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ABSTRACT

MINIMAL EXTENSION OF EINSTEIN’S GRAVITY AT THE QUARTIC
ORDER

Kenar, Esin
Ph.D., Department of Physics

Supervisor : Prof. Dr. Bayram Tekin

August 2018, [77| pages

We study an extension of Einstein general relativity theory at the quartic order in the
curvature. The extended theory has a unique vacuum and a single massless spin-2
excitation about this vacuum, just like general relativity, hence it is called a minimal
extension. The extended theory can also be obtained from a particular form of Born-
Infeld gravity. We show that the Schwarzschild and Kerr black holes are not exact
solutions and the Kretschmann scalar obeys a non-linear wave equation, suggesting
that black hole singularities might be avoided.

Keywords: Modified Gravity, Born-Infeld Gravity, Quantum Gravity, Schwarzschild
Singularity, Maximally Symmetric Vacuum, Black Hole Solutions, Massless gravi-
ton.
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EINSTEIN KUTLECEKIMININ DORDUNCU DERECEDEN MINIMAL
GENISLETILMESI

Kenar, Esin
Doktora, Fizik Boliimii

Tez Yoneticisi : Prof. Dr. Bayram Tekin

Agustos 2018 ,[77]sayfa

Einstein genel gorelilik teorisinin egrilik bakimindan dordiincii dereceye kadar ge-
nigletilmesini ¢aligmaktayiz. Genisletilmis teori, genel gorelilikte oldugu gibi, tek va-
kuma ve bu vakum etrafinda tek bir kiitlesiz spin-2 eksitasyona sahiptir ve dolayisiyla
minimal genisletme olarak adlandirilir. Genisletilmis teori ayrica Born-Infeld kiitlece-
kiminin 6zel bir formundan da elde edilebilir. Schwarzschild ve Kerr kara deliklerinin
kesin ¢oziim olmadiklarini ve Kretschmann skalerinin dogrusal olmayan dalga denk-
lemini sagladigin1 gosterdik ve bu sonug kara delik tekilliklerinin onlenebilecegini
ongormektedir.

Anahtar Kelimeler: Modifiye Kiitlecekim, Born-Infeld Kiitlecekim, Kuantum Kiitle-
cekim, Schwarzschild Tekilligi, Maksimal olarak Simetrik Vakum, Kara Delik Co-
ziimleri, Kiitlesiz Graviton.
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CHAPTER 1

INTRODUCTION

Einstein’s special relativity (SR) theory describes the universe by unifying the space
and time then the resulting structure is called as "spacetime". But this spacetime does
not have gravity in it and hence it is a flat manifold. Unlike SR, general relativity
(GR) theory includes gravitation. According to the GR any energy momentum distri-
bution curves the spacetime and then particles move in this curved geometry which
means that these two interpretations are just two perspectives that directly show us
the curvature-gravitation relation ﬂ This duality relation is expressed by Einstein’s
equation

1
Ry — 5 Ry = 87GT,. (1.1)

Here G is the Newton’s gravitation constant and 7, is the energy momentum tensor
of matter fields. We have taken the speed of light to be ¢ = 1. The metric is denoted
by ¢, a symmetric (0,2) tensor field. R, is the Ricci tensor and R is the Ricci
scalar. They are notationally shown as R" opp = BRap, R, = R and derived from

contractions of the Riemann tensor which reads
R, = 0,1h, — 0,T%, +Th\T2, =TT, (1.2)

I'#_1s the Christoffel connection which is given explicitly for a metric-compatible
connection as

Iy = %g“p(aygap + 0o Gpv — Opguo), (1.3)
and it is symmetric ' = I'/ .
The left hand side of the Eq.(I.1) is exactly the Einstein tensor presented in Eq.(A.23)
which is

1
G =R, — §Rguy (1.4)

! 'We must of course note that even without any energy-momentum distribution, due to the non-linearity of
gravity, spacetime can be curved.



with vanishing covariant divergence V#G,, = 0. This conservation also implies the
conservation of energy-momentum V#T),, = 0.

Since Einstein’s equation is a non-linear second order differential equation, it is really
hard to solve directly. The Schwarzschild solution is one of the most important exact
solutions assuming spherically symmetry. In fact spherical symmetry also leads to
a static spacetime. So in GR, the Schwarzschild metric is the unique spherically
symmetric static metric. It can be considered as the vacuum 7, = 0 solution or it
can be considered as the region outside a spherically symmetric matter distribution.
The Schwarzschild metric written in spherical coordinates is

2GM

r

_2GM

ds* = —(1 —
s ( .

-1
)dﬂ+—(1 ) dr? 4+ r?df* + r?sin® 0d¢®  (1.5)

where M can be considered as the mass of the source [1]]. Besides, if there is a

non-zero cosmological constant A, the Einstein’s equation and the Schwarzschild

solution are modified as [2]

1
R, — §Rg,w + Nogu = 87GT,,, (1.6)

ds* = —(1—

2 2

-1
3 ) dr?+12df*+1r? sin? 0d¢>.
T

(1.7)

r

Turning back to the Eq.(1.5) , 7 = 0 and » = 2G'M seem to be singular points. How-
ever the terms that contain these points are coordinate dependent and change after a
coordinate transformation. Then it is clear that this testing argument is not appropriate
for finding the singular points. We should analyse the coordinate independent scalars
like R ,R* R,,,, R*"?° R, etc. For this Schwarzschild metric, calculations indi-
cate that the point » = 0 is a real singularity and there is no other singular point [1].
This can be seen from the Kretschmann scalar R**° R, ,, = 48]‘7{# which diverges
at r = 0. This invariant divergence method works well for the Schwarzschild met-
ric. But unfortunately we can not generalize this approach to all singular geometries.
Actually the issue of singularity has been studied for years and called as singularity
problem in general relativity [8]], [9I,[26], [27]. As seen in the Schwarzschild metric
example, the curvature invariant blows at the singularity point which means that we
can not work at this point. Strictly speaking, » = 0 does not seem to be the part of

the smooth spacetime manifold. But the metric tensor g,,,, is defined for all points and

we expect to study the whole geometry of the manifold which is surely governed by

2



9w~ Then some physicists consider the singularity as a boundary but not part of the
spacetime. This perspective gives us a manifold with holes (by removing the singu-
lar points) resulting another problem about differentiation (due to the neighbourhood
issue). After years of study, incompleteness of geodesics was accepted as a singu-
larity signal. S.W. Hawking defines the singularity as [4]: " A spacetime is singular
if it is timelike or null geodesically incomplete, but can not be embedded in a larger
spacetime " . These nonspacelike incomplete geodesics could be divided into two:
past-directed and future-directed. Past directed incomplete geodesics, like the Big
Bang singularity, can be illustrated up to a point (singularity) in the past while it is
geodesically complete in the future. The other type, incomplete geodesics, which are
future directed indicate the black holes. The world lines could be drawn up to an end
point ( black hole singularity). These type of singularities have two main properties
which are the singularity point and the horizon. For a singularity evolution period
(collapsing of a star), if the singularity is formed before the horizon then we have
a naked singularity allowing data transportation between the singularity and an ob-
server outside the singularity. However if the horizon is formed initially, then the final
geometry is a black hole with no information flow outside the event horizon. How-
ever, trusting the cosmic censorship conjecture, we do not expect to see any signal of
a naked singularity.

Singularity theorems tells that the general theory of relativity admits singularities for
some cases [23]. The singularities are considered to be the shortcomings of general
relativity and expected to be overcome with a quantum theory extension. Actually
singularity is not the only problem in GR. Beside the fact that the outcomes of GR
theory fits well to the experimental results at intermediate scales (solar system etc),
there remains some other problems unsolved like the current accelerated expansion
of the universe, the rotation speeds of spiral galaxies etc. To solve these problems
we need to modify Einstein’s gravity perhaps even replace with a quantum gravity
theory [24]. There are many research avenues along this direction. One such avenue
is the Born-Infeld (BI) type gravity that has a unitary massless spin-2 excitation and
a unique viable vacuum similar to Einstein’s gravity [10], [11], [12].

The BI action is defined as

1

T —
2Ko7Y

/d4x {\/— det(g, + 47Au) — (4vAo + 1)V =g/ , (1.8)

3



where the A, tensor is given as

Aw = Ry +cSu

1 2
+ 4y (wMM,RP“ + “4' R, R + (C(CTH - b) SWSLJ)

9
+ V9w (gC’me’”M - ERWR"" + bSpUS”) . (1.9)

Here g is the determinant of the metric tensor g,,. a, b and c are dimensionless

parameters. -y is the BI parameter and ko = 87G. S, is the traceless Ricci tensor

Sw =Ry — %lgw,R, (1.10)
Clwpo 1s the Weyl tensor defined as
Cuvpr = Ruvpo — (n—iZ) (Rupgvo + RuoGup — RuoGup — RupGpo)
T o 1)1(n — 2>R (IupGve — GupGuo) (L.11)

for n dimensional spacetime. In four dimensions the square of the Weyl tensor reads
1
CrvpoC*"P7 = Ryypo RM*” — 2R, R + 532. (1.12)

The BI theory Eq.(I.8) with Eq.(1.9) was constructed as a theory that extends Ein-
stein’s gravity while keeping its important features intact. These are: the uniqueness
of the vacuum, the existence of a single massless graviton about this vacuum. More-
over, the theory reproduces Einstein’s gravity at the lowest order in the curvature
expansion. Further details can be found in the thesis [29] devoted to a detailed study
on this theory.

Throughout this thesis we will mostly use geometrical units and take the signature
as (-,+,+,+). In some sections we use new notations which are indicated in relevant
parts. In general all necessary calculations are explicitly shown and placed in the
chapters or the appendix sections. Basically the outline of the thesis is as follows: In
Chapter 2 we give some background information on relativity. Actually some other
chapters also include such calculations especially the appendices. In Chapter 3 we
firstly give the field equations of the general extended f(RZg) action that is formed
by the Riemann tensor and its contractions. Then we write our special action where
we fix a = 0,b = —5/2 and ¢ = —1 and calculate the field equations and the trace.

Secondly we show the detailed derivation of the Riemann tensor in the maximally

4



symmetric spacetime then we calculate the vacuum equation in our theory. We show
that we have a unique viable vacuum and a massless spin-2 excitation using the lin-
earization method. We also calculate the effective Newton’s constant. In Chapter
3 we do the basic calculations of the Schwarzschild black holes. In Chapter 4 we
give the Ricci flat solutions and black hole search of the BI theory. We show that
Gauss-Bonnet invariant (which is the Kretschmann scalar in this section) satisfies a
wavelike equation and so the Schwarzschild solution is not included in BI theory. We
also argue that other types of black hole solutions are allowed to study deeply. In this
chapter, we also discuss the approximate spherically symmetric solutions.

This thesis includes the detailed calculations of a collaborative study [30]].

While writing this thesis we used the computer programmes: ISIEX for typing, Math-

ematica for computing, Desmos and Paint for drawing figures.






CHAPTER 2

BACKGROUND ON CURVED SPACETIME AND GENERAL RELATIVITY

Assuming a spherically symmetric metric for a compact object we can find an exact
solution of Einstein’s field equations. As a starting point we introduce the spherically

symmetric Minkowskian metric which is
ds* = —dt* + dr* + r*dQ?, (2.1)

where dQ? = df? + sin? 0d¢?. In order to generalize this simple metric we introduce

coefficients (C1, Csy, Cs and Cy) preserving the spherical symmetry. Then we have [3]]
ds* = —Cy(r,t)dt* + Cy(r,t)dr? + Cs(r, t)drdt + Cy(r, t)r*dQ>. (2.2)

If each of the metric components does not depend on time we get
ds* = —Cy(r)dt* + Cy(r)dr* + Cs(r)drdt + Cy(r)r?dQ?, (2.3)

which is called a stationary metric. After redefining the time coordinate [23], this

metric can be expressed as
ds®> = —Cy(r)dt* + Co(r)dr® 4+ Cy(r)r*dQ>. (2.4)

These metrics are named as static metrics. Although we only assumed a spherically
symmetric and stationary metric, we additionally obtained the staticity characteristic
finally, with the added assumption that ¢ — —t is a symmetry of the spacetime.
Hence a static metric is a stationary metric with a time reflection symmetry. In any
gravity theory, due to their high symmetry, these are the metrics one studies first to

understand the properties of the given theory.
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2.1 Schwarzschild coordinates]

As the most important example of a static metric, let us study the Schwarzschild
solution of Einstein’s gravity.
The Schwarzschild solution in spherical coordinates is described by the metric

2GM
r

2GM
r

—1
ds? = —(1 - )dt2+(1— )dr2+r2d02+r2sin29d¢2- @.5)

Here ¢ and r are not the ordinary coordinates that we are familiar in flat spacetime. r
is the area coordinate that ensures the area of a sphere with radius r at a fixed time as
4772, We can see the distinction with simple calculations below.

