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Abstract In this work we construct traversable wormholes
geometries in the framework of the complexity factor. We
provide the redshift function of a Casimir traversable worm-
hole which, in combination with a non-vanishing complex-
ity factor, leads to a traversable wormhole with a minimum
amount of exotic matter. The shape function and the embed-
ding diagram are shown and discussed. The tidal accelera-
tions and the time required to get through the wormholes are
estimated.

1 Introduction

The simple thought of rapid interstellar travels is a intriguing
idea and wormholes seems to be an alternative to achieve
such a goal (at least theoretically). The idea of wormholes
can be traced back to the work of Flamm [1] who recognized
that the Schwarzschild black hole could provide a way for
interstellar travels. However, the huge tidal forces and the
dynamical nature of the throat forbids its use as a humanly
traversable wormhole.

The basis of traversable wormholes were stated in the sem-
inal work of Morris and Thorne [2]. In this work the authors
construct the desired geometry which could provide a bridge
between asymptotically flat regions of the same universe (or
connect two different universes) and then ask for the matter
content which is required to maintain such a tunnel open with
the aim to be used for interstellar travels. The result is that the
required matter content necessarily violates the null energy
condition (NEC) so that construction of traversable worm-
holes depends on the existence of such an “exotic matter” in
the universe. Although there is not evidence for the existence
of exotic matter, it is expected that some exotic field or quan-
tum states of known fields, violating NEC on macroscopic
length scales, allow the construction of traversable worm-
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holes. For example, in [3] it has been suggested the existence
of wormholes supported by phantom energy and beside, in
Refs. [4–7] it has been proposed that the Casimir effect could
provide such an artificial source of exotic matter realizable
in a laboratory. In this regard, given the (theoretical) feasibil-
ity of wormholes, the seeking for such geometries is still an
active research line (see [3,5] for a self-contained discussion
on wormhole. Also see [8–25], for recent developments).

From a more technical point of view, the construction of
traversable wormholes requires to find solutions of the Ein-
stein field equations with a very specific set of boundary
conditions and some extra information to close the system
of differential equations. For example, in static and spheri-
cally symmetric spacetimes this corresponds to solve a set
of three coupled differential equations with five unknowns
(two metric functions, the energy density and the radial and
tangential pressures) so that, besides the boundary conditions
which ensure the traversable wormhole geometry, two extra
constraints must be supplied. A possible strategy to close
the system is providing two metric functions that fulfill the
required boundary conditions in order to obtain the matter
content (indeed, this was the strategy followed in [2]). Other
possibilities could be either to supply an equation of state and
one of the metric functions or to provide one of the metric
functions and a metric constraint. In this work we propose
an alternative route consisting in setting of a suitable metric
and a specific complexity factor introduced in [26] which has
been broadly used as a complementary condition to solve the
Einstein equations in different contexts [27–33]. The reason
of introducing the complexity factor is twofold. First, it pro-
vides a natural measurement of complexity at macroscopic
scales [26] which entails a non-local equation of state relating
both the density contrast and the local anisotropy of pressure
through a simple scalar arising from the orthogonal decom-
position of the Riemann tensor [34–36]. Second, each value
of the so called complexity factor allow to define a kind of
equivalence class of solutions of Einstein field equations: two
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solutions with the same complexity factor belong to the same
class.

This work is organized as follows. In the next section we
introduce the basic aspects of traversable wormholes. In Sect.
3 we review the main aspects of the complexity factor. Then,
in Sect. 5 we explore how to construct wormhole geometries
imposing certain non-vanishing complexity. The last section
is dedicated to the conclusions and final remarks of the work.

2 Traversable wormholes

In this section we summarize the main properties that a
solution of Einstein field equations must satisfy in order to
describe a traversable wormhole. The first property is that the
geometry must provide a throat connecting two asymptoti-
cally flat regions. Besides, any horizon should be absent if the
two-way travel is desired. Another property is that, in order
to be humanly traversable, the tidal forces experienced by a
traveler must be “small” (bearable by a human being). Addi-
tionally, the proper time to traverse the wormhole should be
finite. However, all of these geometric properties listed above
constraint the matter content in such a manner that the energy
conditions are violated as we demonstrate in what follows.

