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Chapter 1

Introduction

This thesis concerns a study of bound states of heavy quarks in heavy-flavor Quantum Chromody-
namics (QCD). By heavy quarks I mean bottom and charm quarks. The light quarks, up, down,
strange, and also top quark (whose mean lifetime is shorter than the typical timescale of hadronic
interactions, hence, does not form bound states) are omitted from the theory. Reasons for limiting
the theory to heavy and relatively stable quarks will be fully explained later. My main motivation is
to contribute to the development of a Hamiltonian theory of hadrons. QCD of heavy-flavor quarks
offers several simplifications. Thanks to the large quark masses one can use asymptotic freedom
of QCD [1, 2, 3] and expand the Hamiltonian of the theory in powers of the coupling constant g.
I perform the expansion explicitly up to order g2 only. However, I use the fact that the coupling
varies with the momentum scale of the renormalized theory once terms of third order and higher
are included. Smallness of the coupling constant is related to the smallness of relative momenta
of quarks in bound states. The fact that the relative momenta of bound quarks are small allows
us to use the nonrelativistic approximation for description of their relative motion. Moreover, the
phenomenon of dynamical chiral symmetry breaking is not significant for heavy quarks and does
not complicate the theory. Therefore, from the theoretical point of view, heavy-flavor QCD is
a good starting point when one seeks to gradually understand the QCD binding mechanism for
quarks due to gluons.

The method that I use, which allows me to deal with divergent interactions of local quantum
field theories, is called the renormalization group procedure for effective particles (RGPEP) [4, 5].
I present several applications of the method: calculation of masses of doubly-heavy mesons and
triply-heavy baryons [6, 7], calculation of form factors in elastic scattering of electrons off heavy
hadrons, and calculation of structure functions in deep inelastic scattering (DIS) of electrons off
heavy hadrons. The results are approximate and preliminary. The purpose of the thesis is to show
that the method can in principle be used for all of those applications.

Masses are usually calculated in the rest frame of a hadron, elastic scattering involves hadrons
that move with small and moderate momenta (in comparison with the hadron mass, ~ = c = 1),
and DIS processes involve very large momenta. To describe in a unified way processes that involve
momenta ranging from very small to very large, the method needs to be relativistic. RGPEP is
formulated in the framework of the front form (FF) of Hamiltonian dynamics. This form seems to
be best suited to that task among all known Hamiltonian formulations of quantum field theories [8].
The two main reasons are: the relativistic FF wave functions depend only on relative momenta of
constituents; the vacuum state is treatable as simple [9, 10, 11, 5].

Several formulations of QCD are used by physicists to describe hadrons. Approaches utilizing
Dyson-Schwinger equations [12, 13, 14, 15, 16] use path integral formulation of QCD in Euclidean
space instead of the Minkowski space. Hence, the results for correlation functions need to be ana-
lytically continued from real Euclidean time to imaginary Euclidean time, which is the Minkowski
time [14, 17, 18].

Another class of theoretical approaches, called Lattice QCD [19, 20, 21], uses computer Monte
Carlo methods to estimate correlation functions on a finite grid of points in Euclidean space. Lattice
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2 CHAPTER 1. INTRODUCTION

simulations have become recognized as a powerful tool for nonperturbative ab initio calculations
of properties of hadrons. Using the Monte Carlo simulations, the lattice methods work best for
studies of ground states, while extraction of properties of excited states may be difficult. The
great progress in lattice studies [22, 23] stimulates also simulations of scattering processes, which
are difficult to perform. In order to describe on a lattice a state of a hadron moving with a large
momentum the lattice needs to be large enough and dense enough. Therefore, capabilities of lattice
simulations depend on the available computer resources. Lattice QCD calculations currently give
the best available reference points for the majority of other methods in the low-energy hadronic
physics.

I use Lattice results on masses and charge radii of heavy mesons and baryons, wherever avail-
able, to compare with my results. The lattice results are very useful to me in the development of
the FF Hamiltonian QCD because they allow me to assess the quality of approximations I make.
Comparison of my approach results with the lattice simulation results suggests that these approx-
imations may be justifiable, which is an encouraging result at this stage of development of the FF
Hamiltonian approach.

Apart from the methods mentioned above there are also various other methods people use
to learn more about hadrons. They include: phenomenological models like constituent quark
models [24, 25, 26], bag models and Regge phenomenology, AdS/QCD correspondence model [27,
28, 29, 30], effective quantum field theories like nonrelativistic QCD (NRQCD) [31, 32], and the
QCD sum rules [33, 34]. Basis Light Front Quantization (BLFQ) that also uses the FF of dynamics,
should be mentioned here as the closest one in spirit, though considerably different in detail [35, 36].

An important ingredient of the method at this stage of its development is the assumption that
gluons obtain an effective mass. When one derives from QCD an effective Hamiltonian that acts
only on the states of quark-antiquark pairs in the case of quarkonia or on just three quarks for
triply-heavy baryons, one has to explain how the infinite number of other components of these
hadrons, including basis states of unlimited numbers of massless gluons [5], is accounted for. In
the method developed in this thesis, the multiple gluon components are replaced by just one
component with one gluon that is massive.

Gluon mass of some kind is expected on the basis of results of continuum methods (Dyson-
Schwinger methods) [37, 38], lattice QCD studies [39], and phenomenology [40]. Therefore, the
usage of gluon mass ansatz appears plausible. The effective Hamiltonian that I mentioned above
should be obtained through some reduction procedure that guarantees that the effective Hamilto-
nian shares eigenvalues with the full Hamiltonian of QCD. Perturbative procedures, such as that of
Bloch or Wilson [41, 42], are well-defined only in perturbation theory. Nonperturbative reduction
procedures like Gaussian elimination, presented in Sec. 3.1, are difficult to formulate in a quantum
field theory with massless particles.

The gluon mass ansatz is an assumption about the nonperturbative effects that some systematic
account for gluons, if at all possible, induces on the degrees of freedom that are explicitly kept in
the effective theory. In this thesis the small subspace in the space of all states that I explicitly
work with is a space composed of a Fock sector with minimal quark content (QQ̄ for mesons and
QQQ for baryons) and a sector with the same quarks and a single massive gluon. The gluon mass
ansatz refers to the gluon in that second sector of the Fock space. The sector with the massive
gluon is perturbatively eliminated, which results in a Hamiltonian eigenvalue equation similar to
those written in quark models. This resulting finite effective theory is not sensitive to the details
of the mass ansatz in the case of bound states of quarks (and antiquarks) with identical masses.

Future calculations that employ larger spaces, containing more sectors with gluons, may provide
an a posteriori justification of the ansatz such as the one I use here. Another possibility is to develop
nonperturbative calculations of renormalized QCD Hamiltonians. Such calculations are a priori
possible in the RGPEP. It is not excluded that they produce a gluon mass in the renormalized
Hamiltonian that acts still in the whole Fock space, i.e., the one that is calculated in this thesis
perturbatively and only up to terms order g2. The key point I am making is that the gluon mass
ansatz may be further studied and possibly validated within the same method of the RGPEP.



3

Using RGPEP and gluon mass ansatz I obtained masses and wave functions of heavy mesons
and heavy baryons. The masses turn out to be in a quite good agreement with the estimates
and predictions of other theoretical methods I mentioned earlier. The masses of spin-1 charmonia
and bottomonia are used to fit the quark masses and renormalization-group scale parameters for
mesons. Then, using an interpolation formula to identify the likely values of the renormalization
group parameter for all considered baryon systems, I obtain spectra of heavy baryons that contain
no new parameters. Therefore, the masses obtained in this thesis for heavy baryons may be treated
as approximate predictions of heavy flavor QCD.

Comparison with Lattice QCD calculations, which are believed to be the best available bench-
marks, reveals that not only the ground state masses of bbb and ccc baryons agree, but also their
excited spectrum is qualitatively the same. This is rather surprising in view of crudeness of ap-
proximations that I used to arrive at the estimates of the masses. Note also that the Lattice
calculations are rather complex while mine are largely analytic.

The masses of baryons composed of ccb and bbc quarks are also estimated. The mass of ground
state of bbc is in agreement with lattice calculations. However, the ground state of ccb has mass
about 300 MeV larger than Lattice QCD predicts. These results are obtained only if one neglects
the gluon-mass-ansatz-dependent mass shift that appears only in mesons and baryons composed
of quarks with different masses, see Chapter 4. The dependence of the mass shift on squares of
masses of quarks, which significantly differ for b and c quarks, and the strong dependence of the
shift on the gluon mass ansatz suggest that the shift is an artifact of the gluon mass ansatz. The
ansatz may be too simple for describing systems with two significantly different scales. The scale
setting in such case needs to be improved, e.g., by introducing two different values of the RGPEP
scale parameter in the Hamiltonian. Because the mass shift is the only effect that strongly depends
on the gluon mass ansatz, because it can be as small as the spin splittings, and because it is likely
to be artificial, I attempted to omit it in the calculation of masses and wave functions of hadrons
built from different quarks.

I have used the calculated wave functions, in their approximate analytic forms, to compute
form factors and charge radii of the heavy mesons and baryons. Lattice results for mesons and
baryons composed of charm quarks (and antiquarks) are available and they agree with my results
surprisingly well. Comparison with other methods, which also provide the radii of mesons con-
taining bottom quarks, gives an agreement that is acceptable for a preliminary calculation like
the one presented in this thesis when one takes into account that those methods disagree among
themselves to a similar degree.

I also computed the magnetic moments of spin-1/2 and spin-1 hadrons. The agreement with
results presented in literature is quite good for systems composed of quarks of one flavor, while
the magnetic moments of hadrons containing two flavors of quarks are generally bigger than the
magnetic moments reported in the literature.

The results for structure functions of heavy hadrons that I obtained are very preliminary. I
neglected the huge difference between the scale of momentum transfer Q and the scale of quark
binding in the hadron. For that reason the resulting structure functions do not evolve with Q,
as they should [43, 44, 45, 46]. Appropriate account of the two vastly different scales using the
RGPEP method is expected to give the proper Q-dependence of the structure functions in terms of
the transformations it defines. Moreover, since the bound-state formation and scattering problem
are described using the same framework, it is not excluded that the method will provide a unified
description of evolution of structure functions in the momentum transfer Q and in the Bjorken
x [47, 48]. Neglecting the scaling violation, I present my results for structure functions of the
ground states of heavy quarkonia and heavy baryons and for a few excited quarkonia states. The
structure functions of the excited states show some interesting features absent in the ground-state
structure functions. These results are merely my elementary inspection of the starting point for
developing the RGPEP application to the structure functions.

The pilot study of heavy mesons and heavy baryons presented in this thesis may be improved in
several ways. First of all, perturbative calculation of the renormalized Hamiltonian can be extended
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to the fourth order in the coupling constant. This will provide insight about the validity of the
gluon mass ansatz and it will render spin-interaction terms and possibly other terms that produce
mass shifts of the same order. A possible extension is a combination of the RGPEP methods
with BLFQ techniques. A suitable combination might allow for nonperturbative diagonalization of
effective Hamiltonians that act in spaces with states containing multiple constituents. Calculations
of such type may be necessary to obtain reliable estimates of masses of highly excited states, which
probably contain a large gluonic component.



Chapter 2

Hamiltonian formulation of quantum
field theory

All of the work presented in this thesis is done using a framework called “the front form of
Hamiltonian dynamics.” The words front form are often abbreviated to FF. This chapter is
intended to be a short introduction to that framework. Therefore, first I present some basic
aspects of the Hamiltonian formulation of dynamics of fields, including different forms of dynamics,
Poincare algebra of operators and distinction of kinematic and dynamic operators. I will describe
some of the advantages of the FF as compared with the standard instant form of Hamiltonian
dynamics. The general features of the framework are illustrated in the context of QCD – the
theory of my main interest in this thesis. In the last part of the chapter I derive and present the
canonical FF Hamiltonian of QCD.

2.1 Introduction

Quantum field theory is first of all a quantum theory. Ordinary quantum mechanics is usually
formulated using Hamiltonian formalism, in which information about the state of a physical system
is encoded in a vector from the Hilbert space of the theory1 and evolution of state vectors (or
operators, depending on the picture) is generated by the Hamiltonian – a self-adjoint operator
on the Hilbert space. The main difference between quantum mechanics and quantum field theory
is that the Hilbert space of QFT – the Fock space – is much “bigger” than Hilbert spaces of
fixed-number-of-particles quantum theories, by which I mean that it has richer structure. For
example, the Fock space is composed of infinitely many sectors, each of which contains a fixed
number of particles of fixed types. The number of particles is not conserved because interactions
can easily change the particle content. This means that physical states (asymptotic states in a
scattering problem and bound states of the Hamiltonian) are linear combinations of states from
different sectors of the Fock space. Hence, a vector from a sector of the Fock space is said to
contain “bare particles.” Even the ground state of the theory (vacuum) is typically believed to be
a very complicated combination of bare particles’ states. If the vacuum is so complicated, then
excited states – states containing physical particles can only add to the complexity. For this reason,
among others, people often choose to use noncanonical formulations of quantum field theories, for
example path integrals. However, as I argue later, in the FF of Hamiltonian dynamics vacuum is
kept simple in a regularized theory.

Classically, to set up the dynamical problem of fields one needs to provide equations of motion
(conveniently by defining the density of Lagrangian) and initial and boundary conditions so that
the values of fields in any point of interest can be found. Dirac distinguished three particular
types of choices (see Fig. 2.1) for the hypersurface on which the initial condition is given and a
dynamical system is built [8]. The corresponding forms in which relativistic dynamical theories

1More generally, it is encoded in a density matrix.
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6 CHAPTER 2. HAMILTONIAN FORMULATION OF QUANTUM FIELD THEORY

Figure 2.1: Three forms of dynamics. Instant form on the left, point form on the right.
The central one is the front form. The usual time, instant-form time, flows upwards. In each
form two successive hypersurfaces of constant “time” are shown, appropriately to the form of
dynamics. Arrows point in the direction of evolution in “time.”

may be put are called “instant form,” “point form,” and “front form.” The central role in Dirac’s
analysis play “the ten fundamental quantities,” which may be organized into a fourvector Pµ

and an antisymmetric tensor Mµν . In quantum field theory in the instant form these are the
operators of energy (Hamiltonian), P 0, three-momentum, P i, angular momentum, M12 = L3,
M23 = L1, M31 = L2, and three boost operators, M0i. They serve the purpose of generating
changes of states and operators induced by specific changes in the coordinate system: translation
in time, translation in space, rotations, and boosts, respectively. The changes will be consistent
with principle of relativity if the ten fundamental quantities fulfill the set of relations,

[Pµ, P ν ] = 0 , (2.1)

−i [Mµν , P ρ] = −gµρP ν + gνρPµ , (2.2)

−i [Mµν ,Mρσ] = −gµρMνσ + gνρMµσ − gµσMρν + gνσMρµ , (2.3)

which define the Poincare algebra. Construction of a representation of this algebra in a nonin-
teracting quantum field theory is known and relatively easy. In the presence of interactions it is
a difficult task because some of the conditions in Eqs. (2.1)–(2.3) are quadratic in interactions
and they have to be fulfilled by operators acting on a Hilbert space (of which, as it turns out,
the Hamiltonian and boost operators can change particle content of a state). One can divide the
ten operators, Pµ and Mµν , into two groups. Operators in the first group, formed by P i and
M ij , are called kinematic, because their form is the same in the free theory and in the interacting
theory. They are the operators whose corresponding coordinate changes leave the hypersurface of
an instant time invariant. The operators of the other group, composed of P 0 and M0i, are called
dynamic because their form depends on the interactions and they are difficult to construct. In the
next section I discuss in some detail the FF of Hamiltonian dynamics and its advantages.

2.2 Front form of Hamiltonian dynamics

Front form of Hamiltonian dynamics is set on a hypersurface tangent to a light cone (see Fig. 2.1)
and features seven kinematic generators of Poincare algebra, which is one more than in instant
form and point form. Spatial coordinates used in the FF include,

x± = x0 ± x3 . (2.4)

The initial condition is given on the hypersurface defined by x+ = 0. The usual parametrization
of the hypersurface is given by the longitudinal coordinate x− (along the distinguished direction)
and transverse coordinates x⊥ (perpendicular to x3), where I treat symbol ⊥ as an index that can
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take values 1 or 2 (or x and y). 2 The evolution of a system means progression in parameter x+,
a change from one hypersurface of constant x+ to another one. Therefore, x+ is the “FF time” –
an analogue of the usual time in the instant form.

FF components of tensors can be determined in a similar manner, e.g., g+− = g+0 − g+3 =
g00 + g30 − g03 − g33 = 2. The lower component, g+− = 1/2. If the order of components of
four-vectors is (x+, x−, x1, x2), then,

gµν =


0 1

2 0 0
1
2 0 0 0
0 0 −1 0
0 0 0 −1

 . (2.5)

It follows from Eq. (2.5) that

pµx
µ =

1

2
p−x+ +

1

2
p+x− − p⊥x⊥ , (2.6)

pµp
µ = p+p− − (p⊥)2 . (2.7)

Component p− of four-momentum, being conjugate to x+, is the “FF energy”. Hence, the energy-
momentum relation for a particle of mass m on the front is,

p− =
m2 + (p⊥)2

p+
. (2.8)

This is the analogue of instant-form relation p0 =
√
m2 + ~p 2. Note that the sign of “energy,” p−,

is determined by the sign of longitudinal momentum p+. Therefore, the positive-energy solutions
of the classical equations of motion can be distinguished on the basis of the value of kinematic
variable p+ (as opposed to the instant form, where to every positive energy solution with some
three-momentum there is a negative energy solution with the same three-momentum). Condition
p− ≥ 0 implies

p+ ≥ 0 . (2.9)

This fact is of a profound importance, because plus component of momentum is conserved at every
interaction vertex. Hence, particles (and antiparticles) cannot couple to the vacuum unless they
have p+ = 0, which is the value of p+ that vacuum state should have. States with p+ = 0 are called
zero modes. In a regularized theory states with p+ = 0 are excluded. Therefore, the vacuum
in a regularized theory in FF is the same as the Fock vacuum, hence, simple.

Whenever one deals with a set of particles it is advantageous to define various relative momenta.
Suppose we have two particles with momenta p+

1 , p⊥1 and p+
2 , p⊥2 . The total momentum of the

system is P+ = p+
1 + p+

2 , P⊥ = p⊥1 + p⊥2 . Longitudinal momentum fraction x1 (not to be confused
with four-vector xµ or its components) and transverse relative momentum κ1 of particle 1 are,

x1 =
p+

1

P+
, (2.10)

κ⊥1 = p⊥1 − x1P
⊥ . (2.11)

Similarly, one defines relative momenta of particle 2 by replacing indices 1 with 2. Momentum
conservation implies κ⊥2 + κ⊥1 = 0 and x1 + x2 = 1, while 1 ≥ x1 ≥ 0 and 1 ≥ x2 ≥ 0 due to

2It is a frequent practice to use symbol ⊥ as characterizing objects with only two transverse components [9]. In
that case ⊥ is written as a subscript and individual components may be further specified by adding a component
index. For me the placement of ⊥ is informative – upper index ⊥ indicates that the object is a component of some
four vector (unless stated otherwise), while the lower index ⊥ would indicate a component of a covector. In order
not to introduce unnecessary confusion, whenever the components of four-vectors are explicitly written, I use only
upper-index components.
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Eq. (2.9). The total momentum P is also called “parent” momentum, while p1 is called “child”
momentum. It may be convenient to indicate in the notation the parent momentum, for example:
x1 = x1/12, κ⊥1 = κ⊥1/12, where 12 indicates the parent momentum P+,⊥ = p+,⊥

1 + p+,⊥
2 . It is

important that the total FF energy is,

P− = p−1 + p−2 =
M2

12 + (P⊥)2

P+
, (2.12)

where M12 is the invariant mass of the system and depends only on the relative variables:

M2
12 =

m2
1 + κ2

1

x1
+
m2

2 + κ2
2

x2
. (2.13)

Equations (2.12) and (2.13) show that the motion of the system as a whole and the relative motion
of its constituents are separated – the energy of the system depends on the momentum of the system
and on the mass of the system, while the mass of the system depends only on the relative motion of
the constituents. Such separation is not possible in the instant form. Due to this separation bound
state problem can be written for the system of particles whose motion as a whole is arbitrary. As
is illustrated in Sec. 4.3.1, wave functions of bound states depend only on the relative
momenta, hence, are the same for a bound state at rest and for a bound state moving
with the speed close to the speed of light. In the instant form bound states are sought for
primarily in the rest frame of the system and recoil effects present a problem to solve. Where does
this difference come from? To boost a state in the instant form – to transform a state at rest into
a state in motion – one needs to use boost generators M0i, which are dynamic and depend on
interactions. The situation is complicated, because interactions can change number of particles,
hence, boosting a state can also change the number of particles. On the other hand, in the FF one
of the boost generators M+− = −2M03 is kinematic and does not depend on interactions.

There are several problems that one has to face using the FF of Hamiltonian dynamics. First
of all, only rotations around z axis are kinematic, hence, one cannot readily use the usual algebra
of angular momentum operators. Because rotations around other axes involve interactions it is a
dynamic problem to obtain physical manifestations of rotational invariance like angular-momentum
degeneracies of states or relativistic form factors in scattering processes. However, equipped with
renormalization group procedure to deal with divergent interactions, one can construct all of
dynamic operators of the Poincare algebra. An example of such construction up to second order
in the interaction in scalar φ3 theory in 1 + 3 dimensions can be found in Ref. [49]. One may also
be worried that FF cannot describe effects of symmetry breaking that people usually associate
with complex structure of the vacuum, e.g., chiral symmetry breaking. While the regularization
disconnects the theory from the zero modes it may be necessary to add counterterms to the
Hamiltonian that will reproduce the physical effects of the zero modes. Moreover, it is argued that
chiral symmetry breaking should be connected with in-hadron condensates instead of condensates
that fill all of space [10, 50] and hence, it is a property of the hadron states instead of the vacuum.

2.3 Canonical Front-Form Hamiltonian of QCD

2.3.1 Density of Lagrangian

The starting point for defining the Hamiltonian of QCD is the usual density of Lagrangian. I am
interested in the theory with heavy quarks only (c and b), therefore,

L =
∑
f=b,c

ψ̄f (i /D −mf )ψf −
1

4
Fµν aF aµν , (2.14)

where covariant derivative acting on a quark field ψf is Dµ = ∂µ + igGµ with g the coupling
constant of color interactions. Gµ = GµaT a is the four-potential of the color field

Fµν a = ∂µGν a − ∂νGµa − gfabcGµ bGν c , (2.15)
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where T a are the generators of SU(3) – eight 3 by 3 matrices satisfying [T a, T b] = ifabcT c,
Tr(T aT b) = δab/2. Conventionally, the color matrices are T a = λa/2, where λa are the Gell-Mann
matrices. Lorentz indices denoted by Greek letters run from 0 to 3. Color indices a, b, c run from
1 to 8, color indices i, j run from 1 to 3. Moreover, in FF of Hamiltonian dynamics the directions
perpendicular to z axis are also denoted by i, j and run from 1 to 2.

Euler-Lagrange equations are(
i /D −mf

)
ψf = 0 , (2.16)

DµF
µν a = jν a =

∑
f=b,c

jν af , (2.17)

where color currents are

jν af = g ψ̄fγ
νT aψf , (2.18)

and the covariant derivative of color field tensor is

DµF
µν a = ∂µF

µν a − gfabc Gbµ Fµν c . (2.19)

2.3.2 Constraint equations

Before one can write down the Hamiltonian, one needs to determine what degrees of freedom this
Hamiltonian is supposed to describe. In the FF of dynamics half of fermion field components
are dynamic, the other half is constrained. To see this, one first defines projection operators
Λ± = 1

2γ
0γ±. They satisfy (Λ±)2 = Λ± and Λ+ + Λ− = 1. Now, multiplying Eq. (2.16) by either

Λ+ or Λ− one obtains two equations:

iD−ψf+ =
(
iα⊥D⊥ + βmf

)
ψf− , (2.20)

iD+ψf− =
(
iα⊥D⊥ + βmf

)
ψf+ , (2.21)

where ψf± = Λ±ψf , β = γ0, and α⊥ = γ0γ⊥. The second of these equations is a constraint on the
field ψf , because it relates ψf+ and ψf− components and does not contain any FF-time derivative.
Such derivative, ∂− = 2 ∂

∂x+ , acts in the first equation on ψf+. Therefore, ψf+ is dynamic, while
ψf− is constrained. In gauge G+ = 0 Eq. (2.21) can be formally solved,

ψf− =
1

i∂+

(
iα⊥D⊥ + βmf

)
ψf+ , (2.22)

where 1/(i∂+) is defined in such a way that Fourier transform of ψf+ is simply divided by mo-
mentum p+. Therefore, ψf− is completely determined by ψf+ and G⊥, which is there in D⊥.

The second of the Euler-Lagrange equations also contains constraints. In G+ = 0 gauge,
putting ν = + in Eq. (2.17) gives,

−1

2
(∂+)2G− + ∂+∂⊥G⊥ + ig

[
G⊥, ∂+G⊥

]
= j+ . (2.23)

One can formally solve it to express G− through other fields,

G− =
2

i∂+
i∂⊥G⊥ + g

2

(i∂+)2

[
i∂+G⊥, G⊥

]
+

2

(i∂+)2
j+ . (2.24)

Note that j+ a
f = 2gψ†f+T

aψf+, hence, depends only on the dynamic components of the quark field.

Therefore, G− is completely determined by the dynamic fields ψf+ and G⊥a.
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2.3.3 Density of the canonical Hamiltonian

One defines canonical stress-energy tensor,

Tµν =
∑
f=b,c

∂L
∂(∂µψf )

∂νψf + ∂νψ
†
f

∂L
∂(∂µψ

†
f )

+
∂L

∂(∂µGαa)
∂νG

αa − δµνL (2.25)

=
∑
f=b,c

ψ̄f iγ
µ∂νψf − δµνψ̄f

(
i /D −mf

)
ψf +

1

4
δµνF

αβ aF aαβ − Fµ a
α ∂νG

αa . (2.26)

The second term is zero for fields satisfying Eq. (2.16). In the instant form T 00 would be chosen
as the density of energy and integrated over space to yield the canonical Hamiltonian of QCD. In
the FF the density of canonical Hamiltonian is given by T+− component,

H =
1

2
T+− . (2.27)

and, after integration over x+ = 0 hypersurface, gives the canonical FF Hamiltonian, cf. Eq. (2.38).
In anticipation of that integration one can manipulate the form of T+− in a way that corresponds
to integration by parts in Eq. (2.38) with omission of boundary terms. After tedious manipula-
tions, which additionally involve using Euler-Lagrange equations, the density of the canonical FF
Hamiltonian can be cast in the following form,

H = Hψ2 +HG2 +HG3 +HG4 +HψGψ +HψGGψ +H[∂GG]2 +H[∂GG](ψψ) +H(ψψ)2 ,

(2.28)

where

Hψ2 =
∑
f=b,c

ψ̄f
γ+

2

(i∂⊥)2 +m2
f

i∂+
ψf , (2.29)

HG2 =
1

2
Gi a(i∂⊥)2Gi a , (2.30)

HG3 = g
(
i∂αG

a
β

[
Gα, Gβ

]a)∣∣∣
g=0

, (2.31)

HG4 = −1

4
g2 [Gα, Gβ]a

[
Gα, Gβ

]a
, (2.32)

HψGψ = (jaµ)g=0G
µa , (2.33)

HψGGψ =
1

2
g2
∑
q=b,c

ψ̄q /G
γ+

i∂+
/Gψq , (2.34)

H[∂GG]2 =
1

2
g2
[
i∂+G⊥, G⊥

]a 1

(i∂+)2

[
i∂+G⊥, G⊥

]a
, (2.35)

H[∂GG](ψψ) = j+ a 1

(i∂+)2
g
[
i∂+G⊥, G⊥

]a
, (2.36)

H(ψψ)2 =
1

2
j+ a 1

(i∂+)2
j+ a . (2.37)

The first two terms correspond to free propagation of quarks and gluons. The next three terms are
similar to interaction vertices in a Lagrangian theory. The last four terms are called instantaneous
interactions and arise due to constraints in the Hamiltonian theory. In all but two terms – HG3
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and HψGψ – only the dynamical components of the fields are present. For example, j+ a contains
only ψf+ part of the field and in HG4 whenever there appears G− it is multiplied by G+, which
is zero due to the gauge choice. Only terms that are products of three fields contain ψf− and
G−. These parts of quark and gluon fields in Eqs. (2.22) and (2.24) are obtained by solving the
constraint equations with g = 0.

