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ABSTRACT

MINIMAL EXTENSION OF EINSTEIN’S GRAVITY AT THE QUARTIC
ORDER

Kenar, Esı̇n
Ph.D., Department of Physics

Supervisor : Prof. Dr. Bayram Tekin

August 2018, 77 pages

We study an extension of Einstein general relativity theory at the quartic order in the
curvature. The extended theory has a unique vacuum and a single massless spin-2
excitation about this vacuum, just like general relativity, hence it is called a minimal
extension. The extended theory can also be obtained from a particular form of Born-
Infeld gravity. We show that the Schwarzschild and Kerr black holes are not exact
solutions and the Kretschmann scalar obeys a non-linear wave equation, suggesting
that black hole singularities might be avoided.

Keywords: Modified Gravity, Born-Infeld Gravity, Quantum Gravity, Schwarzschild
Singularity, Maximally Symmetric Vacuum, Black Hole Solutions, Massless gravi-
ton.
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ÖZ

EINSTEIN KÜTLEÇEKİMİNİN DÖRDÜNCÜ DERECEDEN MİNİMAL
GENİŞLETİLMESİ

Kenar, Esı̇n
Doktora, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Bayram Tekin

Ağustos 2018 , 77 sayfa

Einstein genel görelilik teorisinin eğrilik bakımından dördüncü dereceye kadar ge-
nişletilmesini çalışmaktayız. Genişletilmiş teori, genel görelilikte olduğu gibi, tek va-
kuma ve bu vakum etrafında tek bir kütlesiz spin-2 eksitasyona sahiptir ve dolayısıyla
minimal genişletme olarak adlandırılır. Genişletilmiş teori ayrıca Born-Infeld kütleçe-
kiminin özel bir formundan da elde edilebilir. Schwarzschild ve Kerr kara deliklerinin
kesin çözüm olmadıklarını ve Kretschmann skalerinin doğrusal olmayan dalga denk-
lemini sağladığını gösterdik ve bu sonuç kara delik tekilliklerinin önlenebileceğini
öngörmektedir.

Anahtar Kelimeler: Modifiye Kütleçekim, Born-Infeld Kütleçekim, Kuantum Kütle-
çekim, Schwarzschild Tekilliği, Maksimal olarak Simetrik Vakum, Kara Delik Çö-
zümleri, Kütlesiz Graviton.
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CHAPTER 1

INTRODUCTION

Einstein’s special relativity (SR) theory describes the universe by unifying the space

and time then the resulting structure is called as "spacetime". But this spacetime does

not have gravity in it and hence it is a flat manifold. Unlike SR, general relativity

(GR) theory includes gravitation. According to the GR any energy momentum distri-

bution curves the spacetime and then particles move in this curved geometry which

means that these two interpretations are just two perspectives that directly show us

the curvature-gravitation relation 1. This duality relation is expressed by Einstein’s

equation

Rµν −
1

2
Rgµν = 8πGTµν . (1.1)

Here G is the Newton’s gravitation constant and Tµν is the energy momentum tensor

of matter fields. We have taken the speed of light to be c = 1. The metric is denoted

by gµν , a symmetric (0,2) tensor field. Rµν is the Ricci tensor and R is the Ricci

scalar. They are notationally shown as Rµ
αµβ = Rαβ , Rµ

µ = R and derived from

contractions of the Riemann tensor which reads

Rµ
νρσ = ∂ρΓ

µ
σν − ∂σΓµρν + ΓµρλΓ

λ
σν − ΓµσλΓ

λ
ρν . (1.2)

Γµνσ is the Christoffel connection which is given explicitly for a metric-compatible

connection as

Γµνσ =
1

2
gµρ(∂νgσρ + ∂σgρν − ∂ρgνσ), (1.3)

and it is symmetric Γµνσ = Γµσν .

The left hand side of the Eq.(1.1) is exactly the Einstein tensor presented in Eq.(A.23)

which is

Gµν = Rµν −
1

2
Rgµν (1.4)

1 We must of course note that even without any energy-momentum distribution, due to the non-linearity of
gravity, spacetime can be curved.
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with vanishing covariant divergence ∇µGµν = 0. This conservation also implies the

conservation of energy-momentum∇µTµν = 0.

Since Einstein’s equation is a non-linear second order differential equation, it is really

hard to solve directly. The Schwarzschild solution is one of the most important exact

solutions assuming spherically symmetry. In fact spherical symmetry also leads to

a static spacetime. So in GR, the Schwarzschild metric is the unique spherically

symmetric static metric. It can be considered as the vacuum Tµν = 0 solution or it

can be considered as the region outside a spherically symmetric matter distribution.

The Schwarzschild metric written in spherical coordinates is

ds2 = −(1− 2GM

r
)dt2 +

(
1− 2GM

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2 (1.5)

where M can be considered as the mass of the source [1]. Besides, if there is a

non-zero cosmological constant Λ0, the Einstein’s equation and the Schwarzschild

solution are modified as [2]

Rµν −
1

2
Rgµν + Λ0gµν = 8πGTµν , (1.6)

ds2 = −(1− 2GM

r
−Λ0r

2

3
)dt2+

(
1− 2GM

r
− Λ0r

2

3

)−1

dr2+r2dθ2+r2 sin2 θdφ2.

(1.7)

Turning back to the Eq.(1.5) , r = 0 and r = 2GM seem to be singular points. How-

ever the terms that contain these points are coordinate dependent and change after a

coordinate transformation. Then it is clear that this testing argument is not appropriate

for finding the singular points. We should analyse the coordinate independent scalars

like R ,RµνRµν , RµνρσRµνρσ etc. For this Schwarzschild metric, calculations indi-

cate that the point r = 0 is a real singularity and there is no other singular point [1].

This can be seen from the Kretschmann scalar RµνρσRµνρσ = 48M2G2

r6
which diverges

at r = 0. This invariant divergence method works well for the Schwarzschild met-

ric. But unfortunately we can not generalize this approach to all singular geometries.

Actually the issue of singularity has been studied for years and called as singularity

problem in general relativity [8], [9],[26], [27]. As seen in the Schwarzschild metric

example, the curvature invariant blows at the singularity point which means that we

can not work at this point. Strictly speaking, r = 0 does not seem to be the part of

the smooth spacetime manifold. But the metric tensor gµν is defined for all points and

we expect to study the whole geometry of the manifold which is surely governed by

2



gµν . Then some physicists consider the singularity as a boundary but not part of the

spacetime. This perspective gives us a manifold with holes (by removing the singu-

lar points) resulting another problem about differentiation (due to the neighbourhood

issue). After years of study, incompleteness of geodesics was accepted as a singu-

larity signal. S.W. Hawking defines the singularity as [4]: ′′ A spacetime is singular

if it is timelike or null geodesically incomplete, but can not be embedded in a larger

spacetime ′′ . These nonspacelike incomplete geodesics could be divided into two:

past-directed and future-directed. Past directed incomplete geodesics, like the Big

Bang singularity, can be illustrated up to a point (singularity) in the past while it is

geodesically complete in the future. The other type, incomplete geodesics, which are

future directed indicate the black holes. The world lines could be drawn up to an end

point ( black hole singularity). These type of singularities have two main properties

which are the singularity point and the horizon. For a singularity evolution period

(collapsing of a star), if the singularity is formed before the horizon then we have

a naked singularity allowing data transportation between the singularity and an ob-

server outside the singularity. However if the horizon is formed initially, then the final

geometry is a black hole with no information flow outside the event horizon. How-

ever, trusting the cosmic censorship conjecture, we do not expect to see any signal of

a naked singularity.

Singularity theorems tells that the general theory of relativity admits singularities for

some cases [23]. The singularities are considered to be the shortcomings of general

relativity and expected to be overcome with a quantum theory extension. Actually

singularity is not the only problem in GR. Beside the fact that the outcomes of GR

theory fits well to the experimental results at intermediate scales (solar system etc),

there remains some other problems unsolved like the current accelerated expansion

of the universe, the rotation speeds of spiral galaxies etc. To solve these problems

we need to modify Einstein’s gravity perhaps even replace with a quantum gravity

theory [24]. There are many research avenues along this direction. One such avenue

is the Born-Infeld (BI) type gravity that has a unitary massless spin-2 excitation and

a unique viable vacuum similar to Einstein’s gravity [10], [11], [12].

The BI action is defined as

I =
1

2κ0γ

∫
d4x

[√
− det(gµν + 4γAµν)− (4γΛ0 + 1)

√
−g
]
, (1.8)

3



where the Aµν tensor is given as

Aµν = Rµν + cSµν

+ 4γ

(
aCµρνσR

ρσ +
c+ 1

4
RµρR

ρ
ν +

(
c (c+ 2)

2
− 2− b

)
SµρS

ρ
ν

)
+ γgµν

(
9

8
CρσλγC

ρσλγ − c

4
RρσR

ρσ + bSρσS
ρσ

)
. (1.9)

Here g is the determinant of the metric tensor gµν . a, b and c are dimensionless

parameters. γ is the BI parameter and κ0 = 8πG. Sµν is the traceless Ricci tensor

Sµν ≡ Rµν −
1

4
gµνR, (1.10)

Cµνρσ is the Weyl tensor defined as

Cµνρσ = Rµνρσ −
1

(n− 2)
(Rµρgνσ +Rνσgµρ −Rµσgνρ −Rνρgµσ)

+
1

(n− 1)(n− 2)
R (gµρgνσ − gνρgµσ) (1.11)

for n dimensional spacetime. In four dimensions the square of the Weyl tensor reads

CµνρσC
µνρσ ≡ RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2. (1.12)

The BI theory Eq.(1.8) with Eq.(1.9) was constructed as a theory that extends Ein-

stein’s gravity while keeping its important features intact. These are: the uniqueness

of the vacuum, the existence of a single massless graviton about this vacuum. More-

over, the theory reproduces Einstein’s gravity at the lowest order in the curvature

expansion. Further details can be found in the thesis [29] devoted to a detailed study

on this theory.

Throughout this thesis we will mostly use geometrical units and take the signature

as (-,+,+,+). In some sections we use new notations which are indicated in relevant

parts. In general all necessary calculations are explicitly shown and placed in the

chapters or the appendix sections. Basically the outline of the thesis is as follows: In

Chapter 2 we give some background information on relativity. Actually some other

chapters also include such calculations especially the appendices. In Chapter 3 we

firstly give the field equations of the general extended f(Rµν
αβ) action that is formed

by the Riemann tensor and its contractions. Then we write our special action where

we fix a = 0, b = −5/2 and c = −1 and calculate the field equations and the trace.

Secondly we show the detailed derivation of the Riemann tensor in the maximally

4



symmetric spacetime then we calculate the vacuum equation in our theory. We show

that we have a unique viable vacuum and a massless spin-2 excitation using the lin-

earization method. We also calculate the effective Newton’s constant. In Chapter

3 we do the basic calculations of the Schwarzschild black holes. In Chapter 4 we

give the Ricci flat solutions and black hole search of the BI theory. We show that

Gauss-Bonnet invariant (which is the Kretschmann scalar in this section) satisfies a

wavelike equation and so the Schwarzschild solution is not included in BI theory. We

also argue that other types of black hole solutions are allowed to study deeply. In this

chapter, we also discuss the approximate spherically symmetric solutions.

This thesis includes the detailed calculations of a collaborative study [30].

While writing this thesis we used the computer programmes: LATEX for typing, Math-

ematica for computing, Desmos and Paint for drawing figures.
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CHAPTER 2

BACKGROUND ON CURVED SPACETIME AND GENERAL RELATIVITY

Assuming a spherically symmetric metric for a compact object we can find an exact

solution of Einstein’s field equations. As a starting point we introduce the spherically

symmetric Minkowskian metric which is

ds2 = −dt2 + dr2 + r2dΩ2, (2.1)

where dΩ2 = dθ2 + sin2 θdφ2. In order to generalize this simple metric we introduce

coefficients (C1, C2, C3 and C4) preserving the spherical symmetry. Then we have [3]

ds2 = −C1(r, t)dt2 + C2(r, t)dr2 + C3(r, t)drdt+ C4(r, t)r2dΩ2. (2.2)

If each of the metric components does not depend on time we get

ds2 = −C1(r)dt2 + C2(r)dr2 + C3(r)drdt+ C4(r)r2dΩ2, (2.3)

which is called a stationary metric. After redefining the time coordinate [25], this

metric can be expressed as

ds2 = −C1(r)dt2 + C2(r)dr2 + C4(r)r2dΩ2. (2.4)

These metrics are named as static metrics. Although we only assumed a spherically

symmetric and stationary metric, we additionally obtained the staticity characteristic

finally, with the added assumption that t → −t is a symmetry of the spacetime.

Hence a static metric is a stationary metric with a time reflection symmetry. In any

gravity theory, due to their high symmetry, these are the metrics one studies first to

understand the properties of the given theory.

7



2.1 Schwarzschild coordinates1

As the most important example of a static metric, let us study the Schwarzschild

solution of Einstein’s gravity.

The Schwarzschild solution in spherical coordinates is described by the metric

ds2 = −(1− 2GM

r
)dt2 +

(
1− 2GM

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2. (2.5)

Here t and r are not the ordinary coordinates that we are familiar in flat spacetime. r

is the area coordinate that ensures the area of a sphere with radius r at a fixed time as

4πr2. We can see the distinction with simple calculations below.

Let us start with the radius analysis. The distance between the spheres with different

radii can be calculated by taking dt = dθ = dφ = 0;

4r =

∫ r2

r1

ds =

∫ r2

r1

(
1− 2GM

r

)−1/2

dr. (2.6)

Carrying out the integral we find

4r =
(
r
√

1− 2GM/r + 2GM ln
(√

r − 2GM +
√
r
)) ∣∣∣r1

r2

= r2

√
1− 2GM/r2 − r1

√
1− 2GM/r1

+ 2GM ln
(√

r2 − 2GM +
√
r2

)
− 2GM ln

(√
r1 − 2GM +

√
r1

)
. (2.7)

As seen above, the distance4r is different from the distance measured in flat space-

time (4r)flat = r2 − r1 (4r > (4r)flat). Of course this is due to the spacetime

being curved.

Now let us study the time intervals using the Schwarzschild metric. Taking dr =

dθ = dφ = 0 we get

4t =

(
1− 2GM

r

)1/2

dt. (2.8)

Time differences are measured to be (4t)flat = t2− t1 in a flat spacetime. Since r >

2GM , we conclude that4t < (4t)flat. The measurement differences (4t− (4t)flat)
and (4r − (4r)flat) decrease when we move away from the source as expected

due to the asymptotical flatness. So in some sense (t, r, θ, φ) coordinates of the

Schwarzschild metric are just labelling the points of spacetime. But they match with
1 In this section we generally follow the book [16].
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the Minkowski metric and the usual notion at asymptotic infinity. The notion of

asymptotic flatness can be defined more rigorously, but in this thesis we will not need

that.

2.2 Geometric Unit System, World Lines and Lightcones2

When we consider the events of a particle through some period of time and add these

points we get its world line. Light has a constant velocity; c = 3.1010 cm/sec. We can

use this number as a scaling. For example for a distance of d cm, we do a scaling such

that d′ = d cm
c cm/sec

= d
3.1010

sec. Then the unit of length is second and the velocities are

unitless. This scaling is called the geometric unit system. c = 1 in geometric units.

As a good example, let us consider a flash. We light the flash standing at the origin at

t = 0 and take pictures at some time t. In a 3 dimensional space, the photons coming

out of the flash form a sphere with radius t

r2 = x2 + y2 + z2 = t2. (2.9)

For simplicity let us take z = 0. Then we have a circle with radius t governed by

x2 + y2 = t2. Now if we include the time coordinate and plot the (x, y, t)- spacetime,

then we have a cone (Figure 2.1). If we take y = 0 and plot in (x, t)- spacetime we get

Figure 2.2 and this trajectory is called as future directed lightcone. This is the path of

a photon emerging from the origin in a 2 dimensional spacetime in geometrical units.

