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Abstract

Magnetic monopoles are hypothetical particles consisting of an isolated north or south mag-
netic pole without a partner. Though they are currently unobserved, predictions from
quantum field theory indicate that if they do exist, they should be produced in north-south
pairs by a strong enough magnetic field.

The rate of production of monopoles in weak, constant magnetic fields has been known
for decades, but strong fields and fields that change in space and time present significant
complications. This thesis calculates the rate of monopole production in time-dependent
fields, and in constant fields well beyond the weak-field limit. We find that in field theories
admitting monopoles as topological solitons, such as Grand Unified Theories, monopole pro-
duction occurs by a classical instability when the field exceeds the Ambjgrn-Olesen critical
field strength. In doing this, we explicitly compute new sphaleron and instanton solutions in
Georgi-Glashow SU(2) theory for the first time. The techniques we use to find these solutions
are applicable beyond monopole production—we also compute the electroweak sphaleron con-
figuration, responsible for baryon and lepton number violation in the Standard Model, in the
background of a strong magnetic field, over the full range of physically relevant field strengths.

Our calculations are motivated by the possibility of producing monopoles in ultrarelativ-
istic heavy ion collisions, which generate some of the strongest magnetic fields in the known
Universe. Though a complete calculation of the monopole production cross section in these
collisions remains elusive, we present approximations that can reasonably be expected to
give a lower bound on the overall production probability, and compute the approximate mo-
mentum distribution of the produced particles. This information can be used directly by
experimental collaborations to place bounds on monopole masses using data from heavy ion

collisions.



Statement of Originality

I declare that the work presented in this thesis is my own unless otherwise stated. Where
the work of others has been referenced or quoted, this is attributed as a reference. Some of

the work presented here has is based on previously published material:

« Sections ?? to ?? are based on Ref. [?], authored in collaboration with Oliver Gould
and Arttu Rajantie, and published in Physical Review D. Specifically, the calculation
of the electromagnetic fields and numerical computation of the worldline instantons

were performed by Oliver Gould.

« Sections 7?7 to 7?7 are based on Ref. [?], authored in collaboration with Oliver Gould
and Arttu Rajantie, and accepted for publication in Physical Review D. Specifically,
the work on the locally constant field approximation was contributed by Oliver Gould,

and that on the uncertainty principle was contributed by Arttu Rajantie.

o The experimental work described in Section ?? is reported in Ref. [?], authored in
conjunction with the MoEDAL collaboration and submitted for publication. I helped

to contribute the theoretical approximations used to derive the main results of the

paper.

« Section ?7? is based on Ref. [?], authored in collaboration with Arttu Rajantie, and

published in Physical Review D.

e Section ?7? is based on Ref. [?], authored in collaboration with Arttu Rajantie, and

published in Physical Review D.

o Chapter 77 is based on Ref. [?], authored in collaboration with Arttu Rajantie, and

published in Physical Review D.

The copyright of this thesis rests with the author. Unless otherwise indicated, its con-

tents are licensed under a Creative Commons Attribution-Non Commercial-No Derivatives



4.0 International Licence (CC BY-NC-ND). To view a copy of this licence, visit https:
//creativecommons.org/licenses/by-nc-nd/4.0/. Under this licence, you may copy and
redistribute the material in any medium or format, on the condition that you do not use it for
commercial purposes, and you do not remix, transform, or build upon the material. When
reusing or sharing this work, ensure you make the licence terms clear to others by naming
the licence and linking to the licence text. Please seek permission from the copyright holder
for uses of this work that are not included in this licence or permitted under UK Copyright

Law.


https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Acknowledgements

I would like to thank my supervisor, Arttu Rajantie, for his support, advice, and guidance
throughout the course of my research. I would also like to thank my PhD student colleagues
for helpful discussions on all aspects of physics and beyond.

I am grateful for the funding from the UK Science and Technology Facilities Council
(STFC), without which this PhD would not have been possible. The numerical results
in Chapter 7?7 were obtained using computational resources provided by CSC—IT Centre
for Science, Finland, and those in Chapters ?? and 7?7 were obtained using computational

resources provided by Imperial College Research Computing Service.



In memory of Gerry Lawrence.



Notation and conventions

Vectors

Points and vectors in spacetime of arbitrary dimension are denoted using unadorned letters,
e.g. x, potentially carrying an index (e.g. z,). Greek indices from the latter part of the
alphabet u, v, p,o,... are used to index spacetime dimensions. Spatial vectors in three di-
mensions are denoted using a superscript arrow, e.g. B. Roman indices 1,7, k,...are used
to index spatial dimensions. Abstract collections of scalar variables that are not explicitly
related to space or spacetime are denoted using bold typeface, e.g. x, G. Greek indices from

the first part of the alphabet «, 3,7, ... are used to index these objects.

Units

Unless otherwise specified, natural units are used in which the constants h, ¢, €9, 1o and kg

are equal to one.

Metric signature

The signature of the Minkowski metric is the “mostly minus” convention (+, —, —, —).

Symbols

The letter m without a subscript always refers to a monopole mass, and g without a subscript
always refers to monopole charge.
Every effort has been made to ensure that the symbols in this work are as unambiguous

as possible. Due to the finiteness of the Latin and Greek alphabets, there is some inevitable



duplication; we have attempted only to do so where the intended meaning can be inferred

easily from context. For reference, a full list of symbols used is provided in Appendix ?77.
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Chapter 1

Introduction

1.1 What are magnetic monopoles?

The nature of magnetism has fascinated humans since ancient times, when naturally occurring
magnetite deposits, known as lodestones, were found to attract iron [?]. A key feature of the
magnetic force is the fact that all magnets observed by humans consist of two inseparable
poles. These are commonly given the names “north” and “south” due to the orientation of
the Earth’s own magnetic field.! The concept of a magnetic monopole is straightforward to
understand—an isolated north or south pole without a partner. However, according to all
available evidence, magnetic monopoles appear not to be included in the building blocks of
the Universe.

The nonexistence of magnetic charges may be summarised neatly by the Maxwell equation
V-B=0; (1.1)

the divergence of the magnetic field B is everywhere vanishing. An equivalent qualitative
statement is that magnetic field lines only form closed loops; they do not start or end. This
is in stark contrast to electric field lines, which start and end on electric charges such as
electrons or protons. In the language of Maxwell’s equations
V- E = OB, (1.2)
where E denotes the electric field and pE is the density of electric charge in natural units.
The apparent lack of magnetic monopoles is an empirical observation: there is no known

a priori reason why these particles should not exist. A magnetic monopole would interact

!The convention is that the north pole of a magnet will point towards the magnetic North Pole of the

Earth. This means, somewhat confusingly, that the Earth’s magnetic North Pole is in fact a south pole.
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with a magnetic field in an analogous way to an electric charge interacting with an electric
field, accelerating parallel to the field direction. The magnetic field of a monopole would

obey Coulomb’s law:
_ 97
43’

where ¢ is the monopole charge and r = |Z]. Over large distances, north and south monopoles

B(7) (1.3)
would attract each other, and would be each other’s antiparticles: they could annihilate,
releasing energy in the form of photons. Under the correct conditions, presumably, one could

also create monopole-antimonopole (north-south) pairs. This, or indeed any other direct or

indirect evidence of the existence of monopoles, has never been observed.

1.2 Why are monopoles important?

Since at least the thirteenth century [?], scientific searches for monopoles have returned
uniformly negative results, despite extensive efforts (see Section ?? for more details). It is
reasonable to question why there should be so much effort spent searching for something that
there is no evidence for.

The first—and by many measures the least important—reason why monopoles are be-
lieved to exist is due to aesthetics. Should monopoles be found, the theory of electromagnet-
ism would become symmetric under the exchange of electricity and magnetism, interchanging
electric charges with their magnetic counterparts. In other words, Eq. (??) and Eq. (?7?)
would look the same, just with different symbol names. This symmetry is known as electro-
magnetic duality, and its realisation would be considered by many to be pleasing. Famously,
Dirac remarked that he would be “surprised if Nature had made no use of it” [?].

Arguments from beauty, however, are not the only motivation for believing that magnetic
monopoles should exist. Monopoles are not only permitted, but predicted to exist by a wide
class of theories extending the Standard Model of particle physics, including all Grand Unified
Theories [?,?]; theories that describe the electromagnetic, strong and weak forces as aspects
of the same interaction. In such theories, monopoles exist as topological defects in quantum
fields, in analogy to grain boundaries in crystals or vortices in fluids. An argument based
on causality, known as the Kibble mechanism [?], shows that if these theories describe the
Universe, monopoles must have formed during a phase transition shortly after the Big Bang.

Finding a monopole from a Grand Unified Theory would provide an invaluable opportun-
ity: unlike many hypothesised particles beyond the Standard Model, monopoles are expected

to be totally stable. This means that if a monopole were found it could be studied at leisure,
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and multiple experiments could be performed on the same sample. Furthermore, the micro-
scopic nature of the monopole would offer a chance to probe the nature of the fields from
which the monopole is comprised, without requiring impossibly high-energy particle acceler-
ators. The converse prospect is equally exciting: If monopoles were shown conclusively not
to exist, it would imply that no Grand Unified Theory could describe the Universe. It would
also rule out theories with compact extra dimensions (including string theories), which admit
similar monopole solutions [?,?]. As these theories are some of the leading contenders for
extending the Standard Model, such a discovery would revolutionise theoretical high-energy
physics.

It is instructive to consider how this latter possibility could come to be demonstrated—
negative statements are notoriously difficult to prove. One possible route towards showing
that monopoles cannot exist stems from a result known as the Dirac quantisation condi-
tion [?]. This states that in order for a monopole to be consistent with quantum mechanics,

the monopole charge g and the electric charge e must obey the relation
eg = 2mn, (1.4)

where n is an integer. This relation must hold for any pair of electric and magnetically
charged particles. As a consequence, if even a single monopole exists in the Universe, all
electric charges and magnetic charges must be quantised. This appears to reflect empirical
evidence: all observed free particles carry integer multiples of the electron charge.? If a
continuous spectrum of electric charges were found, or a particle with an electric charge that
was an irrational multiple of e, magnetic monopoles would not be consistent with a quantum

mechanical description of reality.

1.3 Why are monopoles difficult?

As previously mentioned, all monopole searches carried out so far have failed to find any
evidence for the existence of monopoles. In order to interpret these negative findings quant-
itatively, it is vital to have a firm theoretical understanding of the mechanisms by which
monopoles would be produced, if they existed. This theoretical understanding is difficult to
obtain, however, due to the strong coupling between the monopole and the electromagnetic
field. Eq. (??) shows that magnetic charges must come in integer multiples of the Dirac
charge

27

= 1.5
gp e ’ ( )

2For a discussion of the quantisation condition applied to quarks, see Ref. [?].
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where e is the magnitude of the electron charge. At zero energy,

e~ 0.303, (1.6)
and the electric fine structure constant
e? 1
=~ —. 1.
R ET (1.7)

As this is much smaller than one, this means that observables in quantum electrodynamics
(QED) can be computed perturbatively as a series in increasing powers of a. Including more
terms in a perturbation series allows arbitrary accuracy to be obtained, as each power of
a contributes less to the overall result. Feynman diagrams are a powerful tool for comput-
ing such quantities, and perturbative calculations in QED are some of the most accurate
theoretical calculations ever carried out.

This fortuitous feature of electrodynamics is a pitfall of magnetodynamics, the counter-

part dealing with magnetic charges. A particle carrying a single unit of Dirac magnetic

charge has
g =~ 20.7, (1.8)
and the magnetic fine structure constant
137

This is much larger than one, so successive terms in a perturbation series increase in mag-
nitude. This means that perturbation theory is totally inapplicable to magnetic monopoles.

The failure of perturbation theory poses a serious problem for the interpretation of ex-
perimental results concerning monopoles. For example, consider a particle accelerator ex-
periment, reaching centre of mass energy /s, from which no monopoles are detected. There
exists some relation between the mass m and charge g of the monopole, the collision energy,

and the probability of producing a monopole-antimonopole pair:
P(Monopole production) = f(m, g;/s). (1.10)

Assuming the function f is monotonic in m and /s, the null result at energy /s can be
used to place a lower bound on m for a given g to the desired level of confidence. Currently,
however, this function is not reliably known, meaning that existing bounds on monopole
masses are questionable.

This thesis documents the progress made towards overcoming these theoretical difficulties,

and provides steps towards a truly reliable calculation of the function in Eq. (??). The main
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mechanism we choose to investigate is the Schwinger effect [?,?]: the quantum mechanical
process by which a field is unstable to decay into charged particle-antiparticle pairs. If

magnetic monopoles exist, a sufficiently strong magnetic field should produce them.

1.4 Thesis structure

Immediately following, in Chapter 7?7, we provide a brief review of some theoretical aspects
of nonperturbative objects in field theory, as well as a summary of the experimental status
of magnetic monopoles. The topics reviewed are broad and rich, so only the points most
relevant to the work presented in later chapters are discussed; the references in Chapter 77
offer more comprehensive introductions for the interested reader.

In Chapter 7?7 we review the production of monopoles from magnetic fields in general
terms, focusing on instanton methods. We outline the theoretical background behind the
methods used in later chapters to obtain the main results of this thesis.

In Chapter ?? we outline important numerical methods used in later parts of the thesis.
For the most part, this chapter is also review, though some of the implementations of the
algorithms are, to the author’s knowledge, novel.

In Chapter 7?7 we present the results of a series of calculations regarding monopole pro-
duction in the electromagnetic fields generated in ultrarelativistic heavy ion collisions. A
production cross section for monopoles in heavy ion collisions, derived using the worldline
approximation, is presented. Though it is found that for ultrarelativistic heavy ion collisions
the worldline assumption is not valid, we present arguments as to why the results are likely
to provide a lower bound on the cross section. The momentum distribution of the produced
particles is also examined, and the resulting approximate distribution is suitable for experi-
mental use in modelling the trajectories of monopoles produced in particle accelerators.

In Chapter ?? we show the first steps taken towards overcoming the limitations of
Chapter 7?7 by relaxing the worldline assumption, and taking the internal structure of the
monopoles into account. In order to achieve this, we work in a non-Abelian gauge theory
where monopoles are realised as soliton solutions to the field equations with nontrivial topo-
logical charge. Using the numerical methods outlined in Chapter 7?7, we compute the pair
production rate for solitonic monopoles at all relevant field strengths, up to the Ambjgrn-
Olesen critical field strength where the magnetic field itself becomes unstable [?]. At this
point we show that if strong enough fields were produced, they would result in production

of monopoles via a classical instability, rather than a quantum one.
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In Chapter 7?7 we demonstrate the versatility of the numerical methods developed and
employed in this thesis, by using similar techniques to investigate a different nonperturbative
phenomenon. We present the results of a study into the effect of a strong magnetic field
on sphaleron-induced baryogenesis in the Electroweak theory of the Standard Model. In a
similar manner to the result of Chapter 7?7, we show that the energy barrier to baryon and
lepton number violation vanishes at a critical field strength set by the Higgs mass, again first
identified by Ambjgrn and Olesen [?,7].

Finally, in Chapter ??7 we present concluding remarks and outline the possible next steps

to be taken in future work.



Chapter 2

Nonperturbative objects in field
theory

2.1 Elementary monopoles

Starting with the Maxwell equations in terms of electric fields E and magnetic fields E, it

is straightforward to include magnetic charges in classical electromagnetism: in units where

50:M0:1,
V- E = pg, (2.1)
V- B=pu, (2.2)
- - 9B
F=—-""— 2.
V X It JM, (3)
B=-"—+J. 2.4
VX or e (24)

Here p and J denote charge and current densities respectively, with the subscripts E and M
distinguishing between electric and magnetic sources. These modified Maxwell equations are
invariant under electromagnetic duality, interchanging electricity and magnetism:
E——-B, B—E,
PE = —PM; PM — PE; (2.5)
Jo— —Ju,  Ju—Js.

However, when formulating electromagnetism in terms of potentials, at first glance it appears
that monopoles are forbidden. This is because defining the magnetic field in terms of the

3-potential AasB=Vx A requires V-B=0 identically. Given this fact, the existence of

15
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the Dirac potential [?]

S g TXmn
A7) = 2 ——— 2.6
() rr—=-n (26)
appears puzzling. Here Z is a displacement vector from the spatial origin, r = |Z] and 7

is a constant (arbitrary) unit vector. One can readily verify that (almost everywhere) this

potential gives

- - g

the Coulomb field for a magnetic monopole of charge g. The key to reconciling this with
the solenoidal nature of the magnetic field lies in the “almost everywhere” caveat. Along
the line where ¥ - m > 0, the potential is singular—this is known as the Dirac string. This
semi-infinite line may be thought of as the limit of an infinitesimally thin solenoid, carrying
a magnetic flux of ¢ inward to the origin and balancing the outward flux of the monopole.
Furthermore, the position of the Dirac string can be rotated to any direction in space using
a gauge transformation. This means that a Dirac string is not observable; it is purely a
gauge object. Using locally defined gauge potentials [?] it is possible to remove the string
singularity all together, leaving only the origin where the gauge potential is undefined.!
While the fact that the Dirac string is a gauge object precludes its observability in classical
electromagnetism, in quantum mechanics this is not a sufficient condition. One way to see this
is to consider the Aharonov-Bohm effect: when a particle with electric charge e is transported
along a path through a magnetic field with potential ff, its wavefunction picks up a complex
phase
Af = e/A'- dz. (2.8)

If we consider transporting an electric charge along a closed loop threaded by a Dirac string,
we can see using Stokes’ theorem that the resultant phase change is Af = eg. In order for
this to be unobservable—i.e. in order for the particle to be a true, spherically symmetric
magnetic monopole—this must be an integer multiple of 2. We therefore arrive at the Dirac
quantisation condition [?]

eg = 2mn, n € 7. (2.9)

The existence of a single monopole anywhere in the Universe would require the quantisation of
electric charge. Tt has also been argued [?] that the converse is true: a theoretical explanation
of charge quantisation would also predict the existence of monopoles.

Providing the quantisation condition is met, there is no known theoretical inconsistency

in including elementary magnetic charges in quantum electrodynamics. Several equivalent

IThe Coulomb potential of an electric charge is similarly undefined at the origin.
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quantum field theoretic descriptions of quantum electromagnetodynamics (QEMD) exist [?,
?,7,7], and while these are significantly more complicated than theories with only electric (or
only magnetic) charges, they have been shown to be both Lorentz and gauge invariant [?,?].
A comprehensive overview of the classical and quantum treatment of elementary monopoles
can be found in Ref. [?].

Despite the firm theoretical description of monopoles in quantum field theory, rigorous
calculations of observables in QEMD are rare. This is because of another feature of the
Dirac quantisation condition. The electric charge e is perturbatively small: at zero energy

e =~ 0.303, which means that, as stated in Eq. (?7), the magnetic fine structure constant is

oM = % = % > 1. (2.10)
This means that the perturbative techniques that enable precision theoretical calculations in
QED are inapplicable to magnetic monopoles. Overcoming the difficulties of strong coupling
is an ongoing challenge in the theoretical study of magnetic monopoles, and is a key focus of

this thesis.

2.2 Solitonic monopoles

The monopoles described in the previous section are known as elementary or Dirac mono-
poles, due to the fact that they are fundamental particles, like electrons or quarks in the
Standard Model. A quantum field theoretic description of elementary monopoles requires
the introduction of a new matter field in the Lagrangian, and the bare mass of an elementary
monopole is infinite. These qualities are reflected in the fact that the classical description of
a Dirac monopole has a singularity at the point where the magnetic charge is located; the
Dirac potential (??) is defined on R® — {0}.

Another class of magnetic monopoles arise as solutions to the field equations of certain
non-Abelian gauge theories. These monopoles require no new terms to be added to the
Lagrangian, and can be thought of as a coherent state of many elementary particles; they
are known as solitonic or composite monopoles. Solitonic monopoles are topologically stable
objects: although they are not global minima of the energy of a theory, they cannot be
continuously deformed to the true vacuum while keeping the energy finite. This means that
a monopole solution is stable at both a classical and a quantum level.

The existence of monopole solutions in a gauge theory therefore depends on topological
considerations; for finite energy monopoles to exist, the space of finite energy field configur-

ations must be disconnected. The conditions for this to occur are outlined below—ifor full
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details readers are invited to consult Refs. [?,7,7,?7,?] and references therein. Consider a
Yang-Mills theory of a gauge field A, taking values in the Lie algebra of some gauge group

G. Couple this to a scalar field ¢, transforming under some representation R of G:
¢ — R(Q)o (2.11)
for €2 € G. The covariant derivative of ¢ may be defined
D, ¢ = 0,0 +ieR(A,)d. (2.12)
The canonical Lagrangian is then
1
L= -3 T F,F" + |Duof = V(9), (2.13)
where V(¢) is the scalar potential and the field tensor F),, is defined
F,., =0,A, —0,A, +ie[A,, A (2.14)

Here, the Lie algebra generators T are normalised such that

1
Tr 7T = 20" (2.15)
The energy density of the theory is given by
£ = |F"[ + | Fyl” + D" + |D'¢l* + V(9), (2.16)

where 7, 7, k index spatial indices.

Suppose that the scalar potential V' is such that the minima of V'(¢) spontaneously break
the symmetry of the gauge group G to some subgroup H, and choose V(¢) = 0 at these
minima.2 We are interested in finite energy field configurations, so at spatial infinity we
require the energy density to vanish:® at r — oo

F,, —0,
V(¢) =0, (2.17)
D,¢ — 0.
The constraint on the scalar field at infinity means that vacuum solutions define a map from

spatial infinity to the vacuum manifold:

¢:S* = G/H. (2.18)

2This can always be achieved by adding a constant to V', which does not affect any physical observable.
3More precisely, each term in the energy density must decay sufficiently quickly with increasing r so that

the energy remains finite.
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In order for the theory to admit monopole solutions, there must exist maps of this form that
cannot be continually deformed into one another. In mathematical language, such maps must
be in different homotopy classes. The set of homotopy classes of maps from the n-sphere to
a manifold M is known as the nth homotopy group, and is denoted by m,(M). For a theory
to admit monopoles, we therefore require mo(G/H) to be nontrivial.

We can make this more concrete by considering a specific gauge theory. For example, in
the Standard Model, the Higgs vacuum breaks the electroweak SU(2) x U(1) gauge symmetry

to the U(1) symmetry of electromagnetism. The relevant homotopy group is*
m(SU(2) x U(1)/U(1)) = m5(SU(2)) = my(S?) 2 1. (2.19)

As the second homotopy group is trivial, there are, sadly, no finite energy solitonic monopoles
in the Standard Model.

Surprisingly, under rather general conditions it turns out that m5(G/H) can be computed
without knowledge of the larger gauge group G. If G is simply connected it can be shown

(for proof see, for example, Refs. [?,7?]) that
m(G/H) = 7 (H). (2.20)

This has important consequences for possible extensions to the Standard Model: consider, for
example, a Grand Unified Theory based on some simply connected Lie group Ggur. Despite
us not knowing the identity of Ggur, we know that if such a gauge theory describes the
Universe, it must display spontaneous symmetry breaking to give the electromagnetic gauge

group U(1)g,. This means that
mo(Gaur/U(L)gy) = m(U(1)gy) = m(S') = Z; (2.21)

if a Grand Unified Theory based on a semisimple Lie algebra describes the Universe, magnetic

monopoles must exist.

2.2.1 The ’t Hooft—Polyakov monopole

It is useful to give an explicit example of a solitonic monopole solution. The canonical
example is the 't Hooft—Polyakov monopole [?, 7] in Georgi-Glashow SU(2) theory. This has
gauge group G = SU(2), coupled to an adjoint scalar field ®. The Lagrangian of the theory

1S

4There is some debate over the quotient factor in the Standard Model gauge group [?]. This is omitted

here for brevity, as it does not affect any of the physics we discuss.
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L— —% Tr Fy F* + Tt D& D D — V(), (2.22)
where
D,® = 0,8 + ie[A,, D], (2.23)
Fo = 0,A, — 8,4, +ic[A,, A, (2.24)
V(®) = A (Tr(®?) — %) (2.25)

The theory has two dimensionless parameters: the gauge coupling e and the scalar self-
coupling . The dimensionful parameter v sets the scale of the theory. For v? > 0 the
scalar potential induces spontaneous symmetry breaking, giving the scalar field a vacuum
expectation value (VEV) v/Tr®2 = v. This generates a scalar boson mass ms = 2v/\v
and a charged vector boson mass m, = v/2ev. There remains an unbroken U(1) symmetry
group corresponding to rotations around the ® vector; the gauge boson associated with the
generator of this symmetry remains massless and takes the role of the electromagnetic photon.

Using the results from the previous section, we can see that the asymptotic scalar field
maps spatial infinity to SU(2)/U(1), and so the second homotopy group of the vacuum
manifold is

mo(SU(2)/U(1)) = m(U(1)) = Z. (2.26)

This means that there are a countably infinite number of topologically distinct vacuum sectors
that may be associated with an integer indexing the number of times spatial infinity “wraps”
around the vacuum manifold. This integer is known as the winding number and can be
associated with the magnetic charge.® The trivial vacuum has zero winding number, and the
't Hooft—Polyakov monopole solution has a winding number of one.

The 't Hooft—Polyakov monopole solution can be found by considering an ansatz for
the scalar field that satisfies the asymptotic vacuum condition V(¢) = 0, and cannot be

continuously deformed to the trivial vacuum. This is known as the “hedgehog” ansatz [?,7]

() = ﬂuﬂ(r)%, (2.27)

where the scalar field components ®* are defined by ® = %@“0“, with 0%, a = 1,2, 3 denoting

the Pauli matrices. The ansatz is spherically symmetric, and the boundary conditions on the

function H(r) can be determined from the condition of finite energy:

0, r—0,
H(r) — (2.28)
T, r — 00.

SFor a concise heuristic argument why this is the case, see Ref. [?].
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The vacuum condition D,® = 0 requires that the gauge fields vary in a way that cancels out
the change in direction of the Higgs vector at spatial infinity. The corresponding ansatz for
the gauge fields is therefore

x]
CR
712

1
A? = —gé'm'j [1 - K(T)] Ag = 0. (229)

The boundary conditions on K (r) to ensure finite energy are

, r — 0,

K(r) — (2.30)

0, r — 00.

To determine the complete solution, one can substitute the hedgehog ansatz into the equa-
tions of motion and solve the resulting coupled ODEs to determine H(r) and K(r). In
general, this must be performed numerically, though in the limit A — 0 an analytical solu-
tion can be found [?,?]. This solution is known as the Bogomolny-Prasad-Sommerfeld (BPS)
monopole. For A # 0, the functions H(r) and K(r) have been calculated to a high level of
precision in Ref. [?].

The monopole mass can be determined by computing the energy of the 't Hooft—Polyakov

monopole solution:
4mm,,

(B) = ——F(B), (2.31)

where = mg/m,, the ratio of the scalar and charged vector boson masses. The function

4\/€§m) f

f(B) is monotonically increasing, with the limits [?]

f0) =1,

F(oo) = 1.787. .. (282)

The macroscopic properties of the 't Hooft-Polyakov monopole are independent of the
precise form of the solution. One can define an electromagnetic field strength tensor by

projecting onto the scalar field [?]:

A

~ 1 ~ A
fuw = OFL, + Eeabcq)“(D#CI))b(DZ,CI))C, (2.33)

where ¢ = ¢ /V®ede. By considering the asymptotic fields of the 't Hooft—Polyakov

solution, one can see that the magnetic charge of the monopole is

— L. 2.34
9= (2.34)

the 't Hooft—Polyakov monopole carries two units of Dirac charge.
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At large distances, the scalar field’s magnitude is its VEV, and the gauge fields tend to a
pure Coulomb magnetic field; from sufficiently far away solitonic and elementary monopoles
are indistinguishable. At smaller distances, however, the scalar field magnitude deviates from
the vacuum, and the non-Abelian nature of the gauge fields becomes apparent. This occurs
in a spherical region known as the monopole core, with a radius of approximately ry & m!.
Note that while the electromagnetic field tensor as defined in Eq. (??) is singular at the

origin, the fields and energy density are all finite and smooth.

