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ABSTRACT If the exceptional observables introduced by Jordan, von
Neumann and Wigner are identified with charge states corresponding to
internal degrees of freedom of elementary particles, then one 1s led

to the classification of quarks and leptons by means of exceptional
groups. It is shown that the groups of the E series are likely can-
didates and a gauge field theory based on E7 is given as an example,

The hierarchy of symmetry breaking is linked to the hilerarchy of stabil-
ity groups for geometries that are associated with the exceptional groups.

I. Introduction: the New World Picture

Thanks to far reaching recent developments in gauge field theoriesl’2

(unification of weak and electromagnetic interactions, renormalizability
of spontaneously broken gauge field theories, asymptotic freedom in
non-abelian gauge theories) and momentous experimental discoveries

3 in lepton-hadron, hadron-hadron scattering and e+e_ annihilation

(scaling
into hadrons;}existence of weak interactions mediated by neutral currents3;
new hadron fahilies assoclated with a new quantum numberu’S) we have now
the possibility of describing electromagnetic, weak and strong inter-
actions in ajunified way: local renormalizable field theory is appli-
cable to the whole world of elementary particles. The fields that occur
in the localfLagrangian are leptons, quarks (which come in three colors
and at least! four flavorsL gauge vector bosons which mediate interactions
among these fundamental fermions and scalar mesons (Higgs fields) with
self interackions and interactions with the fermions and vector bosons.
The Laérangian of the theory is determined by Poincaré invariance,
the principle of local (gauge) invariance with respect to a compact in-
ternal symmetry group G, and finally the principle of renormalizability
(smooth high energy behavior). For a truly unified theory G is a simple

+Talk preseﬁted at the 4th International Colloguium on Group Theoretical
Methods in Physics, Nijmegen, June 1975.

¥
Research (Yale Report C00-3075-124) supported in part by the U.S.
Energy Research and Development Administration under Contract No.
AT(11-1)-3075.



226

or semi-simple Lie group. It must have SU(2)xU(1)xSU®(3) as a sub-
group. Here SUC(3) is the exact group of strong interactions (the color
group) leading to asymptotic freedom at high energies and hence to
scaling (up to logarithmic terms) in scattering involving hadrons.

The SU(2)xU(1l) subgroup is associated with the electromagnetic and

weak parts of the interaction (including neutral currents).

The vector bosons belong to the adjoint representation of G. The
fermions and the Higgs scalars may belong to other irreducible repre-
sentations. Some of the Higgs fields develop non zero vacuum expecta-
tion values through the minimization of the Higgs potential which de-
scribes their self interactions. Then the vacuum is no longer symmetri-
cal with respect to a subgroup of G and we have the phenomenon of spon-
taneous symmetry breaking which plays a fundamental role in all the
major fields of physics as beautifully explained by Professor Michel in
his contribution to this conference. The vacuum expectation values of
the Higgs fields give masses to the fermions and to the vector bosons.
Those vector bosons associated with the unbroken subgroup of G (color
gluons and the photon) remsin massless.

Three of the quarks are carriers of isotopic spin and hypercharge.
A fourth one carries the new hadronic guantum number called charm.
There may be other quarks associated with other flavors and new leptons
corresponding to new degrees of freedom that characterize the group G.
Thus the fermion multiplet must include at least U colored quarks (12
charge states) and 4 leptons (e,u,ve and v"). There are strong indica-
tlons that there exist another heavy charged lepton E- and its neutral
companion NE. Then, in a unified theory the basic fermions will belong
to an irreducible representation of G which has dimension d>16 or d>18.
The dimension of the adjoint representation (number of parameters of G)
must be at least 12 (8 for color, 4 for the weak and electromagnetic
group).

For a physical interpretation we require another principle: color
confinement. According to this principle the only observable scattering
states are those that are invariant under the exact color group suc(3).
This includes leptons, weak bosons and the photon associated with
SU(2)xU(1l) and those bound states of gquarks that are color singlets.
These will include mesons (qd), baryons (qqgq), antibaryons (ggqq) and
resonances or bound states of mesons and baryons., Hadrons being bound
states will be extended objects held together by gluons. They may have
string or bag structure. Field theory is directly applicable not to
these hadrons but to thelr point like constituents (quarks), to leptons
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and gluons.

