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ABSTRACT If the exceptional observables introduced by Jordan, von 

Neumann and Wigner are identified with charge states corresponding to 

internal degrees of freedom of elementary particles, then one is led 

to the classification of quarks and leptons by means of exceptional 

groups. It is shown that the groups of the E series are likely can- 

didates and a gauge field theory based on E 7 is given as an example. 

The hierarchy of symmetry breaking is linked to the hierarchy of stabil- 

ity groups for geometries that are associated with the exceptional groups. 

I. Introduction: the New World Picture 

Thanks to far reaching recent developments in gauge field theories 1'2 

(unification of weak and electromagnetic interactions, renormalizability 

of spontaneously broken gauge field theories, asymptotic freedom in 

non-abelian gauge theories) and momentous experimental discoveries 

(scaling 3 in !epton-hadron, hadron-hadron scattering and e+e - annihilation 

into hadrons;/existence of weak interactions mediated by neutral currents3; 

new hadron families associated with a new quantum number 4'5) we have now 

the possibility of describing electromagnetic, weak and strong inter- 

actions in aiunified way: local renormalizable field theory is appli- 

cable to the~whole world of elementary particles. The fields that occur 

in the local Lagrangian are leptons, quarks (which come in three colors 

and at leasti four flavors), gauge vector bosons which mediate interactions 
i 

among these ifundamental fermions and scalar mesons (Higgs fields) with 

self interac[tions and interactions with the fermions and vector bosons. 

The Lagrangian of the theory is determined by Poincar~ invariance, 

the principle of local (gauge) invariance with respect to a compact in- 

ternal symmetry group G, and finally the principle of renormalizability 

(smooth high energy behavior). For a truly unified theory G is a simple 
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or semi-simple Lie group. It must have SU(2)xU(1)xSUC(3) as a sub- 

group. Here suC(3) is the exact group of strong interactions (the color 

group) leading to asymptotic freedom at high energies and hence to 

scaling (up to logarithmic terms) in scattering involving hadrons. 

The SU(2)xU(1) subgroup is associated with the electromagnetic and 

weak parts of the interaction (including neutral currents). 

The vector bosons belong to the adjoint representation of G. The 

fermions and the Higgs scalars may belong to other irreducible repre- 

sentations. Some of the Higgs fields develop non zero vacuum expect a- 

tion values through the minimization of the Higgs potential which de- 

scribes their self interactions. Then the vacuum is no longer symmetri- 

cal with respect to a subgroup of G and we have the phenomenon of spon- 

taneous symmetry breaking which plays a fundamental role in all the 

major fields of physics as beautifully explained by Professor Michel in 

his contribution to this conference. The vacuum expectation values of 

the Higgs fields give masses to the fermions and to the vector bosons. 

Those vector bosons associated with the unbroken subgroup of G (color 

gluons and the photon) remain massless. 

Three of the quarks are carriers of isotopic spin and hypercharge. 

A fourth one carries the new hadronic quantum number called charm. 

There may be other quarks associated with other flavors and new leptons 

corresponding to new degrees of freedom that characterize the group G. 

Thus the fermion multiplet must include at least 4 colored quarks (12 

charge states) and 4 leptons (e,w,v e and vW). The~e are strong indica- 

tions that there exist another heavy charged lepton E- and its neutral 

companion N E. Then, in a unified theory the basic fermions will belong 

to an irreducible representation of G which has dimension d>16 or d>18. 

The dimension of the adjoint representation (number of parameters of G) 

must be at least 12 (8 for color, 4 for the weak and electromagnetic 

group). 

For a physical interpretation we require another principle: color 

confinement. According to this principle the only observable scattering 

states are those that are invariant under the exact color group suC(3). 

This includes leptons, weak bosons and the photon associated with 

SU(2)xU(1) and those bound states of quarks that are color singlets. 

These will include mesons (q~), baryons (qqq), antibaryons (~q) and 

resonances or bound states of mesons and baryons. Hadrons being bound 

states will be extended objects held together by gluons. They may have 

string or bag structure. Field theory is directly applicable not to 

these hadrons but to their point like constituents (quarks), to leptons 
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and gluons. 

The picture of the world we have outlined has already received 

impressive experimental support. The evidence for the new approach has 

been eloquently spelled out at this conference by Professor Iliopoulos. 