Let us start with the radius analysis. The distance between the spheres with different

radii can be calculated by taking dt = df = d¢ = 0;

) r2 -1/2
Ar = / ds = / (1 — QGM) dr. (2.6)
2 T r

Carrying out the integral we find

Ar = <r\/m+2GM1n<m+\/F))
T3 s — /T3
+ 2GMn (V/r, —2GM + /i)
— 2GMn (M+\/H) 2.7)

As seen above, the distance Ar is different from the distance measured in flat space-

T1
T

2

time (A7) e = 12 — 71 (Ar > (A7) 10¢). Of course this is due to the spacetime
being curved.

Now let us study the time intervals using the Schwarzschild metric. Taking dr =

df = do = 0 we get
1/2
At = (1 — 2GM) dt. (2.8)

r

Time differences are measured to be (At) f1,; = t2 —t; in a flat spacetime. Since r >
2G M, we conclude that At < (At) f14¢. The measurement differences (At — (Af) f1qt)
and (Ar — (Ar)gq) decrease when we move away from the source as expected
due to the asymptotical flatness. So in some sense (t,7,0,¢®) coordinates of the

Schwarzschild metric are just labelling the points of spacetime. But they match with

' 1In this section we generally follow the book [16].
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the Minkowski metric and the usual notion at asymptotic infinity. The notion of
asymptotic flatness can be defined more rigorously, but in this thesis we will not need

that.

2.2 Geometric Unit System, World Lines and Lightconesﬂ

When we consider the events of a particle through some period of time and add these
points we get its world line. Light has a constant velocity; ¢ = 3.10' cm/sec. We can
use this number as a scaling. For example for a distance of d cm, we do a scaling such

that d = —2m_ — _<__gec. Then the unit of length is second and the velocities are
¢ ecm/sec 3.10

unitless. This scaling is called the geometric unit system. ¢ = 1 in geometric units.
As a good example, let us consider a flash. We light the flash standing at the origin at
t = 0 and take pictures at some time ¢. In a 3 dimensional space, the photons coming

out of the flash form a sphere with radius ¢
r? =24 y? + 2% =1 (2.9)

For simplicity let us take z = 0. Then we have a circle with radius ¢ governed by
2?2 +y* = t%. Now if we include the time coordinate and plot the (z,y, t)- spacetime,
then we have a cone (Figure . If we take y = 0 and plot in (z, t)- spacetime we get
Figure[2.2]and this trajectory is called as future directed lightcone. This is the path of
a photon emerging from the origin in a 2 dimensional spacetime in geometrical units.
When we continue to draw the lines for the region x < 0 we obtain the past directed
lightcone together with the future directed one (Figure 2.3]). The final form of the
lightcone is illustrated in Figure 2.4

The events lying inside the past lightcone can affect the event at the origin; the other
regions can not affect this event. This is due to the fact that the light has a fixed and so
restricted velocity. The world lines outside the lightcone have a slope greater than 1,
then these world lines are spacelike whereas the inside region corresponds to timelike
particles. As stated before the cone itself is the world line of the photon, which is also

called null or lightlike trajectory.

2 In this section we generally follow the books [15], [16] .

9



Figure 2.1: The light coming
out of a flash (at the origin 0)
travels in (x,y,t)- spacetime
forming a cone.

Figure 2.3: Future directed
lightcone can be drawn con-
tinuously to include the past.

10

Figure 2.2: The light com-
ing out of a flash (at the ori-
gin 0) travels in (x, t)- space-
time forming a future directed
lightcone.

Figure 2.4: The lightcone of
the photons .



2.3 The Cosmological constant

2.3.1 Energy-Momentum Tensoif|

For a particle moving with velocity v with mass m, its energy can be expressed as

mc2

= — (2.10)

V1—02/c2

where v® = v2 4 v + v2. Let us consider the noninteracting particles (dust) in a unit
volume. Assuming that there are n particles in this unit volume (and taking ¢ = 1),

we can write the energy density as

nm
Vi

Now we calculate the energy flux density. It is the flow of energy through unit area

7% = (2.11)

per unit time t. We choose the coordinate = for example for a flow of distance !:

nm (area)l  nm
VI =2 (area)t /T — 02

here v, is the velocity in x direction. For any direction ¢ we simply write the energy

Energy flux density = Vgs (2.12)

flux density as
T =T" = ——". 2.13
T (2.13)
This is also defined to be the density of momentum. And the momentum flux can be
written as
TV =17 = ———=v"’. 2.14
T (2.14)
This is the flux of momentum in the ¢-direction flowing through j-direction. Then
we have a T-matrix that has 16 components formed by 7%, 7% T T% TJ% and T%.

We will simply show that this matrix is a tensor. 7" can be expressed as
T = ngmu*u”, (2.15)

here nq is the proper particle density, no = ny/1 — v? and u* is the four-velocity ,
). np is a scalarand utu” is a tensor Then our

Vy

ut = 1 Vg Uy
V1027 /1=027 V1—0v27 V1-02

3 1In this section we generally summarise the Ohanian’s discussions[2].
* nyg is measured in the rest frame of particles.
5> w* is a vector and here we have a multiplication of vectors which yields a tensor.

11



T matrix is a tensor with rank 2. The T*” tensor is called as the energy-momentum

(or stress) tensor and is symmetric, 7+ = T"*. We can rewrite Eq.(2.15) such that
" = pout'u” (2.16)

where pg = ngm is the proper mass density. 7" obeys the conservation law such

that

v, = 0. (2.17)

This last relation can be assumed to be correct or as 7}, couples to Einstein’s gravity,

it follows from the theory.

2.4 Perfect Fluids’l

In the rest frame of the fluid the velocity is zero, @ = 0. Still particles may interact
with each other and have thermal energies. Surely we can read the energy-momentum
tensor to observe these kinds of properties for more realistic fluids. We list the physi-
cal meanings of the components of the 7*” tensor in zero-momentum frame :

T: total energy density,

TY: energy flux due to heat conduction,

T*: momentum density due to heat conduction,

T%: momentum flux, specifically 7% denotes the isotropic pressure and 7 is the
viscous stress.

Energy-momentum tensor for a perfect fluid in the rest frame is written as

» 0 0 0]
0p 00
00 po
000 p|

T =

In the rest frame we have u* = (1,0,0,0) . Then we can write the T tensor using
ut;

™" = (p + p)uru” + pn™. (2.18)

% In this section we generally follow the reference book [14].

12



For a general form we simply change 7" by g"” to arrive at the energy-momentum

tensor of a perfect fluid:

T = (p 4 p)u'u” + pg"”. (2.19)

2.5 Cosmological Field Equations|

In the Newtonian theory, the gravity field equation is expressed by the Poisson’s equa-
tion:

V2® = 4nGp, (2.20)

where @ is the gravitational potential caused by the gravitational matter density p. In
Einstein’s theory, Poisson’s equation can be generalised as follows. On the right hand
side (RHS) of Eq.(2.20) matter density can be replaced by the full energy-momentum
tensor. In the weak field approximation, for noninteracting particles with mass density

p, we have

goo = —(1 4 29). (2.21)

Using the above equation and Tyy = p, Eq.(2.20) becomes
V2g00 = —87GTyo. (2.22)

Now on the left hand side of this equation, we have the second derivatives of the

metric. For a covariant equation we surely need a tensor with additional properties:

1. It must be symmetric rank-2 tensor since on the RHS we have T*".
2. It must be conserved (V, 7" = 0) .

3. It must consist of derivatives of the metric up to the second order.

The Einstein tensor G, (derived in Appendix A.1) satisfies these expectations. Then

the Einstein field equations are written as

Guu - ,{/TH,V (223)

7 In this section we generally follow the reference book [14].
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with K = 87G. When T}, = 0, we have the vacuum field equations
Ruu =0, (2.24)

which are called as Ricci-flat metrics.
Suppose we add a new term to the Einstein tensor: a constant Ay multiplied by the

metric tensor g,,,. Then we get
1
Guy = Ruu - §g,uuR + Aoguw (225)

Ay is called as the bare cosmological constant and the new field equations are cosmo-
logical Einstein equations written as:

1
R;w — §gWR + Aogw, = K'Tuu' (226)

We still have V#*G),,, = 0 since V*g,,, = 0.
Now let us do a simple search for the physical meaning of the cosmological constant.

In the weak field limit of the cosmological Einstein equations we have

V2P = 47Gp — Ao, (2.27)
which yields
- GM A
G=-Vo=-—"Ciy 20 (2.28)
T 3

Then in addition to the usual attractive field (—<3’) we obtain a positive term (22"
meaning a repulsive field, for Ay > 0.

Lorentz invariant vacuum dictates that [[1], [25]]

Pvac = —Puac (2.29)

for the vacuum. Observe that otherwise 7T*" has a u*u” part and the existence of a u*
vector dictates a choice of a Lorentz frame and hence non-invariance of the vacuum

which we do not want or observe. Then the energy momentum tensor is

T#ayc = Dvac g;w = Puac g/u/- (2.30)

Then we need to add this T to T of matter (T, ):

vac

T =T + T4 . (2.31)

vac
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We rewrite the field equations:

1
R/u/ - §guuR =K ((TMV)M — Puac g,uu) . (232)

Then the bare cosmological constant A, could be related to vacuum energy density as

A
Poac = —. (2.33)
K

Besides, effective cosmological constant (A.z¢) [S] [6][25] is defined to be
Aeff = A0 + Aother (234)

where A, denotes other additional effects contributed by for example scalar fields
or zero-point energies of quantum fields. Theoretically we estimate effective cos-
mological constant adding all contributions. When we devide this estimated value

(Atheo.) to the observed effective cosmological constant (A,s.) we find that [3]

Atheo.
Aobs.

~ 10", (2.35)
This unfortunate misfit is called the cosmological constant problem.

Here we finalise the introductory background information on Einstein’s general rel-
ativity theory and with the next chapter we will proceed with the study of modified

gravity starting with the field equations of the quartic theory.
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CHAPTER 3

VACUUM AND SPECTRUM OF THE QUARTIC GRAVITY THEORY

Aiming a modified gravity theory the procedure is as follows: We add the functions
of the Riemann tensor with its contractions to the Einstein-Hilbert action (with a cos-
mological constant). Respecting the minimality condition we do not consider the
derivatives of the Riemann tensor. Then our action consists of the Riemann tensor
and its contractions and any powers of these. In order to simplify the following calcu-
lations we prefer to study with a (2,2) Riemann tensor (R"pw) instead of a standard

(1,3) Riemann tensor (R’ ) . Besides, we notationally write (2,2) Riemann tensor

puv
as R;? just for practical simplicity. Then the generic theory we are interested in has

the action
_ 1 4 uv
1= H—O d T/ _gf<Ro¢ﬁ)7 (31)

where f is a smooth function of its argument of course, what is tacitly assumed here
is that we have a diffeomorphism invariant theory.

We will use the variation method to find the field equations for this action. The usual
contraction rules hold for our preferred form of the Riemann tensor R77. When we
contract the first and third indices of the Riemann tensor we get the Ricci tensor. This

can be seen with a simple calculation: Starting with the following
RZ% =g R, 5 (3.2)
and multiplying both sides with J;7 we get
RZ; = g"" Ry, (3.3)
RZ; = Ry, (3.4)

so there is no need for the metric tensor for contraction. And for the Ricci scalar we

have R} = R.

17



Considering Z as a functional of the metric tensor and R"", o and taking the variation

of Eq.(3.1) we get

T = [ [6V=a)f + V(R
- [ [W_ )+ V=g R%(w] (3.5)

where we used the chain rule in the second line.

Using the identity §v/—g = —5+/=9g9,,, 09" and 6 R4 given in Eq.(A.30) we get

1 1
0T = ;O d*x [——gwx/—gf (R57) 59“”]
v v po
+ 2%0 / TV 8R% (gapVUV 9aaV,V )59
B w\ s 0
o [y aR% J (9009, ~ 00,993
1
. v po av
5 [ doVag (R0 = RS GO

Now we can manipulate the following term

0
/d4x V- WgapV VZighe = /d4x \/—g[ (aRJ;ugapV”ég“a)

8f VS o po
- _/ P/ =gV, (i es ) V60
7 \ORps ™"
o (O .
- [ eyl (Wg) o
v af Qo
— V VJ (mgap) 59 :|
o ] O o 7 NER)
aRﬁU

where we used the Gauss’ theorem. After doing some other necessary manipulations

we arrive at the field equations as

af 1
W 3 (ngVAVU - groAVp)
po
( of R, of
ORIV ORM

1 A A af
5 (95V'Ve = 0.9V, o

1
Rpa)\u> - §g;wf (Rf;f) =0. (38)

These are the field equations for a most general f (RZ;) action Eq. 1b But we will

be interested in a subclass of these theories, which are the Born-Infeld theories given
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by the action Eq.(1.8) and Eq.(1.9). This action contains 3 dimensionless parameters
a, b and c to be determined by the theoretical arguments or experiments. Now we fix
these parameters as ¢ = —1,a = 0, b = —g . The motivation about this fixing is
that with this special action we obtain a much simpler theory compared to the generic
BI gravity. Understanding the properties of this theory will help us understand the
generic BI gravity.

