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Abstract Effective quantum field theories that allow for
the possibility of Lorentz symmetry violation can sometimes
also include redundancies of description in their Lagrangians.
Explicit calculations in a Lorentz-violating generalization
of Yukawa theory show that when this kind of redundancy
exists, different renormalization schemes may lead to differ-
ent expressions for the renormalization group β-functions,
even at only one-loop order. However, the renormalization
group scaling of physically observable quantities appears not
to share this kind of scheme dependence.

1 Introduction

The special theory of relativity is one of the cornerstones
of modern physics, but ever since Einstein introduced it in
1905, there has always been interest in asking whether the
Lorentz symmetry underlying special relativity is truly exact,
or whether it is just a highly useful approximation. Apparent
symmetries that eventually turn out to be merely approximate
have played extremely important roles in the development of
the standard model of particle physics, and it is natural to
wonder whether Lorentz symmetry may represent a similar
case. Over the last quarter century, owing to developments in
effective field theory (EFT) techniques, it has become possi-
ble to describe possible violations of rotation invariance and
Lorentz boost invariance in a systematic way. Along with this
theoretical development, there came a burst of experimental
interest in Lorentz symmetry tests – because it became appar-
ent that there were a great many possible forms of Lorentz
violation that had hardly been previously constrained at all.
The renewed experimental searches have, thus far, not identi-
fied any particularly compelling evidence in favor of Lorentz
violation. However, it remains a significant area of experi-
mental research, because we know that if Lorentz violation
is ever really demonstrated to exist, that will be a colossally
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important discovery, opening up whole new avenues for the
study of physics at the most fundamental levels.

The most general local effective field theory for describing
Lorentz-violating modifications to the physics of the well-
known fields that are part of the standard model of particle
physics has already been laid out in detail. This theory, which
is called the standard model extension (SME), is also capa-
ble of describing stable, unitary, local forms of CPT viola-
tion involving standard model fields, since there can be con-
nections between CPT violation and Lorentz violation [1] –
although the two occur separately in certain theories [2–4].
The SME is a quantum field theory (QFT), whose action con-
tains operators build out of the fermion and boson fields of the
standard model [5,6]. The minimal SME is the sector of the
SME that is expected to be renormalizable; it contains only
the finite number of local, Hermitian, gauge-invariant opera-
tors that are of mass dimension four or less. The terms in the
minimal SME Lagrangian are actually similar in structure to
those found in the usual standard model – the key difference
being that the SME operators may have uncontracted Lorentz
indices. The minimal SME is very often the most useful test
theory framework for evaluating the results of experimental
Lorentz tests.

Really understanding a QFT entails understanding the role
that quantum corrections play, and this, in turn, means under-
standing renormalization. Quite a bit of progress has been
made toward describing the renormalization of the minimal
SME, particularly at one loop order [7–15]. And yet, some
questions related to the renormalization of the minimal SME
are still outstanding, and this is particularly true in relation to
some of the less commonly discussed sectors of the theory.
For example, the explicit calculations needed for the one-loop
renormalization of a Lorentz-violating gauge theory coupled
to charged scalar fields have not been carried through, and so
the renormalization group (RG) scalings of several Lorentz-
violating couplings in the SU (2)L weak gauge sector remain
undetermined. There are also questions related to higher-loop
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calculations – such as whether perturbative renormalizability
may be proven to all orders using the same techniques as in
conventional relativistic QFT.

We do not expect that attempts to resolve these kinds
of outstanding issues will reveal any fundamental problems
with the minimal SME. For example, power counting argu-
ments that would be very hard to evade suggest that all sec-
tors of the minimal SME are fully perturbatively renormaliz-
able. However, these unsolved problems nonetheless present
interesting avenues for ongoing and future research, and the
detailed solutions to the problems may reveal new insights
into the general structure of QFT. For instance, symmetries
(internal and external) occupy central roles in our understand-
ing of the renormalization of the usual Lorentz-invariant,
CPT-invariant standard model. However, these roles will nec-
essarily be subject to some changes in the context of the SME,
since the SME obviously does not have the same symmetry
structure as the unmodified standard model.

Studies of the interplay between renormalization and sym-
metry in the SME have already yielded fundamental insights
into the nature of finite radiative corrections in QFT [16].
Among the terms in the quantum electrodynamics (QED)
sector of the minimal SME Lagrange density, the Lorentz-
violating Chern–Simons term is extremely peculiar; the term
depends directly on the vector potential A (not just on the
electromagnetic field strength F), so that it is not gauge
invariant as a density – although the integrated action is com-
pletely gauge invariant. The peculiar structure of the Chern–
Simons term means that many of the usual symmetry argu-
ments that may normally be applied to the evaluation of radia-
tive corrections are inoperative in the Lorentz-violating set-
ting. This provoked quite a bit of controversy over whether
there could ever be a purely radiatively generated Chern–
Simons term in the theory and, if so, what its size should be.
Without Lorentz and gauge symmetries to constrain the struc-
ture of loop corrections, it was discovered that with different
high-momentum regulators applied to superficially divergent
loop integrals, the theory could produce different finite radia-
tive corrections [17–32]. It was subsequently thought that
a nonperturbative approach might be capable of resolving
this confusing situation; however, any nonperturbative regu-
lation procedure that could lead to a nonvanishing radiative
correction term at leading order had to produce an unphysi-
cal Lorentz-violating mass-like term in the photon sector at
higher orders.

In this paper, we shall be concerned with another, entirely
separate puzzle that appears in the course of calculating the
radiative corrections to the minimal SME. Different argu-
ments, which appear to be equally valid – a direct one based
on the evaluation of specific Feynman diagrams, and an indi-
rect argument based on known facts about transformation
properties of the SME – seem to give different results for the

RG β-functions for certain Lorentz-violating operators in the
action.

Our treatment is organized as follows. In Sect. 2, we intro-
duce the relevant portion of the SME and lay out an indirect
argument for why the RG β-functions for certain couplings
should be related. In Sect. 3, we demonstrate, however, that
direct calculations of β-functions do not seem to bear out
the expected relationship. We extend the Feynman diagram
calculations to higher orders in the small SME parameters in
Sect. 4, and in Sect. 5, we demonstrate how to resolve the
conflict. The key result is that the β-functions may depend on
the renormalization scheme; this kind of dependence is com-
mon in higher-loop quantum corrections, but here it exists
already at one-loop order. Some of these results are extended
to even higher order in the Lorentz violation in Sect. 6, and
finally, Sect. 7 presents an outline of our conclusions.

