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Abstract: Let X be a compact Riemann surface of genus g ≥ 2, G be a complex semisimple
Lie group, and MG(X) be the moduli space of stable principal G-bundles. This paper stud-
ies the fixed point set of involutions on MG(X) induced by an anti-holomorphic involution
τ on X and a Cartan involution θ of G, producing an involution σ = θ∗ ◦ τ∗. These fixed
points are shown to correspond to stable GR-bundles over the real curve (Xτ , τ), where GR

is the real form associated with θ. The fixed point set MG(X)σ consists of exactly 2r con-
nected components, each a smooth complex manifold of dimension (g − 1)dim G

2 , where r is
the rank of the fundamental group of the compact form of G. A cohomological obstruction
in H2(Xτ , π1(GR)) characterizes which bundles are fixed. A key result establishes a derived
equivalence between coherent sheaves on MG(X)σ and on the fixed point set of the dual
involution on the moduli space of G∨-local systems, where G∨ denotes the Langlands dual
of G. This provides an extension of the Geometric Langlands Correspondence to settings
with involutions. An application to the Chern–Simons theory on real curves interprets
MG(X)σ as a (B, B, B)-brane, mirror to an (A, A, A)-brane in the Hitchin system, revealing
new links between real structures, quantization, and mirror symmetry.

Keywords: principal bundles; real forms; fixed points; involutions; moduli spaces; geomet-
ric Langlands correspondence

MSC: 14H60; 14H10; 14D21; 53D37

1. Introduction
For a compact Riemann surface X of genus g ≥ 2 and a complex semisimple Lie group

G, the moduli space MG(X) of stable holomorphic principal G-bundles over X forms a
complex projective variety of dimension (g − 1)dim G [1,2]. The study of moduli spaces of
principal bundles over Riemann surfaces has been a central topic in algebraic geometry
and mathematical physics for several decades. Since the foundational work of Atiyah and
Bott [3], these spaces have provided a rich geometric setting for various mathematical
constructions, such as Higgs bundles and Higgs pairs [4,5] and have found applications in
diverse areas such as gauge theory, representation theory, and quantum field theory.

Involutions on moduli spaces naturally arise from both anti-holomorphic involu-
tions on the underlying Riemann surface and Cartan involutions on the structure group.
Given an anti-holomorphic involution τ : X → X on a Riemann surface X, there is an
induced map τ∗ : MG(X) → MG(X) defined by pullback. Similarly, a Cartan involution
θ : G → G of the gauge group G induces a map θ∗ : MG(X) → MG(X) by extension
of the structure group. The composition σ = θ∗ ◦ τ∗ defines an involution on MG(X)
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whose fixed points MG(X)σ have a rich geometric structure [4,6–9], and whose analysis is
contextualized within the line of study of the geometry of the moduli space through the
investigation of its subvarieties and stratifications [10–12]. The presence of additional sym-
metries on moduli spaces of principal bundles, particularly those arising from involutions,
has attracted the attention of researchers due to their deep connections with real algebraic
geometry and the theory of real forms of complex Lie groups [13]. These symmetries
provide interesting insights into the geometry and topology of moduli spaces of bundles,
also providing deep implications for related physical theories [9].

The Geometric Langlands Correspondence, initially conjectured by Beilinson and
Drinfeld [14], establishes a relationship between the moduli space of G-bundles on a curve
X and the moduli space of local systems for the Langlands dual group G∨ that has been
attracted the attention of geometers and physicists, especially concerning Lie groups of ex-
ceptional type [15,16]. In particular, this correspondence has been extensively studied and
refined over the years [16,17], thus connecting representation theory, algebraic geometry,
and mathematical physics to deeply understand the geometry of principal bundles over
curves. The extension of this correspondence to settings with additional symmetries, par-
ticularly involutions, remains an active area of research [18,19]. In parallel, Chern–Simons
theory on different manifolds has been extensively studied at the intersection of topology,
gauge theory, and quantum field theory [20,21]. While its quantization is generally an
open problem that depends on the dimension of space-time and the gauge group involved,
for certain specific cases, the quantization yields finite-dimensional Hilbert spaces [20].
Specifically, when formulated on a compact three-manifold M with gauge group SU(N) at
level k, the theory produces topological invariants that can be computed exactly. As Witten
demonstrated [20], the path integral of this theory relates directly to the Jones polynomial
and its generalizations, providing a quantum field theoretic interpretation of these knot
invariants. More recent developments by Gukov and Witten [22] have explored connections
between Chern–Simons theory and the Geometric Langlands program through the study
of surface operators and boundary conditions in related four-dimensional gauge theories.
Their dimensions are related to the topology of moduli spaces [23]. Understanding how
involutions affect these quantizations is key for a better understanding of topological
quantum field theories on manifolds with boundaries or real structures [24].

Thus, the main aim of this paper is to investigate the fixed point structure of moduli
spaces under involutive symmetries and establish connections between these fixed point
sets and both the Geometric Langlands Correspondence and Chern–Simons theory on real
curves. Specifically, our research objectives are the following: (i) providing a complete char-
acterization of fixed points in moduli spaces of G-bundles under involutions arising from
anti-holomorphic involutions on Riemann surfaces and Cartan involutions on structure
groups; (ii) extending the Geometric Langlands Correspondence to accommodate these
involutive symmetries; and (iii) applying these structural results to develop a quantization
formula for Chern–Simons theory on real curves and connect this to homological mirror
symmetry through brane structures.

More precisely, the paper provides a characterization of the fixed point set MG(X)σ

under the involution σ = θ∗ ◦ τ∗ presented above. A novel cohomological obstruction
class ω(P) ∈ H2(Xτ , π1(GR)) is introduced, which vanishes precisely when τ∗(P) ∼= Pθ .
This leads to a detailed understanding of the connected components of the fixed point set,
with the main result proving that MG(X)σ consists of exactly 2r connected components,
where r is the rank of π1(G). Each component is shown to be a smooth complex manifold
of dimension (g − 1)dim(G)

2 , with explicit formulas for their Euler characteristics in terms of
symmetric spaces (Theorem 1), which connects with preceding works [25]. Furthermore,
the Geometric Langlands Correspondence is extended to the context of fixed points under
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involutions. The derived equivalence Db(Coh(MG(X)σ)) ∼= Db
(

Coh
(

MG∨

loc (X)σ∨
))

es-
tablished in Theorem 2 represents an advancement concerning previous results by Hausel
and Thaddeus [26], who focused on the case without involutions. This equivalence is
proved to respect the action of involutions and is compatible with the classical Geometric
Langlands Correspondence.

The above results are applied to Chern–Simons theory on real curves, demonstrating
that the fixed point set MG(X)σ defines a (B, B, B)-brane in the extended moduli space
T∗MG(X). This leads to a novel quantization formula for Chern–Simons theory on real
curves, expressing the dimension of the resulting Hilbert space in terms of the Euler
characteristic of the fixed point set. These findings extend previous work by Jeffrey [27] and
connect to homological mirror symmetry through the correspondence between (B, B, B)-
branes and (A, A, A)-branes under the SYZ fibration [16].

The structure of this paper is as follows. Section 2 reviews preliminary notions
concerning moduli spaces of bundles and involutions on complex manifolds. Section 3
presents the main results on the structure of fixed points under involutions, including
their cohomological characterization and the determination of connected components.
In Section 4, some computation examples are presented with concrete gauge groups, which
illustrate the fixed point structure results. Section 5 extends the Geometric Langlands
Correspondence to the context of fixed points under involutions. Section 6 applies these
results to Chern–Simons theory on real curves and explores connections with homological
mirror symmetry. Explicit implications of this to moduli spaces of symplectic bundles are
developed in Section 7 as an example. Finally, the main conclusions and lines of future
research are discussed.

2. Preliminaries
Let X be a compact Riemann surface of genus g ≥ 2 and G be a complex semisimple

Lie group. Denote by MG(X) the moduli space of stable holomorphic principal G-bundles
over X. This space is a complex projective variety of dimension (g − 1)dim G [28]. It was
first constructed by Ramanathan [1,2,28]. A Geometric Invariant Theory construction can
also be found in [29].

The complexity and semisimple conditions of Lie groups are essential prerequisites for
the extension program described in this research, particularly in relation to the Geometric
Langlands Correspondence and the quantization of Chern–Simons theory on real curves.
These conditions serve as foundational requirements for several key reasons.