The reduced A,,,, tensor becomes

9 1 5
A = Ry — Suw + V9 (gcpmcpm + Z—lR,J(.,,RPU - 55,005“’) : (3.9)

When we substitute S, Eq.(T.10) and C,,,,,C**** Eq.(I.12) into A4, , we find

1 9 3 )
A = Zgle + VG (ngUMR"”’\”’ — 2R, R + gRQ — éspasp”) . (3.10)
Calculating the square of the traceless Ricci tensor as
1 1
o5 = (Ffpr = 39 F)I = 59" )
1
= R,,R" — ZR?, (3.11)
and substituting into A, tensor Eq.(3.10) we have
1 9 pPoNY PO 2 1 2
A;u/ = ZguuR + amy g (Rpa)\”/R - 4RpO'R + R ) - gR ’ (312)
which can be simply written as
1 9 1
AMV = ZguyR + ’Yguy (gg - gRQ) . (313)
Here G is the Gauss-Bonnet invariant which is given as
G =R*— 4R, R" + Ry, RM" . (3.14)

Finding the A, tensor for a special case, now we substitute into the action Eq.(1.8)
and get

1 9 1
7= /d4x{\/—det [g,,(l%—’ylri—l—él’y2 <—Q——Rz>)]
2K07Y K 8 8 (3.15)

- (4980 + V5.

19



Using det(g,, a) = a*g we have

1 . 9., 1 !
2K07Y 8 8 (3.16)

- (#9804 DV}

Simplifying the above action and defining A\g = A we get the quartic theory

1

T =
2K07y

/d4x\/—_g{ [1 + YR+ 272 (g - éRQ)r — (4)o + 1)} . (317

We can recast this more explicitly as

1 1 1 9 9
T = /{_ d4l’\/ —g{R — 5’)/2R3 + §73R4 + Q’yg — 5’72Rg
0
(3.18)
9 81 2
o _73gR2 + _739)2 _ _)\0 ]
4 8 vy

Here a summary of the above calculations could be given as follows: We started with a
somehow long and determinantal action. Then we took the dimensionless parameters
asa =0,b= —g, ¢ = —1. And after some manipulations we now have a purely
polynomial and so simpler action as a function of R and Gauss-Bonnet invariant G.

Next we can write this action Eq.(3.18) in a notationally simpler form such that

T = % d*zv/—gF(R,G), (3.19)
0
and
1 2
2vF = (1 + R — 572(32 — 99)) —4)g — 1. (3.20)

Here we use the notation F = F (R, G) for simplicity.
Now let us calculate the terms in Eq.(3.8)) separately to make the calculations clear
and find the field equations for our special action Eq.(3.19). We need to calculate the

partial derivative of F with respect to Rgg which is

OF _0F 0G , OF OR
ORY  0G 9RE  ORORE

(3.21)
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Let us now find the derivative of G with respect to R%\:

OR® OR
— 8Rds¢ ;i +2R—%
3Rpg aRpo

0 OR%
= i
ORbS ORbs

1 1
— 2| J0uak 0205 — 700) — 030, 0207 - 0289

1 C (o2 (o2 1 C (o (on
— 8RR} [Z(Mi (6265 — 620%) — ;1%5,’1 (620G — o2 55)}
+ R (655;’ — 5;5§)
= 2R — 20/ R + 265 RS + 205 Ry, — 205 Ry,

+ R (0065 —676%) (3.22)
where we used
8Rgb 1 a g ag 1 a ag g
o~ 20WON (0000 = O700) = 30R0, (920 = 0707), (3.23)
and
1
R= §RZ§ (5o — odsy) (3.24)
with
OR 1 v o
S = g (00— 005) - (3.25)
po
Then we can continue to calculate the partial derivative of F with respect to R‘g(’,\
which is
af af o a (o) o (4 (4 (4
pyr il {2R" — 260 RS + 207 RS + 200 Ry, — 265 Rl + R (0065 — 6765) }
po
0F 1 . .
b (8005 — 0407 (3.26)
Now let us introduce the notation g—]gt = Fg and g—]}; = Fp for simplicity. Then we
have
oOF 1 " -
oy = <.7-"gR + 5]’3) (6705 — 0%0;,)
po

27 (RS — OLRS + 0L RS + 0§ Re — 0T RS ). (3.27)

Let us calculate the other necessary term which is

OF 1
3,V Y, (aRM> = 4,,V'V, (ng - EFR) (6205 — 8467
po

+ 29,V'V, [Fg (RIS — 00RS + 65 R, + 0{R] — 6 RY)] . (3.28)
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To continue, firstly we calculate the first part of the previous equation which is
1 (e (e
9oV Vo (ng + 5]-"3) (6405 — 6567
1
= (gtu*VA — g,,)\v)‘vu) (./—"gR + 5]"}{)

1 1
—g,,0 (ng + QFR) ~V,V, (ng + §IR> ,
(3.29)

and then calculating the second part we get

2gupv>\va []:g (RZC)I\ - 5,ZRK + 5,ZR§ + 5§RZ B 5§RZ)} (3.30)
=2V 'V, [Fg(R,%n — GRS + Rurd] + Rogua — Ru6%)).

Summing up these two equations we have

OF 1 1
A
gl,pV V(, (m) = guyD (R.Fg —+ §FR> - VVVH <ng -+ 5?}3)
+ 2V, [Fg (R, n — GRS + Ruadl, + RS gus — Ru03) |
1
— (QMVD — VVVM) (R.Fg + 5.7:3)
2 (Rug,u)\ - g;wRi + Ru)\ég + RZQVA - R;wéi) VAVO'FQ
2FgVA VR, i = Vol(guwR3) + Va(Rur8]) + Vo (R 1)

v opX

Vo (R3] (3.31)
Now to continue the calculation we can simply write

VoR,% 5 =V Rygur = —V, R, 5 (3.32)

v opA

and using the Bianchi identities

VoR%g0, + VaR%,, + V,R,, =0, (3.33)
VoRg, + Vo, — V,Rgy =0, (3.34)
we get
VoR?,,\ =V Ry — ViR, (3.35)
Hence we have
VR, = ViR, — VR, (3.36)

Then we conclude that

VURVJMA - va(guuR(/{) + VU(RVA(SZ)+VU(RZQVA) - V0<Ruy(sj\')

) ) (3.37)
:§gl/z\vuR - §guuv/\R
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where we used V¥R, = %V,,R .

Substituting Eq.(3.37)) into Eq.(3.31)) we get

oOF 1
9pVVo (@) = (9u0-V,V,) (ng + 5]—%)
+ 2(R,% i — 9w RS + Rundl, + ROgon — Ruws) VIV, Fg

1 1
+ 2F;V* (éng,ﬂ — 5gww%)

= (9.,0-V.,V,) <ng + %f3> + 2R, V'V, Fg

— 20, R{VAV, Fg + 2R, VY, Fg + 2RV, VY, Fg

— 2R, 0F; + FgV, VR — Fgg,,OR

= (0= YV, Fo+ 3 (0 = V,V,) Fr
2R,% \V Vo Fg — 20, RIV Y o Fg + 2RAV VY, Fg
2R,,V, YV’ Fg — 2R, OF. (3.38)

+ o+

Hence we can write

of
AR

1
(gupv)\vo - guavAv/) :R (g;wlj - Vuvu) fg + 5 (guuD - vuvu) JTR

N —

2R, VAV, Fg — 20,, RV Y, Fg
+2R,,V°V . Fg + 2R,V ,V° Fg — 2R, O0Fg
(3.39)

and the similar term is simply

of
8R,§;;

(gupv)\vv - g,wV)‘Vp) =—R(g0-V,V,)Fg

N | —

1
—3 (9,0-V,V,)Fr

—2R,% \V*VFg + 2, RAVV . Fg
—2R,,V°V,Fg — 2R,V ,V° Fg + 2R, 0F;.
(3.40)
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We also need to calculate the term

A o v o v
a R,LPLU P 14

= (ng + %]—"R) (6705 — 6567) R,
+ 2Fg (RS — 04RS + 65 RS + 05, — 05R0) R,
— (FoR+ %]—"R> (R =R

+ 275 (RSR,,, — RSR,, + RAR,), + RiR, = RIR,,)

= (FoR+ %]—"R> (R, = Ro)

+ 27 (RSR,,, + 2R$R,,, + 2R0R, ), )

v

po v pu v Ap v

1
— 2R, (FoR + 5&)
+2F, (ng R +2R PR + QRZRJ,,> . (3.41)

Similarly we compute

af A 1 o A A o
2y = 2R (FoR+ 3 Fn) = 2Fg (RIER ., + 2R, B + 2RI R, ).
po
(3.42)

So the field equations with a source follow as

2R (g0~ V,V)Fo + (000 = Vi) F 2B,y + BT ) VYo T

— g BV, Fg + 4 Ruo VoV, + Rug V7V, ) Fg — 4R, OF

pp v po v

1 i .
+ 2Ry, (FoR + 55) ~ 275 (2R, RS + 2R Roy + RISR,,,)

1 K
SOl = 5T (3.43)

or we can recast them as

| 1
Fr (R,“, - §QMVR> + §9uu <«FRR - f)
A o o A
—2Fg( = RuR+ 2R, RS + 2R R + RISR,, )
+ (900 = VuVo) Fr + 2R(g0 = V,V) Fo + 4( Rio V7V,
BV, = g BV Vo — BuD) Fo +2( R, 0 + R, ) VAV, Fg = T
(3.44)

Still, these field equations can be written in a simpler form using the Weyl tensor and

some simple tricks.
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The Weyl tensor in four dimensions is

1
C;w'l/)\ = R/w'l//\ + 5 (guARl/a + gal/R,u)\ - guuRa/\ - gU)\RV,u)
1
+ 6 (g,uzzgka - g,u)\gl/cr) R.

Then we simply compute that

(3.45)

(QCMUVA - Ruauz\) VUVA = RMUV/\VUVA + gu)\RVUVUVA + gUVRu/\VUvA

— GuwRAVV*—R,0O
1
+ 3 (9RO~ RV,V,).

(3.46)

For the next calculation let us start with the definition of the Gauss-Bonnet invariant:

G — R, R"? + 4R, R" — R2=0.
Using
af 1 af 1 af 1 Hup pv npov
RogRY" = §RQ5R + iRagR = §(R Rp - R Roo) G
and G = ig“’jg g and R* = RR" g, we can write
1
(Zg“”g — R*PRY, +2 (R Ry — RM7R,,) — RRW) G =0
and we conclude that
g"'G = 4RR" + AR"PR! — 8 (R"RY — R"""R,,) .

Using the above equations we find the field equations as

1
Fal + 59m(GF5 = F) + (90 = ¥, ) F

4 [(20,WA — RWQ \Vihvo %(gwﬂ _ vuvy)} Fo = 81GoT,

where

1
Fr=50R-1) (VR(YR —2) —99°G - 2) ,

9
Fg = ZV(—VQRQ +97%G + 2vR + 2)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

for our special action Eq.(3.19). And for the trace of the field equations we simply

compute
RFg +2GFg — 2F + 30Fr — 4G, V'V Fg = 8nG(T.
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The trace equation, when computed in the vacuum state of a spacetime, give us the
vacuum equation (namely the maximally symmetric solution) to study and interpret
the vacuum state of the universe. In the following section we will study the maximally

symmetric vacuum solution for our Born-Infeld universe .

3.1 Maximally Symmetric Vacuum Solution

In Einstein’s theory, the vacuum solution is maximally symmetric i.e. the spacetime
is homogeneous and isotropic in 4 dimensions (and so the curvature is constant at
every point) [1]. In this section, we search for the maximally symmetric vacuum
solutions of our theory. As an introduction we firstly give the brief information about

the maximally symmetric spaces in general.