2 The β-function puzzle for the SME f

In this paper, we are trying to address a puzzling observation
that has been made about the behavior of quantum corrections
in the SME. The puzzle concerns radiative corrections that
arise in the presence of two different kinds of terms in the
SME fermion sector. The Lagrange density for a fermion
species in the minimal SME is

Lψ = ψ̄(i�μ∂μ − M)ψ, (1)

where � and M can include terms with all possible Dirac
matrix structures. However, the puzzle we are interested in
concerns only a few of the possible terms, and we may limit
attention to theories with M = m and

�μ ≡ γ μ + �
μ
1 = γ μ + cνμγν + i f μγ5. (2)

The quantities c and f represent fixed tensor and axial-vector
backgrounds that distinguish physically between different
spacetime directions. In most cases, whether a local Lorentz-
violating operator (in the fermion sector or elsewhere) vio-
lates CPT symmetry is determined by whether it has an odd
or even number of outstanding Lorentz indices. A CPT-odd
term will ordinarily have an odd number of indices, and con-
versely. However, we shall see below that this correspon-
dence does not hold in quite the way we might expect for the
f term that lies at the center of our puzzle.

The fermionic action must be supplemented with a
bosonic propagation action and a fermion-boson vertex in
order to have nontrivial interactions, including radiative cor-
rections. The puzzle arises whether the quanta in the boson
sector are vector or scalar. In the former case, the QED sector
of the minimal SME has a Lagrange density

LA = −1

4
FμνFμν − 1

4
kμνρσ
F FμνFρσ − eψ̄�μψ Aμ. (3)
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The presence of the full Lorentz-violating � (as opposed
to the usual γ ) in the interaction term is required by gauge
invariance. However, (3) is not otherwise the most general
Lorentz-violating Lagrange density for the photon sector,
even in just the minimal SME. The extremely interesting
Chern–Simons term mentioned previously has been omitted,
since its discrete symmetries preclude its being involved in
the resolution of the puzzle with f and c. Moreover, only a
kF taking the form

kμνρσ
F = 1

2

(
gμρkFα

νασ − gμσ kFα
ναρ

−gνρkFα
μασ + gνσ kFα

μαρ
)

(4)

would need to be considered, for similar reasons. Note that,
not entirely coincidentally, the terms that are included in our
LA are exactly those minimal SME photon terms that do not
lead to any birefringence for electromagnetic waves propa-
gating in vacuum.

The QED sector of the SME has gotten more atten-
tion in the past; however, for the present work, it probably
makes more sense to look at a Yukawa theory, with bosonic
Lagrange density

Lφ = 1

2
(∂μφ)(∂μφ) + 1

2
Kμν(∂νφ)(∂μφ)

−1

2
μ2φ2 − λ

4!φ
4 − gψ̄ψφ. (5)

The renormalization of a fully general SME Yukawa theory is
more complicated than the analogous renormalization prob-
lem for the SME QED sector. The reason is that the most
general theory also includes additional Yukawa-like inter-
actions, with nontrivial Dirac matrices sandwiched between
the fermion operators in the ψ̄ · ψφ term. (Beyond one-loop
order, the presence of the four-φ coupling λ also adds another
complication.) However, once again, none of those nonstan-
dard fermion-boson coupling terms can play a role in our
puzzle, and they have been omitted from Lφ .

Then Feynman diagram calculations in the Yukawa theory
– when we specifically limit consideration to diagrams with
only the normal Yukawa coupling g – are actually simpler
than the analogous calculations in the QED sector. The rea-
son now is that the Lorentz-violating c and f in the Yukawa
theory only appear as insertions into the fermion propagator
in the scalar theory. In contrast, in the gauge theory c and f
appear in both the propagator and the vertex, and including
diagrams with Lorentz-violating vertices in matrix element
calculations will significantly increase their complexity. For
this reason – and because there does not appear to be any
reason to expect any conceptual differences in how the β-
function puzzle plays out in the two theories – we shall per-
form all our explicit one-loop diagram computations in the
Yukawa theory.

Among the results obtained in the course of studying
the renormalization of the minimal SME were the RG β-
functions for the Lorentz-violating operators in the two spe-
cific theories outlined above. In both of these theories, it was
found that the β-function for the fermion f vanished at one
loop and linear order in the Lorentz violation itself. At the
same time, the β-functions for the c terms were generically
nonzero. On one hand, there is nothing seemingly surprising
about the β f result. It was observed fairly early on that there
were very frequently no physical consequences to having a
f term in the fermion sector (at least at first order in f ). The
reason seemed straightforward; there were generally no oper-
ators representing physical observables in the theory that had
the right structure to be sensitive to the f coefficient. Note
that the operator corresponding to f0 (that is, iψ̄γ5∂0ψ) is
not merely odd under C, P, and T separately, but it is actu-
ally odd under any reflection, regardless of orientation. This
is quite different from the behavior of most P-odd operators
– such as ψ̄γ jψ , which is odd under a reflection R j of the
x j -axis but even under reflections along the the two other
perpendicular directions. The spacelike operators iψ̄γ5∂ jψ

likewise have discrete symmetries (under the full set of inver-
sions C, T, R1, R2, and R3) that do not match those of any
other normally-available observable.

In fact, the observation that i f μψ̄γ5∂μψ has no observ-
able effects at linear order is actually related to another
remarkable property of the theory. With a redefinition of the
fermion field, it is actually possible to rewrite the Lagrange
density with the f term as one with a c term instead [33]. In
other words, the f term is really a c term, combined with a
change in the representation of the Dirac matrices! A trans-
formation

ψ ′ = e
i
2 f μγμγ5G

(− f 2
)
ψ, (6)

where G(ξ) = 1√
ξ

tan−1 √
ξ is an analytic function of ξ =

− f 2, (along with a corresponding transformation for ψ̄ ′)
transforms a Lagrange density for the field ψ with a f term
into one for ψ ′ with no f term but instead a c term taking
the form

cνμ = f ν f μ

f 2

(√
1 − f 2 − 1

)
≈ −1

2
f μ f ν . (7)

The approximate form on the right-hand side of (7) is valid
when all the components of f are small, but the full expres-
sion with the radical is an exact result, and the transformation
is permitted for all f 2 < 1 (that is, all f that do not change
the signature of the bilinear form that couples the two factors
of the four-momentum in the fermion dispersion relation).