First, the moduli space MG(X) of stable holomorphic principal G-bundles over a
compact Riemann surface X forms a complex projective variety only when G is a complex
semisimple Lie group. This projectivity property is crucial for applying certain techniques,
particularly the Hirzebruch–Riemann–Roch theorem [30]. Semisimplicity ensures that the
Killing form provides a natural invariant metric, which is essential for constructing the
Kähler form on the moduli space. Second, the concept of Langlands duality, which under-
pins the Geometric Langlands Correspondence, is well defined precisely for semisimple
Lie groups. The existence of the Langlands dual group G∨ depends on the root system of
G, which is most naturally formulated for semisimple groups. Third, Cartan involutions,
which are fundamental to the construction of the main involution on MG(X) considered
in this research, have a particularly rich structure for semisimple Lie groups. These in-
volutions lead to symmetric spaces G/K, whose Euler characteristics appear explicitly
in the dimension formula for the Hilbert space of quantization. Finally, the geometric
quantization program for Chern–Simons theory relies on properties specific to complex
semisimple Lie groups. The determinant line bundle L over MG(X), which will be crucial
for constructing the Hilbert space, has well-understood properties in this context. The re-
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lationship between the first Chern class of this line bundle and the Kähler form on the
moduli space is particularly simple when G is semisimple.

For the Geometric Langlands Correspondence, the concept of the Langlands dual
group will be now introduced (for details, see [31]). Given a complex semisimple Lie
group G, its Langlands dual group G∨ is defined as the complex semisimple Lie group
whose root system is dual to that of G. Specifically, if

(

X∗, Y∗, Φ∗, Φ̌∗
)

is the root datum
of G, then the Langlands dual group G∨ has the root datum

(

Y∗, X∗, Φ̌∗, Φ∗
)

. For clas-
sical groups, some common pairs are (SL(n,C), PGL(n,C)), (SO(2n + 1,C), Sp(2n,C)),
and (SO(2n,C), SO(2n,C)).

The Hitchin fibration, introduced by Hitchin in [32], plays a key role in the Geometric
Langlands Correspondence. For a complex semisimple Lie group G and a Riemann surface
X, the Hitchin fibration is a map

h : T∗MG(X) →
r
⊕

i = 1

H0
(

X, K
di + 1
X

)

, (1)

where r is the rank of G, KX is the canonical bundle of X, and d1, . . . , dr are the degrees
of the basic invariant polynomials on the Lie algebra g of G. The Hitchin fibration for the
Langlands dual group G∨ has the same base space as in (1) but different generic fibers,
which are dual abelian varieties to the fibers of the original Hitchin fibration. This duality
of fibers is one of the key ingredients in the Geometric Langlands Correspondence.

For a compact Riemann surface X of genus g ≥ 2 and a complex semisimple
Lie group G, an involution on MG(X) is a holomorphic or anti-holomorphic map
σ : MG(X) → MG(X) such that σ2 = idMG(X). In this section, two types of involutions
are considered that induce actions on MG(X), which are given in the following definitions
(see [33,34]).

Definition 1. Let τ : X → X be an anti-holomorphic involution on the Riemann surface X.

For any principal G-bundle P on X, the pullback τ∗(P) defines another principal G-bundle on X.

This induces a map τ∗ : MG(X) → MG(X).

Definition 2. For a Cartan involution θ : G → G and a principal G-bundle P on X, define Pθ

to be the principal G-bundle obtained by extending the structure group via θ. This induces a map

θ∗ : MG(X) → MG(X).

The composition
σ = θ∗ ◦ τ∗ (2)

of the automorphisms provided by Definitions 1 and 2 provides an involution on MG(X).
The following result gives an easy characterization of its fixed points.

Lemma 1. Let τ : X → X be an anti-holomorphic involution on the Riemann surface X,

θ : G → G be a Cartan involution of G, and σ be the involution of MG(X) defined in (2). Then,

the fixed point set of σ on MG(X) consists of isomorphism classes of G-bundles P such that

τ∗(P) ∼= Pθ , where Pθ is introduced in Definition 2.

Proof. A point [P] ∈ MG(X) is fixed by σ if and only if σ([P]) = [P], which means
θ∗(τ∗([P])) = [P]. By definition, θ∗(τ∗([P])) = [(τ∗P)θ ]. Therefore, [P] is a fixed point if
and only if [(τ∗P)θ ] = [P], which is equivalent to τ∗(P) ∼= Pθ .

The fixed points of σ are connected with real forms of G, as explained below.
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Definition 3. Let GR be a real form of the complex semisimple group G corresponding to a Cartan

involution θ of G. A principal GR-bundle on the real curve (Xτ , τ) is a principal G-bundle P

on X together with an anti-holomorphic involution τ̃ : P → P covering τ : X → X such that

τ̃(p · g) = τ̃(p) · θ(g) for all p ∈ P and g ∈ G.

The following result, characterizing stable fixed points of σ and principal bundles
whose structure group is a real form of G was first established by Schaffhauser [9].

Lemma 2 ([9]). Let τ be an anti-involution of the Riemann surface X, θ be its Cartan involution,

and GR be a real form of the complex semisimple Lie group G corresponding to θ. Then, there is a

one-to-one correspondence between he following:

• Isomorphism classes of stable principal G-bundles P on X such that τ∗(P) ∼= Pθ ;

• Isomorphism classes of stable principal GR-bundles on the real curve (Xτ , τ), where Xτ is the

fixed point curve of the involution τ of X.

3. Fixed Points and Cohomological Characterization
Let MG(X)σ denote the fixed point set of the involution σ defined in (2) in the moduli

space MG(X). The following original result, determining the connected components
structure of MG(X)σ, extends to the general situation of a complex semisimple group
G results given by Biswas, Huisman, and Hurtubise [13] in the particular case where
G = SL(n,C).

Proposition 1. Let σ be the involution of the moduli space MG(X) of stable principal G-bundles

over X introduced in Definition (2). Then, the fixed point set MG(X)σ of σ has 2r connected

components, where r is the rank of the fundamental group of the compact real form of G.

Proof. By Lemma 2, the fixed point set MG(X)σ corresponds to the moduli space of
stable principal GR-bundles on the real curve (Xτ , τ), where GR is the real form of G

corresponding to the Cartan involution θ defining σ, according to Definition (2). To analyze
the connected components of this moduli space, the topological classification of principal
GR-bundles on the real curve will be examined.

Let Xτ be the fixed point set of τ on X. Since τ is an anti-holomorphic involution, Xτ

is a disjoint union of circles, and by Harnack’s theorem on real curves ([35], Chapter 3),
the number of connected components of Xτ is at most g + 1, where g is the genus of X.

Let K be the maximal compact subgroup of GR. By a theorem of Narasimhan and
Seshadri [36], extended to principal bundles by Ramanathan [28], every stable holomorphic
principal GR-bundle on (Xτ , τ) corresponds to a flat principal K-bundle. Therefore, to un-
derstand the topology of MG(X)σ, a classification of principal K-bundles on Xτ should
be given.

The topological classification of principal K-bundles on Xτ is provided by elements
of H1(Xτ , π1(K)). Since Xτ is a disjoint union of c circles, and the fundamental group of a
circle is Z, one has

H1(Xτ , π1(K)) ∼=
c
⊕

i = 1

Hom(π1(S
1), π1(K)) ∼= π1(K)

c (3)

(see [37] for details). Since this classification (3) does not fully account for the components
of MG(X)σ, it will be considered the extension problem of giving conditions for a principal
K-bundle on Xτ to be extended to a principal GR-bundle on (Xτ , τ). The obstruction to
extending a principal K-bundle to a principal GR-bundle lies in H2(Xτ , π0(K)). Since Xτ is
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a 1-dimensional manifold, H2(Xτ , π0(K)) = 0, so every principal K-bundle extends to a
principal GR-bundle.

However, the extensions are not unique. The different extensions are classified by
H1(Xτ , π1(GR/K)). Since GR/K is a contractible space (being diffeomorphic to Rn for
some n), we have π1(GR/K) = 0, and thus, H1(Xτ , π1(GR/K)) = 0. This means that the
extension, if it exists, is unique.