3.1.1 Maximally Symmetric Space{]

Suppose we choose a coordinate system x* and after a coordinate transformation we
get a new chart x’#. If under such a coordinate transformation the form of the metric
does not change then the metric has symmetry which is called an isometry. We denote

the transformed metric as g:“,(x’ ). Then the isometry can be expressed as

G (™) = g (z™) (3.55)

for all 2/#. Since the metric is a (0,2) tensor field, it transforms as

OxP 0x°
G (@) = H o oo (@) (3.56)
at a point and the inverse transformation is
ox'P ox'7 ,
G (x) = S D 9po (). (3.57)
Using the isometry property g,, () = g,-(2') we have
ox'P 0x'° ,
guy(l') = %%gpo(x ) (358)

Let us consider an infinitesimal transformations for simplicity

P =gt + el (3.59)

! In this section we generally follow the Weinberg’s calculations[28].
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where € is a small quantity; ¢ << 1 and £ is a vector field . Taking the partial

derivative of this transformation Eq.(3.39) we have,

ox'  dwh D
G = A T (3.60)

Then we substitute Eq.(3.60) into Eq.(3.58) and do the calculations to the first order;

[ 0xf &P oz’ o0& ,
gu(7) = (8:1:“ * eax“) (8x” N 6(’91:”) 9oo ()

[ 0xf Ox° oxP 0&°7 ox? &P ,
B ((h“ oz | “Ozr Oz +€8x” 8x”) po ) 3.61)
Now we can do a Taylor series expansion (to the first order):
9po (1) = o+ €€) = o) + € €% (3.62)

Ox“
and we insert Eq.(3.62) into Eq.(3.61)

gwj(l’) _ (8.1'p 0x° n €a$p 85‘7 . o0x° afp) (gpo_(l') +e gagﬂ> ) (363)

Dk Ozv | Ok Oxv | Oz dn ox®
9’ S
9(@) = 9(0) + €0, (2) 5 + egp () o + e S (36
Then we have
9’ 3 Y
o(r)=—— (1) —— + & —— = 0. 3.65
In (x)&c” = 9pu(7) OxH & ox® (3.65)
Now we need to calculate the partial derivative of §, = g,,£;
O Yoy 4o o¢°
Be = Dar & I (.60
Then we have
97 08 Ogop
- = — 7 3.67
o1 ger = dav ~ Oav ¢ (3.67)
and similarly
osr 98, O0gu .,
Iovoun — dun axﬂg ' (3.68)
Substituting above two equations into Eq.(3.65) we get
aé,u o€, agm/ 39(1# 09w
e LA S — — =0. 3.69
Oxv * Ox e Jx®  OJxv  Ox* (3.69)
Now using the definition of the Christoffel symbol Eq.(A.27) we have
9 | 06
—= 4+ — =21V ¢, =0. 3.70
ox? + oxt i (3-70)

27



We can write this equation in a covariant form as
Vﬂézx + vug,u = 07 (371)

which is named as the "Killing equation”. And ¢, is the Killing vector accepted by
the metric g, when there is an infinitesimal isometry.

Now we can continue to our calculation using the Eq.(A.39); rewriting for the Killing
vector we have

Vo Viby = VoV, = 6 R, . (3.72)

We can also use the cyclic identity Eq.(A.9));

R, + R, +R,, =0 (3.73)

puv

Then we have
V, V5, — ViV, +V, V.6 -V, VL +V,V.E -V, VE =0 (374
Now using Eq.(3.71)), the above equation simplifies to
V.V, +V, V.6 +V,V,E =0. (3.75)
Then Eq.(3.72) turns out to be
= V. V& =V, V.8, = VUV, 8 = &R, (3.76)
Again using the Killing equation Eq.(3.71)) we find
V. V& = =& R, (3.77)

Up to here we studied the Killing vector at a point in the spacetime. Now let us
give a short analysis on this equation. This analysis will enable us to study all the
existing Killing vectors the metric has. Suppose we know the Killing vector §,, and its
covariant derivative V, £, at some point A in n dimensional spacetime. And assume
that we know the metric; we can calculate the Christoffel connection and the Riemann
tensor. Then we can simply find the partial derivative of the Killing vector using the
definition of the covariant derivative (6,,§M =V.,&, + Fﬁuﬁa) . By the Eq. we

can specify the second covariant derivative of the £, such that it is proportional to &,:
V. V,& &, (3.78)
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We can continue to calculate the higher derivatives by taking derivatives of Eq.(3.77):

VoV V6 = =Val&R7,,,) X Vaés. (3.79)

And similarly
VoVaV, V8 o Ve Vi&s &, (3.80)
VVeVoV, V€ o Vi, (3.81)

Consequently, we can specify the higher derivatives of the &, in terms of &, and
A\

Considering the Eq.(3.71)) we simply observe that V,, is an antisymmetric rank-2
tensor and by the antisymmetry property it has n(n — 1) /2 linearly independent, non-
zero components. Now we try to do a Taylor series expansion of a Killing vector &,

in the neighbourhood of a fixed point A

§ul@) = A+ () = §(A) + "0 (A) + ... (3.82)

or

& (x) = XJE(A) + Y,0V,E5(A). (3.83)

m

Here ( is a vector field. X 5 and Yfﬁ are expansion coefficients independent of £3(A)
and V,£5(A). Now we do a simple calculation: £3(A) has n components and besides
there are n(n — 1)/2 derivative terms. Then we find the total number of the terms

constructing the Killing vector field as

nin—1)  n(n+1)
n + 5 = 5 . (3.84)

This is the maximum number of linearly independent Killing vectors that a spacetime
of dimension n may possesses. When we add two or more Killing vectors with con-
stant coefficients, the resultant vector is again a Killing vector. As a final point we
conclude that if we know &, and V,§,, at a point, we can calculate the complete form
of the Killing vector field £, ().

e Homogeneity: For a homogeneous spacetime, there is no special point. Then we
can assign any existing Killing vector to any point we prefer.

e/sotropy: 1If at a fixed point, the Killing vector §, vanishes and if there is no re-
striction on V,§, except the antisymmetry property by the Killing equation, then it is

called as an isotropic spacetime. It means there is no special direction.
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o If the space is isotropic at any point, then it is also homogeneous.

e If the spacetime is both homogeneous and isotropic then it has the maximum num-
ber of Killing vectors or vice versa.

To investigate the Killing vectors further, we need to solve the Eq.(3.77). Instead, we
can obtain a long but a simpler equation. We use the integrability (or compatibility)

condition. For a (0,2) rank tensor the integrability condition is stated as Eq.(A.44):

Vo VX, = —R, X\, — R, X, (3.85)

PO vap

We rewrite this equation for V€, ;
VoV, V6 =V, VoV, 8 =—-R°,,, Vo6& — R,V o (3.86)
Now taking the derivative of Eq.(3.7/) we also have

VoVl = =R Vabs — E,VuR ). (3.87)

pvp Vo

Substituting this equation into Eq.(3.86) we get

V}L&o‘ - Ro—uypvocga + Rapau 0'51/ + Ro-ya,uvpgd = (vOéRaqu - V,URO-oeVp)go"
(3.88)
And inserting Eq.(3.71)) into above equation we find

(R? 0,00 + R%,0,00 — R7,,,,60 — R%,..00) Vs = (VaR%,,, — ViR 4,0

avp®u vau®p pvpZor pap v
(3.89)
This is the final equation we should solve to obtain the Killing vectors and to solve this
we need to write down the equations by component analysis. Inserting the Riemann
tensor components, Eq.(3.89) must hold. However, this is not always possible. If the
metric has the maximum number of Killing vectors Eq.(3.84), then the spacetime is
named to be maximally symmetric.
Now our aim is to construct the Riemann tensor using Eq.(3.89). We will choose a
point to study. Considering the isotropy property that the Killing vector may vanish
at a point the right hand side of Eq.(3.89) could be taken as zero. For the other side,
we firstly anti-symmetrize the multiplier terms with respect to 5 and o then equalize

to zero:

8+ R, 00— 68— 68 =R, 0T+R, 67— 60 — 4

cwp “w vap”p ,u,l/p e’ pau v avp vau~p m/p « pau v

(3.90)
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Now we pass to the left hand side Eq.(3.89) which also becomes zero. By homogene-
ity condition we can choose any Killing vector at this point. Assigning a non-zero
Killing vector we find

VR, = VR0, (3.91)

We turn back to Eq.(3.90) and contract 5 and p. For n dimensional spacetime we
have,

(7’L - 1)Raaup - Rpagm/ - Ruagap (392)

where we used the property Eq.(A.9)

Raowp 4 R°

vpa + Rgpoa/ =0. (393)

Since the Riemann tensor is antisymmetric with respect to o and « in Eq.(3.92) we

also anti-symmetrize the right hand side:

Rpagau - Ruagap = _Rpagoa/ + Ruagap- (394)

Contracting o and v we get

R
Rpa = ggap- (395)

Finding the Ricci tensor, now we can substitute into Eq.(3.92);
Ry = —— ) (3.96)
cavp — TL(TL — 1) 9paYov 9vaYop) - .

This is the Riemann tensor in a maximally symmetric n dimensional spacetime.

Now in order to gain more information about the scalar curvature R, we calculate

Eq.(A22):

1 R 1
pa _ —opep ) — gna _ Zgrep ) —
Vi (R 2g R) Vu (ng 2g R) 0. (3.97)
Since R is a scalar we simply write
1 1
———)0,R=0 3.98
(n 2) . ( )

then we conclude that R is a constant. Now, to find R, let us calculate the field
equations in 4 dimensions. Einstein tensor is computed to be

1 R
le - §g‘w,R = —Zg,w. (399)

For a vacuum solution the Einstein tensor should vanish. Then we could fairly inter-

pret this equation as a cosmological Einstein equation taking A = R/4 [23]]. Finally,
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in a 4-dimensional maximally symmetric spacetime Riemann tensor can be written

as [l18]]

A
g(guugap - gupgau) (3100)

Ryovp =

with its contractions R, = Ag,, and R = ¢""R,, = 4A. Here A is the effective

cosmological constant. Then the Gauss-Bonnet invariant becomes

8
G = R0, R"°" — 4R, R™ + R? = gA?. (3.101)

3.2 Maximally Symmetric Solutions

The Riemann tensor in a maximally symmetric 4-dimensional spacetime is written as
Eq.(396)

R
Raaup = E (gpagou - guagap) . (3102)

Then we can list 3 different spaces according to the value of the R [22],[23]]:

o If R = 0, the spacetime is Minkowskian ([254., = 0, flat universe);

e If R > 0, we have a positive curvature and the spacetime is said to be de Sitter ;

o If R < 0, we get an anti-de Sitter spacetime implying a negative curvature.
Besides, these 3 spaces are the solutions of the conformally flat cosmological Einstein
field equations [22]. Let us show this briefly. For a conformally flat metric we have

Coavp = 0. Then the Riemann tensor becomes

1 1
R,um/)\ = 5 <_g,u)\Ryo - gouRy)\ + g;wRa)\ + gcr)\RZ/,u> + 6 (_g,uug)\o + gu)\guo—) R.
(3.103)
When we substitute R, = Ag,, = iRgW we get
R R
R,um/)\ = g (_guAgVU — GovGux + GuvGo + gaz\gu,u) + E (_guug/\a + g,u)\gua)
R
= 13 Gulor = Gaguo) (3.104)

With this expected Riemann tensor we finalise the proof. Then we continue with
short introductions to de-Sitter and anti-de Sitter spacetimes before presenting the

calculations of the maximally symmetric vacuum of the quartic theory.
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3.2.1 de Sitter and anti-de Sitter Spacetimes

A simple example as a start: While studying a 2-sphere we use the idea of embedding
to be able to visualize this surface. Let us remember the embedding tool [25]:

The 2-dimensional sphere is defined by
o]+ x+as=1? (3.105)
and it is embedded into 3-dimensional Euclidean space with the flat metric
ds* = da? + dxj + daj. (3.106)
Or, when we write the ambient (embedding) space in spherical coordinates we have
ds* = dr® + r2d6? + r* sin? 0d¢?. (3.107)
Fixing r = R, we get a hypersurface with a metric
ds* = R*df? + R?sin® §d¢? (3.108)

which is the ordinary sphere. Of course the metric Eq.(3.108) is not valid everywhere
on the two sphere as it is a curved surface.

We can use embedding in higher dimensions also.

3.2.1.1 de Sitter Spacetimes

For a de Sitter spacetime we need a 5-dimensional Euclidean metric as an ambient
space

ds® = da* + dy? + d2* + dw?® + dv?. (3.109)

Embedded hypersurface is then defined by the equation
224y 4 22w ot =dP (3.110)
Here we do a coordinate transformation v = ¢t [18]], then we have
4y + 22w -t =d% (3.111)
Now the metric takes the form
ds® = dz® + dy* + dz* + dw* — dt”*. (3.112)
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Now we do a transformation such that [22]]
t' = a sinh —,
a
t
r =a cosh — cosy,
a
t
y = a cosh — siny cos#, (3.113)
a
t
z =a cosh — siny sinf cos ¢,
a
t
w = a cosh — siny sin@ sin ¢.
a
Then we get the metric
t
ds® = —dt* + a® cosh® — (dx* + sin® x(d6” + sin® 6d¢?)) (3.114)
a

which is named as de-Sitter (dS) metric.