When we continue to draw the lines for the region x < 0 we obtain the past directed

lightcone together with the future directed one (Figure 2.3 ). The final form of the

lightcone is illustrated in Figure 2.4.

The events lying inside the past lightcone can affect the event at the origin; the other

regions can not affect this event. This is due to the fact that the light has a fixed and so

restricted velocity. The world lines outside the lightcone have a slope greater than 1,

then these world lines are spacelike whereas the inside region corresponds to timelike

particles. As stated before the cone itself is the world line of the photon, which is also

called null or lightlike trajectory.

2 In this section we generally follow the books [15], [16] .
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Figure 2.1: The light coming
out of a flash (at the origin 0)
travels in (x, y, t)- spacetime
forming a cone.

Figure 2.2: The light com-
ing out of a flash (at the ori-
gin 0) travels in (x, t)- space-
time forming a future directed
lightcone.

Figure 2.3: Future directed
lightcone can be drawn con-
tinuously to include the past.

Figure 2.4: The lightcone of
the photons .
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2.3 The Cosmological constant

2.3.1 Energy-Momentum Tensor3

For a particle moving with velocity v with mass m, its energy can be expressed as

E =
mc2√

1− v2/c2
, (2.10)

where v2 = v2
x + v2

y + v2
z . Let us consider the noninteracting particles (dust) in a unit

volume. Assuming that there are n particles in this unit volume (and taking c = 1),

we can write the energy density as

T 00 =
nm√
1− v2

. (2.11)

Now we calculate the energy flux density. It is the flow of energy through unit area

per unit time t. We choose the coordinate x for example for a flow of distance l:

Energy flux density =
nm√
1− v2

(area)l

(area)t
=

nm√
1− v2

vx, (2.12)

here vx is the velocity in x direction. For any direction i we simply write the energy

flux density as

T 0i = T i0 =
nm√
1− v2

vi. (2.13)

This is also defined to be the density of momentum. And the momentum flux can be

written as

T ij = T ji =
nm√
1− v2

vivj. (2.14)

This is the flux of momentum in the i-direction flowing through j-direction. Then

we have a T -matrix that has 16 components formed by T 00, T 0i, T i0, T ij, T ji and T ii.

We will simply show that this matrix is a tensor. T µν can be expressed as

T µν = n0mu
µuν , (2.15)

here n0 is the proper particle density, n0 = n
√

1− v2 and uµ is the four-velocity ,

uµ =
(

1√
1−v2 ,

vx√
1−v2 ,

vy√
1−v2 ,

vz√
1−v2

)
. n0 is a scalar 4 and uµuν is a tensor 5. Then our

3 In this section we generally summarise the Ohanian’s discussions[2].
4 n0 is measured in the rest frame of particles.
5 uµ is a vector and here we have a multiplication of vectors which yields a tensor.
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T µν matrix is a tensor with rank 2. The T µν tensor is called as the energy-momentum

(or stress) tensor and is symmetric, T µν = T νµ. We can rewrite Eq.(2.15) such that

T µν = ρ0u
µuν (2.16)

where ρ0 = n0m is the proper mass density. T µν obeys the conservation law such

that

∇µT
µν = 0. (2.17)

This last relation can be assumed to be correct or as Tµν couples to Einstein’s gravity,

it follows from the theory.

2.4 Perfect Fluids6

In the rest frame of the fluid the velocity is zero, ~u = 0. Still particles may interact

with each other and have thermal energies. Surely we can read the energy-momentum

tensor to observe these kinds of properties for more realistic fluids. We list the physi-

cal meanings of the components of the T µν tensor in zero-momentum frame :

T 00: total energy density,

T 0i: energy flux due to heat conduction,

T i0: momentum density due to heat conduction,

T ij: momentum flux, specifically T ii denotes the isotropic pressure and T ij is the

viscous stress.

Energy-momentum tensor for a perfect fluid in the rest frame is written as

T µν =


ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 .

In the rest frame we have uµ = (1, 0, 0, 0) . Then we can write the T µν tensor using

uµ;

T µν = (ρ+ p)uµuν + pηµν . (2.18)

6 In this section we generally follow the reference book [14].
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For a general form we simply change ηµν by gµν to arrive at the energy-momentum

tensor of a perfect fluid:

T µν = (ρ+ p)uµuν + pgµν . (2.19)

2.5 Cosmological Field Equations7

In the Newtonian theory, the gravity field equation is expressed by the Poisson’s equa-

tion:

~∇2Φ = 4πGρ, (2.20)

where Φ is the gravitational potential caused by the gravitational matter density ρ. In

Einstein’s theory, Poisson’s equation can be generalised as follows. On the right hand

side (RHS) of Eq.(2.20) matter density can be replaced by the full energy-momentum

tensor. In the weak field approximation, for noninteracting particles with mass density

ρ, we have

g00 = −(1 + 2Φ). (2.21)

Using the above equation and T00 = ρ, Eq.(2.20) becomes

~∇2g00 = −8πGT00. (2.22)

Now on the left hand side of this equation, we have the second derivatives of the

metric. For a covariant equation we surely need a tensor with additional properties:

1. It must be symmetric rank-2 tensor since on the RHS we have T µν .

2. It must be conserved (∇µT
µν = 0) .

3. It must consist of derivatives of the metric up to the second order.

The Einstein tensor Gµν (derived in Appendix A.1) satisfies these expectations. Then

the Einstein field equations are written as

Gµν = κTµν (2.23)

7 In this section we generally follow the reference book [14].
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with κ = 8πG. When Tµν = 0, we have the vacuum field equations

Rµν = 0, (2.24)

which are called as Ricci-flat metrics.

Suppose we add a new term to the Einstein tensor: a constant Λ0 multiplied by the

metric tensor gµν . Then we get

Gµν = Rµν −
1

2
gµνR + Λ0gµν . (2.25)

Λ0 is called as the bare cosmological constant and the new field equations are cosmo-

logical Einstein equations written as:

Rµν −
1

2
gµνR + Λ0gµν = κTµν . (2.26)

We still have∇µGµν = 0 since ∇µgµν = 0.

Now let us do a simple search for the physical meaning of the cosmological constant.

In the weak field limit of the cosmological Einstein equations we have

~∇2Φ = 4πGρ− Λ0, (2.27)

which yields

~g = −~∇Φ = −GM
r2

r̂ +
Λ0r

3
r̂. (2.28)

Then in addition to the usual attractive field
(
−GM

r2

)
we obtain a positive term

(
Λ0r

3

)
meaning a repulsive field, for Λ0 > 0.

Lorentz invariant vacuum dictates that [1], [25]

pvac = −ρvac (2.29)

for the vacuum. Observe that otherwise T µν has a uµuν part and the existence of a uµ

vector dictates a choice of a Lorentz frame and hence non-invariance of the vacuum

which we do not want or observe. Then the energy momentum tensor is

T µνvac = pvac g
µν = ρvac g

µν . (2.30)

Then we need to add this T µνvac to T µν of matter (T µνM ):

T µν = T µνvac + T µνM . (2.31)
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We rewrite the field equations:

Rµν −
1

2
gµνR = κ

(
(Tµν)M − ρvac gµν

)
. (2.32)

Then the bare cosmological constant Λ0 could be related to vacuum energy density as

ρvac =
Λ0

κ
. (2.33)

Besides, effective cosmological constant (Λeff ) [5] [6][25] is defined to be

Λeff = Λ0 + Λother (2.34)

where Λother denotes other additional effects contributed by for example scalar fields

or zero-point energies of quantum fields. Theoretically we estimate effective cos-

mological constant adding all contributions. When we devide this estimated value

(Λtheo.) to the observed effective cosmological constant (Λobs.) we find that [5]

Λtheo.

Λobs.

≈ 10120. (2.35)

This unfortunate misfit is called the cosmological constant problem.

Here we finalise the introductory background information on Einstein’s general rel-

ativity theory and with the next chapter we will proceed with the study of modified

gravity starting with the field equations of the quartic theory.

15



16



CHAPTER 3

VACUUM AND SPECTRUM OF THE QUARTIC GRAVITY THEORY

Aiming a modified gravity theory the procedure is as follows: We add the functions

of the Riemann tensor with its contractions to the Einstein-Hilbert action (with a cos-

mological constant). Respecting the minimality condition we do not consider the

derivatives of the Riemann tensor. Then our action consists of the Riemann tensor

and its contractions and any powers of these. In order to simplify the following calcu-

lations we prefer to study with a (2,2) Riemann tensor (Rσρ
µν) instead of a standard

(1,3) Riemann tensor (Rσ
ρµν) . Besides, we notationally write (2,2) Riemann tensor

as Rσρ
µν just for practical simplicity. Then the generic theory we are interested in has

the action

I =
1

κ0

∫
d4x
√
−gf(Rµν

αβ), (3.1)

where f is a smooth function of its argument of course, what is tacitly assumed here

is that we have a diffeomorphism invariant theory.

We will use the variation method to find the field equations for this action. The usual

contraction rules hold for our preferred form of the Riemann tensor Rσρ
µν . When we

contract the first and third indices of the Riemann tensor we get the Ricci tensor. This

can be seen with a simple calculation: Starting with the following

Rµν
αβ = gνσRµ

σαβ (3.2)

and multiplying both sides with δαµ we get

Rµν
µβ = gνσRσβ, (3.3)

Rµν
µβ = Rν

β, (3.4)

so there is no need for the metric tensor for contraction. And for the Ricci scalar we

have Rν
ν = R.
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Considering I as a functional of the metric tensor and Rµν
αβ and taking the variation

of Eq.(3.1) we get

δI =
1

κ0

∫
d4x

[
(δ
√
−g)f +

√
−gδf(Rµν

αβ)
]

=
1

κ0

∫
d4x

[
(δ
√
−g)f +

√
−g ∂f

∂Rµν
ρσ
δRµν

ρσ

]
, (3.5)

where we used the chain rule in the second line.

Using the identity δ
√
−g = −1

2

√
−ggµνδgµν and δRµν

ρσ given in Eq.(A.30) we get

δI =
1

κ0

∫
d4x

[
−1

2
gµν
√
−gf

(
Rαβ
ρσ

)
δgµν

]
+

1

2κ0

∫
d4x
√
−g ∂f

∂Rµν
ρσ

(
gαρ∇σ∇ν − gασ∇ρ∇ν

)
δgµα

+
1

2κ0

∫
d4x
√
−g ∂f

∂Rµν
ρσ

(
gασ∇ρ∇µ − gαρ∇σ∇µ

)
δgαν

− 1

2κ0

∫
d4x
√
−g ∂f

∂Rµν
ρσ

(
R ν
ρσ αδg

µα −R µ
ρσ αδg

αν
)
. (3.6)

Now we can manipulate the following term∫
d4x
√
−g ∂f

∂Rµν
ρσ
gαρ∇σ∇νδgµα =

∫
d4x
√
−g
[
∇σ

(
∂f

∂Rµν
ρσ
gαρ∇νδgµα

)
− ∇σ

(
∂f

∂Rµν
ρσ
gαρ

)
∇νδgµα

]
= −

∫
d4x
√
−g∇σ

(
∂f

∂Rµν
ρσ
gαρ

)
∇νδgµα

= −
∫
d4x
√
−g
[
∇ν
[
∇σ

(
∂f

∂Rµν
ρσ
gαρ

)
δgµα

]
− ∇ν∇σ

(
∂f

∂Rµν
ρσ
gαρ

)
δgµα

]
=

∫
d4x
√
−g∇ν∇σ

(
∂f

∂Rµν
ρσ
gαρ

)
δgµα

]
, (3.7)

where we used the Gauss’ theorem. After doing some other necessary manipulations

we arrive at the field equations as

1

2

(
gνρ∇λ∇σ − gνσ∇λ∇ρ

) ∂f

∂Rµλ
ρσ

− 1

2

(
gµρ∇λ∇σ − gµσ∇λ∇ρ

) ∂f

∂Rλν
ρσ

−1

2

(
∂f

∂Rµλ
ρσ

R λ
ρσ ν −

∂f

∂Rλν
ρσ

R λ
ρσ µ

)
− 1

2
gµνf

(
Rαβ
ρσ

)
= 0. (3.8)

These are the field equations for a most general f(Rµν
αβ) action Eq.(3.1). But we will

be interested in a subclass of these theories, which are the Born-Infeld theories given
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by the action Eq.(1.8) and Eq.(1.9). This action contains 3 dimensionless parameters

a, b and c to be determined by the theoretical arguments or experiments. Now we fix

these parameters as c = −1, a = 0, b = −5
2

. The motivation about this fixing is

that with this special action we obtain a much simpler theory compared to the generic

BI gravity. Understanding the properties of this theory will help us understand the

generic BI gravity.

The reduced Aµν tensor becomes

Aµν = Rµν − Sµν + γgµν

(
9

8
CρσλγC

ρσλγ +
1

4
RρσR

ρσ − 5

2
SρσS

ρσ

)
. (3.9)

When we substitute Sµν Eq.(1.10) and CµνρσCµνρσ Eq.(1.12) into Aµν , we find

Aµν =
1

4
gµνR + γgµν

(
9

8
RρσλγR

ρσλγ − 2RρσR
ρσ +

3

8
R2 − 5

2
SρσS

ρσ

)
. (3.10)

Calculating the square of the traceless Ricci tensor as

SρσS
ρσ = (Rρσ −

1

4
gρσR)(Rρσ − 1

4
gρσR)

= RρσR
ρσ − 1

4
R2, (3.11)

and substituting into Aµν tensor Eq.(3.10) we have

Aµν =
1

4
gµνR + γgµν

[
9

8

(
RρσλγR

ρσλγ − 4RρσR
ρσ +R2

)
− 1

8
R2

]
, (3.12)

which can be simply written as

Aµν =
1

4
gµνR + γgµν

(
9

8
G − 1

8
R2

)
. (3.13)

Here G is the Gauss-Bonnet invariant which is given as

G ≡ R2 − 4RµνR
µν +RµνρσR

µνρσ . (3.14)

Finding the Aµν tensor for a special case, now we substitute into the action Eq.(1.8)

and get

I =
1

2κ0γ

∫
d4x

{√
− det

[
gµν

(
1 + γR + 4γ2

(
9

8
G − 1

8
R2

))]
− (4γΛ0 + 1)

√
−g
}
.

(3.15)
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Using det(gµν a) = a4g we have

I =
1

2κ0γ

∫
d4x

{√
−g
(

1 + γR + 4γ2

(
9

8
G − 1

8
R2

))4

− (4γΛ0 + 1)
√
−g
}
.

(3.16)

Simplifying the above action and defining λ0 = γΛ0 we get the quartic theory

I =
1

2κ0γ

∫
d4x
√
−g

{[
1 + γR +

9

2
γ2

(
G − 1

9
R2

)]2

− (4λ0 + 1)

}
. (3.17)

We can recast this more explicitly as

I =
1

κ0

∫
d4x
√
−g
{
R− 1

2
γ2R3 +

1

8
γ3R4 +

9

2
γG − 9

2
γ2RG

− 9

4
γ3GR2 +

81

8
γ3G2 − 2

γ
λ0

}
.

(3.18)

Here a summary of the above calculations could be given as follows: We started with a

somehow long and determinantal action. Then we took the dimensionless parameters

as a = 0, b = −5
2
, c = −1. And after some manipulations we now have a purely

polynomial and so simpler action as a function of R and Gauss-Bonnet invariant G.

Next we can write this action Eq.(3.18) in a notationally simpler form such that

I =
1

2κ0

∫
d4x
√
−gF(R,G) , (3.19)

and

2γF ≡
(

1 + γR− 1

2
γ2(R2 − 9G)

)2

− 4λ0 − 1. (3.20)

Here we use the notation F ≡ F(R,G) for simplicity.