Now, let us consider the additional topological invariants associated with principal
GR-bundles. The invariant that plays a role here is the second Stiefel–Whitney class
w2 ∈ H2(X, π1(G)). For each topological type of principal K-bundle on Xτ , there are
exactly 2r possible extensions to principal GR-bundles, where r is the rank of π1(G). This
follows from the exact sequence

0 → H1(X, π1(G)) → H1(Xτ , π1(K)) → H2(X,Z2)
r → 0, (4)

where the last term H2(X,Z2)
r ∼= Zr

2 in (4) corresponds to the r possible values of the
second Stiefel–Whitney class for each of the r simple factors in the decomposition of the
Lie algebra of G (for details, see [37]).

Each distinct value of the second Stiefel–Whitney class corresponds to a different
topological type of principal GR-bundle, and hence, to a different connected component in
the moduli space. Since there are 2r possible values, we conclude that MG(X)σ has exactly
2r connected components.

The following result offers a characterization of the fixed points of the involution σ

given in Definition (2) by introducing cohomological data.

Proposition 2. Let τ : X → X be an anti-holomorphic involution on X, θ : G → G be a Cartan

involution of G, σ be the involution of MG(X) defined in (2), and P be a stable principal G-bundle

on X. Then, there exists a cohomological obstruction class ω(P) ∈ H2(Xτ , π1(GR)) such that

τ∗(P) ∼= Pθ if and only if ω(P) = 0.

Proof. Let P be a stable principal G-bundle on X. The goal is to establish a cohomological
obstruction class ω(P) ∈ H2(Xτ , π1(GR)) such that τ∗(P) ∼= Pθ if and only if ω(P) = 0.
Consider the short exact sequence of sheaves on X

1 → Z → G → G/Z → 1, (5)

where G is the sheaf of holomorphic maps to G, and Z is the sheaf of holomorphic maps
to the center of G, denoted by Z(G). This short exact sequence (5) induces the long exact
sequence in cohomology given by

· · · → H1(X, G) → H1(X, G/Z)
δ
→ H2(X, Z) → · · · . (6)

The cohomology group H1(X, G/Z) classifies principal G-bundles on X up to isomor-
phism. Thus, a principal G-bundle P corresponds to an element [P] ∈ H1(X, G/Z).

The involution τ on X induces a pullback map τ∗ : H1(X, G/Z) → H1(X, G/Z).
Similarly, the Cartan involution θ on G induces a map θ∗ : H1(X, G/Z) → H1(X, G/Z).
These maps act on the cohomology class [P] representing the bundle P.

The condition τ∗(P) ∼= Pθ means that τ∗([P]) = θ∗([P]) in H1(X, G/Z). This equality
can be rewritten as τ∗([P]) · θ∗([P])−1 = 1, where the operation is the group operation in
H1(X, G/Z). Define α(P) = τ∗([P]) · θ∗([P])−1 ∈ H1(X, G/Z). Then, τ∗(P) ∼= Pθ if and
only if α(P) = 1.



Symmetry 2025, 17, 819 7 of 24

Now, consider the connecting homomorphism δ : H1(X, G/Z) → H2(X, Z) from the long
exact sequence (6). Define the cohomological obstruction class ω(P) = δ(α(P)) ∈ H2(X, Z).
The exactness of the sequence implies that α(P) = 1 if and only if α(P) is in the image of the
map H1(X, G) → H1(X, G/Z), which is equivalent to δ(α(P)) = 0. Therefore, τ∗(P) ∼= Pθ if
and only if ω(P) = 0 in H2(X, Z).

Identifying H2(X, Z) with H2(Xτ , π1(GR)) is needed. The sheaf Z is locally constant
with stalks isomorphic to Z(G), the center of G. For a semisimple Lie group G, the center
Z(G) is a finite abelian group. Moreover, there is a canonical isomorphism Z(G) ∼= π1(GR)

via the exponential map.
The involution τ on X restricts to a map τ|Xτ : Xτ → Xτ on the fixed point set Xτ .

This induces a restriction map on cohomology r : H2(X, Z) → H2(Xτ , Z).
By the properties of the cohomology of locally constant sheaves and the fact that

τ2 = idX , the restriction map r is an isomorphism. Furthermore, since Z(G) ∼= π1(GR), we
have an isomorphism H2(Xτ , Z) ∼= H2(Xτ , π1(GR)).

Composing these isomorphisms, an identification of H2(X, Z) with H2(Xτ , π1(GR))

is obtained. Under this identification, the obstruction class ω(P) ∈ H2(X, Z) corresponds
to an element in H2(Xτ , π1(GR)), which is also denoted by ω(P). Therefore, τ∗(P) ∼= Pθ if
and only if ω(P) = 0 in H2(Xτ , π1(GR)).

Remark 1. As an immediate consequence of Lemma 1 and Proposition 2, the obstruction for a

stable principal G-bundle over X to be fixed by the involution σ of MG(X) defined in (2) is an

element of H2(Xτ , π1(GR)), where Xτ is the fixed point curve of the involution τ of X and GR is

the real form corresponding to the Cartan involution θ of G, which defines the automorphism σ.

In the following result, the structure of each connected component of the fixed point
subvariety MG(X)σ is further examined.

Lemma 3. Each connected component of the subvariety MG(X)σ of fixed points of σ defined in (2)
is a complex manifold of dimension

(g − 1)dim(G)
2 .

Proof. Let P be a stable principal G-bundle on X that represents a fixed point of σ. The goal
is to show that each connected component of MG(X)σ is a complex manifold of dimension
(g − 1)dim(G)

2 .
First, recall that for any point [P] ∈ MG(X), we know, from the deformation theory of

principal bundles (see [38]), following from the identification of first-order deformations
with elements of H1(X, ad(P)), that the tangent space T[P]MG(X) is naturally isomorphic
to H1(X, ad(P)), where ad(P) is the adjoint bundle of P.

The involution σ on MG(X) induces a corresponding involution σ∗ on the tangent
space T[P]MG(X) ∼= H1(X, ad(P)). Specifically, for any element ξ ∈ H1(X, ad(P)), the in-
duced action is given by

σ∗(ξ) = (θ∗ ◦ τ∗)∗(ξ). (7)

Since P represents a fixed point of σ, there exists an isomorphism ϕ : τ∗(P) → Pθ . This
isomorphism induces an isomorphism of cohomology groups:

ϕ∗ : H1(X, ad(τ∗(P))) → H1(X, ad(Pθ)).

The tangent space to the fixed point set MG(X)σ at [P] is precisely the fixed point set
of σ∗ defined in (7) acting on H1(X, ad(P)). That is,

T[P]MG(X)σ = {ξ ∈ H1(X, ad(P)) | σ∗(ξ) = ξ}.
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The involution σ∗ induces an eigenspace decomposition of H1(X, ad(P)) as

H1(X, ad(P)) = H1(X, ad(P))+ ⊕ H1(X, ad(P))−, (8)

where H1(X, ad(P))+ is the +1-eigenspace and H1(X, ad(P))− is the −1-eigenspace of
σ∗. The tangent space to MG(X)σ at [P] is precisely H1(X, ad(P))+. To determine the
dimension of H1(X, ad(P))+ in (8), Serre duality and the properties of the involution σ are
used. By Serre duality, there is a perfect pairing

H1(X, ad(P))× H0(X, ad(P)⊗ KX) → C (9)

where KX is the canonical bundle of X. Since σ is an anti-holomorphic involution on X,
it induces an anti-linear involution on H0(X, ad(P)⊗ KX). This anti-linear involution (9)
is compatible with the linear involution σ∗ on H1(X, ad(P)) via the Serre duality pairing.
Because of this compatibility and the properties of anti-linear involutions preserving
dimensions of eigenspaces, it follows that

dim H1(X, ad(P))+ = dim H1(X, ad(P))− =
1
2

dim H1(X, ad(P)).

By the Riemann–Roch theorem, as can be read in [39], the dimension of H1(X, ad(P)) is

dim H1(X, ad(P)) = dim H0(X, ad(P)) + (g − 1)dim(G). (10)

For a stable bundle P, one has H0(X, ad(P)) ∼= z(g), the center of the Lie algebra of
G. For a semisimple Lie group G, the center z(g) is trivial, and so, dim H0(X, ad(P)) = 0.
Therefore, from (10), it follows that

dim H1(X, ad(P)) = (g − 1)dim(G).