3.2.1.2 Anti-de Sitter Spacetimes

This time the subspace has a constant negative curvature. We have
—*+ P+ 22w -0 = —d? (3.115)
embedded in a space
ds* = —dz® + dy® + d2* + dw* — dv*. (3.116)
After using the transformation [22]

ot
x = a cosh r’ sin —,
a

y = a sinh r’ cos0,
2z = a sinh 7’ sin 0 cos ¢, (3.117)
w = a sinh 7 sinf sin ¢,

v =a cosh 1’ cos E,

a
our metric turns out to be

ds® = —cosh® r'dt* + a® (dr"* + sinh® 1’ (d6” + sin® 0d¢?)) (3.118)

and called as anti-de Sitter (AdS) metric. Here we can do one more transformation

that a sinh 7’ = r to get a different version of AdS metric:
2

2 71
ds? = — (1 + %) dt? + (1 + %) dr® + r*(d6? + sin® 0d¢?). (3.119)
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3.2.2 Maximally Symmetric Vacuum of Quartic Gravity

After giving an introductory review of the maximally symmetric spaces in general, we
turn to quartic gravity. Now finding the Riemann tensor in the maximally symmetric

spacetime we can calculate the background values of the fields:

Fr=(1—4\)(1+2))? (3.120)
9y 2
Fg = 7(1 +2))%, (3.121)
1
F=_ [(1+2)0)" — 4 — 1], (3.122)
i

where we use a new notation \y = YA and A = yA, with Ay and \ being dimension-
less.

We can write the Eq.(3.54) for a vacuum solution as
RFr+2GF; —2F =0 (3.123)

since the derivative terms do not contribute. When we substitute the background fields

we obtain the final equation:
ANV AN — A+ X = 0. (3.124)

We will try to solve this quartic equation and certainly take just the physically allowed
ones. At this point this vacuum equation could be considered to have 4 possible roots
being a quartic equation. The discriminant value plays an important role while solving

an equation and is computed to be
A = 16(1 + 4X00)*(—11 + 64)). (3.125)

Now without solving the Eq.(3.124)) we will find out that this equation has just one

viable root using the discriminant analysis as mentioned in Appendix A.4.

3.2.3 Particle Spectrum of the Theory

In order to investigate the vacuum equation further we search for the excitations about

the vacua using the linearization procedure.
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We consider the metric g,,, as a combination of a background metric g, and a per-

turbation A, (linearized form of the metric g, ) about this background;
G = Gy + - (3.126)

It is shown that h,, transforms like a component of a tensor field Eq.(C.6). Then
we can consider in a different perspective that h,, fields are propagating around a
background metric g, in vacuum [14]. With this approach we can investigate the

excitations around the vacuum and study the particle spectrum of the theory.
We firstly linearize F'r Eq.(3.52) such that

1 — — —
(Fal = 5(R)OPR ~29R ~97°G - 2)

1 — —
+ SR - 1)(2v°RR;, — 2vRL, — 99°Gr)
= —GyA(1+2)) Ry (3.127)

Here the subscript L stands for the linearized form of the fields and overbar is placed

for the background fields. F¢ and F fields under linearization are computed as
9 .
(Fg)r = 77(1 + 2N Ry, Fr=(1+2)\)’Ry, (3.128)

and the linear form of the Gauss-Bonnet invariant is

4
Ggr = gARL- (3.129)

The explicit calculation of the Eq.(3.129)) is shown in Appendix B.3.
Now we can linearize the trace equation to see if there is a spin-0 mode of excitation

about the vacuum. Taking 7}, = 0, linearization of Eq.(3.54) takes the form below :

(Fr)LR + FrRy +2G1Fg + 2G(Fg)r — 2F 1 + 30(Fr)sL
— 4R, V"V (Fo)r + 2RO(Fg), = 0. (3.130)

Inserting the linearized fields, all the [JR;, terms cancel each other, then we conclude
that our theory does not have a spin-0 mode of graviton. And the remaining terms
just reduce to

(142X (=1 +4\)R;, = 0. (3.131)

Hence, the linearization of the trace equation produces a simple equation of R, and

we require to find out this gauge invariant term (invariance of 77 is discussed in
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Appendix C.3). Then we choose R = 0 and \ # —% S F }1.
Now we linearize the field equations Eq.(3.51)) fixing R, = 0. We again take 7}, = 0

since we study the vacuum case. Then we have
— — 1 N —
FR(RMV)L + (]:R)LRW + §hw(g ]'-g - ]:)

1 o _
+ ig/,w (gLfg + g(‘Fg)L - *FL) _'_g#ulj(fR)L - /Lvl/(fR)L

_ o R, __
+4 [ (2C10mn — Buown) V'V + = 3,0-V9)| (Fole=0. (3132

The background valued Weyl tensor is zero i.e. ﬁlwl, » = 0 for the maximally sym-
metric background. Since we admit Ry, to be zero we also have (Fg), =0, (Fg)r =

0, Fr =0, and G;, = 0. The linearized field equations simplify to
Fr(Ru)r + %h,w(??g ~F)=0. (3.133)
Substituting the background values we have
(1—4N)(1+20)* ((Ru)r — Ahy,) = 0. (3.134)

Then under the linearization process we recovered the linearized Einstein equation
(with Ry, = 0) which is (R, ), — Ah,, = 0 (studied in Appendix B.2). Then we
can inherit from the Einstein’s theory that our theory also has a single massless spin-2
excitation (also mentioned in Appendix B.4) and no other modes. If we couple the

Eq.(3.134) to a energy-momentum tensor we find the effective Newton’s constant:

1

RTINS IVERL G139

Gepr =

This equation confirms our previous conclusion inferred from Eq.(3.131) that A # —%

and \ # Z—i. And Newton’s constant should be positive for attractive gravity which

results in a additional restriction that A < }1. The relation of G.sr/Gy vs. A can

be seen in Figure 3.1l One important observation is that the measured (effective)
Newton’s constant Gy depends on the effective cosmological parameter A and they

are inversely proportional as G ~ —%.
Now we can go back to the Eq.(3.124)) and study whether we have a unique viable

solution. The last restriction (A < %) automatically implies that \g < (15711 using

Eq.(3.124) and the discriminant Eq.(3.125) takes a negative value which means that

we have 2 real roots. However one of the real roots does not lie on the allowed region.
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Figure 3.1: Graph of G.s;/Gy vs A plotted according to Eq.(3.135).
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Figure 3.2: Graph of A vs )¢ plotted according to Eq.(3.124).
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Then we conclude that our vacuum equation has just a single physically acceptable
solution as desired. Figure [3.2] shows the graph of A vs )\ according to Eq.(3.124).
Since \ ~ (—)\0)1/ 4 as we give a large negative number for )\, the gap between A
and )\, increases dramatically and this is not an unexpected result for the modified

curved geometries.

3.3 Truncation of the Theory

We remark again that having a viable unique vacuum is a crucial step for an extended
gravity theory in order to survive as an ultimate quantum gravity theory that is re-
quired to be able to study the universe properly. Certainly, it is more challenging to
keep this significant property even when we truncate the theory as we do below. Our
theory is a quartic theory i.e. we have terms up to O(R?) in our Lagrangian density.
When we perform a truncation, for example, to the O(R3) or O(R?) then we can
study our theory in lower energies also.

Let us start with the cubic truncation. Keeping the terms up to the O(R?) we have

1
F=R—2M\+ gfyg + 2729’}% — 57 R, (3.136)
9
Fg =21 +7R), (3.137)
9 2 3 2 2
Fr=1+37"G = 57"k, (3.138)
— 9
Fo = 5r(1+4N), (3.139)
Fr=1-12)% (3.140)
— 2
F= ;(2)\+6)\2+8>\3 — o). (3.141)

We will restudy the vacuum equation for the truncated versions of the theory to see
whether our theory still remains viable. When we substitute the relevant terms to the

Eq.(3.123) we get the new vacuum equation
AN — X4+ X = 0. (3.142)
We again need to linearize the fields:

9
(Fr)r = —6YARyL, (Fg)L = EWQRL, (F)r = (1 +6\+12)%)R;.  (3.143)
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Substituting the fields into Eq.(3.130), again all the (R, terms vanish and we finally
get
(=1 4+ 12\*) R, = 0. (3.144)

As mentioned before, R; = 0, then we find that \ # iﬁg-

And Eq.(3.133)) becomes
(1 —1202)(R,) 1 + %hw()\o —2X+16)%) = 0. (3.145)
Using the Eq.(3.142) we get
(1= 12X%) ((Ru,)1 — Ahy,) = 0. (3.146)

Then, by cubic truncation, we obtain the linearized Einstein theory (with a cosmolog-

ical constant) imposing an effective Newton’s constant

1

- G, 3.147
1— 12)\2G0 ( )

Gepr =

The requirement of positive Newton’s constant gives a restriction that _ﬁg <AL

ﬁg- Using the prior finding that A\ < i, we actually have

1 1
——= <A< - (3.148)

2V/3 4
Then we compute that _ﬁg <A < 1—36 using the Eq.(3.142). Again considering the

prior result that Ay < & we get
——— < A < —. (3.149)

And the discriminant value is computed to be A = 1—16(1 — 27)\2%). At cubic truncation
we have a single solution in the allowed region.
At O(R?) we have

F=R—-2M\)+ gvg (3.150)

which is the Lagrangian density for the Einstein-Gauss-Bonnet theory with a cosmo-
logical constant. And truncation to the O(R) gives the cosmological Einstein theory.
By truncation we mean that we have studied the theory at O(R?) and O(R?) in addi-
tion to O(RY).
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CHAPTER 4

A BRIEF INTRODUCTION TO BLACK HOLES

An ordinary star balances its gravitational attraction with thermonuclear reactions by
burning its source at the core of the star. After the burning steps, gases turn into
denser metals. And finally when all the fuel is used up and transformed to iron we
can list the alternatives for the fate of the star [[13]], [26]], [32]], [33] :

e If the mass of the star is under the Chandrasekhar limit (it is around 1.4M, where
M 1s the mass of the Sun ), it can balance its gravitational attraction by electron
degeneracy pressure (due to the Pauli exclusion principle). Since it is an unlimited
source of pressure, this star could continue its life in this mode. This kind of stars are
named as white dwarfs.

e If the mass of the star is heavier than the Chandrasekhar limit, it can not balance its
gravity and collapses. During this collapse, the neutron density increases and the star
becomes a neutron star. Then the neutron degeneracy provides the stability.

o [f the mass of the star is above 3 M., it continues to collapse and forms a black hole.
It exerts such an extreme gravitation that anything (including photons) can not escape

from this attraction once it passes through the black hole’s event horizon.

4.1 Schwarzschild Black Holes]

Birkoff theorem states that the only spherically symmetric vacuum solution to Ein-

stein’s theory is the Schwarzschild metric:

2GM

r

_2GM

r

~1
ds* = —(1 — Ydt? + (1 ) dr? + r?d6* + r?sin® 0d¢®.  (4.1)

' 1In this section we generally follow the calculations of [13]] and also [14]].
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Although it is not assumed previously, we see that Schwarzschild metric is static
i.e. it is independent of time. As discussed before, » = 0 is a real singularity and
r = rg = 2G'M is called as Schwarzschild radius. If we apply this solution to our
Sun for example, we find that Schwarzschild radius of the Sun (r_g@) 18 smaller than
its radius () :

T 5 — 2G@M@ < To (42)

Since the Schwarzschild metric is found for a vacuum solution, we can not use it for
this kind of objects but we can approximately use it as an exterior solution in the
static spherically symmetric case. We will in this section assume that we are studying
a compact object that is applicable to the Schwarzschild metric.

Let us consider the Schwarzschild metric while passing from the » > rg region
through the » < rg region. Firstly, for interior regions the sign of the g, and g,
components change:

gu: 1ts sign is (-) for r > rg; leads to a timelike coordinate whereas it is (+) forr < rg
which is spacelike.

g2 1ts sign is (+) for r > rg; leads to a spacelike coordinate whereas it turns to a
timelike coordinate for r < rg.

This odd behaviour of coordinates is a sign of improper coordinate chart. Anyway,
let us study the geodesic equations to probe deeply. For simplicity we choose radially

moving light rays. Then we have df = 0, d¢ = 0, ds* = 0 and the metric becomes

2GM 2GM\ !
0=—(1- G )dt2+(1— G > dr? 4.3)
T T
which yields
dt 1
SH S (4.4)

T 2GM

Ty
For an outgoing photon as ¢ increases r must increase since r is measured from the
origin of the source. Then (+) sign refers to the outgoing ray and (-) sign refers to the
incoming one.

Now let us start solving the Eq.(4.4]) for an outgoing photon;

" 2GM

=2GM ) 4.
/Odt G /T_2GMdr+/d7" (4.6)
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Then we simply calculate that

1

2GM

ti =r1+2GM In ’ — 1’ + const. 4.7

for the outgoing photon (¢y, r1). For the incoming photon (5, r5) we find

T2

2GM

to = —1r9 —2GM ln‘ — 1‘ + const. 4.8)

We can list some of the outcomes of these equations:

eThere is a singularity at » = 2G'M as seen in the metric equation.

e If t — —t, incoming photons are replaced by outcoming ones and vice versa.

eFor the outgoing ray;

If » < 2G'M : when r increases, ¢t decreases!