Let us consider a line element parametrized as

ds2 = −e2φdt2 + dr2/(1 − b/r) + r2(dθ2 + sin2 θdφ2),

(1)

where φ and b are the so called redshift and shape functions
respectively and are functions of the radial coordinate only.
We assume that (1) is a solution of Einstein’s equations

Rμν − 1

2
gμνR = κTμν, (2)

with κ = 8πG/c2,1 sourced by Tμ
ν = diag(−ρ, pr , pt , pt ).

Using (1) the Einstein’s field equations (2) read

ρ = 1

8π

b′

r2 (3)

pr = − 1

8π

[
b

r3 − 2

(
1 − b

r

)
φ′

r

]
(4)

pt = 1

8π

(
1 − b

r

)[
φ′′ + (φ′)2 − b′r − b

2r2(1 − b/r)
φ′

− b′r − b

2r3(1 − b/r)
+ φ′

r

]
. (5)

As there is not horizon, gtt must be a non vanishing func-
tion to avoid the existence of a infinite redshift surface, then
φ must be finite everywhere.

The information about the throat of the wormhole is
encoded in its shape. First, given that our solution is spher-

1 In this work we shall assume c = G = 1.

ically symmetric, let us consider θ = π/2 without loss of
generality. Next, considering a fixed time, t = constant , the
line element reads

ds2 = dr2

1 − b/r
+ r2dφ2. (6)

Note that this surface can be embedded in a three dimen-
sional space in which the metric can be written in cylindrical
coordinates (r, φ, z) as

ds2 = dz2 + dr2 + r2dφ2. (7)

Now, as z is a function of the radial coordinate we have

dz = dz

dr
dr, (8)

from where

ds2 =
[

1 +
(
dz

dr

)2
]
dr2 + r2dφ2. (9)

After combining (6) and (9) we obtain

dz

dr
= ±

( r
b

− 1
)−1/2

, (10)

from where is clear that b > 0 for r ∈ [r0,∞). The require-
ment of a throat entails that the wormhole geometry must be
endowed with a radius r = b0 where the r(z) is a minimum,
namely dz/dr → ∞ as r → b0 and from (10) it occurs when
b = r . In this regard, the existence of a minimum radius
requires that at r = b0 the shape function must be b = b0.
Additionally we demand that the solution is asymptotically
flat which implies both, b/r → 0 (from where dz/dr → 0)
and φ → 0 as r → ∞.

It is worth noticing that as the conditions

lim
r→b0

dz

dr
→ ∞ (11)

lim
r→∞

dz

dr
= 0, (12)

must be satisfied, the smoothness of the geometry is ensured
whenever the embedding surface flares out at or near the
throat. To be more precise, as dr/dz = 0 (a minimum) at the
throat, we impose

d2r

dz2 > 0, (13)

from where

b − b′r
2b2 > 0, (14)

which corresponds to the flaring-out condition. Besides
ensuring the expected behaviour of a traversable wormhole,
the flaring-out condition leads to a constraint as we shall see
in what follows. Let us define the quantity

ξ = − pr + ρ

|ρ| = b/r − b′ − 2(r − b)φ′

|b′| , (15)
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which can be written as

ξ = 2b2

r |b′|
d2r

dz2 − 2(r − b)
φ′

|b′| (16)

Now, as (r − b) → 0 at the throat, we have

ξ = 2b2

r |b′|
d2r

dz2 > 0 (17)

so that

ξ = − pr + ρ

|ρ| > 0. (18)

Note that if ρ > 0 the above condition implies pr < 0 which
entails that T 1

1 should be interpreted as a tension. Further-
more, if we define τ = −pr the flaring out condition leads
to

τ − ρ > 0, (19)

which implies that the throat tension must be greater than the
total energy density which violates the null energy condition
(NEC). The kind of matter satisfying such a condition is
called exotic matter. However, although there is not evidence
of exotic matter in the universe, we can minimize the amount
required to construct a traversable wormhole by demanding
that the integral (known as quantifier) [37]

I =
∫

dV (ρ + pr ) = −
∞∫

r0

(1 − b′)
[

ln

(
e2φ

1 − b/r

)]
dr

(20)

is finite.
In order to obtain a wormhole that can be humanly

traversable we must ensure that, in the acceleration expe-
rience by the traveler, the radial and lateral tidal constraints
must be bounded as∣∣∣∣
(

1 − b

r

)[
φ′′ + (φ′)2 − rb′ − b

2r(r − b)
φ′

]∣∣∣∣|η1| ≤ g⊕
c2 (21)

∣∣∣∣ γ 2

2r2

[
β2(b′ − b

r
) + 2r(r − b)φ′

] ∣∣∣∣|η2| ≤ g⊕
c2 , (22)

with g⊕ the Earth’s gravitational acceleration, γ = 1/(1 −
β2)1/2, β = v(r)/c, c the speed of light and η1 and η2 the
radial and lateral size of the traveler respectively.