2.3 Experimental status of monopole searches

In Section ?? we showed that any Grand Unified Theory (GUT) based on a simply connec-
ted gauge group admits 't Hooft—Polyakov monopole solutions. Moreover, a GUT symmetry
breaking transition in the early Universe would have created monopoles via the Kibble mech-
anism [?], forming at the intersections of causally disconnected bubbles of symmetry-broken
vacuum. This means that all Grand Unified Theories not only permit, but predict the exist-
ence of magnetic monopoles. This poses an obvious question—where are they?

The theoretical prediction of GUT monopole density in the Universe, based on a GUT
phase transition and expansion of the Universe at the rate set by the Hubble constant,
predicts that monopoles should dominate the mass density of the Universe [?]. The fact
that this is clearly not the case is known as the “monopole problem”. One possible solution
lies with the inflationary model of cosmology [?]—a period of exponential expansion of the
Universe after the GUT phase transition would have diluted primordial monopole density to
an unobservably small level. Of course, another solution to the problem is that a GUT does
not describe the Universe, and that monopoles do not exist.

Despite scepticism about the existence of monopoles, it is undeniably true that there has
been considerable experimental effort expended on monopole searches. Practically speaking,
monopoles should be fairly easy to identify: they are stable particles, so do not decay,
and have clear experimental signatures [?,?]. Monopoles can be detected both directly
through their interactions with experimental apparatus, or indirectly via processes such as
the draining of cosmological magnetic fields [?] or monopole-catalysed proton decay [?,7?].
The current status of monopole searches is briefly reviewed below—a more comprehensive
overview is given in Refs. [?,7,7,7].

One logical place to rule out in the search for monopoles is the Earth and its immedi-

ate environment. Searches for terrestrial monopoles have encompassed the atmosphere, the
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oceans, moon rocks, and meteorites; a review of such searches is found in Ref. [?]. These
searches have all returned negative results; Ref. [?] gives an upper bound of 1.2 x 1072
monopoles per nucleon.

A second option is to attempt, indirectly, to infer the cosmological monopole flux. One
of the earliest and most robust of these attempts is the Parker bound [?,?], which considers
the fact that a significant flux of monopoles would drain the observed galactic magnetic field
faster than it could be regenerated. This gives a mass-dependent upper bound of

107" em™2sr7ts7!, m < 1017 GeV,

F < (2.35)

10715 <—1017mGeV) ecm2sr s m 2> 1017 GeV.

These bounds may be made stricter by considering the evolution of a smaller seed field in
the early Universe; with the conservative estimate of the magnitude of this field of 107! G,

one obtains the extended Parker bound [?]

3x 1072 em2sr st m < 3 x 100 GeV,
F< (2.36)

1.2 x 1076 (5% ) em™2srts™? m > 3 x 109 GeV.

In Ref. [?], it was shown that this bound may be combined with a consideration of thermal
Schwinger production of light monopoles during reheating in the early Universe to constrain

monopole masses to
m 2 0.45 GeV. (2.37)

Another option is to search for monopoles incident on the Earth via cosmic rays. The
most stringent bounds to date over a wide range of incident velocities are shown in Fig. 77?.
Searches by RICE [?] and ANITA-II [?] have produced even stricter bounds for ultrarelativ-
istic monopoles (7 > 107); these are not shown in Fig. 77 as they would saturate the horizontal
axis.

Earlier experiments searching for monopoles of cosmic origin identified two candidate
events with similar signatures to magnetic monopoles [?,?], but these were not repeatable
and are generally considered to be experimental errors. For more discussion of potential
monopole candidates, see Ref. [7].

The final possibility is that of producing monopoles in particle colliders. The highest
energy particle collisions to date have been of order 10* GeV. GUT monopoles are ex-
pected to have masses of at least 10> GeV, an energy far out of reach for the foreseecable
future. However, elementary monopoles with far lower masses could exist, as well as solitonic

monopoles in various models that have masses in the TeV range [?, 7,7, ?]. The highest
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Figure 2.1: Flux bounds as a function of f = v/c¢ from cosmic ray experiments [?, 7, 7],

including the Parker bound [?] and extended Parker bound [?] for reference.
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Figure 2.2: Upper limit cross sections as a function of monopole mass from different collider
experiments. Data taken from Refs. [?,7,7, 7,/ ?]. All results are for ¢ = gp, except SPS,
which is valid for ¢ > 2gp. The SPS results have been included because, at the time of

writing, they are the only bounds from a heavy ion collision experiment.
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energy monopole searches have been performed in proton-proton collisions by ATLAS [?,7]
and MoEDAL [?,7?,7]. Searches have also been performed in electron-positron collisions by
OPAL [?] and L6-MODAL [?], in electron-proton collisions by H1 [?], in proton-antiproton
collisions by CDF [?] and E882 [?], and in heavy ion collisions by SPS [?]. Fig. ?? shows
the upper limit cross sections reported from a range of experiments and colliding species. A
comprehensive list of the bounds on cross sections and masses from monopole searches can
be found in Ref. [7].

Reported mass bounds from particle colliders are subject to significant debate due to the
theoretical difficulties in modelling the production of strongly coupled particles. In collisions
with a small number of degrees of freedom in the initial state (sometimes known as “few
particle collisions”), it is generally believed [?,?] that the production of solitonic monopoles

is suppressed by a factor of
4
exp (——) ~ 1072%, (2.38)
a

This is due to the fact that solitons may be thought of as a coherent state of many ele-
mentary particles: with a small number of degrees of freedom in the initial state, the form-
ation of a final state with many degrees of freedom is vanishingly unlikely. Even if low-
mass solitonic monopoles exist, they are therefore unlikely to be produced in proton-proton,
electron-positron or electron-proton collisions. While these arguments do not apply to Dirac
monopoles, it has been argued that even elementary monopoles should have a large effective
size due to strong coupling effects [?,?,?]. This could result in a similar suppression for
elementary monopoles (for full details of this argument see Ref. [?]).

In addition to worries about suppression for solitonic monopoles, there is also concern
about the methodology used to obtain mass bounds from particle accelerator experiments.
The most common model of monopole production used in these experiments is Drell-Yan pro-
duction, where the annihilation of a quark-antiquark pair produces a monopole-antimonopole
pair via a virtual photon (see Fig. ??(a)). Another monopole production channel considered
is photon fusion [?] (Fig ??(b)). The production cross sections are computed by taking the
electromagnetic duals of tree level results for electric charges, replacing the electric coupling
with the magnetic one. This is a perturbative approximation, and as discussed in Section 77,
perturbation theory is inapplicable to magnetic monopoles. Mass bounds obtained via per-
turbative approximations are therefore indicative only, and are best used for comparison
between experiments rather than as a concrete prediction.

Clearly, the fact that theoretical understanding of monopole production mechanisms lags

behind experiment must be addressed if we are to make full use of the results of past and
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Figure 2.3: Feynman diagrams for production of spin 1/2 magnetic monopoles (analagous
diagrams can be drawn for monopoles of any spin) by the Drell-Yan process (a) and photon
fusion (b). Note that in a proton-proton collision, the “fusing” photons are virtual, radiated

by quarks (not shown here).

future collider searches. One promising area where theoretical advances can be made is
monopole production from heavy ion collisions. These have a large number of initial state
degrees of freedom, so the arguments for exponential suppression from entropic considerations
do not apply. Furthermore, they generate some of the strongest magnetic fields in the known
Universe [?,?], which offers the possibility of magnetic monopoles via the Schwinger effect [?,
?]. This can, in principle, be analysed beyond the limit of perturbative coupling, using
methods such as worldline QFT [?,?7] and lattice field theory. In later chapters, we will present
the progress we have made towards advancing the theoretical understanding of monopole

production from magnetic fields.

2.4 Sphalerons

In Section ?? we showed that Yang-Mills-Higgs theories where the vacuum manifold has
a trivial second homotopy group do not admit finite energy solitonic monopole solutions.
The electroweak theory of the Standard Model is an example of such a theory. Monopoles,
however, are not the only topologically interesting features of gauge theories. Even if the space
of finite energy field configurations is connected, there can still be topologically nontrivial
paths in field configuration space, which give rise to nonvacuum solutions to the equations

of motion with interesting physical consequences.
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A relatively simple argument [?], applied to field theory in Ref. [?], shows that the ex-
istence of noncontractible loops passing through the vacuum implies the existence of saddle
points of the energy density. The argument is as follows: denote the set of finite energy field
configurations by C. Consider a noncontractible loop in field configuration space I" : S* — C,
passing through the vacuum. If the vacuum is unique and has energy Ej, the energy along the
loop must at some point attain a maximum value Ep.(I"). Minimising the value of Fyax(T)
over all loops I within a homotopy class will yield a saddle point of the energy with a single
negative mode.® Saddle points of the energy of a field theory are known as sphalerons [?],
after the Greek ogalepds, meaning “slippery” or “ready to fall” [?].

The existence of sphalerons in a field theory can be determined using similar topological
considerations to those used to determine the existence of monopoles [?,7]. Recall from
Section 7?7 that in a Yang-Mills-Higgs theory where the gauge group G is spontaneously
broken to a smaller gauge group H, a field configuration in three spatial dimensions defines
a map S? — G/H. A loop in field configuration space therefore defines a map I' : ST —
Maps(S? — G/H). The set of homotopy classes of these maps is the homotopy group

m ((Maps(S* — G/H)) . (2.39)

If this homotopy group is nontrivial, the theory admits sphaleron solutions.

In the example of Georgi-Glashow SU(2) theory, the vacuum manifold is
SU(2)/U(1) =52, (2.40)
and the relevant homotopy group is
7 (Maps(S? — 5%)) = 73(5?) = Z. (2.41)

Georgi-Glashow SU(2) theory therefore admits sphaleron solutions, the lowest energy of
which was first discovered by Taubes [?]. This consists of a monopole-antimonopole pair
with a relative twist of 7w in isospace, which results in a repulsive force that balances the
attractive force between the monopoles. In the presence of an magnetic field, a new and
distinct sphaleron solution, which is not topological in origin, arises. This will be discussed
further in Chapter ?7.

Sphaleron solutions can exist even in theories where mo(G/#H) is trivial, i.e. those without
stable soliton solutions. The most physically relevant example of such a theory is electroweak

theory; as discussed in Section 77 the vacuum manifold is

SU(2) x U(1)/U(1) = SU(2) = S°. (2.42)

6Saddle points with more negative modes can be obtained by considering maps from higher spheres to C.
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This has a trivial second homotopy group, but
m (Maps(S? — 5%)) = 73(5%) = Z. (2.43)

There are consequently a countably infinite number of sphaleron solutions to electroweak
theory. The lowest-energy of these is the electroweak sphaleron described below. Higher-
energy solutions are known as multisphalerons [?,?], and are mentioned for completeness,

but not studied in this work.

2.4.1 The Electroweak sphaleron

The lowest energy saddle point solution to electroweak theory is commonly known as the
electroweak sphaleron, and was first identified by Klinkhamer and Manton in Refs. [?,?].
The sector of the Standard Model Lagrangian of interest here is the electroweak and Higgs
sector [7, 7], consisting of an SU(2) gauge field W, a U(1) hypercharge gauge field Y, and
a scalar Higgs doublet ¢:

Low = —5 TG G — 1Y,V + (D,0) (D6) ~ V(8), (244

where

G, = 0, W) — 0,WS + igewe™ WIW;, (2.45)
YW = 8MY;’ - aVYm ( )
Dy = 0y + 5igewWio® + SigiwYa, (2.47)
2
V() = (670 —v*/2)"; (2.48)
0® denote the Pauli matrices. There are three dimensionless parameters in the theory: the
SU(2) gauge coupling grw, the U(1) gauge coupling gjw, and the Higgs self-coupling .
The scale is set by the Higgs vacuum expectation value (VEV) /¢l = v/v/2.

After spontaneous symmetry breaking it is useful to define the weak mixing angle

/
tan Oy = JEW (2.49)
gEW
which quantifies the relationship between the weak isospin and hypercharge gauge couplings.

The theory has three massive gauge bosons: the W bosons

W, =W, +iW? (2.50)

"The subscript distinguishes these couplings from the symbol g used to denote monopole charge in other

parts of this thesis.
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have mass mw = %gEWv, and the 7Z boson
Z, = Wj cos by — Y, sin Oy (2.51)
has mass myz = my/ cos fy. The photon
A, = Wlf sin Ow + Y, cos Ow (2.52)
remains massless. The electric charge is given by
e = ggw sin Ow =~ 0.303. (2.53)

Finally, the Higgs field gains a mass my = v 2 v. The physical parameters of the Standard

Model are well known [?]:

mw =~ 80.4 GeV, (2.54)
mu ~ 125.2 GeV, (2.55)
sin? Oy = 0.23. (2.56)

The sphaleron solution was first found explicitly in the limit fy — 0; a summary of this
solution is presented here. In this limit one only needs to consider the SU(2) gauge field, and
the sphaleron has spherical symmetry. The authors of Refs. [?,?] identified an incontractible

loop in electroweak theory that may be written in the temporal gauge as [7]

(% 0 - = X
¢ = — [1 — h(’f’)] (e_iu COS ,u) _I' % U (M) (1) )

&

i - - (2.57)
Wi = ——f(U(1)9;U> (n)",
9EW
Wy =0,
defining the matrix
- e (cos p — isin y1cos ) e’ sin 1 sin 6
U™ () = e - - : (2.58)
—e " gin psin 0 e (cos p + i sin p cos )

Here, 6 and ¢ denote spherical polar coordinate angles, and p parametrises the loop. The
maximum value of the energy along this loop occurs when p = 7/2; fixing this value and
solving the equations of motion for the radial functions h(r) and f(r) gives the sphaleron

solution.
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A key feature of the electroweak sphaleron configuration is that its Chern-Simons number
NCS:L Tr (G/\W—EW/\W/\W) (2.59)
8712 Jrs 3

is equal to one half [?]. This is physically relevant because when electroweak theory is coupled
to fermions in the Standard Model, processes that change Chern-Simons number have been
shown to violate baryon and lepton number [?,?] via the Adler-Bell-Jackiw anomaly [?,7?].
The sphaleron therefore represents the peak-energy configuration along a minimal-energy
path that violates baryon and lepton number in the Standard Model. The full details and
implications of this are beyond the scope of this thesis, but a pedagogical introduction to

electroweak baryogenesis can be found in Ref. [?].

The energy of the electroweak sphaleron configuration Egpp, for physical values of the
Standard Model parameters, is around 9 TeV [?,7?,?].% This represents the energy required
to surmount the sphaleron barrier classically, for example via thermal excitation—the rate
of sphaleron transitions at finite temperature is suppressed by a factor of exp(—Eqpn/T).
The temperature of the present-day Universe is many orders of magnitude lower than the
scale of the sphaleron energy, suggesting that thermal sphaleron transitions are unobservably
rare. In fact, at low temperatures the sphaleron rate is determined by a four-dimensional
instantonlike configuration,® but is still exponentially suppressed. At present, electroweak
baryogenesis remains one of the concrete predictions of the Standard Model that has not yet
been observed.

The fact the sphaleron energy is comparable to the energy scales of modern particle
accelerators is tantalising, but it is believed that there is an exponential suppression of
sphaleron transitions in elementary particle collisions [?,7,?] (there is some debate on this
matter; see e.g. Refs. [?,?]). This is due to the large number of final state degrees of freedom
compared to a small number of degrees of freedom of the initial state; the same argument was
made regarding solitonic monopole production in Section ?7?. Heavy ion collisions, which have
many degrees of freedom in the initial state, could potentially circumvent this suppression,
but the peak energy density in such collisions is around two orders of magnitude lower than

the sphaleron energy density [?].

8Most calculations of the sphaleron energy were performed before the Higgs boson had been observed, so
did not use the precise values of the Standard Model parameters. The 9 TeV figure has been extrapolated
from the referenced articles; it is useful to note that the effects of nonzero mixing angle give only around a
1% contribution to the energy. The original calculations in Chapter 7?7, which use the true Standard Model

parameters, corroborate this figure.
9There is no true instanton in Electroweak theory in the symmetry-broken phase, but constrained instan-

tons play a similar role. See, for example, Ref. [?] for details.
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Though the arguments above are presented in the limit of vanishing mixing angle, it is
straightforward to generalise to the full electroweak theory, including the U(1) hypercharge
coupling. This breaks the spherical symmetry of the sphaleron, reducing it to an axial one,
requiring a more complicated ansatz and more sophisticated methods to solve the resulting
differential equations. The full numerical calculation has been performed in, for example,
Refs. [7,7].

An important feature that emerges at nonzero Ay is the fact that the sphaleron obtains
a significant magnetic dipole moment [? 7,7 ? ?]. This suggests that the energy of the
sphaleron can be lowered by aligning it with an external magnetic field. This phenomenon

is investigated using lattice field theory in Chapter ?77.

2.4.2 Nontopological sphalerons

Not all sphalerons in field theory are topological in nature. The existence of a noncontractible
loop in field configuration space guarantees!® the existence of a saddle point of the energy
functional, but saddle points can exist independently of such loops. The most physically
important of these are saddle points that lie on a path between distinct extrema of the
energy, rather than loops which connect the vacuum to itself.

These sphaleron solutions are analogous to transition states in chemical reactions; for
a system to transition classically from a high-energy metastable state to a lower-energy
one, it must pass through the sphaleron configuration. As with the electroweak sphaleron,
the physically important saddle points have a single negative mode, and the energy of the
sphaleron configuration can be used to determine the rate of thermal excitation over the
barrier, which is proportional to exp(—FEsn/T). In Section ?? we investigate one such field
configuration, which connects a metastable state—a constant, homogeneous magnetic field—
with a lower energy one—a state containing a monopole-antimonopole pair. The sphaleron
mediates pair production of monopoles from a magnetic field via the thermal Schwinger effect
(for more details see Chapter ?7).

If the initial and final state are both minima, and the field configuration space is suitably
smooth, the sphaleron lying between the two states can be found using a straightforward ad-
aptation of the procedure outlined earlier for noncontractible loops. As the field configuration

space is smooth, any path between two minima must have a maximum-energy configuration

DOwith certain caveats, detailed in Ref. [?]. Notably, the path cannot be simply a gauge transformation—in
Chapter 7?7 we will see that the path outlined in Section ?7? falls into this trap in the background of very

strong magnetic fields.
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® Saddle Point

Figure 2.4: Example of a saddle point lying on a path between two distinct minima.

along it; minimising this maximum energy gives sphaleron configuration. An example of a
saddle point lying on a path between two distinct minima can be seen in Fig. 7?7. However,
as the initial and final states are not the same, one has to be careful to ensure that the higher
energy state is indeed a minimum of the energy. If the initial state is itself a saddle point,
there can be a path to the final state that monotonically decreases in energy, descending
along the negative mode of the initial state. This is precisely what occurs in Chapter 77,
when at sufficiently high field strengths the vacuum becomes unstable and coincides with the

Schwinger sphaleron.

2.5 Instantons

The sphalerons described in Section ?? are time-independent solutions to the equations of

motion. The sphaleron energy determines the classical rate of thermal excitation over an
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energy barrier. Classically surmounting an energy barrier is not, however, the only way that
a system can transition between states: there is also the possibility of quantum tunnelling.
This is the dominant transition phenomenon at low temperatures.

Like the thermal excitation rate, the tunnelling rate can also be computed by extremising
the action. Instead of a static solution, the relevant field configuration is four-dimensional,
and is localised in Euclidean time. For this reason, these solutions are known as instantons.
Here, we discuss the aspects of instantons most relevant to the work presented in later
chapters. A more general and comprehensive introduction can be found in Ref. [?].

To see why instantons are relevant to transitions between (meta)stable states, it is ne-
cessary to begin with the path integral expression for the transition amplitude between two

states [21) and |2s): in Minkowski space
(Qo]U(—00,00)|24) :/\/’/ngei‘g/ﬁ. (2.60)

Here U(ty,t2) is the evolution operator between times t; and to, S is the action of the theory,
and N is a normalisation factor. The integral D¢ is over all field configurations satisfying the
relevant boundary conditions—note that ¢ is a placeholder variable for all fields in the theory,
matter and gauge. We will limit the discussion to computation of the decay probability of

some metastable state, the “false vacuum” [Q2):

P =1-[{QU(-00,00)|)[*

(2.61)
=1—exp[2Imilog(QU(—o0,0)|2)].

This expression may be analytically continued from from real to Euclidean time (¢t — i7) to
give [7,7?]
P =1 —exp[2Imlog(QUg(—00,00)|2)], (2.62)

where Uy is the Euclidean “evolution” operator.

Assuming the transition probability is small, we can expand the exponential to give

P~ —2Imlog (/\/ / Do e-SE/ﬁ) . (2.63)

Sg is the Euclidean action; for the remainder of the chapter we will drop the subscript as we
shall not return to Minkowski space.
We work in a semiclassical approximation: in the limit & — 0, the path integral is

dominated by stationary points of the action—instantons. Denoting these stationary points

1Tn this section we do not use units where i = 1, as taking 1 — 0 tends to cause discomfort.
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by ¢n, expanding in powers of & we find [?]

N / Dpe 5" =" Dye 514 O(n)], (2.64)

where the prefactors D,, can be determined by considering fluctuations about the stationary
points. Note that this expression includes the contribution from the (false) vacuum, with
prefactor Dy.

It is often the case that one stationary point gives the dominant nonvacuum contribu-
tion. While the following arguments can be straightforwardly generalised to multiple sta-
tionary points, for simplicity we consider the contribution from a single stationary point ¢.
Field configurations consisting of multiple ¢ solutions widely separated in spacetime—multi-
instantons—may be approximately considered to be solutions to the equations of motion.
This is known as the dilute instanton gas approximation. Summing over the contributions

from all of these configurations, including the false vacuum, gives
_ 1 _
/\//Dgf) e/ 14+ DeSWh 4 EDQ e 280l (2.65)

where the constant of proportionality is purely real, so does not contribute to the imaginary
part of the logarithm in Eq. (??7). The factorial denominators arise from integrating over the
positions of the instanton centres; this also gives a spacetime volume factor that (for now) is
absorbed into the prefactor. The series is equivalent to a second exponential, which cancels

with the aforementioned logarithm to give
P~ —2Im <D e_S[qg]/h> . (2.66)

The prefactor D may be calculated using a functional determinant. The first variation of
the action vanishes, so the leading order contributions come from the second variation of the
action evaluated at the stationary point, a “functional matrix” we denote S”[¢]. To leading
order in h, the path integral is a product of Gaussians, which can be integrated analytically: if

all the eigenvalues of S”[¢] are positive, the result is a simple generalisation of the stationary

phase approximation for a multivariate function [?]:

[ det5”[g]\

where ¢ is the classical field configuration of the false vacuum.
Note, however, that if the eigenvalues of S”[¢] are all positive, the contribution to the

path integral is entirely real, so the solution does not contribute to the probability of false
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vacuum decay. Instead, the instantons of interest are saddle points with a single negative
mode. General arguments for a wide class of theories suggest that these solutions are the
only relevant solutions to tunnelling processes [?].

The treatment of the negative mode requires some care; the Gaussian integral over the
negative mode diverges and must be evaluated using an analytic continuation. Furthermore,
a general instanton solution will have zero modes corresponding to symmetries of the action

which are broken by the instanton solution. A more careful treatment (e.g. [?,7?]) gives

1
ImD:—?HNd

«

-1 |—1/2

det’ S”[9]

det’ S"[¢o] | 209

where det indicates a determinant ignoring zero modes, and the overall factor of —1/2 arises

due to the analytic continuation when integrating over the negative mode.'?

In a gauge
theory a Faddeev-Popov determinant may also be required. N, are normalisation factors
that arise from integrating over the collective coordinates that arise due to the zero modes;
in the case that the theory has spacetime translational symmetry, this contributes a factor
of V, the spacetime volume over which the integral is taken. If the spacetime is not closed,
this is infinite, so it is more useful to work in terms of probability per unit spacetime volume,
defining the “rate”

r=5 (2.69)

Instantons play a role in a large number of tunnelling processes, including the decay of
the Higgs vacuum [?,?], baryon number violation [?], and, as we will examine in Sections ??
and 7?7, monopole production from magnetic fields [?,?]. In addition, though not explored
here, topologically stable instanton solutions in pure Yang-Mills theory known as BPST
instantons [?] play an important role in the vacuum structure of gauge theories, including

confinement in lower-dimensional models of QCD [?].

12The sign of the prefactor depends on the integration contour, and is chosen such that the overall decay

probability is positive.



Chapter 3

Monopole production from magnetic
fields

3.1 Schwinger pair production

Our aim is to develop a concrete theoretical understanding of monopole production, taking
into account the strong coupling effects that render perturbation theory invalid. In order to
do this, we consider a method of monopole production that is amenable to nonperturbative
calculation—Schwinger pair production.

The Schwinger effect is the quantum mechanical process by which a field is unstable to
decay into charged particle-antiparticle pairs [?,?,?]. The effect is most commonly discussed
in reference to the production of electron-positron pairs from an electric field. This process is
exponentially suppressed at low field strengths, becoming significant when the electric field

approaches the Schwinger limit

m2

ESchWinger ~ ee > (31)

where m, denotes the electron mass. This may be interpreted qualitatively as the field
strength where the energy density approaches the value defined by the electron mass and the
classical electron radius, or, equivalently, when a virtual electron-positron pair from vacuum
fluctuation can draw enough energy from the external field to become real. In physical units,
the Schwinger limit for electrons is approximately 10® V m~!. This is higher than any electric
field strength experimentally accessible at present, meaning that even the electric Schwinger
effect remains unobserved.

A theoretically rigorous treatment [?] can be used to calculate the rate of pair production

I’ (defined in Eq. (?7)) in a constant external field of strength E: for electrons, where the

37
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SN

Figure 3.1: Infinite sum of Feynman diagrams contributing to the Schwinger rate (?7)

charge e < 1, the approximation

AE? SN 1 mmin
r— ~exp [ =M 2
473 2} n2 P ( ek ) (32)

n—=

is valid. The equivalent result for scalar charged particles (assuming the same mass and

charge as the electron) is [7]
2E2 & -1 n—1 2
r="° D" (—”me”) . (3.3)

&3 n? el
n=1

It is important to note that, despite the fact that Eqs. (?7) and (??) require e < 1, they are
still nonperturbative results: the Schwinger effect is not seen at any order in perturbation
theory in e. An equivalent statement is that the Schwinger rate is, in effect, the result of a
sum of an infinite number of Feynman diagrams, and truncating this sum at any point gives
zero. The diagrams contributing to Eq. (?7) are those with a single electron loop and any
number of external photon legs, shown in Fig. ??.

By electromagnetic duality, if magnetic monopoles exist, they should be produced by the
Schwinger effect in a sufficiently strong magnetic field. However, unlike the result for electric
charges, the magnetic Schwinger limit cannot (currently) be expressed in physical units, as
the monopole mass is not known. Instead, we can reverse the direction of inference: the
nonobservation of the magnetic Schwinger effect can be used to infer a bound on the mass

of the lightest magnetic monopole.

3.2 Mass bounds from observed magnetic fields

Schwinger’s results, given in Eqgs. (??) and (?7?), are not directly applicable to monopoles

due to the strong coupling g > 1. It is possible, however, to generalise Schwinger’s result to
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strongly coupled particles—in weak fields the result is [7]

QBQ 2 2

g m g
I'= 2 1 — = A4
s+ e (- T 1), (3.4

where s denotes the spin of the particles (for a derivation of the exponent, see Section ?7).
This is a modification to the n = 1 term in Egs. (??) and (??), obtained by including, in
addition to the diagrams in Fig. 7?7, diagrams containing photon propagators internal to the
loop.
Eq. (??) implies that the Schwinger limit for magnetic fields is parametrically different
to Eq. (??7) the equivalent limit:
47rm?