If r > 2G M : when r increases, ¢ increases also.

eFor the incoming ray;

If r < 2G M : when r decreases, t also decreases!

If r > 2G'M : when r decreases, ¢ increases.

The incoming and outgoing rays are plotted in Figure 4.1} the apparently singular
point (r = 2G'M) can be recognized easily (dashed line). We also see the odd be-
haviour of the rays coming from a point r > rg; these rays need infinite time to cross
this singular point. The incoming rays inside the Schwarzschild radius move until
they reach to the real singular point = 0. An outgoing ray at r < rg can move to the
singularity (r = 2G M) but it takes infinite time to cross this point; this means that it
is actually trapped inside an unseen surface with radius r = rg.

Peculiar results might be due to the inappropriate coordinates. Then let us choose a
different chart for a better understanding. We continue to study radial null rays and

introduce a new transformation:

_ r
f—tT2GMIn (2GM—1), (4.9)
and
_ 2GM

We firstly consider the (+) sign and calculate the new metric

2GMY\ —» 4GM . _ 2GM
ds® = — (1 — G ) dt + G drdt + (1 + G—> dr® +r2df? + r? sin® 9d¢2,
r r r
(4.11)
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Figure 4.1: Incoming (blue solid lines) and outgoing (red dotted lines) rays in
Schwarzschild coordinates. The dashed vertical line indicates the event horizon.
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written in terms of the advanced Eddington-Finkelstein coordinates (£, 7,0, ¢). Then
the singularity problem at » = 2G'M seems to be solved. We can study the metric for
the region 0 < r < oo. Now let us study radially moving null rays for this metric.
Taking ds? = df = d¢ = 0 we obtain

—_— 4.12
dr? r dr ( )

r T

(7’ - 2GM) df®  AMG dt (7’ + 2GM> 0
Solving this equation by ordinary methods we find two solutions. For the incoming
photons we have
dr _ 1 (4.13)
dr '
which yields

t = —r + const. (4.14)

The second solution corresponds to outgoing rays

dt  r+2GM
— = 4.15
dr r—2GM’ (4.15)
and when we solve this equation we obtain
f:r+4MG1n‘2C§M—1’+const. (4.16)

Then we see that the incoming photons can cross through the surface r = 2GM
(Figure4.2). Outgoing rays at r < 2GM region never pass through this surface.
Outgoing rays at » > 2G'M region can travel to infinity. We conclude that r = 2G M
serves like a one-way membrane. This boundary is called as the event horizon which
is a defining property for black holes.

Now we turn back to Eq.(.10) and study the remaining alternative which is

2GM

K T

dr 4.17)

then the metric becomes

2GMY\ o 4AGM , _ 2GM
ds? = — (1 — ) dt* — drdt + (1 + —) dr® +r2d0* +r? sin® 0d¢*.
T T T
(4.18)
These coordinates are named as the retarded Eddington-Finkelstein coordinates.

Next, we search for radially moving null rays again:

(4.19)

r dr? rodr

(r—QGM) dt’  AMG dt (r+2GM) 0
— — =) =0
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Figure 4.2: Incoming (blue solid lines) and outgoing (red dotted lines) rays in

Finkelstein coordinates indicating a black hole.

Eddington
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Figure 4.3: Incoming (blue solid lines) and outgoing (red dotted lines) rays in retarded
Eddington-Finkelstein coordinates indicating a white hole.
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The first solution implies the outgoing rays that dt/dr = 1, so passing through the
singularity these rays could travel to infinity (Figure{4.3). The second solution gives

the incoming photons that
dt  r+2GM

— = 4.20
dr  —r+2GM (4.20)
Integration yields
. —r
=—r—4MG1 1 . 4.21
t r GHQGM+ ‘+const ( )

This time we see that incoming photons at region » > 2G'M do not pass through
r = 2G M surface. These objects are called as white holes.

These are the basic calculations on general black holes in Einstein’s general relativity
theory. Now we will study the black holes within the Ricci flatness assumption in our

modified quartic theory and present an approximate spherically symmetric solution.
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CHAPTER 5

RICCI FLAT, BLACK HOLE AND APPROXIMATE SPHERICALLY
SYMMETRIC SOLUTIONS OF THE QUARTIC THEORY

5.1 Ricci Flat Solutions

In this section we continue to study the solutions of Einstein’s gravity to search
whether they also solve the quartic theory. For the vacuum case (7},, = 0) and with
Ay = 0, Einstein’s theory reduces to finding the Ricci flat (12, = 0) metrics. When

we recalculate the fields taking into account these assumptions we have

9 9 9 9 9
708 (1 B 172g) Fo= (14 00%0), Fa=14546. 6D

And the Gauss-Bonnet invariant turns out to be the Kretschmann scalar, for Ricci-flat
metrics,

G =Ry, R"". (5.2)

Since G, = 0 and T}, = 0, trace of the field equations simplifies to
26Fg —2F +30Fr =0 (5.3)
and substituting the fields we get a nonlinear wavelike equation for G
3 2
0G + 5@ =0. (5.4)

While solving an equation, we can always discard the undesired solutions and keep
the physically good ones. With this reasoning we can eliminate the singular solutions
of Eq.(5.4) even if there exist any. Then, we can conclude that our theory does not
have a Kretschmann scalar-singularity. Recalling that this kind of singularity arises in
Schwarzschild solution unavoidably, we see that our theory is free of a Schwarzschild

singularity. Of course this is also true for the rotating (Kerr) solution which we have
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not discussed here.
Now this time let us find the traceless part of the field equations. We firstly write the

field equations for Ricci flat metrics:

1

59(GFg = F) (908 = ViV, ) Fr+4(2Cs00n = Bron | VIV Fg = 0. (5.5)
When we insert F, Fr and Fg we have

9
gguﬂgQ + (90— VuV,) G+ 187C,6,aVIVG = 0 (5.6)

and then substituting the Eq.(5.4) we find the traceless part of the field equations in

Ricci flat spacetime:

1
(Zglﬂ/D - vuvl/) g + 18’YC’MO'V)\VO-VAQ =0. (57)

As a final point, Ricci flat solutions survive in our theory; G being the Kretschmann

scalar and satistying Eq.(5.4) and Eq.(5.7).

5.2 Black Hole Solutions

The fact that our theory does not include a Schwarzschild singularity does not mean
that our theory is free of all kinds of singularities. Still, we can search for a black hole
type solution to investigate the theory better.

We consider a general static metric
ds® = —N?dt* + hapdz“da’. (5.8)

Here h,y;, is the 3-dimensional (spatial) part of the metric, so the indices a and b de-
notes the 3-dimensional spacetime. /N and h,;, are the functions of spatial coordinates,
since we assume staticity. For a black hole study we will use the method used in [19],
[20], [21]. First of all we need a mathematical rewriting to continue. Considering
a general coordinate dependent scalar i) = 1)(x,) we can do the simple calculation

below
Dw(%) = guyvﬂvyw
= ¢"VoVo + hV, Vi
= g™ (0Vot — T3 V) + h*V, Vi)
= —g"T5Vab + h™V, Vb (5.9)
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since 1) is a time independent scalar i.e. Vo = Jpip = 0. Substituting I'j, =

sh®9,N? = h®* N9,N we find the result
1 1
e(z,) = mh“bNavam + hV Vb = VOV 1) + Nhabavaaw (5.10)

We finally derived a new formulation of d’ Alembertian operator for a general coordi-
nate dependent (but time independent) scalar and we can use this new formulation to
rewrite our wave function of G. When we insert the above equation into Eq.(5.4) we
get

VV,.G + %vwvag + 2792 =0 (5.11)

To continue we follow a procedure that we multiply Eq.(5.11) by NG and integrate

over a 3-dimensional segment:
/S\/Ed% {Ngvavag +GVINV,G + %NQ?’} =0. (5.12)
After rewriting we have
/S\/ﬁd% [V“ (NGV,G) — NV*GV,G + 377]\@3} = 0. (5.13)

Now we need to interpret this equation carefully to understand whether our theory
admits a black hole type solution or not. We take the integral from the horizon of the
presupposed black hole to infinity (or a point very far away). If we decide on G to
be zero we can not think of a black hole (then we have just a flat space since there
is no gravitation any more). Back to the integral equation; the first term does not
contribute due to the Gauss’ theorem (/V vanishes at the horizon by definition and G
is taken to be zero at infinity by the asymptotical flatness). And since both N and G
can be positive or negative, we can not decide that the remaining two integral terms
are positive or negative definite. Then we allow G to survive as a Kretschmann scalar;
it does not have to vanish. We can still consider black hole type solutions. Namely,

our theory might have solutions with event horizons.

5.3 Approximate Spherically Symmetric Solutions

We assume a general spherically symmetric metric:
1
f(r)
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where f and g are functions of r only. Now, using the computer program Mathemat-
ica, we will search for spherically symmetric solutions, for the case of zero cosmo-
logical constant.

Firstly, we observe that f(r) = 1 and ¢g(r) = 1 is an exact solution (Minkowski met-
ric). Namely, we have £, = 0, here we label the field equations as £,,, for a simple
notation (&, = 871Gy T),,) .

In order to study the Schwarzschild solution we fix f(r) = 1 — @ and g(r) =
1. Then we see that £, does not vanish as expected since we already found that
Schwarzschild solution is not included in the quartic theory. For the Schwarzschild

metric one obtains

1296v2G?*m? (2Gm —r) (r® (11Gm — 5r) + 99Gm (67Gm — 32r))

Ei = —

13 ’
(5.15)
c 1296v2G?m? (r3 (2r — 3Gm) + 99Gm (11Gm — 4r)) (5.16)
" rH (2GM —r) ’ '
1296~2G?*m? (212 (3r — 7Gm) + 99Gm (41Gm — 18r
£y - 12907°G"n @3~ TGm) + 926 ) 51
g¢¢ = 599 sin2 0. (518)

One can observe that for large 7, one has

En~0O (%8), E,~0O (7%8), Eoo =~ O (r%), Esp = O (7%6)

This says that even though the Schwarzschild metric is not an exact solution, it is an
approximate solution up to O (%6) The first corrections to the Schwarzschild metric
come at O ().

The corrected, approximate solution up to O () can be found as

2GM  2592GPm*y? | 86AGIm? 1
fr=1-=— - 2 L0 (ﬁ) (5.19)
1
g(r)y=1+0 (ﬁ) . (5.20)

Here we see that, at O (ﬁ) (m =0,1,2,...), the metric does not satisfy the relation

goog”" = —1 due to the additional terms.
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CHAPTER 6

CONCLUSIONS

To remedy the short-distance (or large field) regime problems of general relativity,
there are many modified gravity models that extend general relativity. Most of these
models are built on adding powers of the curvature tensor as aR* + SR, R" +
YRuwap R™? + O(R?). Addition of these higher curvature terms do not affect the
long-distance behaviour of the theory for small «, 3, 7y... parameters but yield an im-
proved theory at short distances. Nevertheless, one can easily see that addition of
these terms drastically change some salient features of Einstein’s general relativity.
For example, beside the massless graviton in general relativity, massive gravitons,
massive scalar particles arise. Moreover, some of these particles, that contribute to
gravity are ghosts or tachyons. This is quite disturbing both from the classical and
quantum theory point of view. Another problem with these higher curvature theories
is that, generically, in the presence of a cosmological constant or even in the absence
of it, the maximally symmetric solution of the theory becomes degenerate. One can
have Minkowski spacetime or de Sitter or anti-de Sitter spacetimes with different cos-
mological constants given by the parameters of the theory. In general, if one has R"
terms in the action one has up to n different vacua. These two problems prompted
a recent research that led to a construction of higher curvature modifications of Ein-
stein’s gravity that has a unique vacuum and a single massless graviton as the only
perturbative excitation about its vacuum. A class of theories in the Born-Infeld form
was constructed that has this property. We studied a special form of the general action
taking a = 0, b = —5/2 and ¢ = —1, which is called the quartic gravity.

Using the linearization method we studied the particle spectrum of the theory. Lin-
earized trace equation gives two restrictions that A\ = yA # —% and A\ #  (with

R; = 0). Linearization procedure reveals that our theory admits linearized cosmo-

53



logical Einstein equations which ensure the single massless spin-2 excitation pres-
ence. Then we also calculated the effective Newton’s constant. This study confirms
the previous results (A # —% and \ # i) and gives a new restriction that A < }1. Then
we also concluded that \y = yAy < %. And with the discriminant analysis we see
that quartic gravity has single vacuum solution which is maximally symmetric.

Ricci flat and black hole solutions existing in Einstein’s theory were studied for our
quartic gravity. Ricci flatness condition gives an equation for Gauss-Bonnet invariant
which is the Kretschmann scalar in our calculations. This equation is noteworthy to
get rid of the Kretschmann scalar singularity which is inevitable in Einstein’s theory
leading to Schwarzschild or Kerr singularity. Our action does not have this kind of
singularity but other black hole solutions can be searched. Using Mathematica we
also showed that the Schwarzschild metric is not a solution in quartic gravity and we
found an approximate solution for a spherically symmetric metric.