2.3.4 Canonical Hamiltonian

The canonical Hamiltonian is defined as an integral of the density Eq. (2.28) with classical fields
replaced by quantum operators,

H =

∫
dx−d2x⊥ : H : . (2.38)

Quantum fields are expanded in terms of their Fourier transforms. Quark fields are

(ψf )g=0 =

∫
1

[
χ1u1bf1e

−ip1x + χ1v1d
†
f1e

ip1x
]∣∣∣
x+=0

, (2.39)

where χ denotes three-vector in color space, u and v are particle and antiparticle spinors, and
bf and df are annihilation operators of quark and antiquark of flavor f . Very compact notation,
which I use, means, ∫

1
=

∑
σ1i1

∫
[p1] , (2.40)

χ1 = χi1 , (2.41)

u1 = umf (p⊥1 , p
+
1 , σ1) , (2.42)

v1 = vmf (p⊥1 , p
+
1 , σ1) , (2.43)

bf1 = bf (p⊥1 , p
+
1 , σ1, i1) , (2.44)

df1 = df (p⊥1 , p
+
1 , σ1, i1) , (2.45)

where f is the flavor of quark and mf , p1, σ1, i1 are its mass, four-momentum, spin projection on
z axis and color index respectively. Moreover,∫

[p1] =

∫ ∞
0

dp+
1

4πp+
1

∫
d2p⊥1
(2π)2

. (2.46)

The only nonzero anticommutation relations between creation and annihilation operators are,{
bf11, b

†
f22

}
= p+

1 δf1f2δi1i2δσ1σ2 δ̃1.2 , (2.47){
df11, d

†
f22

}
= p+

1 δf1f2δi1i2δσ1σ2 δ̃1.2 , (2.48)

where

δ̃1.2 = 2(2π)3δ2(p⊥1 − p⊥2 )δ(p+
1 − p

+
2 ) , (2.49)

The spinors are [11],

um(p⊥, p+, σ) =
1√
p+

[
p+

iσ⊥ × p⊥ +m

]
χσ , (2.50)

vm(p⊥, p+, σ) =
1√
p+

[
−p+

−iσ⊥ × p⊥ +m

]
χ−σ , (2.51)
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where

iσ⊥ × p⊥ = det

[
iσ1 p1

iσ2 p2

]
= −iσ2p1 + iσ1p2 , (2.52)

and σ⊥ are Pauli matrices. The quantized gluon field is

Gµ|g=0 =

∫
1

(
εµ1a1e

−ip1x + εµ∗1 a†1e
ip1x
)
T a , (2.53)

where ∫
1

=
∑
σ1c1

∫
[p1] , (2.54)

a1 = a(p⊥1 , p
+
1 , σ1, c1) , (2.55)

and the nonzero commutation relations are,[
a1, a

†
2

]
= p+

1 δc1c2δσ1σ2 δ̃1.2 . (2.56)

The gluon polarization vector is

εµ1 = εµp1σ1
, (2.57)

where,

εµpσ =

 ε+ = 0

ε−pσ = 2p⊥ε⊥σ
p+

ε⊥σ

 . (2.58)

Using the notation established above the canonical Hamiltonian of QCD is,

Hcan
QCD = H0 + gHcan

1 + g2Hcan
QQ̄ inst + g2Hcan

QQ inst + . . . , (2.59)

where the dotted terms are not needed in their explicit form at this point. The free Hamiltonian
is,

H0 =
∑
f=b,c

∫
1
p−1

(
b†f 1bf 1 + d†f 1df 1

)
+

∫
1
p−1 a

†
1a1 . (2.60)

Eigenstates of H0 are the multiparticle states obtained by action of products of creation operators
b†f , d†f and a† on the free vacuum state |0〉. Action of any of the annihilation operators on |0〉 gives
zero. The first order interaction terms are,

Hcan
1 =

∑
f=b,c

∫
123

[
B21.3 t

1
23 b

†
f2a
†
1bf3 +D21.3 t

1
32 d

†
f2a
†
1df3 + H.c.

]
, (2.61)

where

t123 = χ†i2T
c1χi3 , (2.62)

and

B21.3 = +δ̃21.3ū2/ε
∗
1u3 = +δ̃21.3 j

µ
23ε
∗
1µ , (2.63)

D21.3 = −δ̃21.3v̄3 /ε
∗
1v2 = −δ̃21.3 j̄

µ
32 ε
∗
1µ , (2.64)

jµ12 = ū1γ
µu2 , (2.65)

j̄µ21 = v̄2γ
µv1 . (2.66)



2.4. NEED FOR REGULARIZATION OF THE CANONICAL HAMILTONIAN 13

Terms that are second order in the coupling constant are divided in two parts. The first consists
of interactions between quarks b and c, including terms that involve only one flavor and terms that
involve both charm and bottom quarks:

Hcan
QQ inst =

∑
f=b,c

1

2

∫
121′2′

δ̃12.1′2′ Asym
{ j+

11′j
+
22′

(p+
1 − p

+
1′)

2
ta11′t

a
22′

}
b†f 1b

†
f 2bf 2′bf 1′

+

∫
121′2′

δ̃12.1′2′
j+
11′j

+
22′

(p+
1 − p

+
1′)

2
ta11′t

a
22′ b

†
b 1b
†
c 2bc 2′bb 1′ . (2.67)

Note that single-flavor terms have extra 1/2, which cancels in matrix elements of Hcan
QQ inst with a

factor of 2 that appears due to two possible ways one can contract the annihilation and creation
operators. Moreover, the function of momenta, spins and colors of quarks that stands in front of
the creation and annihilation operators is antisymmetrized in indexes 1 and 2, because only the
antisymmetric part survives the integration. For any function V (1, 2; 1′, 2′),

Asym
{
V (1, 2; 1′, 2′)

}
=

1

2

[
V (1, 2; 1′, 2′)− V (2, 1; 1′, 2′)

]
. (2.68)

If V (1, 2; 1′, 2′) = V (1′, 2′; 1, 2), then antisymmetrization of indexes 1 and 2 also automatically
ensures antisymmetry in indexes 1′ and 2′. The function that is antisymmetrized in Eq. (2.67)
fulfills that condition.

The other second order term of the canonical Hamiltonian consists of interactions between a
quark and an antiquark in all possible flavor combinations:

Hcan
QQ̄ inst = −

∑
f1,f2=b,c

∫
121′2′

δ̃12.1′2′
j+
11′ j̄

+
2′2

(p+
1 − p

+
1′)

2
ta11′t

a
2′2 b

†
f1 1d

†
f2 2df2 2′bf1 1′ . (2.69)

As compared with Hcan
QQ inst this term has inverted direction of flow of color and spin and j+ replaced

by −j̄+.

2.4 Need for regularization of the canonical Hamiltonian

The canonical Hamiltonian of QCD is not well-defined. For example, the second order correction
to the energy of a free quark state b†f 1|0〉 involves the product of two Hcan

1 Hamiltonians and is
divergent – the integral over all intermediate states does not exist. Regularization is, therefore,
necessary to have mathematically well-defined integrals in perturbation theory and eigenvalue
equations like the ones I write in Chapter 4. Renormalization solves the problem of dependence
of observables on unphysical regularization parameters. In its essence, it does it by introducing
into vertices its own regulating functions, like the RGPEP form factors Eq. (3.31, that regulate
the divergent interactions [51]. But the regularization should be chosen in such a way, that it does
not spoil too much the symmetries one wants to have in the theory. For example, regularization
by removing states with high momenta breaks the Lorentz symmetry, because there is a highest
available momentum in the theory, while Lorentz boosts can make momentum arbitrarily large.
It is more advantageous to use a regularization that does not break Lorentz symmetry, because
then, e.g., the construction of relativistically covariant amplitudes should be easier [51]. Therefore,
instead of, e.g., restricting the range of Fourier components of fields that are used, I restrict the
interactions that are allowed in the theory [6]. Moreover, using sharp cutoff functions like Heaviside
step function introduces nonanaliticities, which may be hard to handle. Therefore, it is better to
use smooth regulating functions.

The regulating functions that I use are introduced according to the following prescription.
Suppose we have an interaction vertex and the total momentum annihilated (or created) in the
vertex is P+,⊥. The momentum of a particle annihilated (or created) in the interaction is p+,⊥,
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and relative momentum of that particle with respect to other particles annihilated (or created) in
the interaction is x = p+/P+, κ⊥ = p⊥ − xP⊥. If that particle is a quark then a factor of

exp

(
−m

2 + κ2

x∆2

)
(2.70)

is associated with that quark, where m is its mass. If the particle is a gluon then the factor is,

exp

(
−δ

2 + κ2

x∆2

)
. (2.71)

∆ is called the ultraviolet cutoff and it regulates the difference between the invariant mass of the
state before interaction and the invariant mass of the state after the interaction. δ regulates diver-
gences that may appear for small values of gluon x, so-called small-x divergences. The regulating
function associated with the interaction vertex is a product of factors for all particles involved in
the interaction. The instantaneous interaction terms, which are of order g2 are regulated as if they
were products of first-order interaction vertices.

Therefore, the regulated Hamiltonian of QCD is,

HR
QCD = H0 + gHR

1 + g2HR
QQ̄ inst + g2HR

QQ inst + . . . , (2.72)

where H0 in not regulated, because it does not involve interactions. The first-order regulated
Hamiltonian term is

HR
1 =

∑
f=b,c

∫
123

[
r21.3 B21.3 t

1
23 b

†
f2a
†
1bf3 + r21.3 D21.3 t

1
32 d

†
f2a
†
1df3 + H.c.

]
, (2.73)

where

r21.3 = e
−
m2
f+κ2

2/3

x2/3∆2
e
−
δ2+κ2

1/3

x1/3∆2
e−

m2
f

∆2 = e−
M2

21+m2
f

∆2 e
− ε2

x1/3 , (2.74)

where ε = δ/∆. Regularized terms that are second order in the coupling constant are,

HR
QQ inst =

∑
f=b,c

1

2

∫
121′2′

δ̃12.1′2′ Asym
{
rC 12.1′2′

j+
11′j

+
22′

(p+
1 − p

+
1′)

2
ta11′t

a
22′

}
b†f 1b

†
f 2bf 2′bf 1′

+

∫
121′2′

δ̃12.1′2′ rC 12.1′2′
j+
11′j

+
22′

(p+
1 − p

+
1′)

2
ta11′t

a
22′ b

†
b 1b
†
c 2bc 2′bb 1′ , (2.75)

HR
QQ̄ inst = −

∑
f1,f2=b,c

∫
121′2′

δ̃12.1′2′ rC 12.1′2′
j+
11′ j̄

+
2′2

(p+
1 − p

+
1′)

2
ta11′t

a
2′2 b

†
f1 1d

†
f2 2df2 2′bf1 1′ , (2.76)

where

rC 12.1′2′ = θ(x1′ − x1)r14.1′r2′4.2 + θ(x1 − x1′)r1′4.1r24.2′ , (2.77)

and 4 denotes the momentum of would-be exchanged gluon, see the left diagram in Fig. 3.5.



Chapter 3

Renormalization group procedures for
Hamiltonians

Canonical Hamiltonian of QCD is ill-defined and needs to be regularized and renormalized. In this
chapter I review two kinds of renormalization group procedures for Hamiltonians. In Wilsonian
renormalization group procedure one integrates out high-energy degrees of freedom to obtain finite
effective theory of only low-energy degrees of freedom. I present it on a quantum-mechanical
example of a divergent potential 1/r2. Then I discuss the idea that instead of integrating out
high-energy degrees of freedom one can, in a sense, integrate out interactions that cause big jumps
in invariant masses of states. This idea is the cornerstone of renormalization group procedure for
effective particles (RGPEP), which is the method I use to study bound states in QCD. Its central
concept is the concept of effective particles with nonzero size. The effective theory of such particles
involves non-local interactions, yet the theory may still be relativistic, because the renormalization
group equations preserve all kinematic symmetries of the front form of Hamiltonian dynamics.
After theoretical introduction to RGPEP I present the renormalized Hamiltonian of QCD obtained
using RGPEP equations solved up to second order.

3.1 Renormalization by integrating out large-energy degrees of
freedom

3.1.1 Illustrative example: Schrödinger particle in potential −α/r2

The purpose of this section is to illustrate on a simple example the general principles of Wilsonian
renormalization group procedure. The example is a quantum-mechanical potential 1/r2, which is
known to be divergent [52]. The renormalization of this model was studied in Ref. [53], where
prior literature on the subject is extensively discussed. The Hamiltonian is,

H = − ∆

2m
− g

r2
, (3.1)

where m is the mass of the particle and r is the distance from the center. The eigenvalue problem,
the usual Schrödinger equation, written in momentum space reads,

p2

2m
φ(~p )− g

4π

∫
d3q

(2π)3

1

|~p− ~q |
φ(~q ) = Eφ(~p ) . (3.2)

Since the potential is formally spherically symmetric it should be possible for the eigenstates, if
they exist, to write them as states with definite total angular momentum and its z component. We
define φ(~q ) =

∑
lm ψlm(|~p |)Ylm(p̂), where Ylm are spherical harmonics and then cast Eq. (3.2) on

each of the components of the angular decomposition. As a result we obtain for each l = 0, 1, 2, ...
and m = −l, ..., l an equation,

p2ψlm(p) +

∫ ∞
0

dq q2 Vl(p, q) ψlm(q) = Eψlm(p) , (3.3)

15
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

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •





•
•
•
•
•
•

 =



•
•
•
•
•
•

 −→

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •



•
•
•
•
•

 =


•
•
•
•
•



Figure 3.1: Schematic illustration of Gaussian elimination method used in solving systems
of equations written in a matrix form.

where E = 2mE,

Vl(p, q) = − α

2l + 1

[
θ(p− q) ql

pl+1
+ θ(q − p) pl

ql+1

]
, (3.4)

and α = 2mg. Therefore, we have a separate eigenvalue equation for each angular momentum l.
The potentials Vl do not depend on the magnetic number m (not to be confused with the mass
also denoted by m), therefore, the eigenvalues E cannot depend on it and from now on I drop
subscript m.

3.1.2 Gaussian elimination and renormalization group equations

Equations (3.3) are regularized, by replacing ∞ in the upper limit of the integral by cutoff ∆.
The Wilsonian idea of integrating out large-energy degrees of freedom is realized step by step by
Gaussian elimination of one infinitesimal momentum shell at a time, see Fig. 3.1. To make the
analogy with matrices more apparent I write the regularized Eq. (3.3) in two lines,

∆2ψl(∆) + d∆ ∆2 Vl(∆,∆) ψl(∆) +

∫ ∆−d∆

0
dq q2 Vl(∆, q) ψl(q) = Eψl(∆) , (3.5)

p2ψl(p) + d∆ ∆2 Vl(p,∆) ψl(∆) +

∫ ∆−d∆

0
dq q2 Vl(p, q) ψl(q) = Eψl(p) , (3.6)

where the upper equation represents the equation obtained form the highest row of the matrix,
while the lower equation represents equations obtained from all other rows. Moreover, the integral
is split into two parts: the integral from 0 to ∆ − d∆ that represents all columns except the one
furthest to the left, and integral from ∆ − d∆ to ∆, which is represented by the second term in
each of the equations and where the integration was performed assuming that the integrand is
constant between ∆ − d∆ and ∆. Now, the upper equation is solved for ψl(∆) in order to insert
it into the lower equation. We have,

ψl(∆) =
1

E − d∆ ∆2 Vl(∆,∆)−∆2

∫ ∆−d∆

0
dq q2 Vl(∆, q) ψl(q) . (3.7)

The term proportional to d∆ in the denominator of the fraction can be neglected. Moreover, if we
restrict our attention to the eigenvalues that are much smaller than the cutoff, E � ∆2, then E can
also be omitted. Putting ψl(∆) into Eq. (3.6) we complete the first step of Gaussian elimination,
and obtain an equation in a smaller space of momenta,

p2 ψl(p) +

∫ Λ

0
dq q2 Ṽl(p, q) ψl(q) = E ψl(p) , (3.8)

where Λ = ∆− d∆ and

Ṽl(p, q) = Vl(p, q)− d∆ Vl(p,∆) Vl(∆, q) (3.9)

= − α

2l + 1

[
θ(p− q) ql

pl+1
+ θ(q − p) pl

ql+1

]
− d∆

α2

(2l + 1)2

pl

∆l+1

ql

∆l+1
. (3.10)
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With respect to Vl the new interaction kernel Ṽl contains extra term that is different from the
terms in Vl. It corresponds to a different kind of interactions, because its momentum dependence is
different from momentum dependence of Vl. We should now perform another step of integrating-out
an infinitesimal shell of the largest momentum. For generality, we write the new kernel, Eq. (3.10),
in the form,

Vl(p, q,Λ) = − α

2l + 1

[
θ(p− q) ql

pl+1
+ θ(q − p) pl

ql+1

]
+ γΛp

lql , (3.11)

where γΛ is the coupling constant of the new interaction. The step of Gaussian elimination from
the equation with momentum range up to Λ to the equation with momentum range up to Λ− dΛ
proceeds exactly as before, therefore,

Vl(p, q,Λ− dΛ) = Ṽl(p, q) = − α

2l + 1

[
θ(p− q) ql

pl+1
+ θ(q − p) pl

ql+1

]
+ γΛp

lql − dΛ

(
− α

2l + 1

1

Λl+1
+ γΛΛl

)2

plql . (3.12)

In this step no new interaction appeared. The extra term that was produced by the elimination
only shifts the coupling constant γΛ to some new coupling constant γΛ−dΛ. The subsequent steps
will also produce only shift in the coupling constant γ. The shift may be described by a differential
equation, a renormalization group equation:

dγ

dΛ
=

[
γΛl − α

(2l + 1)Λl+1

]2

. (3.13)

There is also another renormalization group equation, for the coupling constant α,

dα

dΛ
= 0 . (3.14)

It is convenient, especially for the purpose of solving Eq. (3.13), to define a dimensionless coupling
constant f by the relation γΛ = f/Λ2l+1. The renormalization group equation for that coupling
constant is,

Λ
∂f

∂Λ
= (f −A)2 +B2 , (3.15)

where

A =
α

2l + 1
− l − 1

2
, B =

√
α−

(
l +

1

2

)2

. (3.16)

Because A and B depend on l, there is in fact one coupling f for each l and a priori they are
independent. However, it suffices to provide one observable per one partial wave l to fix the value
of f for all Λ� E . In other words one has to provide some initial condition to Eq. (3.15), the value
f = f0 at some Λ0. Λ0 is arbitrary and may be chosen, e.g., in such a way that makes calculation
of observables especially easy. Once an appropriate observable is calculated it should be compared
with experiment, which will fix f0. Equation (3.15), although simple, admits several interesting
kinds of solutions. I present them in the next section.

3.1.3 Classification of solutions of renormalization group equations

The behavior of solutions to Eq. (3.15) is largely determined by the value of B. For B2 > 0 the
general solution for f is given by a log-periodic function,

f = B tan

(
ϕ+B log

Λ

Λ0

)
+A , (3.17)
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(a) For l = 0 with f0 = −8.0 the coupling constant
f develops a limit cycle (solid line). Dashed line
shows behavior of f for l = 1, which is asymptotic-
freedom-like (f0 = −8.0). Dotted line is also a
solution for l = 1, but with f0 = −0.4, which
implies the Landau pole.
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(b) Different possible behaviors of l = 2 coupling
constant f for different initial value f0. The fixed
points are f+ = −0.05, and f− = −4.05. For solid
line f0 = f+−10−6, for dotted line f0 = f++10−2,
and for dashed line f0 = −8.0.

Figure 3.2: Examples of behavior of coupling constants f for angular momenta l = 0, 1, 2 [53].
Coupling constant α = 9/4, which is the critical value of the coupling constant for l = 1 coupling
constant f with Ac = −3/4.

where ϕ = arctan f0−A
B . This kind of solution is called limit cycle. The condition B > 0 implies

that α > (l + 1/2)2. In other words, the potential has to be attractive and sufficiently strong.
If α < 1/4 then there are no solutions of the limit cycle kind. If α > 1/4, then f follows the
limit cycle at least for l = 0, but possibly also for other partial waves. Another kind of solution
is obtained when the coupling constant α takes the critical value for some partial wave, that is if
B = 0 for some l. In that case, for the distinguished l, coupling constant f approaches slowly the
critical value Ac = −l − 1/2,

f −Ac =
f0 −Ac

1− (f0 −Ac) log Λ
Λ0

. (3.18)

If f0−Ac < 0, then the equation resembles the running of the QCD coupling constant. Therefore,
this kind of solution is called asymptotic-freedom-like. For f0 − Ac > 0, as we evolve f to larger
and larger values of Λ, it will develop a pole, which we call the Landau pole, since the running of
the coupling f resembles the running of electromagnetic coupling constant. There is of course also
f = Ac = const solution. Finally, for B2 < 0 there are two fixed points f± = A ± |B|. Both are
negative and f+ > f−. The solution may be written in the following way,

f = A+ |B|
f0 − f− + (f0 − f+)

(
Λ
Λ0

)2|B|

f0 − f− − (f0 − f+)
(

Λ
Λ0

)2|B| . (3.19)

As we increase Λ the coupling constant f is repelled from f+ and attracted to f−, but depending
on the initial value f0 it may do different things on the way. If f0 is smaller than f−, then f quickly
approaches f−. If f0 is between f+ and f− then f also flows to f−, but if f0 is really close to f+,
but still below it, f may stick to f+ for a large range of Λ until it suddenly jumps to f−. For
f0 > f+, the coupling constant f quickly grows, develops a pole, and reappears from the negative
side to finally come close to the attractive fixed point f−. Figure 3.2 presents all types of solutions
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U Small energy window

Figure 3.3: Similarity renormalization group transformation U of a big matrix of Hamiltonian
matrix elements with very large cutoff (on the left) to the band diagonal matrix (in the center).
White regions represent zero Hamiltonian matrix elements. The band diagonal form of the
matrix in the center allows one to pick a small window from it and diagonalize it numerically
to give a good approximation to the eigenvalues of the whole matrix that fit into the window.

for coupling constants f for l = 0, 1 and 2 in a theory with α = 9/4, which is the critical value of
coupling constant for l = 1.

3.2 Renormalization by integrating out large changes of energy

3.2.1 Distinction between eliminations of large-energies and large energy changes

The renormalization group procedure based on Gaussian elimination of high-energy degrees of
freedom works well in simple models like the one presented in Sec. 3.1. However, there are several
problems that one has to face in a realistic theory, like QCD. The first problem is that the cutoff on
high-energy degrees of freedom is not Lorentz invariant. The idea of Wilsonian procedure is to write
the eigenvalue problem in a space so small that it can be solved numerically (which seems necessary
in realistic theories with complicated interactions, like QCD). Therefore, the cutoff Λ would need
to be rather small. However, that means that bound states have limited momenta – if they move
too fast they will have energies larger than Λ. The other problem is that the Gaussian elimination
introduces the eigenvalues that one wants to find into the effective Hamiltonians. We neglected
them in Eq. (3.7) assuming that E is much smaller than any Λ that we would use. However, to
make precise calculations in a realistic theory one would like to evolve effective Hamiltonians to a
region where the cutoff is comparable with the eigenvalues that one seeks.

G lazek and Wilson introduced a different kind of procedure called similarity renormalization
group [54]. The idea is based on the observation that problems like divergent energy corrections
are caused by interactions between states from vastly different energy scales. For example, in
the canonical Hamiltonian interaction term Hcan

1 , Eq. (2.61), the invariant mass of quark-gluon
pair 12 may be on the order of the mass of the Sun, yet, the interaction of that pair with quark
3 is nonzero (the situation is even worse, because the interaction strength actually grows with
relative momentum of quarks 1 and 2). Using the picture of the Hamiltonian matrix elements
like in Fig. (3.1), one can say that the problems are caused by nonzero far-off-diagonal matrix
elements. Therefore, one can define an effective theory by means of similarity transformation
of the Hamiltonian matrix in such a way that far-off-diagonal matrix elements are zero, hence
making the matrix band diagonal, see Fig. 3.3. The cutoff may be kept very large, hence allowing
for relativistic description, and at the same time one can diagonalize only small matrices taken
out of the band diagonal effective Hamiltonian to obtain good approximations to the eigenvalues
of the whole Hamiltonian. A procedure that is specifically designed to automatically preserve as
much of the Lorentz symmetry as it is possible in the FF of Hamiltonian dynamics and which uses
the kind of transformation like the one depicted in Fig. 3.3 is presented in the next section.
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3.2.2 Renormalization Group Procedure for Effective Particles (RGPEP)

Renormalization group procedure for effective particles takes the idea of diagonalizing Hamiltonian
matrices with the help of similarity transformation a step further than similarity renormalization
group. Instead of transforming matrices, one can transform particles [4]. One introduces the
effective creation and annihilation operators,

qt = Utq0U†t , (3.20)

where q0 stands for any of the creation or annihilation operators of initial, bare particles, for exam-
ple quark and gluon operators bf , df , a and b†f , d†f , a† in Eq. (2.60); qt stands for the corresponding
effective particle operator; and Ut is a unitary operator transforming the bare particles into the
effective ones. The effective particles are labelled with parameter t = s4, where s has dimension
of distance and an interpretation of size of effective particles. This interpretation comes from the
form factors that appear in interaction vertices of the effective theory and make the Hamiltonian
matrix band diagonal, cf. Eq. (3.31). The states, whose matrix elements are depicted in Fig. (3.3),
are ordered according to their invariant masses, where the mass increases as one goes up and left
on the picture. The width of the band is ∼ λ = 1/s and it tells by how much the invariant mass
of the particles involved in the interaction can change.

The effective particles’ creation and annihilation operators of Eq. (3.20) are used as a new
basis, which is used to rewrite the initial Hamiltonian. Thus obtained effective Hamiltonians Ht

are parameterized with parameter t. Instead of defining the unitary operator Ut explicitly, it is
more convenient to define the differential equation that effective Hamiltonians should fulfill, which
is what I present below. Rewriting the Hamiltonian in a new basis means that,

Ht(qt) = H0(q0) . (3.21)

where H0(q0) is the Hamiltonian written in terms of bare particles q0 with interaction coefficients
of the initial Hamiltonian, while Ht(qt) is the Hamiltonian written in terms of effective particles
qt with effective interaction coefficients. Because we are first interested in the effective interaction
coefficients it is useful to define Ht ≡ Ht(q0), that is the Hamiltonian written in terms of the bare
particles’ creation and annihilation operators but with effective interaction coefficients,

Ht =

∞∑
n=2

∫
i1...in

ct(i1, i2, . . . , in)q†0 i1 . . . q0 in , (3.22)

where ct are the interaction coefficients and depend on all of the quantum numbers of particles
involved in the interaction, and the creation and annihilation operators are normal ordered. Due
to FF restriction of plus component of momentum p+

ik
> 0 the first operator is always a creation

operator and the last operator is always an annihilation operator. It is also useful to define the
Hamiltonian of free particles,

Hf =
∑
i

∫
i
p−i q

†
i qi , (3.23)

where the sum over i means sum over all kinds of particles. Using Ut one can write,

Ht = U†tH0Ut . (3.24)

By differentiating Eq. (3.24) with respect to t one obtains,

H′t = [Gt,Ht] , (3.25)

where prime means differentiation with respect to t and Gt = −U†t U ′t is called the generator of
RGPEP transformation. One can define different generators, an early version can be found in
Ref. [55]. The generator used in this thesis was introduced in Ref. [4] and is,

Gt =
[
Hf , H̃t

]
, (3.26)
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where

H̃t =

∞∑
n=2

∫
i1...in

ct(i1, i2, . . . , in)

(
1

2

n∑
k=1

p+
ik

)2

q†0 i1 . . . q0 in . (3.27)

In other words, H̃t differs from Ht by a factor of square of the total +-momentum of all incoming
(or all outgoing) particles in the interaction vertex. The purpose of inserting this factor is that it
guarantees that RGPEP Eq. (3.25) is boost invariant and interaction vertices in the renormalized
theory, written in terms of effective creation and annihilation operators, depend on the relative
momenta of the particles involved in the interaction. The generator, Eq. (3.26) implies,

Ut = T exp

(
−
∫ t

0
dτ
[
Hf , H̃τ

])
, (3.28)

where T means ordering of operators in the order of increasing parameter t from left to right.
Equation (3.25) may be rewritten in the following form [4],

H′t ab = −ab2HIt ab +
∑
x

(paxax+ pbxbx)HIt axHIt xb , (3.29)

where prime denotes derivative with respect to t, symbols a, b and x denote configurations of
particles, i.e., collections of all quantum numbers that characterize fully the particles in the con-
figuration. Ht ab denotes a coefficient that stands in the Hamiltonian Ht in front of the prod-
uct of creation operators from configuration a and annihilation operators from configuration b,
HIt = Ht−Hf and the sum over x means the sum over all quantum numbers of particles in config-
uration x. Symbol ax denotes the differenceM2

ax−M2
xa, whereMax denotes the invariant mass of

the particles from configuration a that were involved (created) in the interaction HIt ax, whileMxa

denotes the invariant mass of the particles from configuration x that were involved (annihilated) in
interaction HIt ax. Spectators (particles not involved in the interaction) do not contribute to those
invariant masses. Finally, pax denotes the total plus momentum of particles from configuration a
that were involved in the interaction HIt ax. Analogous definitions are assumed for symbols ab, bx,
pax and pbx. An important feature of Eq. (3.29) is that its solutions have so-called RGPEP form
factors that appear due to the first term on the right hand side of Eq. (3.29). For example, in
perturbation theory the interaction Hamiltonian HIt is of order g and in the first-order calculation
one can neglect the second term in Eq. (3.29). The solution is then

Ht ab = fabH0 ab , (3.30)

where the RGPEP form factor fa.b is,

fab = e−t ab
2
. (3.31)

Therefore, the interaction vertices cannot change invariant masses of states by more than λ = t−1/4.