Now let us calculate the terms in Eq.(3.8) separately to make the calculations clear

and find the field equations for our special action Eq.(3.19). We need to calculate the

partial derivative of F with respect to Rµλ
ρσ which is

∂F
∂Rµλ

ρσ

=
∂F
∂G

∂G
∂Rµλ

ρσ

+
∂F
∂R

∂R

∂Rµλ
ρσ

. (3.21)
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Let us now find the derivative of G with respect to Rµλ
ρσ :

∂G
∂Rµλ

ρσ

= 2Rcd
ab

∂Rab
cd

∂Rµλ
ρσ

− 8Rd
bδ
c
a

∂Rab
cd

∂Rµλ
ρσ

+ 2R
∂R

∂Rµλ
ρσ

= 2Rcd
ab

[
1

4
δaµδ

b
λ (δρc δ

σ
d − δσc δ

ρ
d)−

1

4
δaλδ

b
µ (δρc δ

σ
d − δσc δ

ρ
d)

]
− 8Rd

b

[
1

4
δcµδ

b
λ (δρc δ

σ
d − δσc δ

ρ
d)−

1

4
δcλδ

b
µ (δρc δ

σ
d − δσc δ

ρ
d)

]
+ R

(
δρµδ

σ
λ − δσµδ

ρ
λ

)
= 2Rρσ

µλ − 2δρµR
σ
λ + 2δσµR

ρ
λ + 2δρλR

σ
µ − 2δσλR

ρ
µ

+ R
(
δρµδ

σ
λ − δσµδ

ρ
λ

)
(3.22)

where we used

∂Rab
cd

∂Rµλ
ρσ

=
1

4
δaµδ

b
λ (δρc δ

σ
d − δσc δ

ρ
d)−

1

4
δaλδ

b
µ (δρc δ

σ
d − δσc δ

ρ
d) , (3.23)

and

R =
1

2
Rab
cd

(
δcaδ

d
b − δdaδcb

)
, (3.24)

with
∂R

∂Rµλ
ρσ

=
1

2

(
δρµδ

σ
λ − δσµδ

ρ
λ

)
. (3.25)

Then we can continue to calculate the partial derivative of F with respect to Rµλ
ρσ

which is

∂F
∂Rµλ

ρσ

=
∂F
∂G
{

2Rρσ
µλ − 2δρµR

σ
λ + 2δσµR

ρ
λ + 2δρλR

σ
µ − 2δσλR

ρ
µ +R

(
δρµδ

σ
λ − δσµδ

ρ
λ

)}
+
∂F
∂R

1

2
(δρµδ

σ
λ − δ

ρ
λδ

σ
µ). (3.26)

Now let us introduce the notation ∂F
∂G ≡ FG and ∂F

∂R
≡ FR for simplicity. Then we

have

∂F
∂Rµλ

ρσ

=

(
FGR +

1

2
FR
)

(δρµδ
σ
λ − δ

ρ
λδ

σ
µ)

+ 2FG
(
Rρσ
µλ − δ

ρ
µR

σ
λ + δσµR

ρ
λ + δρλR

σ
µ − δσλRρ

µ

)
. (3.27)

Let us calculate the other necessary term which is

gνρ∇λ∇σ

(
∂F
∂Rµλ

ρσ

)
= gνρ∇λ∇σ

(
FGR +

1

2
FR
)(

δρµδ
σ
λ − δ

ρ
λδ

σ
µ

)
+ 2gνρ∇λ∇σ

[
FG
(
Rρσ
µλ − δ

ρ
µR

σ
λ + δσµR

ρ
λ + δρλR

σ
µ − δσλRρ

µ

)]
. (3.28)
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To continue, firstly we calculate the first part of the previous equation which is

gνρ∇λ∇σ

(
FGR +

1

2
FR
)(

δρµδ
σ
λ − δ

ρ
λδ

σ
µ

)
=
(
gνµ∇λ∇λ − gνλ∇λ∇µ

)(
FGR +

1

2
FR
)

=gµν�

(
RFG +

1

2
FR
)
−∇ν∇µ

(
RFG +

1

2
FR
)
,

(3.29)

and then calculating the second part we get

2gνρ∇λ∇σ

[
FG
(
Rρσ
µλ − δ

ρ
µR

σ
λ + δσµR

ρ
λ + δρλR

σ
µ − δσλRρ

µ

)]
=2∇λ∇σ[FG(R σ

ν µλ − gµνRσ
λ +Rνλδ

σ
µ +Rσ

µgνλ −Rµνδ
σ
λ)].

(3.30)

Summing up these two equations we have

gνρ∇λ∇σ

(
∂F
∂Rµλ

ρσ

)
= gµν�

(
RFG +

1

2
FR
)
−∇ν∇µ

(
RFG +

1

2
FR
)

+ 2∇λ∇σ

[
FG
(
R σ
ν µλ − gµνRσ

λ +Rνλδ
σ
µ +Rσ

µgνλ −Rµνδ
σ
λ

)]
= (gµν�−∇ν∇µ)

(
RFG +

1

2
FR
)

+ 2
(
R σ
ν µλ − gµνRσ

λ +Rνλδ
σ
µ +Rσ

µgνλ −Rµνδ
σ
λ

)
∇λ∇σFG

+ 2FG∇λ[∇σR
σ
ν µλ −∇σ(gµνR

σ
λ) +∇σ(Rνλδ

σ
µ) +∇σ(Rσ

µgνλ)

−∇σ(Rµνδ
σ
λ)]. (3.31)

Now to continue the calculation we can simply write

∇σR
σ
ν µλ = ∇σRνσµλ = −∇σR

σ
νµλ (3.32)

and using the Bianchi identities

∇σR
α
βαν +∇αR

α
βνσ +∇νR

α
βσα = 0, (3.33)

∇σRβν +∇αR
α
βνσ −∇νRβσ = 0, (3.34)

we get

∇σR
σ
νµλ = ∇µRνλ −∇λRνµ. (3.35)

Hence we have

∇σR
σ
ν µλ = ∇λRνµ −∇µRνλ. (3.36)

Then we conclude that

∇σR
σ
ν µλ −∇σ(gµνR

σ
λ) +∇σ(Rνλδ

σ
µ)+∇σ(Rσ

µgνλ)−∇σ(Rµνδ
σ
λ)

=
1

2
gνλ∇µR−

1

2
gµν∇λR

(3.37)
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where we used∇µRνµ = 1
2
∇νR .

Substituting Eq.(3.37) into Eq.(3.31) we get

gνρ∇λ∇σ

(
∂F
∂Rµλ

ρσ

)
= (gµν�−∇ν∇µ)

(
RFG +

1

2
FR
)

+ 2
(
R σ
ν µλ − gµνRσ

λ +Rνλδ
σ
µ +Rσ

µgνλ −Rµνδ
σ
λ

)
∇λ∇σFG

+ 2FG∇λ

(
1

2
gνλ∇µR−

1

2
gµν∇λR

)
= (gµν�−∇ν∇µ)

(
RFG +

1

2
FR
)

+ 2R σ
ν µλ∇λ∇σFG

− 2gµνR
σ
λ∇λ∇σFG + 2Rνλ∇λ∇µFG + 2Rσ

µ∇ν∇σFG

− 2Rµν�FG + FG∇ν∇µR−FGgµν�R

= R (gµν�−∇ν∇µ)FG +
1

2
(gµν�−∇ν∇µ)FR

+ 2R σ
ν µλ∇λ∇σFG − 2gµνR

σ
λ∇λ∇σFG + 2Rνλ∇λ∇µFG

+ 2Rσµ∇ν∇σFG − 2Rµν�FG. (3.38)

Hence we can write

1

2

(
gνρ∇λ∇σ − gνσ∇λ∇ρ

) ∂f

∂Rµλ
ρσ

=R (gµν�−∇ν∇µ)FG +
1

2
(gµν�−∇ν∇µ)FR

+2R σ
ν µλ∇λ∇σFG − 2gµνR

σ
λ∇λ∇σFG

+2Rνσ∇σ∇µFG + 2Rσµ∇ν∇σFG − 2Rµν�FG
(3.39)

and the similar term is simply

1

2

(
gµρ∇λ∇σ − gµσ∇λ∇ρ

) ∂f

∂Rλν
ρσ

=−R (gµν�−∇ν∇µ)FG

−1

2
(gµν�−∇ν∇µ)FR

−2R σ
µ νλ∇λ∇σFG + 2gµνR

σ
λ∇λ∇σFG

−2Rµσ∇σ∇νFG − 2Rσν∇µ∇σFG + 2Rµν�FG.
(3.40)
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We also need to calculate the term

∂f

∂Rµλ
ρσ

R λ
ρσ ν =

(
FGR +

1

2
FR
)

(δρµδ
σ
λ − δ

ρ
λδ

σ
µ)R λ

ρσ ν

+ 2FG
(
Rρσ
µλ − δ

ρ
µR

σ
λ + δσµR

ρ
λ + δρλR

σ
µ − δσλRρ

µ

)
R λ
ρσ ν

=
(
FGR +

1

2
FR
)(
R λ
µλ ν −R

λ
λµ ν

)
+ 2FG

(
Rρσ
µλR

λ
ρσ ν −R

σ
λR

λ
µσ ν +Rρ

λR
λ

ρµ ν +Rσ
µR

λ
λσ ν −Rρ

µR
λ

ρλ ν

)
=

(
FGR +

1

2
FR
)(
R λ
µλ ν −R

λ
λµ ν

)
+ 2FG

(
Rρσ
µλR

λ
ρσ ν + 2Rρ

λR
λ

ρµ ν + 2Rρ
µR

λ
λρ ν

)
= −2Rµν

(
FGR +

1

2
FR
)

+ 2FG
(
Rρσ
µλR

λ
ρσ ν + 2R λ

ρµ νR
ρ
λ + 2Rσ

µRσν

)
. (3.41)

Similarly we compute

∂f

∂Rλν
ρσ

R λ
ρσ µ = 2Rµν

(
FGR +

1

2
FR
)
− 2FG

(
Rρσ
νλR

λ
ρσ µ + 2R λ

ρν µR
ρ
λ + 2Rσ

νRσµ

)
.

(3.42)

So the field equations with a source follow as

2R(gµν�−∇µ∇ν)FG + (gµν�−∇µ∇ν)FR + 2
(
R σ
µ νλ +R σ

ν µλ

)
∇λ∇σFG

− 4gµνR
σ
λ∇λ∇σFG + 4

(
Rµσ∇σ∇ν +Rνσ∇σ∇µ

)
FG − 4Rµν�FG

+ 2Rµν

(
FGR +

1

2
FR
)
− 2FG

(
2R λ

ρµ νR
ρ
λ + 2Rσ

µRσν +Rρσ
µλR

λ
ρσ ν

)
− 1

2
gµνf =

κ

2
Tµν (3.43)

or we can recast them as

FR
(
Rµν −

1

2
gµνR

)
+

1

2
gµν

(
FRR− f

)
− 2FG

(
−RµνR + 2R λ

ρµ νR
ρ
λ + 2Rσ

µRσν +Rρσ
µλR

λ
ρσ ν

)
+ (gµν�−∇µ∇ν)FR + 2R(gµν�−∇µ∇ν)FG + 4

(
Rµσ∇σ∇ν

+Rνσ∇σ∇µ − gµνRσ
λ∇λ∇σ −Rµν�

)
FG + 2

(
R σ
µ νλ +R σ

ν µλ

)
∇λ∇σFG =

κ0

2
Tµν .

(3.44)

Still, these field equations can be written in a simpler form using the Weyl tensor and

some simple tricks.
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The Weyl tensor in four dimensions is

Cµσνλ = Rµσνλ +
1

2
(gµλRνσ + gσνRµλ − gµνRσλ − gσλRνµ)

+
1

6
(gµνgλσ − gµλgνσ)R. (3.45)

Then we simply compute that

(2Cµσνλ −Rµσνλ)∇σ∇λ = Rµσνλ∇σ∇λ + gµλRνσ∇σ∇λ + gσνRµλ∇σ∇λ

− gµνRσλ∇σ∇λ −Rµν�

+
1

3
(gµνR�−R∇ν∇µ) . (3.46)

For the next calculation let us start with the definition of the Gauss-Bonnet invariant:

G −RµνσρR
µνσρ + 4RµνR

µν −R2 = 0. (3.47)

Using

RαβR
αβ =

1

2
RαβR

αβ +
1

2
RαβR

αβ =
1

2
(RµρRν

ρ −RµρσνRρσ)gµν (3.48)

and G = 1
4
gµνGgµν and R2 = RRµνgµν we can write(

1

4
gµνG −RµασρRν

ασρ + 2
(
RµρRν

ρ −RµρσνRρσ

)
−RRµν

)
gµν = 0 (3.49)

and we conclude that

gµνG = 4RRµν + 4RµασρRν
ασρ − 8

(
RµρRν

ρ −RµρσνRρσ

)
. (3.50)

Using the above equations we find the field equations as

FRRµν +
1

2
gµν(GFG −F) +

(
gµν�−∇µ∇ν

)
FR

+ 4

[(
2Cµσνλ −Rµσνλ

)
∇σ∇λ +

R

6

(
gµν�−∇µ∇ν

)]
FG = 8πG0Tµν (3.51)

where

FR =
1

2
(γR− 1)

(
γR(γR− 2)− 9γ2G − 2

)
, (3.52)

FG =
9

4
γ(−γ2R2 + 9γ2G + 2γR + 2) (3.53)

for our special action Eq.(3.19). And for the trace of the field equations we simply

compute

RFR + 2GFG − 2F + 3�FR − 4Gµν∇µ∇νFG = 8πG0T. (3.54)
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The trace equation, when computed in the vacuum state of a spacetime, give us the

vacuum equation (namely the maximally symmetric solution) to study and interpret

the vacuum state of the universe. In the following section we will study the maximally

symmetric vacuum solution for our Born-Infeld universe .

3.1 Maximally Symmetric Vacuum Solution

In Einstein’s theory, the vacuum solution is maximally symmetric i.e. the spacetime

is homogeneous and isotropic in 4 dimensions (and so the curvature is constant at

every point) [1]. In this section, we search for the maximally symmetric vacuum

solutions of our theory. As an introduction we firstly give the brief information about

the maximally symmetric spaces in general.