BSchWinger = 3
g

(3.5)
If a field of strength B is generated and no monopoles are observed, we can derive a lower
bound on monopole masses:
3B

m > 947' (3.6)
It is worth considering typical orders of magnitude for magnetic field strengths and the mono-
pole mass scales they correspond to. A typical fridge magnet has field strength O(1072 T),
so the fact that refrigerators are not sources of monopoles suggests a lower bound mass of
O(10 eV) for monopoles of unit Dirac charge. The strongest continuous magnetic fields
created in a laboratory to date reach around 45 T [?], giving a bound of approximately
2.5 keV.

It is clear that more exotic phenomena are required to reach the GeV range and above.
One possibility is neutron stars: those with the strongest fields—magnetars—can have surface
field strengths of O(10' T) [?]. A detailed consideration of monopole production from
neutron stars was considered in Ref. [?], where the bound m 2 0.31 GeV for g = gp monopoles
was obtained. It is possible that greater field strengths occur in neutron star cores or during
neutron star mergers, but at present even the order of magnitude of such fields is not known.

A source of even greater magnetic field strengths occurs somewhat closer to home—in
high-energy heavy ion collisions in particle accelerators. Simulations [?,?,?] show that TeV
scale heavy ion collisions generate fields of O(10'® T). Eq. (??) suggests that this could
produce monopoles of up to O(100 GeV) for monopoles of unit Dirac charge, with higher
masses for higher charges. Given the doubts cast on monopole production in few particle
events such as proton-proton collisions (see Section ??), it is quite possible that heavy ion

collisions present the best terrestrial possibility of producing monopoles.
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However, the magnetic Schwinger effect in heavy ion collisions is not as simple a picture as
these naive mass bounds suggest. This is because Eq. (??) is only valid in constant, spatially
homogeneous fields. In heavy ion collisions, which have Lorentz factors of O(1000), these
assumptions are far from justified (in Section ??, the spacetime dependence of the fields in
heavy ion collisions is examined in detail).

In order to make predictions about monopole production in heavy ion collisions, it is
necessary to adapt Schwinger’s results to take into account both the strong coupling of the
monopoles and the spacetime dependence of the electromagnetic fields in which the monopoles
are produced. This is the focus of Chapter 7?7, which uses an approximate form of the fields in
heavy ion collisions to compute the exponential dependence of the monopole pair production
probability.

In fact, the calculations in Chapter 77 reveal a third complication: for ultrarelativistic
collisions one must also take the internal structure of the monopoles into account. Combining
the three complications—strong coupling, spacetime dependence of the fields, and monopole
internal structure—has so far not been possible. However, in Chapter 7?7 we present a
successful generalisation of the exponent in Eq. (?77?) to 't Hooft—Polyakov monopoles, laying
the foundations for a full calculation in the future.

In the remainder of this chapter, we outline the theoretical frameworks used to over-

come the complications described above, in preparation for presenting our main results in

Chapters 7?7 and ?77.

3.3 Schwinger production via instantons

We wish to compute the Schwinger production rate for strongly coupled particles in an
inhomogeneous field. One class of computational methods that are well suited to such cal-
culations are the instanton methods described in Section ??. These were first applied to the
production of solitonic monopoles in weak fields in Ref. [?], and to more general strongly
coupled particles in Ref. [?].

Following the general procedure outlined in Section ??, we consider Schwinger produc-
tion as a quantum tunnelling process. In this case, the false vacuum is the state with
the external field present and no particles, which decays into a state containing a charged

particle-antiparticle pair. As shown previously, the probability of such a decay occurring is
P~ —2Im log/DgzﬁDA e~ S0l (3.7)

where S[¢, A] is the Euclidean action of the theory, which we have taken to consist of a
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matter field ¢ and a gauge field A. For now, we will keep the theory general, as instanton
methods can be applied to both elementary and solitonic monopoles.

In the semiclassical limit, the path integral may be approximated by
/ D¢DAe 5 ~ Y " D,e oAl (3.8)

where {¢,, A,} are the set of statinary points of S. As detailed in Section ??, the relevant
stationary points for tunnelling—those contributing and imaginary part—are saddle points
with a single negative mode. If one saddle point (¢, A) dominates the contribution to the

action, in the dilute instanton gas approximation the pair production probability becomes

P =~ 2Im D exp(—S[¢, A]). (3.9)

The prefactor D can be obtained by considering fluctuations about the instanton solutions

as described in Section ??7—mnote that in this Chapter we have absorbed a factor of —1 into
D for notational convenience. The calculation of the exponential dependence of the pair
production rate therefore reduces to the classical problem of extremising the action, subject

to the boundary conditions

¢(T — OO) = ¢07

(3.10)
A(r — 00) = Aexts

where ¢q is the vacuum value of the matter field and Ay is the desired external field.
Appropriate boundary conditions at the Euclidean spacetime origin must also be applied to
ensure continuity and finite action, as well as fixing of any negative modes due to spacetime

symmetries. The following sections outline techniques for finding such solutions.

3.4 The worldline instanton method

In general, the Euler-Lagrange equations arising from varying the Euclidean action are analyt-
ically intractable. However, if certain additional conditions are met, the worldline formalism

4

of QFT [?] allows instanton solutions to be computed. These “worldline instantons” were
first introduced in Ref. [?], and have been adapted to account for inhomogeneous fields [?, 7]
and to analyse the momentum distribution of the produced particles [?].

In this section, we assume that magnetic monopoles may be modelled as elementary
particles. As we will rarely deal with electric charges, it is simplest to work in the dual form-

alism of electromagnetism, defining the dual electromagnetic field tensor F* = %5’“""’}7 o>
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0123

where #P? is the Levi-Civita symbol with ¢ = 1; in Minkowski spacetime

F,, = : (3.11)

The dual gauge field, A,, satisfies F| w = OMAV — &,flu, and is simply a rearrangement of the
usual two degrees of freedom of the photon field—it contains no extra degrees of freedom.
We minimally couple the complex scalar monopole field ¢ to the dual gauge field, giving the
Euclidean Lagrangian?

1
‘C:ZFM

B+ (D) (D,6) + mP06 -+ 2 (670)". (312)
A series of purely formal manipulations [?,?] can be carried out to transform the partition
function from a path integral over fields to one over closed worldlines, parametrised by zf,
where a indexes the worldlines. In brief, the dual gauge field is split into a dynamical part
and a background part, with the former being integrated out to leave only the external field
flfj‘t. A series of integral “tricks” are then applied, adding the worldline parameters and
integrating out the matter field. For full details of this calculation, readers are invited to

consult the referenced articles (an introductory review for weakly coupled particles can also
be found Ref. [?]). The overall result is

log / D¢DA exp(—5S[o, A]) =

> 1 - e d @ a A e a
1+ Z m H (/0 Si /szc e—S[x JSaiAext] 692 26<a§fdmudx€(§uy(a¢ ,3;6))] ‘
n=1 a=1 o

Each term in the sum corresponds to the contribution from n closed worldlines in 4D Euc-

(3.13)
log

lidean space. The s; are often referred to as Schwinger parameters and G, is the free photon
propagator; the exponential containing G, is the contribution from worldline interactions
(self-interactions are absorbed into the effective action; see below) that cannot be ignored
when ¢ is nonperturbative.? Eq. (7?7) is an exact expression; as of yet, no approximations

have been made.

In this expression the kinetic term for the gauge field is given in terms of the standard (nondualised)
gauge field, i.e. there are no tildes on the field tensors. It may be equivalently stated in terms of the dual

field, but as the dynamical photon is to be integrated out the distinction is irrelevant.
2If g < 1, the worldline interaction terms may be dropped, and the integrals may be performed exactly,

giving the magnetic dual of Schwinger’s result (77?).
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Parametrising the worldline by u, the Euclidean worldline action is given by

~ m2s 1 (!

1
Slx, s; Aext]) = - 5 dut,t, — ig/ ASt i, du
0 0

o [ [ Easee e

where in the last term we have inserted an explicit expression for GG, in a generic R¢ gauge

(3.14)

and noted that the gauge-dependent terms vanish for closed worldlines.

The last term in Eq. (?77) is a double integral over the worldline, weighted with the photon
propagator. It accounts for the self-interactions between different points on the worldline.
For coincident points there is a UV divergence [?,7,7, 7], proportional to the length of the
worldline. This can be identified with the usual UV-divergent contribution to the charged
particle self-energy, which is removed by adding a mass counterterm.® For worldlines without
self intersections or kinks, this is the only divergence of this term. Various regularisation
schemes exist, and, just as in the field representation, the powerlike divergence is absent in
dimensionless regularisation schemes.

For spin 1/2 monopoles, Egs. (?7) and (??) are modified by the addition of spin-dependent
terms in the action [?,7?,?]. However, in the presence of weak external fields these terms are
subdominant in powers of the weak field relative to the spin 0 part. For weak, constant,
external fields, they contribute to the semiclassical prefactor, simply resulting in an overall
factor of the number of degrees of freedom of the final state [?,?]. For spacetime-dependent
fields, the spin-dependent corrections could be more complicated than this and are worth
understanding, but they are nevertheless subdominant, so for all worldline calculations con-
sidered in this thesis the results are applicable to monopoles of any spin.

As previously discussed, for sufficiently slow rates of pair production this path integral
may be approximated semiclassically by searching for instanton solutions. In addition, we
make the dilute instanton gas approximation: as the terms in Eq. (??) with n > 1 are
exponentially suppressed, for sufficiently weak external fields the pair production rate can be
obtained by considering only the n = 1 term. This is a single, closed, connected worldline.
This is equivalent to taking the leading term in a virial expansion [?].

Within the dilute instanton gas approximation, the sum over widely separated instan-
ton configurations gives an second exponential that cancels the logarithm in Eq. (?77?) (see

Section ?7). The pair production probability then becomes

P ~ Dexp(—S[z'™", 5™ A]), (3.15)

I

3Details of the mass renormalisation can be found in Ref. [?].
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inst inst

where ™" and ™" are a saddle point solution of the worldline action (?7), and D is a
prefactor that can be calculated following the procedure outlined in Section ??7. This solution
is known as a worldline instanton.

The arguments presented in this section have been made considering only elementary
monopoles. If the worldline instanton is large compared to the length scales associated with
the monopole, however, the worldline instanton method is equally applicable to solitonic
monopoles. This is because if all relevant length scales are large compared to the monopole
core size, only the long-ranged Abelian interactions need to be taken into account—solitonic

monopoles may be described by an effective theory identical to that of elementary mono-

poles [7,7,7,7].

3.4.1 Example: monopole production from a constant external
field

An instructive example of the worldline instanton method is the computation of the Schwinger
production rate for monopoles in a constant magnetic field, first presented in Ref. [?]. We
will denote the strength of the external field by B and choose the x5 direction as the direction

in which the field points, working in the gauge
A = i B3d,. (3.16)

The factor of ¢ in the gauge field accounts for the derivative with respect to imaginary time
in the definition of the (dual) field tensor, and is generally accepted to produce the correct

analytic continuation [?]. The worldline action (??) reduces to

m?s 1 /[t ! ¢ [ ! i, (u)d,, (u')
- 1 duz,z,, — gB d : - d du' —F£ K 3.17
5 > 25 , et /0 UEsTat g /0 u/() ! |z(u) — z(u')]? (3.17)

The first step is to stationarise with respect to the Schwinger parameter s: this gives the

1 1
= — duz,x,. 3.18
§ m“/o ULy, (3.18)

Inserting this into the action gives

1 1 2 1 1 . . ’

.. . g ' xu(“)@t(“)
S=my| d B d - d d . 3.19
m i UL,y + g /0 UT3Ty + 87r2/0 u/o U ) — o) ( )

To proceed, Affleck, Alvarez and Manton [?] note that the action is symmetric under rotations

condition

in the x3-x4 plane. This implies two things: firstly, if a stationary point of the action exists,



CHAPTER 3. MONOPOLE PRODUCTION FROM MAGNETIC FIELDS 45

there must be one which also obeys this symmetry (a circular worldline). Secondly, as the
self-interaction term is scale invariant and does not break the symmetry, the solution may

be obtained by considering the nonself-interacting case

[ 1 1
S=m dut,x, + gB/ du x5y (3.20)
0 0

and computing the interaction terms separately. This is valid because all higher-order cor-
rections to the solution arising from the interaction term vanish.

The circular worldline ansatz may be parametrised
z,(u) = (0,0, Rcos(2mu), Rsin(2mu)). (3.21)

The only free parameter is the worldline radius R: the problem reduces to a one-dimensional

optimisation. Substituting the circular worldline into the nonself-interacting action (?7?) gives
S =2mmR + mgBR*. (3.22)

It is straightforward to show that the stationary value of the nonself-interacting action occurs

when R = m/gB, and is given by

7Tm2

Sinst = ——. 3.23
= (323)

This is exactly the leading order contribution to the magnetic dual of Schwinger’s result (?7).
Additional terms in Eq. (??7) may be generated by considering multi-instantons, and the
prefactor can be obtained by considering fluctuations about the instanton solution [?].

The remaining step in the calculation is to compute the contribution due to worldline

5 = W/ du/ ' (( >)|2 (3.24)

Substituting the worldline instanton solution ( 7?) gives (substituting § = 27u for brevity

2 2m 2w /
g , cos(f0 —0")
= de de . 2
1= {0 /0 /0 1—cos(d — ) (3:25)

As previously mentioned, this integral diverges due to contributions from points where 8 = ¢’;

self-interactions:

and simplifying)

this divergence may be removed by adding a mass counterterm. One way of evaluating the
integral? is by using the substitution u = tan[(f — #’)/2]. Subtracting the aforementioned

divergence yields

Sp=—= (3.26)

41f a proof by Mathematica is not sufficient.
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the action of the worldline instanton including worldline self-interactions is

™m? g2
1

Sins =
t gB

(3.27)

It is important to note that even though the self-interactions have been treated in a similar
manner to a perturbative expansion, this result is in fact accurate to all orders in g.

This gives the worldline approximation to the pair production rate for Schwinger produc-
tion of monopoles in a constant magnetic field (c.f. Eq. (?7)):

m?  ¢?
I'=D — = . 2
exp ( e + 1 ) (3.28)

The effect of the strong coupling is to significantly enhance the pair production rate; for a

monopole carrying one unit of Dirac charge the enhancement is
g2
exp (ZD) ~e!® ~ 10Y (3.29)

compared to Eq. (?77). Of course, as monopoles are expected to be far more massive than elec-
trons, there is a competing suppression from the first term in the exponent; as the estimates

of Section 7?7 show, monopole production still requires a very strong magnetic field.

3.5 Instantons for solitonic monopoles

As will be seen in Chapter 77, there are physically important circumstances in which the
assumptions underlying the worldline approximation cease to be valid. In such situations, the
size of the monopole becomes comparable to the length scales of the instanton, meaning that
the internal structure of the monopole must be taken into account. For 't Hooft—Polyakov
monopoles this can be achieved by computing instanton solutions in the full field theory
describing the monopole of interest; this is achieved in Chapter 77.

Though a worldline description of non-Abelian QFTs is possible, this description is not
readily applicable to the production of 't Hooft—Polyakov monopoles. This is because the
worldlines describe elementary particle excitations, rather than solitonic ones—it is not prac-
tical to describe a monopole in terms of worldlines of scalar and gauge bosons. Instead,
it is necessary to compute the full field-theoretic instanton satisfying the boundary condi-
tions (77).

In Ref. [?], the instanton in a weak, homogeneous external magnetic field was calculated

in Georgi-Glashow SU(2) theory. This calculation was carried out in the regime where the
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monopoles are small compared to the instanton, so the result is identical to the worldline
result (?7). The key result of Chapter ?? is the generalisation of this calculation to arbitrary
field strengths.

The instanton equations for a non-Abelian gauge theory are not, in general, analytically
tractable, so we instead choose to extremise the action numerically. The next chapter will

detail the discretisation and numerical methods used to achieve this task.



Chapter 4

Numerical methods for optimisation

in field theory

4.1 Basics of lattice field theory

A large part of the work presented in this thesis involves finding numerical solutions to the
equations of motion of non-Abelian gauge theories. In order to make this problem compu-
tationally tractable, it is necessary to employ a discretisation scheme, restricting the infinite
degrees of freedom in a field theory to a finite number. There are many possible discretisa-
tions, but the most appealing for gauge theories is lattice field theory, which maintains gauge
invariance after discretisation, thereby avoiding unphysical artefacts. This section briefly
reviews the key aspects of lattice field theory relevant to the calculations in Chapters 77 and
??. It is by no means a complete introduction—most obviously the lattice field theory of
fermions is totally omitted, as well as aspects of quantum lattice field theory such as Monte
Carlo methods. More comprehensive introductions can be found in Refs. [?,7,7].
Throughout this chapter, and in future parts of this thesis involving lattice field theory,
Einstein summation convention will not be used—repeated indices are only summed over if

explicitly indicated.

4.1.1 Scalar fields

Lattice field theories are defined on a discretised Euclidean spacetime, normally a (hyper)cu-

1

bic array of points with constant spacing a in each direction:* positions are indexed by a

Tn future chapters it will be common to use units where a = 1, but in this section factors of a are kept

explicit for clarity.

48
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vector © = Y . anyfi, where n,, are integers and /i denotes a unit vector in the p direction.
A discretised scalar field ®(z) is therefore a finite number of variables, one for each lattice

point. Derivatives of scalar fields are replaced by finite differences:

9,0 (x) — é ®(z + aji) — B(z)]. (4.1)

The nonlocal nature of derivatives on the lattice requires boundary conditions to be imposed

at the edges of the lattice. A common and simple choice are periodic boundary conditions:
D + aNyit) = Bz + L), (4.2)

where N, denotes the maximum value of n,; L, = aN, is the extent of the lattice in the p
direction. As we will see in later chapters, more complicated boundary conditions must be
imposed to investigate some physical phenomena.

An integral over spacetime in the continuum theory is replaced by a sum over all lattice

[t aty. (4.3)

The action of a scalar field with canonical kinetic term and a potential V(®) on the lattice

points:

is therefore

S:adZ{QLCLZZ[(I)(m—I—a,&) —(I)(a:)]2~|—V(<I>)}. (4.4)

m

This clearly reduces to the continuum result in the limit a — 0. Note that the signature of
the potential term is positive, as the lattice field theories we are interested in are defined in

Euclidean spacetime.

4.1.2 Gauge fields

Now we consider a gauge field A,(x) taking values in the Lie algebra of some gauge group G.
Naively discretising gauge fields in the same manner as scalar fields does not preserve gauge

invariance on the lattice. Instead, we introduce the link variable
U, (z) = eerdu(®) (4.5)

where e is the coupling associated with the gauge group. The link variable is Lie group
valued, and is defined on the link between a lattice point x and its neighbour x + aji. Under

a local gauge transformation Q(z) € G, the link variable transforms as

Uu(x) = Qz)U,(2)Q (x + afp). (4.6)
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Link variables act as parallel transporters, allowing scalar fields at different points to be
combined in a gauge invariant manner. Consider a scalar field ¢(z) transforming under the

fundamental representation of the gauge group:

¢(x) = Ux)o(z). (4.7)

The forward difference operator (?7) is not gauge invariant, but using the link variable we

can form a gauge covariant derivative operation on the lattice:
1 .
Dyd(z) = — [Uu()d(x + ajt) — ¢(z)]. (4.8)

By expanding in small powers of a, it can be verified that in the continuum limit this reduces

to (0, +iead,)¢. The covariant derivative of an adjoint scalar ®(x), transforming as

(z) = Qa)®(2)Q(2), (4.9)
D, (x) = é U, (@) (z + ap)Ul(x) — ()] (4.10)

It is also possible to construct gauge invariant objects from link variables alone. These are
Wilson loops, the product of link variables along a closed path. The simplest Wilson loop is

the plaquette variable, defined over an elementary square on the lattice:
Uw(z) = Up(2)Uy (2 + af) U} (z + ad) U (). (4.11)

The plaquette can be used to define the Wilson action for an SU(N) gauge theory [?]:

S = G—QQZZ[N_TrUW(x)]. (4.12)

This can be verified to retrieve the Yang-Mills action in the continuum limit by expanding

in powers of a and utilising the Baker-Campbell-Hausdorff formula.

4.2 Gradient descent on the lattice

The motivation for our use of lattice field theory is to find instanton solutions in non-Abelian
gauge theories. These are approximated by saddle points of the lattice action corresponding to
the theory of interest. This saddle point finding is a nonlinear optimisation task: the action,
which is a functional in the continuum, becomes a multivariate function when discretised.

The optimisation variables are the scalar field and link variables, which, on a cubic lattice of
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size N, number O(N?). Typical lattice sizes used in this work are N = 64 or N = 128, with
d = 3, so the optimisation is a computationally expensive task. The optimisation routines
used in this thesis are all based on gradient descent; this section reviews the standard gradient
descent algorithm (also known as gradient flow) applied to lattice field theory.

Consider an objective function f mapping a set of variables x to R. Given a starting
point xq, provided that the function is well defined and differentiable at xg, the direction of
steepest descent is given by the negative gradient —V f(xo):

of
0z,

(Vi)a= (4.13)

where « indexes the dimensions of the function domain. To locate a minimum of f, one can

therefore perform the iterative procedure of gradient descent:

X1 = Xp — YV f(Xn), (4.14)

where 7 is a real number, known as the step size or (in machine learning contexts) learning
rate. If v is sufficiently small, f(x,1) is guaranteed to be smaller than f(x,), so if f(x)
is bounded from below, the gradient descent will eventually converge on a minimum of the
function. An alternative notation with identical meaning is to define a parameter 7 known

as flow time, denoting the step size 7:
xX(T+07) =x(7) — Vf(x)I7. (4.15)

This evokes the metaphor of gradient flow as the progression of a physical system, with a
diffusive evolution instead of the second-order evolution that would arise from dynamical
equations of motion.

Gradient descent is advantageous because it only requires first-order gradient information,
and is exceedingly simple to implement. However, in many cases it suffers from slow conver-
gence and has a tendency to stick in unwanted local minima or saddle points.? In order to
improve this, one can employ methods such as momentum [?], which includes previous values
of the gradient in the update step, or step sizes that adapt for different parameters [?,7,7].
A practical overview of common gradient descent algorithms can be found in Ref. [?] and the

references therein.

2For some purposes, as will be shown in later sections, getting stuck in saddle points is highly desirable.
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4.2.1 Example: minimising the energy of Georgi-Glashow SU(2)
theory

A example of optimisation in field theory is finding the vacuum of Georgi-Glashow SU(2)

theory on the lattice. This is the field configuration that minimises the energy function

E(®,U;) =) {% > 12— TrUy(@)]

T 1<J

12 Z [Tr O(2)? — Tr &(2)U; (2)D (7 + i)UJ(f)] (4.16)

A (Tr d(7)? — %) }

where 7,7 = 1,2,3 indexes the three spatial dimensions, and we have chosen units where
a = 1 for simplicity. Note that as the vacuum is a static solution, a gauge can always be
chosen such that the timelike component of the gauge field vanishes; we have made this choice
in order to reduce the number of optimisation variables.

Taking the gradient of the energy gives the (time-independent) equations of motion for
the theory:

aglé’) - 22} 20(7) - U@)®(F +)U](7) - U}(@ - (7 - )U(T — )]
+ 4 [Tr(@(Z)* — v*)0(T)], 417
835@ - 62_2 > [S5@) + 55(@)] — 4@ U(D) (T + 1),

J#

where the “staple” variables are defined

SH(E) = U;(Z)Uy(Z + ))UNT + 1), (4.18)
S5 (%) = Ul(# = ))Ui(Z — )U(& — j+1). (4.19)

ij

These are matrix expressions: the notation 0F/0X implies

aE) OF
=) = (4.20)
(aX s 0Xap

where a, 5 = 1,2 index the matrix components.

It is important to note that the (matrix) componentwise gradients of the gauge fields
do not lie in the tangent space to SU(2). The gradient descent iteration (?7) is therefore a

nonunitary evolution, and using the bare gradient (??) will cause the link variables to move
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away from the SU(2) manifold. This may be avoided by projecting the gradients to the SU(2)
tangent space before performing the gradient descent iteration: the projection of a matrix
M € C?*2 to the tangent space to SU(2) at a point U € SU(2) is

1
Py(M) =M — 3 Tr(MU)U. (4.21)
The gradient flow iteration to minimise the energy (?7) is
E
O(Z, 7+ 071) =D(ZF, 1) — ﬁéﬂ
op (4.22)
Ui(f,T + 57’) == Ul(f, T) — PUZ.(;EJ—) (m) oT.

In a numerical application, additional corrections must be applied to avoid the scalar and link
variables deviating from their respective ranges due to floating point errors and the effects

of finite step size.

4.3 Saddle point solutions in field theory

In Sections 7?7 and ??7 we discussed the importance of sphaleron and instanton solutions
to field equations: these are saddle points of the action or energy, as opposed to vacuum
states, which are minima. To study such solutions on the lattice, one requires a numerical
optimisation scheme that is capable of converging on saddle points as well as (or instead of)
minima of the objective function. Standard gradient descent methods are unsuitable for this,
as when converging correctly the overall effect is to decrease the objective function until a
minimum is found. Indeed, many modern gradient flow algorithms are specifically designed
to move through saddle points as quickly as possible [?].

One option for numerical saddle point finding is to use optimisation methods that involve
calculating or approximate second-order gradient information. Examples of such algorithms
include Newton’s method or quasi-Newton methods [?]. Newton’s method is used in Chapter
?? to compute worldline instantons numerically (see Appendix ?7?), with O(1000) variables.
However, for large lattice sizes these methods can be cumbersome and computationally ex-
pensive, and there are limited existing tools suitable for second-order optimisation methods
of matrix valued fields. In this section we present two methods for saddle point optimisation
that require only minor modifications to standard first-order gradient descent. While con-
ceptually and computationally simple, we have used these methods effectively to compute
sphaleron and instanton configurations in Georgi-Glashow SU(2) theory and electroweak

theory [?,7,?7]—in Sections ?? and ?? we present the results of these calculations in detail.
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4.3.1 Chigusa-Moroi-Shoji gradient descent

The first saddle point finding method used in this thesis is derived from an algorithm first
proposed by Chigusa, Moroi and Shoji (CMS) to numerically compute bounce configurations
in cosmology [?]. The CMS gradient descent iteration is a modification of the standard

gradient descent step (??): for an objective function f(x)

Xn+1l = Xp — 7 {Vf(X) —k [Z(Vf)aGa

(67

G} , (4.23)

where k£ > 1 is a real parameter, G is a fixed vector in the same vector space as Vf,
normalised such that > |G,|? = 1.

It can clearly be seen that if Vf(x) = 0, x will be a fixed point of the CMS gradient
flow (?77?). Following Ref. [?] we can prove the converse: that a fixed point of the CMS flow
is a stationary point of f. A fixed point of the CMS flow satisfies

Vi) —k [Z(v f)aGa] G =0. (4.24)

«

Contracting this with G (recalling that G is normalised) gives

(1=k)> (Vf)aGa =0. (4.25)

«

For k # 1, if V f # 0 this implies that V f and G are perpendicular. However, this means that
Eq. (?7?) cannot be satisfied for V f # 0; the two conditions are inconsistent and therefore a
fixed point of Eq. (?7?) that is not a stationary point of f is a contradiction.

Now that we have confirmed that the CMS gradient flow indeed converges on a stationary
point of f, the next step is to identify the correct choice of G to converge on the desired

saddle point. Suppose we are in the vicinity of a saddle point X; the Hessian at X is

o0 f
H.p5 = . 4.26
g 0r,018 |, _, (4.26)
Denote the normalised eigenvectors of H by v(®| with corresponding eigenvalues \(®):
Hopv§) = Ay, (4.27)

For a saddle point with a single negative mode,® the lowest lying eigenvalue A(=1 is negative,
with the rest (A(M, A2 ) positive.