There are some serious problems: namely, the difficulty of incorpora- 

ting gravitation in our world picture (provisionally excluded by the 

principle of renormalizability), the absence of a rigorous mathematical 

Justification for color confinement, the necessity for the introduction 

of very high mass bosons (of the order of the Planck mass) for a truly 

unified theory based on a simple group G, the stability of the proton, 

the need for too many Higgs scalars to explain the hierarchy of masses 

and coupling constants, the difficulty of introducing the Higgs fields 

as bound states (dynamical symmetry breaking) and the absence of a 

principle for selecting the gauge group G. 

It is to this last question that I would like to address myself 

in this talk. I shall summarize some results of work7done in collabor- 

ation with Dr. M. G~naydin~ Dr. P. Sikivie and Dr. P. Ramond~ 

Some examples of universal gauge field theories have been developed 

and studied by Georgi and Glashowl~su(5)), ^ Pati and Salam~(SU(4)xSU(4)),~" 

Fritzsch and Minkowskil~so(10), SO(14), SU(16)xSU(16), etc.) and others. 

The most economical and elegant of these schemes is the SO(10) model. 

They all suffer however, either from proton instability or chiral 

anomalies in renormalization. 

II. Are charges the JNW exceptional observables? 

In searching for a principle that leads to the compact group G, 

we are trying to single out a finite Hilbert space on which the gen- 

erators of G act. Are there such finite spaces that arise naturally 

in the classification of Hilbert spaces? An affirmative answer was 

given by Jordan, von Neumann and Wigner more than four decades ago~ 3 

Confronted by the new puzzling phenomena of the nuclear world following 

the discovery of the neutron and the study of B-decay they looked for 

all possible extensions of Quantum Mechanics which had been so success- 

ful in understanding atomic physics. They showed that the usual for- 

mulation of Quantum Mechanics in a vector space (the kets and the bras 

of the dual space) with observables represented by hermitian operators 

which act on states represented by kets is equivalent to an algebraic 

formulation in which both observables and states are represented by 

hermitian matrices, the states being now associated with projection 

operators 
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that are in one-to-one correspondence with kets, Is>. A state which 

is not a pure state is also represented by a hermitian operator, namely 

a density matrix 

D = Z p~l~i><~il~ , Tr D = Z p~ = i (2.2) 
i 

Instead of the expectation value <mI~Is > of a hermltlan operator 

(observable) ~, and its matrix elements <ml~lS> we consider respectively 

the positive numbers 

Tr ~ = <~l~la> and Tr(P ~Ps~) = I<~I~18>I 2. (2.3) 

For states that are not pure we substitute density matrices D for the 

projection operators P . Note that in all these physically meaningful 

quantities the operation on hermitlan matrices that is relevant is their 

symmetrized product since contact with experiment is made after taking 

the trace of matrix products. Thus, the only product which occurs in 

this algebraic formulation of quantum mechanics is the symmetrized (or 

Jordan) product of hermitian matrices which we denote by 

A.B = ½(AB + BA), (A = AT; B = B T) (2.4) 

This product which defines the algebra of observables is commutative 

but non associative, the associator being 

(A,X,B) = - (B,X,A) = (A.X).B - A.(X.B) (2.5) 

In fact, if A, X, B are matrices over complex numbers, we have 

(A,X,B) = ~ [X,[A,B]], (2.6) 

so that A and B are compatible (simultaneously measurable) observables 

if (A,X,B) = 0 for all X. 

The automorphism groups of the Jordan algebra of nxn hermitian 

matrices are the orthogonal groups SO(n) for real matrices, the unitary 

groups SU(n) for complex matrices and the symplectic groups Sp(n,q) for 

nxn quaternionic matrices (hermitian with respect to quaternion con- 

Jugation). Thus we recover the classical groups and their associated 

Hilbert spaces. 