Thus, there should be no phenomena that are specific to the
presence of a f term. In fact, this could actually be inferred
just from the energy–momentum relations for fermions in the
presence of either a c term or a f term. The two dispersion
relations are
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(gμν + cνμ + cμν + cαμcα
ν)pμ pν − m2 = 0 (8)

for c; and for f ,

(gμν − f μ f ν)pμ pν − m2 = 0. (9)

From these dispersion relations, the equivalence

cνμ ≈ −1

2
f μ f ν (10)

for small f is once again clearly evident. Note another inter-
esting feature of the f theory that is illuminated by this equiv-
alence. While the (single-index) f term in the Lagrangian
superficially appears to be odd under CPT, it does not actu-
ally give rise to any CPT-odd effects, because it is equivalent
to a two-index, CPT-even c term at O( f 2).

Note also that both dispersion relations, with c and f , are
quadratic in the energy–momentum p. Of course, the ordi-
nary dispersion relation derived from the Lorentz-invariant
Dirac equation, pμ pμ−m2 = 0, is quadratic. However, in the
presence of more a general Lorentz-violating kinetic opera-
tor iψ̄�

μ
1 ∂μψ in the fermion action, the dispersion relation –

since it is derived from the determinant of a 4×4 matrix – can
be quartic. That the quartic dispersion relation can have four
roots (two positive and two negative for small �1) indicates
that the energy can depend on both the fermion–antifermion
identity and spin of an excitation. However, for (8) and (9)
this is not the case; the energies are both independent of the
spin orientation and the same for particles and antiparticles
(thus C even).

It is also evident from (8) that at O(c1) the energy–
momentum relation depends only on the symmetric part
c(νμ) = cνμ + cμν of the Lorentz-violating background ten-
sor c. In fact, it can be shown, just as with f , that there
are no physical manifestations of c[νμ] = cνμ − cμν at first
order. The reasons are actually quite similar. As noted, at
linear order f is equivalent to a change in the representa-
tion of the Dirac matrices. Since {γ μ, γ5} = 0, the matrices
�μ = γ μ + i f μγ5 in the presence of just a f (no c) obey the
same Clifford algebra relations as the γ μ,

{�μ, �ν} ≈ 2gμν, (11)

up to corrections that are O( f 2).
In 3+1 dimensions, there are five mutually anticommuting

Dirac matrices, and at first order, f μ is just an infinitesimal
rotation of the effective Dirac matrix �μ away from the γ μ

direction and toward the γ5 direction. The field redefinition
(6) just absorbs this rotation of the Dirac matrices back into
the field ψ ′. An infinitesimal rotation of �μ toward a dif-
ferent γ ν (with ν �= μ) direction is similarly represented
by the inclusion of c[νμ]. With only a c[νμ] present, so that
�μ = γ μ + 1

2c[ν μ]γ ν , we again have (11), up to corrections
that are second order in the Lorentz violation coefficients.
We shall thus henceforth explicitly assume that cνμ = cμν

is symmetric in its Lorentz indices. A full understanding of
quadratic Lorentz-violating dispersion relations, including
the contributions in (8) that are second order in c, is further
enabled by making a comparison with the dispersion rela-
tion for the free scalar sector of the Lφ from (5), and this
connection can be efficiently explored using supersymmetry
[34].

If the c and f terms are actually physically equivalent,
then it seems like this ought to show up in their RG scal-
ings. If the RG β-function for a quantity x is expressed as
βx = x�(x), then it appears that we should have, at lead-
ing order, �( f μ) = 1

2�(cνρ) so that the RG evolution of
cνμ and f μ f ν will be equivalent. However, this has not been
borne out by the explicit calculations of the β-functions; in
particular, β f has been found to be vanishing with either a
QED or Yukawa coupling, while βc was not. Obviously, the
problem has something to do with the fact that the calcula-
tion of β f only considered terms of first order in f , but it
is extremely puzzling that there is this discrepancy between
two different ways of finding the function β f .

The resolution must lie with a fact about QFT that has
long been known, but which has not previously been applied
to a situation quite like this one. In actuality, the β-functions
(and other RG functions) for a theory are not observable
objects unto themselves. A β-function can depend on the
renormalization conditions used to define the theory, and it
may also potentially depend on the gauge in a gauge the-
ory. Ordinarily, this issue does not crop up at one-loop order
(and often not even at two-loop order) [35–40]. To get a
one-loop β-function, it is typically sufficient just to take a
linear combination of the coefficients of the logarithmically
divergent diagrams; this results in an expression that is inde-
pendent of quantities like the renormalization scale. While
that same approach does not appear to be wrong here, neither
is the β-function the approach produces uniquely correct and
unambiguous. The exact equivalence between fermion theo-
ries with f or c terms marks an ambiguity in how the theory
may be represented, and that ambiguity evidently carries over
to the β-functions, even at just one-loop order.

The fact that there is a degree of reparameterization invari-
ance makes this situation qualitatively similar to that seen
in certain generalized gauge theories. There is a family of
physically equivalent of actions, the parameter in question
being the relative sizes of the equivalent f and c terms. The
parameter may be changed, without affecting the physical
observables of the theory, by a rotation of the basis vectors
in the Dirac Grassmann algebra. When a reparameterization
symmetry of the action exists at the classical level, there are
often interesting and nontrivial complications in the lifting of
that symmetry to the classical level, and it becomes a ques-
tion whether the relations implied by a classical symmetry
are stable under radiative corrections. In the canonical for-
mulation, these complications arise from operator ordering
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Fig. 1 Fermion self-energy diagram, with the virtual emission and
reabsorption of a boson, that would appear in the absence of f -type
or c-type Lorentz violation

issues, while in the path integral formalism, the new terms
can appear out of the transformed integral measure [41,42].

It could be interesting to study the consequences of the f -c
duality in this context, but the details are beyond the scope of
this paper. The main relevant question would be whether or
not the relation (10) is radiatively stable, provided we begin
with a theory which only had a f term. Approaching this
through the path integral, it appears that there should be no
additional terms appearing in the action when we make the
transformation (6), and there appear to be no anomaly-like
term from the Jacobian. The full technical details of this anal-
ysis are potentially interesting, but they would take us too far
afield from the main thrust of our analysis in this paper. Here
we are focusing specifically on the renormalization group β-
functions, because of the particularly prominent part that the
β-functions play in the modern understanding of quantum
corrections, and because our results are actually contrary to
some general expectations about how β-functions ought to
behave.