The picture of the world we have outlined has already received
impressive experimental support. The evidence for the new approach has
been eloquently spelled out at this conference by Professor Iliopoulos.
There are some serious problems: namely, the difficulty of incorpora-
ting gravitation in our world picture (provisionally excluded by the
principle of renormalizability), the absence of a rigorous mathematical
Justification for color confinement, the necessity for the introduction
of very high mass bosons (of the order of the Planck mass) for a truly
unified theory based on a simple group G, the stability of the proton,
the need for too many Higgs scalars to explaln the hierarchy of masses
and coupling constants, the difficulty of introducing the Higgs fields
as bound states (dynamical symmetry breaking) and the absence of a
principle for selecting the gauge group G.

It is to this last question that I would like to address myself
in this talk. I shall summarize some results of work7done in collabor-
ation with Dr. M. Glnaydin, Dr. P. Sikivie and Dr. P. Ramond?

Some examples of universal gauge field theories have been developed
and studied by Georgi and Glashowl%SU(S)), Pati and Salan}l(SU(l&)xSU(ll)),
Fritzsch and Minkowskil%so(lo), S0(14), SU(16)xSU(16), etc.) and others.
The most economical and elegant of these schemes is the SO0(10) model.
They all suffer however, either from proton instability or chiral
anomalies in renormalization.

II. Are charges the JNW exceptional observables?

In searching for a principle that leads to the compact group G,
we are trying to single out a finite Hilbert space on which the gen-
erators of G act. Are there such finite spaces that arise naturally
in the classification of Hilbert spaces? An affirmative answer was
given by Jordan, von Neumann and Wigner more than four decades ago%3
Confronted by the new puzzling phenomena of the nuclear world following
the discovery of the neutron and the study of B-decay they looked for
all possible extensions of Quantum Mechanics which had been so success-
ful in understanding atomic physics. They showed that the usual for-
mulation of Quantum Mechanies in a vector space (the kets and the bras
of the dual space) with observables represented by hermitian operators
which act on states represented by kets is equivalent to an algebraic
formulation in which both observables and states are represented by
hermitian matrices, the states being now associated with projection
operators
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P,= [a > <a (Pa =P) (2.1)

that are in one-to-one correspondence with kets, |a>. A state which
is not a pure state is also represented by a hermitian opefator, namely
a density matrix
= 2 - 2 _

D = f piley><a;| , TrD=2Ip;=1 . (2.2)
Instead of the expectation value <a|f|a > of a hermitian operator
(observable) 2, and its matrix elements <a|R|8> we consider respectively
the positive numbers

Tr 22 = <al@]a> and Tr(P P.R) = |<al2|8>|°, (2.3)

For states that are not pure we substitute density matrices D for the
projection operators 31. Note that in all these physically meaningful
quantities the operation on hermitian matrices that is relevant is their
symmetrized product since contact with experiment is made after taking
the trace of matrix products. Thus, the only product which occurs in
this algebraic formulation of quantum mechanics is the symmetrized (or
Jordan) product of hermitian matrices which we denote by

.i.

AB = 2aB +BA), (a=4aT5B=8") . (2.1)

This product which defines the algebra of observables is commutative
but non associative, the assoclator being

(A,X,B) = - (B,X,A) = (A.X).B - A.(X.B) . (2.5)
In fact, if A, X, B are matrices over complex numbers, we have
(4,X,B) = § [X,[A,B]], (2.6)

so that A and B are compatible (simultaneously measurable) observables
if (A,X,B) = 0 for all X.

The automorphism groups of the Jordan algebra of nxn hermitian
matrices are the orthogonal groups SO(n) for real matrices, the unitary
groups SU(n) for complex matrices and the symplectic groups Sp(n,q) for
nxn quaternionic matrices (hermitian with respect to quaternion con-
jugation). Thus we recover the classical groups and their associated
Hilbert spaces.