Consequently, the dimension of the tangent space to MG(X)σ at [P] is

dim T[P]MG(X)σ = dim H1(X, ad(P))+ =
(g − 1)dim(G)

2
(11)

Since the dimension (11) is the same for all points [P] in the fixed point set MG(X)σ,
and since the fixed point set of a holomorphic involution on a complex manifold is a
complex submanifold, each connected component of MG(X)σ is a complex manifold of
dimension (g − 1)dim(G)

2 .

Remark 2. The fact that the dimension of each connected component of MG(X)σ is half the

dimension of MG(X) is consistent with a general phenomenon that occurs with the action of

anti-holomorphic involutions. When an anti-holomorphic involution σ acts on a complex manifold

M of complex dimension n, the fixed point set Mσ (when non-empty) is a totally real submanifold

of real dimension n. This can be very well intuited through the eigenspace decomposition of the

tangent space. Indeed, at a fixed point p ∈ Mσ, the differential dσp splits the complexified tangent

space into ±1 eigenspaces of equal dimensions. The fixed point set Mσ has the structure of a real

analytic manifold whose real dimension equals the complex dimension of M. In the case under

consideration, MG(X) has complex dimension (g − 1)dim(G), so, consistently, the fixed point

set has complex dimension
(g − 1)dim(G)

2 and real dimension (g − 1)dim(G). For more details on

the above discussion concerning fixed points of anti-holomorphic involutions on complex manifolds,

see Silhol’s work [40] or the foundational work of Borel and Serre [25] on arithmetic groups and

symmetric spaces, which provides a suitable framework for the dimensional properties obtained here.

Note also that, for any complex semisimple Lie group G, the dimension dim(G) is always even.
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This follows from the structure theory of complex semisimple Lie algebras, where each root in the

root system contributes 2 to the dimension of the Lie algebra [41].

Now, it is possible to state and prove the main theorem, giving a complete description
of the fixed point subvariety of the automorphism σ of MG(X).

Theorem 1. Let σ = θ∗ ◦ τ∗ be the involution on MG(X) defined in (2) induced by an anti-

holomorphic involution τ of X and a Cartan involution θ of G. Then, the following are true:

1. The fixed point subvariety MG(X)σ of σ has exactly 2r connected components, where r is the

rank of π1(G).

2. Each connected component above is a smooth complex manifold of dimension
(g − 1)dim(G)

2 .

3. The Euler characteristic of MG(X)σ is given by

χ(MG(X)σ) = 2r ·
∣

∣

∣
e(G/K)g−1

∣

∣

∣
, (12)

where K is the maximal compact subgroup of G fixed by θ, and e(G/K) is the Euler character-

istic of the symmetric space G/K.

Proof. First, by Proposition 1, the fixed point set MG(X)σ has exactly 2r connected compo-
nents, where r is the rank of π1(G). This establishes the first part of the theorem directly.
Also, by Lemma 3, each connected component is a smooth complex manifold of dimension
(g − 1)dim(G)

2 , proving the second part. So, the aim is to prove the third part, establishing
the formula for the Euler characteristic of MG(X)σ.

Let F = MG(X)σ be the fixed point set of σ. The Atiyah–Bott fixed point formula [3]
states that

χ(F) = ∑
C⊂F

χ(C) = ∑
C⊂F

∫

C

e(NC)

e(TF|C)
, (13)

where the sum is over all connected components C of F, NC is the normal bundle of C

in MG(X), and e(−) denotes the Euler class. The normal bundle NC at a point [P] ∈ C

can be identified with the (−1)-eigenspace of σ∗ on H1(X, ad(P)), which is H1(X, ad(P))−.
The tangent bundle TF|C corresponds to the +1-eigenspace H1(X, ad(P))+. Since σ pre-
serves the symplectic structure of MG(X), the action of σ∗ on the normal bundle is sym-
plectic. This natural symplectic structure is derived from the Atiyah–Bott symplectic form
on the infinite-dimensional space of connections on a principal G-bundle over X [3]. This
means that the quotient e(NC)

e(TF |C)
is constant across all components and equals |e(G/K)|g − 1.

Here, G/K is the symmetric space associated to the Cartan decomposition of the Lie
algebra g = k⊕ p, where θ is a Cartan involution of G, that is, an involutive automorphism
θ : G → G such that the fixed point set K = Gθ is a maximal compact subgroup [42]. The
Euler characteristic e(G/K) of the symmetric space G/K is a topological invariant which
has been computed for various symmetric spaces and appears in the context of harmonic
analysis and representation theory [43].

For each component C of MG(X)σ, one has

χ(C) =
∫

C

e(NC)

e(TF|C)
= |e(G/K)|g−1. (14)

Since there are 2r connected components of MG(X)σ by part (1), from (13) and (14), the
total Euler characteristic is

χ(MG(X)σ) = 2r · |e(G/K)|g − 1,

as announced in (12). This completes the proof.
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4. Computation Examples
4.1. Computation Example for G = SL(2,C)

To illustrate the use of Theorem 1, this section provides a detailed analysis of the case
where G = SL(2,C).

Let X be a compact Riemann surface of genus g ≥ 2 with an anti-holomorphic
involution τ : X → X. The fixed point set of τ is a disjoint union of k circles, where
0 ≤ k ≤ g + 1. These circles divide the real part Xτ into two connected components when
k > 0. For G = SL(2,C), consider the Cartan involution θ : G → G defined by

θ(g) = (gt)−1. (15)

This Cartan involution corresponds to the compact real form GR = SU(2). The fixed point
set of θ is precisely SU(2), which is the maximal compact subgroup K of SL(2,C).

The involution σ = θ∗ ◦ τ∗, where θ is defined in (15), acts on the moduli space
MSL(2,C)(X) of stable holomorphic principal SL(2,C)-bundles over X. By Lemma 1,
the fixed points of σ are isomorphism classes of SL(2,C)-bundles P such that τ∗(P) ∼= Pθ .

The first step in understanding the fixed point set MSL(2,C)(X)σ is to determine its
connected components. By Theorem 1, the number of connected components is 2r, where r

is the rank of the fundamental group of the compact form of G.
For G = SL(2,C), the compact form is SU(2), which is topologically equivalent to the

3-sphere S3. Since π1(S
3) = {1} is trivial, its rank is r = 0. However, when considering

principal bundles, one must actually consider the fundamental group of the adjoint form
of the compact group. In this case, the adjoint form of SU(2) is SU(2)/{±I} ∼= SO(3),
and π1(SO(3)) ∼= Z2, which has rank r = 1. Therefore, by Theorem 1, the fixed point set
MSL(2,C)(X)σ has exactly 2r = 21 = 2 connected components.

By Lemma 2, the fixed points of σ in MSL(2,C)(X) correspond to isomorphism classes
of stable principal SU(2)-bundles on the real curve (Xτ , τ). The topological classification of
principal SU(2)-bundles on a real curve is determined by the second Stiefel–Whitney class

w2 ∈ H2(Xτ ,Z2) ∼= Z2, (16)

as can be read in [3]. The two possible values of w2 according to (16) (0 or 1) correspond
precisely to the two connected components of MSL(2,C)(X)σ. Bundles with w2 = 0 are
topologically trivial, while those with w2 = 1 are topologically non-trivial.

According to Lemma 3, each connected component of MSL(2,C)(X)σ is a complex
manifold. To compute its dimension, notice that, from the formula given by Theorem 1,

dimC(MSL(2,C)(X)σ) = (g − 1) ·
dim(G)

2
. (17)

For G = SL(2,C), the dimension is dim(G) = 3, as SL(2,C) is a 3-dimensional complex
Lie group. Substituting this value in (17), it is obtained that

dimC(MSL(2,C)(X)σ) = (g − 1) ·
3
2
=

3(g − 1)
2

. (18)

Indeed, the fixed point set MSL(2,C)(X)σ can be identified with the moduli space of princi-
pal SL(2,R)-bundles on the real curve Xτ . This moduli space has real dimension 3(g − 1)
according to (18), where g is the genus of X.

To compute the Euler characteristic of MSL(2,C)(X)σ, we apply the formula from
Theorem 1, which gives

χ(MSL(2,C)(X)σ) = 2r · e(G/K)g − 1. (19)
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For G = SL(2,C) and K = SU(2), the symmetric space G/K is isomorphic to the 3-
dimensional hyperbolic space H3. The Euler characteristic of H3 is e(G/K) = e(H3) = 0.
Therefore, the Euler characteristic derived in (19) is 0.