An infinitesimal unitary transformation on X reads 

X' = X + i[X,C] (2.7) 

If we express the antihermitian matrix in terms of two hermitian matrices 

A and B by ~[A,B] = iC, then Eq. (2.7), takes the form 

X' : X + (A,X,B) (2.8) 
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expressing the infinitesimal action of the automorphism group purely 

in terms of the Jordan algebra. Then A and B are also observables 

associated with the transformation of the observable X. The finite 

unitary transformation on X can be written in two ways 

e-iCxeiC 1 + ~[ IX,C] + ~.v [[X,C],C] + ... (2.9a) X' 

in terms of the Lie algebra of commutators or, alternatively 

= EA,BX = X + ~I (A,X,B) + ~v.(A,(A,X,B),B). + ... (2.95) X' 

in terms of associators that only involve the Jordan algebra. 

Now, Jordan, von Neumann and Wigner found one case in which the 

algebra of observables is obeyed by operators that are not matrices 

over an associative division algebra. They are 3x3 octonlonic matrices 
14 hermitian with respect to octonionic conjugation. Segal and Sherman 

later showed that idempotent matrices of this kind can be made to cor- 

respond to pure states and a general matrix of the form 

X = ~ 6 a , (2.10) 
b ~ y 

with Tr X = 1 can represent a quantum mechanical density matrix. Here 

e, 8, Y are real and a,b,c are octonions with the bar denoting octonionic 

conjugation. A determinant form can be uniquely associated with X 

by the formula 

I Det X = X "3 - X 2 Tr X + ½ X {(Tr X) 2 - Tr X 2} , (2.11) 

where I is the 3x3 unit matrix and X "3 = X.X2... Chevalley and Schafer 15 

showed that these observables can be transformed by the generalization 

of the unitary transformations in the form (2.9b) with A and B matrices 

elements of the set (2.10) with zero trace. Thus the group has 2x26=52 

parameters and is the exceptional group F 4 acting on the exceptional 

observable X. The generators of F 4 correspond to observable charges. 

The automorphism group of the octonions was already known to be the 

exceptional group G 2. Its infinitesimal action on the octonion x is 

given by 

: x - ¼[[a,b],x] + ¼[a,b,x] x v (2.11) 

where [a,b,x] is the completely antisymmetrical assoclator with respect 

to the octonion product which is non commutative and non associative. 

Here a and b are such that their scalar parts ~(a+a) and ~(b+5) 

vanish so that G 2 has 2x7=14 parameters. It has a maximal subgroup 

suC(3) which leaves one of the 7 octonionic imaginary units invariant. 
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Another subgroup of F 4 that acts on X and commutes with suC(3) is an 

SU(3) associated with the 3x3 matrix structure of X in which the octon- 

ion unit left invariant by suC(3) plays the role of the imaginary unit 

of complex numbers. Thus, F 4 admits SU(3)xsuC(3) as a maximal subgroup. 

We also note that the group F 4 leaves invariant Tr X, Tr X 2 and Det X. 

We have arrived at the remarkable conclusion that there exists 

a finite Hilbert space associated with an exceptional realization of 

the algebra of observables with a transformation law that involves two 

different SU(3) groups, one associated with octonions which has the same 

structure as the color group suC(3) and the other with the SU(3) of 

unitary symmetry. Furthermore these observables arise only in the 

JNW formulation,as the ket associated with an idempotent X does not 

transform linearly under F 4. 

Since the discovery of these exceptional observables there has been 

a case of the missing observables in physics as this exceptional Hilbert 

space could not be related to any known states in Physics. Now with 

the new discoveries of a rich charge structure for elementary particles, 

the above considerations strongly suggest the identification of the charg~ 

space with the space of exceptional observables. 

The 26 and 52 dimensional representations of F 4 have the following 

decomposition in terms of SU(3)xsuC(3): 

26: (8,1) + (3,3 c) + (~,~c) (2.12) 

52: (8,1) + (1,8 c) + (6,3 c) + (5,3 c) (2.13) 

Hence if we take G = F 4 the (26) representation unifies 8 Majorana 

(4 Dirac) leptons with integer charges together with 3 fractionally 

charged quarks and 3 antiquarks. The adjoint representation contains 

color singlet vector bosons together with octet colored gluons and twelve 

lepto quark bosons. 

The other exceptional groups E6, E 7 and E 8 act also on finite 

Hilbert spaces with elements that are partly real or complex numbers 

and partly exceptional observables. Hence if we take as our guiding 

principle for finding G the identification of internal degrees of freedom 

with exceptional observables we are uniquely led to exceptional groups. 