An infinitesimal unitary transformation on ¥ reads
X' = X + i[X,C] . (2.7

If we express the antihermitian matrix in terms of two hermitian matrices
A and B by £[4,B] = iC, then Eq. (2.7), takes the form
X' = X + (A,X,B) (2.8)
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expressing the infinitesimal action of the automorphism group purely
in terms of the Jordan algebra. Then A and B are also observables
associated with the transformation of the observable X. The finite
unitary transformation on X can be written in two ways

xt = e 0%etC =1+ Aotxier + & otixsel,01 4 L. (2.92)
in terms of the Lie algebra of commutators or, alternatively
' =
X' =E, B
in terms of associators that only involve the Jordan algebra.

X = X + 17 (A,X,B) + F0(8,(A,X,B),B) + ... (2.9b)

Now, Jordan, von Neumann and Wigner found one case in which the
algebra of observables is obeyed by operators that are not matrices
over an associative division algebra. They are 3x3 octonionlc matrices
hermitian with respect to octonionic conjugation., Segal and Shermanlu
later showed that idempotent matrices of this kind can be made to cor-

respond to pure states and a general matrix of the form

a ¢ b
X = ( c B a , (2.10)
b a vy

with Tr X = 1 can represent a quantum mechanical density matrix. Here
o, B, vy are real and a,b,c are octonions with the bar denoting octonionic
conjugation. A determinant form can be uniquely associated with X

by the formula

2

IDet X =X3 =% Tr X+ 3% ((Tr O - Tr X°} ,  (2.11)

where I is the 3x3 unit matrix and X'3 = X.Xz... Chevalley and Schafer15

showed that these observables can be transformed by the generalization
of the unitary transformations in the form (2.9b) with A and B matrices
elements of the set (2.10) with zero trace., Thus the group has 2x26=52
parameters and is the exceptional group Fy acting on the exceptional
observable X. The generators of FM correspond to observable charges.
The automorphism group of the octonions was already known to be the
exceptional group G,. Its infinitesimal actlon on the octonion x 1is
given by

x' = x - $[a,b1,x] + 3[a,b,x] (2.11)

where [a,b,x] is the completely antisymmetrical assoclator with respect
to the octonion product which 1s non commutative and non associative.
Here a and b are such that their scalar parts %(a+§) and %(b+5)

vanish so that G, has 2x7=14 parameters. It has a maximal subgroup
SUC(3) which leaves one of the 7 octonionic imaginary units inwvariant,
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Another subgroup of F), that acts on X and commutes with SU®(3) is an
SU(3) assoclated with the 3x3 matrix structure of X in which the octon-
ion unit left invariant by SUC(3) plays the role of the imaginary unit
of complex numbers. Thus, F) admits SU(3)xSU%(3) as a maximal subgroup.
We also note that the group Fu leaves invariant Tr X, Tr X2 and Det X.

We have arrived at the remarkable conclusion that there exlsts
a finite Hilbert space assoclated with an exceptional realization of
the algebra of observables with a transformation law that involves two
different SU(3) groups, one associated with octonions which has the same
structure as the color group sU®(3) and the other with the SU(3) of
unitary symmetry. Furthermore these observables arise only in the
JNW formulation,as the ket assoclated with an idempotent X does not
transform linearly under FM'

Since the discovery of these exceptional observables there has been
a case of the missing observables in physics as this exceptional Hilbert
space could not be related to any known states in Physics. Now with
the new discoveries of a rich charge structure for elementary particles,
the above considerations strongly suggest the identification of the charge
space with the space of exceptional observables.

The 26 and 52 dimensional representations of F4 have the following
decomposition in terms of SU(3)xSU°(3):

26: (8,1) + (3,3%) + (3,39 (2.12)
52: (8,1) + (1,8%) + (6,3% + (5,3% . (2.13)

Hence if we take G = Fy the (26) representation unifies 8 Majorana
(4 Dirac) leptons with integer charges together with 3 fractionally
charged quarks and 3 antiquarks. The adjoint representation contains
color singlet vector bosons together with octet colored gluons and twelve
lepto quark bosons.