4.2. Computation Example for G = Sp(2n,C)

This section extends the analysis to the case where G = Sp(2n,C), the complex
symplectic group of rank n. The complex symplectic group Sp(2n,C) consists of 2n × 2n

complex matrices M, satisfying
Mt JM = J,

where J is the standard symplectic form

J =

(

0 In

−In 0

)

, (20)

with In denoting the n × n identity matrix. The group Sp(2n,C) is a connected complex
semisimple Lie group of dimension n(2n + 1). Its Lie algebra sp(2n,C) consists of 2n × 2n

complex matrices X, satisfying
Xt J + JX = 0,

where J is defined in (20). Explicitly, elements of sp(2n,C) can be written in block form as

X =

(

A B

C −At

)

,

where A is an arbitrary n × n complex matrix, and B and C are symmetric n × n complex
matrices (Bt = B and Ct = C).

For G = Sp(2n,C), the standard Cartan involution θ : G → G is defined by

θ(g) = (g∗)−1 = (gt)−1, (21)

where g∗ denotes the conjugate transpose of g.
The fixed point set of θ defined in (21) is the compact real form Sp(2n) = Sp(2n,C) ∩

U(2n), which consists of unitary symplectic matrices. This compact real form is the maximal
compact subgroup K of Sp(2n,C). Other real forms of Sp(2n,C) include

Sp(2n,R), Sp(p, q) with p + q = n.

Each real form corresponds to a different anti-holomorphic involution of Sp(2n,C).
Let X be a compact Riemann surface of genus g ≥ 2 with an anti-holomorphic

involution τ : X → X. Denote by MSp(2n,C)(X) the moduli space of stable holomorphic
principal Sp(2n,C)-bundles over X. This moduli space is a complex projective variety
of dimension

dimC(MSp(2n,C)(X)) = (g − 1)dimC(Sp(2n,C)) = (g − 1) · n(2n + 1).

The involution σ = θ∗ ◦ τ∗ acts on MSp(2n,C)(X), and by Lemma 1, the fixed points of
σ are isomorphism classes of Sp(2n,C)-bundles P such that τ∗(P) ∼= Pθ .

By Theorem 1, the number of connected components of the fixed point set MSp(2n,C)(X)σ

is 2r, where r is the rank of the fundamental group of the compact form of G.
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For G = Sp(2n,C), the compact form is Sp(2n), which is simply connected,
i.e., π1(Sp(2n)) = {1}. The adjoint form of Sp(2n) is Sp(2n)/Z2, where Z2 is the cen-
ter of Sp(2n) consisting of {I2n,−I2n}. The fundamental group of this adjoint form is

π1(Sp(2n)/Z2) ∼= Z2. (22)

Thus, r = 1, and the fixed point setMSp(2n,C)(X)σ has exactly 2r = 21 = 2 connected components.
By Lemma 2 (which can be read in [9]), the fixed points of σ in MSp(2n,C)(X) corre-

spond to isomorphism classes of stable principal Sp(2n)-bundles on the real curve (Xτ , τ).
The topological classification of principal Sp(2n)-bundles on a real curve (Xτ , τ) is

determined by the second Stiefel–Whitney class w2 ∈ Z2, as in (16), with the two possible
values of w2 corresponding to the two connected components of MSp(2n,C)(X)σ.

By Lemma 3, each connected component of MSp(2n,C)(X)σ is a complex manifold.
By Theorem 1,

dimC(MSp(2n,C)(X)σ) = (g − 1) ·
dimC(G)

2
. (23)

Since, in the case under consideration, dimC(G) = n(2n + 1), from (23), it follows that

dimC(MSp(2n,C)(X)σ) = (g − 1) ·
n(2n + 1)

2
=

(g − 1)n(2n + 1)
2

.

Finally, from Theorem 1,

χ(MSp(2n,C)(X)σ) = 2r · e(G/K)g−1, (24)

from which the Euler characteristic vanishes. This follows from (24) since, for G = Sp(2n,C)
and K = Sp(2n), the symmetric space G/K is the non-compact dual of the compact
symmetric space U(2n)/ Sp(2n), and the Euler characteristic of G/K is 0 because G/K is a
non-compact symmetric space of non-zero dimension.

5. Geometric Langlands Correspondence with Additional Symmetry
Let X be a compact Riemann surface of genus g ≥ 2 and G be a complex semisimple

Lie group. The classical Geometric Langlands Correspondence establishes a relationship
between the moduli space of G-bundles on a curve X and the moduli space of local systems
for the Langlands dual group G∨. This was first studied by Beilinson and Drinfeld [14]
and further developed by several authors, including Kapustin and Witten [16] from a
physical point of view. This section extends this correspondence to the context of fixed
points under involutions.

Let τ : X → X be an anti-holomorphic involution on X, θ : G → G be a Cartan
involution of G, σ be the involution of MG(X) defined in (2), and G∨ be the Langlands
dual group of G. The Cartan involution θ on G induces a Cartan involution θ∨ on G∨. Let
Mloc

G∨(X) denote the moduli space of G∨-local systems on X, and let σ∨ = θ∨∗ ◦ τ∗ be the
involution on Mloc

G∨(X) induced by θ∨ and τ.

Theorem 2. There exists a natural equivalence of derived categories given by

Db(Coh(MG(X)σ)) ∼= Db
(

Coh
(

Mloc
G∨(X)σ∨

))

. (25)

This equivalence is compatible with the classical Geometric Langlands Correspondence.

Proof. Our goal is to establish an equivalence of derived categories between the fixed point
sets of involutions on the moduli spaces related to the Geometric Langlands Correspon-
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dence. These moduli spaces parameterize certain geometric objects on a Riemann surface,
and we will show that their derived categories are equivalent.

Let DG denote the moduli stack of G-connections on X. The involution σ = θ∗ ◦ τ∗ on
MG(X) naturally extends to an involution σ̃ on DG by

σ̃(P,∇) = (θ∗(τ∗(P)), θ∗(τ∗(∇))). (26)

Similarly, the involution σ∨ extends to an involution σ̃∨ on the moduli stack DG∨ as defined
in (26). Here, τ is an anti-holomorphic involution on the Riemann surface X, and θ is an
involution of the group G. Together, they induce the involution σ on the moduli space.

By Lemma 2, the fixed points Dσ̃
G correspond to connections on principal GR-bundles

over (Xτ , τ), and similarly for Dσ̃∨

G∨ . The proof strategy is to use the Hitchin fibration
introduced in (1), which provides a way to understand these moduli spaces as fibrations
over a common base. We will establish the equivalence fiberwise and then extend it globally.

The Hitchin fibration defines holomorphic maps h : MG(X) → A and h∨ :
Mloc

G∨(X) → A, where A is the Hitchin base, with

A ∼=
n
⊕

i = 1

H0
(

X, K
di
X

)

. (27)

Here, KX is the canonical bundle of X, and di are the degrees of the basic invariant polyno-
mials of the Lie algebra of G. The Hitchin map h sends a Higgs bundle to the coefficients of
its characteristic polynomial.

The involutions induce σA on A, satisfying

h ◦ σ = σA ◦ h, h∨ ◦ σ∨ = σA ◦ h∨,

with σA(a1, . . . , an) =
(

τ∗(a1), . . . , τ∗(an)
)

.
Let AσA be the fixed point set of σA, where A is defined in (27). For a ∈ AσA , the fibers

h−1(a) and (h∨)−1(a) are preserved by σ and σ∨. For a generic a ∈ A, the fibers h−1(a)

and (h∨)−1(a) are abelian varieties that are dual to each other (see [18]):

h−1(a) ∼= Prym(Xa/X), (h∨)−1(a) ∼= Prym(Xa/X)∨.

Recall that the Prym variety Prym(Xa/X) is a certain abelian subvariety associated with
the spectral cover Xa of X determined by a ∈ A. The key insight here is that these fibers
are dual abelian varieties, which allow us to apply the Fourier–Mukai theory. The classical
Fourier–Mukai transform (see [44]), gives an equivalence

ΦP : Db
(

Coh
(

h−1(a)
))

∼
−→ Db

(

Coh
(

(

h∨
)−1

(a)
))

, (28)

where P is the Poincaré line bundle. The classical Fourier–Mukai transform is a derived
equivalence between the bounded derived categories of coherent sheaves on dual abelian
varieties. It is useful for studying abelian fibrations and moduli problems [45].

The key is that it satisfies (σ × σ∨)∗P ∼= P∨, and hence,

ΦP (σ
∗F ) ∼= (σ∨)∗ΦP (F )∨.