3.1.1 Maximally Symmetric Spaces1

Suppose we choose a coordinate system xµ and after a coordinate transformation we

get a new chart x′µ. If under such a coordinate transformation the form of the metric

does not change then the metric has symmetry which is called an isometry. We denote

the transformed metric as g′µν(x
′µ). Then the isometry can be expressed as

g′µν(x
′µ) = gµν(x

′µ) (3.55)

for all x′µ. Since the metric is a (0,2) tensor field, it transforms as

g′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x) (3.56)

at a point and the inverse transformation is

gµν(x) =
∂x′ρ

∂xµ
∂x′σ

∂xν
g′ρσ(x′). (3.57)

Using the isometry property g′ρσ(x′) = gρσ(x′) we have

gµν(x) =
∂x′ρ

∂xµ
∂x′σ

∂xν
gρσ(x′). (3.58)

Let us consider an infinitesimal transformations for simplicity

x′µ = xµ + ε ξµ, (3.59)
1 In this section we generally follow the Weinberg’s calculations[28].
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where ε is a small quantity; ε << 1 and ξ is a vector field . Taking the partial

derivative of this transformation Eq.(3.59) we have,

∂x′µ

∂xρ
=
∂xµ

∂xρ
+ ε

∂ξµ

∂xρ
. (3.60)

Then we substitute Eq.(3.60) into Eq.(3.58) and do the calculations to the first order;

gµν(x) =

(
∂xρ

∂xµ
+ ε

∂ξρ

∂xµ

)(
∂xσ

∂xν
+ ε

∂ξσ

∂xν

)
gρσ(x′)

=

(
∂xρ

∂xµ
∂xσ

∂xν
+ ε

∂xρ

∂xµ
∂ξσ

∂xν
+ ε

∂xσ

∂xν
∂ξρ

∂xµ

)
gρσ(x′). (3.61)

Now we can do a Taylor series expansion (to the first order):

gρσ(x′) = gρσ(x+ ε ξ) = gρσ(x) + ε ξα
gρσ
∂xα

(3.62)

and we insert Eq.(3.62) into Eq.(3.61)

gµν(x) =

(
∂xρ

∂xµ
∂xσ

∂xν
+ ε

∂xρ

∂xµ
∂ξσ

∂xν
+ ε

∂xσ

∂xν
∂ξρ

∂xµ

)(
gρσ(x) + ε ξα

gρσ
∂xα

)
. (3.63)

gµν(x) = gµν(x) + εgµσ(x)
∂ξσ

∂xν
+ εgρν(x)

∂ξρ

∂xµ
+ εξα

∂gµν
∂xα

. (3.64)

Then we have

gµσ(x)
∂ξσ

∂xν
+ gρν(x)

∂ξρ

∂xµ
+ ξα

∂gµν
∂xα

= 0. (3.65)

Now we need to calculate the partial derivative of ξµ = gσµξ
σ;

∂ξµ
∂xν

=
∂gσµ
∂xν

ξσ + gσµ
∂ξσ

∂xν
. (3.66)

Then we have

gσµ
∂ξσ

∂xν
=
∂ξµ
∂xν
− ∂gσµ

∂xν
ξσ (3.67)

and similarly

gρν
∂ξρ

∂xµ
=
∂ξν
∂xµ
− ∂gρν
∂xµ

ξρ. (3.68)

Substituting above two equations into Eq.(3.65) we get

∂ξµ
∂xν

+
∂ξν
∂xµ

+ ξα
(
∂gµν
∂xα

− ∂gαµ
∂xν

− ∂gαν
∂xµ

)
= 0. (3.69)

Now using the definition of the Christoffel symbol Eq.(A.27) we have

∂ξµ
∂xν

+
∂ξν
∂xµ
− 2Γσνµξσ = 0. (3.70)
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We can write this equation in a covariant form as

∇µξν +∇νξµ = 0, (3.71)

which is named as the "Killing equation". And ξµ is the Killing vector accepted by

the metric gµν when there is an infinitesimal isometry.

Now we can continue to our calculation using the Eq.(A.39); rewriting for the Killing

vector we have

∇ρ∇νξµ −∇ν∇ρξµ = ξσR
σ
µνρ. (3.72)

We can also use the cyclic identity Eq.(A.9);

Rσ
µνρ +Rσ

νρµ +Rσ
ρµν = 0. (3.73)

Then we have

∇ρ∇νξµ −∇ν∇ρξµ +∇µ∇ρξν −∇ρ∇µξν +∇ν∇µξρ −∇µ∇νξρ = 0. (3.74)

Now using Eq.(3.71), the above equation simplifies to

∇ν∇µξρ +∇ρ∇νξµ +∇µ∇ρξν = 0. (3.75)

Then Eq.(3.72) turns out to be

−∇µ∇ρξν −∇ν∇µξρ −∇ν∇ρξµ = ξσR
σ
µνρ. (3.76)

Again using the Killing equation Eq.(3.71) we find

∇µ∇ρξν = −ξσRσ
µνρ. (3.77)

Up to here we studied the Killing vector at a point in the spacetime. Now let us

give a short analysis on this equation. This analysis will enable us to study all the

existing Killing vectors the metric has. Suppose we know the Killing vector ξµ and its

covariant derivative ∇νξµ at some point A in n dimensional spacetime. And assume

that we know the metric; we can calculate the Christoffel connection and the Riemann

tensor. Then we can simply find the partial derivative of the Killing vector using the

definition of the covariant derivative
(
∂νξµ = ∇νξµ + Γανµξα

)
. By the Eq.(3.77) we

can specify the second covariant derivative of the ξµ such that it is proportional to ξσ:

∇µ∇ρξν ∝ ξσ. (3.78)
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We can continue to calculate the higher derivatives by taking derivatives of Eq.(3.77):

∇α∇µ∇ρξν = −∇α(ξσR
σ
µνρ) ∝ ∇αξσ. (3.79)

And similarly

∇σ∇α∇µ∇ρξν ∝ ∇σ∇αξσ ∝ ξµ, (3.80)

∇β∇σ∇α∇µ∇ρξν ∝ ∇βξµ. (3.81)

Consequently, we can specify the higher derivatives of the ξµ in terms of ξµ and

∇νξµ.

Considering the Eq.(3.71) we simply observe that ∇νξµ is an antisymmetric rank-2

tensor and by the antisymmetry property it has n(n−1)/2 linearly independent, non-

zero components. Now we try to do a Taylor series expansion of a Killing vector ξ∗µ
in the neighbourhood of a fixed point A

ξ∗µ(x) = ξ∗µ(A+ ζ) = ξ∗µ(A) + ζν∂νξ
∗
µ(A) + ... (3.82)

or

ξ∗µ(x) = Xβ
µξ
∗
β(A) + Y αβ

µ ∇αξ
∗
β(A). (3.83)

Here ζ is a vector field. Xβ
µ and Y αβ

µ are expansion coefficients independent of ξ∗β(A)

and∇αξ
∗
β(A). Now we do a simple calculation: ξ∗β(A) has n components and besides

there are n(n − 1)/2 derivative terms. Then we find the total number of the terms

constructing the Killing vector field as

n+
n(n− 1)

2
=
n(n+ 1)

2
. (3.84)

This is the maximum number of linearly independent Killing vectors that a spacetime

of dimension n may possesses. When we add two or more Killing vectors with con-

stant coefficients, the resultant vector is again a Killing vector. As a final point we

conclude that if we know ξµ and∇νξµ at a point, we can calculate the complete form

of the Killing vector field ξµ(x).

• Homogeneity: For a homogeneous spacetime, there is no special point. Then we

can assign any existing Killing vector to any point we prefer.

•Isotropy: If at a fixed point, the Killing vector ξµ vanishes and if there is no re-

striction on∇νξµ except the antisymmetry property by the Killing equation, then it is

called as an isotropic spacetime. It means there is no special direction.
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• If the space is isotropic at any point, then it is also homogeneous.

• If the spacetime is both homogeneous and isotropic then it has the maximum num-

ber of Killing vectors or vice versa.

To investigate the Killing vectors further, we need to solve the Eq.(3.77). Instead, we

can obtain a long but a simpler equation. We use the integrability (or compatibility)

condition. For a (0,2) rank tensor the integrability condition is stated as Eq.(A.44):

[∇α,∇µ]Xρν = −Rλ
ραµXλν −Rλ

ναµXρλ. (3.85)

We rewrite this equation for∇ρξν ;

∇α∇µ∇ρξν −∇µ∇α∇ρξν = −Rσ
ραµ∇σξν −Rσ

ναµ∇ρξσ. (3.86)

Now taking the derivative of Eq.(3.77) we also have

∇α∇µ∇ρξν = −Rσ
µνρ∇αξσ − ξσ∇αR

σ
µνρ. (3.87)

Substituting this equation into Eq.(3.86) we get

Rσ
ανρ∇µξσ −Rσ

µνρ∇αξσ +Rσ
ραµ∇σξν +Rσ

ναµ∇ρξσ = (∇αR
σ
µνρ −∇µR

σ
ανρ)ξσ.

(3.88)

And inserting Eq.(3.71) into above equation we find(
Rσ

ανρδ
β
µ +Rσ

ναµδ
β
ρ −Rσ

µνρδ
β
α −Rσ

ραµδ
β
ν

)
∇βξσ = (∇αR

σ
µνρ −∇µR

σ
ανρ)ξσ.

(3.89)

This is the final equation we should solve to obtain the Killing vectors and to solve this

we need to write down the equations by component analysis. Inserting the Riemann

tensor components, Eq.(3.89) must hold. However, this is not always possible. If the

metric has the maximum number of Killing vectors Eq.(3.84), then the spacetime is

named to be maximally symmetric.

Now our aim is to construct the Riemann tensor using Eq.(3.89). We will choose a

point to study. Considering the isotropy property that the Killing vector may vanish

at a point the right hand side of Eq.(3.89) could be taken as zero. For the other side,

we firstly anti-symmetrize the multiplier terms with respect to β and σ then equalize

to zero:

Rσ
ανρδ

β
µ+Rσ

ναµδ
β
ρ −Rσ

µνρδ
β
α−Rσ

ραµδ
β
ν = Rβ

ανρδ
σ
µ+Rβ

ναµδ
σ
ρ−Rβ

µνρδ
σ
α−Rβ

ραµδ
σ
ν

(3.90)
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Now we pass to the left hand side Eq.(3.89) which also becomes zero. By homogene-

ity condition we can choose any Killing vector at this point. Assigning a non-zero

Killing vector we find

∇αR
σ
µνρ = ∇µR

σ
ανρ. (3.91)

We turn back to Eq.(3.90) and contract β and µ. For n dimensional spacetime we

have,

(n− 1)Rσανρ = Rραgσν −Rναgσρ (3.92)

where we used the property Eq.(A.9)

Rσ
ανρ +Rσ

νρα +Rσ
ραν = 0. (3.93)

Since the Riemann tensor is antisymmetric with respect to σ and α in Eq.(3.92) we

also anti-symmetrize the right hand side:

Rραgσν −Rναgσρ = −Rρσgαν +Rνσgαρ. (3.94)

Contracting σ and ν we get

Rρα =
R

n
gαρ. (3.95)

Finding the Ricci tensor, now we can substitute into Eq.(3.92);

Rσανρ =
R

n(n− 1)
(gραgσν − gναgσρ) . (3.96)

This is the Riemann tensor in a maximally symmetric n dimensional spacetime.

Now in order to gain more information about the scalar curvature R, we calculate

Eq.(A.22):

∇µ

(
Rµα − 1

2
gµαR

)
= ∇µ

(
R

n
gµα − 1

2
gµαR

)
= 0. (3.97)

Since R is a scalar we simply write(
1

n
− 1

2

)
∂µR = 0 (3.98)

then we conclude that R is a constant. Now, to find R, let us calculate the field

equations in 4 dimensions. Einstein tensor is computed to be

Rµν −
1

2
gµνR = −R

4
gµν . (3.99)

For a vacuum solution the Einstein tensor should vanish. Then we could fairly inter-

pret this equation as a cosmological Einstein equation taking Λ = R/4 [23]. Finally,
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in a 4-dimensional maximally symmetric spacetime Riemann tensor can be written

as [18]

Rµσνρ =
Λ

3
(gµνgσρ − gµρgσν) (3.100)

with its contractions Rµν = Λgµν and R = gµνRµν = 4Λ. Here Λ is the effective

cosmological constant. Then the Gauss-Bonnet invariant becomes

G = RµνσρR
µνσρ − 4RµνR

µν +R2 =
8

3
Λ2. (3.101)

3.2 Maximally Symmetric Solutions

The Riemann tensor in a maximally symmetric 4-dimensional spacetime is written as

Eq.(3.96)

Rσανρ =
R

12
(gραgσν − gναgσρ) . (3.102)

Then we can list 3 different spaces according to the value of the R [22],[23]:

• If R = 0, the spacetime is Minkowskian (Rσανρ = 0, flat universe);

• If R > 0, we have a positive curvature and the spacetime is said to be de Sitter ;

• If R < 0, we get an anti-de Sitter spacetime implying a negative curvature.

Besides, these 3 spaces are the solutions of the conformally flat cosmological Einstein

field equations [22]. Let us show this briefly. For a conformally flat metric we have

Cσανρ = 0. Then the Riemann tensor becomes

Rµσνλ =
1

2
(−gµλRνσ − gσνRµλ + gµνRσλ + gσλRνµ) +

1

6
(−gµνgλσ + gµλgνσ)R.

(3.103)

When we substitute Rµν = Λgµν = 1
4
Rgµν we get

Rµσνλ =
R

8
(−gµλgνσ − gσνgµλ + gµνgσλ + gσλgνµ) +

R

6
(−gµνgλσ + gµλgνσ)

=
R

12
(gµνgσλ − gµλgνσ) . (3.104)

With this expected Riemann tensor we finalise the proof. Then we continue with

short introductions to de-Sitter and anti-de Sitter spacetimes before presenting the

calculations of the maximally symmetric vacuum of the quartic theory.
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3.2.1 de Sitter and anti-de Sitter Spacetimes

A simple example as a start: While studying a 2-sphere we use the idea of embedding

to be able to visualize this surface. Let us remember the embedding tool [25]:

The 2-dimensional sphere is defined by

x2
1 + x2

2 + x2
3 = r2 (3.105)

and it is embedded into 3-dimensional Euclidean space with the flat metric

ds2 = dx2
1 + dx2

2 + dx2
3. (3.106)

Or, when we write the ambient (embedding) space in spherical coordinates we have

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2. (3.107)

Fixing r = R, we get a hypersurface with a metric

ds2 = R2dθ2 +R2 sin2 θdφ2 (3.108)

which is the ordinary sphere. Of course the metric Eq.(3.108) is not valid everywhere

on the two sphere as it is a curved surface.

We can use embedding in higher dimensions also.

3.2.1.1 de Sitter Spacetimes

For a de Sitter spacetime we need a 5-dimensional Euclidean metric as an ambient

space

ds2 = dx2 + dy2 + dz2 + dw2 + dv2. (3.109)

Embedded hypersurface is then defined by the equation

x2 + y2 + z2 + w2 + v2 = a2. (3.110)

Here we do a coordinate transformation v = it′ [18], then we have

x2 + y2 + z2 + w2 − t′2 = a2. (3.111)

Now the metric takes the form

ds2 = dx2 + dy2 + dz2 + dw2 − dt′2. (3.112)
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Now we do a transformation such that [22]

t′ = a sinh
t

a
,

x = a cosh
t

a
cosχ,

y = a cosh
t

a
sinχ cos θ, (3.113)

z = a cosh
t

a
sinχ sin θ cosφ,

w = a cosh
t

a
sinχ sin θ sinφ.

Then we get the metric

ds2 = −dt2 + a2 cosh2 t

a

(
dχ2 + sin2 χ(dθ2 + sin2 θdφ2)

)
(3.114)

which is named as de-Sitter (dS) metric.

3.2.1.2 Anti-de Sitter Spacetimes

This time the subspace has a constant negative curvature. We have

− x2 + y2 + z2 + w2 − v2 = −a2 (3.115)

embedded in a space

ds2 = −dx2 + dy2 + dz2 + dw2 − dv2. (3.116)

After using the transformation [22]

x = a cosh r′ sin
t

a
,

y = a sinh r′ cos θ,

z = a sinh r′ sin θ cosφ, (3.117)

w = a sinh r sin θ sinφ,

v = a cosh r′ cos
t

a
,

our metric turns out to be

ds2 = − cosh2 r′dt2 + a2
(
dr′2 + sinh2 r′(dθ2 + sin2 θdφ2)

)
(3.118)

and called as anti-de Sitter (AdS) metric. Here we can do one more transformation

that a sinh r′ = r to get a different version of AdS metric:

ds2 = −
(

1 +
r2

a2

)
dt2 +

(
1 +

r2

a2

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (3.119)
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3.2.2 Maximally Symmetric Vacuum of Quartic Gravity

After giving an introductory review of the maximally symmetric spaces in general, we

turn to quartic gravity. Now finding the Riemann tensor in the maximally symmetric

spacetime we can calculate the background values of the fields:

FR = (1− 4λ)(1 + 2λ)2, (3.120)

FG =
9γ

2
(1 + 2λ)2, (3.121)

F =
1

2γ

[
(1 + 2λ)4 − 4λ0 − 1

]
, (3.122)

where we use a new notation λ0 = γΛ0 and λ = γΛ, with λ0 and λ being dimension-

less.