The other exceptional groups Eg, E7 and Eg act also on finite
Hilbert spaces with elements that are partly real or complex numbers
and partly exceptional observables. Hence if we take as our guilding
principle for finding G the identification of internal degrees of freedom
with exceptional observables we are uniquely led to exceptional groups.
The need for charm singles out the E series as natural candidates for
the universal gauge group G.

ITI. Examples of schemes based on Eg and E7, Spontaneous Symmetry

Breaking and Geometry.

The smallest Hilbert space E§ acts on is provided by a pair
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(X1,Xp) of exceptional observables which can be combined in a single
complex matrix J which is hermitian with respect to octonionic con-
Jugation only. The infinitesimal E6 transformation on this 27 dimensicnal
representation is

TA,B,C J=J+ (A,J,B) +1icC.TJ , (3.1)

where A,B,C are traceless real matrices belonging to the set (2.10).
Then the group has 3x26=78 parameters. 7 corresponds to an inequiva-
lent 27 representation for which the transformation law is as in (3.1)
with C + -C.

We now introduce the symmetric Freudenthal product

JXK = J.K - 23 Tr K-L2KDpJd - L Pr(JK-2J 70 K - % K Tr J).

2 2 2 2
(3.2)
If J1 and J2 transform like 27, Jli2 transforms as 27 and we
have
IDet J=(JxJ).J . (3.3)
Under E6 we have the invariants
1 1
I1 =5 Tr JJ¥, I2 + iI3 = Det J, I, = 5 Tr {(JxJ).(J*xJ*)}

(3.4)
If J represents Higgs scalar fields, then a linear combination of these

invariants forms a Higgs potential the minimization of which gives a
spontaneous breaking of Eg into S0(10)xS0(2). This is just the gauge
group considered by Fritzsch and Minkowski. This last group leaves
invariant an idempotent J which obeys JxJ = 0, Tr J = 1. This has a
geometric interpretation: S0(10)xS0(2) is the stability group of the
geometrical object J which moves 1n a generalized projective space
under the action of E6. Thus, spontaneous symmetry breaking is
intimately connected with the hierarchy of subgroups that are stability
groups of various geometrical objects.l6
E; acts in the 56 dim. space (o, Jy5 I, a,) where J, and J,
transform respectively like 27 and 27 of the E6 subgroup and the complex

numbers a. and a5 are E6 invariant. The parameters of E7 can be grouped

1
into A,B,C, namely the generators of E6,a real parameter A and a complex
Jordan matrix K giving 133 real parameters. Under the maximal subgroup

SU(6)xSU°(3) we have
56
133

giving 10 Dirac leptons (4 charged, 6 neutral), 6 colored quarks and
six antiquarks for the 56. The adjoint representation has 35 color

]

(20,1) + (6,3) + (5,3) (3.1)
(35,1) + (1,8) + (15,3) + (15,3) (3.5)
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singlet vector bosons, 8 colored gluons and 90 leptoquark colored
bosons. Under spontaneous breaking SU(6) -+ SU(4)xSU(2). Thus we
have the SU(4)xSU(2)xsU®(3) decomposition.

56 = (4,1,1%) + (¥,1,1%) + (6,2,1%)+ (1,2,3% + (4,1,3% + (1,2,3%
_ (3.6)

We identify (4,1,1%) with left handed leptons, (4,1,1%) with right
handed leptons, (6,2,1) with heavy leptons, (4,1,3%) with the colored
quarks 63 ,uNN, A and éjl R (1,2,30) with two new heavy quarks L)ﬂ '
and X' and the elements involving 3° with antiquarks. The charged
current is taken to be a Cabibbo rotated 312+Ju3. Then there are no
AS = 1 neutral currents. The ratio R = (ete™ + hadrons)/*e’e™ - u+u—)
turns out to be 4, but with one charged heavy lepton with decay products
counted as hadrons becomes 5 and with the contribution of two can go up
to 6. The experimental value is between 5 and 6.

The E6 and E7 schemes are worked out in more details in two forth-
coming papersg.

I am grateful to my colleagues at Yale and to Professor M, Gell-
Mann for stimulating discussions and to Professor L. Michel for his
interest and kind hospitality at IHES,.
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