Finally, to ensure that the trip is completed in a reasonable
time, we demand that the coordinate and proper time are
bounded as

Δt =
rst∫
r0

e−φdr

v
√

1 − b/r
< 1 year, (23)

Δτ =
rst∫
r0

dr

vγ
√

1 − b/r
< 1 year, (24)

where rst is the radial coordinate that represents the station
location.

From a technical point of view, the construction of
traversable wormholes require solving the system (3)–(5),
namely three equations with five unknowns. The strategy
should be either supplying the metric functions that satisfy
the geometric constraints listed above or giving one of the
metrics and an auxiliary condition, namely an equation of
state or a metric constraint like the class I (Karmarkar) [38]
or the vanishing Weyl’s tensor (conformally flat) condition
[39], for example. In this work we follow an alternative route
which consists of proposing a suitable metric function and the
complexity factor (YT F given in [26] below) as an auxiliary
condition which shall be introduced in the next section.

3 Complexity factor

Recently, a new definition for complexity for self-gravitating
fluid distributions has been introduced in Ref. [26]. This def-
inition is based on the intuitive idea that the least complex
gravitational system should be characterized by a homoge-
neous energy density distribution with isotropic pressure.
Now, as demonstrated in [26], there is a scalar associated
to the orthogonal splitting of the Riemann tensor [35,36]
in static spherically symmetric space-times that captures the
essence of what we mean by complexity, namely

YT F = 8πΠ − 4π

r3

r∫
0

r̃3ρ′dr̃ , (25)

with Π ≡ pr − p⊥. Also, it can be shown that (25) allows
to write the Tolman mass as,

mT = (mT )Σ

(
r

rΣ

)3

+ r3
∫ rΣ

0

e(ν+λ)/2

r̃
YT Fdr̃ , (26)

which can be considered as a solid argument to define the
complexity factor by means of this scalar given that this
function, encompasses all the modifications produced by the
energy density inhomogeneity and the anisotropy of the pres-
sure on the active gravitational mass.

Note that the vanishing complexity condition (YT F = 0)
can be satisfied not only in the simplest case of isotropic and
homogeneous system but in all the cases where

Π = 1

2r3

∫
r̃3ρ′dr̃ . (27)

In this respect, the vanishing complexity condition leads to
a non-local equation of state that can be used as a comple-
mentary condition to close the system of EFE (for a recent
implementation, see [33,40,41], for example).

In this work, we are interested in to construct traversable
wormholes by using the definition of complexity factor as a
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non-linear equation of state. However, as traversable worm-
holes are defined for r ∈ [r0,∞), the YT F given by Eq. (25)
should be modified properly. To be more precise, the com-
plexity factor for traversable wormholes must be defined as

YT F = 8πΠ − 4π

r3

r∫
r0

r̃3ρ′dr̃ , (28)

which leads to

YT F =
(

1 − b

r

)(
φ′

r
− φ′2 − φ′′

+φ′
(

1 − b

r

)−1(rb′ − b

2r2

))
+ r0b′(r0) − 3r0

2r3 .

(29)

It is worth noticing that, the standard definition demands
r0 = 0 but we must discard this case to ensure a finite size
of the wormhole throat.

From (29) it is straightforward to observe that a traversable
wormhole, with a constant redshift function, fulfills the
vanishing complexity condition in a trivial way whenever
b′(r0) = 3. More precisely, Eq. (29) cannot be used as
an equation of state to obtain the shape function, and in
consequence b is any arbitrary suitable shape function with
b′(r0) = 3. However, it is possible to construct a traversable
wormhole with vanishing complexity by supplying either a
non-constant redshift function or a suitable shape function.
Similarly, we may provide a particular value of YT F and
then use this information to find a family of solutions with
the same complexity factor [40]. In this case, particular val-
ues of YT F allow to define a kind of equivalence class of
solutions; namely, two solutions with the same complexity
factor are equivalent. In this work, we shall implement both
approaches that we have just mentioned in order to construct
traversable wormholes based on the metrics of a Casimir
wormhole [7], as we shall explain in the next section.