3.3 Renormalized Hamiltonian of QCD in orders first and second

The renormalized Hamiltonian is obtained as a solution of RGPEP Eq. (3.25), and it is expanded
in powers of effective coupling constant gt,

Ht = Ht 0 + gtHt 1 + g2
tHt 2 . (3.32)

The first term is the free-propagation term of quarks, antiquarks and gluons. The rest of the terms
contain interactions and all necessary counterterms. The fact that effective coupling constant
depends on the scale parameter t becomes apparent only in a calculation that involves terms of
order at least third [3], but I use this fact here to include implicitly some of the effects of the third-
and higher-order terms.
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Figure 3.4: Gluon emission terms of the renormalized Hamiltonian in the first order in
coupling constant, Eq. (3.34). The Hermitian conjugated terms correspond to gluon absorption
diagrams with gluon coming from the right.
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Figure 3.5: Second order terms of the renormalized Hamiltonian acting between a quark and
an antiquark. The left figure represents the instantaneous interaction term HtQQ̄ inst. The
other two represent different contributions (q+ > 0 and q+ < 0) to HtQQ̄ exch.

3.3.1 Zeroth order

The free part of the renormalized Hamiltonian is the same as the free part of canonical Hamilto-
nian, except creation and annihilation operators of bare particles are replaced with creation and
annihilation operators of effective particles.

Ht 0 =
∑
f=b,c

∫
1
p−1

(
b†t f 1bt f 1 + d†t f 1dt f 1

)
+

∫
1
p−1 a

†
t 1at 1 , (3.33)

3.3.2 First order

In the first order in coupling constant Hamiltonian terms are the same as corresponding terms
in the regularized Hamiltonian, Eq. (2.73), but with effective creation and annihilation operators
instead of bare ones and additionally each term acquires a form factor f21.3,

Ht 1 =
∑
f=b,c

∫
123

r21.3f21.3

[
B21.3 t

1
23 b

†
t f 2a

†
t 1bt f 3 +D21.3 t

1
32 d

†
t f 2a

†
t 1dt f 3 + H.c.

]
. (3.34)

The form factor is, cf. Eq. (3.31),

f21.3 = exp
[
−t(M2

21 −m2
3)2
]
, (3.35)

where M2
21 is the square of free invariant mass of particles 1 and 2, see Eq. (2.13), and m3 is the

mass of particle 3. Figure 3.4 gives a graphic representation of the first order Hamiltonian terms.

3.3.3 Second order

The second-order solution of Eq. (3.29) for the renormalized Hamiltonian in the second order is in
general [4],

Ht2 ab = fabH02 ab + fab
∑
x

paxax+ pbxbx

ax2 + bx2 − ab2

(
1− faxfxb

fab

)
H01 axH01xb . (3.36)

To obtain the Hamiltonian Ht, one has to replace in Ht the creation and annihilation operators
from the bare ones to the effective ones with t > 0.

Vertex

There are two quark-antiquark interaction terms in Ht 2. The first one corresponds to the first
term on the right-hand side of Eq. (3.36) and is the same as the instantaneous interaction term
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in the regularized Hamiltonian, except for the form factor and effective creation and annihilation
operators:

HtQQ̄ inst = −
∑

f1,f2=b,c

∫
121′2′

δ̃12.1′2′ rC 12.1′2′ f12.1′2′
j+
11′ j̄

+
2′2

(p+
1 − p

+
1′)

2

× ta11′t
a
2′2 b

†
f11d

†
f22df22′bf11′ , (3.37)

where rC 12.1′2′ is the regularization function given in Eq. (2.77), and the RGPEP form factor is,

f12.1′2′ = exp
[
−t(M12 −M1′2′)

2
]
. (3.38)

The other term, which is explicitly given below, corresponds to the second term on the right-
hand side of Eq. (3.36) and is later called the exchange term, because in perturbation theory it
is produced by the product of two first-order Hamiltonian terms – one that emits a gluon and
another that absorbs a gluon, see Fig. 3.5. There are two diagrams in Fig. 3.5 with exchange of
a gluon, which correspond to two mutually exclusive situations – either quark emits the gluon or
the antiquark emits the gluon. Gluon plus momentum p+

4 can be only positive and quark either
loses or gains its plus momentum. To easily distinguish between the two possibilities I define the
difference of on-mass-shell1 quark momenta before and after interaction,

qµ1 = pµ1′ − p
µ
1 , (3.39)

whose plus component q+
1 = q+ can be either positive or negative. This equation applies also to

the minus component, q−1 = p−1′ − p
−
1 . I also define the difference of antiquark momenta after and

before interaction,

qµ2 = pµ2 − p
µ
2′ . (3.40)

The two momenta have the same plus and transverse components,

q+
1 = q+

2 = q+ , (3.41)

q⊥1 = q⊥2 = q⊥ . (3.42)

The minus components are in general different, q−1 6= q−2 , and therefore, also the squares of the
fourmomentum transfers are different, q2

1 6= q2
2. The interaction with q−1 = q−2 is called on-energy-

shell. Moreover, the gluon momentum as it stands in the Hamiltonian is

p+
4 = |q+| , (3.43)

p⊥4 = ε(q+)q⊥ , (3.44)

p−4 =
(p⊥4 )2

p+
4

, (3.45)

where ε(q+) = 1 for q+ > 0 and ε(q+) = −1 for q+ < 0. The gluon momentum, as for any other
particle in the Hamiltonian, is on-mass-shell, which means p2

4 = m2
4, which is zero for a gluon. To

write the interaction terms, I use a compact notation that combines the two cases, q+ > 0 and
q+ < 0, but differs from the notation used in Refs. [6, 7].

HtQQ̄exch = −
∫

121′2′
δ̃12.1′2′ rC 12.1′2′ f12.1′2′ · F (12; 1′2′) dµν(p4) jµ11′ j̄

ν
2′2

× ta11′t
a
2′2 b

†
f11d

†
f22df22′bf11′ , (3.46)

1The on-mass-chillness condition for quarks means that

p−1′ =
m2

1 + (p⊥1′)2

p+
1′

, p−1 =
m2

1 + (p⊥1 )2

p+
1

.
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Figure 3.6: Second order terms of the renormalized Hamiltonian acting between a quark and
an antiquark. The left diagram in both part (a) and part (b) represents the instantaneous
interaction term HtQQ inst. The other two represent different contributions (q+ > 0 and q+ <
0) to HtQQ exch. If the two quarks have different flavors only diagrams from part (a) are
present. If the two quarks are identical both part (a) and part (b) are necessary to perform
antisymmetrization of interaction Hamiltonian, see Eqs. (3.52) and (3.53).

where

F (12; 1′2′) =
x̂2

1q
2
1 + x̂2

2q
2
2

x̂2
1(q2

1)2 + x̂2
2(q2

2)2 − (q2
1 − q2

2)2

(
1− ff12.1′2′

f12.1′2′

)
, (3.47)

and,

x̂1 = max(x1, x1′) , (3.48)

x̂2 = max(x2, x2′) , (3.49)

ff12.1′2′ = θ(q+) f14.1′f2′4.2 + θ(−q+) f1′4.1f24.2′ = exp

(
− t x̂

2
1(q2

1)2 + x̂2
2(q2

2)2

x2
4

)
. (3.50)

Moreover,

dµν(p4) = −gµν +
nµp4ν + nνp4µ

p+
4

, (3.51)

where n+ = 1, n− = n1 = n2 = 0, arises as the sum of gluon polarization vectors over polarizations
of the gluon, dµν(p4) =

∑
σ4
ε4µε

∗
4ν .

It is worth noting that on energy shell q2
1 = q2

2 = q2, and the fraction in front of the round
bracket in Eq. (3.47) simplifies to familiar 1/q2. There are several more steps to go from that
statement to the demonstration that the renormalized Hamiltonian gives in the lowest order the
same results for scattering of quarks as the Feynman diagrams do, but I want to emphasize that
Eq. (3.47) is more complicated than just 1/q2 because the renormalized Hamiltonian is essentially
off-energy-shell.

The interaction between quarks is given by the following Hamiltonian terms,

HtQQ inst =
∑
f=b,c

1

2

∫
121′2′

δ̃12.1′2′ Asym
{
rC 12.1′2′ f12.1′2′

j+
11′j

+
22′

(p+
1 − p

+
1′)

2
ta11′t

a
22′

}
b†f1b

†
f2bf2′bf1′

+

∫
121′2′

δ̃12.1′2′ rC 12.1′2′ f12.1′2′
j+
11′j

+
22′

(p+
1 − p

+
1′)

2
ta11′t

a
22′ b

†
b1b
†
c2bc2′bb1′ , (3.52)

HtQQ exch =
∑
f=b,c

1

2

∫
121′2′

δ̃12.1′2′ Asym
{
rC 12.1′2′ f12.1′2′ · F (12; 1′2′) dµν(p4) jµ11′j

ν
22′

× ta11′t
a
22′

}
b†f1b

†
f2bf2′bf1′

+

∫
121′2′

δ̃12.1′2′ rC 12.1′2′ f12.1′2′ · F (12; 1′2′) dµν(p4) jµ11′j
ν
22′

× ta11′t
a
22′ b

†
b1b
†
c2bc2′bb1′ , (3.53)
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Figure 3.7: Second order self interaction terms for quark. Analogous diagrams can be drawn
for antiquark.

The notable difference between quark-antiquark and quark-quark interaction is that quark-quark
interactions may take place between two different quarks or two identical quarks. In the latter
case an additional factor 1/2 appears and the interaction is antisymmetrized.

Finally, the quark and antiquark currents contracted with dµν are,

dµν(p4)jµ11′ j̄
ν
2′2 = −gµνjµ11′ j̄

ν
2′2 −

q2
1 + q2

2

2(q+)2
j+
11′ j̄

+
2′2 , (3.54)

dµν(p4)jµ11′j
ν
22′ = −gµνjµ11′j

ν
22′ −

q2
1 + q2

2

2(q+)2
j+
11′j

+
22′ . (3.55)

Mass terms

The mass terms are calculated from the same formula (3.36) that the vertex terms were calculated
from. Here, one needs to supplement the canonical theory with a counterterm that removes
divergences from matrix elements of the effective Hamiltonian Ht. The counterterm is a priori
unknown. The condition that fixed its infinite part is that the matrix elements of Ht 2 are finite
when the ultraviolet cutoff ∆ → ∞. I fix the notation for the renormalized Hamiltonian quark
mass term in the following way,

Ht 2 δm =
∑
f=b,c

∫
1

m2
f t 2

p+
1

(
b†f 1bf 1 + d†f 1df 1

)
. (3.56)

According to Eq. (3.36),

m2
f t 2 = m2

f 0 2 − CF
∑
σ5σ4

∫
[x5/1κ5/1] r2

54.1

1

M2
54 −m2

f

(
1− f2

54.1

)
ū1/ε4u5ū5/ε

∗
4u1 . (3.57)

where f2
54.1 = e−2t[M2

54−m2
f ]2 and the integration measure [x5/1κ5/1] is dx5/1d

2κ5/1/[16π3x5/1(1 −
x5/1)], and CF = (N2

c − 1)/(2Nc), Nc = 3 is the number of colors. The two terms of the above
equation are depicted in Fig. 3.7. For large transverse momenta the product of spinors and gluon
polarization vectors behaves like M2

54. If I take the term with 1 in the parentheses in Eq. (3.57),
then the integral diverges quadratically with the ultraviolet cutoff ∆→∞. If I take the term with
f2

54.1 in the parentheses, it is finite with ∆→∞. Therefore, to make m2
f t 2 finite I need to define

m2
f 0 2 in such a way that it cancels the divergent part of the integral. The easiest way to do it is

the following

m2
f 0 2 = CF

∑
σ5σ4

∫
[x5/1κ5/1] r2

54.1

1

M2
54 −m2

f

ū1/ε4u5ū5/ε
∗
4u1 + δm2

f 0 2 , (3.58)

where δm2
f 0 2 is a priori unknown but finite when ∆ → ∞. The finite parts of the counterterms

cannot be determined without appeal to some observables and experiment. For the quark-mass
term the ideal (because simplest) observable would be the physical mass of a quark. However, in
QCD single-quark states cannot appear as asymptotic states, and one cannot speak of physical
masses of quarks. Nevertheless, in the orders first and second in the coupling constant QCD
is very similar to QED – the nonabelian effects manifest themselves explicitly only in the third
order. Therefore, I will set the quark mass counterterm the same way I would set the electron
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mass counterterm in QED. I write eigenvalue problem for a single quark. I perturbatively reduce
this eigenvalue problem to one sector that contains a single quark (the reduction procedure is
described in Sec. 4.3.1). It turns out that the mass squared of such “physical” single quark state
is m2

f + g2
t δm

2
f 0 2. The “physical” mass of the quark should not depend on the renormalization

group parameter t, therefore, δm2
f 0 2 = 0. This way of fixing the finite part of the counterterm

may turn out to be insufficient, but to check it one needs to calculate the effective Hamiltonian
to higher orders than the second and to use hadronic observables. Moreover, nonperturbative
determination of mass counterterms may, and probably should, due to chiral symmetry breaking,
be different from the perturbative one, although for the heavy quarks perturbative calculations
may be reliable. Finally, the renormalized quark mass term is,

m2
f t 2 = CF

∑
σ5σ4

∫
[x5/1κ5/1] r2

54.1

e−2t[M2
54−m2

f ]2

M2
54 −m2

f

ū1/ε4u5ū5/ε
∗
4u1 . (3.59)

It is important to notice that the renormalized mass term in Eq. (3.59) is finite in the limit
∆→∞, but is divergent in the limit δ → 0. In other words, it is small-x divergent. The divergence
cannot be removed by any counterterm inserted in the initial theory because the leading term in
the limit δ → 0 is,

m2
f t 2 ∼

√
2π

t
log

∆

δ
. (3.60)

The divergent logarithm is multiplied by a function of t. The counterterm adds or subtracts
terms, but they cannot depend on t, because the counterterm is inserted in the initial theory with
t = 0. It may seem that a divergence that cannot be removed from the theory is a bad feature of
the theory. However, in QCD such divergences may be the source for confinement. For example,
color-singlet states may be free from divergences while color-nonsinglet states may have masses and
energies that diverge due to small-x dynamics. This hypothesis is appealing but the mechanism
behind the confinement probably has to be nonperturbative in nature, because similar kind of
divergences is present also in QED. Since QED is well-defined in perturbation theory and charged
states are physically admissible the small-x divergences have to have a way to cancel with each
other in observables in perturbation theory. For the original treatment of infrared divergences in
the theory of electron coupled with electromagnetic field see Ref. [56].



Chapter 4

Approximate Hamiltonians for
mesons and baryons in heavy-flavor
QCD

In this chapter I present derivation of the effective Hamiltonians for mesons and baryons in heavy-
flavor QCD, which will be later used to find the first approximation for hadron masses, form
factors and structure functions. The eigenvalue equation for renormalized Hamiltonian acts in the
whole Fock space of states. I formulate gluon mass ansatz, which is nonperturbative in nature, to
reduce the eigenvalue problem to only two sectors of the Fock space. Once this is done I use tools
of Wilsonian renormalization group procedure to reduce perturbatively the eigenvalue problem
to just one sector. The result is a Schrödinger-like equation in the space of QQ̄ for mesons or
QQQ for baryons. The result of the calculation is that effective quarks interact with each other
through Coulomb-like forces and harmonic oscillator potentials. This chapter is based on two
papers written in collaboration with Maŕıa Gómez-Rocha, Jai More and Stanis law G lazek [6, 7].

4.1 Motivation for studying the heavy-flavor theory

Hadrons are supposed to be bound states of quarks in QCD, but since interactions can change
the particle content of a state the true bound states, or eigenvectors of the Hamiltonian are
superpositions of states from different sectors of the Fock space. In principle, all states that have
the same quantum numbers as the hadron of interest can contribute. For mesons the Fock sector
with the minimal number of particles is the sector with a quark and an antiquark, but sectors with
additional particles are also allowed. A general state of a meson is,

|ΨM 〉 =
∣∣QtQ̄′t〉+

∣∣QtQ̄′tGt〉+
∣∣QtQ̄′tGtGt〉+

∣∣QtQ̄′tQtQ̄t〉+ . . . , (4.1)

where Qt and Q̄′t denote an effective quark and an effective antiquark of size s = t1/4 and possibly
of different flavors, while Gt denotes an effective gluon. The minimal particle content for a baryon
state is three quarks, and a general state is,

|ΨB〉 =
∣∣QtQtQ′t〉+

∣∣QtQtQ′tGt〉+
∣∣QtQtQ′tGtGt〉+

∣∣QtQtQ′tQtQ̄t〉+ . . . . (4.2)

A priori, the number of sectors that contribute is infinite, especially, when one takes into account
that interactions in local quantum field theories are divergent. However, using effective particles
of RGPEP, as I did in Eqs. (4.1) and (4.2) only a restricted subset of all possible Fock sectors is
expected to contribute. Take, for example, t such that λ = t−1/4 is,

ΛQCD � λ� mQ , (4.3)

where mQ is the mass a heavy quark. Remembering that light quarks are excluded from the
theory, states with extra effective quark-antiquark pairs, like the fourth term in Eq. (4.1) and

27
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the fourth term in Eq. (4.2), will contribute very little to the eigenvectors |ΨM 〉 and |ΨB〉. The
reason is that the renormalized Hamiltonian suppresses exponentially interactions that change
invariant mass of a state by more than λ, cf. Eq. (3.30). For an interaction to connect, e.g.,∣∣QtQ̄t〉 with

∣∣QtQ̄t QtQ̄t〉 the invariant mass would need to change by an amount of order 2mQ,
which is much more than λ due to Eq. (4.3). Therefore, sectors with extra quark-antiquark pairs
may be safely omitted. Sectors with gluons cannot a priori be omitted because gluons in QCD
are massless. I address this issue in the next section. Equation (4.3) implies also that Ht can be
calculated in perturbation theory, because for λ � ΛQCD the effective coupling constant is small
due to asymptotic freedom [3]. Smallness of the coupling constant is also related to small velocity
of heavy quarks inside the hadron, hence, allowing one to use nonrelativistic approximations.1

Equation (4.3) can be satisfied in QCD only for heavy quarks, which is the main motivation for
the choice of heavy-flavor QCD in this thesis.

4.2 Eigenvalue problem in Fock space and gluon-mass ansatz

The eigenvalue equation for bound states in QCD is,

Ht|Ψ〉 = P−|Ψ〉 , (4.4)

where P− = [M2 + (P⊥)2]/P+ and P+,⊥ are the total longitudinal and transverse momenta of
the bound state. The eigenvector |Ψ〉 is of the form given in Eq. (4.1) or Eq. (4.2). An important
thing is that the exact form of Ht and |Ψ〉 depends on t, however, the eigenvalue P− does not
depend on t, because operation Ut is unitary. Using the perturbative expansion of the Hamiltonian,
Eq. (3.32), the eigenvalue problem may be written in the following form,· · ·

· Ht 0 + g2
tHt 2 gtHt 1

· gtHt 1 Ht 0 + g2
tHt 2

 ·|h〉
|l〉

 = P−

 ·|h〉
|l〉

 , (4.5)

where |l〉 and |h〉 denote “lower” and “higher” sector of the Fock space and dots denote other Fock
sectors that are not explicitly written. The lower sector is the sector with the minimal particle
content necessary to have a state with desired quantum numbers. For mesons the lower sector is
composed of quark and antiquark: |l〉 = |cc̄〉 for charmonium, |l〉 =

∣∣bb̄〉 for bottomonium, and
|l〉 =

∣∣cb̄〉 for B+
c . I omitted the subscript t, but these quarks are the effective quarks at the RGPEP

scale t. For baryons the lower sector is composed of three quarks of proper flavors: |l〉 = |QQQ〉
with Q = b or c for Ωbbb and Ωccc; |l〉 = |QQQ′〉 with Q = b, Q′ = c for Ωbbc, and Q = c, Q′ = b for
Ωccb. The higher sector contains the particles that constitute the lower one and a gluon, |h〉 = |lG〉.
Equation (4.5) is written in the form that is supposed to resemble the matrix equations like the
one depicted in Fig. 3.1. Hence, the elements of the matrix represent in fact matrix elements of
the Hamiltonian between states from the appropriate sectors of the Fock space. For example, Ht 1

in the upper right element of Eq. (4.5) represents in fact matrix elements 〈h|Ht 1|l〉.
Even though extra quark-antiquark pairs from Eqs. (4.1) and (4.2) may be safely omitted,

one cannot omit the sectors with gluons. The problem is that eigenvectors of Ht may contain
significant contributions from many of them. A priori infinitely many of them could contribute. A
priori it is also possible that nonperturbative solutions of RGPEP Eq. (3.25) contain large gluon
masses that disallow for infinitely many gluons to contribute, and only small number of Fock
sectors with effective gluons has to be taken into account. In the present, such considerations
in the framework of RGPEP have a status of speculations, however, other theoretical approaches
aimed at solving QCD arrive at a conclusion that gluons should indeed, acquire mass, see, e.g.,
Ref. [57]. To deal with the problem of massless gluons, and to study what are implications of gluon
mass in Hamiltonian formulation of QCD, I assume,

1Nonrelativistic approximations are applied only to relative momenta. The momentum of the hadron as a whole
is arbitrary in the FF of Hamiltonian dynamics.
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Ansatz: All effects of sectors with more than one gluon can be included in the two-sector
eigenproblem at the expense of introducing a gluon mass term in the higher sector:[

Ht 0 + µ2
t gtHt 1

gtHt 1 Ht 0 + g2
tHt 2

] [
|h〉
|l〉

]
= P−

[
|h〉
|l〉

]
, (4.6)

where µ2
t represents the gluon mass term that may (and in fact has to) depend on the gluon

momentum with respect to the quarks in the higher sector. The gluon mass is supposed to be a
nonperturbative effect of the order of g0

t = 1, and probably of nonabelian origin.

4.3 Effective Hamiltonians

4.3.1 Perturbative reduction of the eigenvalue equation

Eigenproblem with only two sectors is tractable as opposed to the problem with infinitely many of
them. Therefore, one could try to solve it using some nonperturbative computational method, e.g.,
defining some finite set of basis states in the two-sector space, writing the matrix of Hamiltonian
matrix elements constructed using the basis states and diagonalize the matrix of the Hamilto-
nian [35]. However, one can apply a different, though approximate, approach. One can partially
solve Eq. (4.6) using Gaussian-elimination-type of procedure. Such a procedure was used by Wil-
son [42] in his original work. The procedure, which I call “operation R,” is defined perturbatively,
and consists of integrating out a subspace of states. The whole space of states is divided into
subspace P that is kept, which in my calculation consists of the lower sector, and space Q that is
integrated out, which for my purposes consists of the higher sector. In general, the eigenstates of
the Hamiltonian that one is interested in have components in space P as well as components in
space Q. Due to gluon mass ansatz, I assume that the higher sector contributes relatively little to
the the ground states of heavy hadrons and their low excitations. If this assumption is correct the
perturbative reduction described here can indeed be performed. The key object of the procedure
is operator R that acts from space P to space Q, and which, when provided with the P -space
component of an eigenstate, yields the Q-space component of that eigenstate,

|h〉 = R |l〉 . (4.7)

Using the operator R one can write an effective eigenvalue equation, in which only vectors entirely
in space P appear, and has the same eigenvalues as the initial equation.2 At the same time
one retains information about, and possibility of reconstructing the Q-space component of any
eigenstate of the effective eigenvalue problem.

The effective eigenvalue equation,

Heff|leff〉 = P−|leff〉 , (4.8)

is written in terms of the effective Hamiltonian,

Heff =
1√

P +R†R

(
P +R†

)
Ht

(
P +R

) 1√
P +R†R

, (4.9)

where P is the projection operator on space P . The effective state |leff〉 is not the same as |l〉
because if it were it would, for example, have a different norm than the full initial state |l〉+ |h〉.
The relation, which can be used to reconstruct eigenstates in the full space, is,

|l〉 =
1√

1 +R†R
|leff〉 . (4.10)

2 The smaller equation has fewer eigenvalues. The agreement applies only to those eigenvalues that fit into the
small equation, the others are absent.
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Therefore, the higher component is,

|h〉 = R
1√

1 +R†R
|leff〉 . (4.11)

It is important to note that the relation between |l〉 and |leff〉 is not a simple change in normalization
constant. In general, |leff〉 is reorganized so that it yields the same eigenvalue in the effective
eigenproblem. Therefore, even though, both |l〉 and |leff〉 are expressed in terms of the same
effective particles (in the sense of creation and annihilation operators defined using RGPEP),
they are different states and one is only a component of a bigger Fock state, while the other is
constituent-like effective state.

In perturbative expansion around gt = 0 the operator R contains terms of order gt and higher,
and the formulas for effective Hamiltonian and states can be expanded as well. The result for
perturbative reduction of Eq. (4.6) is,

〈leff|Heff

∣∣l′eff

〉
= 〈leff|

(
Ht 0 + g2

tHt 2

)∣∣l′eff

〉
+ 〈leff|

1

2
gtHt 1

(
1

El −Ht 0 − µ2
t

+
1

El′ −Ht 0 − µ2
t

)
gtHt 1

∣∣l′eff

〉
, (4.12)

and in general,

|l〉 =

(
1− 1

2
R†R

)
|leff〉 , (4.13)

|h〉 = R |leff〉 , (4.14)

where only terms up to order g2
t are kept.

Effective Hamiltonians for mesons

For mesons the eigenvalue problems for a flavor-singlet system, QQ̄, and for a mixed-flavor system,
QQ̄′, are virtually the same, with the only difference being that different flavors of quarks have
different masses. Therefore, I will write down the most general form of the effective Hamiltonian
for a quark of one flavor and an antiquark of a different flavor.

Arbitrary state in the QQ̄′ sector with a fixed total momentum P+ and P⊥ has the form,

|leff〉 =

∫
12
P+δ̃12.P

δc1c2√
Nc

ψtQQ̄ σ1σ2
(x1, κ1) b†t f1 1 d

†
t f2 2|0〉 , (4.15)

where
δc1c2√
Nc

is the quark-antiquark color-singlet wave function with Nc = 3. The spin-momentum

wave function ψtQQ̄ depends on spin of the quark σ1, spin of the antiquark σ2, and quark relative
to antiquark momentum κ1 as well as quark +-momentum fraction x1.

The effective eigenvalue equation is(
M2

1, t + (p⊥1 )2

p+
1

+
M2

2, t + (p⊥2 )2

p+
2

)
ψtQQ̄(12)

+ g2
t

∑
σ1′σ2′

∫
[1′2′] δ̃1′2′.P UQQ̄(12; 1′2′) ψtQQ̄(1′2′) =

M2 + (P⊥)2

P+
ψtQQ̄(12) , (4.16)

where ψtQQ̄(12) = ψtQQ̄ σ1σ2
(x1, κ1). Transverse part of the eigenvalue (P⊥)2/P+ cancels with

part of the kinetic energy term on the left-hand side. The rest of the kinetic energy term contains
terms with relative momentum κ⊥1 squared and divided by p+

1 for quark (or p+
2 for antiquark).