We can write the Eq.(3.54) for a vacuum solution as

RFR + 2G FG − 2F = 0 (3.123)

since the derivative terms do not contribute. When we substitute the background fields

we obtain the final equation:

4λ4 + 4λ3 − λ+ λ0 = 0. (3.124)

We will try to solve this quartic equation and certainly take just the physically allowed

ones. At this point this vacuum equation could be considered to have 4 possible roots

being a quartic equation. The discriminant value plays an important role while solving

an equation and is computed to be

4 = 16(1 + 4λ0)2(−11 + 64λ0). (3.125)

Now without solving the Eq.(3.124) we will find out that this equation has just one

viable root using the discriminant analysis as mentioned in Appendix A.4.

3.2.3 Particle Spectrum of the Theory

In order to investigate the vacuum equation further we search for the excitations about

the vacua using the linearization procedure.
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We consider the metric gµν as a combination of a background metric gµν and a per-

turbation hµν (linearized form of the metric gµν) about this background;

gµν = gµν + hµν . (3.126)

It is shown that hµν transforms like a component of a tensor field Eq.(C.6). Then

we can consider in a different perspective that hµν fields are propagating around a

background metric gµν in vacuum [14]. With this approach we can investigate the

excitations around the vacuum and study the particle spectrum of the theory.

We firstly linearize FR Eq.(3.52) such that

(FR)L =
1

2
(γRL)(γ2R

2 − 2γR− 9γ2G − 2)

+
1

2
(γR− 1)(2γ2RRL − 2γRL − 9γ2GL)

= −6γλ(1 + 2λ)RL. (3.127)

Here the subscript L stands for the linearized form of the fields and overbar is placed

for the background fields. FG and F fields under linearization are computed as

(FG)L =
9γ

2
(1 + 2λ)RL, FL = (1 + 2λ)3RL, (3.128)

and the linear form of the Gauss-Bonnet invariant is

GL =
4

3
λRL. (3.129)

The explicit calculation of the Eq.(3.129) is shown in Appendix B.3.

Now we can linearize the trace equation to see if there is a spin-0 mode of excitation

about the vacuum. Taking Tµν = 0, linearization of Eq.(3.54) takes the form below :

(FR)LR + FRRL + 2GLFG + 2G(FG)L − 2FL + 3�(FR)L

− 4Rµν∇
µ∇ν

(FG)L + 2R�(FG)L = 0. (3.130)

Inserting the linearized fields, all the �RL terms cancel each other, then we conclude

that our theory does not have a spin-0 mode of graviton. And the remaining terms

just reduce to

(1 + 2λ)2(−1 + 4λ)RL = 0. (3.131)

Hence, the linearization of the trace equation produces a simple equation of RL and

we require to find out this gauge invariant term (invariance of RL is discussed in
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Appendix C.3). Then we choose RL = 0 and λ 6= −1
2

, λ 6= 1
4
.

Now we linearize the field equations Eq.(3.51) fixing RL = 0. We again take Tµν = 0

since we study the vacuum case. Then we have

FR(Rµν)L + (FR)LRµν +
1

2
hµν(G FG −F)

+
1

2
gµν
(
GLFG + G(FG)L −FL

)
+ gµν�(FR)L −∇µ∇ν(FR)L

+ 4

[(
2Cµσνλ −Rµσνλ

)
∇σ∇λ

+
R

6

(
gµν�−∇µ∇ν

)]
(FG)L = 0. (3.132)

The background valued Weyl tensor is zero i.e. Cµσνλ = 0 for the maximally sym-

metric background. Since we admitRL to be zero we also have (FR)L = 0, (FG)L =

0, FL = 0, and GL = 0. The linearized field equations simplify to

FR(Rµν)L +
1

2
hµν(G FG −F) = 0. (3.133)

Substituting the background values we have

(1− 4λ)(1 + 2λ)2 ((Rµν)L − Λhµν) = 0. (3.134)

Then under the linearization process we recovered the linearized Einstein equation

(with RL = 0) which is (Rµν)L − Λhµν = 0 (studied in Appendix B.2). Then we

can inherit from the Einstein’s theory that our theory also has a single massless spin-2

excitation (also mentioned in Appendix B.4) and no other modes. If we couple the

Eq.(3.134) to a energy-momentum tensor we find the effective Newton’s constant:

Geff =
1

(1− 4λ)(1 + 2λ)2
G0. (3.135)

This equation confirms our previous conclusion inferred from Eq.(3.131) that λ 6= −1
2

and λ 6= 1
4
. And Newton’s constant should be positive for attractive gravity which

results in a additional restriction that λ < 1
4
. The relation of Geff/G0 vs. λ can

be seen in Figure 3.1. One important observation is that the measured (effective)

Newton’s constant Geff depends on the effective cosmological parameter λ and they

are inversely proportional as Geff ≈ − G0

16λ3
.

Now we can go back to the Eq.(3.124) and study whether we have a unique viable

solution. The last restriction (λ < 1
4
) automatically implies that λ0 < 11

64
using

Eq.(3.124) and the discriminant Eq.(3.125) takes a negative value which means that

we have 2 real roots. However one of the real roots does not lie on the allowed region.
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Figure 3.1: Graph of Geff/G0 vs λ plotted according to Eq.(3.135).

Figure 3.2: Graph of λ vs λ0 plotted according to Eq.(3.124).
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Then we conclude that our vacuum equation has just a single physically acceptable

solution as desired. Figure 3.2 shows the graph of λ vs λ0 according to Eq.(3.124).

Since λ ≈ (−λ0)1/4, as we give a large negative number for λ0, the gap between λ

and λ0 increases dramatically and this is not an unexpected result for the modified

curved geometries.

3.3 Truncation of the Theory

We remark again that having a viable unique vacuum is a crucial step for an extended

gravity theory in order to survive as an ultimate quantum gravity theory that is re-

quired to be able to study the universe properly. Certainly, it is more challenging to

keep this significant property even when we truncate the theory as we do below. Our

theory is a quartic theory i.e. we have terms up to O(R4) in our Lagrangian density.

When we perform a truncation, for example, to the O(R3) or O(R2) then we can

study our theory in lower energies also.

Let us start with the cubic truncation. Keeping the terms up to the O(R3) we have

F = R− 2Λ0 +
9

2
γG +

9

2
γ2GR− 1

2
γ2R3, (3.136)

FG =
9

2
γ(1 + γR), (3.137)

FR = 1 +
9

2
γ2G − 3

2
γ2R2, (3.138)

FG =
9

2
γ(1 + 4λ), (3.139)

FR = 1− 12λ2, (3.140)

F =
2

γ
(2λ+ 6λ2 + 8λ3 − λ0). (3.141)

We will restudy the vacuum equation for the truncated versions of the theory to see

whether our theory still remains viable. When we substitute the relevant terms to the

Eq.(3.123) we get the new vacuum equation

4λ3 − λ+ λ0 = 0. (3.142)

We again need to linearize the fields:

(FR)L = −6γλRL, (FG)L =
9

2
γ2RL, (F)L = (1 + 6λ+ 12λ2)RL. (3.143)
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Substituting the fields into Eq.(3.130), again all the �RL terms vanish and we finally

get

(−1 + 12λ2)RL = 0. (3.144)

As mentioned before, RL = 0, then we find that λ 6= ± 1
2
√

3
.

And Eq.(3.133) becomes

(1− 12λ2)(Rµν)L +
1

γ
hµν(λ0 − 2λ+ 16λ3) = 0. (3.145)

Using the Eq.(3.142) we get

(1− 12λ2) ((Rµν)L − Λhµν) = 0. (3.146)

Then, by cubic truncation, we obtain the linearized Einstein theory (with a cosmolog-

ical constant) imposing an effective Newton’s constant

Geff =
1

1− 12λ2
G0. (3.147)

The requirement of positive Newton’s constant gives a restriction that − 1
2
√

3
< λ <

1
2
√

3
. Using the prior finding that λ < 1

4
, we actually have

− 1

2
√

3
< λ <

1

4
. (3.148)

Then we compute that − 1
3
√

3
< λ0 <

3
16

using the Eq.(3.142). Again considering the

prior result that λ0 <
11
64

we get

− 1

3
√

3
< λ0 <

11

64
. (3.149)

And the discriminant value is computed to be ∆ = 1
16

(1− 27λ2
0). At cubic truncation

we have a single solution in the allowed region.

At O(R2) we have

F = R− 2Λ0 +
9

2
γG (3.150)

which is the Lagrangian density for the Einstein-Gauss-Bonnet theory with a cosmo-

logical constant. And truncation to the O(R) gives the cosmological Einstein theory.

By truncation we mean that we have studied the theory at O(R2) and O(R3) in addi-

tion to O(R4).
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CHAPTER 4

A BRIEF INTRODUCTION TO BLACK HOLES

An ordinary star balances its gravitational attraction with thermonuclear reactions by

burning its source at the core of the star. After the burning steps, gases turn into

denser metals. And finally when all the fuel is used up and transformed to iron we

can list the alternatives for the fate of the star [13], [26], [32], [33] :

• If the mass of the star is under the Chandrasekhar limit (it is around 1.4M� where

M� is the mass of the Sun ), it can balance its gravitational attraction by electron

degeneracy pressure (due to the Pauli exclusion principle). Since it is an unlimited

source of pressure, this star could continue its life in this mode. This kind of stars are

named as white dwarfs.

• If the mass of the star is heavier than the Chandrasekhar limit, it can not balance its

gravity and collapses. During this collapse, the neutron density increases and the star

becomes a neutron star. Then the neutron degeneracy provides the stability.

• If the mass of the star is above 3M�, it continues to collapse and forms a black hole.

It exerts such an extreme gravitation that anything (including photons) can not escape

from this attraction once it passes through the black hole’s event horizon.

4.1 Schwarzschild Black Holes1

Birkoff theorem states that the only spherically symmetric vacuum solution to Ein-

stein’s theory is the Schwarzschild metric:

ds2 = −(1− 2GM

r
)dt2 +

(
1− 2GM

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2. (4.1)

1 In this section we generally follow the calculations of [13] and also [14].
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Although it is not assumed previously, we see that Schwarzschild metric is static

i.e. it is independent of time. As discussed before, r = 0 is a real singularity and

r = rS = 2GM is called as Schwarzschild radius. If we apply this solution to our

Sun for example, we find that Schwarzschild radius of the Sun
(
rS�
)

is smaller than

its radius (r�) :

rS� = 2G�M� < r� (4.2)

Since the Schwarzschild metric is found for a vacuum solution, we can not use it for

this kind of objects but we can approximately use it as an exterior solution in the

static spherically symmetric case. We will in this section assume that we are studying

a compact object that is applicable to the Schwarzschild metric.

Let us consider the Schwarzschild metric while passing from the r > rS region

through the r < rS region. Firstly, for interior regions the sign of the gtt and grr

components change:

gtt: its sign is (-) for r > rS; leads to a timelike coordinate whereas it is (+) for r < rS

which is spacelike.

grr: its sign is (+) for r > rS; leads to a spacelike coordinate whereas it turns to a

timelike coordinate for r < rS .

This odd behaviour of coordinates is a sign of improper coordinate chart. Anyway,

let us study the geodesic equations to probe deeply. For simplicity we choose radially

moving light rays. Then we have dθ = 0, dφ = 0, ds2 = 0 and the metric becomes

0 = −(1− 2GM

r
)dt2 +

(
1− 2GM

r

)−1

dr2 (4.3)

which yields
dt

dr
= ∓ 1(

1− 2GM
r

) . (4.4)

For an outgoing photon as t increases r must increase since r is measured from the

origin of the source. Then (+) sign refers to the outgoing ray and (-) sign refers to the

incoming one.

Now let us start solving the Eq.(4.4) for an outgoing photon;∫ t

0

dt =

∫ r

0

1(
1− 2GM

r

)dr =

∫ r

0

(
2GM

r − 2GM
+ 1

)
dr, (4.5)

∫ t

0

dt = 2GM

∫ r

0

1

r − 2GM
dr +

∫ r

0

dr. (4.6)
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Then we simply calculate that

t1 = r1 + 2GM ln
∣∣∣ r1

2GM
− 1
∣∣∣+ const. (4.7)

for the outgoing photon (t1, r1). For the incoming photon (t2, r2) we find

t2 = −r2 − 2GM ln
∣∣∣ r2

2GM
− 1
∣∣∣+ const. (4.8)

We can list some of the outcomes of these equations:

•There is a singularity at r = 2GM as seen in the metric equation.

• If t→ −t, incoming photons are replaced by outcoming ones and vice versa.

•For the outgoing ray;

If r < 2GM : when r increases, t decreases!

If r > 2GM : when r increases, t increases also.

•For the incoming ray;

If r < 2GM : when r decreases, t also decreases!

If r > 2GM : when r decreases, t increases.

The incoming and outgoing rays are plotted in Figure 4.1; the apparently singular

point (r = 2GM) can be recognized easily (dashed line). We also see the odd be-

haviour of the rays coming from a point r > rS; these rays need infinite time to cross

this singular point. The incoming rays inside the Schwarzschild radius move until

they reach to the real singular point r = 0. An outgoing ray at r < rS can move to the

singularity (r = 2GM ) but it takes infinite time to cross this point; this means that it

is actually trapped inside an unseen surface with radius r = rS .

Peculiar results might be due to the inappropriate coordinates. Then let us choose a

different chart for a better understanding. We continue to study radial null rays and

introduce a new transformation:

t = t∓ 2GM ln
( r

2GM
− 1
)
, (4.9)

and

dt = dt∓ 2GM

r − 2GM
dr. (4.10)

We firstly consider the (+) sign and calculate the new metric

ds2 = −
(

1− 2GM

r

)
dt

2
+

4GM

r
drdt+

(
1 +

2GM

r

)
dr2 + r2dθ2 + r2 sin2 θdφ2,

(4.11)
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Figure 4.1: Incoming (blue solid lines) and outgoing (red dotted lines) rays in
Schwarzschild coordinates. The dashed vertical line indicates the event horizon.
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written in terms of the advanced Eddington-Finkelstein coordinates (t, r, θ, φ). Then

the singularity problem at r = 2GM seems to be solved. We can study the metric for

the region 0 < r < ∞. Now let us study radially moving null rays for this metric.

Taking ds2 = dθ = dφ = 0 we obtain(
r − 2GM

r

)
dt

2

dr2
− 4MG

r

dt

dr
−
(
r + 2GM

r

)
= 0. (4.12)

Solving this equation by ordinary methods we find two solutions. For the incoming

photons we have
dt

dr
= −1 (4.13)

which yields

t = −r + const. (4.14)

The second solution corresponds to outgoing rays

dt

dr
=
r + 2GM

r − 2GM
, (4.15)

and when we solve this equation we obtain

t = r + 4MG ln
∣∣∣ r

2GM
− 1
∣∣∣+ const. (4.16)

Then we see that the incoming photons can cross through the surface r = 2GM

(Figure:4.2). Outgoing rays at r < 2GM region never pass through this surface.

Outgoing rays at r > 2GM region can travel to infinity. We conclude that r = 2GM

serves like a one-way membrane. This boundary is called as the event horizon which

is a defining property for black holes.

Now we turn back to Eq.(4.10) and study the remaining alternative which is

dt = dt− 2GM

r − 2GM
dr (4.17)

then the metric becomes

ds2 = −
(

1− 2GM

r

)
dt

2− 4GM

r
drdt+

(
1 +

2GM

r

)
dr2 + r2dθ2 + r2 sin2 θdφ2.