4 Traversable Casimir wormhole

In Ref. [7] it has been constructed a traversable wormhole
supported by a matter sector satisfying

pr = ωρ, (30)

pt = ωt (r)ρ, (31)

with ω a constant and

ρ = − r2
0

8πωr4 , (32)

ωt (r) = −ω2(4r − r0) + r0(4ω + 1)

4(ωr + 1)
, (33)

where r0 ≈ 1.016lP the size of the throat.2 The metric func-
tions for this solution reads

φ = 1

2
(ω − 1) ln

(
rω

ωr + r0

)
, (34)

b =
(

1 − 1

ω

)
r0 + r2

0

ωr
. (35)

It is noticeable that if ω = 3 the equation of state for the radial
pressure has the Casimir form (pr = 3ρ) but the entire matter
sector has an extra contribution due to tangential pressure.

For ω = 3 some interesting features should be high-
lighted. First, assuming a constant speed for the traveler and
γ ≈ 1, the acceleration leads to

|a| =
∣∣∣∣∣∣
√

1 − 2r0

3r
− r2

0

3r

r0

r(3r + r0)

∣∣∣∣∣∣ ≤ g⊕
c2 , (36)

from where it can be seen that at the throat the traveller has
a vanishing acceleration. Then, the radial and lateral tidal
constraints near to the throat are given by

r0 � 108 m, (37)

v � 2.7r0 s−1. (38)

Next, if the traveler journeys with constant speed v both the
coordinate and the proper time are of the order of ∼ 5×103s,
assuming that the station is located at rst = 104r0. Finally,
the quantifier for this solution is

I = −4r0

κ
(39)

which could be arbitrarily small depending on the values of
r0.

In the next section we construct a wormhole geometry by
assuming a generalization of both the redshift function (34)
and the complexity factor of the solution with ω = 3. As we
shall see, the resulting shape function will have a set of free
parameters which we fix by demanding the conditions for a
humanly traversable wormhole.

5 Traversable wormholes and complexity

Setting ω = 3 (Casimir wormhole) in (34) and (35) we obtain

φ = ln

(
3r

3r + r0

)
(40)

b = 2r0

3
+ r2

0

3r
, (41)

2 lP is the Planck size so the solution corresponds to a traversable
wormhole of Planck size.
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from where the complexity factor reads

YT F = −r0(36r4 + 96r3r0 + 16r2r2
0 + 27rr3

0 + 5r4
0 )

6r5(3r + r0)2
.

(42)

Then, as a starting point we propose a generalization of
both Eqs. (40) and (42), namely

φ = ln

(
c0r

c0r + r0

)
(43)

YT F = −r0(a4r4 + a3r3r0 + a2r2r2
0 + a1rr3

0 + a0r4
0 )

r5(c0r + r0)2

+r0b′(r0) − 3r0

2r3 (44)

with c0, a0, a1, a2, a3 and a4 constants. Note that as (44) coin-
cides formally with (42), we shall name it as a like-Casimir
complexity factor. Furthermore, every solution for different
values of the parameters involved should be considered as
“equivalents” in the sense that they have the same complex-
ity.

Now, after replacing Eqs. (43) and (44) in (29) the term
(r0b′(r0)− 3r0)/2r3 cancels out and we end with a differen-
tial equation for b which solution reads3

b = 1

30r2r5
0

(
12a0r

8
0 + (15a1 − 27a0c0)r

7
0r

+(20a2 − 40a1c0 + 72a0c
2
0)r

6
0r

2

+(15 + 15a3 − 35a2c0 + 70a1c
2
0 − 126a0c

3
0)r

5
0r

3

+(5a4 − 15a3c0 + 35a2c
2
0 − 70a1c

3
0 + 126a0c

4
0)

×[
12r4r4

0 + 125r5r3
0 + 260r6r2

0 + 210r7r0

+60r8 + r5(c0r + r0)
4 60c0

r0
ln

r

c0r + r0

])
. (45)

At this point it is clear that the solution depends on six free
parameters that we shall restrict by imposing the conditions
that a suitable traversable wormhole has to satisfy.