After these simplifications, and after multiplying both sides by P+, I obtain,(
M2

1, t + (κ⊥1 )2

x1
+

M2
2, t + (κ⊥1 )2

x2

)
ψtQQ̄(12)

+ g2
t

∑
σ1′σ2′

∫
[1′2′] P+δ̃1′2′.P UQQ̄(12; 1′2′) ψtQQ̄(1′2′) = M2 ψtQQ̄(12) . (4.17)
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Figure 4.1: Second order quark (a) and antiquark (b) self-interaction terms in the effective
Hamiltonian in the QQ̄ eigenvalue problem.
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Figure 4.2: Second order gluon-exchange quark-antiquark interaction terms in the effective
Hamiltonian in the QQ̄ eigenvalue problem. The left diagram corresponds to the matrix
element 〈leff|(HtQQ̄inst +HtQQ̄exch)|l′eff〉 depicted in Fig. 3.5. The other two diagrams represent
terms obtained from the product of two Ht 1 in Eq. (4.12).

Integration measure [1′2′] with P+δ̃1′2′.P leads to integration over relative momenta x1′ and κ1′

without any trace of total momentum P+ or P⊥. M2
i, t and UQQ̄(12; 1′2′) also depend only on

relative momenta. Wave function ψtQQ̄ depends on relative momenta by assumption, which now
turns out to be fully justified, because no matter what is the total momentum of the quarks, the
equation and, hence, wave functions are the same. It is worth mentioning that the regulating
functions also depend on relative momenta. On the way the role of eigenvalue was passed from
P−, which depends on total momentum, to mass squared M2, which does not depend on the total
momentum. The effective mass term is,

M2
i, t = m2

i + CF g
2

∫
dxd2κ

16π3x(1− x)
r2

54.i

e−2tS2
54

S54S54µi

µ2
i

x

[
2

(
2

x
− 2 + x

)
S54 − 4m2

i

]
, (4.18)

where x = p+
4 /p

+
i , S45 = M2

45 − m2
i , S45µi = S45 + µ2

i /x. The mass ansatz µ2 is allowed to
be a function of the gluon relative momentum with respect to the quark-antiquark pair, and
µ2

1 = µ2(p4, p5, p2), µ2
2 = µ2(p4, p1, p5), see Fig. 4.1.

The effective interaction may be divided into two parts: one corresponding to the instantaneous
interaction between quark and antiquark and the “exchange” part that collects both RGPEP
effective vertex and effective interactions induced by operation R, see Fig. 4.2

UQQ̄ = UQQ̄inst + UQQ̄exch , (4.19)

where

UQQ̄inst(12; 1′2′) = −CF rC 12.1′2′ f12.1′2′
j+
11′ j̄

+
2′2

(p+
4 )2

, (4.20)

UQQ̄exch(12; 1′2′) = −CF rC 12.1′2′ F(12; 1′2′) dµν(p4) jµ11′ j̄
ν
2′2 , (4.21)

where

F(12; 1′2′) = f12.1′2′ F (12; 1′2′) + ff12.1′2′ R(12; 1′2′) , (4.22)

R(12; 1′2′) =
1

2

(
1

q2
1 − µ2

+
1

q2
2 − µ2

)
. (4.23)
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The gluon mass function, which I write as a function of momenta of all particles in the intermediate
state:

µ2 = θ(q+) µ2(p4, p1, p2′) + θ(−q+) µ2(p4, p1′ , p2) , (4.24)

depends in fact only on the relative momentum of the gluon with respect to the quarks, x4 = p+
4 /P

+

and κ⊥4 = p⊥4 −x4P
⊥. Without this assumption the gluon mass ansatz would be inconsistent with

the relativistic invariance of FF wave functions.

Effective Hamiltonians for baryons

For baryons there are two cases that I investigate – baryons composed of three identical quarks,
and baryons composed of two identical quarks and one different. For three identical quarks of
flavor f ,

|leff〉 =

∫
123

P+δ̃P.123
εc1c2c3√

6
ψtQQQσ1σ2σ3(x1/12, κ1/12, x3, κ3)

1√
3!
b†t f 1b

†
t f 2b

†
t f 3|0〉 . (4.25)

where εc1c2c3/
√

6 is the color wave function for three quarks in the color-singlet state. The spin-
momentum wave function depends only on relative momentum of quark 1 with respect to 2 in
12 subsystem, through x1/12 and κ1/12, and on relative momentum of quark 3 with respect to
12, through x3 and κ3. Since the entire wave function has to be antisymmetric with respect to
permutations of the three quarks and color wave function is already fully antisymmetric, the spin-
momentum part has to be fully symmetric. Factor 1/

√
3! is added due to indistinguishability of

quarks. For two identical quarks of flavor f1 and one of flavor f3 the baryon state is

|leff〉 =

∫
123

P+δ̃P.123
εc1c2c3√

6
ψtQQQσ1σ2σ3(x1/12, κ1/12, x3, κ3)

1√
2!
b†t f1 1b

†
t f1 2b

†
t f3 3|0〉 . (4.26)

Because only the two first quarks are now indistinguishable, the spin-momentum wave function has
to be symmetric only with respect to exchange of quarks 1 and 2. To make the notation shorter I
will later use ψtQQQ(123) = ψtQQQσ1σ2σ3(x1/12, κ1/12, x3, κ3). The factor 1/

√
2! in Eq. (4.26) and

factor 1/
√

3! in Eq. (4.25) ensure that scalar products of states of type QQQ and those of type
QQQ′ look the same, regardless of how many quarks are identical:

〈leff|l′eff〉 = P+δ̃P ′.P
∑

σ1σ2σ3

∫
[123]P+δ̃123.P ψ∗tQQQσ1σ2σ3

ψ′tQQQσ1σ2σ3
, (4.27)

where |leff〉 is a state with momentum P , while |l′eff〉 is a state with momentum P ′.
The effective eigenvalue equation for the spin-momentum wave function is obtained in the form,(

M2
1, t + (κ⊥1 )2

x1
+

M2
2, t + (κ⊥2 )2

x2
+

M2
3, t + (κ⊥3 )2

x3

)
ψtQQQ(123)

+ g2
∑
σ1′σ2′

∫
[1′2′] P+

12δ̃1′2′.12
1

x1 + x2
UQQ(12; 1′2′) ψtQQQ(1′2′3)

+ g2
∑
σ3′σ1′

∫
[3′1′] P+

31δ̃31.3′1′
1

x3 + x1
UQQ(31; 3′1′) ψtQQQ(1′23′)

+ g2
∑
σ2′σ3′

∫
[2′3′] P+

23δ̃23.2′3′
1

x2 + x3
UQQ(23; 2′3′) ψtQQQ(12′3′)

= M2 ψtQQQ(123) , (4.28)

where P+
ij = p+

i + p+
j . The effective mass terms M2

i, t are almost the same as those for quark-

antiquark eigenvalue Eq. (4.18) except µ2
i depends here on different momenta: µ2

1 = µ2(p4, p5, p2, p3),
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Figure 4.3: Second order quark self-interaction terms in the effective Hamiltonian in the
QQQ eigenvalue problem. Parts (a), (b) and (c) depict contributions to M2

1, t, M
2
2, t and M2

3, t,
respectively. The upper diagrams are terms of matrix element 〈leff|Ht 2|l′eff〉, cf. Fig. 3.7; the
lower diagrams are terms obtained from the product of two Ht 1 in Eq. (4.12).
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Figure 4.4: Second order gluon-exchange quark-quark interaction terms in the effective Hamil-
tonian in the QQQ eigenvalue problem. Part (a) represents interaction of quarks 1 and 2,
which are identical, hence, the interaction terms should be symmetrized. Part (b) represents
interaction of quarks 2 and 3, which may have different flavors, in which case there are no
symmetrization diagrams. The most left diagrams in parts (a) and (b) are terms of the matrix
element 〈leff|(HtQQinst + HtQQexch)|l′eff〉 depicted in Fig. 3.6. The other diagrams represent
terms obtained from the product of two Ht 1 in Eq. (4.12).
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µ2
2 = µ2(p4, p5, p3, p1) and µ2

3 = µ2(p4, p5, p1, p2), see Fig. 4.3. Although I wrote momenta of all
quarks, the gluon mass in fact depends only on the relative momentum of a gluon with respect to
three quarks.

The gluon-exchange interactions again include instantaneous and exchange terms, see Fig. 4.4,

UQQ = UQQinst + UQQexch , (4.29)

where for pair 12 of quarks,

UQQinst(12; 1′2′) = Sym

{
− CF
Nc − 1

rC 12.1′2′ ft 12.1′2′
j+
11′j

+
22′

(p+
4 )2

}
, (4.30)

UQQexch(12; 1′2′) = Sym

{
− CF
Nc − 1

rC 12.1′2′ F(12; 1′2′) dµν(p4) jµ11′j
ν
22′

}
. (4.31)

Symbol Sym denotes symmetrization, and needs to be done because quarks 1 and 2 are always
identical. Note that the color part of the interaction is already evaluated and the effect of it is the
factor CF /(Nc − 1). The color wave function was antisymmetric, hence to obtain antisymmetry
of the whole function one needs to symmetrize the spin-momentum part of the interaction terms.
For pairs 31 and 23 the symmetrization is required only if flavor of quark 3 is the same as that
of quarks 1 and 2. In that case, the other two interaction terms, UQQ(31; 3′1′) and UQQ(23; 2′3′),
are obtained by cyclic permutations of 1, 2, 3 and 1′, 2′, 3′ in the formulas for UQQ(12; 1′2′). Note
also that in baryons the gluon mass ansatz in R(12; 1′2′), given in Eq. (4.23) depends on relative
momentum of the gluon with respect to three quarks.

However, for bbc and ccb systems symmetrization of pairs 31 and 23 should not be performed
and,

UQQinst(23; 2′3′) = − CF
Nc − 1

rC 23.2′3′ ft 23.2′3′
j+
22′j

+
33′

(p+
4 )2

, (4.32)

UQQexch(23; 2′3′) = − CF
Nc − 1

rC 23.2′3′ F(23; 2′3′) dµν(p4) jµ22′j
ν
33′ , (4.33)

and analogous expressions hold for UQQinst(31; 3′1′) and UQQexch(31; 3′1′), but with 3 replaced with
1 and 2 replaced with 3.

4.3.2 Small-x divergences

Using Eqs. (4.20)–(4.23), (3.47) and (3.54) I rewrite UQQ̄ in the following form,

UQQ̄(12; 1′2′) = CF rC 12.1′2′ gµνj
µ
11′ j̄

ν
2′2
[
f12.1′2′ F (12; 1′2′) + ff12.1′2′ R(12; 1′2′)

]
+ CF rC 12.1′2′

j+
11′ j̄

+
2′2

(q+)2
[f12.1′2′ I1 + ff12.1′2′ I2] , (4.34)

where

I1 =
x̂2

1q
2
1 + x̂2

2q
2
2

x̂2
1(q2

1)2 + x̂2
2(q2

2)2 − (q2
1 − q2

2)2

q2
1 + q2

2

2
− 1 , (4.35)

I2 =
q2

1 + q2
2

2

[
1

2

(
1

q2
1 − µ2

+
1

q2
2 − µ2

)
− x̂2

1q
2
1 + x̂2

2q
2
2

x̂2
1(q2

1)2 + x̂2
2(q2

2)2 − (q2
1 − q2

2)2

]
. (4.36)

(q+)2 in the denominator in the second line of Eq. (4.34) may produce small-x divergence, therefore,
the first thing to investigate is whether any such divergence appears. If the interaction was on-
energy-shell, q2

1 = q2
2 = q2, and µ2 were zero, both I1 and I2 would be zero. However, interactions

in bound states are essentially off-energy-shell. I need to check how the interactions behave in
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the vicinity of q+ = 0. From definition x̂1 = x1 + θ(q+)q+/P+ and x̂2 = x2 − θ(−q+)q+/P+.
Moreover,

q2
2 = q2

1 + q+M2
12 −M2

1′2′

P+
. (4.37)

Off shell,M2
12−M2

1′2′ is nonzero but finite because effective interactions cannot change invariant
masses by too much. I expand I1 in powers of q+,

I1 =
1

2q2
1

x1 − x2

x2
1 + x2

2

M2
12 −M2

1′2′

P+
q+ +O

[
(q+)2

]
. (4.38)

The leading term is of order q+, therefore, when divided in Eq. (4.34) by (q+)2 produces 1/q+,
which by itself is not integrable. However, the interaction term contains also regularization factor
rC 12.1′2′ , which makes the integrals finite, and the limit δ → 0 is well defined – it corresponds to
taking the Cauchy principal value of the integral.

The term with I2 needs a different analysis. ff12.1′2′ regulates the interaction for any fixed q2
1

and q2
2 by going exponentially to zero when q+ → 0. However, it does not regulate interactions

when both q+ → 0 and q2
1 and q2

2 go to zero. For small x4 = |q+|/P+ one has q2
1 ≈ q2

2 ≈ −κ2
4.

Therefore, for small x4,

ff12.1′2′ ≈ e
−t(x2

1+x2
2)
κ4

4
x2
4 = e−t(x

2
1+x2

2)a2
, (4.39)

where a⊥ =
√
x4κ

⊥
4 . Hence, if x4 goes to zero in such a way that a⊥ is constant, then ff12.1′2′ does

not go to zero and does not regulate the interaction. To check if the interaction leads to small-x
divergences one has to analyze the integral in Eq. (4.17). The part that is necessary here is,∫

dx1′d
2κ1′

1

x2
4

ff12.1′2′ I2 , (4.40)

where factor 1/x2
4 comes from 1/(q+)2 in Eq. (4.34) and I omitted numerical factors, j+

11′ j̄
+
2′2, the

wave function, which is irrelevant in the analysis (it may be approximated by a constant), and also
the regularization function rC 12.1′2′ . Now, I change integration variables. Transverse momentum
κ⊥1′ is equal to κ⊥1 −κ⊥4 for q+ > 0 and to κ⊥1 +κ⊥4 for q+ < 0. In both cases I change the integration
variables from κ⊥1′ to κ⊥4 , and in both cases the modulus of Jacobian is one. Then I change the
integration variables from κ⊥4 to a⊥ =

√
x4κ

⊥
4 . Therefore, d2κ4 = x4d

2a. The integration over x1′

is changed to integration over x4,∫ 1

0
dx1′ =

∫ x1

0
dx1′θ(q

+) +

∫ 1

x1

dx1′θ(−q+) =

∫ x1

0
dx4θ(q

+) +

∫ 1−x1

0
dx4θ(−q+) , (4.41)

where for q+ > 0, I used x1′ = x1−x4 and for q+ < 0, I used x1′ = x1 +x4. Therefore, the integral
(4.40) becomes, ∫ ·

0
dx4

∫
d2a

1

x4
e−t(x

2
1+x2

2)a2
I2 , (4.42)

which represents both integrals from Eq. (4.41). The integral over x4 ranges from 0 to x1 or 1−x1

but only the lower limit is important. Note, that here the factor that is problematic is 1/x4 which
is always positive and not 1/q+, which may be positive or negative. Therefore, the principal value
prescription does not work here and I2 has to vanish when x4 → 0 (and a⊥ is kept fixed), because
otherwise the integral is divergent and the eigenvalue equation ill-defined. The leading term of I2

in expansion around x4 = 0 is,

I2 ≈ − µ2/x4

a2 + µ2/x4
. (4.43)
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The behavior of I2 and, hence, the well-definiteness of Eq. (4.17), depend on the behavior of
the gluon mass ansatz µ2 when x4 → 0. First of all, if µ2 were zero, then I2 would also be
zero in the limit x4 → 0. When µ2 is introduced it cannot be a constant, but if it behaves like

µ2 ∼ x
1+δµ
4 with δµ > 0 for small x4, then it regulates small-x region of dynamics. Another

example of acceptable behavior near zero x4 is µ2 ∼ xδ
µ

4 κ2
4 = x

1+δµ
4 a2. The parameter δµ may be

regarded as a phenomenological parameter, however, the oscillator potentials that are implied by
the gluon mass ansatz, see below, do not depend on the details of the gluon mass ansatz. To be
sure that eigenvalue Eq. (4.17) is free from small-x divergences when µ2 vanishes properly with
x4 one needs to check also M2

i, t. The analysis is even simpler than for the exchange interaction
kernel UQQ̄(12; 1′2′). It turns out that the same behavior of gluon mass ansatz near x4 = 0 that
regulates the gluon exchange interaction, regulates also the self interaction terms M2

i, t.

For baryons, it is also possible to choose the behavior of gluon mass ansatz that regulates
small-x divergent factors in both interaction term and self-energy terms. In baryon, the gluon
mass ansatz can depend on the gluon momentum relative to all three quarks κ⊥4 . Examples of

behavior of gluon mass ansatz near x4 = 0 are again µ2 ∼ x1+δµ
4 and µ2 ∼ xδµ4 κ2

4. The notation is
the same as for quarkonia but the definition of κ4 and x4 in baryons is different than the definition
of κ4 and x4 in quarkonia. For example, in baryons, x4 = p+

4 /(p
+
1 + p+

2 + p+
3 ), while in quarkonia

x4 = p+
4 /(p

+
1 + p+

2 ). However, µ2 ∼ xδµ4 κ2
4 implies that µ2 ∼ xδµ4/12κ

2
4/12 near x4/12 = 0, where x4/12

and κ⊥4/12 are relative momenta in pair 12. The kernel in Eq. (4.31) depends on x4/12 and κ⊥4/12 in

the same way as the interaction kernel Eq. (4.21) depends on κ4 and x4 in quarkonia. Therefore,
the analysis I presented for quarkonia applies also for baryons.

4.3.3 Coulomb potential and harmonic oscillator

Definition of the nonrelativistic limit

In the previous sections I presented the effective eigenvalue equations for mesons and baryons
and showed that they do not posses small-x divergences if the gluon mass ansatz vanishes properly
when gluon +-momentum fraction goes to zero. In order to estimate solutions to these well-defined
equations, one can take advantage of the fact that quarks are heavy to simplify these equations
even more. Large masses of quarks in Eqs. (4.17) and (4.28), formally much larger than λ, imply
that the quark-antiquark or three-quark system is nonrelativistic, which means that the relative
momenta of particles are small compared with masses. Term “relative momenta” needs a precise
definition because +-momentum fraction x of a particle is not usually used in the nonrelativistic
quantum mechanics. In meson systems I use the following nonrelativistic momentum of the quark
relative to the antiquark [58],

k⊥12 =

√
β1β2

x1x2
κ⊥1 , (4.44)

kz12 =

√
β1β2

x1x2
(m1 +m2)(x1 − β1) , (4.45)

where ⊥= x, y and βi = mi/(m1 + m2). It is convenient to write ~k12 = (kx12, k
y
12, k

z
12). The

nonrelativistic limit is defined as,

~k12

m1 +m2
→ 0 . (4.46)

In that limit

κ⊥1 = k⊥12 , (4.47)

x1 = β1 +
kz12

m1 +m2
. (4.48)
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In baryon systems I distinguish pair 12 and define the nonrelativistic momentum of quark 1
with respect to quark 2 [58],

K⊥12 =

√
β1β2(1− x3)

x1x2(1− β3)
κ⊥1/12 , (4.49)

Kz
12 =

√
β1β2(1− x3)

x1x2(1− β3)
(m1 +m2)

(
x1/12 − β1/12

)
, (4.50)

where βi = mi/(m1 + m2 + m3), x1/12 = x1/(x1 + x2) and β1/12 = β1/(β1 + β2). Moreover, the
nonrelativistic momentum of quark 3 with respect to pair 12 is,

Q⊥3 =

√
β3(1− β3)

x3(1− x3)
κ⊥3 , (4.51)

Qz3 =

√
β3(1− β3)

x3(1− x3)
(m1 +m2 +m3)(x3 − β3) . (4.52)

It is convenient to write ~K12 = (Kx
12,K

y
12,K

z
12), ~Q3 = (Qx3 , Q

y
3, Q

z
3). The nonrelativistic limit is

defined as,

~K12

m1 +m2 +m3
→ 0 ,

~Q3

m1 +m2 +m3
→ 0 . (4.53)

In the nonrelativistic limit

κ⊥1/12 = K⊥12 , (4.54)

x1 = β1 +
Kz

12 − β1/12Q
z
3

m1 +m2 +m3
, (4.55)

κ⊥3 = Q⊥3 , (4.56)

x3 = β3 +
Qz3

m1 +m2 +m3
. (4.57)

Schrödinger equation for mesons

Having introduced suitable variables I can now present the eigenvalue equations for masses and
states of mesons and baryons. To write the interaction kernel, Eq. (4.34), one needs to know that
in the nonrelativistic limit,

q2
1 = −~q 2 , (4.58)

q2
2 = −~q 2 , (4.59)

where ~q = ~k12 − ~k1′2′ . Therefore,

F (12; 1′2′) = − 1

~q 2

(
1− ff12.1′2′

f12.1′2′

)
, (4.60)

R(12; 1′2′) = − 1

µ2 + ~q 2
, (4.61)

I1 = 0 , (4.62)

I2 = − µ2

µ2 + ~q 2
. (4.63)

Additionally,

gµνj
µ
11′ j̄

ν
2′2 = 4m1m2δσ1σ1′ δσ2σ2′ . (4.64)
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These give,

UQQ̄(12; 1′2′) = CF 4m1m2 δσ1σ1′ δσ2σ2′

{
−f12.1′2′

~q 2
− ff12.1′2′

[
1

(qz)2
− 1

~q 2

]
µ2

µ2 + ~q 2

}
,

(4.65)

where

f12.1′2′ = exp

[
−t

(~k 2
12 − ~k 2

1′2′)
2

β2
1β

2
2

]
, (4.66)

ff12.1′2′ = exp

[
−t(m2

1 +m2
2)

(
~q 2

qz

)2
]
. (4.67)

The effective self-interaction terms are

M2
1, t = m2

1 +m1g
2
tCF

∫
d3q

(2π)3

[
1

(qz)2
− 1

~q 2

]
µ2

µ2 + ~q 2
exp

[
−2tm2

1

(
~q 2

qz

)2
]
, (4.68)

M2
2, t = m2

2 +m2g
2
tCF

∫
d3q

(2π)3

[
1

(qz)2
− 1

~q 2

]
µ2

µ2 + ~q 2
exp

[
−2tm2

2

(
~q 2

qz

)2
]
, (4.69)

where ~q is the nonrelativistic momentum of the gluon and is defined differently than ~q from quark-
antiquark interaction. Here, q⊥ = κ⊥ and qz = xm1. Moreover, the integration measure in the
nonrelativistic limit is, ∫

[1′2′] P+δ̃1′2′.P =

∫
d3k1′2′

(2π)3

1

2µ12
, (4.70)

where µ12 = m1m2/(m1 +m2) is the reduced mass in the quark pair 12

After division by 2(m1 +m2) Eq. (4.17) in the nonrelativistic limit is,[
k2

12

2µ12
+ CF

∫
d3q

(2π)3

W11(~q ) +W22(~q )

2

]
ψ(~k12)

−CF
∫

d3q

(2π)3

[
g2
t

~q 2
f12.1′2′ +W12(~q )

]
ψ(~k12 − ~q ) = E ψ(~k12) , (4.71)

where,

Wij(~q ) = g2
t

[
1

(qz)2
− 1

~q 2

]
µ2

µ2 + ~q 2
exp

[
−t(m2

i +m2
j )

(
~q 2

qz

)2
]
, (4.72)

and the eigenvalue E of Eq. (4.71) is related to the eigenvalue M of Eq. (4.17) in the following
way,

E =
M2 − (m1 +m2)2

2(m1 +m2)
. (4.73)

Furthermore,

ψ(~k12 − ~q ) = ψ(~k12 )− qi ∂

∂ki12

ψ(~k12 ) +
1

2
qiqj

∂2

∂ki12∂k
j
12

ψ(~k12 ) + . . . , (4.74)

where i, j = x, y, z. The first term combines with the self-interaction terms. The term linear in
~q integrates to zero. Term quadratic in ~q is nonzero for i = j and produces harmonic oscillator
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force. Assuming that higher-order terms in expansion into powers of relative momentum are small,
I omit them. The term in Eq. (4.71) that comes from the third term in Eq. (4.74) is,

−CF
∫

d3q

(2π)3
W12(~q )

1

2
(qi)2 ∂2

∂ki 212

ψ(~k12 ) . (4.75)

I can approximate W12 by assuming µ2/(µ2 + ~q 2) ≈ 1, because |~q | ∼ αµ12 � µ in the dominant
region of integration. Moreover, this assumption implies that the coefficient in front of derivatives
in each direction is the same, which is not guaranteed by general form of W12 in Eq. (4.72).
Therefore, Eq. (4.71) becomes,[

Σ +
k2

12

2µ12
− µ12ω

2
12∆k

2

]
ψ(~k12)− CF

∫
d3q

(2π)3

g2
t

~q 2
f12.1′2′ ψ(~k12 − ~q ) = E ψ(~k12) , (4.76)

where ∆k is the Laplacian in momentum space, which corresponds to harmonic oscillator potential
in position space.3 The frequency of the harmonic oscillator potential is,

ω12 =

√√√√ α

18
√
π µ12

(
λ2√

m2
1 +m2

2

)3

, (4.77)

where α = g2
t /(4π), depends rather strongly on the RGPEP scale λ. Note, that Coulomb potential

1/~q 2 is multiplied by the RGPEP form factor f12.1′2′ , see Eq. (4.66), which makes the interaction
nonlocal. The relativistic expression for the mass of a bound state in terms of the eigenvalue E
implied by Eq. (4.73) has the form,

M = (m1 +m2)

√
1 +

2E

m1 +m2
, (4.78)

which in the nonrelativistic limit is M ≈ m1 +m2 +E. However, since Eq. (4.76) is derived from
the FF Hamiltonian of QCD I use Eq. (4.78).

The universal shift Σ of masses of eigenstates of Eq. (4.76),

Σ =
CF
2
g2
t

∫
d3q

(2π)3

[
1

(qz)2
− 1

~q 2

]
µ2

µ2 + ~q 2

e−tm2
1

(
~q 2

qz

)2

− e
−tm2

2

(
~q 2

qz

)2
2

, (4.79)

comes from the difference between self-interaction terms M2
i, t and the gluon-exchange interaction

term, in which wave function is approximated by a constant, see the first term in Eq. (4.74). It is
zero if m1 = m2. However, if m1 6= m2, then Σ depends on precise form of µ2, because in Eq. (4.79)
one cannot approximate µ2/(µ2 + ~q 2) ≈ 1 – that would make the integral divergent. Assumed
behavior of µ2 for |~q | ∼ 0 guarantees that Σ is finite but depends on δµ. It is possible to make Σ
smaller than the harmonic oscillator frequency ω12 or even on the order of splittings introduced by
spin-dependent interactions (which I neglect in this thesis). But Σ can be on the order of ω12 or
even much bigger than ω12. That would imply large shifts of energies of Bc mesons. Because for
charmonia and bottomonia Σ = 0, in Chapter 5 I calculated spectrum of Bc assuming that Σ = 0
also in this case and the results agree well with experimental data. That fact together with strong
dependence of Σ on the gluon mass ansatz suggests that this term will be substantially corrected
in a study that uses the renormalized Hamiltonian Ht calculated up to terms of order g4

t . On
the other hand, formally, no dependence of ω12 on the gluon mass ansatz suggests that harmonic
oscillator potential with frequency ω12 is a result that will also appear in the future calculations.

3Position here is defined as a variable conjugate to relative momentum ~k.