3 Fermion self-energy up to O( f 1)

The previously existing calculations of the fermion self-
energy (which led to the conclusion that the one-loop β-
function for f should vanish) are fairly straightforward. The
determination of the β-function by the usual method requires
the evaluation of two fermion self-energy diagrams. The
simplest one is the usual self-energy diagram in the scalar
Yukawa theory without Lorentz violation, as shown in Fig. 1.
To evaluate divergent diagrams, we shall use dimensional
regularization. (For purposes of extracting the infinite parts
of logarithmically divergent loop integrals, we do not need
to introduce a dimensional extension of the γ5 anticommuta-
tion relation {γ5, γ

μ} = 0. See Ref. [32] for further remarks
on the extension of γ5 to nonintegral dimensions in Lorentz-
violating theories.) The value of the Lorentz-invariant self-
energy diagram, in d = 4 − ε dimensions, is

− i�0 = (−ig)2
∫

ddk

(2π)d

i(/k + /p + m)

(k + p)2 − m2

i

k2 − μ2 (12)

= g2
∫ 1

0
dx

∫
ddl

(2π)d

/l + (1 − x)/p + m

(l2 − �)2 , (13)

Fig. 2 One-loop self-energy diagram, with a single insertion of f (rep-
resented by the dot) along the fermion propagator

using Feynman parameters and l = k + xp, so that � =
xm2 + (1 − x)μ2 − x(1 − x)p2, as usual. [Conveniently,
the insertion of additional perturbative Lorentz-violating ver-
tices will not change the general (l2 − �)n structure of the
higher-order denominators.] The evaluation of the remaining
expression is standard, yielding the logarithmically divergent

− i�0 = ig2
∫ 1

0
dx

[
(1 − x)/p + m

]
η; (14)

the divergence is encapsulated within

η = η(�) = �(ε/2)

(4π)2−ε/2�ε/2 . (15)

Along with the conventional self-energy diagram, it is also
necessary to evaluate the amputated one-loop diagram with
the same Lorentz-violating structure as f itself. This is a dia-
gram with a single insertion of the CPT-odd f -dependent ver-
tex −γ5 f μ pμ. (Full Feynman rules for the Lorentz-violating
Yukawa theory, including both f and c vertices, are given in
[14].) The diagram, with the Lorentz-violating insertion rep-
resented by a dot, is shown in Fig. 2. Its value is

− i� f = (−ig)2
∫

ddk

(2π)d

i(/k + /p + m)

(k + p)2 − m2

[−γ5 f μ(kμ + pμ)
]

× i(/k + /p + m)

(k + p)2 − m2
i

k2 − μ2 (16)

= −g2γ5 f
μ pμ

∫ 1

0
dx (1 − x)η. (17)

The integrand of (16) was simplified by using (/k + /p +
m)γ5(/k + /p + m) = −γ5[(k + p)2 − m2]. Then, as already
noted, the use of Feynman parameters to simplify the denom-
inator is unchanged from �0, since the fermion propagators
situated on either side of the f vertex have exactly the same
momenta. This is responsible for the simplification of the
magnitude of the infinite part of � f to a form very similar to
that previously seen in �0.

Extracting the divergence in the self-energy, we have

− i� f
LV∼ −g2

2

(
γ5 f

μ pμ

)
η. (18)

The
LV∼ notation in (18) indicates that the two expressions have

the same Lorentz-violating divergent parts. To isolate the
divergence we evaluate η at a renormalization scale � = M2,
as usual.
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Then the fact that the infinite coefficients of iγ5 f μ pμ

and /p in the two expressions are the same is what produces
the vanishing β-function in this renormalization scheme.
Following the usual procedure for renormalization, there
must be a fermion field strength renormalization countert-
erm, δψ = Zψ − 1 given by the infinite part of the /p coeffi-
cient in �0, renormalized at M2,

δψ = −g2

2
η(M2). (19)

There is also a counterterm δ
μ
f = (Z f − 1) f μ,

δ
μ
f = −g2

2
f μη(M2). (20)

Following the usual procedure of just reading off the coef-
ficients of �(ε/2)/(M2)ε/2 ≡ log(�2/M2) (reexpressing
the dimensional cutoff ε in terms of an effective energy–
momentum cutoff scale �),

β
μ
f = β f μ = M

∂

∂M

(
−δ

μ
f + f μδψ

)
= 0. (21)

This seems naively like an unambiguous result, but the true
situation is actually more subtle, and it is possible to set
physically motivated renormalization conditions in a differ-
ent way, so as to obtain an entirely different answer!

4 Self-energy at O( f 2) and O(c1)

The renormalization conditions used in Sect. 3 were so stan-
dard that we did not even spell them out explicitly. In essence,
the renormalization condition that set δ f was one that forced
the tree-level plus one-loop contributions to the f term in the
fermion propagator to take a certain value. Normally, in the
discussion of some other parameter (such as a coupling con-
stant like g, or another SME parameter like c), we might say
that those particular renormalization conditions forced the
parameter in question to take its “physical” value. However,
that is not possible with f , because there is no “physical”
value of f at the order we have so far considered. Remem-
ber, there is no physical observable in our theory that differs
from its value in the Lorentz-symmetric theory at O( f 1);
nothing we can measure in the theory depends linearly on f .

The next natural question is how the renormalization con-
ditions may be set in order to guarantee that we instead have
�( f μ) = 1

2�(cνρ). In fact, there is a continuum of possi-
ble renormalization frameworks for the theory. The source
of the ambiguity is precisely the fact that nothing physically
observable depends on the value of δ f at O( f 1). The pres-
ence of a δ f counterterm in the Feynman rules does not lead
to any physically meaningful changes in a theory, unless it
appears in a diagram in conjunction with at least one more
factor of f . This is just a consequence of the form taken by

the counterterm; although the counterterm contains a formal
infinity, it has the same Lorentz structure as a bare f term
in the Lagrange density – which we know is not observable
on its own. What this ultimately means is that the value δ f

is not actually uniquely determined (or even at all restricted)
by the structure of any O( f 1) loop diagrams. The one-loop
counterterm may instead be chosen so as to absorb the phys-
ical infinities that arise from a diagram with not one, but two,
f vertex insertions.

