dieser Arbeit benutzt wurden, finden sich in [24]
und [29].

Zur numerischen Auswertung der Schleifen-Integrale wurde das Programmpaket ���
von S. Bauberger [24] verwendet. Da sich massive Zwei-Schleifen-Integrale im Gegen-
satz zu den Ein-Schleifen-Integralen im allgemeinen nicht durch Polylogarithmen aus-
drücken lassen [81], wurden als Ansatz für die numerische Auswertung dieser Integrale
eindimensionale Integraldarstellungen benutzt, die mit der Hilfe von Dispersionsrela-
tionen gewonnen werden können.
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Anhang C

Feynman-Regeln im Geistsektor

In Zwei-Schleifen-Ordnung wird eine Ein-Schleifen Renormierung im Geistsektor benö-
tigt. Diese wird kann so durchgeführt werden, daß der Eichfixierungsteil der Lagran-
gedichte invariant unter Renormierung ist. Hierzu werden die Eichparameter in der
Eichfixierung

,�� 
 ,�
 ,�� 
 ,�� 
 ,� 
 ,�� 
 ,�� 
 ,� 
 ,�� 
 ,�� 
 � � (C.1)

so renormiert, daß die Renormierung der Parameter und Felder im Eichfixierungssektor
genau weggehoben wird (siehe Abschnitt 2.2.1).

Auf Zwei-Schleifen-Niveau müssen auch Counterterm-Beiträge aus dem Geistsektor
berücksichtigt werden. Diese folgen aus der Variation des +� Terms im Eichfixierungs-
term der Lagrangedichte:
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Durch diese Counterterme ist es möglich, die Endlichkeit einzelner unter Umständen
eichparameterunabhängiger Bausteine, wie Selbstenergien, zu überprüfen.

Die Feynman Regeln im Geistsektor wurden in das Programm FeynArts [54] implemen-
tiert.

Im folgenden werden die Counterterme im Geistsektor angegeben. Dabei wird die ge-
nerische Bezeichnung %
 % 
 ���
 ��
 ��
, für die Geistfelder und �
 � 
 ��
�
��
,
für die Eichbosonen verwendet. Die auftretenden Renormierungskonstanten sind in
Abschnitt 2.2.1 festgelegt.
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Geist-Propagator
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������ Kopplung
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Anhang D

Generische Zwei-Schleifen-Diagramme
für die Präzisionsobservablen

Auf generischer Ebene unterscheiden sich die Diagramme, die für �� bzw. den effekti-
ven Mischungswinkel benötigt werden, nur dadurch, daß für die Berechnung des Mi-
schungswinkels keine Boxkorrekturen benötigt werden. Als generische Bezeichnungen
finden + für Fermionen, ; für Skalare und � für Vektorbosonen Verwendung.
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Eichboson-Selbstenergien

Zwei-Schleifen Eichboson-Selbstenergien:
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Ein-Schleifen Eichboson-Selbstenergien mit Counterterm-Einsetzung:
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Fermion-Selbstenergien

Irreduzible Zwei-Schleifen Fermion-Selbstenergien:
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Ein-Schleifen Fermion-Selbstenergien mit Counterterm-Einsetzung:
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Vertexkorrekturen

Zwei-Schleifen-Vertexkorrekturen:
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Ein-Schleifen Vertexkorrekturen mit Counterterm-Einsetzung:
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Boxkorrekturen

Zwei-Schleifen Boxkorrekturen:
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Ein-Schleifen Boxkorrekturen mit Counterterm-Einsetzung:
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