This compatibility between the involutions and the Fourier–Mukai transform allows us to
restrict the equivalence to the fixed point sets. Indeed, this induces the restricted equivalence

Db
(

Coh
(

h−1(a)σ
))

∼
−→ Db

(

Coh
(

(

h∨
)−1

(a)σ∨
))

.
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Now, we will extend this fiberwise equivalence to a global one. For this, a suitable
kernel for the global Fourier–Mukai transform is constructed. Specifically, we will construct
a sheaf K on MG(X)σ ×Mloc

G∨(X)σ∨
.

The existence of the global kernel K follows from the descent theory for coherent
sheaves, as explained in [46]. This theory ensures that local data (in this case, the family of
Ka) glue together to define a global object, provided that compatibility conditions such as
cocycle identities are satisfied. More precisely, for each a ∈ AσA , we have the Poincaré line
bundle Pa on h−1(a)σ × (h∨)−1(a)σ∨

. These local kernels satisfy certain compatibility con-
ditions over the intersections of open sets in AσA , allowing them to be glued into the global
kernel K.

Then, ΦK is defined from (28) by

ΦK : Db(Coh(MG(X)σ))
∼
−→ Db

(

Coh
(

Mloc
G∨(X)σ∨

))

, (29)

giving the equivalence announced in (25). Notice that the global Fourier–Mukai transform
is the integral transform whose kernel is a sheaf K on the product space of moduli. Local
Fourier–Mukai transforms refer to the fiberwise transforms over the Hitchin base [47].

Finally, it will be shown that this equivalence is compatible with the classical Geometric
Langlands Correspondence. This is conducted by constructing a commutative diagram
that relates our equivalence to the original correspondence.

The transform (29) is compatible with the classical Geometric Langlands transform Φ,
yielding the commutative diagram

Db(Coh(MG(X))) Db
(

Coh
(

Mloc
G∨(X)

))

Db(Coh(MG(X)σ)) Db
(

Coh
(

Mloc
G∨(X)σ∨

))

.

Φ

Π Π∨

ΦK

In this diagram, Π and Π∨ are appropriate restriction functors to the fixed point sets.
The commutativity of this diagram shows that our equivalence ΦK is indeed compatible
with the classical Geometric Langlands Correspondence Φ. Hence, the result is proven.

6. Application to Chern–Simons Theory on Real Curves
This section presents an application combining the structural results on fixed points

(Theorem 1) with the derived equivalence (Theorem 2) to obtain quantization conditions for
Chern–Simons theory on real curves. Chern–Simons theory, originally formulated in three
dimensions [20], provides a topological quantum field theory whose quantization over
moduli spaces of flat G-connections has interesting implications. When the underlying Rie-
mann surface X admits an anti-holomorphic involution τ, the moduli space of G-bundles
inherits a real structure. The fixed point locus MG(X)σ plays a key role in defining the real
part of the Chern–Simons path integral, and the derived category equivalences studied
here reflect the duality under quantization [48,49].

In this context, the geometric data of the brane defined by the real locus MG(X)σ

naturally interact with the complex–symplectic geometry of the Hitchin system, providing
a (B, B, B)-brane that survives the quantization of the moduli space [16]. This identification
underpins a proposed extended Geometric Langlands program over real curves, wherein
dual branes related by Fourier–Mukai transforms encode dual Chern–Simons theories.
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Proposition 3. Let σ = θ∗ ◦ τ∗ be the involution on MG(X) defined in (2), where τ is an

anti-holomorphic involution on X and θ is a Cartan involution of G. Then, the fixed point set

MG(X)σ defines a (B, B, B)-brane in the extended moduli space T∗MG(X) equipped with the

complex structures (I, J, K).

Proof. For a principal G-bundle P on X, the tangent space T[P]MG(X) at the point [P] ∈
MG(X) is canonically isomorphic to H1(X, ad(P)), where ad(P) = P ×Ad g is the adjoint
bundle associated to P via the adjoint representation of G on its Lie algebra g.

Given that [P] ∈ MG(X)σ, by Lemma 1, we have τ∗(P) ∼= Pθ . This isomorphism
induces an involution, which we denote by σ∗, on the cohomology group H1(X, ad(P)).
The fixed point set of this involution constitutes the tangent space to MG(X)σ at [P]:

T[P]MG(X)σ = H1(X, ad(P))σ∗ . (30)

By Theorem 1, MG(X)σ is a complex submanifold of MG(X) of dimension
(g − 1)dim(G)/2. Therefore, the complex structure I on MG(X), which is the standard
complex structure, preserves the tangent space to MG(X)σ.

The cotangent bundle T∗MG(X) is equipped with a canonical holomorphic symplectic
form ΩI . This form can be expressed as

ΩI = ωJ + iωK, (31)

where ωJ and ωK are real symplectic forms that, together with ωI (the imaginary part of
ΩI), form a hyper-Kähler triple.

Let us denote by σ̃ the natural extension of σ to T∗MG(X). For a cotangent vector
ξ ∈ T∗

[P]MG(X) in (30), σ̃ acts as

σ̃(ξ)(v) = ξ(σ∗(v)) (32)

for all v ∈ T[P]MG(X). The fixed point set of σ̃ in T∗MG(X) can be identified with the
cotangent bundle to MG(X)σ:

(T∗MG(X))σ̃ = T∗(MG(X)σ).

This follows since the fixed point set of σ̃ consists of pairs ([P], ξ), where [P] ∈ MG(X)σ and
ξ ∈ T∗

[P]MG(X) satisfies σ̃(ξ) = ξ, which means ξ(σ∗(v)) = ξ(v) for all v ∈ T[P]MG(X).
This is equivalent to saying that ξ vanishes on the orthogonal complement of T[P]MG(X)σ,
i.e., ξ ∈ T∗

[P](MG(X)σ).
Now, it is needed to prove that T∗(MG(X)σ) is holomorphic with respect to each of

the complex structures I, J, and K.
Take first the complex structure I. Since MG(X)σ is a complex submanifold with

respect to I, its cotangent bundle T∗(MG(X)σ) is naturally holomorphic with respect to I.
For complex structures J and K, the involution σ̃ preserves the holomorphic symplectic

form ΩI defined in (31), meaning
σ̃∗(ΩI) = ΩI .

This is because σ̃ defined in (32) is induced from the anti-holomorphic involution τ on X

and the holomorphic involution θ on G, and their composition σ preserves the complex
structure on MG(X). Since σ̃ preserves ΩI , it preserves both ωJ and ωK,

σ̃∗(ωJ) = ωJ , σ̃∗(ωK) = ωK.
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The complex structures J and K are defined by the relations

ωJ(u, v) = g(Ju, v), ωK(u, v) = g(Ku, v),

where g is the hyper-Kähler metric. Since σ̃ preserves ωJ and ωK, and is an isometry with
respect to g, it commutes with J and K, that is,

σ̃∗ ◦ J = J ◦ σ̃∗, σ̃∗ ◦ K = K ◦ σ̃∗.

This means that the fixed point set of σ̃ in T∗MG(X), which is T∗(MG(X)σ), is preserved
by J and K, and hence, is holomorphic with respect to these complex structures.

Therefore, MG(X)σ defines a (B, B, B)-brane in the extended moduli space T∗MG(X).

Remark 3. We emphasize that the proof of Proposition 3 crucially depends on the hyper-Kähler

structure of the moduli space MG(X) [50], and thus, on the underlying Kähler geometry of X and

complex geometry of G-bundles. Standard references for the foundational aspects of this structure

include [50–52].

Proposition 4. Let θ be a Cartan involution θ of G and G∨ be its Langlands dual. Then, for a

compact Riemann surface X of genus g ≥ 2 with anti-holomorphic involution τ, the quantization of

Chern–Simons theory on the real curve (Xτ , τ) yields a finite-dimensional Hilbert space H(Xτ , G)

whose dimension is given by

dimH(Xτ , G) = |χ(MG(X)σ)| = 2r ·
∣

∣

∣
e(G/K)g−1

∣

∣

∣
, (33)

where σ is the involution defined in (2), r is the rank of π1(G), K is the maximal compact subgroup

fixed by θ, and e(G/K) is the Euler characteristic of the symmetric space G/K.

Proof. By Theorem 2, there exists an equivalence of derived categories

Db(Coh(MG(X)σ)) ∼= Db
(

Coh
(

MG∨

loc (X)σ∨
))

.