So in this section we shall evaluate a fermion self-energy
diagram in which there are two f insertions along the internal
fermion line. We shall also look at the diagram with a single c
insertion, since – under generic renormalization conditions –
the f and c parameters will mix under radiative corrections,
with the lowest-order c that may be generated purely from
f being of O( f 2). (The full evaluation of the fermion self-
energy at this order should really also include the evaluation
of a diagram with a K insertion on the boson propagator.
However, while c and K do mix under the action of the RG,
the K -dependent radiative corrections do not play any essen-
tial role in the resolution of the β-function puzzle. We shall
therefore not consider them any further.)

It is not, of course, unexpected that radiative corrections
at O( f 2) can give rise to a c-type term in the fermion self-
energy. The product f ν f μ has exactly the right discrete sym-
metries to generate an effective cνμ. In general, beyond first
order, the SME coefficients may mix in increasingly com-
plicated ways [15]. What is novel to this discussion is the
observation that there is actually a freedom to assign certain
radiative corrections to be renormalizations of either c or f .

The equivalence between the insertion of two f vertices
and a single c vertex on an on-shell fermion line is easy to see.
A fermion line carrying momentum p with three propagators
and two f insertions takes the form

S(p)(−γ5 f
ν pν)S(p)(−γ5 f

μ pμ)S(p)

= i(/p + m)

p2 − m2 (γ5 f
ν pν)

i(/p + m)

p2 − m2 (γ5 f
μ pμ)

i(/p + m)

p2 − m2

(22)

= (−i)
(/p + m)

p2 − m2 ( f ν f μ pμ pν)
(−/p + m)(/p + m)

(p2 − m2)2 (23)

= i(/p + m)

(p2 − m2)2 ( f ν f μ pμ pν), (24)

moving a γ5 past the middle propagator in order to cancel
it out in (23). Alternatively, since (/p − m) and (/p + m)

commute, we may write the overall numerator of (23) as
i f ν f μ pμ(/p + m)pν(/p + m)(/p − m). When p is on shell,
by further invoking the closure identity for Dirac spinors,

/p + m =
∑

s

us(p)ūs(p), (25)
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Fig. 3 Self-energy diagram with two f vertex insertions on the internal
fermion line

we may sandwich pν between momentum eigenspinors.
Then using the Gordon identity at zero momentum transfer,

ū(p)pνu(p) = ū(p)(mγν)u(p), (26)

and the Dirac eigenvalue condition for the spacetime-
independent spinor u(p), which is (/p − m)u(p) = 0, we
may rewrite part of the numerator from (23) with

(/p + m)pν(/p + m) = 1

2
(/p + m)γν(/p + m)2. (27)

Returning to the full expression (23), including the denomi-
nators, we have, for on-shell p,

S(p)(−γ5 f
ν pν)S(p)(−γ5 f

μ pμ)S(p)

= S(p)

(
− i

2
f ν f μγν pμ

)
S(p). (28)

This has exactly the form of a c insertion into a fermion
line, and the preceding calculation is actually another way of
demonstrating an exact equivalence between a theory with a
fermion propagation Lagrangian containing a c term and one
containing a f term. The tree-level fermion two-point func-
tion for a fermion field with a f term will involve a sum of
diagrams with all possible numbers of f insertions along the
propagator line. According to (28), the resummation of all
the diagrams with even numbers of f vertices will proceed
in exactly the same way as the resummation of terms with
various numbers of c insertions in a fermion theory with a c
coefficient. (The terms with odd numbers of f insertions are,
on the other hand, never directly observable.) The coefficient
of the middle term in parentheses in (28) also matches (10),
although one might conceivably wonder why then (10) is not
exact, rather than an O( f 2) approximation. The reason for
this last apparent discrepancy is actually that the presence of
a c of f term in the action affects the canonical normaliza-
tion of the fermion field at higher orders; the higher-order
corrections in (7) are correspondingly only needed to correct
for these normalization differences.

The preceding equivalence was handled entirely at the
classical level, but it will provide some useful illumination for
our evaluation of the O( f 2) and higher loop corrections. In
particular, we shall apply the results (23–24) to help us eval-
uate counterterm diagrams that include f μδν

f , which possess
a Lorentz structure identical to (22).

The O( f 2) diagram with a single one-particle irreducible
loop is shown in Fig. 3. Its value is

− i� f f = (−ig)2
∫

ddk

(2π)d

i(/k + /p + m)

(k + p)2 − m2

[−γ5 f μ(kμ + pμ)
]

× i(/k + /p + m)

(k + p)2 − m2

[−γ5 f μ(kμ + pμ)
]

× i(/k + /p + m)

(k + p)2 − m2
i

k2 − μ2 (29)

= g2
∫

ddk

(2π)d

f μ f ν(/k + /p + m)(k + p)μ(k + p)ν
[(k + p)2 − m2]2(k2 − μ2)

(30)

= g2 f μ f ν

∫ 1

0
dx 2x

∫
ddl

(2π)d

×[l + (1 − x)p]μ[l + (1 − x)p]ν [/l + (1 − x)/p + m]
(l2 − �)3 . (31)

To extract the divergent part of the self-energy (which is what
determines the RG behavior), we can restrict attention to the
terms in the numerator that are logarithmically divergent by
power counting – that is, the terms quadratic in the shifted
integration momentum l. This lets us reduce the numerator
in the integrand of (31) to

N = lμlν[(1 − x)/p + m] + lμ(1 − x)pν/l

+(1 − x)pμlν/l . (32)

Inside a symmetric integration, we may make the usual
replacement of lαlβ with l2gαβ/4. (Dimensional regulariza-
tion corrections to this expression vanish as ε → 0, and so
can only contribute to unimportant finite terms.) Moreover
the second and third terms on the right-hand side of (32) are
equal when contracted with f μ f ν . This leaves a reduced
numerator

N = l2

4
gμν[(1 − x)/p + m] + l2

2
(1 − x)pμγν. (33)

The term with gμν contributes, after contraction with f μ f ν ,
only to O( f 2) modifications of the fermion mass and field
strength renormalization. The second term, in contrast, has a
structure corresponding to a radiatively generated cνμ term.

So the surviving Lorentz-violating contributions to N can
be inserted back into (31) to give

− i� f f
LV∼ g2 f μ f ν pμγν

∫ 1

0
dx x(1 − x)

×
∫

ddl

(2π)d

l2

(l2 − �)3 (34)

LV∼ i
g2

6

(
f μ f ν pμγν

)
η. (35)

The ε → 0 infinity in this radiative correction needs to be
canceled through the use of a counterterm, although there are
actually several ways that the cancellation may be achieved,
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combining δ f and δc counterterms in a potentially intricate
way.