3All relevant saddle points in this thesis will take this form
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Suppose that the starting point of the flow, xq, is in the vicinity of the saddle point:

decomposing into the eigenbasis of the Hessian we can write

Xg =X+ Y v, (4.28)

where the coefficients ¢ are small. To leading order, the gradient at xq is

VfaH(xg—%) =Y c@DAv®), (4.29)

a

The effect of standard gradient flow (??) on the coefficients c¢(® is
cffll ~ cl — yc @)@, (4.30)

the coefficient of the negative mode eigenvector increases whilst the coefficients of the positive-
mode eigenvectors decrease. This is the reason that standard gradient flow fails to converge

on the saddle point. Now consider the CMS flow, decomposing the vector G as
G=> g“v, (4.31)

with >, g9 = 1. The coefficients now evolve by
cﬁfﬁl ~ @ — [c%“)k(“) —k (Z )\(b)c(b)g(b)> g(“)] : (4.32)
b

One clear choice that results in ¢\ decreasing for all a is
G = v (4.33)

we choose G to be a unit vector pointing in the direction of the negative mode. Then for all
k > 1, the CMS flow descends along the positive mode and climbs along the negative mode,
ultimately converging on the saddle point.

Of course, without already having knowledge of the saddle point of interest, it is highly
unlikely that one has knowledge of the negative mode in any nontrivial case. Thankfully, the
CMS flow will still converge to the saddle point provided that G is sufficiently close to the

negative mode. Explicitly, the condition is that the matrix
(1 —kGGT)diag A", XD AB ) (4.34)

has eigenvalues with positive definite real parts [?].
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In the case of finding sphaleron solutions in lattice field theory, we have identified a
heuristic prescription for choosing G that requires minimal knowledge of the function be-
ing optimised. The prescription exploits the fact that standard gradient flow moves slowly
through saddle points—a feature that makes standard gradient descent unsuitable for many
optimisation tasks. If the initial conditions are chosen suitably close to the saddle point of
interest, Eq. (??) shows that over time V f will become more aligned with the negative mode.
At the point of closest approach where |V f| = /> (0,f)? is smallest, we find that V£ is
close enough to the negative mode to be used to define a vector G that allows the CMS

algorithm to converge on the saddle point. The algorithm used in this thesis is as follows:

1. Choose an initial point x, that is as close as possible to the saddle point. This can
be achieved by using an analytic approximation, or a previously found saddle point

solution with incrementally different parameter values.

2. Perform standard gradient descent (?7) iterations until the norm of the gradients |V f]

reaches its minimum value, V fiin.

3. Perform CMS gradient descent iterations (?7?) using G = V fuin/|V fimin| until conver-

gence on the saddle point is achieved to the required tolerance.

The hyperparameters v and & in Eqgs. (?7) and (?7?) are generally chosen via trial and error.

The main advantage of CMS gradient descent is that it is computationally inexpensive.
Implementing the CMS gradient descent iteration requires only marginally more computa-
tional cost than a standard gradient descent step; the cost is comparable to, for example,
gradient descent with a momentum term. The disadvantage is the fact that the convergence
is nonmonotonic—the objective function and gradient often oscillate while converging, which
can make it difficult to determine whether the algorithm is converging or diverging. Further-
more, the convergence of the algorithm is often rather sensitive to the choice of k£ and the
initial conditions, meaning that ensuring convergence can be fiddly. Nonetheless, if a solution
is found, it is guaranteed to be a true stationary point of the action, and the fact that it is
a saddle point rather than a minimum can be easily verified by showing that the solution is

unstable under standard gradient descent.

4.3.2 Gradient squared descent

The second saddle point optimisation method that is used in this thesis is gradient squared

descent (GSD).* Rather than optimising the objective function f directly, GSD minimises

4Not to be confused with stochastic gradient descent, often abbreviated to SGD.
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the sum of squares of the gradients of f: the objective function is

gQ(X) _ Z af

~ 0,

2

(4.35)

G? is a positive semidefinite function, with global minima G2 = 0 at all stationary points
of f regardless of their signature. If suitable initial conditions are chosen, minimising G2
using a standard gradient descent algorithm will yield the desired saddle point of f. The
idea of optimising a squared gradient function on the lattice is well known (see, for example,
Refs. [?7,7,7?]), but in the past has been severely limited by computational demands. By
taking advantage of modern technologies developed for optimisation in contexts such as
machine learning, we have overcome these difficulties and computed saddle point solutions
on large lattices to a high degree of accuracy.

To illustrate the practical difficulties in GSD, we consider the example of lattice energy
function of Georgi-Glashow SU(2) theory, E(®, U;), defined in Eq. (??). The squared gradient
of this function is

GO, U;) =) {Tr (agé))Q + ;Tr {z'PUj(f) <%ﬂ 2} . (4.36)

N
xT

From the form of the gradients (?7?) it is clear that this is a long and cumbersome expression;
its derivatives even more so. Manually differentiating the squared gradients and implementing
the gradient descent is expensive both in terms of human time spent coding and debugging,
and computation time on large lattices.

To overcome these difficulties, one can compute derivatives algorithmically using auto-
matic differentiation. This involves decomposing an arbitrarily complicated function into
elementary operations and computing the overall derivative using the chain rule. However, it
differs from symbolic differentiation in that rather than storing the symbolic expressions for
the elementary function derivatives, only the numeric values are stored. Using memoisation,
this enables redundant repeated calculations to be omitted, greatly improving the computa-
tional efficiency: the computational cost of evaluating the automatic derivative of a function
is linearly related to the cost of evaluating the function itself [?], with a constant of propor-
tionality of less than 10 [?]. Automatic differentiation also retains far greater accuracy than
numerical differentiation using, for example, finite differences, as there are no errors resulting
from discretisation.

A review of the use and implementation of automatic differentiation can be found in

Ref. [?]. As automatic differentiation is not (yet) a common tool in computational physics,
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it is illustrative to provide a very simple example, adapted from Ref. [?], of how automatic

differentiation improves upon symbolic differentiation. Consider a function of one variable

f(z) = u(z)v(z), (4.37)

that is differentiable at the point xy. Using elementary calculus,
['(z0) = v/ (zo)v(zg) + ulwo)v'(x0). (4.38)

If we have evaluated f(z), we must have evaluated u(zg) and v(z) already. This means that
computing Eq. (?7) requires us to evaluate u(zg) and v(zg) again, which, if the functions are
expensive, is undesirable.’ In automatic differentiation, u(xg) and v(zg) can be stored upon
their first computation, removing this redundancy. While this example is almost trivial, in
functions that are complicated or heavily nested, using symbolic calculus can result in expo-
nentially large expressions; automatic differentiation reduces the computational complexity
to linear in the time taken to evaluate the original function [?].

Another problem that can arise from GSD is that the squared gradient function may
have spurious local minima with G2 > 0; these do not correspond to stationary points of
the original objective function but can trap a gradient descent algorithm. One method of
mitigating this issue is to add a biasing term to G* to destabilise these local minima [?].
However, we find that for our purposes it is sufficient to choose a good initial condition,
and make use of more sophisticated gradient descent algorithms such as momentum [?7].
From personal experience, gradient descent algorithms that are common in machine learning
contexts such as RMSprop [?] and Adam [?] seem to perform less well than gradient descent
with momentum when optimising observables in lattice field theory. This may be due to
the sparsity of the objective function, or the fact that a closer convergence to the absolute
minimum is sought than in many machine learning applications.

Both automatic differentiation and advanced gradient descent algorithms are common
features of software packages designed for use in machine learning. These packages can be
adapted to perform optimisation tasks in field theory—this thesis is accompanied by the

tfmonopoles Python package [?], which makes use of tools from the TensorFlow library [?].

SThere may be situations in which only f’(x¢) is required, without needing evaluation of f(xzg). However,
note that, for example, u(xg) and u/(zg) are both required to evaluate f’(xzq); with sufficiently complicated

functions, redundancy will always occur.



Chapter 5

Monopole production in heavy ion

collisions

5.1 Electromagnetic fields in heavy ion collisions

In a heavy ion collision, nuclei with a large number of constituent nucleons—commonly gold,
lead, or uranium—are accelerated to relativistic speeds and fired at each other. This generates
extreme conditions, including temperatures of O(10'? K) [?] and the strongest electromag-
netic fields in the known Universe [?]. The latter property makes heavy ion collisions one
of the most promising terrestrial sources of magnetic monopoles. This chapter presents the
advances we have made towards a theoretical understanding of monopole production in the
fields of heavy ion collisions.

Before applying the methods discussed in Chapter ?? to heavy ion collisions, it is necessary
to determine the form of the electromagnetic fields that are present. In this section, we
review the mechanism by which the fields are generated and present an approximate analytic
expression, which we use to calculate the Schwinger production rate in Section 77, and the
monopole momentum distribution in Section ?77.

Throughout this chapter, we will use the geometry defined in Fig. ??7: the beam axis,
along which the ions move, will be aligned with the z axis of our coordinate system, with
the impact parameter b pointing in the x direction.! The spatial origin will be the centre of

mass of the system, and the temporal origin will be the time of collision, when the distance

1'We have also chosen the convention that the words “transverse” and “longitudinal” are taken with respect
to a given magnetic field, not with respect to the ion beam. This resolves an unfortunate inconsistency

between Refs. [?] and [?] that should be kept in mind when reading these papers.

29
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Figure 5.1: Heavy ion collision geometry defining the coordinate system used in this work.
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Symbol Parameter Approximate value
R Ion radius 35 GeV~!
Z Proton number 82
b Impact parameter 0-70 GeV ™!
Vsnn - Centre of mass energy per nucleon 5020 GeV
~ Collision Lorentz factor 2675

Table 5.1: Table of common heavy ion parameters in natural units. All values are for Pb-Pb
collisions at 5.02 TeV.

between the ion centres is minimal. Due to the effects of Lorentz contraction, when viewed
in the centre of mass frame the ions are highly flattened along the beam direction: if the
rest-frame radius of an ion is R, its extent along the z direction is R/, where 7y is the Lorentz
factor of the collision.

Modern heavy ion collisions reach ultrarelativistic centre of mass energies /sxn, with
RHIC reaching approximately 200 GeV per nucleon [?] and LHC energies at 5.02 TeV per

nucleon [?]. The Lorentz factor of these collisions is given by

SNN
2my,

v A , (5.1)

where m;, is the mass of a proton: this gives a value of v ~ 213 for RHIC and v =~ 2675
for LHC.? Unless otherwise stated, numerical values in this and the following sections will
be computed at energies of 5.02 TeV, and often we will make use of the assumption v > 1.
Table 7?7 summarises the heavy ion parameters used in this chapter, and their typical values
in lead-lead collisions at 5.02 TeV.

The electromagnetic fields in ultrarelativistic heavy ion collisions have been studied by
many authors and are reviewed in Ref. [?]. In the rest frame of an ion, the electromagnetic
field is the purely electric Coulomb field. When boosted to a moving frame, the electric field
of the ion is Lorentz contracted, and the ion gains a magnetic field perpendicular to both
the electric field and the direction of motion. For v > 1, this magnetic field is of the same
magnitude as the electric field.?

Ref. [?] presents the results of a detailed numerical study of the electromagnetic fields in

2Because the proton mass is approximately 1 GeV, a “back of the envelope” estimate of v can be obtained

by halving the centre of mass energy in GeV.
3Note that a single ion cannot induce pair production due to the vanishing of the electromagnetic invariant

vB? — E2.
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heavy ion collisions at different impact parameters and energies, including their spacetime
dependence and event-by-event fluctuations. The peak event-averaged magnetic fields occur
at b ~ 2R, when the colliding ions barely touch (or even miss) each other. When considering
monopole production via the Schwinger effec, these peripheral collisions are therefore of most
interest.

Whilst the results of Ref. [?] provide a sophisticated and detailed computation of the
electromagnetic fields, for our purposes of calculating the Schwinger production rate of mono-
poles, it is useful to have an approximate analytical form for the electromagnetic fields in a
heavy ion collision. In Ref. [?], an independent simulation was carried out with this goal in

mind. The following assumptions were used:

1. All nucleons were treated as spectator nucleons, i.e. no momentum exchange between
particles. As only peripheral collisions are relevant, the spectator nucleons are expected

to dominate up to O(Z~1) corrections to the values of the field components [?].

2. The conductivity of the ions was neglected, as this does not affect the fields at early

times when the magnetic fields are strongest.

3. Quantum corrections to the fields were neglected, as these are expected to be small [?].

The ions (in their rest frame) were modelled in a mean field approximation as classical

Woods-Saxon electric charge distributions

A

psw(r, R, a) = m, (52)

where r is the distance from the centre of the nucleus, R and a are experimentally determined
parameters, and A is a normalisation constant. Numerical evaluations took values of R =
6.62 = 0.06 fm and a = 0.546 £ 0.010 fm for lead ions, based on data from low-energy
electron-nucleus scattering experiments [?, ?].

Under the above assumptions, the approximate fields in a heavy ion collision can be com-
puted by solving the Liénard-Wiechert potentials for the charge distribution (??). There are
a number of qualitative observations that can be made to motivate the eventual paramet-
risation we present. Firstly, we note that the maximum value of the magnetic field is in the
neighbourhood of the spacetime origin. At this point, one can see from the symmetry of the
system (see Fig. 7?) that the electric field must vanish, while the magnetic field points solely

in the y direction. By scaling the integrals of the Lorentz-boosted Coulomb field over the
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distribution (?7), one can obtain the parametric relations

0F,, 0F, F,
or oy "R’

oF,, 0F, F
9: ot R /v’

(5.3)

where F),, is any component of the electromagnetic field, and we have taken R ~ b ~ a, which
holds at the order of magnitude level. For very large ~, this means that the electromagnetic
fields are localised to a region of size O(R/7) in the z and ¢ directions and of size O(R) in
the x and y directions. This separation of scales permits us to drop the x and y dependence
of the fields and focus only on the z and t dependence.*

In this case, only two components of the electromagnetic field are nonzero: B, and E,.
Recalling from Chapter 77 that for analysing monopole production it is simplest to work in
the dual formalism of electromagnetism, we note that the electromagnetic dual of this field
configuration is given by Ey = B, and B, = —FE,. The results of performing the integrals
of the Liénard-Wiechert potentials over the Woods-Saxon distributions are shown in Fig. 77
and Fig. ??. Inspired by the field configurations for pointlike charges, we find that the results

can be well approximated by

B B 1 N 1
T2\t —2)? et +2)")

(5.4)

B 1 1
"2 ((1 Fw(t— 227 (I+wt+ 2)2)3/2> ’
where B is the value of the magnetic field at the spacetime origin and w is the inverse decay
time of the magnetic field magnitude. Both depend on the particular heavy ion collision
considered through b and v, and are fitted numerically using least squares.

In Fig. 7?7 we show the magnetic field along with our fit at z = 0. Relative deviations
from our fit are only a few percent, so we do not complicate our fit function to account for
them.

Recall that our goal is to approximate the cross section for monopole production from
these magnetic fields. The differential cross section as a function of impact parameter is

expected to take the form

do
=7 o o fFuw®)]
T (5.5)

for some currently unknown function f. The total cross section can be found by integrating

this, and as we are only interested at present in the exponential dependence of the cross

4In Section ?7? it will be shown that the extent of the worldline instanton justifies this approximation.
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Figure 5.2: Magnetic field component, B, and electric field component, F,, near origin of
coordinate system for a collision of two lead ions with centre of mass energy per nucleon

equal to 5.02TeV and impact parameter 2R. Note that x = y = 0 here.
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Figure 5.3: Plot of the nonzero scalar invariant of the electromagnetic field, %FWF/“’ =
|B|2 —|E)2. In this plane, the other scalar invariant, 1F, = E - B is zero and away from

this plane it is suppressed relatively by ~.
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VIR

Figure 5.4: Plot of the magnetic field, B,, at the spatial origin of the coordinates for a
collision of two lead ions with centre of mass energy per nucleon equal to 5.02TeV and impact
parameter 2R. Note that © = y = z = 0 here. Our fit, Eq. (??), is shown as a continuous

red line alongside the results of performing the numerical integrals, as black crosses.
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section, a steepest descent approximation is sufficient. In this case

o ~ e I (bma)] (5.6)

Y

where by is the value of the impact parameter that minimises f (maximising the cross
section). It is reasonable to assume that this is also the value of b that maximises B, the
peak magnetic field strength. Our numerical calculations found that for b < 2R, B increases
linearly with b, peaking at by, =~ 1.94R before decreasing again. This agrees with the event-
averaged results from Ref. [?]. The b dependence can be rationalised by considering the fact
that for small impact parameters, most nucleons collide with each other, whilst for large
impact parameters (compared to the ion radius), the nucleons can be considered to be point

particles. The value of by, can be shown to be independent of . About this maximum, we

find

1
B(b,7) = B(bmax, ) <1 — 5%(1) — byax)® + O(b — bmax)?’) 7 (5.7)
where the numerical coefficient cgs &~ 1.37 is found by a quadratic fit to the numerical data
and, like by,.y, is independent of ~.
For fixed b, the magnetic field is a linearly increasing function of v. For b = by,., we find
Zevy

B bmaX7 ~ a_poo
( v) =~ cp 9r R2

(5.8)

where we have written the result in terms of that for pointlike ions, v is the ion speed, and
the numerical coefficient cg &~ 0.78 is independent of ~.
The second parameter of the fit, w, is of order v/R, as is clear from Egs. (??). We find

vy

7 (5.9)

W(bmax, ) & Cu

where the numerical coefficient ¢, ~ 0.92 is independent of . For b < by, we find that w is

approximately independent of b, whereas for b 2 by, it decreases approximately linearly,

w(b,7) ~ wW(bamae, 7) (1 — =206 — b (0 — bmax)) , (5.10)

where ¢,; &~ 0.25 and is independent of v for v = 5. Of course, the transition is not as sharp
as the step function suggests, but is smoothed over a region of size a (see Eq. (?7)). The fact
that w is smaller for b 2 by. than for b < by, will lead to a reduction of the production
cross section for near misses with respect to peripheral collisions.

In our calculations of the fields, we have not included event-by-event fluctuations in nuc-

leon positions, which cause deviations from our mean field results [?]. However, including
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these effects would not change the scaling relations outlined above: in the directions perpen-
dicular to the beam, the field varies over a larger distance (by a factor of ~ ) than in the
beam direction, and the approximate analytic expression for the time dependence still holds.
Furthermore, at the spacetime origin, the component of the magnetic field parallel to the
beam, and the components of the electric field, remain at least an of magnitude smaller than

the magnetic field perpendicular to the beam direction.

5.2 Worldline instantons for monopole production in

heavy ion collisions

In this section we compute the worldline instanton solution for fields of the form (?7) and
calculate the corresponding exponential dependence of the pair production probability using

the method outlined in Section ?7. This is given by
P~ De dmst (5.11)

where S is the classical action (?7) evaluated at its saddle point, and D is the semiclassical
prefactor, which can be calculated from the functional determinant given in Section ?7.
The fields of interest are those given in (?7). To find instantons we perform a Wick

rotation t — 47, yielding the Fuclidean fields

. B 1 1
By =—— . 52 T : 3/2 |
2\ (1 +w2(it — 2)?) (1 4+ w?(iT + 2)?)

B 1 1
Ef= = 73~ s | - (5.12)
2\ (1 +w2(iT — 2)?) (1 4+ w2(it + 2)?)
The extra factor of —i in the magnetic field is a conventional choice accounting for the
derivative with respect to imaginary time in the definition of the (dual) field tensor [?].
For these specific fields, it makes both E¥ and B¥ purely imaginary. This means that the

Euclidean worldline instanton equations are purely real:

&, = —igsF i, (5.13)
where
0 0 0 0
. 0 0 —EF BF
FE — vy 5.14
g 0 EF 0 0 (5:14)
0 —BE 0 0

Y
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and the indices p and v run over 1,2,3,4, with the 4 component last.

Worldline instantons are closed solutions to the Euclidean worldline equations of motion.
From the symmetry of the field it is clear that such a solution exists in the plane x = z = 0,
where the fields reduce to
Bf(m,z =0) = i?ﬁ/?’

(1= (wr)?) (5.15)
Ef(z,2=0)=0.

The instanton equations then reduce to those in a purely time-dependent magnetic field:
because the interaction between the worldline and the electromagnetic field is local, if the
worldline does not leave the y-7 plane it is insensitive to the spatial inhomogeneity in the field.
This feature of instantons in fields where the spatial variation is perpendicular to the direction
of the field has been noted previously in Ref. [?]. As the exponential dependence of the pair
production probability is determined completely by the action of the worldline instanton, the
effects of the inhomogeneity in the transverse spatial directions will only contribute to the
production probability at the level of the prefactor. This considerably simplifies the problem
of computing the pair production probability: Schwinger production in fields that vary along
a single spacetime dimension have been widely studied [?,?7,7,?,7].

Henceforth, for notational convenience, all fields will be implicitly Euclidean unless oth-
erwise indicated.

Following Ref. [?] (reviewed in Section ??) we treat the worldline self-interaction term

separately, writing the action (?77?) as
S|z, s| = Solz, s] + AS[z,] (5.16)

where

m2 1

1 1
Solz,, 8] = — + 5 dut, i, — zg/ du A%, (5.17)
0

2
ARy

In Sections ?? and 7?7 we assume that |AS| < |Sy| when evaluated at the saddle point.

Note that this is not a perturbative expansion in g; the precise conditions for this relation to
hold will be examined at the end of Section ?7?7. In Section ?? we perform a full calculation

treating AS to all orders, numerically.
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5.2.1 Worldline instanton without self-interactions

It is convenient to choose a gauge such that the dual electromagnetic potential is

~ BT
At = 2T 5 5.19
a 1 — (wr)? " ( )

Ignoring the self-interaction term, the worldline instanton stationarises

m?
Solxy, ] = T + —/ dut,z,

+ gB (5.20)

v/ 1 — (wT)
Worldline actions of this form have been extensively studied by Dunne et al. [?,7]. In order
to follow the general prescription outlined in Ref. [?] (motivated by the work of Keldysh on

ionisation in inhomogeneous fields [?]) we define the dimensionless Keldysh parameter

mw

€ = 5 (5.21)

We choose to use £ instead of the more conventional v in order to avoid confusion with the
Lorentz factor. The physical interpretation of ¢ when considering monopole production in
heavy ion collisions is discussed in Section ?77.

It was shown in Refs. [?,?] (in the context of electron-positron pair production) that, at

the saddle point, the nonself-interacting action (?7) evaluates to
/1 — 2
Solz9] = dc—Y——> C

4m? 2 vl ¢2
:9352[E<—s> K(-¢)

where E and K are elliptic integrals, and a:,(?) denotes the worldline instanton for the nonself-
interacting action (detailed below). This result is shown as the red curve in Fig. 7?7. In the
above expression, ( is a dummy variable introduced to simplify the calculation; for more

details, see Ref. [?].

As & — 0,
2
(o _, T 2
Solz,’] — B (5.23)
the constant field result is obtained. For a rapidly varying field (£ > 1),
4m?* 4
Solz®] — 2 = T (5.24)

T
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-0.5"

Figure 5.5: Plot of the worldline instanton action as a function of the Keldysh parameter in
various levels of approximation. The red line is the result without self-interactions, Eq. (?7),
the green line includes the leading correction from self-interactions, Eq. (??), and the blue

line gives the numerical results (to all orders) of Section ??, for ¢*B/m? = 1.
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The functional form of the pair production probability—notably the mass dependence—
changes in the limit of strongly time-dependent fields. This has important implications for
the production of high-mass monopoles in heavy ion collisions, discussed in Section 77.

In Refs. [?,7?] the fluctuation prefactor D (see Eq. (?7?)) for fields of the form (??) is also

calculated, and is given approximately by

\/%(93)3/2> (14 €2)3/4
202 ) B(=€)y/(1+ @)K(=&) - (1 - ©)E(-&)

where s is the monopole spin and V3 is the spatial volume factor. However, for our case, the

(5.25)

D%(2s—|—1)V3<

z dependence of the field will modify the prefactor to leading order in . This is because the
prefactor involves the determinant of fluctuations about the instanton, and fluctuations in
the z direction will feel this dependence (unlike the worldline, which is local, and so is not
sensitive to the z dependence of the fields).

However, for the purpose of obtaining order of magnitude estimates, we note that the &-
dependent part of the prefactor is equal to 1/ to within an O(1) factor for all &: the prefactor
is of the same order as that in the locally constant field approximation (LCFA) regardless
of the magnitude of the Keldysh parameter. Noting this, we propose using the LCFA to
approximate the prefactor also in the spatial directions (see Appendix ?? for details). In this
approximation, the curvature of the field at its maximum determines the prefactor. Denoting
the much slower decay rate of the field in the x; and y directions as {2 < w, we therefore

expect
(25 +1)(gB)*
18m3miw?202 ’

to provide a reasonable estimate of the prefactor, up to an O(1) multiplicative factor.

D~ (5.26)

The shape of the worldline can be determined using a method closely related to that used

in Ref. [?]. Contracting the Euclidean equations of motion (??) with &, shows that &, is a

constant of motion, and varying the action with respect to the Schwinger parameter s shows
that its saddle point value satisfies

§% = q,d,. (5.27)

Using the symmetry properties of the field, Eq. (??7) simplifies significantly; the nontrivial

relations remaining are

. ¢gB ST
Y= m L= ()22 (5.28)
_ 9B s (5.29)

= e P
s' = ()" + (7)" (5.30)
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Integrating Eq. (?7) gives
(5.31)

and combining this with Eq. (?7?) gives

()% = s (1 — ﬁ) . (5.32)

This can be integrated directly to give an explicit proper time parametrisation of 7(u) and
y(u) in terms of Jacobi elliptic functions. However, the shape of the worldline in the y-7

plane can be seen more clearly from the implicit expression

i\’ 2-G? P
(dy) ST GE ¢ (5:33)

Substituting Eq. (?77) gives

(Y () L e 530

This can be readily checked to describe an ellipse: comparison with standard expressions

gives the semimajor axis aligned along 7:

m 1
Uy = — —F—, 5.35
9B \/1+¢ (5:35)
and the semiminor axis aligned along y:
m 1
= ——. 5.36
ay gB 1 + 52 ( )

In corroboration with results from previous analyses [?,?], the time dependence of the mag-
netic field contracts the worldline instanton and increases its departure from the circular
constant field result. The time dependence of the field can be parametrised by the Keldysh
parameter £, and the constant field result is obtained smoothly in the limit & — 0. Plots of
the nonself-interacting worldline instanton for different values of the Keldysh parameter are

shown in Figure ?7.

5.2.2 Self interactions to leading order

Section 7?7 was largely a reproduction of known results for Schwinger production in time-

dependent fields. In this and the following section, we extend the calculation to account for
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Figure 5.6: Elliptical worldlines stationarising the nonself-interacting action (??) for different

values of the Keldysh parameter, &.
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worldline self-interactions. We start by considering just the leading order corrections from

worldline self-interactions, which give a contribution to the action

_9_2 ! u ! o i’u(u)j:#(u’)
AS[Q:H]—&TQ/O d /od () — s (5.37)

This self-interaction term was originally studied in a similar context in Ref. [?], where they

considered a constant external field. As the nonself-interacting worldline instanton (?77?)
stationarises Eq. (?7?), the leading order correction can be computed by evaluating AS over
the elliptical worldline described by Eq. (77).

The self-interaction term is independent of the choice of worldline parametrisation, so we
may choose to parametrise the nonself-interacting worldline instanton x&o) in terms of the

cylindrical polar angle § = tan~!(7/y):

© (0,c086,0,/1+ &sinb). 5.38
z,’(0) = gB(1+52) oS &2 sin (5.38)
With this parametrisation the leading order correction may be expressed by
(1 +£?)cosfcos + sinfsin ¢/
AS[z] do [ do’ : 5.39
Slz’] "~ 82 / / COSQ—COSG’P + (1 4 &?)[sinf — sin &')? (5:39)

This integral may be expressed as a double contour integral in the complex plane by per-

. . . /
forming the substitutions w = e, w’ = "

0] (14 €)(w? + D(w? + 1) — (= D — 1)
AS Ly T 82 fw . ]{ =1 (w— w)2[2 + E(ww' — D2+ E(ww' +1)] (5.40)

The integral can now be performed using the residue theorem. As the integrand is expli-
citly symmetric under w <> w’ the order of integration is unimportant. The pole at w = w’
corresponds to the expected divergence from coincident points [?,?,?], which may be removed
by adding a mass counterterm as previously discussed in Section ??7. After subtracting this

divergence, and noting that & > 0 for all physical cases, we find

1
I+8&+—=. 5.41
8 ( ‘ VI+¢ ) 40
This tends to the known result for the circular worldline [?], in the constant-field limit £ — 0,
- 1= _9
él_r% AS[z,”] T (5.42)

We have also verified its agreement with a numerical evaluation of the integral with an explicit

short distance regularisation and counterterm following Ref. [?]. It qualitatively matches a
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numerical evaluation of the correction for fields with a similar time dependence presented
in [?], universally enhancing production probability, with a stationary point at £ = 0 and
linear & dependence in the large £ limit. As in the constant-field case, the leading order
self-interaction term is scale invariant; it is only a function of worldline shape.