In order to ensure that the solution is asymptotically flat
we demand

15 + 15a3 − 35a2c0 + 70a1c
2
0 − 126a0c

3
0 = 0, (46)

5a4 − 15a3c0 + 35a2c
2
0 − 70a1c

3
0 + 126a0c

4
0 = 0, (47)

from where

a4 = −3c0, (48)

a3 = −1 + 7

3
a2c0 − 14

3
a1c

2
0 + 42

5
a0c

3
0, (49)

and as a consequence,

b = 1

30r2

(
12a0r

3
0 + (15a1 − 9a0c0)rr

2
0

3 The vanishing complexity condition leads to a b which violates all
the requirements of a traversable wormhole

+(20a2 − 40a1c0 + 72a0c
2
0)r

2r0

)
. (50)

A further restriction on the parameters is obtained by impos-
ing b(r0) = r0 which leads to

a2 = 3

2
− 3a0

5

(
1 − 9c0

4
+ 6c2

0

)
− a1

(
− 3

4
− 2c0

)
,

(51)

from where

b =
(

1 − 1

2
a1 − 2

5
a0 + 9

10
a0c0

)
r0

+
(

1

2
a1 − 9

10
a0c0

)
r2

0

r
+ 2

5
a0

r3
0

r2 . (52)

Now, the flaring-out condition at the throat demands 1 >

b′(r0) from where

a1 > −8

5
a0 + 9

5
a0c0 − 2. (53)

Although the above conditions are the basic requirements
for a traversable wormhole we can restrict the parameter
space further if we demand that the geometry is sustained
by a finite quantity of exotic matter. In this regard, we have
to compute the quantifier given by Eq. (20). Replacing (3)
and (4) in (20) and using (43) and (52) we obtain

I =
∫ ∞

r0

[
r0

(c0r + r0)

(
1 − c0

2
+ a0c0

5
+ a1c0

4
− 9a0c2

0

20

)

− a0r4
0

r3(c0r + r0)
+ r3

0

r2(c0r + r0)

(
− a1 + 6a0c0

5

)

+ r2
0

r(c0r + r0)

(
− 3

2
+ 3a0

5
+ 3a1

4

−27a0c0

20
− a1c0

2
+ 9a0c2

0

10

)]
dr. (54)

Note that I converge whenever the first term in (54) vanish,
namely

1 − c0

2
+ a0c0

5
+ a1c0

4
− 9a0c2

0

20
= 0, (55)

from where

a1 = 2 − 4

c0
− 4a0

5
+ 9a0c0

5
. (56)

Using (56) in (54) we obtain

I

r0
= 4

c0
− 2 + 3a0

10
+ 2a0c0

5
+ ln

(
1 + 1

c0

)(
− 3

c0

−2 + c0 − 2a0c0

5
− 2a0c2

0

5

)
. (57)

Next, replacing (56) in (52) leads to

b(r) = 2r0

c0
+

(
1 − 2

c0
− 2a0

5

)
r2

0

r
+ 2a0

5

r3
0

r2 , (58)
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Fig. 1 Real roots of b(r) as a function of c0. The bigger roots cor-
respond to the solid line and the smaller roots to the dashed line. The
constant value of 1 (dotted line) corresponds to the case rroot = r0

with

c0 > 0 (59)

a0 >
5

c0
− 5. (60)

Then, as we require the minimum amount of exotic matter,
we seek for the parameters that lead to a vanishing quantifier.
To be more precise, we impose I = 0 in (57) to obtain

a0 =
10

[
4 − 2c0 + ln

(
1 + 1

c0

)
(c2

0 − 2c0 − 3)
]

c0
[ − 3 − 4c0 + 4c0(c0 + 1) ln

(
1 + 1

c0

)] . (61)

Finally, as b(r) > 0 for r ∈ [r0,∞), the only allowed
roots are those appearing either at rroot < r0 or at rroot ∈ C.
From (58), the roots of b(r) are located at

rroot = −β ± √
β2 − 4αγ

2γ
, (62)

with

α = 2a0r3
0

5
(63)

β =
(

1 − 2

c0
− 2a0

5

)
r2

0 (64)