BI theory has been studied in the cosmological context: The inflation era of the BI
universe was studied in [38]. This early stage of the universe was explained without
introducing a field like an inflaton. The inflation is due to the ghostlike nature of the
theory for the wrong vacuum. Another study is on the entropy of the universe [39].
Gibbons-Hawking entropy is reproduced and in this result GG is replaced by K¢

leading a increased entropy in dS spacetimes.
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APPENDIX A

SOME BACKGROUND ON TENSORS

A.1 Bianchi Identity and the Einstein Tensox|

Covariant derivative is defined as
V.V, =0V, - FZVVJ, (A.1)

V,VF=0,VF +T" V7 (A.2)

for the covariant and contravariant components of a general vector V. A simple ob-
servation is that; if there is no curvature (FZV = () covariant derivative reduces to
ordinary derivative.

The Riemann tensor is expressed as
Rl =0, —0,Ik, +Th Ty, —ThT), (A.3)

vpo

and its covariant form is

1
Roppw = B (0v0agpn — 0v089ap + 0u089ar — Oubagpy)
- gap (Faaurpﬁl/ - Foaurpb’u) . (A4)

. . . . . o
Now suppose we study on a point A in geodesic coordinates. Then taking I'; 5 = 0,

Riemann tensor at this point becomes
1
Raﬂmx - 5 (8yaagﬂu - auaﬁgau + auaﬁgau - ap,aagﬁz/) (AS)
using Eq.(A.4). Now we can see the symmetries of the Riemann tensor
Raﬂ;w - _Rﬁa,uuv (A6)

Raﬂ;w = _Raﬁu,m (A7)

' 1In this section we generally follow the book [14].
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Raﬁ,uu = Rullaﬁ7 (AS)

and the cyclic identity
Ra,@;uz + Rap,l/ﬂ + Rauﬂu =0. (A9)

Now let us take the covariant derivative of the Riemann tensor at this point A.

Vo(Ruaws) = Oo(Ruavs)

1
= 560 (0000981 — 0v08Gap + 0u089ar — 0p0agpy)
= 0,0, uap — 05081 - (A.10)
Then it can be shown that
VoRovs + ViR,ass + VRuae = 0. (A.11)

This relation is named as Bianchi identity. Since we deal with tensorial equations,
these results can be used at all other coordinates.
For a 4-rank tensor we generally have 6 contracted 2-rank tensors. However using the

symmetries of the Riemann tensor we only get the Ricci tensor

R! 5= Rag. (A.12)

«

In order to investigate the Ricci tensor let us do a (v — p) contraction in (A.9):

S+ R 5+ R, = 0. (A.13)
Rs, +0— R%,; = 0. (A.14)
Rg, — R,53 =0. (A.15)
Rz, = Ryp (A.16)

Then we see that Ricci tensor is symmetric. Now we could do one more contraction
and derive the Ricci scalar

Rl = R. (A.17)

L
”w

Bianchi identity Eq.(A.11)) can be written in a different form. We firstly contract 3

and y;
VoRl,;+ VR, +VsRE,, =0. (A.18)
— VR +V,Rao + VsRE  =0. (A.19)
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Now we perform a (o« — v) contraction , then we have

~V,R+V,R +VPRg, = 0. (A.20)
It can be written as
1
V. (RZ — §6ZR) =0 (A.21)
or
1
V., (R”” — 59”"R) =0 (A.22)
Then we find the Einstein tensor
1
G = (R”" — §g”"R> (A.23)

with its conservation V, G = 0.

A.2 Variation of the Riemann tensor

Let us take the variation of the Riemann tensor Eq.(A.3))

SRY,, = 0,0T%, — 9,6Th, + 6T\ T, + T4 0T, — 0Th Ty —Th 6T, (A.24)

vpo

Using V0%, = 9,004, + 1,000, — T'5,6T% — T4 0T, , we get

SRM, =V ,0T¢ —V,oTh (A.25)
Note that
SRy = 6(g""R},,) = 09" RS, + g RY,,
= 0g"°R},, + 9”7 (V,0T%, — V0T ) (A.26)

Now we need to calculate the variation of the Christoffel symbol. Starting from the
usual formula

Iy, = %g“”(ﬁyg@ + 00w — OpGuo), (A.27)
we find the variation as
oI, = %59“’)(&,9@ + 0o Gpr — OpGuo) + % 9"°(8,0G0p + 0509p — 9,00,s). (A.28)
Using V,095p = 0,095, — 1'1,09,, — szégm and 6g,, = —gwgl,g5g"ﬂ, we have

1
0 = 59" (Vidop + Vo0p = V,00u0). (A.29)
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Using this result we finally get
1 1
5Rg§ 25 (gapvavy - gaavpvy) 5.9&“ + 5 (gaavpvu - gocpvavu) 5gow

1 vo 1 12 Q
+ §Rm“a5g — §Rpo 20", (A.30)

A.3 Integrability Condition[]

Let us consider an arbitrary function F' and its derivative in two different coordinate

systems. The derivative of F' in some coordinate chart is % and it is % in some

other coordinates. The corresponding transformation is written as

oF oF 0z"
— A31
or't  Oxv Ox'w ( )
or in terms of a covariant vector V;
’ aZCV

Here V), is the derivative of the function /' in z#-coordinates and V/; is the one in

! . . .
x *-coordinates. And the inverse transformation can be stated as

v, =y

Naxu'

In fact this covariant vector V' is the gradient of the function /' by definition. The

(A.33)

covariant derivative of a function reduces to ordinary derivative and
vV,V,F -V, V,F =0,0,F —0,0,F = 0. (A.34)
Now we take the second covariant derivative of a (0,1) rank vector 7T),;
V, V.1, =V (V. 1,) =0,V 1,) -9V, T, 17 V,T,. (A.35)
We substitute V,, T}, = 0,71, — F‘;MTU;

v,V T, =0,0,T, — T,0,0'%, — 12 .0,T, — 1%,0,T, + T, T,

pv-opto

(A.36)
= 17,015+ 17,17,
Similarly
v,v,1,=0,0,1, - 1,01, -1 0,1, — 17 0,1, + 17,171, (A3T)

~19,0,T, + 19,0 T,

vps poto

2 In this section we follow the book [17].
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Then we calculate that

v,V 1, —V,V,T, =T,(0,0%, — ,[%,) + T,(I5, %, —~ T3 I} (A38)

pu- vo vps po

which can be written as[
v,v,1,, -V ,V,T,, = TUR"M. (A.39)
Let us do the same calculation for a tensor 7),,,. Its second covariant derivative is
Vo Vol = VP<VUTMV)
= 0,(V,T,) — F?UVQTW — P?HVUTQV — FZ,VUTW. (A.40)
Substituting V,T,, = 9,1}, — FguTﬁ,, — T8 T,5, we have
VoVoliw = 00,1 — (aprgu) T, — FguapTﬂv - (aprgu) Typ
- FguapTuﬁ - Fﬁa (aaT;w - FguTﬁv - FguTuﬁ)

— 15, (0, To = T5.T5 — 15, Tup)
B F/C;V (aUTHa - FguTﬁa - FgaTuﬂ) . (A41)

Similarly

VoViTu = 050,T0 — (0,T0,) Tpy — T0,05T5, — (0,15,) Tpus
- FguaoTuﬁ - ng (aaT;w - FguTﬁv - FguTuﬁ)
— T8, (0,Toy — T8, T5, — T0,Top)
— T2, (0, e — 15, Tpo — 5, Typ5) - (A.42)

Then we get

VoVoli = VoV, T = Tp (9,05, — 0,05, —T¢,I% +T917)
+ Tup (0,15, — 0,00, —Te,T0 +ToT7 ) (A43)

ovt pa pr oo

Using the definition of the Riemann tensor, we rewrite the above equation as

V.Vl — VoV, T =Ts,R5+T,sR5 (A.44)

nuop vop*

3 Taking double covariant derivative of a tensor preserves the tensorial property. Observe that the LHS of
(A39) is tensorial and on the RHS we have a multiplication of two independent quantities; R{,, and a vector.
Then by the quotient theorem R}, , is a tensor [14].
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We can generalize these findings for rank n tensor such that

1,...,n
VPVGTM---/M o VUvﬂTul---Mn = Z Tul---ua—lﬁua+1---unRﬁaap' (A'45)

This is the compatibility or the integrability condition. For consistency, a general
rank-n tensor must satisfy this equation. The reasoning comes from the flat space.

Recall that the integrability condition in a flat geometry is
0,0,Vy — 0,0,V, = 0. (A.46)

In curved spaces we replace ordinary differentiation with covariant one. Then we find
a condition related to Riemann tensor. For historical reasons this condition frequently

known as Ricci identity [34].

A.4 Quartic Equations

A quartic equation is defined as
'+ a2’ + b’ +cx+d=0 (A47)

where a, b, c and d are coefficients. Quartic polynomials are solvable equations using
some methods and L. Ferrari was the first to solve this kind of equations (in the
16th century). Besides, we could also get some information about the nature of the
solutions via the discussion on the discriminant value.

For the quartic equations we calculate the discriminant using the below formula (Item

4 by Schroeppel in [36]).

A= — 27c* +18abc® — 4a’c® — 4b°c? + a*b*c?
+ d(144bc* — 6a’c® — 80ab”® + 18a’bc + 16b* — 4a”b?)
+ d* (—192ac — 128> + 144a®b — 27a* — 256d) . (A.48)
Then we can analyse the Eq.(A.47) such that [37] :
o If A > 0, we have 4 real or 4 imaginary roots .

o If A < 0, we have 2 real and 2 imaginary roots .

e If A = 0, we have 2 or more equal roots.
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APPENDIX B

SOME LINEARIZATION CALCULATIONS

B.1 Linearization of the Christoffel Connection

Christoffel connection (it is not a tensor) is defined as

1
Top = 59" (Oagsr + O9ar = OuGap)- (B.1)

In the weak field approximation we can assume that g, = g, + hy, and g =
g — h*¥. We directly substitute these assumptions into the Eq.(B.1):
1

Fgﬁ - 2 (_MV hH ) [8‘)‘ (E,BV + hﬂl’) + aﬁ (gau + hoﬂ’) - 8V (gaﬁ + haﬂ)]
1 1
- §§uu (8a§BV + 0800, — G, ﬁ) + ng (Oahpy + Oghay — Ovhag)
1
- ihlﬂ’ (6(X§,By + aﬂgay - 81/?@/5) (B2)

to the first order in h,,,,. We specify the Christoffel connection calculated in the back-

ground metric as
—= 1
Fgﬂ - §§ul/ (acxgﬁu + 8B§au - al/?ozﬁ) : (B3)

Then we have

I, =T+ ;‘W (Oahgy + Oshay — Ophag) — %hf‘” (0aGsy + 085Gy — OvTap) -
(B.4)
Now using the metric compatibility (vyga = O) and the definition of the covariant
derivative (VoGs, = 0aGs, — L'ugloy — LayGss) in background space, we can write
down
0:Ts0 + 05Gar — 0uap = 2Lag T (B.5)

(*2

and again from the definition Vohs, = Oahgy — Taghow — Doy hop we find
Oahigy + Oghay — Ovhag = Vahgy + Vhay — Vihag + 2T ghey. (B.6)
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Using Eq.(B.5) and Eq.(B.6) we have
1 = —0
I, =T, + 59" (Vahsy + Vshay — Vihag) + Tog (0" how — Goph™) . (B.7)
Then we finally get the result

_ 1 _ _ _
(Phg) =Thy —Top = 59" (Vahsy + Vshay — Vihag) - (B.8)

B.2 Linearization of the source-free Einstein’s Equation

Unlike the previous section (we used the original method there) , we will linearize the
below equation using the somehow direct means. The procedure is as follows: We
replace all the terms with their linearized version. If there is a multiplication of terms
we linearize the first term multiplied with the background value of the second term
and vice versa.