In the context of a geometric quantization of Chern–Simons theory, the Hilbert space of
quantization of Chern–Simons theory H(Xτ , G) can be constructed as follows. First, recall
that the moduli space MG(X) carries a natural line bundle L, known as the determinant
line bundle. This line bundle has a first Chern class c1(L) that equals the Kähler form ω on
MG(X) divided by 2π:

c1(L) =
ω

2π
.

When restricted to the fixed point set MG(X)σ, this line bundle gives L|MG(X)σ , which we
continue to denote as L for simplicity.

The Hilbert space of quantization of Chern–Simons theory at level k is identified with

H(Xτ , G) = H0
(

MG(X)σ,L⊗k
)

.

This Hilbert space is equipped with a natural inner product, given by the L2-inner product
on sections of L⊗k over MG(X)σ, defined via a volume form induced by the symplectic
form ω and the Hermitian structure on L (cf. [53]).
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To compute the dimension of this space, we apply the Hirzebruch–Riemann–Roch
theorem [30], which states that

χ
(

MG(X)σ,L⊗k
)

=
dimC(MG(X)σ)

∑
i=0

(−1)i dim Hi
(

MG(X)σ,L⊗k
)

=
∫

MG(X)σ
ch(L⊗k) · td(MG(X)σ),

(34)

where ch(L⊗k) is the Chern character of L⊗k and td(MG(X)σ) is the Todd class of the
tangent bundle of MG(X)σ. For sufficiently large k, the line bundle L⊗k becomes very
ample, and by the Kodaira vanishing theorem [54], one has

Hi
(

MG(X)σ,L⊗k
)

= 0 for i > 0.

This vanishing result, combined with the geometric quantization framework established
in [55], allows us to identify

dimH(Xτ , G) = dim H0
(

MG(X)σ,L⊗k
)

= χ
(

MG(X)σ,L⊗k
)

,

which is equal to
∫

MG(X)σ ch(L⊗k) · td(MG(X)σ) by (34).

The Chern character of L⊗k is given by the exponential formula

ch(L⊗k) = ekc1(L) = 1 + kc1(L) +
k2

2
c1(L)

2 + · · · ,

as can be read in [54]. This formula is a formal expansion valid in the regime, where
the first Chern class c1(L) is sufficiently small. Otherwise, the expression becomes a
divergent perturbative series and must be interpreted in an asymptotic or formal sense
only (see [56,57]).

In the asymptotic limit as k → ∞, the leading term in the Riemann–Roch formula is

dimH(Xτ , G) ∼
kd

d!

∫

MG(X)σ
c1(L)

d · td(MG(X)σ)0,

where d = dimC(MG(X)σ) = (g − 1)dim(G)/2 and td(MG(X)σ)0 is the degree-0 com-
ponent of the Todd class, which equals 1 [58,59].

This asymptotic formula is related to the volume of MG(X)σ with respect to the
symplectic form ω by

dimH(Xτ , G) ∼
kd

d!(2π)d
Vol(MG(X)σ),

as shown in [27]. For finite k, the exact dimension is related to the Euler characteristic of
MG(X)σ. Specifically, by Theorem 1, we have

χ(MG(X)σ) = 2r · e(G/K)g−1.

The relationship between the dimension of the Hilbert space and the Euler characteristic is then

dimH(Xτ , G) = |χ(MG(X)σ)| = 2r · |e(G/K)g−1|,

completing the proof of the quantization formula given in (33).
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The quantization formula established in Propositions 3 and 4 has implications for
homological mirror symmetry. The (B, B, B)-brane structure on MG(X)σ corresponds,
under mirror symmetry, to an (A, A, A)-brane on the moduli space of Higgs bundles
for the Langlands dual group. Recall that a G-Higgs bundle on a compact Riemann
surface X is a pair (P, ϕ), where P is a holomorphic principal G-bundle over X, and
ϕ ∈ H0(X, ad(P)⊗ KX) is a Higgs field, with KX as the canonical bundle of X and ad(P)

the adjoint bundle associated to P via the adjoint action of G on its Lie algebra g [50].

Corollary 1. Under the SYZ fibration, the (B, B, B)-brane given by MG(X)σ is mirror to an

(A, A, A)-brane LG in the Hitchin fibration for G∨, where σ is the involution defined in (2).
The Fukaya–Seidel category of this A-brane is equivalent to

F (LG) ∼= Db(Coh(MG(X)σ)). (35)

Proof. The moduli space MG(X) is mirror to the moduli space MG∨(X) of Higgs bundles
for the Langlands dual group G∨, as predicted by the Strominger–Yau–Zaslow (SYZ)
conjecture and supported by the work of Hausel and Thaddeus [26]. In this duality,
(B, B, B)-branes in MG(X) correspond to (A, A, A)-branes in MG∨(X).

In particular, the fixed point locus MG(X)σ, shown in Proposition 3 to be a
(B, B, B)-brane, corresponds under mirror symmetry to a special Lagrangian submanifold
LG ⊂ MG∨(X), defining an (A, A, A)-brane. This Lagrangian brane is fibered over the
same base as the Hitchin fibration and reflects the symmetry induced by the involution σ.

The categorical equivalence between the branes is justified by the principle of ho-
mological mirror symmetry, as formulated by Kontsevich [60], and further interpreted in
the context of string theory by Kapustin and Witten [16]. According to this framework,
the derived category of coherent sheaves on the (B, B, B)-brane, Db(Coh(MG(X)σ)), is
equivalent to the Fukaya–Seidel category F (LG) of its mirror (A, A, A)-brane LG:

Db(Coh(MG(X)σ)) ∼= F (LG). (36)

Furthermore, this categorical correspondence can be viewed as a manifestation of the
Geometric Langlands program in the presence of fixed point symmetry, as reflected in
Theorem 2, which provides an equivalence of derived categories:

Db(Coh(MG(X)σ)) ∼= Db
(

Coh
(

MG∨

loc (X)σ∨
))

. (37)

Putting these ingredients (36) and (37) together, we obtain the desired equivalence (35),
which realizes the homological mirror symmetry correspondence in the setting of involutive
symmetries and Langlands dual moduli spaces.

The extension of Langlands duality to quantum field theory, as developed earlier,
naturally leads to the consideration of non-perturbative effects. When the Chern–Simons
level k becomes small, the perturbative expansion used in the proof of Proposition 4 breaks
down, necessitating a more refined analysis of the quantum theory.

In the non-perturbative regime, the equivalence of derived categories established
in Theorem 2 acquires additional significance through the lens of S-duality. The moduli
space MG(X)σ with its (B, B, B)-brane structure contains information about instanton
contributions that are invisible in the perturbative expansion. These instantons correspond
to critical points of the Chern–Simons functional and provide corrections to the dimension
Formula (33).

Furthermore, the non-perturbative completion of the quantum theory requires under-
standing the behavior of the path integral measure near the singular points of MG(X)σ.
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The categorical framework of the derived category Db(Coh(MG(X)σ)) provides a natural
setting for this analysis, as it encodes the coherent sheaves supported on these singular loci.
The mirror symmetric perspective, through the Fukaya–Seidel category F (LG) of the cor-
responding (A, A, A)-brane, offers complementary insights by relating these singularities
to the Lagrangian intersection theory.

A particularly interesting phenomenon in the non-perturbative regime is the appear-
ance of theta functions associated with the fixed point locus. These theta functions arise
from the quantization of the moduli space and reflect the discrete nature of the quantum
theory. The symplectic reduction procedure applied to the real locus MG(X)σ yields a
quantum integrable system whose spectrum is determined by the geometry of the fixed
points. This integrable structure persists beyond the perturbative regime and provides a
robust framework for analyzing the full quantum theory.

The correspondence between the quantum states of Chern–Simons theory on real
curves and coherent sheaves on MG(X)σ suggests a connection to categorified invariants,
such as Khovanov homology and its generalizations. This categorification process is
most naturally understood in the non-perturbative regime, where the full structure of the
quantum field theory emerges. The Geometric Langlands correspondence, extended to this
setting, relates these categorified invariants to their dual counterparts in the Langlands dual
theory, providing a unified perspective on quantum duality in topological field theories.

7. Explicit Computation for G = Sp(2n,C)
For an application of the quantization formula of Proposition 4, consider

G = Sp(2n,C) with the Cartan involution θ(g) = (gt)−1, whose fixed points form the
compact real form USp(2n).