γ = 2r0

c0
. (65)

It can be shown that whenever the roots are real, rroot > r0

(see Fig. 1).
In this respect, we must demand β2 − 4αγ < 0 in order

to ensure complex roots, which leads to
(

1 − 2

c0
− 2a0

5

)2

− 16a0

5c0
< 0, (66)

from where, by replacing a0 given by (61) we obtain that c0

is restricted to values in the interval

0.283181 < c0 < 4.86215. (67)

 0

 1

 2

 3

 4

 5

 6

 7

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

r/
r 0

c0

r+/r0
r−/r0

Fig. 2 Normalized real positive roots of ρ + pr as a function of c0.
The bigger roots r+/r0 correspond to the solid line and the smaller roots
r−/r0 to the dashed line. The dotted line corresponds to the asymptotic
limit of r+ with value c0 = 0.950679

In summary, we have found that the only degree of freedom
of a traversable wormhole with a minimum exotic matter,
and complexity given by Eq. (44), is bounded as shown in
(67).

In order to restrict the values of c0 further, we can analyze
the regions where the NEC is violated which, as we stated
before, must be located near the throat of the wormhole as
a consequence of the flaring-out condition. In this regard, as
ρ + pr < 0 near the throat, we require that such a quantity
change of sign at certain r ≈ r0 and remains positive every-
where in r ∈ (r0,∞). In Fig. 2 we show the roots of ρ + pr
and observe that as c0 approach to 0.950679 from below, the
NEC is not only violated near the horizon (for r ∈ (r0, r−)
but in regions far from r0 (for r ∈ (r+,∞)) .

Consequently, in order to avoid the violation of NEC far
from r0 we require

0.950679 < c0 < 4.86215. (68)

To complement the discussion on the matter sector sup-
porting the wormhole geometry, in Fig. 3 we show the profiles
of the energy density, ρ, the radial pressure, pr , and ρ + pr
for the parameters in the legend.4

Note that both, the energy density and the radial pressure,
have a like-Casimir behaviour near the throat in the sense that
are negative as reported in [7]. Of course, such a similarity
must be taken as merely formal in the sense that, in this case,
the equation of state of the matter sector can be written

pr = ωρ, (69)

pt = ωtρ, (70)

4 We do not show ρ + pt because this quantity is positive everywhere
for the values of c0 in (68).
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sure r2
0 pr (dotted line), and normalized density plus radial pressure

r2
0 (ρ + pr) (solid line) as a function of r/r0. Fixed parameter c0 = 1

with

ω = α1r2 + β1r + γ1

(c0r + r0)(μ1r + ν1)
(71)

ωt = α2r3 + β2r2 + γ2r + δ2

(c0r + r0)2(μ2r + ν2)
, (72)

where the coefficientsα1,β1,γ1,μ1, ν1,α2,β2,γ2, δ2,μ2, and
ν2 depend of the coefficients c0 and r0. Besides, in contrast to
the traversable wormhole in [7], the like-Casimir behaviour is
bounded in a region near the throat and not in the hole space-
time which requires that ρ < 0 everywhere. In this regard,
we could say that there is a kind of “phase transition” at cer-
tain r where the matter goes from a content with quantum
properties enclosed near the throat (where it is required) and
classical matter in the rest of the space-time. Furthermore,
we could conjecture that such a behaviour is only possible
whenever the quantifier vanishes exactly (as demanded here).

From now on we shall explore the features of the
traversable wormhole geometry constructed here based on
the values of c0 in (68).

In Fig. 4 we show b/r as a function of the radial coordinate
for the choice of parameters shown in the legend of the figure.
Note that the speed of convergence increases as c0 grows. In
Fig. 5 it is shown the embedding diagram (for the parameters
displayed in the legend) for the traversable wormhole. Notice
that dz/dr → 0 as r → ∞ goes faster as c0 increases.