Cosmological Einstein equation without any source is:

1
R, — §g,WR + Ag = 0. (B.9)

Taking the linearization we have
(Ruw)r — h,“,R gWRL + Ahy, = 0. (B.10)

In n dimensions (for this section we do the calculations in n dim.) we can write the

background value of the Riemann tensor as

— 2A _ o
RHQVB = (TL _ 1)(n _ 2) (gw/gaﬁ - g,uﬁgow) (Bll)
and by contraction we get EW == (nzi\Q)ﬁW and R = %A. Substituting R into
Eq.(B.10) we have
1_ 2A
(Ruv)r — égWRL — mhw =0. (B.12)

Now we need to calculate (R, ), and R;. Let us write the Riemann tensor again and

linearize it . The Riemann tensor is

RZﬁV = aﬂrgu - al’rgﬁ +17 I, FUﬁF (B13)

av™ of

and after the linearization we get

(Rhs)r = 0(Th,)r — 0u(Thp) + (T8,) e Tos + Tow (Ths)1
(02)r T, — Tog (T (B.14)
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Now consider the covariant derivative of the linearized Christoffel connection. Using

vB(FZV)L = 8B<FZV)L + Fgo (ng)L - f;a (Fgl/)L - fgy (]_"‘N )L (B.15)

oo

and

(2 =0

Vo(Ths) = 0u(TChg)r + Lo (Tas) = Ty (Thg)r — Trp (Tho )i (B.16)

ao

we find that

(Rhs,)L = Va(Th,)L — Vi (Thy)L. (B.17)

And contraction gives the linearized Ricci tensor:

(Row)e = (Ray)r = Vu(I8,)L — V(LG )1 (B.18)

or

(Ru)1 = Va(T%) 1 — Vo (T2 1. (B.19)

Now we can substitute the linearized Christoffel connection Eq.(B.8) into above equa-

tion;

_ 1 _ _ _
(Rw)r = Va [—y“ (Vihuo + Vil — Vahw)}

2

_ v, Bgao (Voo + Vahu — Vghw)]

:%(

VNV hoo + YV Vhyo — Ohy — V,V,0) (B.20)

where h = g""h,.

And the linearization of Ricci scalar is simply calculated as follows.

(R)r = (9" Ruw)r = (Ruw)r 3" — Ruh™
JE—— —oe _ _
= 3 (V'Vuhvo + V' Vyhye —Ohyy — V,V,0) g% —

_ o 2A
= V' V'h, —Oh -
V'V hyo = Th = 5

o
(n— 2)9‘“’

h. (B.21)

Now we complete the linearized form of the cosmological Einstein equation generally

in n dimensions:

(V'Vhoo + V' Vyhyo — Ohy — V, V)

—o—a — 4\ 2A
—q hao —Oh — h|— h,,, = 0. B.22
o (77 hor =D G2gh) ~ e =0 @
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B.3 Linearization of the Gauss-Bonnet Invariant

In this section we perform the linearization for the Gauss-Bonnet term G = R? —
4R, R*" + R, R*"?? in 4 dimensions. We again directly take the linearized form

as follows.

Gr, = 2RR;, — 4R, R*™) 1 + (Ruaws R*P) 1. (B.23)

We already know some of the terms from the previous sections. Let us calculate

(RuB™), = (RuRasg™g™)r
= (Ru)rRas 37" + Ryu(Ras) 75"
— RuRash™g” — RuRas g™ 0™
- % (V'Vilio + V' Vyhyo — Ohyy — V, V40 G055

A Ce1%—1 ol —1 - =
+ 3 (V' Vahse + V' Vahyo — Ohas — VsVah) 7,55

- A2 yuy?aﬁhaugﬁy - A2§uy§aﬁ§a“hﬁy
= 2A(V°V'h,e —Oh — Ah)
— 92AR,. (B.24)

Now we need to calculate the linearized Riemann tensor:
(R*\p,) = Vg(Th,)L — Vo, (Ths)L
1 o o o _
= §E“U(V5Vah,,g + VsViohao — VVioha, — V,Viahgs
— ViVshao + V,Vshag) (B.25)

where we used Eq.(B.8).

Then we continue as follows:

(Ruaws R, = (R, 5, R, ), = (R" 5, R o 9109°°9% 0" 1

o —  —ap=By=v DH o —  —ap=By=v
= (Ruaﬂu)LR PN g,uo"g 09579 K +R aﬂu(R p’yn)L g;w'g pgﬁ’yg K
= R R hiod™579" — R o5 R

U]
— Rr R g geepBrgvn _RM R 5 gergBypvn
= R R 0069097 — R op R0 0,,9"G  h"". (B.26)

— ap—=Ly=v
o i

Substituting all the terms, we find that (R, 5 R*?) = %ARL.

Then we finally find

4 4
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B.4 Massless Graviton

In this section, let us show that Einstein’s theory has a single massless graviton in

(A)dS. The linearized Einstein tensor, after setting R;, = 0, is
(G,ul/)L = (R,uu)L - Ah,uu- (B.28)

Observe that R;, = 0 comes from the linearization of the full trace equation R = 4A.
Choosing h = 0, Vuh“” = ( (transverse traceless gauge), which is compatible with
R = 0, we can simplify the linearized source free equation ((RW) L —Ah,, =0)to
a wave equation as follows.

We start calculating the linearized Ricci tensor. Taking i = 0, Eq.(B.20) becomes
l sos o= =
(Ruw)r = 3 (V' Vo + V' Vyho —Ohy,) (B.29)

We can rewrite the identity Eq.(A.44)) for the background space as

B

vop®

YV Vol — VoV sy = hgy Ry + husR

uop

(B.30)

Using Eq.(3.100) we get

-

VVohuw — VoV ph = g(ho,,gup — PG + o Gup — PouToe)- (B.31)

Then we have

o 4
V'V s = 5 M. (B.32)

where we used the transverse traceless gauge.

Then we find the linearized Ricci tensor as

4 1—
(Ruu)L = gAhNV - §|:|h/“/’ (B33)
and the linearized field equations are
— 2
(D — §A) hyw =0, (B.34)

subject to the conditions ~ = 0, Vuh“” = 0. Although this equation stands as a mas-
sive wave equation, it can be converted to a massless wave equation in conformally
flat backgrounds with a transformation /,,, = (1H,,, as explained in [35]]. This point

can be understood with a scalar field example which has a simpler calculation given
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below.
We will evaluate [1® where @ is a scalar field. The metric g,,, is a conformally flat
metric that can be written as

Guv = QQT]}UA (B35)

2.2

—1
with Q) = (1 — mf > . Here, m is a parameter and 22 = aha,.

Then we can calculate that

00 = ¢"V,V,®
= Q7" (9,0,® —I5,0,9) . (B.36)

Now let us introduce a scaled scalar field ¢ as
O =QY =01, (B.37)

here w is named as the Weyl weight which is —1 for the scalar field. Then we have

0P =0,(0"90) = (0,071 o+ Q10,0 (B.38)
Substituting 9,027 = —m;:cu we get
m2
Ou® = = + Q7'9,9. (B.39)

And we evaluate the second derivative of ® such that

2 2 2

0,0,® = —%%gb - m?xuﬁygb - m?xya,@ +070,0,0. (B.40)
Then the first term of Eq.(B.36)) is
Q7*"0,0,® = Q7 (—2m°¢ — m°z,0"¢ + Q'0,0"¢) . (B.41)

Now we calculate the Christoffel symbol as

« 1 o
D = 59 H(0ugvp + 0u9us — D Gun)
1 -2«
= 307 710, () + 0, (V) — 95 (D) }
m2
= 79 (:17“53‘ + :1:,,5/3‘ — xanw) , (B.42)
and
m4
Q7T 0P = 79—11;% —m*Q22%0,¢. (B.43)
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Finally we find that

4

00 = Q72 (—2m2¢ — m*z,0"é + Q0,0"¢) — %Q—lx% M2 20,0
= 07%9,0"0 —2m*’Q 7 '¢
= Q300p — 2m*Q 1o (B.44)

where Uy = n*¥0,,0,. We can rewrite this equation as
(O+2m*) © = Q°Oyg. (B.45)

Then we conclude that a massive-looking wave equation of ® can be transformed
to a massless wave equation of ¢ = QQ7"® = ()P for the conformally flat metrics.
Here we see that the interaction between the field and the curved spacetime can be
viewed as a mass. While studying the conformally flat metrics, introducing a suit-
able transformation taking into account the Weyl weight, as in Eq.(B.37), we can
observe the masslessness of the field. A similar argument works for the case of the
linearized wave equation Eq.(B.34). Following the arguments of [35], one can show
that Eq.(B.34) reduces to

Uohyw = 0. (B.46)

where fz,“, is the transformed field.
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APPENDIX C

LINEARIZED GRAVITY

Suppose our metric can be decomposed as
Jap :gaﬁ“‘ha/j, |ha,3| < L (Cl)

We also note that g = g*® — h*® and h = §*’ h,p.

C.1 Global Lorentz coordinate transformations|

We consider a global Lorentz transformations from z* to 2* such that

! ul
_ O v Ak g (C.2)

w
o - Oxv v

where A*, are the constant transformation matrix components with the property of

G = NN G (C.3)
And the metric components are transformed by the below equation

guv =N, N gag. (C.4)
Now we can substitute Eq.(C.)) into above equation;

G = NN (Gap + hag) = Gy + AN hag. (C.5)

Inserting g, = G,y + By We get

huw = NN hag. (C.6)

Then we see that h,,,, obeys the (0,2) rank tensor transformation under global coordi-

nate transformations.

' 1In this section we used the book [14] as a reference.
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C.2 Infinitesimal coordinate transformationsl

Infinitesimal coordinate transformations can be expressed as
o = gt 4 M (z) (C.7)

here £ is a vector field depending on the coordinates. Taking the derivation of both

sides we have; ,
oxH

= 0"+ 0,&" (C.8)
oxv
and the inverse transformation is
Ot
S Y3 (C.9)
oxv
Then the metric transformation can be calculated as below.
ox® OzP
/ S— — —
gl/«/'//(x ) - ax#/ ax,/ gaﬁ(x)

= (07 = 0,8%) (6, = 9uE”) gas(2)
= (@) = 9us(2)0,” = Gaw (2)IpE™ + gap(2)9,£0,€”. (C.10)

Assuming |0,£%| < 1, we continue the calculation, to the first order, with;
G (@) = gy () = 9 ()0 E” — gau (2)0,E" (C.1D)
Now we do a Taylor expansion for g,/ (z’);
G (@) = g (2 + &) = g () + £ 0 gy (). (C.12)
Inserting this expression into Eq.(C.10) we have
G (€) = G () = Gup(2)00E” — G (2)0uE™ — €7 0r gy (). (C.13)

Now using ¢,,5(7)0,&"° = 0,&, — 70,9, we get

g,u’V'<x) = g,uu(x) - augu + gaaug/wz - a,ué.u + faapgau - faaagp’u’
= g,w/(x) - augu - 8u§l/ + 2€BF§V
guu(x) - vugu - vufu (C14)

to the first order approximation

2 In this section we generally followed the books [14]] and [31].
? In the first order approximation we simply take £*0ag,/,» = £%0a gy as inferred from Eq.(C-13).

74



C.3 Diffeomorphism invariance for Ry,

In this section we will search how the linearized Ricci scalar changes under the dif-
feomorphism z#' = x# + £#(x) which is mentioned in the previous section. Let us

denote the change by . Then we can start as the following:

5RL = 5(QMVR;U/)L =0 (@ul’(R,uV)L - hwjﬁuu) : (C15)
Substituting R,,, = (nzj\Q)gW we obtain
SR, =3"6(R,.,), — 2A G,,0h"". (C.16)
wvJ L (7’L _ 2) Qv

Then we insert (R, ), given in Eq.(B.20) and 02" into above equation ;

1 - S ——
ORy = 59"0 (V' Vuhuy + V' Vihys = Ohyy = V,V,h)
2N, v
— mguy(v §+V§ )
4A

J— _U_“ __ —
= 3(V'V hew = Oh) = 5

o _ 4N
= V'V"6h,, — O6h — mv‘ £, (C.17)

Ve,

Now we substitute CI6h = 04(g,,,h*) = g, 06h* and 6h+";

oy — _ o _ 4N —
SRy, = V'V (Volu + V) — 7,0 (Vu& + V.6,) — mv“g
0=l 0= = 4N —
= VV'V,¢,+V'0¢, — 20V, — o z)v*‘gu. (C.18)
In order to find the first term we will use Eq.(A.39));
"= HH - 2A
W 7v0':| gu =R o'upgp = RO’pgp = mfa’ (Clg)
then we calculate that
vuvagu = W#ava} gu + vavugu
2A = —u
= mfa + V,V'¢,. (C.20)
Taking derivative we have
N v 2N = =aH
V V Vog,u, — mv gﬂ + DV 5#. (C21)
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For the second term of Eq.(C.18) let us start with the below expression:
V.V V.8, = VL - VIVOV,E, = VT, - VIV,
Then our second term is
VO, = [V, V] V6 + VIVIV,E. (C.22)

We can continue to calculate using Eq.(3.86) ;

V. ¥'V,8 = RV —R,V,6
= RV 4R,V
= 0. (C.23)
And using Eq.(C.19) we can write
. o - —0 2A
[V ,V,J &=V V-V, V = §u (C.24)
(n—2)
Then we simply calculate that
= =] 2A —H ImE i
V'V V., =—7VE+HTOVE. (C.25)
(n—2)
So the second term becomes
VOg, = 24 Ve, +OV¢ (C.26)
7 (n—2) K - ’
We finally obtain
_ Y| — = == Y| —
0R; = (n_2>V § 20V g, —200V¢, (n—2)v §u
= 0. (C.27)

Then we conclude that R is a diffeomorphism invariant under 2 = z* + £*(z).
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