40 CHAPTER 4. APPROXIMATE HAMILTONIANS FOR MESONS AND BARYONS

Schrödinger equation for baryons

For baryons the derivation of the Schrödinger equation is analogous to the derivation for mesons.
Quark-quark gluon-exchange interaction between quarks i and j can be most easily written in
terms of nonrelativistic momentum of one quark relative to the other. Therefore, in addition to
Eqs. (4.49)–(4.52) I define two new sets of momenta: ~K23, ~Q1 and ~K31, ~Q2. Appropriate formulas
can be obtained by using Eqs. (4.49) and (4.52) as a template and changing every index in a
consistent way, e.g., 1 → 2, 2 → 3, 3 → 1. Relations between different sets in the nonrelativistic
limit are,

~K23 = − β3

β2 + β3

~K12 −
β2

(β2 + β3)(β1 + β2)
~Q3 , (4.80)

~Q1 = ~K12 −
β1

β1 + β2

~Q3 , (4.81)

and

~K31 = − β3

β3 + β1

~K12 +
β1

(β3 + β1)(β1 + β2)
~Q3 , (4.82)

~Q2 = − ~K12 −
β2

β1 + β2

~Q3 . (4.83)

The formulas for various objects in the nonrelativistic limit are almost the same as for mesons,
but one has to change ~q in favor of ∆ ~Kij = ~Kij − ~Ki′j′ . Hence, the interaction kernels are,

UQQ(ij; i′j′) =
CF

Nc − 1
4mimj δσiσi′ δσjσj′

×

{
−
fij.i′j′

∆ ~K2
ij

− ffij.i′j′
[

1

(∆Kz
ij)

2
− 1

∆ ~K2
ij

]
µ2

µ2 + ∆ ~K2
ij

}
, (4.84)

where,

fij.i′j′ = exp

[
−t

( ~K 2
ij − ~K 2

i′j′)
2

β2
i β

2
j

]
, (4.85)

ffij.i′j′ = exp

−t(m2
i +m2

j )

(
∆ ~Kij

2

∆Kz
ij

)2
 . (4.86)

The effective self-interaction terms are given by formulas exactly like Eq. (4.68), but with proper
quark mass and with formally different definition of the gluon mass ansatz. The integration
measure in the nonrelativistic limit is,∫

[i′j′] P+
ij δ̃i′j′.ij =

∫
d3Ki′j′

(2π)3

1

2µij
. (4.87)

After division by 2(m1 +m2 +m3) Eq. (4.28) in the nonrelativistic limit is,[
K2

12

2µ12
+

Q2
3

2µ3(12)
+ CF

∫
d3q

(2π)3

W11(~q ) +W22(~q ) +W33(~q )

2

]
ψ(123)

− CF
2

∫
d3K1′2′

(2π)3

[
g2

|∆ ~K12|2
f12.1′2′ +W12(∆ ~K12)

]
ψ(1′2′3)

− CF
2

∫
d3K2′3′

(2π)3

[
g2

|∆ ~K23|2
f23.2′3′ +W23(∆ ~K23)

]
ψ(1′23′)

− CF
2

∫
d3K3′1′

(2π)3

[
g2

|∆ ~K31|2
f31.3′1′ +W31(∆ ~K31)

]
ψ(12′3′) = E ψ(123) , (4.88)
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where I put Nc = 3, µ3(12) = (2m1)m3/(2m1 +m3) is the reduced mass of quark 3 with respect to
pair 12 and the arguments of wave functions in interaction terms are written in a simplified way.
The eigenvalue E of Eq. (4.88) is related to the eigenvalue M of Eq. (4.28) in the following way,

E =
M2 − (m1 +m2 +m3)2

2(m1 +m2 +m3)
. (4.89)

Expansion of the wave function in the interaction term where quarks 1 and 2 interact is,

ψ( ~K1′2′ , ~Q3) = ψ( ~K1′2′ , ~Q3)−∆Ki
12

∂

∂Ki
12

ψ( ~K1′2′ , ~Q3)

+
1

2
∆Ki

12∆Kj
12

∂2

∂Ki
12∂K

j
12

ψ( ~K1′2′ , ~Q3) + . . . , (4.90)

where i, j = x, y, z. Like for mesons the first term combines with the self-interaction terms, the term
linear in ∆ ~K12 integrates to zero, and the term quadratic in ∆ ~K12 produces harmonic oscillator
force. Assuming µ2/(µ2 + ∆ ~K12

2) ≈ 1, I obtain, three harmonic oscillator potentials between
quarks of each pair. The terms in Eq. (4.88) that correspond to those harmonic oscillators are,

−1

4

[
w12

(
∂

∂ ~K12

)2

+ w23

(
∂

∂ ~K23

)2

+ w31

(
∂

∂ ~K31

)2
]
ψ( ~K12, ~Q3) , (4.91)

where

wij =
αλ3

18
√
π

(
λ2

m2
i +m2

j

)3/2

, (4.92)

Using w31 = w23 and relations between ~K23, ~K31 and ~K12, ~Q3 I rewrite Eq. (4.91) to the following
form,

= −1

4

[(
w12 +

1

2
w23

)(
∂

∂ ~K12

)2

+ 2w23

(
∂

∂ ~Q3

)2
]
ψ( ~K12, ~Q3) . (4.93)

Therefore, the three oscillators between quarks in each pair of quarks can be written as two
oscillators: one oscillator between quarks 1 and 2, and the second one between quark 3 and pair
12. The eigenvalue Eq. (4.88) becomes,[

Σ +
K2

12

2µ12
+

Q2
3

2µ3(12)
− µ12ω

2
12∆K

2
−
µ3(12)ω

2
3(12)∆Q

2

]
ψ
(
~K12, ~Q3

)
− CF

2

∫
d3q

(2π)3

g2
t

|~q |2
f12.1′2′ ψ

(
~K12 − ~q, ~Q3

)
− CF

2

∫
d3q

(2π)3

g2
t

|~q |2
f23.2′3′ ψ

(
~K12 +

1

2
~q, ~Q3 + ~q

)
− CF

2

∫
d3q

(2π)3

g2
t

|~q |2
f31.3′1′ ψ

(
~K12 +

1

2
~q, ~Q3 − ~q

)
= E ψ

(
~K12, ~Q3

)
, (4.94)

where the frequencies of the harmonic oscillators are,

ω12 =
2w12 + w13

4µ12
, (4.95)

ω3(12) =
w13

µ3(12)
. (4.96)
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In case of the equal masses of quarks,

ω12 = ω3(12) = ω =

√
3

2

√
α

18
√

2π

λ3

m2
. (4.97)

The relativistic expression for the mass of a bound state in terms of the eigenvalue E has the form,

M = (m1 +m2 +m3)

√
1 +

2E

m1 +m2 +m3
. (4.98)

The mass shift term Σ is zero for baryons with equal masses of all quarks. For baryons with two
different kinds of quarks and m1 = m2 6= m3 it is given by the same Eq. (4.79) but with m2

replaced with m3. Therefore, as for mesons, this term is likely to be an artifact of the gluon mass
ansatz and I omit it when I compute the spectra of heavy baryons built from quarks of different
flavors. Further discussion of this term is in Chapter 5.



Chapter 5

Spectra of heavy mesons and baryons

Derivation of the approximate Hamiltonians for mesons and baryons in the previous chapter relies
on the assumption that in heavy-flavor QCD the dynamics of the effective gluons inside ground
states and lowest excited states of heavy hadrons can be approximated by including only one
such gluon but supplied with an ansatz for its mass, which is a function of relative momentum of
gluon with respect to quarks. The simplest test of the ansatz is the calculation of masses of doubly-
heavy mesons and triply-heavy baryons. The obtained mass spectra do not include any spin effects
other than those due to antisymmetrization of wave functions in identical quarks. Therefore, the
purpose of this calculation is to check if the spectra are qualitatively acceptable rather than to
compute precisely the masses. Hence, we make crude approximations. Nevertheless, the same
approximations are made for baryons and quarkonia. Therefore, fitting masses of quarkonia to
experimental values fixes free parameters of the theory, and the masses of baryons that we arrive
at can be treated as rough estimates of yet to be observed heavy baryons. The results for ground
states and low-lying excited states are consistent with estimates produced by other known methods.
Especially interesting and encouraging is qualitative agreement between our results and Lattice
QCD simulations for ground states and excited states spectrum of Ωccc and Ωbbb baryons.

5.1 Introduction

If we could solve QCD exactly then no calculated quantity would depend on the renormalization
group parameter λ, and there would be no point in introducing the family of effective Hamiltonians
Ht, because only one renormalized Hamiltonian would suffice. In an approximate calculation one
can and should choose λ that has value related to characteristic scales involved in the problem.
The frequencies of the oscillators obtained in Chapter 4 depend quite strongly on renormalization
group parameter λ. Therefore, the masses of bound states can be accurately described using
our approximations and assumptions only in a limited window of values of λ [59, 60]. The basic
assumption that we make about λ is that the best choice for its value scales with the characteristic
mass of the system m and coupling constant α as λ ∼

√
αm. We make this choice because it implies

that the frequencies of the harmonic oscillators scale as α2, which means that the characteristic
momentum of the harmonic oscillator p ∼

√
mω scales as α. The characteristic momentum in the

Coulomb potential (Bohr momentum) also scales as α. Hence, all terms: kinetic energy, Coulomb
potential (neglecting the form factors) and the harmonic oscillator potential scale with the coupling
constant as α2. Therefore, the binding energy also scales as α2. Moreover, the RGPEP form factors
that multiply the Coulomb potential formally do not differ much from 1 because their arguments
being momentum over λ to the forth power scale as α2, hence, are formally small. Therefore, I
omit the RGPEP form factors in approximate calculations of masses of heavy hadrons. The exact
formula for λ that we use to calculate masses of heavy mesons is,

λQQ̄ =
√
α
(
a m̄QQ̄ + b

)
, (5.1)

43
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where m̄QQ̄ is the average mass of the quark and the antiquark. The analogous formula for baryons
is,

λ3Q =
√
α (a m̄3Q + b) , (5.2)

where m̄3Q is the average mass of the three quarks. The coupling constant α is assumed to be
known and running [3],

α =
1

β0 log(λ2/Λ2
QCD)

, (5.3)

where β0 = (33 − 2nf )/(12π). We fix the number of quark flavors to nf = 2, and α = 0.1181 for
λ = MZ = 91.1876 GeV [21]. That means ΛQCD = 371 MeV. Variation in the number of flavors
does not change significantly the mass spectra. The quark masses are assumed to be independent
of λ, because their dependence on the scale can be first studied using the renormalized Hamiltonian
Ht computed up to the fourth order in perturbation theory.

The unknown masses of quarks mb and mc and constants a and b have to be fitted to exper-
imental data [21]. We use masses of charmonium states J/ψ, ψ(2S) and χc1(1P ) to get the best
values of λcc̄ and mc. And we use bottomonium states Υ(1S), Υ(2S) and χb1(1P ) to get the best
values of λbb̄ and mb. Using Eq. (5.1), we necessarily obtain the only possible values of constants
a and b and we compute λbc̄ that is used to for the calculation of masses of Bc(1S) and Bc(2S)
states.

A comment is due about the method of estimating solutions of the eigenvalue Eqs. (4.76) and
(4.94). For the purpose of estimation of the mass spectra of heavy hadrons it appears sufficient
to account for the Coulomb potential in perturbation theory. We assume that the “unperturbed”
parts of the approximate Hamiltonians for mesons and baryons consist of kinetic energy and
harmonic oscillator potentials, while the Coulomb potential constitutes a “perturbation” and is
treated in the first order perturbation theory. My check of the quality of that calculation for
zero-angular-momentum states in bbb and ccc systems is in App. B. A more accurate calculation
gives mass of the bbb ground state that is shifted by less than 50 MeV from the result of the first
order perturbation theory. The analogous shift for ground state of ccc is about 30 MeV. Shifts of
excited states are smaller, as expected, because Coulomb potential is strongest in the center and
the ground state has the biggest values of the wave function in the vicinity of the center. Shifts of
this magnitude or even larger are already expected to come from spin interactions that we neglect.
Therefore, treating Coulomb potential in the first order of perturbation theory appears justified.

5.2 Mass spectrum of mesons

Using the basis of eigenstates of the harmonic oscillator one can classify states according to its
excitations. If there is one oscillator, i.e., for mesons, the successive excitations are denoted 1S,
1P , 2S, 1D, and so on, where 1S is the ground state, 1P is the p-wave excitation (the first orbital
excitation), 2S is the first radial excitation and 1D denotes the lowest-energy d-wave state. Wave
functions of s-wave states are denoted ψ1S , ψ2S , and so on. P-wave states come in multiplets of
different projections of the orbital angular momentum on z axis, ψ1P−1 , ψ1P0 , ψ1P+1 . The general
oscillator eigenstate with definite angular momentum and its projection on z-axis is,

ψklm(~p ) = Nkl e
−νp2

L
(l+1/2)
k (2νp2) plYlm(p̂) , (5.4)

where k is the radial excitation number, l is the orbital angular momentum number, m is the
projection of the angular momentum on the z axis, ν = 1/(2µω), Ylm are spherical harmonics and
Lak(x) are generalized Laguerre polynomials. The first two polynomials are La0(x) = 1, La1(x) =
1 + a− x. The normalization factors are

Nkl =

√√
2ν3

π

2k+2l+3k!νl

(2k + 2l + 1)!!
(2π)3/2 , (5.5)
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so that ∫
d3p

(2π)3
ψ∗klmψk′l′m′

= δkk′δll′δmm′ . (5.6)

The energy of an eigenstate is

E = ω

(
2k + l +

3

2

)
. (5.7)

The ground state has E = 3ω/2, 1P states constitute so-called first band of the harmonic oscillator
with energy ω above the ground state, while 2S and 1D states are degenerated and constitute the
second band with excitation energy 2ω. Combination of momentum wave functions with spin wave
functions is simple when spin-dependent interactions are absent. Quark and antiquark may form
only spin-0 singlet or spin-1 triplet. Then the orbital and spin angular momenta are added using
well-known Clebsch-Gordan coefficients tabulated for example in Ref. [21]. In Chapter 6, where
I calculate electromagnetic form factors, I need to include also leading relativistic corrections to
wave functions induced by motion of particles with spin to obtain satisfactory results for magnetic
properties of hadrons.

The binding energies E of mesons, including first order Coulomb corrections to the harmonic
oscillator levels are,

E1S =
3

2
ω − 4

3
α

√
2

πν
, (5.8)

E1P =
5

2
ω − 8

9
α

√
2

πν
, (5.9)

E2S =
7

2
ω − 10

9
α

√
2

πν
. (5.10)

In App. C there are listed binding energies of other states that also appear in Fig. 5.1. The
masses are given by Eq. (4.78). For bottomonium we fit mb quark mass and λbb̄ to obtain the best
agreement between masses computed using E1S , E2S , E1P and the experimental masses of Υ(1S),
Υ(2S), χb1(1P ). The best fit is,

mb = 4698 MeV and λbb̄ = 4258 MeV . (5.11)

Using the above λbb̄ and Eq. (5.3) we have α(λbb̄) = 0.2664. The harmonic oscillator frequency is
ωbb̄ = 268.8 MeV. The best agreement between masses of states computed using E1S , E2S , E1P

and experimental masses of J/ψ, ψ(2S) and χc1(1P ) is,

mc = 1460 MeV and λcc̄ = 1944 MeV . (5.12)

λcc̄ and mc imply α(λcc̄) = 0.3926 and ωcc̄ = 321.6 MeV. Knowing the values of λbb̄, λcc̄, mb, and
mc we can calculate the coefficients a and b from Eq. (5.1),

a = 1.589 , (5.13)

b = 783 MeV . (5.14)

Using again Eq. (5.1), this time for bc̄ system, we have,

λbc = 3134 MeV . (5.15)

Using Eq. (5.3) and the values of mb, mc and λbc, we have α(λbc) = 0.3047 and ωbc = 261.1 MeV.
Figure 5.1, presents spectra of all three systems, bb̄, cb̄ and cc̄. The states that were used

for fitting free parameters are close to the experimental data. Also 1D states of charmonium
and bottomonium agree well with experiment. States of the third and fourth band of harmonic
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Figure 5.1: Results of our fit to bb̄ and cc̄ low-mass states, are shown by dotted blue lines on
the background of data for heavy quarkonia and Bc mesons. The dashed green line represents
an average of various predictions for B∗c mass [61]. Dashed lines across a panel represent
thresholds. We include the states 3S that appear at the level of observed states that are
interpreted as 4S. Such highly excited states may contain an important component with
effective gluons, not properly accounted for by the perturbative calculation in our pilot study.
(Plot and caption first published in Ref. [7])

oscillator are too high, e.g., our Υ(3S) has the mass of the state experimentally presented as
Υ(4S). The discrepancy may be explained by the fact that we include gluonic degrees of freedom
implicitly by using perturbative reduction to the quark-antiquark Fock sector. For highly excited
states the perturbative reduction probably breaks down because Fock sectors with gluons are likely
to provide important contributions to such quarkonium states. In that case an eigenvalue equation
like Eq. (4.6), with at least two Fock sectors instead of just one, should be solved to obtain
reliable results. The standard quark model of charmonium and bottomonium [24] reproduces
Υ(3S) well because it employs the linear confining potential instead of the harmonic one. There is
a correspondence between linear potential in the instant form and the quadratic potential in the
FF of Hamiltonian dynamics [30]. In Eq. (4.78) for large E compared to m1 + m2 the mass M
behaves like a square root of E, hence, gives smaller values for masses than m1 + m2 + E would
give. However, this effect is too small for bottomonium or charmonium to shift masses of Υ(3S)
or ψ(3S) down enough. The problem with proper description of Υ(3S) and quite good agreement
of our estimates with other, low-lying states suggests an interesting conclusion that already Υ(3S)
contains an important gluonic component and that, maybe, the usual linearly rising confining
potential between constituent quarks can be derived from QCD in a calculation that properly
includes gluons in the dynamics of the system.

Comparison of experimental masses of Bc and Bc(2S) with our estimates also shows quite good
agreement if the Σ term of Eq. (4.79) is neglected.

5.3 Mass spectrum of baryons

In baryons there are two oscillators: between quarks 1 and 2, and between quark 3 and pair 12.
The basic building blocks to construct the eigenstates of the system are tensor products of wave
functions of the two oscillators. The notation is to write the excitation state of both harmonic
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States L⊗ S J

1S1S 0⊗ 3
2

3
2

+

0⊗
(

1
2

)
S

1
2

+

1P1S 1⊗
(

1
2

)
A

3
2

− ⊕ 1
2

−

1S1P 1⊗ 3
2

5
2

− ⊕ 3
2

− ⊕ 1
2

−

1⊗
(

1
2

)
S

3
2

− ⊕ 1
2

−

1D1S 2⊗ 3
2

7
2

+ ⊕ 5
2

+ ⊕ 3
2

+ ⊕ 1
2

+

2⊗
(

1
2

)
S

5
2

+ ⊕ 3
2

+

1S1D 2⊗ 3
2

7
2

+ ⊕ 5
2

+ ⊕ 3
2

+ ⊕ 1
2

+

2⊗
(

1
2

)
S

5
2

+ ⊕ 3
2

+

1P1P 2⊗
(

1
2

)
A

5
2

+ ⊕ 3
2

+

1⊗
(

1
2

)
A

3
2

+ ⊕ 1
2

+

0⊗
(

1
2

)
A

1
2

+

Table 5.1: Summary of oscillator basis states for systems ccb and bbc [7].

oscillators: first the oscillator 12, then the oscillator 3(12). For example,

ψ1P+11S( ~K12, ~Q3) = ψ1P+1( ~K12)ψ1S( ~Q3) , (5.16)

where in ψ1P+1( ~K12) the parameter ν = ν12 = 1/(2ν12ω12), while in ψ1S( ~Q3) the parameter
ν = ν3(12) = 1/(2ν3(12)ω3(12)). I am interested only in states that can be built from the ground
state 1S1S, the first band 1P1S, 1S1P , and the second band 2S1S, 1S2S, 1D1S, 1S1D, 1P1P .1

Because the Coulomb potential is central it conserves the total orbital angular momentum and its
projection on z axis. Therefore, it is advantageous to work with states that have these quantum
numbers definite. The only states of interest that do not have definite orbital angular momentum
are 1P1P states. The appropriate combinations of 1P states can be constructed using Clebsch-
Gordan tables [21] and are denoted 1P1PL=0, 1P1PL=1 and 1P1PL=2. To produce states of
physical particles orbital angular momentum has to be coupled with spin. Spins of three quarks
combine to spin-3/2 quadruplet that is symmetric in all three quarks,∣∣∣∣+3

2

〉
= |↑↑↑〉 ,

∣∣∣∣+1

2

〉
= . . . , (5.17)

spin-1/2 doublet, called (1/2)S , that is symmetric in the first two quarks,∣∣∣∣+1

2
S

〉
=

√
1

6
( 2|↑↑↓〉 − |↑↓↑〉 − |↓↑↑〉) , (5.18)∣∣∣∣−1

2
S

〉
=

√
1

6
(−2|↓↓↑〉+ |↓↑↓〉+ |↑↓↓〉) , (5.19)

and spin-1/2 doublet, called (1/2)A, that is antisymmetric in the first two quarks,∣∣∣∣+1

2
A

〉
=

√
1

2
(|↑↓↑〉 − |↓↑↑〉) , (5.20)∣∣∣∣−1

2
A

〉
=

√
1

2
(|↑↓↓〉 − |↓↑↓〉) . (5.21)

The symmetry of the spin wave functions is important because for bbc and ccb systems the first
two quarks are identical and combined spin-momentum wave function has to be symmetric in

1The term “band” makes sense only if ω12 = ω3(12), because then, e.g., 1P1S and 1S1P states are degenerated
and indeed form one “band.”
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States Wave functions Baryons

0ω 1S1S ⊗ 3
2

3
2

+

1ω 1P1S ⊗
(

1
2

)
A
− 1S1P ⊗

(
1
2

)
S

3
2

− ⊕ 1
2

−

A 2S1S+ ⊗ 3
2

3
2

+

B 2S1S− ⊗
(

1
2

)
S
− 1P1PL=0 ⊗

(
1
2

)
A

1
2

+

C 1D1S+ ⊗ 3
2

7
2

+ ⊕ 5
2

+ ⊕ 3
2

+ ⊕ 1
2

+

D 1D1S− ⊗
(

1
2

)
S
− 1P1PL=2 ⊗

(
1
2

)
A

5
2

+ ⊕ 3
2

+

Table 5.2: Summary of states for systems ccc and bbb [7]. For example, 1D1S−⊗
(

1
2

)
S

means
that we use |1Dm1S〉− states and (1/2)S spin states to obtain one of J = 5/2 or J = 3/2 states
according to the rules of adding angular momenta, i.e., using the Clebsch-Gordan coefficients.
1P1PL=2 ⊗

(
1
2

)
A

means that we combine 1P1PL=2 states and (1/2)A spin states to obtain
a state with the same quantum numbers. We then subtract the latter from the former, as
indicated in the table, and normalize the result to obtain the final expression, such as in
Eqs. (A.10) or (A.11), where the states with J = 5/2, Jz = +5/2 and J = 3/2, Jz = +3/2 are
written explicitly.

the first two quarks (because the color wave function is antisymmetric in the first two quarks).
For example, 1P1S is antisymmetric in ~K12 and therefore can be combined only with (1/2)A to
produce a 12-symmetric function. The complete list of states is provided in Table 5.1.

Baryons with three identical quarks require some extra care, because combined spin-momentum
wave functions need to be completely symmetric with respect to permutations of quarks (the color
wave function is completely antisymmetric). The problem is how to combine wave functions with
different symmetry properties (symmetric and of mixed symmetry) to form a completely symmetric
spin-momentum wave function [62]. The prescriptions for appropriate combinations of the wave
functions are listed in Table 5.2. These prescriptions differ in sign from the prescriptions given,
e.g., in Refs. [63, 26], because our momentum ~Q3 is a momentum of quark 3 with respect to pair
12, instead of pair 12 with respect to quark 3. Table 5.2 uses also the following combinations of
momentum wave functions (written in ket notation),

|2S1S〉± =
|2S1S〉 ± |2S1S〉√

2
, (5.22)

|1Dm1S〉± =
|1Dm1S〉 ± |1Dm1S〉√

2
. (5.23)

The symmetric baryon wave functions listed in Table 5.2 are given in App. A.
The masses of all baryons in our approximation scheme are already determined, because quark

masses are fitted to reproduce quarkonia states, Eqs. (5.11) and (5.12), and we use the interpolating
formula Eq. (5.2) that fixes the values of λ for each baryon and, hence, also the frequencies of
harmonic oscillators in baryons. The analytic formulas for masses are given in App. C. Here, I
present the resulting mass spectra of bbb and ccc bound states in Fig. 5.2, and mass spectra of bbc
and ccb bound states in Fig. 5.3, assuming that Σ = 0. The collective plot of excitation spectra of
all four systems is presented in Fig. 5.4.

Although experimentally triply-heavy baryons are difficult to produce and detect over the years
there have been quite a few theoretical calculations we can compare with. Masses of bbb and ccc
baryons agree rather well with model calculations [64, 65, 66, 67, 68, 69, 70, 71], quark-diquark [72]
and hypercentral approximations [73, 74], bag models [75, 76, 77], Regge phenomenology [78, 79],
sum rules [80, 81, 82, 83], pNRQCD [84], Dyson-Schwinger approach [85, 86] and lattice studies [87,
88, 89, 90, 91, 92, 93], where comparison is available. Especially interesting seems comparison with
lattice calculations. Different lattice calculations report the ccc ground state mass from 4733 MeV
to 4796 MeV, with mean value of 4768 MeV. Our result, 4797 MeV, differs by 29 MeV from the
mean. The lattice results for the bbb ground state mass are 14366 MeV in Ref. [87], and 14371 MeV
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Figure 5.2: Single-flavor-baryon mass spectra

in Ref. [88], with uncertainties bigger than the difference between the two results. The simple mean
is 14369 MeV and our result, 14346 MeV, differs by only 23 MeV from the mean. The splittings
between the excited states and the ground state that we arrive at are generally smaller than the
same lattice splittings, however, for bbb the difference is on the order of 10 %, while for ccc it is
not greater than 20 %. It is worth noting that in a more accurate calculation that goes beyond
first order of perturbation theory, which is presented in App. B the splittings between the ground
and excited states grow – the splitting between state A and the ground state grows by about 7 %
for bbb and by about 4 % for ccc. The most surprising result is a qualitative agreement between
the splittings among A, B, C, D states and analogous states on the lattice. It is true that in the
first order of perturbation theory the energies of the states that form the second band of harmonic
oscillators in baryons split in a fixed ratio that is independent of the perturbing potential [63].
The energy differences ED − EC , EC − EB and EB − EA are in ratio 2 : 1 : 5. Interestingly the
author of Ref. [88] presents the results for these splittings with spin interactions switched off, and
the ratio 2 : 1 : 5 turns out to be a property of the spectrum computed in such a way (up to
theoretical uncertainties). All of the above, suggests that RGPEP with gluon mass ansatz works
very well for the single-flavor baryons, and encourages to perform more precise calculations.

For the mixed-flavor baryons the situation is a bit different than for single-flavor baryons.
Here, the lattice results are limited to the ground states only. Assuming Σ = 0, see Eq. (4.79),
the ground state of bbc, 11218 MeV, is very close to the lattice result 11229 MeV [87]. For this
comparison I used the lattice result for the mass of Ω∗bbc, which is a 3/2+ state, because its spin
structure, |↑↑↑〉, is similar to the spins structures of J/ψ and Υ(1S), |↑↑〉, which were used to fit
free parameters of our calculation. Even if Σ = 0, the ground state of ccb is about 300 MeV higher
than the lattice result. This may be due to large frequency of the oscillator between quarks 1 and
2 (between c quarks), which implies large zero-point energy. Such large frequency follows from
large ratio λccb/mc and suggests that c quarks form a diquark, because it is hard to excite them
in motion with respect to each other.

The situation is somewhat reversed for bbc, where ratio λbbc/mb is small and the frequency ω12

is small. That would suggest a configuration in which c quark is between b quarks. The presence



50 CHAPTER 5. SPECTRA OF HEAVY MESONS AND BARYONS

1
2

+ 3
2

+ 5
2

+ 7
2

+ 1
2

− 3
2

− 5
2

−

11200

11400

11600

11800

12000

M
a
ss

[M
eV

]

bbc energy levels

1
2

+ 3
2

+ 5
2

+ 7
2

+ 1
2

− 3
2

− 5
2

−
8200

8400

8600

8800

9000

9200

9400

M
a
ss

[M
eV

]

bcc energy levels

Figure 5.3: Mixed-flavor-baryon mass spectra

of the Σ term in the baryon eigenvalue equation also presents a problem because, it could shift
the bbc ground state too high and it would make the ccb ground state even more distant from the
lattice calculations.