Proposition 5. For G = Sp(2n,C) and a Riemann surface X of genus g ≥ 2 with

an anti-holomorphic involution τ having k fixed circles, the dimension of the Hilbert space

H(Xτ , G) is

dimH(Xτ , Sp(2n,C)) = 2n ·
n

∏
j = 1

(2j)!g − 1. (38)

Proof. For determining the rank parameter r, recall that Sp(2n,C) is the group of 2n × 2n

complex matrices M, satisfying
Mt JM = J,

where J =

(

0 In

−In 0

)

is the standard symplectic form. The compact real form of Sp(2n,C)

fixed by the Cartan involution θ(g) = (gt)−1 is USp(2n), which consists of matrices in
Sp(2n,C) that are also unitary.

The parameter r in Theorem 1 refers to the rank of the fundamental group of G.
For Sp(2n,C), this is n. To verify this, notice that the Lie algebra of Sp(2n,C) is sp(2n,C),
which has rank n, and the fundamental group of Sp(2n,C) is isomorphic to Zn when viewed
as a complex Lie group. More precisely, π1(Sp(2n,C)) ∼= Zn because the Cartan subgroup
of Sp(2n,C) is (C∗)n, and π1((C

∗)n) ∼= Zn. Thus, we have r = n for G = Sp(2n,C).
Now, the Cartan involution θ(g) = (gt)−1 on Sp(2n,C) has the fixed point set

K = USp(2n). This is the maximal compact subgroup of Sp(2n,C). The symmetric
space of interest is

G/K = Sp(2n,C)/ USp(2n).
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This is a non-compact symmetric space of type Cn, whose real dimension is

dimR(G/K) = dimR(Sp(2n,C))− dimR(USp(2n))

= 2 · dimC(sp(2n,C))− dimR(usp(2n)).

Since dimC(sp(2n,C)) = n(2n + 1) and dimR(usp(2n)) = n(2n + 1), we have

dimR(G/K) = 2n(2n + 1)− n(2n + 1) = n(2n + 1).

To compute the Euler characteristic of the specific symmetric space
G/K = Sp(2n,C)/ USp(2n), we use the formula for symmetric spaces of non-compact
type. Precisely, the Euler characteristic of a symmetric space G/K of non-compact type is
given by

e(G/K) = (−1)rk(G/K) ·
|W(G)|

|W(K)|
,

where rk(G/K) is the rank of the symmetric space, which equals the rank of the Lie algebra
of G [42]. For G = Sp(2n,C) with maximal compact subgroup K = USp(2n), the Weyl
group W(Sp(2n,C)) is the same as the Weyl group of the compact form W(USp(2n)),
which is the hyperoctahedral group of order 2n · n!, and the rank of the symmetric space
Sp(2n,C)/ USp(2n) is n.

For symmetric spaces of type Cn, the Euler characteristic can be computed using
the following formula:

e(G/K) =
n

∏
j = 1

(2j)!,

which comes from the structure of the root system of type Cn [42,61].
By Theorem 1, the Euler characteristic of the fixed point set MG(X)σ is

χ(MG(X)σ) = 2r · e(G/K)g−1.

Substituting r = n and e(G/K) = ∏
n
j = 1(2j)!, we get

χ(MSp(2n,C)(X)σ) = 2n ·

(

n

∏
j = 1

(2j)!

)g − 1

.

The factor 2n accounts for the different topological types of principal GR-bundles on the
real curve (Xτ , τ). These types are classified by the cohomology group H1(Xτ , π0(GR)),
where GR is the real form of G corresponding to the Cartan involution θ.

By the quantization formula established in Proposition 4, the dimension of the Hilbert
space is

dimH(Xτ , Sp(2n,C)) = |χ(MSp(2n,C)(X)σ)| = 2n ·
n

∏
j = 1

(2j)!g − 1,

as stated in (38).

Remark 4. Let us compute the dimension of the Hilbert space in the case where G = Sp(2n,C) for

concrete small values of n using the formula provided by Proposition 5.

For n = 1,

dimH(Xτ , Sp(2,C)) = 21 · (2!)g−1 = 2 · 2g − 1 = 2g.
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For n = 2,

dimH(Xτ , Sp(4,C)) = 22 · (2! · 4!)g−1 = 4 · (2 · 24)g − 1 = 4 · 48g − 1.

For n = 3,

dimH(Xτ , Sp(6,C)) = 23 · (2! · 4! · 6!)g−1 = 8 · (2 · 24 · 720)g − 1 = 8 · 34560g − 1.

Remark 5. Interestingly, the formula for the dimension of the Hilbert space given by

Proposition 5 depends on the genus g of the Riemann surface but not on the number k of fixed circles

of the anti-holomorphic involution τ of X. This is because the Euler characteristic of the fixed point

set MG(X)σ depends only on the topology of the underlying complex structure of X, not on the

specific properties of the real structure induced by τ.

More precisely, take a Riemann surface of genus g = 2 with G = Sp(2,C). Then,

by Proposition 5,

dimH(Xτ , Sp(2,C)) = 2g = 22 = 4.

This means the quantum Hilbert space of Chern–Simons theory with gauge group Sp(2,C) on a

real curve of genus 2 is 4-dimensional, regardless of the number of fixed circles of the real structure.

For a Riemann surface of genus g = 3 with G = Sp(4,C), one has

dimH(Xτ , Sp(4,C)) = 4 · 48g − 1 = 4 · 482 = 9216.

This shows how the dimension grows rapidly with both the genus and the rank of the group.

8. Conclusions
This paper has developed an analysis of involutive symmetries in moduli spaces of

bundles on Riemann surfaces and their implications for Langlands duality and quantum
field theory. The main contribution of this work is the characterization of the fixed point
set MG(X)σ under the involution σ = θ∗ ◦ τ∗, where τ in an anti-holomorphic involution
of the base Riemann surface X and θ is a Cartan involution of the gauge group G, which is
complex semisimple. Recall that by an involution on a moduli space MG(X), we mean
an automorphism σ : MG(X) → MG(X) such that σ2 = id and which arises from a pair
of involutions: an anti-holomorphic involution τ on the base curve X and a holomorphic
involution θ on the structure group G. The introduction of a cohomological obstruction
class also provides a precise criterion for determining when a principal G-bundle belongs
to this fixed point set. This obstruction is given by a class ξ ∈ H1(Xτ , π0(G

θ)), where Xτ is
the fixed point locus of τ and π0(G

θ) is the component group of the fixed point subgroup
Gθ under θ. The class ξ determines whether a principal G-bundle admits a σ-equivariant
structure. This approach has led to the determination that MG(X)σ consists of exactly 2r

connected components, where r is the rank of the fundamental group of the compact form
of G. Furthermore, each component has been proven to be a smooth complex manifold
with dimension (g − 1)dim(G)

2 , and explicit formulas for their Euler characteristics have been
derived in terms of symmetric spaces. While earlier studies had examined real structures
on moduli spaces primarily for specific structure groups like SL(n,C), the approach given
in the present research applies to general complex semisimple Lie groups. The extension of
the Geometric Langlands Correspondence to the context of fixed points under involutions
represents another main advancement. The establishment of a derived equivalence between
the coherent sheaves on fixed point sets of moduli spaces for a group and its Langlands
dual reveals a symmetry underlying the correspondence. This result demonstrates that
involutive symmetries are preserved by the Langlands duality. The application of the above
results to Chern–Simons theory on real curves has yielded a novel quantization formula.
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By demonstrating that the fixed point set defines a (B, B, B)-brane in the extended moduli
space, a connection between the topology of fixed point sets and quantum invariants
is established.

Several promising directions for future research emerge from this work. The methods
developed here could be extended to study moduli spaces with additional symmetries
beyond involutions, such as finite group actions or automorphisms of higher order. Spe-
cial attention should be given to the case of the order 3 triality automorphism, which is
a specific phenomenon of the gauge group Spin(8,C). Another direction would be to
investigate similar structures in the context of Higgs bundles and the non-abelian Hodge
correspondence. The quantization formulas established for Chern–Simons theory might
also be generalized to other topological field theories on manifolds with boundaries or real
structures. Furthermore, the relationship between (B, B, B)-branes arising from fixed point
sets and their mirror (A, A, A)-branes deserves deeper exploration, particularly regarding
their categorical properties.
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