The exponential dependence of the monopole pair production probability in a high-energy

heavy ion collision is thus, to first order in the worldline self-interaction,

InP~ —

(5.43)

mm? AE(=7) —K(=¢)] | ¢
9B m&? ) ( L+&+

1
Vite)
This is shown as the green curve in Fig. ?7.

Examining the limits of this expression highlights the conditions under which the assump-
tion |AS| < |Sp] is valid: as £ — 0 we retain the constant-field case, where the condition
Is

g°B

4rm?

< 1. (5.44)

However, for strictly constant fields, all higher order corrections vanish due to symmetry [?],
and hence this condition is in fact not necessary. For £ > 1, the condition becomes
9°B&  gw’

=— << 1. 4
32m?  32B < (5.45)

Note that both of these conditions may be achieved for any value of the monopole charge, g;
the application of perturbation theory in the self-interactions does not require weak coupling.
On the other hand, condition (??) always fails at high enough &, indicating that the leading

order self-interaction correction is then no longer sufficient.

5.2.3 Self interactions to all orders

Going beyond treating the self-interactions perturbatively, in this section we present our
calculation of the worldline instantons taking self-interactions into account to all orders. In
this case the equations of motion are integrodifferential due to the nonlocal nature of the
self-interactions. Due to the lack of symmetries, these equations are rather hard to solve and
hence we resort to a numerical approach, following Ref. [?] (see also Ref. [?]). We discretise
the worldline, approximating it by a finite but large number of points, NV > 1. The equations
of motion are then simply N nonlinear algebraic equations which we solve iteratively, using
the Newton-Raphson method.

The self-interaction is singular at short distances, and hence needs regularisation. We

follow the approach of Ref. [?] and introduce an explicit cutoff scale, a. However, for numerical
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stability we modify the counterterm following Ref. [?] (see Appendix ?? for details). By
solving the equations of motion for a range of cutoff scales, we can then extrapolate to
the a — 0 limit, which we do following Ref. [?]. The explicit formulation of the worldline
discretisation is given in Appendix 77.

The number N must be chosen such that the distance between neighbouring points,
|dz?| = |z"™! — 27|, is much smaller than the smallest scale in the problem, the cutoff, a. Note
that for a continuous worldline, the global reparametrisation symmetry v — w + ¢ means
that @,&, is constant. Thus, to leading order in 1/N, |dz’| is independent of i and hence
equal to L[x,]/N, where L[z,] is the length of the loop. Further, the cutoff @ must be chosen

to be much smaller than any other scale in the problem. In summary, we require

L[J:u] . L
N < a < Min [k, Re(x;1)], (5.46)

where Rc(z,;1) is the radius of curvature of the worldline at the point i. We mostly used
N = 2'2 points to describe the worldlines, though we also compared this to other values of
N in checking the N — oo behaviour.

The blue curve in Fig. 77 shows the resulting instanton action for ¢*B/m? = 1. One
can see that the agreement with the leading order corrected result (??) is good, and the full
action appears to be slightly lower. We were not able to reach higher &, where the higher
order corrections are expected to become more important, as for large € the worldlines become
highly curved, and it was not possible to maintain the necessary hierarchy of scales, Eq. (?7).

Fig. 7?7 shows the full action in the parameter region (¢>B/m?,€) € ([0, 1],[0,2.5]). For
the reasons discussed above, we were not able to obtain results for the top right corner of
the plot. We leave the numerical investigation of larger g3 B/m? and ¢ for future work.

Our numerical results show remarkably good agreement with Eq. (?7). Thus, at least in
the regime we have considered, higher order terms in g3B/m? are small. This might have
been expected, given that all higher order terms in g®>B/m? vanish at £ = 0 [?]. However,
extrapolating the O(g®B/m?) corrections to large £, one sees that they eventually dominate
over the leading order term, making the action negative. This may indicate the breakdown of
the semiclassical approximation, though higher order corrections at large £ may temper this
breakdown. Note, however, that the constant field action also becomes negative at sufficiently
large values of ¢°B/m?.

In Fig. 7?7 we also show the effect of interactions on the shape of the worldline instanton.
In the region of parameter space we have been able to explore numerically, interactions lead

to a modest increase in the curvature of the worldline instanton. As we will discuss in Section
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Figure 5.7: The worldline instanton action, S, scaled by gB/m?. The contour plot shows the
action is largest at the origin, for constant, weak fields, and decreases away from that, faster
in the direction of ¢ than g3B/m?. Here the numerical results (to all orders) are shown in
blue alongside, in dashed red, the analytic approximation containing only the leading order
correction due to self-interactions, Eq. (??). Their close agreements shows that higher order
corrections are small in this region of parameter space. In the top right, where the numerical
results are absent, we were unable to obtain numerical solutions to the instanton equations
due to the breakdown of Eq. (?7).
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Figure 5.8: The worldline instanton to all orders in the self-interactions at (¢3B/m? &) =
(1,1), shown in blue. This is compared to the analytic result without self-interactions, i.e. at

(¢®*B/m?,€) = (0,1), in dashed red. Self interactions give a modest increase to the maximum

curvature of the worldline instanton.
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77?7, this suggests that self-interactions do not prevent the breakdown of the small-monopole

approximation at large €.

5.3 Limitations of the worldline instanton method

The key result from Section ?? is Eq. (??), the exponential dependence of the monopole pair
production probability. The time dependence of the field of the heavy ion collision enters the
rate, and the corresponding worldline instanton, through a single dimensionless parameter &,
defined in Eq. (??) in terms of the peak value B of the magnetic field and the decay constant
w of the field’s time dependence. As discussed in Section ??, for peripheral collisions (the

type most likely to produce monopoles), Eqgs. (??7) and (?7?) give

Zevy
B~cpg—— 5.47
BorRe (5.47)
vy
R Cp—, 5.48

where Ze is the heavy ion charge, R is the heavy ion radius (in its rest frame), v is the
ion speed, 7 = 1/4/1 —v? is the Lorentz factor of the collision, and c¢p and ¢, are O(1)
dimensionless constants. It follows then that the temporal inhomogeneity of the magnetic

field in a peripheral heavy ion collision is parametrised by

Cy 2mmR

£~ (5.49)

cg Jeg

The most striking consequence of this observation is that the temporal inhomogeneity of the
field is independent of the energy of the collision. This may be understood by considering
that, while the temporal extent of the field decreases proportionally to =, the increase in peak
field strength causes a contraction of the worldline instanton that precisely cancels this effect.
If the field “looks constant”™—i.e. does not vary significantly over the worldline instanton—at
any given relativistic energy, this holds for all relativistic energies.

The Keldysh parameter (?7) for heavy ion collisions can be expressed in an alternate

form by utilising the Dirac quantisation condition (??). This gives

¢y, MR
% — 5050
g CRB Zn’ ( )

where n is the Dirac charge of the monopole. The values of R and Z are specific to the
colliding species, so for a given heavy ion collision, £ is proportional to the ratio of the

monopole mass to the Dirac charge. Using the commonly accepted values for lead-lead
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collisions at the LHC of R = 6.62fm, Z = 82 [?], and the numerical fits ¢, = 0.78 and

cg = 0.92 obtained in Section 7?7,
m

$~ S Gev

This suggests that, when considering production of monopoles with mass greater than about

(5.51)

2.4 GeV,? the time dependence of the magnetic field cannot be neglected at any relativistic
energy. The current best theoretical mass bounds [?] are close to this scale, and many
theoretical models (e.g. [?,7?]) predict masses far greater. As a result, we conclude that the
effects of time dependence are crucial to our understanding of potential magnetic monopole
production in heavy ion collisions.

For heavy monopoles (such that £ > 1), the pair production probability has exponential
dependence (to leading order in (mR)™")

AmR N mnmR
vy 27¢2

log P ~ — (5.52)

where we have dropped the dependence on the O(1) constants, c¢g and ¢, for simplicity.
Combining this with Eq. (?7) for an approximation to the prefactor gives, for production of

high-mass monopoles in peripheral heavy ion collisions,

32,474 2
do 2(2s + 1)v°y*n*Z ox <_4mR T nmR) (5.53)

%b:mw 9m2mi R3 vy * 272

up to an O(1) multiplicative factor. The total cross section can be obtained by including
the impact parameter dependence of the fields (see Section ??) and then integrating over all
values of the impact parameter.

The properties of heavy ions and the form of the magnetic fields in peripheral collisions
are fixed, and, along with the Dirac quantisation condition, strongly constrain the parameter
space in which our results could be applied. The only free parameters are the monopole
mass, m, its Dirac charge n, and the collision Lorentz factor v, which for the LHC heavy
ions is approximately 2675. In this section we examine the assumptions made in Section 77
and show that there is unfortunately no region in the experimental parameter space where

all our approximations are valid.

5This mass corresponds to a classical radius of around 3 fm, which is smaller than the ion radius, though
perhaps not small enough to justify a “<” symbol. Note, however, that most models given serious theoretical

consideration predict masses orders of magnitude higher.
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5.3.1 The semiclassical approximation

The results of Section ?7? are valid under two main assumptions. The first is the semiclassical
limit, required to justify the use of instanton methods:

S[ZL‘inSt, SinSt;Aext] > 1 (554)

n

For high-mass monopoles, m > 2.4n GeV, the next-to-leading order action (??) is pro-
portional to mR > 1, so the semiclassical approximation is satisfied as long as the action is
positive (ignoring a very narrow region of parameter space where the action is between zero

and one). As a result, the semiclassicality condition is

8Z¢e?
wYS 5 (5.55)
or, taking Z = 82 for lead,
nvy < 6. (5.56)

This condition is not satisfied in LHC heavy ion collisions because of their high Lorentz
factor.

The breakdown of the semiclassical approximation usually indicates unsuppressed particle
production, as long as all other approximations are under control at this point. However,
in our case (??) it happens because the self-interaction correction becomes comparable to
the tree level action and cancels it. It therefore merely shows that one needs to include the
self-interaction to all orders, as was done in Section ??. However, in that section we were
not able to explore the relevant regime, due to the difficulty of resolving the large hierarchy
of scales that arises in this case.

While our current work focuses on magnetic monopoles, the need to include all orders in
worldline self-interactions at high inhomogeneities is also relevant when considering Schwinger
production of electrons. For high values of the Keldysh parameter, the curvature of the
worldline instanton (scaled to its size) is so large that self-interactions cannot be ignored
even for weak coupling. This explains the apparent “weak-field” divergence of the results in
Ref. [?]: it in fact corresponds to a departure from the small self-interaction regime. Under
such conditions, the nonself-interacting worldline solution is no longer a good approximation
to the true saddle point solution of the full action. Increasing curvature with increasing
temporal inhomogeneity appears to be a general feature of time-dependent fields [?], so our
current calculations and planned numerical work are relevant to a wider class of Schwinger

production scenarios.
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5.3.2 The small-monopole approximation

The second approximation our calculation relies upon is the dilute instanton gas approxim-
ation (discussed in Section ??). This requires that all scales of the worldline instanton are

large compared with the scale on which small, virtual monopole-antimonopole pairs become

important:
Min [Ro (2 (u))] > % (5.57)
where R¢(x)7*(u)) is the radius of curvature of the worldline instanton at a point u. The size

of virtual monopole-antimonopole pairs, r, can be estimated by equating the rest mass of
a monopole-antimonopole pair, 2m, to their Coulomb attraction, g*/(4nr), resulting in r =
ra/2. Equation (?7?) is important to ensure that the effects of virtual monopole-antimonopole
pairs can be factored out of the instanton calculation, affecting only the running of couplings
[?7]. Alternatively, in the case that the monopoles are actually solitonic excitations being
described by an effective field theory, Eq. (??) is the condition under which the effective field
theory description is valid. This is because the core size of a solitonic monopole is the same
as the classical monopole radius.

Using the radius of curvature of the ellipse (??7), Eq. (??7) becomes

2mRuvy
mZ2%e?

< 1. (5.58)

Assuming that the monopole mass is high, this is the most stringent constraint, requiring
(for lead-lead collisions)
mvy < 10 GeV. (5.59)

This limit prevents application of our results to any energies relevant to modern heavy ion
collisions, and for the energies at which the small-monopole approximation does apply, the
Lorentz factor is too low to justify the assumptions (from the fits in Section ??7) that the
electromagnetic field varies more slowly in the directions perpendicular to the beam. As a
result, we are unable at present to provide a reliable monopole production cross section.

For 't Hooft-Polyakov monopoles, one can overcome the limitations of the small-monopole
approximation by performing an instanton calculation in the full field theory describing the
monopole of interest. The results of this calculation for constant fields are given in Chapter 77
of this thesis. Extending these results to the inhomogeneous fields (?7?) is an important task
for future research.

The inapplicability of our results to realistic heavy ion collisions at present is shown

clearly in Fig. ??. This shows the regions in the y-m plane in which the small monopole
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Figure 5.9: Plot showing the regions in the y-m plane in which the approximations of semi-
classicality (blue) and small monopoles (orange) are valid (assuming the Dirac charge n = 1).
Note that there is a turning point in the region of applicability of the small-monopole ap-

proximation, preventing us from going to large Lorentz factors.
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and small self-interaction approximations respectively hold, assuming monopoles with Dirac
charge n = 1. The boundary of the region in which the small monopole assumption is valid
has a turning point meaning that to probe v 2 2 (which is necessary if we are to apply the
fits from Section ?77) we must move beyond the worldline method.

Fig. 7?7 shows that the region in which the small-monopole approximation applies lies
almost entirely within the region where the effect of worldline self-interactions are small. This
suggests that moving beyond the small-monopole approximation is of the highest priority.
The results of Section 77 showed that, at least in the region of parameter space we were able
to study, self-interactions yield worldline instantons with somewhat higher curvature. This
implies that the small-monopole approximation breaks down slightly earlier than suggested

in Fig. 77.

5.4 Lower bounds on monopole cross sections

The outcome of Section 7?7 may seem somewhat disheartening: the assumptions used to
obtain the main results of this chapter are not valid in any relativistic heavy ion collision.
However, in this section we will argue that there is sufficient evidence to justify a lower-bound
cross section that can in turn be used to place lower bounds on the mass of monopoles,
assuming that none are found in future heavy ion collisions.

There are three effects that must be taken into account in order to give a reliable estim-
ate of the probability of producing monopoles in ultrarelativstic heavy ion collisions: strong
coupling of the monopoles, spacetime dependence of the electromagnetic fields, and the in-
ternal structure of the monopoles. The previous sections combine the first and second of
these, but ultimately fails due to the fact that there is no region of parameter space where
the third condition does not apply. Chapter ?? will deal with the strong coupling and in-
ternal structure of the monopole whilst neglecting the spacetime dependence; combining all
three complications has not yet proved possible.

A key observation from our investigations so far is that all the effects considered appear

to enhance the pair production probability when compared to the constant-field case:

o Including strong coupling effects to all orders in the worldline approximation lowers

the instanton action (see Fig. ??), giving an exponential enhancement.

o The geometry of the fields mean that time dependence is the dominant effect in the

worldline approximation, again giving an exponential enhancement as seen in Refs. [?,
?].
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o Considering the internal structure of the monopole in a constant field lowers the in-

stanton action (see Chapter ?7).

This suggests that an analysis that omits one or more of the complicating factors is likely
to underestimate the pair production probability, so such an estimation may be suitable
for placing lower bounds on monopole masses. Eq. (??) is unfortunately unsuitable, as
semiclassicality breaks down at relevant Lorentz factors (see Eq. (?7)). Two approximations
that may be used to give conservative estimates of the monopole production probability are
the locally constant field approximation (LCFA) and the free particle approximation (FPA).

The LCFA is widely used in the study of the electric Schwinger effect; for a recent dis-
cussion see Refs. [?,7,?]. It approximates the overall production probability by assuming
that at each spacetime point the local rate of pair production is given by the constant field
result evaluated at that spacetime point. For the case of monopoles, the relevant constant
field result is Eq. (??), so the LCFA production probability is [?,?]

25+ 1 m? 2
Prors = 2 / dz exp [ - 2, (5.60)
T — —
g\ |B(@)f2 = |E(@)?
where the electromagnetic fields as a function of spacetime are given by Eq. (?7). This
approximation accounts for the strong coupling of the monopole but treats the spacetime
inhomogeneity perturbatively. This integral can be performed using a stationary phase ap-

proximation to yield

PLCFA ~ (561)

18m3miw2()2 4

(2s+1)(9B)* mm?  g?
exp PYz; + 1)

where ) ~ R~ is the decay width of the field in the z and y directions, defined in Section ?7?.

In the FPA, the spacetime dependence is addressed fully in the same manner as Section 77,
but the monopoles are modelled as nonself-interacting. In this case the nonself-interacting
worldline action (?7) is relevant, and the corresponding pair probability is

(25 + 1)(¢gB)* (_@

Prpa =~
18m3miw?()? w?

[B(-€) - K(-¢] ). (5.62)
Assuming m > 2.4n GeV this simplifies to

(25 +1)(9B)* (_%m) |

18m3m w22

PFPA ~ (563)

Both the FPA and the LCFA omit vital features, meaning neither are likely to give an

accurate monopole production probability. However, the omitted effects in both cases are
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Figure 5.10: Lines in parameter space where Eqgs. (?7) and (??) are equal for lead-lead
collisions: to the left of the lines the FPA is more conservative whilst to the right the LCFA
is more conservative. Different lines indicate different values of n, the number of Dirac charge

quanta the monopole carries. The origin of the x axis in this plot is at 20 GeV.

expected to enhance monopole production, meaning that Eqs. (??) and (??) are likely to
be underestimates. A conservative method of obtaining lower bounds on monopole masses
would be to take whichever of Egs. (??7) and (??7) gives the smaller bound. This depends
on the collision energy as well as the mass and charge of the monopoles. Fig. 7?7 shows the

regions in which each approximation gives a more conservative estimate.

5.5 Momentum distribution of monopoles produced in

heavy ion collisions

In addition to a lower bound calculation of the monopole cross section, it is also possible
to use the FPA to approximate the momentum distribution of monopoles that are produced
in a heavy ion collision. This distribution is a vitally important ingredient for experimental

monopole searches, as in order to determine the acceptance of a given experimental setup,
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the trajectories of the produced particles must be computed. In this section, we will outline
the calculation of this distribution in the FPA, and present its approximate analytical form.
Though, as discussed in Section 7?7, the FPA is not designed to be a faithful model for mono-
pole production, in Section 7?7 we will present general arguments as to why the momentum
distribution given here is likely to be accurate to within an O(1) factor.

In the FPA, the coupling between the monopoles and the external electromagnetic field is
considered in full, but the interactions between the monopoles themselves are dropped. Mak-
ing this approximation allows us to draw on the advances made in the study of Schwinger
production in QED. Several methods have been used for computing the momentum distri-
bution of Schwinger-produced electrons, including quantum kinetic equations [?,?,?], the
Wigner formalism [?, 7, ?] and WKB methods [?,7,?]. However, we choose to continue
with worldline instanton methods, adapting the approach of Ref. [?], which utilises “complex
worldline instantons” to obtain the momentum distribution of Schwinger-produced particles
from inhomogeneous fields. The reason for choosing worldline methods is the fact that,
though in this work we remain in the FPA, in the future it may be possible to incorporate
an arbitrary coupling constant using a similar approach to Section ?7.

We continue to use the geometry of Fig. 7?7 and focus on the fields (?77). A dual electro-

magnetic potential which leads to the electromagnetic fields of Eq. (??) in this limit is
~ B/2)(t—= B/2)(t+ =
A= BRE—2) (B2

\/1+w2(t—z)2 \/14—w?(t+z)2

with all other components zero. In the context of QED, the momentum spectrum of electron-

, (5.64)

positron pairs produced by similarly spacetime-dependent fields as Eq. (?7) has been studied
in Refs. [?,?7,?7,?7,7,?7]. Within the FPA, the methods used in these references are directly
applicable to monopole production, and their application would be valuable.

In section 7?7 we noted that due to the symmetry of the fields under z — —z, the
exponential dependence of the total monopole pair production probability is the same as
that for the much simpler field with only spacetime dependence through the time coordinate:

B

Bext —
T

(5.65)
where B and w are the same constants as above and all other components of E and B vanish.
In the following, we will continue to use Eq. (??) to compute the momentum distribution of
Schwinger-produced monopoles in the FPA. We expect this to provide an accurate distribu-

tion for the momenta in the x and y direction, but the true momentum distribution in the
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z direction may differ from the result presented here by up to an O(1) factor (discussed in
Section 77).
The relation of the dual potential to the magnetic field is B, = 8'Ay — 9y A’. For the

ext T

magnetic field of Eq. (??), without z dependence, the dual gauge field reduces to

. B
A=t (5.66)

TV (Wt
The worldline instanton method with imaginary ¢ coordinate (i.e. a Wick rotation) was
used in Section ?? to compute the overall production probability of monopole-antimonopole
pairs in the field given by Eq. (??). In this section, we instead follow the approach of Ref. [?]:
rather than Wick rotating, we promote the spacetime coordinates to complex numbers and
search for periodic solutions to the equations of motion with imaginary proper time.

These equations are simply the Lorentz force law for magnetically charged particles:

mi— 9By
[1+ (wt)2]3/2
mij = 9Bt (5.67)

mx = mz = 0.

Here a dot denotes a derivative with respect to proper time ¥ along the particle worldline,’
and ¢ is the magnetic charge of the particle. The first integral of these equations provides

the constraint
2 —i? -t -2 =1, (5.68)

motivating the description of # as proper time even when it takes an imaginary value. From

the three spatial translation symmetries, Noether’s theorem gives the conserved charges

Pz = mi;?
py = mi— oA, (5.69)
b = m27

which may be interpreted as the canonical momenta of the produced particles. Eq. (??) can

therefore be rewritten as

2 — — (P2 + (p, + gA, () + p2] = 1. (5.70)

5Not to be confused with Euclidean time 7 used in earlier sections.
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In order to determine the worldline trajectory, we must specify the initial values z, (¥ = 0)
and #,(f = 0). Due to the translational symmetry of the magnetic field, we are free to fix

the spatial position of the worldline, and without loss of generality we can choose
z(0) = y(0) = 2(0) = 0. (5.71)

The initial conditions on the proper time derivatives of the spatial coordinates are equivalent

to specifying canonical momenta:

mii(0) = pa,
my(0) = py + gA,(£(0)), (5.72)
mz(0) = p,.

For fields of the form (?7), the final kinetic momentum? is related to the canonical mo-
mentum by

B
ks = p, + gA,(t — 00) = p, + ‘% ~ p, + 2.4n GeV, (5.73)

with the canonical and kinetic momenta being equal in other directions. Here n denotes the
number of Dirac charge quanta the monopole carries. For the approximate numerical value
of gB/w, we have assumed ultrarelativistic lead ion collisions, as relevant to the LHC.

The remaining initial conditions to be chosen are t(0) and £(0). These are specified by
stipulating [?] that the classical worldline trajectories pass through WKB turning points,
defined by

m? + p? + (py + gA, (twa))” + p* = 0. (5.74)

Note that because ¢, and thus A,, is complex, this does not imply that p, = p, = 0. Solving
this equation gives a complex conjugate pair of turning points in the complex ¢ plane; the

worldline solution interpolates between them. We thus choose the initial condition
t(0) = tyip- (5.75)
The condition (?7?) requires the final boundary condition
i(0) = 0. (5.76)

The fact that Eq. (?77?) is satisfied at # = 0 allows a simplification of the ¢ initial condition:
substituting Eq. (??7) into Eq. (??) gives

my(0) = +im ., (5.77)

“This is the quantity that would be measured by a detector.
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where the “transverse mass” is defined

m? =m?+pl + pl. (5.78)

The sign indicates the direction in which the worldline is traversed and does not affect the
value of the action.

The probability of producing particles with a given canonical momentum p, is given by

the imaginary part of the effective action of the worldline solving Eqgs. (??) for imaginary

proper time.

n(m,p) ~ exp (—Im(Seg[t])), (5.79)
where [?7]
Set[t] :%/0 {m + mit?
+ % (P2 + (py + 9 A, () + P2 }df, (5.80)

T being the worldline period. Using Eq. (??) and the relation my(0) = p, + gA,, one can
show that on shell,

Sealt] = m /0 “Rar (5.81)

As a final observation, note that the physical mass m factors out of the equations of
motion and can be removed entirely by rescaling ¢ — #/m. The only mass dependence in
the action originates from the transverse mass term in the initial condition for y, Eq. (77).
This means that the action at arbitrary transverse momentum can be obtained by solving
the equations of motion for p, = p, = 0, and substituting m — m_. In the following, we
drop the transverse momentum terms for brevity.

For p, = 0 the equations of motion (??) are analytically solvable: the solution has ¢
purely imaginary and takes the form of an ellipse in the Im(¢)-Re(y) plane [?]. The ellipse

has semimajor and semiminor axes

m 1
L. — 5.82
" 9B /1t (582)
m 1
= ——F 5.83
Ay gB 1 + 52’ ( )
where £ = mw/(gB) is the Keldysh parameter, and the imaginary part of the action is [?]

Im(S[z,]) = 7;”}; AB(=¢ )ﬂgzK(_f I (5.84)
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Here E and K denote elliptic integrals. As previously discussed, for ultrarelativistic heavy

ion collisions the £ > 1 limit is relevant: in this case

m 1
o o1 5.85
g ng W’ ( )
m 1
ay ~ ngQ - g_w7 (586)
4m?  4m

The elliptical worldline solution becomes increasingly prolate with increasing &; for very

large values of ¢ the worldline barely deviates from the imaginary ¢ axis.
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Figure 5.11: 3D plots of complex worldline instantons in the field given by Eq. (77?), for

monopoles of mass 100 GeV and a collision energy of 5.02 TeV per nucleon.

For p, # 0, the initial condition (??) means that ¢ is no longer purely imaginary; in
Ref. [?] the solutions were termed “complex worldline instantons”. These solutions are not
obtainable analytically, but can be determined using a numerical prescription outlined in
Ref. [?]; we have carried out this calculation for monopoles produced in collisions at LHC
energies of 5.02 TeV per nucleon. The effect of nonzero longitudinal momentum is to bend

the worldline away from the imaginary t axis: this is illustrated in Fig. ?7. Note that
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these worldlines are not symmetric about the real t axis; worldlines with negative values of
longitudinal momentum would bend in the other direction.
The momentum distribution resulting from our numerical calculation is plotted in Fig. 77?.

It can be seen that the probability distribution is well approximated by the expression

4
n(m,py) ~ exp (—;\ /Py + m2) , (5.88)

which can be obtained by substituting m — /m? + p2 into the zero momentum result (?7?)
and taking the high-inhomogeneity limit. It therefore reproduces the known analytic result
at zero momentum. Note that this is not a numerical fit, as there are no free parameters.
We conjecture that this relationship is valid for any field of the form (?7), provided that the

Keldysh parameter
mw m

gB ~ 2.4n GeV >

where n is the number of Dirac charge quanta the monopole carries. Comparing the computed

1, (5.89)

and approximated values for monopole production at LHC energies with momenta p, €
[—m/2,m/2] we find that Eq. (??) is accurate to within around 1% for m = 30 GeV, and
the error is even smaller for higher masses. Excluding a narrow window not yet excluded by
existing mass bounds [?] realistic monopole models will satisfy inequality (77?).