(4.18)

These coordinates are named as the retarded Eddington-Finkelstein coordinates.

Next, we search for radially moving null rays again:(
r − 2GM

r

)
dt

2

dr2
+

4MG

r

dt

dr
−
(
r + 2GM

r

)
= 0. (4.19)
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Figure 4.2: Incoming (blue solid lines) and outgoing (red dotted lines) rays in
Eddington-Finkelstein coordinates indicating a black hole.
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Figure 4.3: Incoming (blue solid lines) and outgoing (red dotted lines) rays in retarded
Eddington-Finkelstein coordinates indicating a white hole.
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The first solution implies the outgoing rays that dt/dr = 1, so passing through the

singularity these rays could travel to infinity (Figure:4.3). The second solution gives

the incoming photons that
dt

dr
=

r + 2GM

−r + 2GM
. (4.20)

Integration yields

t = −r − 4MG ln

∣∣∣∣ −r2GM
+ 1

∣∣∣∣+ const. (4.21)

This time we see that incoming photons at region r > 2GM do not pass through

r = 2GM surface. These objects are called as white holes.

These are the basic calculations on general black holes in Einstein’s general relativity

theory. Now we will study the black holes within the Ricci flatness assumption in our

modified quartic theory and present an approximate spherically symmetric solution.
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CHAPTER 5

RICCI FLAT, BLACK HOLE AND APPROXIMATE SPHERICALLY

SYMMETRIC SOLUTIONS OF THE QUARTIC THEORY

5.1 Ricci Flat Solutions

In this section we continue to study the solutions of Einstein’s gravity to search

whether they also solve the quartic theory. For the vacuum case (Tµν = 0) and with

Λ0 = 0, Einstein’s theory reduces to finding the Ricci flat (Rµν = 0) metrics. When

we recalculate the fields taking into account these assumptions we have

F =
9γG

2

(
1 +

9

4
γ2G

)
, FG =

9γ

2
(1 +

9

2
γ2G), FR = 1 +

9

2
γ2G. (5.1)

And the Gauss-Bonnet invariant turns out to be the Kretschmann scalar, for Ricci-flat

metrics,

G = RµνρσR
µνρσ. (5.2)

Since Gµν = 0 and Tµν = 0, trace of the field equations simplifies to

2GFG − 2F + 3�FR = 0 (5.3)

and substituting the fields we get a nonlinear wavelike equation for G

�G +
3

2
G2 = 0. (5.4)

While solving an equation, we can always discard the undesired solutions and keep

the physically good ones. With this reasoning we can eliminate the singular solutions

of Eq.(5.4) even if there exist any. Then, we can conclude that our theory does not

have a Kretschmann scalar-singularity. Recalling that this kind of singularity arises in

Schwarzschild solution unavoidably, we see that our theory is free of a Schwarzschild

singularity. Of course this is also true for the rotating (Kerr) solution which we have
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not discussed here.

Now this time let us find the traceless part of the field equations. We firstly write the

field equations for Ricci flat metrics:

1

2
gµν(GFG −F) +

(
gµν�−∇µ∇ν

)
FR + 4

(
2Cµσνλ−Rµσνλ

)
∇σ∇λFG = 0. (5.5)

When we insert F ,FR and FG we have

9

8
gµνγG2 + (gµν�−∇µ∇ν)G + 18γCµσνλ∇σ∇λG = 0 (5.6)

and then substituting the Eq.(5.4) we find the traceless part of the field equations in

Ricci flat spacetime:(
1

4
gµν�−∇µ∇ν

)
G + 18γCµσνλ∇σ∇λG = 0. (5.7)

As a final point, Ricci flat solutions survive in our theory; G being the Kretschmann

scalar and satisfying Eq.(5.4) and Eq.(5.7).

5.2 Black Hole Solutions

The fact that our theory does not include a Schwarzschild singularity does not mean

that our theory is free of all kinds of singularities. Still, we can search for a black hole

type solution to investigate the theory better.

We consider a general static metric

ds2 = −N2dt2 + habdx
adxb. (5.8)

Here hab is the 3-dimensional (spatial) part of the metric, so the indices a and b de-

notes the 3-dimensional spacetime. N and hab are the functions of spatial coordinates,

since we assume staticity. For a black hole study we will use the method used in [19],

[20], [21]. First of all we need a mathematical rewriting to continue. Considering

a general coordinate dependent scalar ψ = ψ(xa) we can do the simple calculation

below

�ψ(xa) = gµν∇µ∇νψ

= g00∇0∇0ψ + hab∇a∇bψ

= g00 (∂0∇0ψ − Γa00∇aψ) + hab∇a∇bψ

= −g00Γa00∇aψ + hab∇a∇bψ (5.9)
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since ψ is a time independent scalar i.e. ∇0ψ = ∂0ψ = 0. Substituting Γa00 =

1
2
hab∂bN

2 = habN∂bN we find the result

�ψ(xa) =
1

N2
habN∂bN∇aψ + hab∇a∇bψ = ∇a∇aψ +

1

N
hab∂bN∇aψ. (5.10)

We finally derived a new formulation of d’Alembertian operator for a general coordi-

nate dependent (but time independent) scalar and we can use this new formulation to

rewrite our wave function of G. When we insert the above equation into Eq.(5.4) we

get

∇a∇aG +
1

N
∇aN∇aG +

3

2
γG2 = 0 (5.11)

To continue we follow a procedure that we multiply Eq.(5.11) by NG and integrate

over a 3-dimensional segment:∫
S

√
hd3x

[
NG∇a∇aG + G∇aN∇aG +

3γ

2
NG3

]
= 0. (5.12)

After rewriting we have∫
S

√
hd3x

[
∇a (NG∇aG)−N∇aG∇aG +

3γ

2
NG3

]
= 0. (5.13)

Now we need to interpret this equation carefully to understand whether our theory

admits a black hole type solution or not. We take the integral from the horizon of the

presupposed black hole to infinity (or a point very far away). If we decide on G to

be zero we can not think of a black hole (then we have just a flat space since there

is no gravitation any more). Back to the integral equation; the first term does not

contribute due to the Gauss’ theorem (N vanishes at the horizon by definition and G
is taken to be zero at infinity by the asymptotical flatness). And since both N and G
can be positive or negative, we can not decide that the remaining two integral terms

are positive or negative definite. Then we allow G to survive as a Kretschmann scalar;

it does not have to vanish. We can still consider black hole type solutions. Namely,

our theory might have solutions with event horizons.

5.3 Approximate Spherically Symmetric Solutions

We assume a general spherically symmetric metric:

ds2 = −g(r)2f(r)dt2 +
1

f(r)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
, (5.14)
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where f and g are functions of r only. Now, using the computer program Mathemat-

ica, we will search for spherically symmetric solutions, for the case of zero cosmo-

logical constant.

Firstly, we observe that f(r) = 1 and g(r) = 1 is an exact solution (Minkowski met-

ric). Namely, we have Eµν = 0, here we label the field equations as Eµν for a simple

notation (Eµν = 8πG0 Tµν) .

In order to study the Schwarzschild solution we fix f(r) = 1 − 2GM
r

and g(r) =

1. Then we see that Eµν does not vanish as expected since we already found that

Schwarzschild solution is not included in the quartic theory. For the Schwarzschild

metric one obtains

Ett = −1296γ2G2m2 (2Gm− r) (r3 (11Gm− 5r) + 9γGm (67Gm− 32r))

r13
,

(5.15)

Err =
1296γ2G2m2 (r3 (2r − 3Gm) + 9γGm (11Gm− 4r))

r11 (2GM − r)
, (5.16)

Eθθ =
1296γ2G2m2 (2r3 (3r − 7Gm) + 9γGm (41Gm− 18r))

r10
, (5.17)

Eφφ = Eθθ sin2 θ. (5.18)

One can observe that for large r, one has

Ett ≈ O
(

1
r8

)
, Err ≈ O

(
1
r8

)
, Eθθ ≈ O

(
1
r6

)
, Eφφ ≈ O

(
1
r6

)
.

This says that even though the Schwarzschild metric is not an exact solution, it is an

approximate solution up to O
(

1
r6

)
. The first corrections to the Schwarzschild metric

come at O
(

1
r6

)
.

The corrected, approximate solution up to O
(

1
r8

)
can be found as

f(r) = 1− 2GM

r
− 2592G2m2γ2

5r6
+

864G3m3γ2

r7
+O

(
1

r8

)
, (5.19)

g(r) = 1 +O
(

1

r8

)
. (5.20)

Here we see that, atO
(

1
r8+m

)
(m = 0, 1, 2, ...), the metric does not satisfy the relation

g00g
rr = −1 due to the additional terms.
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CHAPTER 6

CONCLUSIONS

To remedy the short-distance (or large field) regime problems of general relativity,

there are many modified gravity models that extend general relativity. Most of these

models are built on adding powers of the curvature tensor as αR2 + βRµνR
µν +

γRµναβR
µναβ + O(R3). Addition of these higher curvature terms do not affect the

long-distance behaviour of the theory for small α, β, γ... parameters but yield an im-

proved theory at short distances. Nevertheless, one can easily see that addition of

these terms drastically change some salient features of Einstein’s general relativity.

For example, beside the massless graviton in general relativity, massive gravitons,

massive scalar particles arise. Moreover, some of these particles, that contribute to

gravity are ghosts or tachyons. This is quite disturbing both from the classical and

quantum theory point of view. Another problem with these higher curvature theories

is that, generically, in the presence of a cosmological constant or even in the absence

of it, the maximally symmetric solution of the theory becomes degenerate. One can

have Minkowski spacetime or de Sitter or anti-de Sitter spacetimes with different cos-

mological constants given by the parameters of the theory. In general, if one has Rn

terms in the action one has up to n different vacua. These two problems prompted

a recent research that led to a construction of higher curvature modifications of Ein-

stein’s gravity that has a unique vacuum and a single massless graviton as the only

perturbative excitation about its vacuum. A class of theories in the Born-Infeld form

was constructed that has this property. We studied a special form of the general action

taking a = 0, b = −5/2 and c = −1, which is called the quartic gravity.

Using the linearization method we studied the particle spectrum of the theory. Lin-

earized trace equation gives two restrictions that λ = γΛ 6= −1
2

and λ 6= 1
4

(with

RL = 0). Linearization procedure reveals that our theory admits linearized cosmo-
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logical Einstein equations which ensure the single massless spin-2 excitation pres-

ence. Then we also calculated the effective Newton’s constant. This study confirms

the previous results (λ 6= −1
2

and λ 6= 1
4
) and gives a new restriction that λ < 1

4
. Then

we also concluded that λ0 = γΛ0 <
11
64

. And with the discriminant analysis we see

that quartic gravity has single vacuum solution which is maximally symmetric.

Ricci flat and black hole solutions existing in Einstein’s theory were studied for our

quartic gravity. Ricci flatness condition gives an equation for Gauss-Bonnet invariant

which is the Kretschmann scalar in our calculations. This equation is noteworthy to

get rid of the Kretschmann scalar singularity which is inevitable in Einstein’s theory

leading to Schwarzschild or Kerr singularity. Our action does not have this kind of

singularity but other black hole solutions can be searched. Using Mathematica we

also showed that the Schwarzschild metric is not a solution in quartic gravity and we

found an approximate solution for a spherically symmetric metric.

BI theory has been studied in the cosmological context: The inflation era of the BI

universe was studied in [38]. This early stage of the universe was explained without

introducing a field like an inflaton. The inflation is due to the ghostlike nature of the

theory for the wrong vacuum. Another study is on the entropy of the universe [39].

Gibbons-Hawking entropy is reproduced and in this result G is replaced by Keff

leading a increased entropy in dS spacetimes.

54



REFERENCES

[1] S. M. Carroll, “Spacetime and Geometry An Introduction to General Relativity,”
Addison Wesley, San Francisco, CA, (2004).

[2] H. C. Ohanian, “Gravitation and Spacetime,” W. W. Norton and Company, New
York, London, (1976).

[3] M. Carmeli, “Classical Fields:General Relativity and Gauge Theory,” John Wi-
ley & Sons, New York, (1982).

[4] S. W. Hawking, “Nature of Space and Time,” hep-th/9409195 (1994).

[5] S. M. Carroll, “The Cosmological Constant,” . Living Rev. Relativity, 4, (2001),
1, http://www.livingreviews.org/lrr-2001-1

[6] T. Padmanabhan, “Cosmological constant—the weight of the vacuum,”
Phys.Rept. 380, 235, (2003).

[7] M. Roos, “Introduction to Cosmology ,” John Wiley & Sons, England, (2003).

[8] P. S. Joshi, “Gravitational Collapse and Spacetime Singularities,” Cambridge
University Press , New York, (2007).

[9] P. S. Joshi, “Global Aspects in Gravitation and Cosmology,” Oxford University
Press , New York, (1993).

[10] I. Gullu, T. C. Sisman and B. Tekin, “Unitarity analysis of general Born-Infeld
gravity theories,” Phys. Rev. D 82, 124023 (2010).

[11] I. Gullu, T. C. Sisman and B. Tekin, “Born-Infeld Gravity with a Unique Vacuum
and a Massless Graviton,” Phys. Rev. D 92, 104014 (2015).

[12] I. Gullu, T. C. Sisman and B. Tekin, “Born-Infeld Gravity with a Massless
Graviton in Four Dimensions,” Phys. Rev. D 91, 044007 (2015).

[13] L. Ryder, “Introduction to General Relativity,” Cambridge University Press,
New York, (2009).

[14] M. P. Hobson, G. P. Efstathiou and A. N. Lasenby, “General Relativity An In-
troduction for Physicists,” Cambridge University Press, New York, (2006).

[15] J. J. Callahan, “The Geometry of Spacetime: An Introduction to Special and
General Relativity ,” Springer-Verlag, New York, (2000).

55



[16] G. F. R. Ellis and R. M. Williams, “Flat and Curved Space-Times,” Oxford
University Press , New York, (1988).

[17] L. P. Eisenhart, “Riemannian Geometry,” Princeton University Press, (1926).

[18] W. Rindler, “Relativity Special, General, and Cosmological ,” Oxford Univer-
sity Press, New York, (2006).

[19] W. Nelson, “Static Solutions for 4th order gravity,” Phys. Rev. D 82, 104026
(2010).

[20] H. Lu, A. Perkins, C.N. Pope, and K.S. Stelle, “Black Holes in Higher-
Derivative Gravity,” Phys. Rev. Lett. 114, 171601 (2015).

[21] H. Lu, A. Perkins, C.N. Pope, and K.S. Stelle, “Spherically Symmetric Solutions
in Higher-Derivative Gravity,” Phys. Rev. D 92, 124019 (2015).
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APPENDIX A

SOME BACKGROUND ON TENSORS

A.1 Bianchi Identity and the Einstein Tensor1

Covariant derivative is defined as

∇νVµ = ∂νVµ − ΓσµνVσ, (A.1)

∇νV
µ = ∂νV

µ + ΓµσνV
σ (A.2)

for the covariant and contravariant components of a general vector V. A simple ob-

servation is that; if there is no curvature (Γσµν = 0) covariant derivative reduces to

ordinary derivative.