However, since it looks as if the O( f 2) contribution to
the fermion self-energy may include a radiatively-generated c
term, we should also look at the renormalization of the theory
with a c in the fermion sector. If the renormalized theory is
to contain an effective c term generated by a logarithmic
divergence, then the action for the bare theory must already
include a c, so that the infinite correction can be absorbed.
We shall therefore consider the theory with c (in addition to
f ), up to O(c1). The diagram we need to compute is again
the one depicted in Fig. 2, except that we now interpret the
dot on the fermion line as a icνμγν(k + p)μ insertion. Like
the O( f 1) loop diagram, this is equivalent to a calculation
already outlined in [14].

Structurally, the diagram with the single c vertex on the
internal fermion line is quite similar to the � f f diagram. [In
fact, we almost could have used (28) directly to convert the
propagator with two f insertions into one with a single c-like
insertion. However, the derivation of (28) made assumptions
about the propagation being on the mass shell, which actu-
ally make things a bit more subtle than they might initially
appear.]

Evaluating the c diagram directly, we find

− i�c = (−ig)2
∫

ddk

(2π)d

i(/k + /p + m)

(k + p)2 − m2

[
icνμγν(k + p)μ

]

× i(/k + /p + m)

(k + p)2 − m2
i

k2 − μ2 (36)

= −g2
∫

ddk

(2π)d

×cνμ(/k + /p + m)γν(k + p)μ(/k + /p + m)

[(k + p)2 − m2]2(k2 − μ2)
. (37)

In this case, the insertion of the Feynman parameter yields

− i�c = −g2cνμ
∫ 1

0
dx 2x

∫
ddl

(2π)d

×[/l + (1 − x)/p + m]γν [l + (1 − x)p]μ[/l + (1 − x)/p + m]
(l2 − �)3 .

(38)

Structurally, the divergent (quadratic in l) part of the numer-
ator is

N = /lγνlμ[(1 − x)/p + m] + /lγν(1 − x)pμ/l

+[(1 − x)/p + m]γνlμ/l (39)

or, equivalently,

N = l2

4

{
γμγν[(1 − x)/p + m] − 2γν(1 − x)pμ

+[(1 − x)/p + m]γνγμ

}
, (40)

Fig. 4 The two diagrams, incorporating both f (dot) and δ f (circled
cross) vertices, that have the correct structure to cancel the Lorentz-
violating divergence in � f f

using lαlβ → l2gαβ/4 as well as gαβγ αγ νγ β = γ αγ νγα =
−2γ ν . We may also take advantage of the identity

/pγνγμ = 2pνγμ − 2γν pμ + γνγμ/p; (41)

contraction of (41) with the symmetric cνμ cancels the first
two terms on the right-hand side. This leaves

N = l2

2

{
γνγμ[(1 − x)/p + m] − γν(1 − x)pμ)

}
. (42)

Once again, the self-energy splits into two terms: one
which is Lorentz symmetric and represents a minuscule c-
dependent modification of the usual field strength and mass
renormalizations; and another which has the form of a radia-
tively generated c. That the first term of (42) is Lorentz invari-
ant is another consequence of the cνμ = cμν symmetric form,
combined with γνγμ = gμν +iσμν . As in the final evaluation
of the � f f integral, we have here

− i�c
LV∼ i

g2

6

(
cνμγν pμ

)
η. (43)

5 Alternative renormalization schemes

At this point, it is possible to lay out how divergences like
(34) and (43) may be canceled via counterterms, and how
the counterterms involved are not unique. One approach is
obvious; a single counterterm

ψ̄
[
δνμ
c γν(i∂μ)

]
ψ = −g2

6
η

(
cνμ + f ν f μ

)
ψ̄γν(i∂μ)ψ

(44)

serves to cancel both the O(c1) and O( f 2) divergences.
However, it is also possible to cancel the O( f 2) radiative

divergences using a δ f counterterm – remembering that the
δ f was actually not constrained by the value of the self-
energy at O( f 1). There is a bit of subtlety here, because the
δ f on its own clearly has the wrong spacetime structure to
cancel a term like (34). The presence of both a divergent δ f

and an additional tree-level f are actually necessary to effect
the cancellation. The diagrams involved are shown in Fig. 4.
According to (28), a

ψ̄
[
iδμ

f γ5(i∂μ)
]
ψ = −g2

6
η

(
i f μ

)
ψ̄γ5(i∂μ)ψ (45)

counterterm provides an equally plausible way of canceling
the divergence from Fig. 3.
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To verify the coupling constant flow – whether for c or f –
we ultimately need to look at the Callan–Symanzik equation
(CSE). For the theory with only a c, the CSE for the fermion
two-point correlation function takes the usual form,
[

M
∂

∂M
+

∑

xi

βxi
∂

∂xi
+ 2γψ

]

G(2,0)({pi }, {xi }, M)

∣
∣
∣
∣∣
−M2

= 0,

(46)

with two β-functions: the usual one for the Yukawa coupling
g and another one β

νμ
c describing the RG behavior of the

the Lorentz-violating c in the action. Taking the O(h̄) corre-
lation function as being a sum including [in addition to the
usual G(2,0)

0 from the Lorentz-invariant theory] the one-loop
self-energy diagram with the internal leg c insertion and the
counterterm diagram containing δc leads immediately to

βνμ
c = M

∂

∂M

(−δνμ
c + cνμδψ

)
. (47)

Using the value of δc read off from (44) for the case of the
theory with c-type Lorentz violation only,

βνμ
c = 2g2

3(4π)2 c
νμ. (48)

This agrees with the result found in [14], in spite of the rather
different bookkeeping for divergences used in that paper.

If we posit a theory in which the Yukawa coupling g and
the Lorentz-violating f are the only couplings, then the same
general form for the CSE (46) still applies. However, when
we include the f -dependent diagrams from Figs. 3 and 4, we
find that solving for β f actually gives

2β
μ
f = M

∂

∂M

(
−δ

μ
f + f μδψ

)
(49)

β
μ
f = g2

3(4π)2 f μ. (50)

The key element is the factor of two on the left-hand side
of (49). The factor comes about because there are the two
diagrams containing δ f shown in Fig. 4 that both contribute
to the two-point correlation function. It is really as if we were
calculating a β-function for the power f 2, rather than f itself.
The mathematical effect is seemingly to spread the RG flow
across the two powers of f , so that the rate of RG flow for
the physically observable tensor quantity f ν f μ is the same
as the flow for the cνμ in an equivalent theory. Because there
are two δ f diagrams that contribute, the scaling coefficient
of the δ f needed to cancel the O( f 2) divergence is half the
δc required for the cancellation. This is what we argued for
above on physical grounds.