The need for charm singles out the E series as natural candidates for 

the universal gauge group G. 

III. ExamPleS of schemes based on E6 and E7." Spontaneous Symmetry 

Breaking and Geometry. 

The smallest Hilbert space E6 acts on is provided by a pair 



231 

(XI,X 2) of exceptional observables which can be combined in a single 

complex matrix J which is hermitian with respect to octonionic con- 

Jugation only. The infinitesimal E 6 transformation on this 27 dimengicna] 

representation is 

TA,B, C J = J + (A,J,B) + i C.J , (3.1) 

where A,B,C are traceless real matrices belonging to the set (2.10). 
, 

Then the group has 3x26=78 parameters. J corresponds to an inequiva- 

lent ~-~ representation for which the transformation law is as in (3.1) 

with C ÷ -C. 

We now introduce the symmetric Freudenthal product 

1 1 1 Tr(J.K 1 1 JxK = J.K - ~ J Tr K - ~ K Tr J - ~ - ~ J Tr K - ~ K Tr J). 

(3 .2)  

If Jl and J2 transform like 27, JlXJ2 transforms as 2--7and we 

have 

I Det J = (J x J).J (3.3) 

Under E 6 we have the invariants 

= ½ Tr JJ*, 12 + iI 3 = Det J, 14 = ½ Tr {(JxJ).(J*xJ*)} I 1 

(3.4) 
If J represents Higgs scalar fields, then a linear combination of these 

invariants forms a Higgs potential the minimization Of which gives a 

spontaneous breaking of E 6 into S0(10)xSO(2). This is Just the gauge 

group considered by Fritzsch and Minkowski. This last group leaves 

Invariant an idempotent J which obeys JxJ = 0, Tr J = I. This has a 

geometric interpretation: SO(10)xSO(2) is the stability group of the 

geometrical object J which moves in a generalized projective space 

under the action of E 6. Thus, spontaneous symmetry breaking is 

intimately connected with the hierarchy of subgroups that are stability 

groups of various geometrical objects. 16 

E 7 acts in the 56 dim. space (~i' Jl' J2' ~2 ) where J1 and J2 

transform respectively like 27 and 2--~ of the E 6 subgroup and the complex 

numbers ~l and ~2 are E 6 invariant. The parameters of E 7 can be' grouped 

into A,B,C, namely the generators of E6, a real parameter k and a complex 

Jordan matrix K giving 133 real parameters. Under the maximal subgroup 

SU(6)xsuC(3) we have 

56 = (20,1) + (6,3) + (5,3) (3.4) 

133 = (35,1) + (1,8) + (15,3) + (i-5,3) (3.5) 

giving l0 Dirac leptons (4 charged, 6 neutral), 6 colored quarks and 

six antiquarks for the 56. The adjoint representation has 35 color 
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slnglet vector bosons, 8 colored gluons and 90 leptoquark colored 

bosons. Under spontaneous breaking SU(6) ÷ SU(4)xSU(2). Thus we 

have the SU(4)xSU(2)xsuC(3) decomposition. 

56 = (4,1,1 c) + (~,l,1 c) + (6,2,1c)+ (1,2,3 c) + (4,1,3 c) + (1,2,~ c) 

(3.6) 

We identify (4,1,i c) with left handed leptons, (~,i,I c) with right 

handed leptons, (6,2,1) with heavy leptons, (4,1,3 c) with the colored 

quarks ~ ,J~, k and ~I , (1,2,3 c) wlth two new heavy quarks ~ ' 

and ~' and the elements involving ~c with antiquarks. The charged 

current is taken to be a Cabibbo rotated J12+J43. Then there are no 
+ - 

AS = 1 neutral currents. The ratio R = (e e + hadrons)/*e+e - ÷ p+p-) 

turns out to be 4, but with one charged heavy lepton with decay products 

counted as hadrons becomes 5 and with the contribution of two can go up 

to 6. The experimental value is between 5 and 6. 

The E 6 and E 7 schemes are worked out in more details in two forth- 

coming papers 9 . 

I am grateful to my colleagues at Yale and to Professor M. Gell- 

Mann for stimulating discussions and to Professor L. Michel for his 

interest and kind hospitality at IHES. 
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