The Riemann tensor is expressed as

Rµ
νρσ = ∂ρΓ

µ
σν − ∂σΓµρν + ΓµρλΓ

λ
σν − ΓµσλΓ

λ
ρν (A.3)

and its covariant form is

Rαβµν =
1

2
(∂ν∂αgβµ − ∂ν∂βgαµ + ∂µ∂βgαν − ∂µ∂αgβν)

− gσρ (ΓσαµΓρβν − ΓσανΓρβµ) . (A.4)

Now suppose we study on a point A in geodesic coordinates. Then taking Γµαβ = 0,

Riemann tensor at this point becomes

Rαβµν =
1

2
(∂ν∂αgβµ − ∂ν∂βgαµ + ∂µ∂βgαν − ∂µ∂αgβν) (A.5)

using Eq.(A.4). Now we can see the symmetries of the Riemann tensor

Rαβµν = −Rβαµν , (A.6)

Rαβµν = −Rαβνµ, (A.7)
1 In this section we generally follow the book [14].
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Rαβµν = Rµναβ, (A.8)

and the cyclic identity

Rαβµν +Rαµνβ +Rανβµ = 0. (A.9)

Now let us take the covariant derivative of the Riemann tensor at this point A.

∇σ(Rµανβ) = ∂σ(Rµανβ)

=
1

2
∂σ (∂ν∂αgβµ − ∂ν∂βgαµ + ∂µ∂βgαν − ∂µ∂αgβν)

= ∂σ∂νΓµαβ − ∂σ∂βΓµαν . (A.10)

Then it can be shown that

∇σRµανβ +∇νRµαβσ +∇βRµασν = 0. (A.11)

This relation is named as Bianchi identity. Since we deal with tensorial equations,

these results can be used at all other coordinates.

For a 4-rank tensor we generally have 6 contracted 2-rank tensors. However using the

symmetries of the Riemann tensor we only get the Ricci tensor

Rµ
αµβ = Rαβ. (A.12)

In order to investigate the Ricci tensor let us do a (α− µ) contraction in (A.9):

Rα
βαν +Rα

ανβ +Rα
νβα = 0. (A.13)

Rβν + 0−Rα
ναβ = 0. (A.14)

Rβν −Rνβ = 0. (A.15)

Rβν = Rνβ (A.16)

Then we see that Ricci tensor is symmetric. Now we could do one more contraction

and derive the Ricci scalar

Rµ
µ = R. (A.17)

Bianchi identity Eq.(A.11) can be written in a different form. We firstly contract β

and µ;

∇σR
β
ανβ +∇νR

β
αβσ +∇βR

β
ασν = 0. (A.18)

−∇σRαν +∇νRασ +∇βR
β
ασν = 0. (A.19)
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Now we perform a (α− ν) contraction , then we have

−∇σR +∇νR
ν
σ +∇βRβσ = 0. (A.20)

It can be written as

∇ν

(
Rν
σ −

1

2
δνσR

)
= 0 (A.21)

or

∇ν

(
Rνσ − 1

2
gνσR

)
= 0 (A.22)

Then we find the Einstein tensor

Gνσ =

(
Rνσ − 1

2
gνσR

)
(A.23)

with its conservation∇νG
νσ = 0.

A.2 Variation of the Riemann tensor

Let us take the variation of the Riemann tensor Eq.(A.3)

δRµ
νρσ = ∂ρδΓ

µ
σν − ∂σδΓµρν + δΓµρλΓ

λ
σν + ΓµρλδΓ

λ
σν − δΓ

µ
σλΓ

λ
νρ − ΓµσλδΓ

λ
νρ. (A.24)

Using ∇ρδΓ
µ
νσ = ∂ρδΓ

µ
νσ + ΓµρβδΓ

β
νσ − ΓβρνδΓ

µ
βσ − ΓβρσδΓ

µ
νβ , we get

δRµ
νρσ = ∇ρδΓ

µ
νσ −∇σδΓ

µ
νρ. (A.25)

Note that

δRµν
ρσ = δ(gνβRµ

βρσ) = δgνβRµ
βρσ + gνβδRµ

βρσ

= δgνβRµ
βρσ + gνβ(∇ρδΓ

µ
βσ −∇σδΓ

µ
βρ) (A.26)

Now we need to calculate the variation of the Christoffel symbol. Starting from the

usual formula

Γµνσ =
1

2
gµρ(∂νgσρ + ∂σgρν − ∂ρgνσ), (A.27)

we find the variation as

δΓµνσ =
1

2
δgµρ(∂νgσρ + ∂σgρν − ∂ρgνσ) +

1

2
gµρ(∂νδgσρ + ∂σδgρν − ∂ρδgνσ). (A.28)

Using∇νδgσρ = ∂νδgσρ − Γγνσδgγρ − Γγνρδgσγ and δgµν = −gµσgνβδgσβ , we have

δΓµνσ =
1

2
gµρ(∇νgσρ +∇σδgρν −∇ρδgνσ). (A.29)
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Using this result (A.29) we finally get

δRµν
ρσ =

1

2
(gαρ∇σ∇ν − gασ∇ρ∇ν) δgαµ +

1

2
(gασ∇ρ∇µ − gαρ∇σ∇µ) δgαν

+
1

2
R µ
ρσ αδg

να − 1

2
R ν
ρσ αδg

µα. (A.30)

A.3 Integrability Condition 2

Let us consider an arbitrary function F and its derivative in two different coordinate

systems. The derivative of F in some coordinate chart is ∂F
∂xµ

and it is ∂F
∂x′µ

in some

other coordinates. The corresponding transformation is written as

∂F

∂x′µ
=
∂F

∂xν
∂xν

∂x′µ
(A.31)

or in terms of a covariant vector V ;

V
′

µ = Vν
∂xν

∂x′µ
. (A.32)

Here Vµ is the derivative of the function F in xµ-coordinates and V ′µ is the one in

x
′µ-coordinates. And the inverse transformation can be stated as

Vν = V ′µ
∂x
′µ

∂xν
. (A.33)

In fact this covariant vector V is the gradient of the function F by definition. The

covariant derivative of a function reduces to ordinary derivative and

∇µ∇νF −∇ν∇µF = ∂µ∂νF − ∂ν∂µF = 0. (A.34)

Now we take the second covariant derivative of a (0,1) rank vector Tµ;

∇ρ∇νTµ = ∇ρ(∇νTµ) = ∂ρ(∇νTµ)− Γσρν∇σTµ − Γσρµ∇νTσ. (A.35)

We substitute∇νTµ = ∂νTµ − ΓσνµTσ;

∇ρ∇νTµ =∂ρ∂νTµ − Tσ∂ρΓσνµ − Γσνµ∂ρTσ − Γσρν∂σTµ + ΓσρνΓ
α
σµTα

− Γσρµ∂νTσ + ΓσρµΓανσTα.
(A.36)

Similarly

∇ν∇ρTµ =∂ν∂ρTµ − Tσ∂νΓσρµ − Γσρµ∂νTσ − Γσνρ∂σTµ + ΓσνρΓ
α
σµTα

− Γσνµ∂ρTσ + ΓσνµΓαρσTα.
(A.37)

2 In this section we follow the book [17].

62



Then we calculate that

∇ρ∇νTµ −∇ν∇ρTµ = Tσ(∂νΓ
σ
ρµ − ∂ρΓσνµ) + Tα(ΓσρµΓανσ − ΓσνµΓαρσ) (A.38)

which can be written as 3

∇ρ∇νTµ −∇ν∇ρTµ = TσR
σ
µνρ. (A.39)

Let us do the same calculation for a tensor Tµν . Its second covariant derivative is

∇ρ∇σTµν = ∇ρ(∇σTµν)

= ∂ρ(∇σTµν)− Γαρσ∇αTµν − Γαρµ∇σTαν − Γαρν∇σTµα. (A.40)

Substituting∇σTµν = ∂σTµν − ΓβσµTβν − ΓβσνTµβ , we have

∇ρ∇σTµν = ∂ρ∂σTµν −
(
∂ρΓ

β
σµ

)
Tβν − Γβσµ∂ρTβν −

(
∂ρΓ

β
σν

)
Tµβ

− Γβσν∂ρTµβ − Γαρσ
(
∂αTµν − ΓβαµTβν − ΓβανTµβ

)
− Γαρµ

(
∂σTαν − ΓβσαTβν − ΓβσνTαβ

)
− Γαρν

(
∂σTµα − ΓβσµTβα − ΓβσαTµβ

)
. (A.41)

Similarly

∇σ∇ρTµν = ∂σ∂ρTµν −
(
∂σΓβρµ

)
Tβν − Γβρµ∂σTβν −

(
∂σΓβρν

)
Tµβ

− Γβρν∂σTµβ − Γασρ
(
∂αTµν − ΓβαµTβν − ΓβανTµβ

)
− Γασµ

(
∂ρTαν − ΓβραTβν − ΓβρνTαβ

)
− Γασν

(
∂ρTµα − ΓβρµTβα − ΓβραTµβ

)
. (A.42)

Then we get

∇ρ∇σTµν −∇σ∇ρTµν = Tβν
(
∂ρΓ

β
ρµ − ∂ρΓβσµ − ΓασµΓβρα + ΓαρµΓβσα

)
+ Tµβ

(
∂σΓβρν − ∂ρΓβσν − ΓασνΓ

β
ρα + ΓαρνΓ

β
σα

)
.(A.43)

Using the definition of the Riemann tensor, we rewrite the above equation as

∇ρ∇σTµν −∇σ∇ρTµν = TβνR
β
µσρ + TµβR

β
νσρ. (A.44)

3 Taking double covariant derivative of a tensor preserves the tensorial property. Observe that the LHS of
(A.39) is tensorial and on the RHS we have a multiplication of two independent quantities; Rσµνρ and a vector.
Then by the quotient theorem Rσµνρ is a tensor [14].
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We can generalize these findings for rank n tensor such that

∇ρ∇σTµ1...µn −∇σ∇ρTµ1...µn =

1,...,n∑
α

Tµ1...µα−1βµα+1...µnR
β
µασρ. (A.45)

This is the compatibility or the integrability condition. For consistency, a general

rank-n tensor must satisfy this equation. The reasoning comes from the flat space.

Recall that the integrability condition in a flat geometry is

∂µ∂νVα − ∂ν∂µVα = 0. (A.46)

In curved spaces we replace ordinary differentiation with covariant one. Then we find

a condition related to Riemann tensor. For historical reasons this condition frequently

known as Ricci identity [34].

A.4 Quartic Equations

A quartic equation is defined as

x4 + ax3 + bx2 + cx+ d = 0 (A.47)

where a, b, c and d are coefficients. Quartic polynomials are solvable equations using

some methods and L. Ferrari was the first to solve this kind of equations (in the

16th century). Besides, we could also get some information about the nature of the

solutions via the discussion on the discriminant value.

For the quartic equations we calculate the discriminant using the below formula (Item

4 by Schroeppel in [36]).

4 = − 27c4 + 18abc3 − 4a3c3 − 4b3c2 + a2b2c2

+ d
(
144bc2 − 6a2c2 − 80ab2 + 18a3bc+ 16b4 − 4a2b3

)
+ d2

(
−192ac− 128b2 + 144a2b− 27a4 − 256d

)
. (A.48)

Then we can analyse the Eq.(A.47) such that [37] :

• If4 > 0, we have 4 real or 4 imaginary roots .

• If4 < 0, we have 2 real and 2 imaginary roots .

• If4 = 0, we have 2 or more equal roots.
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APPENDIX B

SOME LINEARIZATION CALCULATIONS

B.1 Linearization of the Christoffel Connection

Christoffel connection (it is not a tensor) is defined as

Γµαβ =
1

2
gµν(∂αgβν + ∂βgαν − ∂νgαβ). (B.1)

In the weak field approximation we can assume that gµν = gµν + hµν and gµν =

gµν − hµν . We directly substitute these assumptions into the Eq.(B.1):

Γµαβ =
1

2
(gµν − hµν)

[
∂α
(
gβν + hβν

)
+ ∂β (gαν + hαν)− ∂ν

(
gαβ + hαβ

)]
=

1

2
gµν
(
∂αgβν + ∂βgαν − ∂νgαβ

)
+

1

2
gµν (∂αhβν + ∂βhαν − ∂νhαβ)

− 1

2
hµν

(
∂αgβν + ∂βgαν − ∂νgαβ

)
(B.2)

to the first order in hµν . We specify the Christoffel connection calculated in the back-

ground metric as

Γ
µ

αβ =
1

2
gµν
(
∂αgβν + ∂βgαν − ∂νgαβ

)
. (B.3)

Then we have

Γµαβ = Γ
µ

αβ +
1

2
gµν (∂αhβν + ∂βhαν − ∂νhαβ)− 1

2
hµν

(
∂αgβν + ∂βgαν − ∂νgαβ

)
.

(B.4)

Now using the metric compatibility
(
∇νgαβ = 0

)
and the definition of the covariant

derivative
(
∇αgβν = ∂αgβν − Γ

σ

αβgσν − Γ
σ

ανgσβ
)

in background space, we can write

down

∂αgβν + ∂βgαν − ∂νgαβ = 2Γ
σ

αβ gσν (B.5)

and again from the definition∇αhβν = ∂αhβν − Γ
σ

αβhσν − Γ
σ

ανhσβ we find

∂αhβν + ∂βhαν − ∂νhαβ = ∇αhβν +∇βhαν −∇νhαβ + 2Γ
σ

αβhσν . (B.6)
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Using Eq.(B.5) and Eq.(B.6) we have

Γµαβ = Γ
µ

αβ +
1

2
gµν
(
∇αhβν +∇βhαν −∇νhαβ

)
+ Γ

σ

αβ (gµνhσν − gσνhµν) . (B.7)

Then we finally get the result

(Γµαβ)L = Γµαβ − Γ
µ

αβ =
1

2
gµν
(
∇αhβν +∇βhαν −∇νhαβ

)
. (B.8)

B.2 Linearization of the source-free Einstein’s Equation

Unlike the previous section (we used the original method there) , we will linearize the

below equation using the somehow direct means. The procedure is as follows: We

replace all the terms with their linearized version. If there is a multiplication of terms

we linearize the first term multiplied with the background value of the second term

and vice versa.

Cosmological Einstein equation without any source is:

Rµν −
1

2
gµνR + Λgµν = 0. (B.9)

Taking the linearization we have

(Rµν)L −
1

2
hµνR−

1

2
gµνRL + Λhµν = 0. (B.10)

In n dimensions (for this section we do the calculations in n dim.) we can write the

background value of the Riemann tensor as

Rµανβ =
2Λ

(n− 1)(n− 2)
(gµνgαβ − gµβgαν) (B.11)

and by contraction we get Rµν = 2Λ
(n−2)

gµν and R = 2n
n−2

Λ. Substituting R into

Eq.(B.10) we have

(Rµν)L −
1

2
gµνRL −

2Λ

n− 2
hµν = 0. (B.12)

Now we need to calculate (Rµν)L and RL. Let us write the Riemann tensor again and

linearize it . The Riemann tensor is

Rµ
αβν = ∂βΓµαν − ∂νΓ

µ
αβ + ΓσανΓ

µ
σβ − ΓσαβΓµσν (B.13)

and after the linearization we get

(Rµ
αβν)L = ∂β(Γµαν)L − ∂ν(Γ

µ
αβ)L + (Γσαν)L Γ

µ

σβ + Γ
σ

αν (Γµσβ)L

− (Γσαβ)L Γ
µ

σν − Γ
σ

αβ (Γµσν)L. (B.14)
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Now consider the covariant derivative of the linearized Christoffel connection. Using

∇β(Γµαν)L = ∂β(Γµαν)L + Γ
µ

βσ (Γσαν)L − Γ
σ

βα (Γµσν)L − Γ
σ

βν (Γµασ)L (B.15)

and

∇ν(Γ
µ
αβ)L = ∂ν(Γ

µ
αβ)L + Γ

µ

νσ (Γσαβ)L − Γ
σ

να (Γµσβ)L − Γ
σ

νβ (Γµασ)L (B.16)

we find that

(Rµ
αβν)L = ∇β(Γµαν)L −∇ν(Γ

µ
αβ)L. (B.17)

And contraction gives the linearized Ricci tensor:

(Rµ
αµν)L = (Rαν)L = ∇µ(Γµαν)L −∇ν(Γ

µ
αµ)L (B.18)

or

(Rµν)L = ∇α(Γαµν)L −∇ν(Γ
α
µα)L. (B.19)

Now we can substitute the linearized Christoffel connection Eq.(B.8) into above equa-

tion;

(Rµν)L = ∇α

[
1

2
gασ

(
∇µhνσ +∇νhµσ −∇σhµν

)]
− ∇ν

[
1

2
gασ

(
∇µhασ +∇αhµσ −∇σhµα

)]
=

1

2

(
∇σ∇µhνσ +∇σ∇νhµσ −�hµν −∇ν∇µh

)
(B.20)

where h ≡ gµνhµν .