It is worth mentioning that, as our wormhole fulfills the
basic requirement to be traversable, it should be interesting
to explore if this geometry could allow the human interstellar
travel. To this end we must ensure that the tidal accelerations
experienced by the traveller must be of the order (or less)
than the Earth’s gravitational acceleration. In this regard, we
shall use Eqs. (21) and (22) to estimate the size of the throat
and the velocity of the traveller at the throat (assumed as
constant for simplicity). At the throat, Eqs. (21) and (22) can
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Fig. 5 Embedding diagram for c0 = 0.96 (solid line), c0 = 1.5
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be written as

|φ′(r0)| ≤ 2g⊕r2
0

(1 − b′(r0))|η1|c2 (73)

γ 2v2 ≤ 2g⊕r0

(1 − b′(r0))|η2|c2 , (74)

which leads to

√
|η1|ξ1

g⊕(1 + c0)
c ≤ r0 (75)

v ≤
√

ξ2

1 + ξ2
c, (76)

where ξ1 = ∣∣1 − 1
c0

− a0
5

∣∣, ξ2 = g⊕r2
0

|η2|ξ1c2 , a0 is given by Eq.

(61) and η1 ≈ 2[m] and η2 ≈ 1[m] as the usual dimensions
for a person. Notice that when inequalities (75) and (76) are
saturated they imply a minimum value for r0 and a maximum
value for v. The minimum value for r0 is only dependent on
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the parameter c0 and can be written as

rmin =
√

|η1|ξ1

g⊕(1 + c0)
c, (77)

so it depends on the constraint on c0 given by (67). In Fig. 6
it is shown the behaviour of rmin/c as a function of c0.

Note that,

0.41 × 108[m] ≤ rmin ≤ 1.04 × 108[m], (78)

which is of the same order of the Earth–Moon distance. Now,
in order to estimate the maximum velocity we shall use r0 =
rmin form where (76) reads

vmax =
√

|η1|
|η2|(1 + c0) + |η1|c. (79)

In Fig. 7 we show vmax as a function of c0. In this case we
obtain

1.51 × 108[m/s] ≤ vmax ≤ 2.13 × 108[m/s], (80)

which is less than the speed of light.
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Finally, as stated previously, a reasonably interstellar
travel should take no more than a year. Here we estimate
the value of both the coordinate and the proper time from
Eqs. (23) and (24) by setting the distance of the spatial sta-
tions (located at each asymptotically flat region) rst = 104r0.
The results are depicted in Figs. 8 and 9 where is shown that
both, the maximum coordinate and the proper times are of
the order of 103s which corresponds to a total time around
1h.

6 Final remarks

In this work we implemented the recently introduced concept
of complexity to construct wormhole geometries belonging
to the same “equivalence class” of the Casimir wormhole
reported in [7]. The solution could be characterized with only
one parameter appearing as a consequence of the generaliza-
tion of the redshift function of the Casimir wormhole [7]. The
values of such a parameter were constrained by demanding
the basic properties that a wormhole geometry has to fulfill in
order to be traversable; namely (i) the flaring-out condition,
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(ii) tidal acceleration of the order of the Earth gravitational
acceleration (iii) finite time to travel from a spatial station
to the throat and (iv) a minimal amount of exotic matter.
As a consequence we found that the solution connects two
asymptotically flat regions through a tunnel with the size of
the Earth-Moon distance and the time required to traverse the
wormhole from a spatial station located in the asymptotically
flat region it is on the order of a few hours. Probably, the most
intriguing feature (in contrast to the solution in [7]) is that
the quantifier does not depends on the size of the throat but
is arbitrarily small which means that, we can construct the
traversable wormhole with a minimal quantity of exotic mat-
ter. Another interesting feature is that, in contrast to [7], the
like-Casimir behaviour of the matter sector obtained here (in
the sense that both the energy density and the radial pressure
are negative) is bounded by a radius near the throat such that,
for bigger radial distances, the matter sector is completely
classical (density and pressure positives). This represent an
advantage because, in particular, the energy density is nega-
tive only in a small region and not the whole space-time as
in [7].

Before concluding this work, we would like to address a
couple of points that we think deserve special attention. First,
we could consider

a5r0b′(r0 − 3r0a6)

2r3 (81)

instead

r0b′(r0 − 3r0)

2r3 (82)

as an extra term in Eq. (44). Clearly, (81) reduces to (82)
when a5 = a6 = 1 but for arbitrary values it could lead to
a shape function which would generalize the one obtained
here and would enrich the discussion (we acknowledge the
anonymous referee for drawing our attention on this point).
Second, it should be interesting the study of the stability of
the wormhole geometry obtained here. However, these and
other issues are out of the scope of this work and shall be
considered in future developments.
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