As the transverse momentum affects the final result only via a modification of the effective

mass, the relative momentum distribution is thus the isotropic distribution
_ n(m,p) 4
Neet(M, P) = n(m.0) = exp {—; (W— m)] : (5.90)
The surprising fact that the field direction does not seem to affect the angular distribution
is discussed in the next section.

The kinetic momentum k measured by a detector is related to the canonical momentum p’
by Eq. (?7). This means that a plot of the kinetic momentum spectrum would be shifted by
approximately 2.4n GeV compared to Fig. 7?. As the widths of the peaks shown are much
greater than this, the approximation of an isotropic kinetic momentum distribution is also
justified.

A similar analysis with, for example, the Sauter pulse
B = B sech? <gwt> 0,2, (5.91)

shows a similar momentum distribution, differing only by an O(1) factor. This suggests that
the general structure of the momentum distribution may be a consequence of the localisation

of the magnetic field to a time interval of order 1/w, and not of its specific functional form.
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Figure 5.12: Relative momentum distribution of monopole-antimonopole pairs produced from
the field (??), for collision energies of 5.02 TeV at various monopole masses. Dashed lines

show Eq. (??) for comparison.

5.6 Limitations of the free particle approximation for

Schwinger momenta

Some of the limitations of the FPA have already been discussed in Section ??7, where we
argued that the omission of monopole self-interactions and internal structure in FPA worldline
calculations results in a conservative estimate of the overall production rate, allowing lower
bounds on monopole mass to be computed if no monopoles are found in future heavy ion
searches. In this section we discuss the extent to which the momentum distribution given in
Eq. (?7) is likely to give an accurate prediction.

One complication that is currently not resolved by any known calculation of monopole
production in heavy ion collisions is the issue of whether the monopole “fits” in the magnetic
field. While the magnetic field is extended over a region of order R in the x and y directions,
in the z direction it is much narrower due to Lorentz contraction along the beam axis with a
width of order R/~. Taking the classical radius of the monopole rq = ¢g?/47m, this suggests

that monopoles with m < v¢?/47 R are large compared to the extent of the magnetic field in
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the z direction. In principle, a lattice calculation generalising the work of Chapter 77 would
be able to solve this problem, though it is expected to be computationally difficult due to
the large separation of scales.

The limited spatial extent of the field in the z direction also has consequences for our
computation of the distribution of the p. component of the monopole momentum. Our
calculation in Section ?? was performed in the background of the spatially homogeneous
field (??), which means that the dual potential may be written as a function of time only,
and the real part of the z coordinate along the worldline instanton remains constant. In
general, the instanton solutions in the background of the full fields (??) are not known,
though due to the z — —z symmetry of the system the p, = 0 family of solutions must
be identical to the corresponding solutions we have found. The p, and p, dependence of
Eq. (??) is therefore expected to be accurate. For p, # 0, however, we expect the instanton
solutions in the background of the full field to deviate along the real z axis. This suggests
that the p, dependence of the true momentum distribution may differ from our result (?77?),
though the difference can be, at most, of order O(1), as no new scales enter the problem.

An interesting feature of the distribution that we have calculated is that it saturates the
time-energy uncertainty principle [?,?]. This suggests that the relative momentum distri-
bution may be valid more generally, at least as a lower bound on the momentum variance.
As time is not represented by an operator in quantum mechanics, the time-energy uncer-
tainty principle does not have the same rigorous basis as uncertainty principles for conjugate
observables: the general statement of the principle,

AtAE > g, (5.92)
has many interpretations. It is most commonly discussed as representing uncertainty of
measurement outcomes, but the most relevant interpretation in the context of our work is
preparation time-energy uncertainty, which has a more solid theoretical footing than many
other interpretations [?].

The preparation time-energy uncertainty principle concerns the preparation of a quantum
state with definite energy F, assumed to be drawn from a continuous spectrum of energies.
The principle states that if the state is prepared in a finite time At, the final energy cannot
be chosen with absolute precision, and instead has an uncertainty of at least AF satisfying
the relation (??). This is exactly the situation in our setup, where a state containing a
monopole-antimonopole pair is prepared from the vacuum state in a time At ~ 1/w. The
energy of the pair is

E =2ym?+|p? = 2(m + Eywn), (5.93)



CHAPTER 5. MONOPOLE PRODUCTION IN HEAVY ION COLLISIONS 95

where Ey;, = \/m? + |p]?> — m is the kinetic energy of a single monopole.
In order for the monopoles to be produced at rest, we would require £ = 2m. However,
the uncertainty principle means that AE > w/2, meaning that the typical kinetic energy

must satisfy the relation

(Bun) 2 - (5.94)
Our predicted momentum distribution (??) may be written
4 Fyin
Nypel = €XP (— £ ) , (5.95)
w

saturating this bound. This suggests that even though the specific assumptions of the FPA
are not valid for monopole production in heavy ion collisions, the final result should be a
good approximation: the momentum distribution cannot be any narrower without violating
the uncertainty principle, and if preparation time is the dominant factor (indicated by the
fact that w is the only parameter of the collision that appears in the final result), we do
not expect it to be any wider. This observation may also explain why Eq. (?7) is isotropic
despite the fact that the direction of the magnetic field defines a preferred direction in space.

The position-momentum uncertainty principle also applies to our result, as particle pro-
duction occurs at a significant rate only in a finite region of space. This means that we
expect the width of the momentum distribution in the x and y directions to be at least
Ap,, Ap, 2 1/R. For ultrarelativistic collisions this is a much weaker condition than Eq. (?7?).
The contraction of the field in the z direction, however, means that we expect Ap, ~ w. This
constraint is satisfied by Eq. (?77?) at the level of orders of magnitude, though as discussed
earlier there may be an O(1) correction to the shape of the momentum distribution in the z

direction.

5.7 Summary

In this section, we have presented the current state of the art in the analysis of magnetic
monopole production from heavy ion collisions via the Schwinger effect. While there is still
much more to be done with regard to obtaining theoretical results that account for all the
complications of ultrarelativistic heavy ion collisions, there is significant evidence to suggest
the results of this chapter are suitable for imposing lower bounds on the overall cross section
of monopoles, and an approximation to the monopoles’ momentum distribution.

The first key result of the chapter is the lower bound for the monopole pair production
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probability in the free particle approximation:

dm dmy

P> - ) = —— 5.96

2 exp ( - ) exp ( I ) , (5.96)

As discussed in Section ?7, this should be compared to the locally constant field approxim-
ation ) ) 2 2 )
™m g 2mm g

P> - )= 42 5.97

NeXp( gB+4) exp( Zes +4), (5.97)

with the lower result giving the more conservative estimate of the overall cross section. In
the above expressions, the exponential prefactor has been dropped, as well as O(1) constants
in the exponentials in terms of ion parameters (see Egs. (??) and (77)).

The second key result is the approximate relative momentum distribution of the Schwinger-

produced monopoles:
4 /1
Nyel = €XP |:__ ( m2 + ’p 2 — m>:| . (598)
w

As discussed in Section ?7?, this is expected to be accurate to within an O(1) factor in the
exponent.

These approximations have recently been used by the MoEDAL collaboration in Ref. [?],
which gives the results of the first dedicated experimental search for production of magnetic
monopoles via the Schwinger mechanism, in heavy ion collisions at the LHC. Monopoles with
an overall production probability given by Egs. (??) and (??7), and a momentum distribution
given by Eq. (??), were simulated using the GEANT4 [?] software package. The modelled in-
teraction with the detection apparatus was used to determine the acceptance of the MoEDAL
detectors, which, as no magnetic monopoles were detected, enabled a lower bound of 70-75
GeV (depending on monopole charge) to be placed on the monopole mass. While these are
less restrictive than some bounds from other experiments (see Section ?? for details), they
improve the bounds of Ref. [?] by almost two orders of magnitude, and are not subject to
the limitations of other monopole production calculations due to the nonperturbative nature

of the Schwinger effect.



Chapter 6

Production of ’t Hooft—Polyakov

monopoles from magnetic fields

6.1 Moving beyond the worldline method

The previous chapter, and the vast majority of the existing literature on monopole pro-
duction from magnetic fields, considers Schwinger production in cases where the worldline
approximation is valid. This is equivalent to requiring that the length scale associated with
the monopole is small compared to all other length scales in the problem. The relevant scale
for both Dirac and solitonic monopoles is the classical monopole radius

g2

~ Anm

(6.1)

™

When the monopoles in question are solitonic field configurations, this represents the size
of the monopole core, where the non-Abelian nature of the fields become important. If the
monopoles appear as elementary particles with their own source term in the Lagrangian, this
is the radius at which nonlinear QED effects “dress” the monopole, effectively delocalising
the photon-monopole interactions [?,7?].

When the length scales in the system are large compared to ry;, the worldline methods
used in Chapter 7?7 can be utilised effectively—for solitonic monopoles one can employ an
effective field theory identical to one describing elementary monopoles [?, 7,7, ?]. However,
there is both theoretical and experimental interest in situations where the worldline approx-
imation breaks down. For monopole production in constant magnetic fields, the relevant
condition for the worldline approximation to be valid is

9°B

pi— < 1. (6.2)

97
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This ceases to hold when the field becomes strong in units defined by the monopole mass and
charge. For the inhomogeneous fields of heavy ion collisions, investigated in Chapter 7?7, the
relevant condition (at high monopole masses) can be expressed using the radius of curvature

of the ellipse (?7) as
mw?
A7 B?

where B is the peak value of the magnetic field and w is the field’s decay time. Using

<1, (6.3)

the parameter values for lead-lead collisions given in Section 7?7, this can be converted to a
constraint on the energy of a collision to which worldline methods can be reliably applied:
dropping O(1) constants, we get

mvy < 10 GeV, (6.4)

where v is the ion velocity and « is the ion Lorentz factor in the lab frame. As v > 1
for modern heavy ion collisions, and monopole masses below O(1 GeV) have been conclus-
ively ruled out [?], it is clear that resolving distances below ry; is crucial for the theoretical
understanding of monopole production in particle colliders.

This chapter details the efforts made to move beyond the worldline approximation and
take the internal structure of monopoles into account when computing Schwinger production
rates. In order to do this, one must specify the monopole model in question. Throughout this
chapter, we use the canonical 't Hooft—Polyakov monopole [?,?], which may be embedded in
any Grand Unified Theory encompassing the Standard Model of particle physics. The results
of this chapter are therefore generalisable to many theories admitting solitonic monopoles,
though do not address the “dressing” of elementary monopoles described in Refs. [?,?]. We
note, however, that in some theories the existence of dualities [?] allows point particles to be
described as solitons and vice versa—in such theories, our results may also be applicable to
point particles.

We continue to make use of semiclassical instanton methods, but instead of working
within the worldline approximation, we move to a non-Abelian gauge theory—specifically
Georgi-Glashow SU(2) theory [?]. This has the continuum Lagrangian

1
L= 5 TrFyF™ + Te D,0D"® — A(Ty D2 — 22, (6.5)

and admits 't Hooft—Polyakov monopole solutions (see Section 7?7 for details, where the
meaning of the terms in Eq. (?7?) are also discussed). Because we consider all the field-
theoretic degrees of freedom of the problem, our results take into account both the monopole
internal structure and its strong coupling at all orders. In order to solve the equations

of motion of the theory, we use the lattice techniques and numerical methods outlined in
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Chapter ??. This has enabled us to generalise the worldline results of Refs. [?,?] to full
field-theoretic results, explicitly computing new sphaleron and instanton solutions for the

first time.

6.2 The Ambjgrn-Olesen instability

Before we begin the process of finding sphalerons and instantons in the background of an
external magnetic field, it is instructive to consider the range of field strengths that are
relevant. In classical electrodynamics, a constant, spatially homogeneous magnetic field is a
minimum of the Maxwell Lagrangian at all field strengths. In non-Abelian gauge theories,
however, this is not generally the case [?]. If the theory contains charged vector bosons, the
interaction between the external field and the magnetic moment of the charged vector bosons
can destabilise the homogeneous vacuum: this was first studied by Ambjgrn and Olesen in
the context of Georgi-Glashow theory in Ref. [?], and in electroweak theory by the same
authors in Refs. [?,?]. In Georgi-Glashow theory, the theory studied in the chapter, the
magnetic field strength at which the instability occurs is

m2

BCri - _V’ 6.6
= (6:5)

where m, is the vector boson mass, and e is the electric gauge coupling. Following Ref. [7]

we can demonstrate this by fixing the scalar field
v

o= 5% (6.7)

and (for now) ignoring its dynamics. The dynamical part of the Lagrangian (??) is thus
1 17
L=—5 T b P - 2¢°0% [(A,)* 4 (A2)7] . (6.8)
We then perform a field redefinition
1
V2

defining the U(1) field strength tensor

W, = —=(A, +iA2), A=A (6.9)

Juw = Ay — O, A, (6.10)
This allows us to rewrite the Lagrangian (?7) as
L=— if/wfw/ - %lDMWV - DVWM|2
— lmzwng — ief, WHW” (6.11)

+

N = Do

e [WIWHw,w> — (Wiw*)?| .
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We now linearise about a constant magnetic field, choosing without loss of generality fio =
— fo1 = B with all other components vanishing. The effective mass term for the vector bosons

(the second line of the above equation) is then

2 .
; ; my; eBY\ (W

The determinant m? — e*B? becomes negative precisely when B = By, indicating the
presence of a tachyonic mode. A field with strength greater than B.;; can lower its energy
by forming a condensate of vector bosons, so the homogeneous vacuum becomes unstable.
In Ref. [?], Ambjgrn and Olesen find the vacuum of the Lagrangian (?77) in a field with
B > B, which takes the form of a lattice of vortices. However, this treatment neglects the
dynamics of the scalar field, which prove to be crucial in understanding the vacuum structure
of Georgi-Glashow theory at high magnetic field strengths. In the rest of this chapter, we
will show that in fact the Ambjgrn-Olesen instability leads to the classical production of
't Hooft—Polyakov monopoles. B therefore indicates the maximum possible field strength
in classical Georgi-Glashow theory before monopoles are produced spontaneously from the

vacuulll.

6.3 Schwinger sphaleron for 't Hooft—Polyakov mono-

poles

When an external magnetic field is present, the vacuum structure of non-Abelian gauge
theories becomes richer, with new solutions to the equations of motion arising that are not
present when the field is absent. The first solution that we will examine is what we have
termed the Schwinger sphaleron. This is a static, unstable solution to the equations of
motion corresponding to the peak of the barrier between the uniform field state and a state
containing a monopole-antimonopole pair, of the type described in Section ?7.

The Schwinger sphaleron is most relevant when considering production of monopoles
from magnetic fields at high temperatures. In this case, it is possible to thermally excite the
fields so that monopoles cross the potential barrier classically; the rate of thermal Schwinger

production is
Es
I = Dexp (——Ph) , (6.13)
T
where Eg,, is the sphaleron energy. This rate, including the prefactor D, was calculated

in weak fields in the worldline approximation in Refs. [?,?]. In this section we perform
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the equivalent calculation for the exponential factor in Georgi-Glashow SU(2) theory, at all
relevant field strengths.

The Schwinger sphaleron connects two physically different states: the state consisting of
only a magnetic field, and a state containing a monopole-antimonopole pair. This means
that the Schwinger sphaleron is physically different to the Taubes sphaleron [?], which is a
topological sphaleron mediating a change in Chern-Simons number.

In the limit where the monopole core size is small compared to the other scales in the
problem, the Schwinger sphaleron can be found using classical magnetostatics: it consists of
a monopole-antimonopole pair separated along the field at precisely the separation where the
Coulomb attraction balances the repulsive force from the external field. The total energy of

the system as a function of pole separation r is

2
E(r)=2m—gBr — g—, (6.14)
4mr

where m is the monopole mass, g is the monopole charge and B is the strength of the external

field. This can be solved straightforwardly to give the equilibrium separation

/| 9
Tsph = m (615)

¢*B
—.

and the sphaleron energy

Egpn = 2m — (6.16)

For ’t Hooft—Polyakov monopoles this approximation may be improved upon while still re-
maining in the pointlike limit. If the monopoles are aligned in isospace, the monopole-
antimonopole potential can be modified to take into account short-ranged interactions me-
diated by the scalar and massive vector bosons [?]:

1
Vium(r) = = — [L 4277 7™ (1—e7™)] (6.17)

where mg and m, are the scalar and charged vector boson masses respectively. The sphaleron

energy Eg,, is then the maximum of the function
E(r) =2m — gBr + Viam(r), (6.18)

which is straightforward to compute numerically. This solution offers a useful comparison to

our results; it is expected to break down when 74, ~ 7\, the monopole core size.
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6.3.1 Setup

We work in Georgi-Glashow SU(2) theory, discussed in Section ?7?: the continuum Lagrangian
(in Minkowski space) is given by Eq. (??). As we are focusing on a static solution to the
field equations, we are free to work in the three-dimensional theory where all time derivatives,
along with the timelike components of the gauge field, vanish. The quantity to be extremised

is then the energy
1 . .
E = /d% {5 Tr F;F7 + Tr D;®D'® + A\(Tr ®* — v*)?| (6.19)

where 7,7 = 1,2,3 index the spatial dimensions. To perform numerical calculations we

discretise this to give the lattice energy, which in units defined by the lattice spacing a is

Bae(®,U;) =) {6—22 > 2 - TrUy(@)]

T 1<J

2y T ®()? — e &@U(H) B + U (D) (6.20)

+A (Tr &(2)* — v2)2 },

where U;(Z) are link variables and U;;(Z) denotes the Wilson plaquette (for more details see
Sections 7?7 and ??). This is the quantity we are extremise in this section.

As we are interested in saddle points of Ej,; in the presence of a background magnetic
field, it is necessary to define the magnetic field in terms of lattice variables. This can be

achieved using the lattice projection operator [?]

I, = % (1 + %) . (6.21)

This projects out the component of a link variable parallel to the unbroken U(1) generator:

the projected link variable is
wi(Z) = N () Uy (2) (2 + 7). (6.22)
This can be used to define an Abelian field strength tensor
fii (%) = garg T w; (£)uy (7 + D)ul (F + j)ul (D). (6.23)

The magnetic field is then given by

Bi(#) = ——cun [ () (6.24)

2a?
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In the Higgs vacuum, this is an unambiguous definition of the magnetic field. Away from
the Higgs vacuum, different definitions are equally valid [?], but Eq. (??) is useful because
it is defined modulo Buax = 27/ea®. This means that the magnetic charge, defined by the
magnetic field’s divergence, is quantised in units of 47 /e.

We are looking for saddle points of the lattice energy (??) with an external magnetic field
present. This poses the challenge of how to impose the external field on our solutions. One
possibility would be to treat this as a constrained optimisation problem, with the external
field as a constraint, adding a Lagrange multiplier to the energy. This would be equivalent to
adding a source current term to the Lagrangian, which is undesirable as we are interested in
pure vacuum solutions to the equations of motion. Another possibility would be to impose
Dirichlet boundary conditions, fixing the values of the links at the boundary such that the
field at the edge of the lattice is a pure magnetic field. This is also undesirable, as it will
inevitably introduce unphysical finite-size effects, which are likely to require very large lattice
sizes to tame.

Boundary conditions, however, do hold the key to solving this problem. The most de-
sirable boundary conditions are those that preserve the symmetries of the action, such as

periodic boundary conditions: on a cubic lattice of side length N these may be expressed

D(F + Nj) = B(3),

(6.25)
Ui(Z + Nj) = Ui(2).

Periodic boundary conditions reduce finite-size effects by ensuring that the solutions found
are valid, albeit repeating, solutions on an infinite lattice (though finite-size effects can still
be present; see Ref. [?] for an example involving monopoles). They also impose the constraint
that the magnetic flux through any face of the lattice is an integer multiple of 47 /e. This
results in an advantageous effect: when performing gradient descent on the lattice, provided
the step size is sufficiently small, the flow is unable to change the flux through the boundary
(without creating or annihilating a monopole-antimonopole pair). This means that if initial
conditions are chosen with an external flux, this external flux will be present in the solution.
It is therefore possible to find extrema of the energy with an external magnetic field present,
without requiring unphysical modifications to the Lagrangian or boundary conditions.

The saddle point solutions presented here were obtained by extremising the energy (?7)
on a 64? lattice using the Chigusa-Moroi-Shoji gradient descent algorithm [?] detailed in
Section ?7. A Barzilai-Borwein adaptive step size [?] was used to speed convergence, and
the LATField2 C++ library [?] was utilised to aid parallelisation. An external field of total

flux 487 /e was imposed as described above, giving a uniform magnetic field strength B ~
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Figure 6.1: Plot of sphaleron energy against field strength for different values of 8 = mg/m,.
The dashed lines indicate the predicted sphaleron energy assuming pointlike monopoles
(Eq. (??)). The solid circles indicate the field strength at which the sphaleron ceases to

contain separated magnetic charges.

0.037/ea®. The field was varied incrementally by changing the scalar field VEV, keeping the
mass ratio § = mg/m, constant. Three different values of 3 were investigated: 5 = 0.5,
S =1and g =2.

6.3.2 Results

In weak magnetic fields, the sphaleron bears a clear resemblance to the pointlike approxim-
ation of a monopole and an antimonopole separated along the direction of the external field.
The magnetic charge is nonzero in two cubes lying on a line parallel to the field axis, and
the magnitude of the scalar field has two minima, at the same points (due to discretisation
effects the scalar field does not vanish). An example of a sphaleron solution with separated
magnetic charges is shown in Fig. 77(a).

Fig. 7?7 shows the dependence of sphaleron energy on external field strength. As the field

strength increases, the energy barrier to monopole production lowers. For fields well below
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Figure 6.2: Visualisations of sphaleron solutions for (a) subannihilating and (b, ¢) superan-
nihilating magnetic field strengths. Top plots show energy density contours in units of m? in
3D space. Bottom plots show slices in a plane parallel to the magnetic field intersecting the
sphaleron at its centre: the surface gives the scalar field magnitude in units of its VEV, whilst
the vector plots give the direction of the magnetic field (with the background subtracted)

through the same slice. All plots shown have m, = mg. Spatial axes have units of m_?.

the critical field strength, this fits well to the sphaleron energy for pointlike charges (?7). As
the field increases, the calculated sphaleron energy dips below the point particle prediction.
This is likely due to the effects of partial cancellation between the overlapping monopole
cores (as observed in Ref. [?]).

As the field increases further, the distance between the positive and negative magnetic
charges decreases, and eventually they cancel each other. We refer to this phenomenon as
‘annihilation’, though it is not a dynamical process. The higher the value of 3, the stronger
the field required to annihilate the monopoles (see Fig. 7?7). There is no visible discontinuity
in energy at annihilation.

Above the annihilation threshold, the scalar field has only one minimum, and the mag-
netic charge is zero everywhere. The sphaleron still has a nonzero magnetic dipole moment,
originating from an axisymmetric ring of electric current density centred about the minimum

of the scalar field (see Figs. ??(b) and ??(c)). In fields slightly stronger than the annihilation
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Figure 6.3: Standard gradient flow evolution of the magnetic field component in the direction
of the external field B, (left panel) and the scalar field magnitude |®| (right panel), starting
from a supercritical homogeneous magnetic field with a stochastic perturbation and leading
to the production of a monopole-antimonopole pair at flow time 42050. Values are taken
along a line parallel to the field axis, passing through the cores of the produced monopoles.
The magnetic field is given in units of By the scalar field magnitude in units of its VEV,

and spatial distance in units of m .

The colours indicate the magnitude of the quantity
plotted as shown in the colour bar. Note the uneven scale on the flow time axis. The plot
shows the magnetic field strength B, increasing exponentially due to the instability until it
reaches By, at which time the monopoles (seen as discontinuities in the magnetic field)
form. Once formed, the monopoles rapidly move to the boundary where they annihilate,

allowing the system to settle in the new equilibrium state with lower magnetic field.

field strength, the energy density contours of the sphaleron continue to define a peanutlike
shape with two separate maxima (Fig. ??(b)). In very high magnetic fields, energy contours
are pill shaped (Fig. ?7(c)).

The sphaleron energy decreases monotonically with increasing B until it reaches zero,
where it plateaus (see Fig. ??). At this point the saddle point configuration transitions to
the vacuum configuration with only the homogeneous background magnetic field present.
From Fig. 7?7 it can be seen that the field strength where this happens is independent of
f = mg/my, and appears to coincide with the Ambjgrn-Olesen critical field [?] described in
Section ??7: B = By = m?/e.

Above B there is no energy barrier to the creation of monopole-antimonopole pairs,
which suggests that monopole-antimonopole pairs are produced by a classical instability.

We investigated this hypothesis by performing standard gradient flow from a uniform
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supercritical background field with small random white noise perturbations in the gauge
fields. The results are summarised in Fig. ??7. A clear instability is seen, as predicted in
Ref. [?], but rather than stabilising to the Ambjgrn-Olesen vortex lattice solution presented
in Ref. [?], the magnetic field continues to become increasingly more localised. The local
field strength at the centre of the vortex grows exponentially until it reaches By,ay, which is
the maximum value allowed on the lattice. At this time (~ 42050 flow time units in Fig. 77?),
a monopole-antimonopole pair is produced. This may be interpreted as the breaking of the
vortex.

At the time of the pair production, both the magnetic field and the energy density are
highly localised in a vortex line aligned with the external field. Inside the vortex line, the
scalar field vanishes (see Fig. ?77), which restores the SU(2) symmetry locally, and therefore
the energy density remains finite ~ V(0) = Av?, in spite of the local magnetic field reaching
nominally cutoff scale values. When the local magnetic field crosses By it flips sign, and
the vortex line breaks, forming monopoles, which quickly move to the edges of the lattice

and annihilate, lowering the magnetic flux by 4 /e.

6.4 Schwinger instanton for ’t Hooft—Polyakov mono-

poles

In the previous section, we computed the Schwinger sphaleron, a static solution to the equa-
tion of motion that mediates high-temperature Schwinger production of monopoles from
magnetic fields,! when the fields are thermally excited and pass classically over the sphaleron
barrier. At zero temperature, Schwinger production is a purely quantum process, medi-
ated by a four-dimensional instanton solution to the field equations. This solution was first
analysed in the worldline limit in Refs. [?, ?]—this calculation was reviewed in Section ?7.
In this section we extend this calculation beyond the worldline limit, computing the full
field-theoretic saddle point solution in Georgi-Glashow SU(2) theory.

We will consider pair production in a constant external magnetic field of strength B.
Without loss of generality we choose the x3 direction as the field axis; the U(1) field strength
tensor is

oxt = (5,LL161/2 - 5;1251/1)8- (626)

nv

! At such high temperatures, one can employ a Euclidean-time formalism where the extent of the compact
time direction is so small that the problem reduces to three-dimensional case investigated in the previous

section.
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As we have previously seen, the worldline instanton in this field is a circle in the x3-x4 plane

(where x4 denotes the Euclidean time direction) of radius

m

Tinst = —5> 6.27

= (627)

where m is the monopole mass and g is its charge. The corresponding action is
_mm’ g

nst — q B 4 )

Si (6.28)

this provides a useful comparison for our results.

6.4.1 Setup

The instanton is a four-dimensional object, extremising the Euclidean Georgi-Glashow action
1
S = / d*z {5 Tr F,, F*™ + Tr D,®D"® + \(Tr ®* — v*)?| (6.29)

where p,v = 1,2,3,4. One way to compute the instanton would be to numerically search
for saddle points of the discretised form of this action. However, optimisation on a four-
dimensional lattice with a reasonable resolution would require a large amount of computa-
tional resources. Instead, we can exploit some of the symmetries of the solution to reduce
the dimensionality of the problem.

It is clear that this is invariant under rotations in the z3-z4 plane (Euclidean boosts).
As a consequence, if instanton solutions exist at all, there must be an instanton solution to
the field equations that obeys this symmetry. In weak fields this is the circular worldline
instanton identified in Ref. [?] and described in Section ??. We proceed by exploiting this

symmetry, changing to “cylindrical” coordinates

xr = Iy,
Yy = T2,
(6.30)
p=\/23 + 7,
X = arctan(zy/z3).