The appearance of the Σ term may be due to insufficiency of the gluon mass ansatz. Apart
from the gluon mass term, a lot of other terms may appear in Eq. (4.6) as a result of elimination
of sectors with two and more gluons, and we do not know which of them may be important. The
Σ-term may also be caused by the presence of two different scales in the problem, mb and mc with
the bottom quark more than three times heavier than the charm quark. In such systems choosing
only one λ may be not enough for the leading approximation of the Hamiltonian to correctly grasp
the physics. For example, interactions in the Hamiltonian related to one quark might be best
approximated by an interaction vertex that has λ1, while interactions related to the other quark
may be better approximated with λ2 6= λ1. To resolve the problem more precise calculations of
the effective Hamiltonian are needed, and are certainly encouraged by the results of bbb and ccc
spectra. Note that the term Σ that in our approximate calculation differs form zero only when
quarks differ in mass, could instead vanish in that case also if the RGPEP vertex form factor
arguments in Eq. (4.79) obtained corrections that would scale t inversely to the mass squared.
Such corrections may also change the harmonic oscillator frequencies, which depend on the form
of interaction form factors. Therefore, the spectra of ccb and bbc systems should be treated with
caution.
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Figure 5.4: Qualitative picture of triply heavy baryon mass spectrum implied by the second-
order RGPEP in heavy-flavor QCD and our gluon mass ansatz [7]. The figure shows excitations
above the ground states 1S1S, whose absolute masses are written at the bottom of each column.
The ccb spectrum displays extraordinarily large mass excitation for states 1P1S, 2S1S and
1D1S. Such high excitations are associated with formation of cc-diquarks, bound by a harmonic
force that is strong because the charmed quarks are much lighter than the bottom quarks. Much
less pronounced splittings appear in the bbc baryons. See the text for further discussion.
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Chapter 6

Form factors

6.1 Introduction

One of the nice features of studying hadrons in the FF of Hamiltonian dynamics is that as a
result one obtains wave functions, which may be then used to compute various observables that
in the instant form of Hamiltonian dynamics are hard to obtain because they require preservation
of Lorentz symmetry. In this chapter I compute electromagnetic form factors of the mesons and
baryons with spins equal one or smaller whose states have been approximately calculated in the
previous chapters. Electromagnetic form factors of a hadron are defined as some scalar functions
that parametrize relativistic scattering amplitude, e.g., of an electron off that hadron. Because the
scattering amplitude factorizes in the leading (one photon exchange) approximation into a part
that depends only on the properties of the hadron and the rest, the form factors carry information
about the electromagnetic properties of the hadron. For a scalar particle, the most important
small-momentum-transfer quantities that characterize it are the charge and so-called mean square
charge radius. For a spin-1/2 particle one can also define magnetic dipole moment, and for a
particle of spin 1 there is also the electric quadrupole moment. In hadronic physics measurement
of form factors is possible only for long-lived particles, like proton and neutron, or particles that are
experimentally abundant, like pions. Form factors of heavy mesons and triply-heavy baryons that
have not been observed yet may still be of interest because they provide intuition and estimates
about the properties of these particles sizes that may be important,e.g., in complex systems like
dense hadronic matter.

From the theoretical point of view, FF calculation of form factors constitutes a challenge
because it is sensitive to the direction distinguished by the the front. Due to nonrelativistic
approximation for the relative motion of quarks only results for Q�M , where Q is the momentum
transfer from electron to the hadron of mass M , may give reliable estimates for the form factors.
Charge radii are defined in the limit Q → 0, therefore, the estimates for hadron radii should be
reliable. The construction of fully relativistic scattering amplitudes of bound states is a difficult
task that has to account for the dynamics of the binding mechanism, and the issue has no definite
solution that would apply in the case of QCD [94]. The results that I obtain here confirm that
conviction, because the matrix elements that I compute do not have the expected, relativistic form.
But the deviations I obtain are small. They are of the order of the binding energy divided by the
mass of the hadron. At the level of approximations and assumptions we used in the previous
chapter, one should expect violation of rotational symmetry. The smallness of obtained violation
is an important result, because more accurate calculations using the same method, i.e., including
higher order terms in the RGPEP evolution and more Fock sectors in the bound state equations,
may nearly restore rotational symmetry.

53
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Figure 6.1: Illustration of the Jσ′σ(P ′, P ) matrix element for a quarkonium and a baryon.

6.2 Hadronic matrix elements of the electromagnetic current op-
erator

Calculation of form factors starts with the computation of matrix elements of the electromagnetic
current between states of a hadron with different momenta and, in general, in different spin states.
I define,

Jµσ′σ(P ′, P ) ≡
〈
P ′, σ′

∣∣ Ĵµ(0) |P, σ〉 , (6.1)

where the electromagnetic current operator at xν = 0 is,

Ĵµ(0) =
∑
f=b,c

Qf

∫
1′1

jµ1′1 δc1c1′ b
†
f 1′bf 1 +

∑
f=b,c

Qf̄

∫
2′2

j̄µ22′ δc2c2′d
†
f 2′df 2 , (6.2)

where Qf is the electric charge of a quark of flavor f and Qf̄ is the electric charge of an antiquark
of flavor f . For b and c quarks, Qb = −Qb̄ = −1/3 and Qc = −Qc̄ = 2/3. |P, σ〉 denotes a state of
a hadron with momentum P and FF spin σ. One defines,

qµ = P ′µ − Pµ , (6.3)

which to some extent may be interpreted as the momentum of the virtual photon exchanged
between the electron and the hadron. It is advantageous to compute matrix elements with q+ =
0 because then the calculations simplify. Since particles have positive plus component of the
momentum, creation of pairs by the exchanged photon is impossible.

According to Eqs. (4.13) and (4.14),

|P, σ〉 ≈
(

1− 1

2
R†R

)
|leff〉+R |leff〉 , (6.4)

where R is order gt. Similarly |l′eff〉 denotes the effective state in the lower sector with momentum
P ′ and spin σ′. Therefore, up to terms order g2

t ,

Jµσ′σ(P ′, P ) =
〈
l′eff

∣∣ (Ĵµ +R†ĴµR− 1

2
R†RĴµ − 1

2
ĴµR†R

)
|leff〉 . (6.5)

The terms that involve R cancel each other in the nonrelativistic limit, which one can verify by
explicit calculation in the case of states ηb and ηc. Therefore, in the following I calculate only the
leading term in Eq. (6.5), where only Ĵµ is kept.

Formulas for quarkonia

The effective state |leff〉 for quarkonium is given in Eq. (4.15). Here, I need to change a bit the
notation: instead of ψtQQ̄ σ1σ2

I write ψσσ1σ2
, where σ is the spin projection of the hadron on z-axis.

The electric charge of the quark is Qq and the electric charge of the antiquark is Qq̄. Assuming
that only quark is active (that Qq̄ = 0),

Jµσ′σ(P ′, P ) = Qq
∑

σ1σ2σ1′

∫
[12]P+δ̃12.P ψσ

′
σ1′σ2

(x1, κ1′/P ′)
∗ j

µ
1′1
x1

ψσσ1σ2
(x1, κ1/P ) (6.6)

= Qq
∑

σ1σ2σ1′

∫
dx1d

2κ1

16π3x1(1− x1)
ψσ
′
σ1′σ2

(x1, κ1′)
∗ j

µ
1′1
x1

ψσσ1σ2
(x1, κ1) , (6.7)
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where in the first line I explicitly indicated that for κ1′ the parent momentum is P ′ and for κ1′ the
parent momentum is P . Longitudinal momenta do not change, P ′+ = P+ and p+

1′ = p+
1 because

q+ = 0. The relative transverse momenta are related,

κ⊥1′ = κ⊥1 + (1− x1) q⊥ . (6.8)

In the nonrelativistic limit,

Jµσ′σ(P ′, P ) = Qq
∑

σ1σ2σ1′

∫
d3k12

(2π)3
ψσ
′
σ1′σ2

(
~k1′2

)∗ jµ1′1
β1

ψσσ1σ2

(
~k12

)
, (6.9)

where

~k1′2 = ~k12 + (1− β1)~q , (6.10)

~q = (q⊥, 0), and ψ is normalized according to Eq. (5.6). Including also the antiquark the current
matrix element is,

Jµσ′σ(P ′, P ) = Qq
∑

σ1σ2σ1′

∫
d3k12

(2π)3
ψσ
′
σ1′σ2

(~k1′2)∗
jµ1′1
β1

ψσσ1σ2
(~k12)

+ Qq̄
∑

σ1σ2σ1′

∫
d3k12

(2π)3
ψσ
′
σ1σ2′

(~k12′)
∗ j̄

µ
22′

β2
ψσσ1σ2

(~k12) , (6.11)

where

~k12′ = ~k12 − (1− β2)~q . (6.12)

It is convenient to express the current as a matrix whose components are enumerated by spin
indices, and to combine wave functions into a similar matrix (this way of writing current matrix
elements is especially convenient for baryons, see below). The current matrix elements then take
the form:

Jµσ′σ(P ′, P ) = Qq

∫
d3k

(2π)3

1

β1
Tr(ρ1σ′σ jµ) +Qq̄

∫
d3k

(2π)3

1

β2
Tr(ρ2σ′σ j̄µ) , (6.13)

where

j+ =

(
2p+

1 0
0 2p+

1

)
, (6.14)

j1 =

(
p1

1 + p1
1′ − iq2 0
0 p1

1 + p1
1′ + iq2

)
, (6.15)

j2 =

(
p2

2 + p2
2′ + iq1 0
0 p2

2 + p2
2′ − iq1

)
, (6.16)

and

[ρ1σ′σ]σ1σ1′ =
∑
σ2

ψσσ1σ2
(~k12)ψσ

′∗
σ1′σ2

(~k1′2) , (6.17)

[ρ2σ′σ]σ2σ2′
=

∑
σ1

ψσσ1σ2
(~k12)ψσ

′∗
σ1σ2′

(~k12′) . (6.18)
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Formulas for baryons

For QQQ′ baryons the effective states are given in Eq. (4.26). I change notation: instead of
ψtQQQσ1σ2σ3 I write ψσσ1σ2σ3

, where σ is the spin projection of the baryon on z-axis. The electric
charges of the quarks Q and Q′ are Qq and Qq′ , respectively. The current matrix element is the
sum of three terms – one for interaction with each of the three quarks. The first two quarks are
indistinguishable, therefore, two terms are identical,

Jµσ′σ(P ′, P ) = 2Qq
∑

σ1σ2σ3σ1′

∫
[123] P+δ̃123.P ψσ

′∗
σ1′σ2σ3

(1′23)
jµ1′1
x1

ψσσ1σ2σ3
(123)

+ Qq′
∑

σ1σ2σ3σ3′

∫
[123] P+δ̃123.P ψσ

′∗
σ1σ2σ3′

(123′)
jµ3′3
x3

ψσσ1σ2σ3
(123) , (6.19)

where

κ⊥1′ = κ⊥1 + (1− x1) q⊥ , (6.20)

κ⊥3′ = κ⊥3 + (1− x3) q⊥ . (6.21)

In the nonrelativistic limit,

Jµσ′σ(P ′, P ) = 2Qq
∑

σ1σ2σ3σ1′

∫
d3K12

(2π)3

d3Q3

(2π)3
ψσ
′∗
σ1′σ2σ3

( ~K1′2, ~Q
′
3)
jµ1′1
β1

ψσσ1σ2σ3
( ~K12, ~Q3)

+ Qq′
∑

σ1σ2σ3σ3′

∫
d3K12

(2π)3

d3Q3

(2π)3
ψσ
′∗
σ1σ2σ3′

( ~K12, ~Q3′)
jµ3′3
β3

ψσσ1σ2σ3
( ~K12, ~Q3) ,(6.22)

where

~K1′2 = ~K12 +
1

2
~q , (6.23)

~Q′3 = ~Q3 − β3~q , (6.24)

~Q3′ = ~Q3 + (1− β3)~q , (6.25)

~q = (q⊥, 0), and ψ is normalized in such a way that
∫
d3K12
(2π)3

d3Q3

(2π)3 ψ
σ∗
σ1σ2σ3

ψσσ1σ2σ3
= 1.

Equation (6.22) contains a lot of spin indices. To write it in a simple form I write currents
jµ1′1 and jµ3′3 as matrices jµ1 and jµ3 whose components are enumerated with spin indices. I define
similar matrices ρ1σ′σ and ρ3σ′σ constructed from the wave functions.

Jµσ′σ(P ′, P ) = 2Qq

∫
d3k

(2π)3

1

β1
Tr ρ1σ′σ jµ1 +Qq′

∫
d3k

(2π)3

1

β3
Tr ρ3σ′σ jµ3 , (6.26)

where

[ρ1σ′σ]σ1σ1′ =
∑
σ2σ3

ψσσ1σ2σ3
( ~K12, ~Q3)ψσ

′∗
σ1′σ2σ3

( ~K1′2, ~Q
′
3) , (6.27)

[ρ3σ′σ]σ3σ3′ =
∑
σ1σ2

ψσσ1σ2σ3
(K12, ~Q3)ψσ

′∗
σ1σ2σ3′

( ~K12, ~Q3′) , (6.28)

and

j+
1 =

(
2p+

1 0
0 2p+

1

)
, (6.29)

j1
1 =

(
p1

1 + p1
1′ − iq2 0
0 p1

1 + p1
1′ + iq2

)
, (6.30)

j2
1 =

(
p2

1 + p2
1′ + iq1 0
0 p2

1 + p2
1′ − iq1

)
, (6.31)
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j+
3 =

(
2p+

3 0
0 2p+

3

)
, (6.32)

j1
3 =

(
p1

3 + p1
3′ − iq2 0
0 p1

3 + p1
3′ + iq2

)
, (6.33)

j2
3 =

(
p2

3 + p2
3′ + iq1 0
0 p2

3 + p2
3′ − iq1

)
. (6.34)

For baryons composed of three identical quarks Eq. (6.26) is valid, however, since the quarks
are indistinguishable, instead of two terms it is easier to compute just the second one and multiply
the result by three.

6.3 Definitions of form factors, charge radii and momenta

6.3.1 Spin 0

For a spinless particle the situation is most simple. There is only one current matrix element (with
σ′ = σ = 0), whose form expected from relativistic covariance is,

Jµ(P ′, P ) = (Pµ + P ′µ) F (Q2) , (6.35)

where spins σ′ and σ are omitted from the notation. The sole form factor F depends on the square
of the transferred four-momentum,

Q2 = −qµqµ = (q⊥)2 , (6.36)

where the second equality follows from q+ = 0. The form factor is normalized to the charge of the
particle, F (0) = Qqq̄, and is used to define mean charge radius squared,

r2 = − 1

Qqq̄
6
dF

dQ2
(0) . (6.37)

That definition, however, does not apply to charmonia and bottomonia because they have zero
charge. Moreover, the form factors computed using Eq. (6.13) are zero, because the contribution
from the quark is cancelled by the contribution from the antiquark. Therefore, it is customary to
separate contributions from the quark and from the antiquark,

F (Q2) = Qf1F
(1)(Q2) +Qf̄2

F (2)(Q2) , (6.38)

where 1 and 2 denote the quark and the antiquark, cf. Fig. 6.1. These new form factors are
normalized to unity, F (1)(0) = F (2)(0) = 1 and I define mean radius squared related to the
constituent i,

r2
i = −6

dF (i)

dQ2
(0) . (6.39)

6.3.2 Spin 1
2

Spin-1
2 particle possesses two form factors, F1 called the Dirac form factor and F2 called the Pauli

form factor, that are related to the current matrix elements in the following way,

Jµσ′σ = ūσ′(P
′)

[
γµF1(Q2) +

iσµνqν
2M

F2(Q2)

]
uσ(P ) , (6.40)

where M is the mass of the particle. Special combinations of these form factors are called Sachs
electric, GE , and magnetic, GM , form factors, and are defined as follows,

GE(Q2) = F1(Q2)− τF2(Q2) , (6.41)

GM (Q2) = F1(Q2) + F2(Q2) , (6.42)



58 CHAPTER 6. FORM FACTORS

where

τ =
Q2

4M2
. (6.43)

The normalizations of these form factors are,

GE(0) = F1(0) = Qqqq , (6.44)

GM (0) = µqqq , (6.45)

where Qqqq is the charge of the particle (baryon in my case) and µqqq is the magnetic moment of
the particle. Moreover, the charge radius is,

r2 = − 6

GE(0)

dGE
dQ2

(0) . (6.46)

Similarly as for the scalar particles it is convenient to separate contributions from each of the
quarks,

Fi = 2Qf1F
(1)
i +Qf3F

(3)
i , (6.47)

GI = 2Qf1G
(1)
I +Qf3G

(3)
I , (6.48)

where i = 1, 2 and I = E,M . The terms on the right hand side represent contributions from
the quark 1 (multiplied by two, because quark 2 is identical with 1) and from the quark 3. The

normalization is F
(1)
1 (0) = F

(3)
1 (0) = 1. The charge radii related to each of the quarks are,

r2
1 = −6

dG
(1)
E

dQ2
(0) , (6.49)

r2
3 = −6

dG
(3)
E

dQ2
(0) . (6.50)

I find it good for practical purposes to write the collection of Jµσ′σ matrix elements in a form of
four 2× 2 matrices for four values of µ where the elements of the matrices are,

Jµ =

[
Jµ↑↑ Jµ↑↓
Jµ↓↑ Jµ↓↓

]
. (6.51)

For q+ = 0 the form of these matrices expected from Eq. (6.40) is,

J+ = 2P+

 F1 − q(−)
√

2M
F2

− q(+)
√

2M
F2 F1

 , (6.52)

J1 = (P 1 + P ′1)
J+

2P+
− iq2(F1 + F2)

[
1 0
0 −1

]
, (6.53)

J2 = (P 2 + P ′2)
J+

2P+
+ iq1(F1 + F2)

[
1 0
0 −1

]
, (6.54)

where1

q(±) =
∓q1 − iq2

√
2

. (6.55)

1The idea for that particular definition of q(±) comes from the standard form of spherical harmonics, which for
l = 1 may we written in the following form,

Y1,±1(p̂) =

√
3

4π

p(±)

|~p | , Y1,0(p̂) =

√
3

4π

p3

|~p | .
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The minus current matrix J− is irrelevant, because the current operator Ĵ− does not enter the
Hamiltonian of QCD coupled to QED (due to the choice of gauge A+ = 0). Again, it is convenient
to separate quarks’ contributions,

Jµ = 2Qf1J
µ
1 +Qf3J

µ
3 . (6.56)

6.3.3 Spin 1

For spin-1 particle there are three form factors that are related to the current matrix elements in
the following way,

Jµσ′σ(P ′, P ) = −(Pµ + P ′µ)(ε′∗ · ε)F1(Q2)

+
[
ε′µ∗(ε · q)− εµ(ε′∗ · q)

]
F2(Q2)

+ (Pµ + P ′µ)
(ε · q)(ε′∗ · q)

2M2
F3(Q2) , (6.57)

where ε = εσ denotes the polarization vector of spin-1 particle with momentum P and spin σ,
and ε′ = εσ′ is the polarization vector of particle with momentum P ′ and spin σ′. The σ = ±1
polarization vectors are the same as those given in Eq. (2.58), while εµ0 may be obtained from the
conditions, ε0 · P = 0, ε0 · ε±1 = 0, ε0 · ε0 = −1 and ε+

0 > 0. One then defines charge, magnetic
dipole and electric quadrupole form factors in the following way [95],

GC(Q2) = F1(Q2) +
2

3
τGQ(Q2) , (6.58)

GM (Q2) = F2(Q2) , (6.59)

GQ(Q2) = F1(Q2)− F2(Q2) + (1 + τ)F3(Q2) . (6.60)

Charge radius squared, magnetic dipole moment, and electric quadrupole moment are,

r2 = − 6

GC(0)

dGC
dQ2

(0) , (6.61)

µ = GM (0) , (6.62)

Q = GQ(0) . (6.63)

The form factors and the mean charge radii squared are then separated according to the same
pattern that was used for spin-0 and spin-1/2 particles. Spin-1 particles considered here are
quark-antiquark bound states, hence,

Fi = Qf1F
(1)
i +Qf̄2

F
(2)
i , (6.64)

GI = Qf1G
(1)
I +Qf̄2

G
(2)
I , (6.65)

r2
j = −6

dG
(j)
C

dQ2
(0) , (6.66)

where i = 1, 2, 3 and I = C,M,Q, j = 1, 2 and the normalization is F
(1)
1 (0) = F

(2)
1 (0) = 1.

Similarly as for spin-1
2 I define matrices,

Jµ =

J++ J+0 J+−
J0+ J00 J0−
J−+ J−0 J−−

 , (6.67)
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where ± means σ = ±1. The form that follows from Eq. (6.57 is,

J+ = 2P+


F1 + τF3

q(−)

2M F̃ − [q(−)]2

2M2 F3

q(+)

2M F̃ (1− 2τ)F1 + 2τF2 − 2τ2F3
q(−)

2M F̃

− [q(+)]2

2M2 F3
q(+)

2M F̃ F1 + τF3

 , (6.68)

J1 = (P 1 + P ′1)
J+

2P+
− iq2F2

 1 q(−)

2M 0
q(+)

2M 0 − q(−)

2M

0 − q(+)

2M −1

 , (6.69)

J2 = (P 2 + P ′2)
J+

2P+
+ iq1F2

 1 q(−)

2M 0
q(+)

2M 0 − q(−)

2M

0 − q(+)

2M −1

 , (6.70)

where q+ = 0 is assumed and

F̃ = 2F1 − F2 + 2τF3 . (6.71)

The matrices separate into sum of quark and antiquark contributions,

Jµ = Qf1J
µ
1 +Qf̄2

Jµ2 . (6.72)

6.4 Mesons

6.4.1 Wave functions

To compute the electromagnetic current matrix elements I need to use wave functions of the
hadronic states. Wave functions of mesons that were discussed in Chapter 5 are constructed from
harmonic oscillator eigenstates, Eq. 5.4, and spin wave functions added according to the rules of
adding states with definite angular momenta to obtain spin-0 states η and χ0 and spin-1 states
Υ or ψ. Since we neglected spin-dependent interactions, the spin structure of a state did not
influence the energy of the state. For the calculation of magnetic properties of particles, however,
such approximation is insufficient. Note, for example, that for a slowly-moving electron, described
using Dirac equation with an external magnetic field, one needs to take into account the small
components of the spinor to obtain the magnetic dipole interaction term [96]. To obtain corrections
necessary to fix the problem with magnetic observables it is desirable to perform more precise
calculations that involve fourth order Hamiltonian terms in Eq. (3.32). However, for the purpose
of illustration of the method and its capabilities, which is the intended purpose of this thesis, it is
sufficient to estimate the corrections using free spinors. It is not very difficult to propose the form
of corrections. They have to be written using relativistic objects, spinors defined in Eqs. (2.50) and
(2.51), and the expressions should have the correct properties under action of discrete symmetries.
Below, I list the wave functions of mesons that include the leading relativistic corrections.

For pseudoscalar quarkonia, η(nS), the form of the wave function that includes relativistic
corrections is,

ψσ1σ2(~k ) = NPS ū1γ
5v2 ψnS(~k ) =

[
|↑↓〉 − |↓↑〉√

2
− k(−)

2µ12
|↑↑〉+

k(+)

2µ12
|↓↓〉

]
ψnS(~k ) , (6.73)

where NPS = −1/
√

8m1m2 is the proper normalization constant and, for example, |↑↓〉 means that
σ1 = +1/2 and σ2 = −1/2. Neglecting the terms that are linear in momenta, ψσ1σ2(~k ) reduces to
spin singlet wave function times momentum wave function, as required. Moreover,

ρ1 =
1

2

 1 k(−)−k′(−)
√

2µ12

k(+)−k′(+)
√

2µ12
1

ψnS(~k)ψ∗nS(~k′) . (6.74)
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Only diagonal terms matter when one computes the trace in Eq. (6.13), hence from now on I
will neglect off-diagonal terms in matrices ρ. The fact that the diagonal of ρ1 is not corrected
with terms linear in momenta means that the form factor F is also unaltered. It is not surprising
because the purpose of correcting nonrelativistic wave functions was to properly describe magnetic
effects, but spin-0 particles do not have magnetic moments.

For scalar quarkonium, χ0(1P ),

ψσσ1σ2
(~k ) = NS ū1v2 e

−ν~k2
=

1√
3

[
|↑↑〉 ψ1P−1(~k )− |↑↓〉+ |↓↑〉√

2
ψ1P0(~k ) + |↓↓〉 ψ1P+1(~k )

]
,

(6.75)

where NS = −
√
β1β2/(8π)N01 and N01 is given in Eq. (5.5). The terms linear in momenta that

come from ū1v2 produce the desired momentum wave functions of fixed L and Lz, that is ψ1P±1(~k )

and ψ1P0(~k ). It is worth noting that Eq. (6.75) is exact, i.e., has no corrections of higher powers
of momentum, which is an effect of the choice of nonrelativistic momenta Eqs. (4.44) and (4.45).
Using wave function of Eq. (6.75) I get,

ρ1 =
1

3

(
ψ1P−1ψ

∗
1P−1

+ 1
2ψ1P0ψ

∗
1P0

·
· ψ1P+1ψ

∗
1P+1

+ 1
2ψ1P0ψ

∗
1P0

)
, (6.76)

where ψ1Pm depend on ~k while ψ∗1Pm depend on ~k′.
For vector bottomonium, Υ(nS), or vector charmonium, ψ(nS), the wave function is,

ψσσ1σ2
(~k ) = NV ū1γ

µv2εσµ ψnS(~k ) , (6.77)

where NV = 1/
√

8m1m2, and εµσ is the polarization vector of the hadron. The σ = 0 vector should
have ε3

0 = 1 in the rest frame of the hadron (where P+ = M). It turns out that this leads to
problems, because ū1γ

µv2εσµ does not reduce to the expected spin-1 triplet wave function. To be
more precise it reduces to spin-1 triplet only in the limit of hadron mass equaling the mass of the
quarks, M → m1 +m2, or in other words if the binding energy is vanishingly small. To solve this
problem I use εµσ that has ε3

0 = 1 in the rest frame of the quarks (where P+ = m1 + m2). The
other polarization vectors, εµ±1, are independent of the frame and present no problem. Therefore,

ψ+1
σ1σ2

(~k ) = ψnS(~k )

[
|↑↑〉 − k(+)

√
2m2

|↑↓〉+
k(+)

√
2m1

|↓↑〉

]
, (6.78)

ψ0
σ1σ2

(~k ) = ψnS(~k )

[
|↑↓〉+ |↓↑〉√

2
+

(
k(−)

2m1
− k(−)

2m2

)
|↑↑〉+

(
k(+)

2m1
− k(+)

2m2

)
|↓↓〉

]
, (6.79)

ψ−1
σ1σ2

(~k ) = ψnS(~k )

[
|↓↓〉+

k(−)

√
2m1

|↑↓〉 − k(−)

√
2m2

|↓↑〉

]
. (6.80)

There are nine ρ1 matrices, one for each combination of σ′ and σ:

ρ1,+1,+1 = ψnS(~k)ψ∗nS(~k′)

(
1 ·
· 0

)
, (6.81)

ρ1,+1,0 = ψnS(~k)ψ∗nS(~k′)

(
k(−)

2m1
+ k′(−)−k(−)

2m2
·

· −k′(−)

2m1

)
, (6.82)

ρ1,+1,−1 = ψnS(~k)ψ∗nS(~k′)

(
0 ·
· 0

)
, (6.83)

ρ1,0,+1 = ψnS(~k)ψ∗nS(~k′)

(
−k′(+)

2m1
+ k′(+)−k(+)

2m2
·

· +k(+)

2m1

)
, (6.84)

ρ1,0,0 = ψnS(~k)ψ∗nS(~k′)

(
1
2 ·
· 1

2

)
, (6.85)
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ρ1,0,−1 = ψnS(~k)ψ∗nS(~k′)

(
k(−)

2m1
·

· −k′(−)

2m1
− k(−)−k′(−)

2m2

)
, (6.86)

ρ1,−1,+1 = ψnS(~k)ψ∗nS(~k′)

(
0 ·
· 0

)
, (6.87)

ρ1,−1,0 = ψnS(~k)ψ∗nS(~k′)

(
−k(+)

2m1
·

· +k(+)

2m1
+ k′(+)−k(+)

2m2

)
, (6.88)

ρ1,−1,−1 = ψnS(~k)ψ∗nS(~k′)

(
0 ·
· 1

)
. (6.89)

6.4.2 Form factors

Using the formulas provided in Sec. 6.4.1 I compute the hadronic matrix elements given in
Eq. (6.13) neglecting the contribution from the antiquark. Therefore, I present the results for

form factors F (1) and F
(1)
i , and matrices Jµ1 , cf. Secs. 6.3.1 and 6.3.3. The contributions from the

antiquark are easily obtained by replacing index 1 with index 2.
For pseudoscalar and scalar mesons the current matrix elements reproduce Eq. (6.35) with the

following form factors,

η(1S) : F (1)(Q2) = e−
1
2

(1−β1)2νQ2
, (6.90)

η(2S) : F (1)(Q2) =

[
1− 2

3
(1− β1)2νQ2 +

1

6
(1− β1)4ν2Q4

]
e−

1
2

(1−β1)2νQ2
, (6.91)

χ0(1P ) : F (1)(Q2) =

[
1− 1

3
(1− β1)2νQ2

]
e−

1
2

(1−β1)2νQ2
, (6.92)

where, for the record, ν = (2µ12ω12)−1.
For the vector meson Υ(1S) (the results for J/ψ and B∗c have the same form but with appro-

priate quark masses),

J+
1 = 2P+ e−

1
2

(1−β1)2νQ2


1 q(−)

2M12

m1−m2
m1

0
q(+)

2M12

m1−m2
m1

1 q(−)

2M12

m1−m2
m1

0 q(+)

2M12

m1−m2
m1

1

 , (6.93)

J1
1 = (P 1 + P ′1)

J+
1

2P+
− iq2 1

β1
e−

1
2

(1−β1)2νQ2


1 q(−)

2M12
0

q(+)

2M12
0 − q(−)

2M12

0 − q(+)

2M12
−1

 , (6.94)

J2
1 = (P 2 + P ′2)

J+
1

2P+
+ iq1 1

β1
e−

1
2

(1−β1)2νQ2


1 q(−)

2M12
0

q(+)

2M12
0 − q(−)

2M12

0 − q(+)

2M12
−1

 , (6.95)

where M12 = m1 + m2. For the vector meson Υ(2S) the results for J+,⊥
1 are almost the same as

those in Eqs. (6.93)–(6.95), except they are multiplied by a polynomial in Q2:

J+,⊥
1,Υ(2S) =

[
1− 2

3
ν(1− β1)2Q2 +

1

6
ν2(1− β1)4Q4

]
J+,⊥

1,Υ(1S) . (6.96)

Comparison of the computed J+,⊥
1 matrices with Eqs. (6.68)–(6.70) reveals that their forms differ,

even though I included corrections to the wave functions. This is a known problem that formulas
for scattering amplitudes calculated in the FF of dynamics depend on the direction distinguished
by the front [94]. Therefore, the extraction of form factors is ambiguous, because one has to
decide which of the scattering amplitudes are computed correctly, and which depend on physics
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not included in the calculation. For example, for spin-1 particles it is argued that J+ current
should be used but the matrix element J+

00 is sensitive to physics of zero-modes, hence should
be ignored unless zero-modes are correctly accounted for [97]. One may also argue that since εµ0
depends on dynamics, see discussion below Eq. (6.77), it is not to be trusted unless the binding
mechanism is relativistically well described.