[It is actually possible to include the diagram from Fig. 2
as a piece of a pair of (one-particle reducible) diagrams at
O( f 2) with additional f insertions along the external legs,
without changing the β-function result (50). Including these

diagrams just adds and subtracts extra terms looking like (20)
in various places, without changing the β-functions.]

However, with the general structure of all the (one-loop)
O( f 2) and O(c1) radiative corrections worked out, we are
actually in a position to make a more general statement. In
a theory with (the possibility of) both c and f , we actually
have a continuous family of choices for how to handle the
counterterms. The divergences will be adequately canceled
by any combination of counterterms

δνμ
c = −g2

6
η

(
cνμ + X f ν f μ

)
(51)

δ
μ
f = −g2

6
η (1 + 2X) f μ. (52)

The parameter X can take any real value, with X = 0 rep-
resenting the physically motivated choice we have now dis-
cussed extensively. Correspondingly, the RG β-functions are

βνμ
c = g2

3(4π)2

(
2cνμ − X f ν f μ

)
(53)

β
μ
f = g2

3(4π)2 (1 − X) f μ. (54)

In a theory with c and f simultaneously present, those
two Lagrangian parameters cannot be measured indepen-
dently. To the order we have considered so far, the energy–
momentum relation and other physical quantities only
depend on the combination 2cνμ − f ν f μ. According to (53–
54), the RG flow for the physically meaningful combination
is described by

∂

∂(log p/M)

(
cνμ − 1

2
f ν f μ

)

= 2g2

3(4π)2

(
cνμ − 1

2
f ν f μ

)
, (55)

which is independent of the renormalization scheme param-
eter X and structurally the same as the RG flow in a theory
with just a c tensor and no f at all.

What we have uncovered is that the RG functions for the
SME with a fermion f term are not unique; they depend
on the particular renormalization scheme. In particular, there
are multiple ways to select the counterterm diagrams that
will cancel the divergences that appear in the O( f 2) fermion
self-energy. From one viewpoint, this is actually rather unsur-
prising. Even at tree level, the description of the theory con-
tains redundancies; it is possible to exchange a f coefficient
for an equivalent c in any classical perturbative calculation.
What these results show is that the ambiguity extends to the
quantum level.

However, on the other hand, explicit scheme dependence
is not something that is usually seen in the one-loop RG
structure of perturbatively coupled theories. Explicit scheme
dependence typically enters at two- or three-loop orders.
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We have therefore identified another way in which the SME
can provide new insights into the general structure of QFTs.
There is also a degree of commonality with previous results,
in that explicit scheme dependence is frequently associated
with situations in which the physical phenomena are dis-
tinctly nonlinear functions of the scale-dependent coupling
parameters; this is also exactly what happens in the SME
with the effects of the f term, which can only contribute to
physically observable effects nonlinearly.

6 Higher-order radiative corrections

In approaching this problem, we initially thought that finding
the alternative renormalization conditions that would ensure
�( f μ) = 1

2�(cνρ)might be facilitated by extending the one-
loop radiative correction calculations toO( f 3) andO(c1 f 1).
However, after some further consideration, it became clear
that the resolution to the puzzle could not really involve any-
thing beyond O( f 2) and O(c1) in a fundamental way. The
reason is that the O( f 3) loop corrections can only produce
potentially divergent corrections to the fermion propagator
that involve the structure iγ5 f 2 f μ pμ. The corrections will
have this structure even in the lightlike, f 2 = 0, case, but
in that case, those corrections are manifestly vanishing. In
this special case the solution cannot involve imposing condi-
tions on theO( f 3) terms. However, if the method of solution
involves a power-series expansion in the components of f ,
then it should apply just as well at f 2 = 0 as for other values
of f 2. (In fact, one might actually expect the theory with
f 2 = 0 to have the most straightforward behavior. The light-
like case has the simplest and best-behaved correspondence
between the f and an effective c, because the cνμ equivalent
of a lightlike f is exactly − 1

2 f ν f μ; higher order corrections
are impossible simply by virtue of f 2 being zero. Moreover,
the quantity − 1

2 f ν f μ is traceless, and so it is equivalent to
a c that does not disturb the canonical normalization of the
fermion field.)

Nevertheless, we believe it is sufficiently interesting to
record here the results of the fermion self-energy calculation
at O( f 3) and O(c1 f 1). We consider first the diagram with
three f insertions along in the internal fermion line. The
calculation for this diagram goes in a very similar way to
ones we have already done so far. The self-energy is

− i� f f f = (−ig)2
∫

ddk

(2π)d

i(/k + /p + m)

(k + p)2 − m2

×
{[−γ5 f

μ(kμ + pμ)
] i(/k + /p + m)

(k + p)2 − m2

}3

(56)

= ig2
∫

ddk

(2π)d

×γ5 f μ f ν f ρ(k + p)μ(k + p)ν(k + p)ρ
[(k + p)2 − m2]2(k2 − μ2)

. (57)

Performing the l = k + xp substitution again, with the usual
algebra, gives

− i� f f f = ig2γ5 f μ f ν f ρ

∫ 1

0
dx 2x

∫
ddl

(2π)d

×[l + (1 − x)p]μ[l + (1 − x)p]ν [l + (1 − x)p]ρ
(l2 − �)3 .

(58)

Again taking only the quadratic part of the numerator then
simplifies the necessary numerator to

N = (1 − x)(lμlν pρ + lμlρ pν + lνlρ pμ). (59)

Since the numerator N is contracted with f μ f ν f ρ , the three
terms in the numerator contribute equally. Hence we obtain
the equivalent numerator

N = 3

4
(1 − x)l2gμν pρ, (60)

so completing the calculation gives the infinite part as

− i� f f f
LV∼ −3g2

2
γ5 f

μ f ν f ρgμν pρ

∫
dx x(1 − x) η (61)

LV∼ −g2

4

(
γ5 f

2 f μ pμ

)
η. (62)

We see that this indeed has the same Lorentz structure as the
term (18) at O( f 1).