As noted in Ref. [?], the symmetry of the system means that one may choose a gauge
such that all fields are independent of x, and the gauge field component A, vanishes. Such

a field configuration has the action

1 y ,
S = 27r/pdx dydp {5 Tr F;F7 + Tr D;®D'® + A\(Tr &% — v*)?| (6.31)
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where i, j represent z,y,p. This action is similar to the three-dimensional energy density
used in Section ?? to study static field configurations, differing only in the Jacobian. We are
therefore able to use similar methods to compute the desired instanton solutions, working on
a three-dimensional lattice with three gauge field components.?

In order to solve the equations of motion that arise from varying (7?), we must discretise
the action. The symmetry of the problem means that we only need to consider a three-
dimensional grid of points ¥ = (n,, ny,n,)a, where (n,,n,,n,) are integers and a is a fixed
lattice spacing. Because the coordinate curves of x, y, and p form a Cartesian lattice,
the nontrivialities that usually occur when performing a lattice discretisation in curvilinear
coordinates are circumvented.

The discretised form of Eq. (??) is the lattice action

Slat = 2T Z { D AG@) 2 = TrUy ()]

x 1<j

+2 37 (@) T (U0 + DU (@) - @) i (6.32)

+ p(D)N(Tr ®(£)? — UQ)Q}.

In this expression and in the rest of this section we use units such that a = 1. We also define

appropriately averaged Jacobian factors:

1

Pi(@) = 7 [p(Z) + pl(&+1) + p(F+ 0+ ]) + p(@ + J)],
| (6.33)
pil) = 5 [p(@) + p(Z + )]

In order to perform calculations it is necessary to impose boundary conditions at p = 0 and
p — oo. This is complicated slightly by the fact that the U,(Z) links are located between
lattice points: in our notation the link U,(n,, n,, n,) is located at (n,,n,,n,+ %) We choose
a discretisation such that n, takes half-integer values in [—1, R — %], where R € Z is the
number of lattice points in the p direction. We then impose boundary conditions at the

origin that are compatible with the instanton solution:

(I)(.T,y, _%> = (I)(l', Y, %)7
U:c,y(xa Y, _%) = Uz,y(xa Y, %)7 (634>
UP(I7y7 _%> - ]127

2Note that the field also has a symmetry in the z1-z5 plane, which we do not take advantage of here. This

is because of complications when performing a lattice discretisation in the resulting bicylindrical coordinates.
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In the continuum limit this is equivalent to imposing symmetry about the origin on ¢ and

A, y, and imposing antisymmetry about the origin on A,.

T,y
At n, = R the choice of boundary conditions is not important, as our solutions are in the

vacuum at this point. For computational simplicity we impose reflecting boundary conditions
Ux,y,p(xa Y, R+ %) = Uz,y,p(xa Y, R — %)

In the z and y directions we impose periodic boundary conditions: for n, and n, taking

integer values in [0, L], where L is the lattice size,

O(L+1,y,p) = 2(0,y,p),
nyp(L + 1,y,,0) = Ux,y,p(07y7p)7 (6 36)
O(z,L+1,p) =P(z,0,p),

Upyplx,L+1,p) = Uz, ,(z,0,p).

As in the three-dimensional case, one can define an Abelian field strength tensor f;; using
lattice projection operators (??). In our cylindrical coordinates, speaking of the magnetic
field (By, By, Bs) can cause confusion; we will work directly with the field strength tensor to
avoid this. The periodic boundary conditions in the x and y directions quantise the magnetic
flux > Zy fay(z,y, p), meaning that the same trick described in Section ?? can be used to
include the external magnetic field.

The results in this section were obtained using the gradient squared descent (GSD) al-
gorithm described in Section ??. The gradient squared function minimised to yield the
instanton solutions was

o5 (o) +So (g [8]) ) o

- p(T)

where the SU(2) tangent space projection operator Py, is defined in Section ??. This was
minimised numerically using a gradient descent algorithm with momentum [?]. To further
speed convergence in regions where the gradients are shallow, the gradients of the scalar field
and link variables were normalised at each step; the gradient descent update was (omitting

the momentum term for brevity)

O(Z, 7+ A7) il 1ﬁ 90(G%),
\/Z s 0u )2 + ¢ P(T)
(6.38)
U@, + A7) = U@, ) - il L 90,

Vel (G2 + ¢ P7)



CHAPTER 6. PRODUCTION OF "I' HOOFT-POLYAKOV MONOPOLES 111

where € is a small, positive parameter to avoid divide-by-zero errors and
2(G%)
05 (G?) =
»(") 9® (1)’
2(G%)
0. (G*) = Py, | —=| .
Uz<g ) U; |:8Ul(f)

The first instanton configurations, in weak fields, were generated using single monopole

(6.39)

configurations as initial conditions. Subsequent instanton solutions in stronger fields were
generated incrementally by varying the VEV and lattice spacing in the theory.

The full code used to find the instanton solutions is publicly available as part of the
tfmonopoles Python package [?]. This uses automatic differentiation and other optimisation
tools in the TensorFlow package [?] to perform the gradient descent, leveraging tools originally

designed for machine learning.

6.4.2 Results

We computed the instanton solution relevant to Schwinger production at magnetic field
strengths up to the critical value, for three values of the boson mass ratio: 5 = 0.5, § =1,
and 3 = 2. Our calculations were performed on a 64° lattice, and an external magnetic
flux was fixed by the periodic boundary conditions in the x and y direction as described in
Section ??. The field strength in units of m? was varied by incrementally changing the scalar
field VEV, while keeping § constant.

In weak fields, the instanton solutions strongly resemble the pointlike approximation; the
solution is a circular ring of magnetic charge with localised energy density. An example can
be seen in Fig. ??(a) and Fig. ??(a); the energy contours trace a “doughnut” shape. The
scalar field drops to a minimum on a ring of roughly the worldline instanton radius (?7) (in
the continuum the scalar field magnitude would vanish), and returns to near the vacuum in
the centre of the instanton.

As the field strength increases, the overall extent of the instanton initially stays close to
the worldline instanton radius (?7), but the instanton becomes less localised: the hole of the
doughnut begins to fill in (see Figs. ??(b) and ??(b)). At high external field strengths, the
instanton size is significantly larger than the worldline radius (see Figs. ??(c) and ?7?(c)). The
minima of the scalar field move closer to the centre of the instanton, until eventually there
is a single minimum instead of a ring. At this point, the instanton contains no separated
magnetic charges.

As the external field approaches the critical value B, the scalar field magnitude con-

tinuously approaches the VEV and the instanton action continuously approaches zero. At the
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Figure 6.4: Lagrangian density contours for instanton solutions for 5§ = 1 (ms = m,), with
the background field subtracted, at different external field strengths. In the upper plots, the
2o dimension is suppressed; in the lower plots, the x4 dimension is suppressed. Note the
difference in scale between the (a), (b) plots and the (c) plots.. Lagrangian density values in

units of m_? are shown in the colourbars.

critical field and above, the saddle point solution and the vacuum coincide for all investigated
values of f3.
To compare the instanton actions it is useful to rewrite the worldline instanton action (?7)
in terms of dimensionless parameters: defining
_9'B
4rm?2’

(6.40)

the action in the worldline approximation is

2
Sinst - gz <l - 1) . (641)

The instanton action as a function of k is plotted in Fig. ??. For all values of [ investigated,
the instanton action agrees well with the worldline prediction when x is small, and plateaus
at Sinst = 0 when B = B.;. Note that for different values of 5, B = B corresponds to a

different value of k:

(6.42)
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Figure 6.5: Surface plots of scalar field magnitude on slices through the instanton centre for
different external field strengths, with 5 =1 (mg = m,). Upper plots show the z3-z4 plane,
while lower plots show the x5-z3 plane. Note the difference in scale between the (a), (b) plots
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where f(f) is the monopole mass function given in Eq. (??). Using the results of the high-
precision calculations in Ref. [?], this gives x(Beit) ~ 0.313 in the limit 5 — oo. In the
f — 0 limit, xK(Bei) = 1. Though computing the instanton in these limits is beyond the
reach of our current methods, there may be simplifications that render the calculation more
tractable in future work, particularly in the BPS limit § — 0, where the 't Hooft—Polyakov
monopole solution can be found analytically.

It is interesting to note that the calculated action deviates from the worldline prediction
at K ~ 0.3 for all three values of 3, but the curves for different values of S remain consistent
until k ~ 0.5. This could be because the worldline prediction only accounts for the Coulomb
interaction, while 't Hooft—Polyakov monopoles also participate in short-ranged interactions
mediated by the scalar and massive vector bosons. Accounting for these forces could result
in a worldline prediction that is accurate at higher values of x (the instanton equivalent of
Eq. (?77?)), though such a calculation is nontrivial due to nonlocal worldline self-interactions.

Another important property shown in Fig. 7?7 is the fact that the instanton action for
't Hooft—Polyakov monopoles is lower than that for point particles for all values of 5. This
suggests that the effects of finite monopole size solely enhance monopole pair production
rate when compared to the pointlike approximation. This observation may be surprising,
considering the fact that in elementary particle collisions, solitonic monopole production is
generally expected to be heavily suppressed compared to Dirac monopole production [?,?7].
However, it is important to remember that the external magnetic field selects a preferred
direction in field configuration space, increasing the likelihood of processes that separate
magnetic charges. This means that entropic arguments, assuming a uniform distribution of
final microstates, do not apply to Schwinger production.

The instanton action against 1 — B/ By is plotted on a logarithmic scale in Fig. ?7?. For
all three values of 3, there appears to be power-law scaling as the external field approaches
its critical value. From the plot, the exponents appear to be similar for all three values of
B, though a numerical fit shows a slight decrease in exponent with increasing 5. The fitted

exponents are given in Table ?77.

6.5 Summary

In this chapter, we have explicitly computed two novel solutions to the equations of motion
of Georgi-Glashow SU(2) theory: the Schwinger sphaleron and the Schwinger instanton.

These are physically relevant as mediators of the production of solitonic monopoles from
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¢*B/ (4w M?) for different values of 3. The dotted black curve gives the worldline approxim-

ation, and vertical dashed lines indicate the values of x at which B = B.

£ Exponent
0.5  1.47(3)
1 1.32(4)
2 1.14(6)

Table 6.1: Exponents n computed from a numerical fit of the form Sj = A(1 — B/Beit)"
to the power-law regions of the curves in Fig. ?7. Errors are calculated using the covariance

matrix of the least squares linear regression.
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Figure 6.7: Logarithmic scale plot of scaled instanton action as the external field approaches
Beit. Dashed lines show fits to the power-law regions with exponents given in Table ?7?7. The

points used to generate the fits are indicated with filled or thick markers.
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constant magnetic fields. The Schwinger sphaleron energy can be used to estimate the rate
of thermal Schwinger production of 't Hooft—Polyakov monopoles at high temperatures: I'
exp(—Espn/T’). The Schwinger instanton determines the Schwinger pair production rate of
these monopoles at zero temperature: I' oc exp(—Sinst)-

In both cases, we find that the barrier to pair production vanishes precisely at the

Ambjgrn-Olesen critical field strength

[\

Bet = . (6.43)
e

When the external field B = B.;, the sphaleron and instanton both coincide with the
vacuum, indicating that instead of decaying to a lattice of vortices as predicted in Ref. [?],
the Ambjgrn-Olesen instability leads to classical production of 't Hooft—Polyakov monopoles.
This effect appears to be independent of the scalar boson mass; the critical field strength

depends only on m,, the mass of the charged vector boson.
It is interesting to note that the critical field strength we have found for classical mono-
pole pair production agrees almost exactly with the field strength (??) at which quantum

Schwinger pair production of pointlike monopoles becomes unsuppressed [?7, 7],

47rm?
BSChwinger = g3

= f(8)? Barit, (6.44)
where we have used Equation (??) for the monopole mass. Though this may seem like an
unlikely coincidence, it is not entirely unexpected because this is the natural field strength
given by dimensional analysis. This suggests that the Schwinger process turns continuously
into the classical instability when the field exceeds the critical value.

As will be seen in Section 7?7, in the case of electroweak theory—which does not admit
finite-mass solitonic monopoles—the Ambjgrn-Olesen vortex lattice is a stable solution to
the equations of motion [?,7?]. In future work it may be interesting to consider modifications
to electroweak theory that do admit solitonic monopole solutions [?,7,?,?], to see if classical
monopole production could occur in such a theory. If a similar phenomenon occurs at exper-
imentally obtainable magnetic fields, future heavy ion collision data could be used to further
constrain these models.

It is also worth considering if the classical production of monopoles could ever be observed
in a laboratory. Electroweak theory does not permit solitonic monopoles, so the relevant mass
my is not the electroweak W boson mass, but the mass of the charged gauge bosons associated
with the 't Hooft—Polyakov monopole. Experimental searches for heavy charged bosons give

a lower-bound mass of 5200 GeV [?], which implies a lower bound on the magnetic field



CHAPTER 6. PRODUCTION OF "I' HOOFT-POLYAKOV MONOPOLES 118

strength required to produce monopoles of 9 x 107 GeV? ~ 4.5 x 10?® T. As the fields in
current LHC heavy ion collisions are of order 1 GeV? [?], classical monopole production is
impossible to achieve with current technology. However, sufficiently strong magnetic fields
may have been present in the early Universe [?]. Furthermore, even if such field strengths
could be reached in experiments, one would expect monopoles to be produced by Schwinger
pair creation at lower field strengths.

A key feature of the results of this chapter is that for fields where quantum Schwinger
production is expected to occur, the sphaleron energy/instanton action is smaller than that
predicted by the worldline approximation for all considered values of the boson mass ratio
(see Figs. ?? and ?7?). This means that monopole internal structure and strong coupling
effects, which are considered fully by our lattice calculations, result in enhanced monopole
production compared to worldline predictions. This suggests that cross sections computed
from worldline approximations can be treated as lower bounds when applied to experimental
monopole searches, and helps to justify our recommendations in Section 77?.

The next step, planned for future work, is to extend these calculations to electromag-
netic fields with spacetime dependence, with the eventual aim of computing the Schwinger
production rate of solitonic monopoles in the fields present in heavy ion collisions. This is a
challenging task due to the decreased symmetry when compared to the homogeneous fields
investigated in this chapter, but once the calculation is complete it will provide the first

theoretically sound analysis of monopole pair production from particle collisions.



Chapter 7

Magnetic fields and electroweak

baryogenesis

7.1 Lowering the sphaleron energy with an external

magnetic field

The numerical techniques used and developed in earlier parts of this thesis are applicable to
a wide range of physical phenomena beyond magnetic monopole production. One example of
such a phenomenon is sphaleron-induced Electroweak baryogenesis [?,?]. The Electroweak
sphaleron is a static, unstable solution to the field equations of Electroweak theory that
mediates the violation of baryon number! B and lepton number L in the Standard Model—
the energy of this configuration E,, represents the barrier to B + L violation. At finite
temperature, the rate of these processes is suppressed by exp(Egpn/T). The theoretical
details of the Electroweak sphaleron are outlined in Section 77 and the references therein.
In this chapter, we focus on a numerical computation of the sphaleron solution in the
presence of an external magnetic field. The motivation for this is the observation that—
when the weak mixing angle O is nonzero—the sphaleron has a significant magnetic dipole
moment [?, 7,7, ?]. According to Ref. [?] the main contribution to this dipole moment
can be interpreted as coming from a small segment of Z string [?,?], which terminates on
a Nambu monopole-antimonopole pair. The topological nature of the sphaleron may be

interpreted as a relative “twist” between the monopole and antimonopole [?,?]. There is also

'Due to notational convention the same symbol is used for baryon number and magnetic field strength.
As the contexts of the two uses are very different, this thesis does not explicitly distinguish between them

unless there is a possibility of ambiguity.
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a small contribution to the sphaleron dipole moment from a loop of electromagnetic current
density [?].

The fact that the electroweak sphaleron has a nonzero dipole moment for the physical
value of the weak mixing angle indicates that its energy may be lowered by the presence of
a suitably aligned external magnetic field. This would increase the probability of a B + L
violating transition. For weak external fields, one can assume that this effect is linear: the
change in energy is given by

AEq = —Bext - flsph, (7.1)

where éext denotes the external magnetic field and jis,, denotes the sphaleron dipole moment.
However, for stronger magnetic fields nonlinear effects become important; these cannot be
calculated analytically. A numerical study of the sphaleron in an external magnetic field
was carried out by Comelli et al. in the weak-field limit [?]. However, this analysis only
considered solutions where the fields did not have any angular dependence, so could not be
extended far into the nonlinear regime. In this work we have carried out a numerical analysis

over the full range of physically interesting external magnetic fields.

7.2 Ambjorn-Olesen condensation in Electroweak the-
ory

In Section ?? we introduced the phenomenon of Ambjgrn-Olesen condensation in Georgi-
Glashow SU(2) theory. This is a classical instability of a homogeneous magnetic field in a
theory containing charged vector bosons: at a field strength set by the vector boson mass
scale, the constant field becomes unstable. In the previous chapter, we showed that in Georgi-
Glashow SU(2) theory this instability leads to the classical production of 't Hooft—Polyakov
monopoles.

In Electroweak theory, this instability occurs at the critical field strength [?]

2

= W 21 % 10% GeV2 &~ 1.1 x 10 T, (7.2)
e

where myw ~ 80.4 GeV is the W boson mass and e is the electric charge, both defined in

Section ??7. As there is no possibility of a supercritical field decreasing in magnitude via

creation of magnetic charges, the instability instead leads to a new stable solution, which

consists of a periodic lattice of vortices [?,?] modulating both the gauge fields and the Higgs

field. As the field strength increases further above Bc(rli)t, the deviation from the homogeneous
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vacuum increases in magnitude, and the mean magnitude of the Higgs field decreases. This
continues until the external field strength reaches a second critical value

2
B® = T & 59 % 10" GeV? ~ 2.7 x 102 T, (7.3)

crit

2)

crit?

where my ~ 125 GeV is the Higgs mass. For field strengths above BY it is energetically
favourable for the Higgs field to be in the symmetric phase |¢| = 0, and the magnetic
field is pure hypercharge. This symmetry restoration has important consequences for the
Electroweak sphaleron.

In the symmetric phase of the Higgs field the sphaleron field configuration is pure gauge,
so it is expected that the energy of the sphaleron will be zero at this point. In Ref [?] it was
shown that in this phase there is the potential for unsuppressed B + L violation, meaning
that strong magnetic fields could provide the first observations of this elusive phenomenon.
t and B
It is not immediately obvious that the sphaleron energy remains nonzero all the way up

to B(

crit*

However, the nature of the sphaleron in B" has not previously been studied.

Cri crlt

For example, if the Ambjorn-Olesen vortices can carry baryon number, there may
be the potential for the instability at B((m)t to result in baryon number violation, in a similar

fashion to the instability studied in Chapter 77 resulting in monopole production.
(2)

crit

Another possibility for vanishing sphaleron energy below B is a regime where Z strings
are (dynamically) stable. This was analysed in Ref. [?] for the unphysical case where my <
my. It was found that an infinite Z string is perturbatively stable above some field strength

smaller than BY . As it has been shown that Z strings can carry baryon number [?] (though

crlt
presumably not without an energy cost), an analogous phenomenon in a system with physical

parameters could also provide a B + L violation mechanism.

7.3 The Electroweak sphaleron in a strong magnetic
field

7.3.1 Setup

For an overview of the electroweak sphaleron in the continuum, see Section 7?7 and the ref-
erences therein. Here, we discuss the sphaleron on the lattice. As the sphaleron is a static
solution, we can restrict the problem to three spatial dimensions, and set the timelike com-
ponents of the gauge fields to zero. In order to perform numerical calculations we discretise

the electroweak Lagrangian given in Section 7?7 (Eq. (77?)), defining a 3D lattice of points



CHAPTER 7. MAGNETIC FIELDS AND ELECTROWEAK BARYOGENESIS 122

T = (ng,ny,n,)a where n,, n,,n, are integers and a is the lattice spacing. The Higgs field
¢(Z), which is a complex doublet, is defined on lattice points, whilst the gauge fields are
defined by link variables UV (%) € SU(2) and U}Y (Z) € U(1). The discretised energy density
(in units defined by a) is then

ot = E %: 2-TeU) (%)) + Tl tfmz i ; [1—ReU(7)]
23 {01(@0(7) - Re [P @UY DU (D)1 + 1]} (7.4)

+ V(9).
Here U}Y and U} respectively denote the SU(2) and U(1) Wilson plaquettes. The sum of
this over all lattice sites Ejp = >~ Elat is the quantity we extremise.

In practice, we work in the unitary gauge, ¢(7) = (0 h(Z))?, h(Z) € R.2 Near the vacuum
state the residual electromagnetic field then corresponds to the complex phase of the top
left element u;(Z¥) = [U;(Z)],, of the combined link variable U;(Z) = UY(Z)UY(Z). This
agrees with the standard definition of the photon (??) in the continuum limit @ — 0. The

electromagnetic field strength tensor is then given by the plaquette variable

i) =~ a7+ )0 (7 + )0 (), (75)
and the magnetic field strength in the standard way as B; = e;jx fjr/2a*.

A useful test of the lattice discretisation is computation of the ground state energy density
in the Ambjgrn-Olesen phase. This was carried out using gradient flow on a 64 x 64 grid (the
solution is translation invariant along the axis parallel to the external field). An external
magnetic field was enforced by exploiting periodic boundary conditions (see Chapter ?7)
and varied incrementally by changing the Higgs VEV. The results are shown for Standard
Model parameters in Fig. 7?7, where the normalised, spatially-averaged ground state energy
density is plotted against magnetic field strength. In line with the results of Refs. [?,7,7],
the energy density interpolates between that of a homogeneous magnetic field in the broken
H1ggs phase for B/B
B/ B

< 1, and a pure hypercharge field in the symmetric Higgs phase for

crit

) > m2 fm?, ~ 2.42.

7.3.2 Results

To generate the sphaleron solutions on the lattice, we used the Chigusa-Moroi-Shoji (CMS)

gradient descent algorithm described in Section ??. A similar method was also used in Ref. [7]

2Note that there are no issues with singularities on the lattice, as the points where the Higgs magnitude

vanishes, and the positions of strings, are located between lattice sites.
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Figure 7.1: Plot of spatially-averaged ground state energy density (divided by that of a
homogeneous magnetic field &0, ) against external field strength in units of the lower critical
field, for Standard Model parameters. The dotted curve shows energy density of a pure
hypercharge field in the symmetric Higgs phase. Dashed lines indicate the lower and upper

critical fields.
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Figure 7.2: Plot of sphaleron energy (with the background field subtracted) against external
field strength for physical values of the Standard Model parameters. Dashed lines indicate
the lower and upper critical fields. In physical units, 47v/ggw ~ 5 TeV.
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Parameter Value

JEW 0.5
A 0.076
av 0.60-0.90
sin® Oy 0.23

Table 7.1: Numerical values of the dimensionless parameters of Eq. (??) used in our calcula-

tions.

to compute the sphaleron in the limiting case 6w = 0, without an external magnetic field
present. The LATfield2 C++ library [?] was used to aid parallelisation and a Barzilai-Borwein
adaptive step size [?] was used to speed convergence.

To find the sphaleron solution without an external field, we used the initial ansatz de-
scribed in Ref. [?]. As detailed in Chapter ??, periodic boundary conditions constrain the
magnetic flux through the lattice in units of 47 /e; this can be exploited to restrict the gradient
flow to field configurations with an external magnetic field present. By linearly superposing
a constant field on an existing sphaleron solution and using this as an initial condition for
modified gradient flow, sphalerons in an external field were iteratively generated until the

(1)

field strength was within one flux quantum of the first critical field B, ;.

For B > Bgi)t, a sphaleron solution with a nontrivial background field is sought. This was
achieved by first using standard gradient flow to find the Ambjgrn-Olesen vortex background,
then “transplanting” a sphaleron solution with an incrementally weaker external field by
replacing the field at lattice points outside the sphaleron core with the Ambjgrn-Olesen vortex
field. After smoothing using standard gradient flow, the CMS gradient flow could be used
to find a saddle point solution of the fields that tends to the Ambjgrn-Olesen vortex lattice
at large distances. After the first sphaleron solution against an Ambjgrn-Olesen background

was found, the magnitude of the external field was increased further by changing the scalar

field VEV. This was continued until the external field reached B = Béfi)t.
(1)
crit

Computation of the sphaleron for B < B
for B > BY

crit

was carried out using a 64 x 64 x 192 grid;
a 64 x 64 x 256 grid was used. Table ?? gives the values or ranges of the
dimensionless parameters of Eq. (?77) used in our calculations. Note that the overall scale is
set by the lattice spacing a, and the boson mass hierarchy is set by the ratios \/gay and
sin? Oy, so matching these quantities to the Standard Model parameters ensures that our
results reflect the physical Standard Model.

The sphaleron energy as a function of B is shown in Fig. ??7. For weak fields where



CHAPTER 7. MAGNETIC FIELDS AND ELECTROWEAK BARYOGENESIS 126

S
558555
0020057
it
Ui

33
09020, 9020 %
SRRRHXL
NS00 %%,
0 0:% %
0

>
SR

(a) B/B) = (b) B/BL) =0.48 (c) B/BY =091

crit — crit —

Figure 7.3: Visualisations of sphaleron solutions for different subcritical magnetic field
strengths. Top plots show energy density contours in units of (ggwv)?* in 3D space. Bottom
plots show slices in a plane parallel to the magnetic field intersecting the sphaleron at its
centre: the surface gives the scalar field magnitude in units of its VEV, whilst the vector
plots give the direction of the magnetic field (with the background subtracted) through the

same slice. Spatial axes have units of (gewv) ™.
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B < Bc(rli)t, there is a linear relationship as expected from Eq. (??7). The gradient in the
linear region suggests a dipole moment of u =~ 1.8¢/(awmw) (aw denoting the weak fine
structure constant), which agrees with interpolated results from other numerical studies of
the sphaleron dipole moment [?,? 7] (these were carried out before the Higgs mass was
known, so do not include data for the physical Higgs mass).

As the external field strength approaches B(Eii)t from below, the sphaleron energy decreases
at an increasing rate. Interpolating the values in Fig. ?? gives a sphaleron energy at the
critical field of Esph(Bgi)t) ~ 2mv/grw ~ 2.5 TeV, significantly smaller than the sphaleron
energy in the absence of an external field but significantly above zero.

(1)

in Fie. 77
it are shown in Fig. ?7. It can be

Visualisations of sphaleron solutions for B < B
clearly seen that the solution becomes more prolate as the field increases: for an external
field of around half the first critical field the contours are still close to spherical (as the
weak mixing angle is small, the prolation of the sphaleron in the absence of an external
field is barely noticeable). However, the prolation becomes very pronounced at larger field
strengths. It can be seen from Fig. 77 that the peak energy density of the sphaleron decreases
monotonically with increasing field strength. The contours of the Higgs field magnitude also
become more prolate, though there always remains a minimum close to zero at the centre
of the sphaleron—this is due to the topologically nontrivial nature of the solution; in the
continuum limit the Higgs field would vanish at the centre. The lower plots in Fig. 7?7 show
the direction of the magnetic field as defined in Section ??7. The main observable feature is
the dipole field due to a pair of Nambu monopoles as observed in Ref. [?]; the length of the
segment of Z string is two lattice spacings for all B < B.;;. The magnetic part of the Z field
also shows a dipole-like configuration, though this decays much more rapidly with spatial
distance as the Z boson is massive. Examination of the hypercharge field shows—again, as
described in Ref. [?]—a loop of (electric) current density circling the centre of the sphaleron.

For B > B!

¢ the homogeneous vacuum develops a negative mode and is no longer the

ground state. This makes computation of the sphaleron much more difficult.

By symmetry arguments, there should be a stationary point of the energy resembling
the sphaleron in subcritical fields: an axisymmetric field configuration with a Chern-Simons
number of one half. An argument for the existence of such a solution follows from the argu-
ment presented in Refs. [?,?]: the homogeneous vacuum is the lowest energy axisymmetric
state for a given value of B, and one can construct a noncontractible loop from this vacuum
to itself passing through a stationary point of the energy. However, such a stationary point

would have two negative modes: in addition to the mode varying Chern-Simons number,
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there would also be the instability of the background field configuration. This would mean
that this solution has multiple negative modes and would not be relevant for tunnelling
processes, so we have not attempted to study it here.