The form factors extracted from J+
1 (ignoring J+

1 00) are,

Υ(1S) : F
(1)
1 (Q2) = e−

1
2

(1−β1)2νQ2
, (6.97)

F
(1)
2 (Q2) =

(
M

m1
− 2

M −M12

M12

)
e−

1
2

(1−β1)2νQ2
, (6.98)

F
(1)
3 (Q2) = 0 , (6.99)

Υ(2S) : F
(1)
1 (Q2) =

[
1− 2

3
ν(1− β1)2Q2 +

1

6
ν2(1− β1)4Q4

]
e−

1
2

(1−β1)2νQ2
, (6.100)

F
(1)
2 (Q2) =

(
M

m1
− 2

M −M12

M12

)
F

(1)
1 (Q2) , (6.101)

F
(1)
3 (Q2) = 0 . (6.102)

Using the above form factors and Eq. (6.68) one would expect J+
1 00 = 1 + aQ2/M2, where a is of

order one. From Eq. (6.93) J+
1 00 = 1. Hence the two values do not match. However, the relative

difference is of order Q2/M2 and is small for Q � M . Due to nonrelativistic approximations
that I made this is an acceptable agreement. How about the perpendicular components of the
electromagnetic current? For J⊥1 not only 00 but also 0± and ±0 components cause trouble.

Ignoring them I obtain F
(1)
3 = 0, as before, F

(1)
1 that is the same as in Eqs. (6.97) and (6.100), and

F
(1)
2 = (1/β1)F

(1)
1 . The results obtained using the two ways of extracting the form factors differ

only for F
(1)
2 . The difference depends on M −M12 and vanishes when M = M12. Therefore, the

extraction of the magnetic form factor GM = F2 is ambiguous and probably depends on proper
inclusion of higher-order correction in the bound state problem.

6.5 Baryons

6.5.1 Wave functions

For the same reason that was given in the beginning of Sec. 6.4.1, the use of wave functions discussed
in Sec. 5.3 and listed in App. A is not sufficient to properly describe the magnetic properties of
baryons. To include appropriate corrections in the wave function I need an expression that is
written using relativistic objects and has proper quantum numbers. I limit the discussion to
the ground state of Ω

ccb, 1
2

+ and Ω
bbc, 1

2

+ . I choose the following wave function [98] inspired by

Ioffe currents [99] that includes the nonrelativistic wave function of Chapter 5 and relativistic
corrections,

ψσσ1σ2σ3
( ~K12, ~Q3) = N

(
ū1γ

µCūT2
)
ū3γµγ

5uM123(P, σ) ψ1S1S( ~K12, ~Q3) , (6.103)

where the normalization constantN = −1/
√

96m2
1m3M123, M123 = m1+m2+m3 and C = −iγ0γ2

is the charge conjugation matrix. For vector quarkonia I had to take polarization vector that was
at rest in the rest frame of quarks, instead of at rest in the rest frame of the quarkonium.2 Here,
similarly, I take the spinor of the baryon, uM123(P, σ), that is at rest in the rest frame of quarks,
which means that the mass that is distinguished for the spinor is m = M123, cf. Eq. (2.50).

2Rest frame of the baryon is defined as the frame in which the baryon has P⊥ = 0 and P+ = M . Rest frame of
quarks is defined as the frame in which quarks have P⊥ = 0 and P+ =M123 ≈M123.
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Expansion of ψσσ1σ2σ3
up to terms linear in momentum gives,

ψ↑( ~K12, ~Q3) =
ψ1S1S( ~K12, ~Q3)√

6

[
2|↑↑↓〉 − |↑↓↑〉 − |↓↑↑〉+

√
2κ

(−)
3

µ3(12)
|↑↑↑〉+

κ
(+)
3√
2m1

|↓↓↑〉

−
√

2

(
κ

(+)
3

2m3
− κ

(+)
1

m1

)
|↓↑↓〉 −

√
2

(
κ

(+)
3

2m3
− κ

(+)
2

m1

)
|↑↓↓〉

]
, (6.104)

ψ↓( ~K12, ~Q3) =
ψ1S1S( ~K12, ~Q3)√

6

[
−2|↓↓↑〉+ |↓↑↓〉+ |↑↓↓〉 −

√
2κ

(+)
3

µ3(12)
|↓↓↓〉 − κ

(−)
3√
2m1

|↑↑↓〉

+
√

2

(
κ

(−)
3

2m3
− κ

(−)
1

m1

)
|↑↓↑〉+

√
2

(
κ

(−)
3

2m3
− κ

(−)
2

m1

)
|↓↑↑〉

]
, (6.105)

where

κ⊥1 = κ⊥1/12 − x1/12κ
⊥
3 ≈ K⊥12 −

1

2
Q⊥3 , (6.106)

κ⊥2 = κ⊥2/12 − x2/12κ
⊥
3 ≈ −K⊥12 −

1

2
Q⊥3 , (6.107)

κ⊥3 = Q⊥3 . (6.108)

The spin structure in the limit of zero relative momenta reduces to spin (1/2)S wave function,
Eqs. (5.18) and (5.19), as required. The ρ matrices constructed from the baryon wave function up
to terms linear in momentum are,

ρ1↑↑ = A1

(
5
6 ·
· 1

6

)
, (6.109)

ρ1↑↓ = A1

κ
(−)
1

3m1
+

κ
(−)
2 −κ′(−)

2
6m1

− κ
(−)
3 −κ′(−)

3
12m3

·

· −κ
′(−)
1

3m1
+

κ
(−)
2 −κ′(−)

2
6m1

− κ
(−)
3 −κ′(−)

3
12m3

 , (6.110)

ρ1↓↑ = A1

−κ
′(+)
1

3m1
+

κ
(+)
2 −κ′(+)

2
6m1

− κ
(+)
3 −κ′(+)

3
12m3

·

· κ
(+)
1

3m1
+

κ
(+)
2 −κ′(+)

2
6m1

− κ
(+)
3 −κ′(+)

3
12m3

 , (6.111)

ρ1↓↓ = A1

(
1
6 ·
· 5

6

)
, (6.112)

ρ3↑↑ = A3

(
1
3 ·
· 2

3

)
, (6.113)

ρ3↑↓ = A3

−κ
(−)
3

6m3
+

κ
(−)
1 −κ′(−)

1
6m1

+
κ

(−)
2 −κ′(−)

2
6m1

·

· κ
′(−)
3

6m3
+

κ
(−)
1 −κ′(−)

1
6m1

+
κ

(−)
2 −κ′(−)

2
6m1

 , (6.114)

ρ3↓↑ = A3

κ
′(+)
3

6m3
− κ

′(+)
1 −κ(+)

1
6m1

− κ
′(+)
2 −κ(+)

2
6m1

·

· κ
(+)
3

6m3
− κ

′(+)
1 −κ(+)

1
6m1

− κ
′(+)
2 −κ(+)

2
6m1

 , (6.115)

ρ3↓↓ = A3

(
2
3 ·
· 1

3

)
, (6.116)

where off-diagonal elements are irrelevant and

A1 = ψ1S1S( ~K13, ~Q3 )ψ1S1S( ~K1′3, ~Q
′
3 )∗ , (6.117)

A3 = ψ1S1S( ~K12, ~Q3 )ψ1S1S( ~K12, ~Q3′ )
∗ . (6.118)
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6.5.2 Form factors

Using the wave functions given in Sec. 6.5.1 I calculate the current matrix elements for the ground
states of ccb and bbc. The results for quark 1 and quark 3 are, cf. Eq. (6.56),

J+
1 = 2P+

 1 − q(−)
√

2M123

(
2

3β1
− 1
)

− q(+)
√

2M123

(
2

3β1
− 1
)

1

 e− 1
8

(ν12+4β2
3ν3(12))Q

2
, (6.119)

J1
1 =

P 1 + P ′1

2P+
J+

1 − iq
2 2

3β1

[
1 0
0 −1

]
e−

1
8

(ν12+4β2
3ν3(12))Q

2
, (6.120)

J2
1 =

P 2 + P ′2

2P+
J+

1 + iq1 2

3β1

[
1 0
0 −1

]
e−

1
8

(ν12+4β2
3ν3(12))Q

2
, (6.121)

and

J+
3 = 2P+

 1 − q(−)
√

2M123

(
−1
3β3
− 1
)

− q(+)
√

2M123

(
−1
3β3
− 1
)

1

 e− 1
2

(1−β3)2ν3(12)Q
2
, (6.122)

J1
3 =

P 1 + P ′1

2P+
J+

3 − iq
2 −1

3β3

[
1 0
0 −1

]
e−

1
2

(1−β3)2ν3(12)Q
2
, (6.123)

J2
3 =

P 2 + P ′2

2P+
J+

3 + iq1 −1

3β3

[
1 0
0 −1

]
e−

1
2

(1−β3)2ν3(12)Q
2
. (6.124)

Therefore, from J+
1 and J+

3 ,

F
(1)
1 (Q2) = e−

1
8

(ν12+4β2
3ν3(12))Q

2
, (6.125)

F
(1)
2 (Q2) =

(
2M

3m1
− M

M123

)
e−

1
8

(ν12+4β2
3ν3(12))Q

2
, (6.126)

F
(3)
1 (Q2) = e−

1
2

(1−β3)2ν3(12)Q
2
, (6.127)

F
(3)
2 (Q2) =

(
− M

3m3
− M

M123

)
e−

1
2

(1−β3)2ν3(12)Q
2
. (6.128)

and

G
(1)
M (Q2) =

(
2M

3m1
− M −M123

M123

)
e−

1
8

(ν12+4β2
3ν3(12))Q

2
, (6.129)

G
(3)
M (Q2) =

(
− M

3m3
− M −M123

M123

)
e−

1
2

(1−β3)2ν3(12)Q
2
. (6.130)

Similarly as for the vector quarkonia, currents J⊥1 and J⊥3 do not have the expected form of
Eqs. (6.53) and (6.54). Using only the diagonal terms of J⊥1 and J⊥3 , the magnetic form factors

are, G
(1)
M (0) = 2/(3β1) and G

(3)
M (0) = −1/(3β3). Therefore, the extraction of the magnetic form

factor is ambiguous, but the ambiguity goes away when M →M123.

6.6 Summary of charge radii and moments

Using the form factors of scalar and pseudoscalar quarkonia, Eqs. (6.90)–(6.92), the charge radii
are,

η(1S) : r2
1 = 3(1− β1)2ν , (6.131)

η(2S) : r2
1 = 7(1− β1)2ν , (6.132)

χ0(1P ) : r2
1 = 5(1− β1)2ν . (6.133)
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cc̄

ηc(1S) χc0(1P ) ηc(2S) J/ψ ψ(2S)√
r2

1 [fm] 0.249 0.322 0.381 0.257 0.385

BLFQ [97] 0.207 0.265 0.386 0.212 0.387

CI [100] 0.210 0.261

Lattice [101] 0.251 0.308 0.257

DSE [102] 0.219 0.228

bb̄

ηb(1S) χb0(1P ) ηb(2S) Υ(1S) Υ(2S)√
r2

1 [fm] 0.1521 0.1963 0.2323 0.1535 0.2331

BLFQ [97] 0.126 0.192 0.237 0.126 0.239

CI [100] 0.110 0.195

cb̄

Bc(1S) χbc0(1P ) Bc(2S) B∗c (1S) B∗c (2S)√
r2
c [fm] 0.337 0.435 0.515 0.342 0.516√
r2
b [fm] 0.105 0.136 0.160 0.106 0.161

√
r2 [fm] 0.282 0.364 0.430 0.286 0.433

Table 6.1: Summary of charge radii of mesons. The number of digits that I provide is adjusted
to make visible the difference between radii of vector and pseudoscalar particles.

The charge radii of vector quarkonia, based on Eqs. (6.97)–(6.102), are

Υ(1S) : r2
1 = 3(1− β1)2ν +

m2

m1M12M
− M −M12

M12M2
, (6.134)

Υ(2S) : r2
1 = 7(1− β1)2ν +

m2

m1M12M
− M −M12

M12M2
. (6.135)

The above formulas apply also to ψ and B∗c mesons. To obtain formulas for r2
2 the exchange

of indices 1 ↔ 2 is necessary. Table 6.1 presents the results for charge radii of mesons and
baryons respectively. I used the values of quark masses, and other relevant parameters, that
were found in Chapter 5. The results are compared with Basis Light Front Quantization (BLFQ)
calculations [97], Contact Interaction (CI) calculations [100], Lattice [101], and Dyson-Schwinger
equations [102]. Where comparison is possible my results agree rather well with the literature.
The agreement is surprisingly good with lattice QCD calculations, where relative differences are
smaller than 5% (in case of ηc and J/ψ they are much smaller).

Using Eqs. (6.125)–(6.128), the baryon charge radii are,

r2
1 =

3ν12

4
+ 3β2

3ν3(12) +
m1 + 2m3

2m1M123M
, (6.136)

r2
3 = 3(1− β3)2ν3(12) −

m1 + 2m3

m3M123M
, (6.137)

where ν12 and ν3(12) are defined below Eq. (5.16). Furthermore, in accord with Eq. (6.48), the
total radius squared is a weighted mean,

r2 =
2Qf1r

2
1 +Qf3r

2
3

2Qf1 +Qf3

. (6.138)

For bbc system, which is electrically neutral, I define r2 in the same way, but without dividing by
the total charge. The result for such r2, in principle, could be negative, but it turns out positive,
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Ωccc Ωccb Ωbbc Ωbbb√
r2
c [fm] 0.31 0.35 0.32√
r2
b [fm] 0.18 0.20 0.19

√
r2 [fm] 0.31 0.39 0.20 0.19

Lattice [93],
√
〈rE〉c [fm] 0.29

Table 6.2: Summary of charge radii of baryons.

µ1 BLFQ [97] CI [100] Lattice [101] DSE [102]

J/ψ 2± 0.13 1.952(3) 2.047 2.10(3) 2.13(4)
ψ(2S) 2± 0.54 2.05(2)

Υ(1S) 2± 0.02 1.985(1) 2.012
Υ(2S) 2± 0.14 1.992(1)

Table 6.3: Summary of magnetic dipole moments of charmonia and bottomonia and compar-
ison with some results available in literature. My estimation of error is µ1 · (M −M12)/M12.

therefore, I can take the square root. Table 6.2 presents the results for the radii r1, r3 and r of
ground states of all four systems bbb, bbc, ccb and ccc. For single-flavor baryons I use Eqs. (6.136)
and (6.137), but I drop the last terms (proportional to m1 + 2m3), because they depend on the
spin structure of the state and I do not know them, however, they are rather small, see radii of η
and Υ states for comparison. The agreement of ccc radius with lattice calculation is quite good,
even though I used only the approximate formula.

The magnetic dipole moments of vector quarkonia (the contribution from quark 1), using
Eqs. (6.98) and Eqs. (6.101), are

µ1 =
M

m1
− 2

M −M12

M12
= 2− m1 −m2

m1M12
M . (6.139)

For baryons Eqs. (6.129) and (6.130) are used and give,

µ = 2Qq

(
2M

3m1
− M −M123

M123

)
+Qq′

(
− M

3m3
− M −M123

M123

)
. (6.140)

Additionally, I give uncertainties that are related to the ambiguities of extraction of form factors.
I assume fixed relative uncertainty that is the ratio of binding energy to the sum of masses of
quarks. Tables 6.3 and 6.4 summarize my results and compare them with literature. The com-
parison shows that magnetic moments of charmonia and bottomonia agree very well within the
uncertainties of my calculation with other theoretical approaches. For mixed-flavor systems my
results have systematically bigger magnitudes, which is an indication that calculation for these
systems probably needs to be improved.

µ [103] [104] [104] [105] [106, 107]

B+∗
c (1S) 3.25± 0.07 2.88 2.57

B+∗
c (2S) 3.24± 0.35 2.65

Ωccb 5.16± 0.46 4.49 4.62 4.69 4.03
Ωbbc −2.77± 0.09 −2.45 −2.39 −2.39 −2.24

Table 6.4: Summary of magnetic dipole moments of cb̄ particles and baryons and comparison
with some results found in literature. My estimation of error is µ · (M −M12)/M12 for mesons
and µ · (M −M123)/M123 for baryons.
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Chapter 7

Structure functions

7.1 Introduction

In this chapter I study deep inelastic scattering (DIS) of electrons off heavy quarkonia and triply-
heavy baryons. Experimental study of such processes is presently not achievable because of short
life times of such hadrons and difficulty in their production (especially for the triply-heavy baryons,
which have not been observed yet). Therefore, my theoretical investigation is intended to be a
short review of possibilities that front form of dynamics, complemented with renormalization group
procedure for effective particles, offers in this field of studies.

Figure 7.1 illustrates the DIS process to be described [108]. An electron with four-momentum k
scatters on a hadron with four-momentum P and transfers to the hadron very large four-momentum
q (illustrated as an exchange of a virtual photon). As a result of the interaction, electron acquires
four-momentum k′ and the hadron is most of the times disintegrated into a lot of particles in the
final state X. The analysis is inclusive and only the electron momenta k and k′ are measured (I
limit the discussion to scattering of unpolarized particles). Therefore, the cross section includes
the sum over all possible X and it is described using two variables,

Q2 = −q2 (7.1)

and

x =
Q2

2P · q
, (7.2)

or x and

y =
P · q
P · k

. (7.3)

Conventionally, one introduces also ν, which is the loss of energy of the electron in the frame, in
which the hadron is at rest, so that P · q = Mν. In one-photon-exchange approximation the cross
section factorizes,

dσ

dxdy
=

2πyαem

Q4
LµνW

µν , (7.4)

Figure 7.1: Deep inelastic scattering

69
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where αem is the electromagnetic coupling constant, Lµν is the leptonic tensor and Wµν is the
hadronic tensor. The leptonic tensor has a known form [21], while the hadronic tensor is unknown
and depends on the internal structure of the hadron. Formal definition of the hadronic tensor is,

Wµν =
1

2s+ 1

s∑
σ=−s

1

4π

∫
d4zeiqz〈P, σ|

[
Ĵµ(z), Ĵν(0)

]
|P, σ〉 (7.5)

=
1

2s+ 1

s∑
σ=−s

1

4π

∑
X

(2π)4δ(4)(P + q − PX)〈P, σ|Ĵµ(0)|X〉〈X|Ĵν(0)|P, σ〉 , (7.6)

where s is the spin of the hadron and the sum over X is the sum over all possible intermediate
states X, with momentum PX . The Dirac delta in the second form of Wµν expresses the energy-
momentum conservation condition for the scattering process. In the calculations that follow I will
always assume that q+ = 0. Conservation of electromagnetic current implies,

qµW
µν = qνW

µν = 0 . (7.7)

The standard parametrization of the hadronic tensor is,

Wµν = −
(
gµν − qµqν

q2

)
W1 +

(
Pµ − P · q

q2
qµ
)(

P ν − P · q
q2

qν
)
W2

M2
, (7.8)

where real functions W1 and W2 depend on the invariants of the deep inelastic scattering and are
called structure functions. Bjorken [109] predicted that in the limit of very large momentum and
energy transfer, Q2 → ∞, ν → ∞, but with ratio Q2/ν fixed (called the Bjorken limit), one can
define structure functions,

F1(x) = lim
Q2→∞, ν→∞

W1 , (7.9)

F2(x) = lim
Q2→∞, ν→∞

ν

M
W2 , (7.10)

which depend only on x – the result known as Bjorken scaling. The scaling was confirmed ex-
perimentally, but it was also realized that in QCD these functions obtain corrections that depend
logarithmically on Q2 [43, 44, 45, 46].

In the process one can distinguish two vastly different momentum scales. The scale of the
probing photon is Q and it is very big. The Compton wave length 1/Q is very small and the
photon sees the structure of the hadron at these small distance scales, hence, the scattering is called
“deep” [110]. On the other hand, the scale of the bound state is λhadron and it is small. For heavy
quarkonia it is given in Eqs. (5.11) and (5.12). For representing a proton as a state of just three
quarks it should probably be on the order of the scale of strong interactions ΛQCD. To describe the
process comprehensively one needs to be able to describe physical pictures that correspond to these
scales in one framework. The RGPEP provides necessary tools. Equation (7.6) may be written
in terms of different degrees of freedom, particles with different effective sizes s = 1/λ (not to be
confused with the total spin s of the particle, which is used in this chapter). The exact solutions
would not depend on λ, but approximate calculations need the proper choice of the degrees of
freedom. Therefore, given a particle one should ascribe to it a size that is relevant for that particle
in the physical process of interest. For example, the effective constituent quarks that form a bound
state in a simple way, such as quarks b or c in heavy quarkonium in Chapter 4, move slowly and
are large, i.e., they correspond to small λ = λhadron. On the other hand, very energetic photon has
very small Compton wave length and should have λ ∼ Q, hence, size s ∼ sCompton = 1/Q. Because
it is so small it cannot interact with big constituent quarks. However, in RGPEP one can express
degrees of freedom at one scale in terms of degrees of freedom at another scale. Using Eq. (3.20),

bQ = UQb∞U†Q = UQU†λbλUλU
†
Q ≡ WQλbλW†Qλ , (7.11)



7.2. QUARKONIA 71

(a) (b)

Figure 7.2: (a) The leading contribution to the hadronic tensor of quarkonia in DIS. (b)
Example of a scaling violating contribution. The thick lines represent effective big quarks at
the small scale λ of the bound state formation. Thin lines represent small particles at large
scale Q relevant to the scattering process. The two kinds of particles are related with each
other by the RGPEP unitary transformation W represented by the small blob.

Figure 7.3: Quark 1 contribution to the hadronic tensor.

where I use the momentum scale to label the operators instead of t, hence, b∞ is the point-like
quark operator. Transformation WQλ expresses particles of size 1/Q in terms of particles of size
1/λ [58, 111]. Therefore, in Eq. (7.6) one can express the hadron state |P, σ〉 in terms of big
quarks with λ = λhadron, while the current operators with small quarks with λ = Q. Then the
quarks of one kind are expressed in terms of the other quarks using W, see Fig 7.2b. This is an
exciting line of research, because the bigger Q the more small particles could “fit” into the big
constituent-like quarks, hence, allowing for the description of scaling violations with simultaneous
description of bound states. It is also conceivable that phenomenon of exhausting the available
volume by increasing the number of partons, called saturation, can be addressed. In addition, it
is argued [58] that large Q2 evolution could be connected with evolution in x [47, 48]. In view of
that I present rather modest results, in which I assume W ≈ 1.

7.2 Quarkonia

I limit the discussion to pseudoscalar and scalar quarkonia, however, the same results apply also
to vector quarkonia – the spin structure of the state practically does not matter. The sum over
intermediate states in Eq. (7.6) should in principle be performed over the physical particles that
come out of the interaction, that is, in terms of hadrons. That would very much complicate the
analysis of DIS. However, in the Bjorken limit I replace,∑

X

|X〉〈X| δ(4)(P + q − PX) →
∫

1′2′
b†1′d

†
2′ |0〉〈0|d2′b1′ δ

(4)(P + q − p1′ − p2′) , (7.12)

where instead of hadrons I sum over quarks, see Fig. 7.2a. The replacement PX → p1′ + p2′ is
valid only approximately in the Bjorken limit when the struck quark takes all of the large photon
momentum and masses of particles can be neglected. The electromagnetic current operator is
defined in Eq. (6.2) and the quarkonium state in Eq. (4.15). Equation (7.6) may be imagined as
the square of the scattering amplitude. In the Bjorken limit the interference term between quark
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and antiquark vanishes, and one can consider contributions from quark and antiquark separately.
The quark contribution is, see Fig. 7.3,

Wµν =
Q2
q

4π

∫
[1′2′]

∑
σ1′σ2′

∑
σ1̃

∑
σ1

δ̃1′2′.P (2π)δ(P− + q− − p−1′ − p
−
2′)

× ψσ1̃σ2′ (x1, κ1)∗
jµ
1̃1′
jν1′1
x2

1

ψσ1σ2′ (x1, κ1) , (7.13)

where Qq is the electric charge of the quark and I split the four-dimensional Dirac delta into
momentum conservation delta and FF-energy conservation delta. I define,

[ρ̃1]σ1σ1̃
=

∑
σ2′

ψσ1σ2′ (x1, κ1)ψσ1̃σ2′ (x1, κ1)∗ , (7.14)

which differs from Eq. (6.17) in the momentum of the wave functions that build the matrix. Using
the matrices defined in Eqs. (6.14)–(6.16) and ρ̃1 the hadronic tensor takes the form,

Wµν =
Q2
q

4π

∫
[12]δ̃12.P

1

x2
1

Tr[ρ̃1(jµ)†jν ] (2π)δ(P− + q− − p−1′ − p
−
2 ) . (7.15)

In the Bjorken limit, the FF-energy conservation delta simplifies,

(2π)δ(P− + q− − p−1′ − p
−
2 ) → 2πx2P+

Q2
δ(x1 − x) . (7.16)

For η(1S) and η(2S) the matrix ρ̃1 is proportional to unit matrix (neglecting small, relativistic
corrections), see Eq. (6.74). For χ0 the matrix ρ̃1 is not diagonal, however, off-diagonal elements
of ρ̃1 are not relevant, because the current matrices jµ are diagonal and in Eq. (7.15) I compute
trace. Moreover,

ψ1P−1(~k )ψ1P−1(~k )∗ = ψ1P+1(~k )ψ1P+1(~k )∗ , (7.17)

hence, effectively, ρ̃1 is also proportional to unit matrix, cf. Eq. (6.76). Therefore,

Tr[ρ̃1(jµ)†jν ] =
1

2
f(x1, κ1)Ṽ µν , (7.18)

where

f(x1, κ1) =

{
|ψnS(x1, κ1)|2 , for η(nS) ,
2|ψ1P+1

(x1,κ1)|2+|ψ1P0
(x1,κ1)|2

3 , for χ0(1P ) ,
(7.19)

and

Ṽ µν = Tr[(jµ)†jν ] = Tr[γµ(/p1′ +m1)γν(/p1
+m1)] (7.20)

= 4
[
pµ1′p

ν
1 + pν1′p

µ
1 − g

µν(p1′ · p1 −m2
1)
]
. (7.21)

Algebraic manipulations lead to,

Ṽ µν = 2q2
1

(
gµν − qµ1 q

ν
1

q2
1

)
+ 8

(
pµ1 −

p1 · q1

q2
1

qµ1

)(
pν1 −

p1 · q1

q2
1

qν1

)
, (7.22)

where

qµ1 = pµ1′ − p
µ
1 . (7.23)
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Four-vector qµ1 differs from qµ in the energy component only, q−1 6= q−. This is because P− 6=
p−1 + p−2 . Both contractions, q1ν Ṽ

µν and q1µṼ
µν are zero, but for the hadronic tensor to be

conserved contractions with qµ are required to vanish, while

qµṼ
µν 6= 0 6= qν Ṽ

µν . (7.24)

To guarantee that the conditions of current conservation are satisfied one can redefine currents [112],

Jµ → Jµ − J · q
q2

qµ . (7.25)

The redefinition implies substitution Ṽ µν → V µν , where

V µν = Ṽ µν − Ṽ αν qαq
µ

q2
− Ṽ µβ qβq

ν

q2
+ Ṽ αβqαqβ

qµqν

q2
, (7.26)

and fulfills qµV
µν = 0 = qνV

µν . For q+ = 0,

V µν = 2q2

(
gµν − qµqν

q2

)
+ 8

(
pµ1 −

p1 · q
q2

qµ − p1 · q1

q2
σµ
)(

pν1 −
p1 · q
q2

qν − p1 · q1

q2
σν
)
, (7.27)

where

σµ = qµ1 − q
µ , (7.28)

has only one nonzero component, σ−. Focusing only on + and ⊥ components,

V ++ = 8(p+
1 )2 , (7.29)

V +i = 8p+
1

(
pi1 −

p1 · q
q2

qi
)
, (7.30)

V ij = −2q2

(
δij +

qiqj

q2

)
+ 8

(
pi1 −

p1 · q
q2

qi
)(

pj1 −
p1 · q
q2

qj
)
. (7.31)

These expressions already resemble Eq. (7.8), except they have p1 instead of P . Using the relative
momenta, I have, p+

1 = x1P
+ and,

pi1 −
p1 · q
q2

qi = x1

(
P i − P · q

q2
qi
)

+ κi1 +
κ⊥1 q

⊥

q2
qi . (7.32)

The part that contains κ⊥1 integrates to zero in W+i components (because the rest of the integrand
is a function of κ2

1). For W ij components under integration sign one can replace,(
κi1 +

κ⊥1 q
⊥

q2
qi
)(

κj1 +
κ⊥1 q

⊥

q2
qj
)
→ 1

2
κ2

1

(
δij +

qiqj

q2

)
, (7.33)

where, in order to derive that rule, one has to remember that q2 = −(q⊥)2.