And the linearization of Ricci scalar is simply calculated as follows.

(R)L = (gµνRµν)L = (Rµν)L g
µν −Rµνh

µν

=
1

2

(
∇σ∇µhνσ +∇σ∇νhµσ −�hµν −∇ν∇µh

)
gµν − 2Λ

(n− 2)
gµνh

µν

= ∇σ∇µ
hµσ −�h− 2Λ

(n− 2)
h. (B.21)

Now we complete the linearized form of the cosmological Einstein equation generally

in n dimensions: (
∇σ∇µhνσ +∇σ∇νhµσ −�hµν −∇ν∇µh

)
−gµν

(
∇σ∇α

hασ −�h− 4Λ

(n− 2)
h

)
− 2Λ

(n− 2)
hµν = 0. (B.22)
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B.3 Linearization of the Gauss-Bonnet Invariant

In this section we perform the linearization for the Gauss-Bonnet term G = R2 −
4RµνR

µν + RµνρσR
µνρσ in 4 dimensions. We again directly take the linearized form

as follows.

GL = 2RRL − 4(RµνR
µν)L + (RµανβR

µανβ)L. (B.23)

We already know some of the terms from the previous sections. Let us calculate

(RµνR
µν)L = (RµνRαβg

αµgβν)L

= (Rµν)LRαβ g
αµgβν +Rµν(Rαβ)L g

αµgβν

− RµνRαβh
αµgβν −RµνRαβ g

αµhβν

=
Λ

2

(
∇σ∇µhνσ +∇σ∇νhµσ −�hµν −∇ν∇µh

)
gαβg

αµgβν

+
Λ

2

(
∇σ∇αhβσ +∇σ∇βhµσ −�hαβ −∇β∇αh

)
gµνg

αµgβν

− Λ2 gµνgαβh
αµgβν − Λ2gµνgαβg

αµhβν

= 2Λ(∇σ∇ν
hνσ −�h− Λh)

= 2ΛRL. (B.24)

Now we need to calculate the linearized Riemann tensor:

(Rµ
αβν)L = ∇β(Γµαν)L −∇ν(Γ

µ
αβ)L

=
1

2
gµσ(∇β∇αhνσ +∇β∇νhασ −∇β∇σhαν −∇ν∇αhβσ

− ∇ν∇βhασ +∇ν∇σhαβ) (B.25)

where we used Eq.(B.8).

Then we continue as follows:

(RµανβR
µανβ)L = (Rµ

αβνR
αβν
µ )L = (Rµ

αβνR
σ
ργη gµσg

αρgβγgνη)L

= (Rµ
αβν)LR

σ

ργη gµσg
αρgβγgνη +R

µ

αβν(R
σ
ργη)L gµσg

αρgβγgνη

= R
µ

αβνR
σ

ργηhµσg
αρgβγgνη −Rµ

αβνR
σ

ργηgµσh
αρgβγgνη

= R
µ

αβνR
σ

ργηgµσg
αρhβγgνη −Rµ

αβνR
σ

ργηgµσg
αρgβγhνη. (B.26)

Substituting all the terms, we find that (RµανβR
µανβ)L = 4

3
ΛRL.

Then we finally find

GL = 8ΛRL − 8ΛRL +
4

3
ΛRL =

4

3
ΛRL. (B.27)
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B.4 Massless Graviton

In this section, let us show that Einstein’s theory has a single massless graviton in

(A)dS. The linearized Einstein tensor, after setting RL = 0, is

(Gµν)L = (Rµν)L − Λhµν . (B.28)

Observe that RL = 0 comes from the linearization of the full trace equation R = 4Λ.

Choosing h = 0, ∇µh
µν = 0 (transverse traceless gauge), which is compatible with

RL = 0, we can simplify the linearized source free equation ((Rµν)L − Λhµν = 0) to

a wave equation as follows.

We start calculating the linearized Ricci tensor. Taking h = 0, Eq.(B.20) becomes

(Rµν)L =
1

2

(
∇σ∇µhνσ +∇σ∇νhµσ −�hµν

)
. (B.29)

We can rewrite the identity Eq.(A.44) for the background space as

∇ρ∇σhµν −∇σ∇ρhµν = hβνR
β

µσρ + hµβR
β

νσρ. (B.30)

Using Eq.(3.100) we get

∇ρ∇σhµν −∇σ∇ρhµν =
Λ

3
(hσνgµρ − hρνgµσ + hσµgνρ − hρµgνσ). (B.31)

Then we have

∇σ∇µhνσ =
4

3
Λhµν , (B.32)

where we used the transverse traceless gauge.

Then we find the linearized Ricci tensor as

(Rµν)L =
4

3
Λhµν −

1

2
�hµν , (B.33)

and the linearized field equations are(
�− 2

3
Λ

)
hµν = 0, (B.34)

subject to the conditions h = 0, ∇µh
µν = 0. Although this equation stands as a mas-

sive wave equation, it can be converted to a massless wave equation in conformally

flat backgrounds with a transformation hµν = ΩHµν as explained in [35]. This point

can be understood with a scalar field example which has a simpler calculation given
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below.

We will evaluate �Φ where Φ is a scalar field. The metric gµν is a conformally flat

metric that can be written as

gµν = Ω2ηµν , (B.35)

with Ω =
(

1− m2x2

4

)−1

. Here, m is a parameter and x2 = xµxµ.

Then we can calculate that

�Φ = gµν∇µ∇νΦ

= Ω−2ηµν
(
∂µ∂νΦ− Γαµν∂αΦ

)
. (B.36)

Now let us introduce a scaled scalar field φ as

Φ = Ωwφ = Ω−1φ, (B.37)

here w is named as the Weyl weight which is −1 for the scalar field. Then we have

∂µΦ = ∂µ(Ω−1φ) =
(
∂µΩ−1

)
φ+ Ω−1∂µφ. (B.38)

Substituting ∂µΩ−1 = −m2

2
xµ we get

∂µΦ = −m
2

2
xµφ+ Ω−1∂µφ. (B.39)

And we evaluate the second derivative of Φ such that

∂ν∂µΦ = −m
2

2
δµνφ−

m2

2
xµ∂νφ−

m2

2
xν∂µφ+ Ω−1∂ν∂µφ. (B.40)

Then the first term of Eq.(B.36) is

Ω−2ηµν∂µ∂νΦ = Ω−2
(
−2m2φ−m2xµ∂

µφ+ Ω−1∂µ∂
µφ
)
. (B.41)

Now we calculate the Christoffel symbol as

Γαµν =
1

2
gαβ(∂µgνβ + ∂νgµβ − ∂βgµν)

=
1

2
Ω−2ηαβ

{
∂µ
(
Ω2ηνβ

)
+ ∂ν

(
Ω2ηµβ

)
− ∂β

(
Ω2ηµν

)}
=

m2

2
Ω
(
xµδ

α
ν + xνδ

α
µ − xαηµν

)
, (B.42)

and

Ω−2ηµνΓαµν∂αΦ =
m4

2
Ω−1x2φ−m2Ω−2xα∂αφ. (B.43)
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Finally we find that

�Φ = Ω−2
(
−2m2φ−m2xµ∂

µφ+ Ω−1∂µ∂
µφ
)
− m4

2
Ω−1x2φ+m2Ω−2xα∂αφ

= Ω−3∂µ∂
µφ− 2m2Ω−1φ

= Ω−3�0φ− 2m2Ω−1φ (B.44)

where �0 = ηµν∂µ∂ν . We can rewrite this equation as(
� + 2m2

)
Φ = Ω−3�0φ. (B.45)

Then we conclude that a massive-looking wave equation of Φ can be transformed

to a massless wave equation of φ = Ω−wΦ = ΩΦ for the conformally flat metrics.

Here we see that the interaction between the field and the curved spacetime can be

viewed as a mass. While studying the conformally flat metrics, introducing a suit-

able transformation taking into account the Weyl weight, as in Eq.(B.37), we can

observe the masslessness of the field. A similar argument works for the case of the

linearized wave equation Eq.(B.34). Following the arguments of [35], one can show

that Eq.(B.34) reduces to

�0h̃µν = 0. (B.46)

where h̃µν is the transformed field.
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APPENDIX C

LINEARIZED GRAVITY

Suppose our metric can be decomposed as

gαβ = gαβ + hαβ, |hαβ| � 1. (C.1)

We also note that gαβ = gαβ − hαβ and h = gαβhαβ .

C.1 Global Lorentz coordinate transformations1

We consider a global Lorentz transformations from xµ to xµ′ such that

xµ
′
=
∂xµ

′

∂xν
xν ≡ Λµ

νx
ν (C.2)

where Λµ
ν are the constant transformation matrix components with the property of

gµ′ν′ = Λ α
µ Λ β

ν gαβ. (C.3)

And the metric components are transformed by the below equation

gµ′ν′ = Λ α
µ Λ β

ν gαβ. (C.4)

Now we can substitute Eq.(C.1) into above equation;

gµ′ν′ = Λ α
µ Λ β

ν (gαβ + hαβ) = gµ′ν′ + Λ α
µ Λ β

ν hαβ. (C.5)

Inserting gµ′ν′ = gµ′ν′ + hµ′ν′ we get

hµ′ν′ = Λ α
µ Λ β

ν hαβ. (C.6)

Then we see that hµν obeys the (0,2) rank tensor transformation under global coordi-

nate transformations.
1 In this section we used the book [14] as a reference.
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C.2 Infinitesimal coordinate transformations2

Infinitesimal coordinate transformations can be expressed as

xµ
′
= xµ + ξµ(x) (C.7)

here ξµ is a vector field depending on the coordinates. Taking the derivation of both

sides we have;
∂xµ

′

∂xν
= δµν + ∂νξ

µ (C.8)

and the inverse transformation is

∂xµ

∂xν′
= δµν − ∂νξµ. (C.9)

Then the metric transformation can be calculated as below.

gµ′ν′(x
′) =

∂xα

∂xµ′
∂xβ

∂xν′
gαβ(x)

=
(
δαµ − ∂µξα

) (
δβν − ∂νξβ

)
gαβ(x)

= gµν(x)− gµβ(x)∂νξ
β − gαν(x)∂µξ

α + gαβ(x)∂µξ
α∂νξ

β. (C.10)

Assuming |∂µξα| � 1, we continue the calculation, to the first order, with;

gµ′ν′(x
′) = gµν(x)− gµβ(x)∂νξ

β − gαν(x)∂µξ
α. (C.11)

Now we do a Taylor expansion for gµ′ν′(x′);

gµ′ν′(x
′) = gµ′ν′(x+ ξ) ≡ gµ′ν′(x) + ξσ∂σgµ′ν′(x). (C.12)

Inserting this expression into Eq.(C.10) we have

gµ′ν′(x) = gµν(x)− gµβ(x)∂νξ
β − gαν(x)∂µξ

α − ξσ∂σgµ′ν′(x). (C.13)

Now using gµβ(x)∂νξ
β = ∂νξµ − ξβ∂νgµβ we get

gµ′ν′(x) = gµν(x)− ∂νξµ + ξα∂νgµα − ∂µξν + ξα∂µgαν − ξα∂αgµ′ν′

= gµν(x)− ∂νξµ − ∂µξν + 2ξβΓβµν

= gµν(x)−∇µξν −∇νξµ (C.14)

to the first order approximation 3.
2 In this section we generally followed the books [14] and [31].
3 In the first order approximation we simply take ξα∂αgµ′ν′ = ξα∂αgµν as inferred from Eq.(C.13).
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C.3 Diffeomorphism invariance for RL

In this section we will search how the linearized Ricci scalar changes under the dif-

feomorphism xµ
′

= xµ + ξµ(x) which is mentioned in the previous section. Let us

denote the change by δ. Then we can start as the following:

δRL = δ(gµνRµν)L = δ
(
gµν(Rµν)L − hµνRµν

)
. (C.15)

Substituting Rµν = 2Λ
(n−2)

gµν we obtain

δRL = gµνδ (Rµν)L −
2Λ

(n− 2)
gµνδh

µν . (C.16)

Then we insert (Rµν)L given in Eq.(B.20) and δhµν into above equation ;

δRL =
1

2
gµνδ

(
∇σ∇µhνσ +∇σ∇νhµσ −�hµν −∇ν∇µh

)
− 2Λ

(n− 2)
gµν
(
∇µ

ξν +∇ν
ξµ
)

= δ
(
∇σ∇µ

hσµ −�h
)
− 4Λ

(n− 2)
∇µ

ξµ

= ∇σ∇µ
δhσµ −�δh− 4Λ

(n− 2)
∇µ

ξµ. (C.17)

Now we substitute �δh = �δ(gµνh
µν) = gµν�δh

µν and δhµν ;

δRL = ∇σ∇µ (∇σξµ +∇µξσ
)
− gµν�

(
∇µξν +∇νξµ

)
− 4Λ

(n− 2)
∇µ

ξµ

= ∇σ∇µ∇σξµ +∇σ
�ξσ − 2�∇µ

ξµ −
4Λ

(n− 2)
∇µ

ξµ. (C.18)

In order to find the first term we will use Eq.(A.39);[
∇µ

,∇σ

]
ξµ = R

µ

σµρξ
ρ = Rσρξ

ρ =
2Λ

(n− 2)
ξσ, (C.19)

then we calculate that

∇µ∇σξµ =
[
∇µ

,∇σ

]
ξµ +∇σ∇

µ
ξµ

=
2Λ

(n− 2)
ξσ +∇σ∇

µ
ξµ. (C.20)

Taking derivative we have

∇σ∇µ∇σξµ =
2Λ

(n− 2)
∇µ

ξµ + �∇µ
ξµ. (C.21)
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For the second term of Eq.(C.18) let us start with the below expression:[
∇σ

,∇µ]∇µξσ = ∇σ∇µ∇µξσ −∇
µ∇σ∇µξσ = ∇σ

�ξσ −∇
µ∇σ∇µξσ.

Then our second term is

∇σ
�ξσ =

[
∇σ

,∇µ]∇µξσ +∇µ∇σ∇µξσ. (C.22)

We can continue to calculate using Eq.(3.86) ;[
∇σ

,∇µ]∇µξσ = −Rλ σµ

µ ∇λξσ −R
λ σµ

σ ∇µξλ

= −Rλσ∇
λ
ξσ +Rλµ∇

µ
ξλ

= 0. (C.23)

And using Eq.(C.19) we can write[
∇σ

,∇µ

]
ξσ = ∇σ∇µξσ −∇µ∇

σ
ξσ =

2Λ

(n− 2)
ξµ. (C.24)

Then we simply calculate that

∇µ∇σ∇µξσ =
2Λ

(n− 2)
∇µ

ξµ + �∇µ
ξµ. (C.25)

So the second term becomes

∇σ
�ξσ =

2Λ

(n− 2)
∇µ

ξµ + �∇µ
ξµ. (C.26)

We finally obtain

δRL =
4Λ

(n− 2)
∇µ

ξµ + 2�∇µ
ξµ − 2�∇µ

ξµ −
4Λ

(n− 2)
∇µ

ξµ

= 0. (C.27)

Then we conclude that RL is a diffeomorphism invariant under xµ′ = xµ + ξµ(x).
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