Instead, the relevant sphaleron solution with a single negative mode should resemble the
subcritical sphaleron at short distances but tend to the Ambjgrn-Olesen vacuum at large
distances. In this work we searched for and found such solutions. The key features are
similar both above and below the first critical field: the energy contours trace a prolate
spheroid, the Higgs field vanishes at the centre, and a pair of Nambu monopoles separated
by a Z string are observed.

A surface plot of the Higgs field magnitude for a sphaleron solution with B > Bgi)t is
shown in Fig. ??7. The Higgs field in the ground state is also shown for comparison; it is clear
that the solution consists of the sphaleron of Refs. [?,?] against the nontrivial background
of Refs. [7,7,7].

While finding solutions for external fields very close to B w

crit

is technically difficult due to
the presence of the almost zero Ambjgrn-Olesen mode, the points in Fig. 7?7 seem to indicate
that the energy is continuous across the critical field. It can be seen that the energy of
the sphaleron above the first critical field continues to decrease monotonically, though the
acceleration of the decrease in energy with increasing field strength ceases.

(2)

The sphaleron energy remains greater than zero until the second critical field B, = m¥ /e
is reached. At this point, the negative mode of the sphaleron “flattens” to a zero mode, and
standard gradient flow from a sphaleron configuration at lower external field will converge
upon a field configuration with the same energy as the vacuum, with a vanishing Higgs field
magnitude. This solution still contains a Z string, but with no Higgs VEV this is purely a
gauge object.

To quantify the critical scaling behaviour of the sphaleron energy as the field approaches
B?

crit?

we show it on a logarithmic scale in Fig. ??. For the strongest fields, the sphaleron
solution is very close to the vacuum: the contribution to the total energy of the system due
to the sphaleron is around one part in 10°. For this reason, finding the exact solution is
difficult and the value of the sphaleron energy may carry some error. This could explain
the slight modulation of the curve visible on a logarithmic scale in Fig. 7?7, especially in the
smallest values of the energy. Unfortunately, as the errors are not statistical in nature, it is
not possible to include error bars in this plot.

There appears to be a linear region on the log-log plot that suggests a power-law scaling:
for B close to B

crit?
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(a) (b)

Figure 7.5: Surface plots of Higgs field magnitude in units of the Higgs VEV. Left: sphaleron
solution for B/ BY = 1.70; a slice perpendicular to the external field passing through the

crit
centre of the sphaleron is displayed. Right: Ambjgrn-Olesen condensate solution for the same

external field. Spatial axes have units of (ggwv) ™.
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4o ' BY '

crit
A numerical fit gives an exponent of 1.65 £ 0.04 and a coefficient of 0.223 £ 0.002. However,
the errors in the data, especially for higher values of the field where the energy is very small,
make the scaling relationship difficult to determine precisely. More investigation would be
required to ascertain whether the power-law scaling is valid.

As the modified gradient descent method used in our calculations tends to converge to
saddle points near to the initial field configuration, in principle there could be other saddle
points for external fields between Bérli)t and Bgi)t that have a lower energy than the solutions
we have found. However, our solution appears to be continuously connected to the standard
zero-field sphaleron, suggesting that it is responsible for the same B + L violating process.
As even the zero-field sphaleron has not been shown rigorously to be the lowest energy saddle

point of electroweak theory, we do not attempt to prove this here.
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7.4 Summary

We have computed the electroweak sphaleron solution in an external magnetic field B ranging
(2)

from zero up to the second Ambjgrn-Olesen critical field B = m# /e where the Higgs field
symmetry is restored. We find that when B, is increased, the sphaleron energy initially

then more rapidly until B = BY . For BY < B < B¥

crit* crit crit?

decreases linearly for B < Bérli)t,
the sphaleron energy decreases gradually until it reaches zero when the Higgs symmetry is
restored at Bgi)t; above this the sphaleron ceases to exist.

The vanishing of the sphaleron energy at the second critical field confirms the result of
Ref. [?] that if fields of this magnitude could be produced, they would result in a greatly
enhanced rate of B 4 L violation. A striking consequence of this is that any baryonic matter
placed in such a magnetic field would spontaneously decay into leptons.

One potential avenue for observation of this field-induced baryon and lepton number
violation is the heavy ion collisions much discussed in earlier parts of this thesis. As Eqs. (77)
and (77?) show, the scale of the magnetic field at which the enhancement becomes significant
is of order 10* GeV?. Numerical simulations [?,?] (see Section ??) indicate that the fields in
present day heavy ion collisions at the LHC are of the order 1 GeV?, and scale linearly with
energy, so collisions energies of around 10° TeV per nucleon would be needed. This regime
is inaccessible to particle colliders in the near future. In a 10 TeV collision, the reduction in
sphaleron energy due to the magnetic field is only of order 0.1%, and therefore baryon number
violation is almost as strongly suppressed as at zero field. In addition, at high energies the
magnetic field is highly localised in both space and time [?,?]: while according to Ref. [?] the
spatial localisation has a suppressing effect, we showed in Chapter 7?7 that time dependence
enhances a similar nonperturbative tunnelling phenomenon.

The results may also have relevance for cosmology. It is possible that strong magnetic
fields were present in the early Universe [?,7,?]. If the field strength was still above or close
to B\

ot after the electroweak phase transition, it would have allowed baryon number violating

sphaleron processes to continue for longer, thereby affecting the baryon asymmetry of the
Universe. The required fields could be produced by exotic physics such as superconducting
cosmic strings [?, 7] or near-extremal magnetically charged black holes [?], but are not ex-
pected to arise in the simplest cosmological scenarios. An empirical observation, direct or
indirect, of baryon number violation due to strong magnetic fields is therefore unlikely in the

near future.



Chapter 8
Conclusions and outlook

In this thesis we have explored two main methods of computing the rate of magnetic monopole
production from magnetic fields: the worldline approximation, and lattice discretisation.

Working in the worldline approximation, in Chapter ?? we computed the probability
of producing a monopole-antimonopole pair via the Schwinger effect in the electromagnetic
fields of an ultrarelativistic heavy ion collision. This calculation was performed analytically
to leading order in worldline self-interactions, and numerically to all orders. Under conditions
where the worldline approximation is valid, this is a truly nonperturbative result, applicable
regardless of the magnitude of the monopole magnetic charge. Unfortunately, an analysis of
the parameter regions where the worldline approximation holds shows that realistic heavy
ion collisions do not satisfy the required conditions at any relativistic energy.

This roadblock is at first glance surprising: one might think that for sufficiently heavy
monopoles, a worldline description should always be valid. The cause for dismay is the
fact that while the effective size of the monopole decreases with increasing mass, it only
decreases as 1/m, while the minimum radius of curvature of the worldline instanton, due to
the contracting effects of the time-dependent magnetic field, decreases as 1/m?. In the limit

of light monopoles, on the other hand, the radius of curvature scales proportional to m; the

Spacetime dependence Monopole structure Strong coupling

Worldline LCFA X X Ve
Worldline FPA Ve X X
Lattice X Ve Ve

Table 8.1: Comparison of the methods used in this thesis to analyse monopole production

from magnetic fields.
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worldline description is invalid in both limits.

While, as this work has shown, the goal of computing a complete and reliable cross sec-
tion for monopole production in ultrarelativistic heavy ion collisions cannot be achieved using
worldline methods, our worldline results are far from useless. The first use of our results is
in computing lower bounds on monopole cross sections. In Chapter ??7 we identified two
approximations that are expected to give conservative estimates of the cross section: the
free particle approximation (FPA), which neglects worldline self-interactions while includ-
ing the spacetime dependence of the magnetic fields to all orders, and the locally constant
field approximation (LCFA), which accounts for worldline self-interactions to all orders but
treats the spacetime dependence perturbatively. The FPA and LCFA have been used by the
MoEDAL experiment in Ref. [?] in the first dedicated experiment searching for monopoles
produced via the Schwinger effect, and have improved the previous Schwinger-derived mass
bounds by almost two orders of magnitude.

The FPA and LCFA are not expected to provide an accurate theoretical model of Schwinger
production in a heavy ion collision, but are suitable for computing conservative estimates that
can be used to generate lower bounds on monopole masses. In this manner, there are parallels
with the perturbative Drell-Yan and photon fusion cross sections [?] that are the standard for
computing mass bounds from proton-proton collisions. However, unlike these calculations, it
is known how to extend the results beyond their perturbative limits.

This is the other important result of our worldline investigations; we know exactly how the
worldline instanton method breaks down. In the fields of heavy ion collisions, the worldline
approximation is invalid because the radius of curvature of the instanton solution becomes
small compared to the classical radius of the monopole. This is a problem both for solitonic
monopoles—where to resolve smaller scales we must take the non-Abelian nature of the
gauge fields into account—but also for elementary monopoles, due to the strong coupling
effects causing the failure of the dilute instanton gas approximation. In the latter case, it is
uncertain how to make progress, but for solitonic monopoles it is clear: we can perform an
instanton calculation in the full field theory describing the monopole of interest.

This task is precisely what we have started in Chapter ?7. Using lattice field theory, we
have successfully computed a sphaleron and an instanton solution responsible for determining
the rate of pair production of 't Hooft—Polyakov monopoles from constant magnetic fields

in Georgi-Glashow SU(2) theory. These solutions have been known to exist in the worldline

!The fact that there is no region of parameter space where the approximations are valid appears to be an
frustrating coincidence of our Universe: if, for example, the atomic number of lead nuclei were a few orders

of magnitude higher, the worldline approximation would hold at relativistic energies.
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approximation for several decades [?,?], but to our knowledge we are the first to compute them
explicitly beyond the limit of weak magnetic fields. We have extended the computation of
these solutions to the Ambjgrn-Olesen critical field strength [?], where both the sphaleron and
instanton solutions coincide with the vacuum, which becomes unstable. This suggests that
the Ambjgrn-Olesen instability in Georgi-Glashow SU(2) theory leads to classical production
of 't Hooft—Polyakov monopoles.

Most excitingly, the field-theoretic sphalerons and instantons of Chapter ?? have lower
energies and actions, respectively, than their worldline counterparts. This means that ac-
counting for the internal structure of the monopole results in an enhanced pair production
probability compared to the worldline method. This is the reason that we believe the FPA
and LCFA systematically underestimate the true cross section for monopole production; the
evidence so far is that moving beyond the worldline approximation results in higher produc-

tion probabilities for a given field.

8.1 Future research directions

As is to be expected, there are still many unanswered questions that have arisen over the

course of completing this research. Some of them are summarised in the following.

8.1.1 Field-theoretic instantons in the fields of heavy ion collisions

As has been mentioned several times before, there are three factors that complicate the
computation of the monopole-antimonopole pair production rate from the electromagnetic
fields of heavy ion collisions. These are the spacetime dependence of the fields, the internal
structure of the monopoles, and strong coupling effects. Table 7?7 summarises the approaches
used so far in this thesis, showing that as yet, inclusion of all three complicating factors is
out of reach.

In principle, the task is straightforward: generalise the instanton calculation of Section 77
from a constant magnetic field to the spacetime-dependent electromagnetic fields described
in Section ?7. However, in practice, we expect there to be some difficulties in performing
such a calculation.

This instanton solution of Section 7?7 had time dependence in the solution itself, but the
magnetic field was homogeneous in both space and time. This resulted in a high level of
symmetry in the solution, allowing us to use a three-dimensional lattice. In the full fields

of a heavy ion collision, however, there are no continuous symmetries: all four spacetime
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directions are different and the instanton solution will therefore require a four-dimensional
lattice. This adds an extra degree of computational complexity to the problem, though with
sufficient computational power and a good initial guess, there is no reason why the methods
used in previous chapters should not be applicable. There may also be some simplifications
that can be made in the ultrarelativistic limit, where the system becomes boost invariant.

Another nontriviality is the problem of exactly how to impose the external fields on
the lattice. In the case of a constant magnetic field, one can exploit the fact that periodic
boundary conditions quantise the flux through the lattice to generate solutions with a given
flux at the boundary. This cannot be used to impose an inhomogeneous field with our current
methods, as any initial inhomogeneity will be smoothed out by the gradient flow. It is possible
that Dirichlet boundary conditions or source terms may be required. The introduction of the
desired fields is further complicated by the fact that, in Euclidean time, the magnetic field
from Section ?7? is singular at z = 0, 7 = +1/w. These poles are difficult to realise on the
lattice, and it is not immediately obvious how to deal with them.

It is likely that there are still more stages to the problem, such as introducing temporal
and spatial dependence separately. In the worldline approximation the time dependence
results in an exponential enhancement of pair production, and understanding the extent to
which this holds in the full field theory is of great interest. The localisation of the magnetic
field in the beam direction (due to Lorentz contraction) is transverse to the direction of
the magnetic field, so in the worldline approximation has no effect at leading order, as the
interaction between the field and the worldline is local. This no longer holds with extended
particles—understanding what happens when the monopole size becomes comparable to the
field’s spatial extent is again a key open question.

Another intermediate result that may be useful to investigate is a real-time simulation
of classical monopole production from a time-dependent magnetic field. As we showed in
Chapter 7?7, magnetic fields in theories that admit 't Hooft—Polyakov monopoles become
classically unstable to monopole-antimonopole production at a critical field strength set by
the charged vector boson mass. The effect of time dependence on this effect could be in-
vestigated by computing the real time classical evolution of fields with appropriate initial
conditions, and examining whether monopoles are produced. There are similarities between
this proposed calculation and the calculation in Ref. [?], which simulated monopole creation

from colliding classical wavepackets.
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8.1.2 Sphalerons and instantons in other monopole models

The calculations of Chapter ?? were carried out in Georgi-Glashow SU(2) theory, which
admits 't Hooft—Polyakov monopole solutions. This model is useful because, while relatively
simple, it can be embedded in any Grand Unified Theory (GUT), meaning that our results
are valid for all GUTs. However, GUT monopoles, if they exist, are expected to have very
large masses, far greater than would be accessible in any particle accelerator in the foreseeable
future, even with enhancements due to time dependence and strong coupling.

More experimentally relevant, perhaps, are theories modifying the electroweak interaction
that predict solitonic monopoles at far lower masses [?,?7,7,7], some at the TeV scale. These
are much more likely to be accessible to particle accelerators, so calculations involving them
may be of experimental interest. A fairly straightforward extension to the work in this thesis
would be to find the Schwinger sphalerons and instantons in one or more of these theories.
This would require a lattice formulation of a modified electroweak theory, and care must be
taken to achieve this in a consistent manner with a sensible continuum limit.

In Georgi-Glashow theory, monopoles are produced via the Ambjgrn-Olesen instability at
a field strength set by the charged vector boson mass m, and the electric charge e. Notably,
the critical field strength does not depend on the scalar self-coupling, so is independent of
the monopole mass (except through the shared dependence on m, and e). In the modified
electroweak theory models that admit monopoles, there are more free parameters, and the
monopole mass can vary over a much greater scale by tuning these parameters. It would
be interesting to see if the Ambjgrn-Olesen instability still leads to monopole production in

these theories, or if the phenomena decouple.

8.1.3 Other nonperturbative solutions in field theory

Finally, the techniques used and developed over the course of the research presented here
are applicable to a wide range of problems involving nontrivial solutions in field theory.
An example is presented in Chapter 77, where we computed the energy of the electroweak
sphaleron in an external magnetic field.

There are many more nonperturbative phenomena in field theory that our techniques
could be applicable to, such as Skyrmions, cosmic strings and vacuum bubbles. As a specific
example, in the Skyrme model, the only known saddle point solutions have a high degree of
symmetry (e.g. the sphalerons found in Ref. [?]); our saddle point finding techniques may
be able to find other, more complicated solutions. These would be theoretically interesting

in their own right, but may also have physical interpretation as mediators of transitions in
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atomic nuclei.

8.2 Final words

The theoretical study of magnetic monopole production is still very much in its infancy, due
to the strong coupling between the monopole and the electromagnetic field, which severely
complicates calculations. This work plays a small part in advancing our understanding of
this phenomenon.

We have provided a new method of obtaining quantitative lower bounds on monopole
masses, assuming that future heavy ion collision experiments do not produce monopoles.?
We have pushed the worldline approximation to its limits, and shown how to move beyond
it, generalising semiclassical results from weak fields to strong ones. In doing so, we have
uncovered new features of the vacuum structure of non-Abelian gauge theories, describing
them quantitatively for the first time.

The next steps that must be taken in order to obtain a complete theoretical description
of monopole production in heavy ion collisions are clear, and while there are still practical
obstacles to be overcome, we hope that the foundations we have laid with this work will
precipitate further advances. In the not too distant future, we may see monopoles produced

in heavy ion collisions for the first time—at least in a lattice simulation.

2If monopoles are discovered, we hope only that they do not oversaturate the bounds derived from our

work.
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Appendix A

List of symbols and abbreviations

Latin symbols

Lie algebra index, lattice spacing, Woods-Saxon parameter
Woods-Saxon normalisation constant
x  Gauge field
3-vector potential
Impact parameter
Magnetic field
Magnetic field magnitude, peak magnetic field strength, baryon number

ouI v T S ST N SO

Speed of light, generic coefficient
Field configuration space
Set of complex numbers

Number of dimensions

g = Aa Qo

Exponential prefactor

Euler’s number

¢}

Electric charge, gauge coupling

Energy, electric field magnitude, peak electric field strength
Electric field

Complete elliptic integral of the second kind

Energy density

=~ O oy ©

Generic function, monopole mass function, electroweak sphaleron gauge
radial function
fur  Abelian field strength tensor
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i

3¢20223gSthngwélm&ub..ﬁ&i

Flux

Field strength tensor

Electromagnetic invariant

Magnetic charge

Dirac charge quantum

Electroweak SU(2) coupling constant

Electroweak U(1) hypercharge coupling constant
Electroweak isospin field strength tensor, photon propagator
Generic Lie group

Gradient squared function

Electroweak sphaleron scalar radial function
Reduced Planck’s constant

't Hooft—Polyakov monopole scalar radial function
Hessian

Generic Lie group

Imaginary unit, spatial index

Identity matrix

Spatial index

Electric current density

Magnetic current density

Spatial index, CMS gradient descent parameter
Boltzmann’s constant

Kinetic 3-momentum

't Hooft—Polyakov monopole gauge radial function
Complete elliptic integral of the second kind
Lattice size, Lagrangian, lepton number
Lagrangian density

Monopole mass (without subscript), mass of particle specified by subscript
Generic matrix

Generic integer, generic index, momentum distribution
Number of lattice points, Lie group dimension
Chern-Simons number

Normalisation factor

Generic unit vector
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P
P

ISy S S w
QgﬁQ ~ Cg@% =

-
=

ST

8
=

8y

8
S

SR

Canonical 3-momentum

Probability

SU(2) projection operator

Scaled Poynting flux

Polar radial coordinate

Monopole radius

Lie algebra representation, ion radius, generic radius, number of lattice
points

Set of real numbers

Particle spin, Schwinger parameter

Centre of mass energy

Action

n-Sphere

Minkowski time

Proper time

Temperature

Worldline parameter, generic function

Evolution operator

Matrix rotating Higgs doublet of electroweak sphaleron at spatial infinity
Link variable

Plaquette variable

Scalar field vacuum expectation value, generic function, speed
Generic eigenvector

Scalar potential, spatial volume

Spacetime volume

Complex variable

Electroweak SU(2) isospin field

Spatial coordinate, spacetime coordinate, generic variable
Position 3-vector

Position 4-vector, worldline path

Generic vector

Spatial coordinate

Electroweak U(1) hypercharge field

Electroweak hypercharge field strength tensor
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z Spatial coordinate
A Atomic number

Z Set of integers

Greek symbols

Q Electric fine structure constant, vector index

Q Magnetic fine structure constant

aw Weak fine structure constant

15} Boson mass ratio in Georgi-Glashow SU(2) theory, speed in units of ¢,

vector index

y Gradient descent step size, Lorentz factor
r Generic path, pair production rate

) Kronecker symbol, Dirac distribution

€ Small parameter

) Permittivity of free space

€iy..i, Rank n Levi-Civita symbol

¢ Integration variable

0 Generic angle, spherical polar angle

Ow Weak mixing angle

K Semiclassicality parameter

A Scalar self-coupling, generic eigenvalue, Lagrange multiplier
1 Spacetime index

m Magnetic dipole moment

140 Permeability of free space

v Spacetime index

& Keldysh parameter

T 7, homotopy group

IT Lattice projection operator

p Charge density, radial spacetime coordinate

PE Electric charge density
M Magnetic charge density
o Cross section, Lagrange multiplier

o; Pauli matrices
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T Gradient flow time, Euclidean time
T SU(2) basis vectors
0] Scalar field, generic field
) Adjoint scalar field
© Azimuthal polar angle
X Angular spacetime coordinate
w Inverse decay time
Q Quantum state, inverse width, Lie group element
Abbreviations
ANITA Antarctic Impulsive Transient Antenna
ANTARES Astronomy with a Neutrino Telescope and Abyss environmental RESearch
AO Ambjgrn-Olesen
ATLAS A Toroidal LHS ApparatuS
BPS Bogomolny-Prasad-Sommerfeld
CDF Collider Detector at Fermilab
CMS Chigusa-Moroi-Shoji
CS Chern-Simons
EW Electroweak
GSD Gradient squared descent
GUT Grand Unified Theory
FPA Free particle approximation
IceCube Not an acronym; a literal cubic kilometre of ice
LCFA Locally constant field approximation
LEP Large Electron—Positron Collider
LHC Large Hadron Collider
MACRO Monopole, Astrophysics and Cosmic Ray Observatory
MODAL Monopole Detector At LEP
MoEDAL  Monopole and Exotics Detector At the LHC
ODE Ordinary differential equation
OPAL Omni-Purpose Apparatus at LEP
QED Quantum electrodynamics
QEMD Quantum electromagnetodynamics
QFT Quantum field theory
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QGP
RICE
RHIC
RMSprop
SGD
STFC
SPS
SQED
SU

U

UK
uv
VEV
WKB

Quark-gluon plasma

Radio Ice Cherenkov Experiment
Relativistic Heavy Ton Collider
Root mean square propagation
Stochastic gradient descent
Science and Technology Facilities Council
Super Proton Synchrotron
Scalar quantum electrodynamics
Special unitary

Unitary

United Kingdom

Ultraviolet

Vacuum Expectation Value

Wentzel-Kramers-Brillouin
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The locally constant field

approximation

The locally constant field approximation (LCFA) is an approximation scheme for calculating
the Schwinger pair production probability and momentum distribution in an inhomogen-
eous electromagnetic field. It is a leading order expansion in the spacetime derivatives of
the external field, so is expected to be valid in the limit where the spatial and temporal
inhomogeneities are small. Because it removes many of the complications introduced by
field inhomogeneities, the LCFA has been widely used to study electron-positron Schwinger
production theoretically: see Refs. [?,7,?] for recent discussions.

In this appendix, we review the application of the LCFA to compute the overall pro-
duction probability, and the momentum distribution, of magnetic monopoles produced from

electromagnetic fields.

B.1 Pair production probability

The starting point for the LCFA is the pair production probability per unit spacetime volume
for a constant electromagnetic field. In fields where the electromagnetic invariant F, Wﬁ o=

E - B vanishes', for magnetic monopoles of mass m, charge ¢, and spin s, this is [?,?]

[(x) = %F(m)%xp <_g7.;7?$) + gz) , (B.1)
defining
Fa) = /|B@)? - | ()2 (B.2)

LAll fields considered in this thesis satisfy this condition
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The overall production probability is then obtained by integrating over all spacetime:
Prora = /d433 ['(x). (B.3)

This integration can be performed straightforwardly using numerical methods, or within a

steepest descent approximation.

B.2 Momenta of produced particles

The LCFA can also be used to approximate the momentum distribution of particles produced
via the Schwinger effect. There are two contributions to the measured momentum of the
monopoles produced: the initial momentum they are produced at, which is probabilistically
distributed, and the momentum they gain through classical evolution in the external field
after production, which is deterministic. Note that in the free particle approximation (FPA),
discussed in section 7?7, these effects are combined by using canonical momenta.

The initial momentum distribution as a function of spacetime can be obtained by boost-
ing to a frame where E=0 (which is always possible if E-B= 0), and applying the constant
field momentum distribution. This distribution was first identified in Ref. [?], and is identical
to Eq. (?77?), with the mass m replaced by the “transverse mass” \/m, where p'| de-
notes the component of momentum transverse to the external magnetic field. Including the

aforementioned boost gives the initial momentum distribution

. gF(t,7) mm? g’ @ 9 2
_ _ 9 T B.4
defining
. (t,7) = mn B(t,7) x B(t, ). (B.5)

|B(t, )| F(t, &)

Note that in the LCFA, particles are assumed to be produced with zero longitudinal
momentum py; they gain longitudinal momentum via the classical evolution after production.
This evolution follows the Lorentz force law for monopoles:

dp*

F*p,, B.6
7 IEp (B.6)

where £ denotes proper time along the monopole worldline. This is straightforward to com-
pute numerically.

Using the LCFA to compute a momentum distribution for monopoles produced in the
fields studied in Chapter 77 gives a very different result to the FPA. Notably, the final
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momenta of the particles is far lower, in the nonrelativistic regime. This suggests that if the
LCFA accurately describes the momentum distribution, Schwinger-produced monopoles from
heavy ion collisions may not have enough momentum to escape the beam pipe and interact
with a detector. However, for ultrarelativistic collisions, the LCFA predicts a momentum
distribution far narrower than allowed by the preparation-time energy uncertainty principle
(whilst the FPA saturates the uncertainty principle, as discussed in Section ?7). For this
reason, we do not expect the LCFA to provide a useful computation of the momentum
distribution, and suggest that the FPA be used instead.



Appendix C

Worldline numerics

This appendix gives the details of the numerical worldline calculation presented in Section 77,
computing the worldline instanton solution, including worldline self-interactions to all orders.
Our implementation of this algorithm was developed by Oliver Gould, adapting a previous
implementation used in a constant field at finite temperature in Ref. [?].

The continuum action we seek to extremise is the worldline effective action

_ 2 1 1 1
Slx, s; Aext] = E + — 5 duxux# zg/ AL, du

/d“/ e E;|

given in Section ?7. The Schwinger parameter s is integrated out using steepest descents, and

(C.1)

the worldline coordinates are scaled by gB/m to make them dimensionless. The worldline
is then discretised into N points, evenly spaced in the worldline parameter u. Using finite

differences to approximate the derivatives gives the discretised action

B

e (C.2)
B a+1 a B+1 B a B
2m2 Z(xu _J;u)(l‘p, _:Eu)GR(x » L ;CL),
7/8
where o, 8 = 0,..., N — 1 index the discrete worldline points. Here the exponentially regu-

larised propagator

Gl y:a) . VA (—M) (C.3)

A [(x — y)? + a?]  47n2a? a?

is used in preference to a length counterterm [?] so that the bare mass is positive (see

Ref. [?] for more details). Note that this form of discretisation is distinct from the lattice
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discretisation described in Section ?? and used in Chapter 7?7, as the background spacetime
remains continuous.

The continuous symmetries of the external field A, result in zero modes which must be
fixed in order to find a unique solution. The field used in Section 7?7 is spatially homogeneous,
so there are three zero modes corresponding to spatial translations. These can be fixed by
imposing the condition that the worldline centre of mass is at the origin, using the Lagrange

multipliers \;, i = 1,2, 3, adding the term
> i (C.4)

to the action. There is also a zero mode due to reparametrisation invariance, which in

Section ?? was fixed with the Lagrange multiplier term
o(2d — 2. (C.5)

The equations of motion arising from this action, including the Lagrange multiplier terms,
were solved using the Newton-Raphson method using the analytic approximation from Sec-
tion ?? as an initial guess. In general, N = 2!? points were used to describe the worldlines,

though other values were used to check the N — oo behaviour.
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