However, we will get additional divergences from cross
terms at O(c1 f 1), which have the same natural order. There
are two diagrams with one c and f insertion each on the
internal line (corresponding to the two orders in which the
insertions may appear). The first such diagram (with c then
f along the direction of fermion number flow) yields

− i�c f = (−ig)2
∫

ddk

(2π)d

i(/k + /p + m)

(k + p)2 − m2

× [
icνμγν(k + p)μ

] i(/k + /p + m)

(k + p)2 − m2

× [−γ5 f ρ(k + p)ρ
] i(/k + /p + m)

(k + p)2 − m2
i

k2 − μ2 (63)

= −ig2
∫

ddk

(2π)d

×γ5cνμ f ρ(/k + /p − m)γν(k + p)μ(k + p)ρ
[(k + p)2 − m2]2(k2 − μ2)

(64)

Proceeding as usual, we get

− i�c f = −ig2γ5c
νμ f ρ

∫
dx 2x

∫
ddl

(2π)d

×[/l + (1 − x)/p − m]γν [l + (1 − x)p]μ[l + (1 − x)p]ρ
(l2 − �)3 .

(65)
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The contribution from the f -then-c diagram similarly
turns out to be

− i� f c = −ig2γ5c
νμ f ρ

∫
dx 2x

∫
ddl

(2π)d

×γν [/l + (1 − x)/p + m][l + (1 − x)p]μ[l + (1 − x)p]ρ
(l2 − �)3 .

(66)

Taking the sum of the two contribution and simplifying yields

−i�c f + f c = −4ig2γ5c
νμ f ρ

∫
dx x

∫
ddl

(2π)d

[l + (1 − x)p]ν[l + (1 − x)p]μ[l + (1 − x)p]ρ
(l2 − �)3 . (67)

The innermost integral is now identical with the one in (58).
Thus the simplification (59) of the numerator is applicable
[although (60) is not, since the expression is not being con-
tracted with the totally symmetric f μ f ν f ρ , but rather with
cνμ f ρ]. Therefore, the final O(c1 f 1) fermion self-energy
reduces to

− i�c f + f c
LV∼ g2

6

[
γ5

(
cν

ν f
ρ pρ + 2cνμ fν pμ

)]
η. (68)

This has the structure of a potential radiative correction to
f , but it has a more intricate form than has previously been
encountered. The effective f μ would receive a contribution
proportional to cνμ fν , which does not necessarily point along
the same spacetime direction as f itself.

However, we do note one very interesting feature of the
self-energy at this order. The full self-energy contribution
with both O( f 3) and O(c1 f 1) terms (not just their divergent
parts) may be cast in the form

− i� f f f +c f + f c = −4ig2γ5

(
cνμ − 1

2
f ν f μ

)
f ρ

∫
dx x(1 − x)

×
∫

ddl

(2π)d

lμlν pρ + lμlρ pν + lνlρ pμ + (1 − x)2 pμ pν pρ

(l2 − �)3 . (69)

This has the elegant consequence that when the physically
observable Lorentz violation coefficient tensor 2cνμ− f ν f μ

vanishes, then these higher-order radiative corrections vanish
as well.

7 Conclusion

The central point of this paper is that in the SME, which is
an EFT for describing Lorentz and CPT violation, there may
be explicit renormalization scheme dependence in the RG β-
functions. Moreover, this scheme dependence already occurs
at one-loop order. Depending on what is more calculationally
convenient, it may be preferable to use a prescription that
yields vanishing β f , or one in which cνμ and f ν f μ have

the same RG evolution. However, as seen in (55), which
governs the scale dependence of the physically observable
quantity 2cνμ − f ν f μ that appears in the fermion kinetic
energy, physical predictions should not depend on the choice
of scheme; we are talking about differences in accounting,
not physics.

The reason for the scheme dependence in the RG func-
tions is ultimately that the underlying action for the theory
contains redundancies in its parameterization. The minimal
SME Lagrange density includes all the superficially renor-
malizable terms that it is possible to write down involv-
ing Dirac matrices and derivatives acting on standard model
fields. However, not all parameters in the Lagrange density
are physically distinguishable. In particular, the same physics
can be described with either a c term or a f term – or an inter-
mediate combination of both. When quantum corrections are
included, this ambiguity naturally persists. A physical effect
that occurs due to virtual particle interactions may be similar
to the effect of a tree-level f term, so it may make sense to
treat the quantum modification as a radiative correction to f
itself. However, since the effects of a field operator with the
Lorentz structure of a f term – whether at tree level or radia-
tively generated – cannot be distinguished from the effects
of a c, any radiatively induced contribution to f could be
alternatively interpreted as a radiative correction to c.

The explicit one-loop β-functions (53–54) show how
the the radiative corrections to a Lorentz-violating fermion
kinetic term can be parceled out as contributions to either c
or f . A more cumbersome alternative way of demonstrat-
ing the existence of the ambiguity also exists. It is possible,
beginning with a bare theory containing both c and f , to use a

transformation like (6) to rotate all the Lorentz violation into
the bare c term. Then the quantum corrections can be calcu-
lated and any radiative corrections to c determined, before
performing another rotation in the Dirac space, to convert the
renormalized c operator into an appropriate combination of
renormalized c and f terms.

As previously noted, we chose in this paper to work with
a Yukawa theory (with no explicit Lorentz-violating terms
appearing in the fermion-boson vertex) purely for reasons of
simplicity. There does not seem to be any reason to expect
that the resolution we found for the puzzle concerning β f

will not apply more generally, including to the gauge sectors
of the SME. Obviously, the accounting of Feynman diagrams
in a gauge theory – in which the c and f terms appear in the
vertex as well as the fermion propagator – will be quite a bit

123



  676 Page 12 of 12 Eur. Phys. J. C           (2022) 82:676 

more intricate than in the Yukawa theory considered here.
However, we anticipate that the interplay between c and f
should remain qualitatively the same.

It would nonetheless be interesting to understand the
details of this interplay in more general Lorentz-violating
theories. Extension of the these results to the gauge sector
is one obvious area where further research is possible, but
there are also questions still to be answered in the Yukawa
sector of the SME. When other SME terms are present in the
Yukawa action (in either the fermion propagation sector or in
the interaction vertex), the f may mix nonlinearly with these
additional coefficients. The general pattern of scheme depen-
dence in the RG structure should persist in these more general
SME Yukawa theories, but the precise details of which terms
are involved remain to be worked out. Answering these var-
ious questions can provide further insights into the structure
of the SME, as well as nonlinear regimes in QFT more gen-
erally.
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