Collecting the above manipulations of V µν , I arrive at the expression for Wµν that for + and
⊥ components has the form of Eq. (7.8) with,

W1 =
Q2
q

4π

∫
[12]δ̃12.P

2κ2
1 − q2

x2
1

f(x1, κ1) (2π)δ(P− + q− − p−1′ − p
−
2 ) , (7.34)

W2

M2
=

Q2
q

4π

∫
[12]δ̃12.P 4 f(x1, κ1) (2π)δ(P− + q− − p−1′ − p

−
2 ) . (7.35)
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Figure 7.4: Structure functions F1(x) and F2(x) for (a) bottomonia, (b) Bc particles, (c)
charmonia. On each plot, the highest curve (blue) represents the 1S state, the curve with the
widest top (orange) represents the 1P state, and the curve with steps (green) represents the
2S state.

Therefore, the structure functions from Eqs. (7.9) and (7.10) are,

F1(x,Q2) =
1

2
Q2
q

∫
[12]P+δ̃12.P f(x1, κ1) δ(x1 − x) , (7.36)

F2(x,Q2) = xQ2
q

∫
[12]P+δ̃12.P f(x1, κ1) δ(x1 − x) , (7.37)

where f is defined in Eq. (7.19). These F1 and F2 do not depend on Q2, as expected in the
leading approximation, where Bjorken scaling should hold. Moreover, they are related through the
well-known Callan-Gross relation [113],

F2 = 2xF1 . (7.38)

Integrating over x1 first and then taking the nonrelativistic limit of the integral, I obtain,

F1(x,Q2) =
1

2
Q2
q

∫
d2k⊥

(2π)2

M12

2π
|ψ(~k)|2

∣∣∣∣
kz=kz(x)

, (7.39)

where, M12 = m1 +m2 and in accord with Eq. (4.45),

kz(x) =

√
β1β2

x(1− x)
(m1 +m2)(x− β1) . (7.40)

Using the eigenfunctions of the harmonic oscillator, Eq. (5.4), the expressions for the structure
function F1 for different quarkonia states are (only the contribution from quark 1 are shown for
contribution from quark 2 one has to exchange β1 ↔ β2),

1S : F1(x) =
1

2
Q2
q e
−2νkz(x)2√

ν(m1 +m2)2

√
2

π
, (7.41)

1P : F1(x) =
1

2
Q2
q e
−2νkz(x)2

(
2

3
+

4

3
νkz(x)2

)√
ν(m1 +m2)2

√
2

π
, (7.42)

2S : F1(x) =
1

2
Q2
q e
−2νkz(x)2

(
5

6
− 4

3
νkz(x)2 +

8

3
ν2kz(x)4

)√
ν(m1 +m2)2

√
2

π
. (7.43)
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Figure 7.5: Leading contribution to the hadronic tensor of baryons in DIS.

Figure 7.6: Contributions to hadronic tensor from quarks 1 (left) and 3 (right).

Figure 7.4 presents plots of the structure functions for mesons. For cb̄ mesons the left peak is due
to the charm quark contribution and the right peak is due to bottom quark contribution. The
individual quark contributions include squared charges of the quarks, therefore, the left peak is
higher. The flat tops of F1 for 1P states arise because wave function is zero at |~k | = 0. The steps
of F1 for 2S states are an effect of zero of the wave function at some |~k | > 0.

7.3 Baryons

Similarly as for quarkonia, the sum over intermediate states in Eq. (7.6) is replaced with the sum
over final quarks, and the delta function is approximated by the delta of free quarks instead of free
hadrons,

∑
X

|X〉〈X| δ(4)(P + q − PX) → 1

n!

∫
1′2′3′

b†1′b
†
2′b
†
3′ |0〉〈0|b3′b2′b1′ δ

(4)(P + q − p1′ − p2′ − p3′) ,

(7.44)

where n is the number of identical quarks. Baryon states are given in Eqs. (4.25) and (4.26). I
focus on mixed-flavor baryons, but the results apply for single-flavor baryons too. Contributions
from separate quarks add on the level of the scattering amplitude, which is then squared to obtain
cross section, see Fig. 7.5. In the Bjorken limit the interference terms vanish, and quarks contribute
separately, see Fig. 7.6. From Eq. (7.6),

Wµν =
1

2

∑
σ

2
Q2
q

4π

∫
[1′2′3′]

∑
σ1′σ2′σ3′

∑
σ1̃σ1

(2π)4δ(4)(P + q − p1′ − p2′ − p3′)ψ
σ ∗
σ1̃σ2′σ3′

jµ
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jν1′1
x2

1

ψσσ1σ2′σ3′

+
1

2

∑
σ

Q2
q′

4π

∫
[1′2′3′]

∑
σ1′σ2′σ3′

∑
σ3̃σ3

(2π)4δ(4)(P + q − p1′ − p2′ − p3′)ψ
σ ∗
σ1′σ2′σ3̃

jµ
3̃3′
jν3′3
x2

3

ψσσ1′σ2′σ3
,

(7.45)
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where all wave functions are functions of x1/12, κ1/12, x3, and κ3. To simplify the notation I define,
matrices whose components are enumerated with spin indices,

[ρ̃1σ′σ]σ1σ1̃
=

∑
σ2′σ3′

ψσσ1σ2′σ3′
ψσ
′∗
σ1̃σ2′σ3′

, (7.46)

[ρ̃3σ′σ]σ3σ3̃
=

∑
σ1′σ2′

ψσσ1′σ2′σ3
ψσ
′∗
σ1′σ2′σ3̃

, (7.47)

which differ from Eqs. (6.27) and (6.28) in momentum arguments, which here are the same for
each wave function on the right hand side. Using Eqs. (6.29)–(6.34),

Wµν = 2
Q2
q

4π

∫
[123]δ̃123.P

1

x2
1

Tr[ρ1,σσ′(j
µ
1 )†jν1 ](2π)δ(P− + q− − p−1′ − p

−
2 − p

−
3 )

+
Q2
q′

4π

∫
[123]δ̃123.P

1

x2
3

Tr[ρ3,σσ′(j
µ
3 )†jν3 ](2π)δ(P− + q− − p−1 − p

−
2 − p

−
3′) . (7.48)

Because current matrices jµ1 and jµ3 are diagonal, only diagonal terms of ρ̃1,σσ and ρ̃3,σσ matter.
Furthermore, ρ̃1,↑↑ + ρ̃1,↓↓ and ρ̃3,↑↑ + ρ̃3,↓↓ are proportional to unity matrix. Therefore,

1

2

∑
σ

Tr[ρ̃1,σσ(jµ1 )†jν1 ] =
1

2
|ψ1S1S(x1/12, κ1/12, x3, κ3)|2 Ṽ µν

1 , (7.49)

1

2

∑
σ

Tr[ρ̃3,σσ(jµ3 )†jν3 ] =
1

2
|ψ1S1S(x1/12, κ1/12, x3, κ3)|2 Ṽ µν

3 . (7.50)

For spin-3/2 ground states of baryons, the left hand side changes, 1
2 is replaced with 1

4 , and the
sum goes from σ = −3/2 to σ = 3/2, but new ρ̃ matrices sum up to value twice as big as for spin
1/2 and the right hand side is exactly the same. From here on, the reasoning and calculations
continue in a way very much resembling the calculations in the quarkonium case. Therefore, I
already write the results,

W1 = 2
Q2
q

4π

∫
[123]δ̃123.P

2κ2
1 − q2

x2
1

f (2π)δ(P− + q− − p−1′ − p
−
2 − p

−
3 )

+
Q2
q′

4π

∫
[123]δ̃123.P

2κ2
3 − q2

x2
3

f (2π)δ(P− + q− − p−1 − p
−
2 − p
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3′) , (7.51)

W2

M2
= 2

Q2
q

4π

∫
[123]δ̃123.P 4f (2π)δ(P− + q− − p−1′ − p

−
2 − p

−
3 )

+
Q2
q′

4π

∫
[123]δ̃123.P 4f (2π)δ(P− + q− − p−1 − p

−
2 − p

−
3′) , (7.52)

where

f = |ψ1S1S(x1/12, κ1/12, x3, κ3)|2 . (7.53)

Energy conservation deltas simplify in the Bjorken limit, e.g., δ(P− + q− − p−1 − p−2 − p−3′) ≈
δ(q− − p−3′) ≈ (x2P+/Q2)δ(x3 − x). The structure functions are then,

F1(x,Q2) = 2 · 1

2
Q2
q

∫
[123]P+δ̃123.P f δ(x1 − x) +

1

2
Q2
q′

∫
[123]P+δ̃123.P f δ(x3 − x) , (7.54)

F2(x,Q2) = 2 · xQ2
q

∫
[123]P+δ̃123.P f δ(x1 − x) + xQ2

q′

∫
[123]P+δ̃123.P f δ(x3 − x) , (7.55)

Again, these F1 and F2 do not depend on Q2 and fulfill Callan-Gross relation. In the nonrelativistic
limit,

F1(x,Q2) = 2 · 1

2
Q2
q

∫
d2Q1

(2π)2

∫
d3K23

(2π)3

M123

2π
|ψ1S1S |2

∣∣∣∣
Qz1=Qz1(x)

+
1

2
Q2
q′

∫
d2Q3

(2π)2

∫
d3K12

(2π)3

M123

2π
|ψ1S1S |2

∣∣∣∣
Qz3=Qz3(x)

, (7.56)
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Figure 7.7: Structure functions F1(x) and F2(x) for (a) bbb, (b) ccc, (c) bbc, and (d) ccb
particles.

where in the first integral wave function needs to be expressed in terms of ~K23 and ~Q1 through,

~K12 = −1

2
~K23 +

1

2(β1 + β3)
~Q1 , (7.57)

~Q3 = − ~K23 −
β3

β1 + β3

~Q1 , (7.58)

and

Qzi (x) =

√
βi(1− βi)
x(1− x)

M123(x− βi) . (7.59)

The final result for the ground state of QQQ′ (and QQQ) is,

F1(x) = 2 · 1

2
Q2
q e
−

8ν12ν3(12)
ν12+4ν3(12)

[Qz1(x)]2

2M123

√
ν12ν3(12)

ν12 + 4ν3(12)

√
2

π

+
1

2
Q2
q′ e
−2ν3(12)[Q

z
3(x)]2M123

√
ν3(12)

√
2

π
. (7.60)

Figure 7.7 presents the results for the structure functions of baryons. The left peaks in mixed-flavor
baryons correspond to charm quarks and are usually higher than right peaks that correspond to
bottom quarks, because charm quark has electric charge twice as big as the bottom quark (up to
sign). The structure functions of single-flavor baryons are peaked in the vicinity of x ∼ 1/3 as
expected, because on average all three quarks share momentum equally.

Approximations I adopted are too crude for my results to reproduce qualitative features like
logarithmic evolution in Q2 and other. For example, the structure functions that I calculated fall
off exponentially near x ∼ 1 instead of according to a power law [114]. However, x ∼ 1 means
large momentum Qz, while baryon wave functions in nonrelativistic approximations are supposed
to be good only for momenta small compared to hadron mass. Similarly for x ≈ 0 the description
needs to include more Fock sectors to aim at reproducing data.
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Chapter 8

Conclusion

8.1 Summary of theory and results

The thesis presents a study of bound states of heavy quarks in heavy-flavor QCD (a theory with-
out light quarks). The theory is written in the FF of Hamiltonian dynamics, with the canonical
Hamiltonian as a starting point that needs regularization and renormalization. It is renormalized
using renormalization group procedure for effective particles. The RGPEP operates with the con-
cept of effective particles whose size is a scale parameter of renormalization group transformation.
The renormalized Hamiltonian, written in terms of creation and annihilation operators for effec-
tive particles, is finite when the regularization cutoff on transverse momenta is sent to infinity.
Asymptotic freedom follows and allows one to compute the renormalized Hamiltonian in pertur-
bation theory at hadronic scales. I limit the calculation to the terms that are of second order in
the effective coupling constant. The renormalized Hamiltonian eigenvalue equation, written in the
whole Fock space of effective particles, is replaced by the eigenvalue equation written in terms of
only two sectors of the Fock space – one containing the minimal quark content (QQ̄ for mesons
and QQQ for baryons), and the other one that in addition to the quarks contains also just one
effective gluon. The replacement is made plausible by the additional step, which is the assumption
that in the reduced eigenvalue equation the gluon has mass, which is allowed to be a function
of the gluon momentum relative to the quarks. In contrast to sectors with gluons, sectors with
extra quark-antiquark pairs may be safely omitted because the renormalized Hamiltonian does
not allow interactions to change invariant masses of states by much more than the RGPEP scale
parameter. The sector with one massive gluon is then eliminated using the perturbative procedure
of Bloch. The resulting effective Hamiltonians for QQ̄ and QQQ states contain the RGPEP form
factors in interaction vertices and can be approximated by the form they take in the nonrelativistic
limit. Finally, the effective approximate Hamiltonians turn out to contain the Coulomb potentials
and harmonic oscillator potentials between quarks. Using the effective Hamiltonians, approximate
masses and wave functions of heavy hadrons are found.

I calculated the mass spectra of mesons and baryons and I derived formulas for their electromag-
netic form factors in elastic scattering and their structure functions in the electron deep inelastic
scattering off them. Masses of quarks at the corresponding RGPEP scale parameters were fitted to
the masses of the three lightest spin-1 states (excluding 1+− states) in each of the meson families
– bottomonia and charmonia. The coupling constant was evaluated using the leading asymptotic
freedom formula for two flavors. The results for masses of ground states of bbb and ccc baryons
contain no free parameters and they agree well with predictions of other theoretical approaches.
The excitation spectrum is in a qualitative agreement with lattice QCD studies. Therefore, these
results constitute a firm foothold for future studies of bound states in QCD with one flavor of heavy
quarks using our method. The results for ccb and bbc baryons, as well as cb̄ and bc̄ mesons, bear
some theoretical uncertainty due to the universal mass shift that appears because of significant
scale difference between bottom and charm quark masses. The shift depends strongly on the gluon
mass ansatz and may be of the order of spin-splittings. This suggests that systems with two differ-
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ent mass scales probably need more complicated renormalization-group scale setting than the one
we used. There may also be some other terms than the gluon mass in the effective Hamiltonians
that become important when masses of quarks in a bound state differ significantly. These other
terms will have to be found and one needs to check if they cancel the ansatz-dependent universal
mass shift for hadrons built from different quarks. Future studies will provide the required insight.
Present calculations predict that in ccb the two charm quarks form a tight diquark, while in bbc
the bottom quarks are bound with each other more loosely than with the charm quark.

I calculated the form factors of the hadrons I found and I used them to compute the radii of
these hadrons. My results for the radii agree well with results found in literature and especially
good agreement is obtained with the lattice calculations wherever comparison is possible. I also
calculated magnetic moments of baryons and vector quarkonia. Comparison with literature shows
that for systems that involve only one flavor of quarks my results agree with other theoretical
predictions, and for systems that involve both charm and bottom quarks the moments are larger
than those predicted using other methods.

The hadron structure functions I computed in a simplified way. I neglected the huge difference
between the scale of quark binding and the scale of the virtual photon in deep inelastic scattering
(formally infinite). My calculations show interesting features, such as dependence of the structure
function shape on the wave function nodes. However, my calculations of the structure functions can
be considered merely a demonstration of potential utility of the method, because I approximated
the transformation that connects effective particles at two different RGPEP scales, that of DIS and
that of bound-state formation, by identity. Corrections due to scale evolution are not included.

8.2 Foreseeable corrections

One direction of future studies, which I am convinced are necessary, is the fourth-order calculation
of the renormalized Hamiltonian. They could allow us, I believe, to remove the gluon-mass ansatz
or move it to the sector with two effective gluons. The resulting effective Hamiltonians will contain
all interaction terms that are of order k2/m2 with respect to the Coulomb potential, including all
the Breit-Fermi spin-dependent interactions, and improving the accuracy of calculations. Wave
functions obtained from effective Hamiltonians accurate to fourth order of perturbation theory, and
third-order photon-quark vertex, should provide more realistic results for elastic form factors of
heavy hadrons than my calculations. However, to construct fully relativistic scattering amplitudes,
it is also necessary to study the full set of renormalized operators that form the Poincare algebra.
The full set includes the spatial rotation operators that are needed for rotating the states in a way
that properly includes interactions.

Another line of foreseeable research concerns nonperturbative calculations that involve Hamil-
tonians acting on spaces composed of at least two Fock sectors. Such calculations are needed to
obtain reliable results for highly excited states. Such states may have large components in sectors
with gluons, and hence, may be not describable using perturbative elimination of sectors with glu-
ons. For example, in the bottomonium family of states already Υ(3S), whose mass is by 895 MeV
larger than the mass of Υ(1S), may be considered highly excited.

The serious problem that one probably has to face is that gluons in QCD are massless. In
perturbation theory this fact implies that sectors with gluons have norms that diverge with the
small-x cutoff. The gluon mass ansatz that I adopted is not sufficient to guarantee that the
nonperturbative eigenvalue problem in two sectors does not depend on the ansatz. Depending on
the exact form of the gluon mass ansatz, either the one-sector effective eigenvalue equation is free
from small-x divergences or the norm of the higher component of the eigenstate (the one with
the one massive gluon) in the two-sector problem is free from small-x divergences, but not both.
However, this conclusion, based on perturbative calculation of gluon component, does not take into
account other interactions that are present in the sector with the gluon. The nonperturbatively
calculated norm is not known.

An important direction of future studies is a calculation of structure functions that uses trans-
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formation WQλ, which relates particles at the scale of the momentum transfer Q to the particles
at the scale of quark binding λ. As explained in Chapter 7 such calculation would aim to establish
the evolution of structure functions in the framework of renormalized Hamiltonian dynamics of
effective particles.

Renormalization group procedure for effective particles can in principle be applied to describe
also light particles like proton. However, substantial development of the method is needed in the
area of nonperturbative solutions of the RGPEP equation, since at the mass scales of light quarks
the coupling constant is not small. Moreover, the quantitative explanation of chiral symmetry
breaking in the FF of Hamiltonian QCD is still missing.
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Appendix A

Symmetric wave functions of baryons

In the case of three identical quarks wave functions of baryons have to be fully antisymmetric and
because the color wave function is fully antisymmetric, the spin-momentum wave function needs
to be fully symmetric. The prescriptions of how to construct fully symmetric spin-momentum
wave functions from spin and momentum wave functions are given in Table 5.2. Here I list their
explicit forms, but only for the states of highest angular momentum projection on the z axis in
each multiplet. The ground state is,
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The symmetric states of the second band of excitations of harmonic oscillators are,
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For the purposes of App. B I list also L = 0 states of the fourth band of excited states of the
harmonic oscillators in baryons [62],
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Appendix B

Test of magnitude of Coulomb
interactions in baryons

In Chapter 5 I solve Eq. (4.94) by treating Coulomb interactions as perturbations and I do it in the
first order of perturbation theory. The unperturbed wave functions are constructed from harmonic
oscillator wave functions. To test if such approach is justified, I calculate the effective Hamiltonian
in the basis of all states that have zero orbital angular momentum, L = 0, and whose unperturbed
energies reach 4ω, and diagonalize it. I compare the resulting energies with the first order results.
The states that I have to take into account are the ground state, the second-band states A and
B, and fourth-band states listed in App. A. I group those states into two groups: spin-3/2 and
positive parity states |0ω〉, |A〉, |E〉 and |F 〉, and spin-1/2 and positive parity states |B〉, |G〉
and |H〉. Hamiltonian matrix elements between any state from one group and any state from
the other group are zero, because we neglect spin interactions. Furthermore, in each group, there
are no interactions between states with different spin projections on z axis, they are degenerated
and Coulomb potential cannot introduce splittings between them. Therefore, I can restrict my
attention to subspaces composed of states with the highest possible spin projection on z-axis. The
Coulomb interaction in the subspace of the 3/2+ states is described by the Hamiltonian matrix,
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The Coulomb interaction in the subspace of 1/2+ states B, G and H is described by the Hamilto-
nian matrix,

V
1/2+

L=0,IJ = 〈I|V̂C |J〉 = −2

3
α

√
2mω

π
Ṽ

1/2+

L=0,IJ , (B.4)
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where I, J = B,G,H, and

Ṽ
1/2+

L=0 = 3


1321
1920

1
64

√
5

32
1
64

361
480 − 19

48
√

5√
5

32 − 19
48
√

5
19
24

 H

G

B
H G B

= 3

 0.6880 0.01562 0.06988
0.01562 0.7521 −0.1770
0.06988 −0.1770 0.7917

 . (B.5)

The unperturbed Hamiltonians are

H
(0)
3/2+ =


7ω

7ω
5ω

3ω

 , H
(0)
1/2+ =

 7ω
7ω

5ω

 , (B.6)

where off-diagonal elements are zero. In the zeroth order the eigenvectors are |0ω〉, |A〉, |E〉, |F 〉 and
|B〉, |G〉, |H〉, and their energies are given by the diagonal elements of unperturbed Hamiltonians.
In the first order of perturbation theory only the diagonal elements of the interaction Hamiltonian
are taken into account, with the exception of states that are degenerated in the unperturbed
Hamiltonian. States E, F , G and H are degenerated, therefore, the first order perturbation
theory is equivalent to diagonalizing the following matrices,

H
(1)
3/2+ = H

(0)
3/2+ − 2α

√
2mω

π


131
192

169
192
√

6
169

192
√

6
329
384

11
12

1

 , (B.7)

H
(1)
1/2+ = H

(0)
1/2+ − 2α

√
2mω

π

 1321
1920

1
64

1
64

361
480

19
24

 . (B.8)

As a result, I obtain energies that are listed in Table B.1. The eigenstates of the fourth-band
subspace are |E′〉, |F ′〉, |G′〉 and |H ′〉. Quark masses and harmonic oscillator frequencies are taken
from the fits presented in Chapter 5. A better estimate for eigenstates of Eq. (4.94) is obtained
by diagonalizing the full Hamiltonians,

H3/2+ = H
(0)
3/2+ + V

3/2+

L=0 , (B.9)

H1/2+ = H
(0)
1/2+ + V

1/2+

L=0 . (B.10)

The results for the energies are listed in Table B.1, which presents comparison between the two
methods of calculating the energies. The difference is small enough to justify applicability of
the first order perturbation theory. It is also worth mentioning that the energies of the states
would shift further if one included states from higher and higher bands of harmonic oscillator,
however, these shifts quickly become very small because of RGPEP form factor that accompanies
the Coulomb potential in Eq. (4.94).

Energies of states [MeV]
0ω A E′ F ′ B G′ H ′

First order perturbation theory, bbb 253.8 756.5 1123 1452 812.0 1294 1325
Diagonalization of Hamiltonian matrix, bbb 207.0 747.9 1172 1458 797.9 1302 1331

First order perturbation theory, ccc 436.0 1026 1494 1790 1076 1648 1676
Diagonalization of Hamiltonian matrix, ccc 404.6 1019 1528 1794 1066 1654 1680

Table B.1: Comparison of the two ways of computing energies of bbb and ccc baryons.



Appendix C

List of masses of mesons and baryons

Here I provide the complete list of formulas for masses of heavy mesons and baryons that are
plotted in Figs. 5.1, 5.2 and 5.3.

The masses of mesons are computed using the following equation,

M = (m1 +m2)

√
1 +

2E

m1 +m2
, (C.1)

where E for different meson states are,

E1S =
3

2
ω − 4

3
α

√
2

πν
, (C.2)

E2S =
7

2
ω − 10

9
α

√
2

πν
, (C.3)

E3S =
11

2
ω − 89

90
α

√
2

πν
, (C.4)

E1P =
5

2
ω − 8

9
α

√
2

πν
, (C.5)

E2P =
9

2
ω − 4

5
α

√
2

πν
, (C.6)

E1D =
7

2
ω − 32

45
α

√
2

πν
, (C.7)

E2D =
11

2
ω − 208

315
α

√
2

πν
. (C.8)

The masses of baryons are computed using the following equation,

M = (m1 +m2 +m3)

√
1 +

2E

m1 +m2 +m3
, (C.9)

where E for different baryon states are,

E = ω12

(
2k12 + l12 +

3

2

)
+ ω3(12)

(
2k3(12) + l3(12) +

3

2

)
+ V , (C.10)

and V is the expectation value of Coulomb interaction terms computed in the harmonic oscillator
eigenstates. For example, state 1P1PL=0 has k3(12) = k12 = 0, l3(12) = l12 = 1, and the binding
energy E is,

EL=0
1P1P =

5

2
ω12 +

5

2
ω3(12) + V L=0

1P1P . (C.11)
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It is convenient to define,

V = −2

3
α

√
2

πν12
Ṽ (C.12)

and

x =
4ν3(12)

ν12
=

ω12

β3ω3(12)
. (C.13)

For the states composed of three identical quarks listed in Table 5.2,

Ṽ1S1S = 3 , (C.14)

Ṽ1ω =
5

2
, (C.15)

ṼA =
11

4
, (C.16)

ṼB =
19

8
, (C.17)

ṼC =
23

10
, (C.18)

ṼD =
43

20
. (C.19)

For states with only the two first quarks identical listed in Table 5.1,

Ṽ1S1S = 1 +
4√

1 + x
, (C.20)

Ṽ1P1S =
2

3
+

4 (3x+ 2)

3(1 + x)3/2
, (C.21)

Ṽ1S1P = 1 +
4(2x+ 3)

3(1 + x)3/2
, (C.22)

Ṽ L=0
1P1P =

2

3
+

4(2x2 + 7x+ 2)

3(1 + x)5/2
, (C.23)

Ṽ L=1
1P1P =

2

3
+

8

3
√
x+ 1

, (C.24)

Ṽ L=2
1P1P =

2

3
+

8
(
5x2 + 13x+ 5

)
15(x+ 1)5/2

, (C.25)

Ṽ1D1S =
8

15
+

4
(
15x2 + 20x+ 8

)
15(1 + x)5/2

, (C.26)

Ṽ1S1D = 1 +
4
(
8x2 + 20x+ 15

)
15(1 + x)5/2

, (C.27)

Ṽ2S1S =
5

6
+

2
(
6x2 + 8x+ 5

)
3(1 + x)5/2

, (C.28)

Ṽ1S2S = 1 +
2
(
5x2 + 8x+ 6

)
3(1 + x)5/2

. (C.29)
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baryons,” Phys. Rev. D97 no. 11, (2018) 114017, arXiv:1801.09697 [nucl-th].

[87] Z. S. Brown, W. Detmold, S. Meinel, and K. Orginos, “Charmed bottom baryon
spectroscopy from lattice QCD,” Phys. Rev. D90 no. 9, (2014) 094507, arXiv:1409.0497
[hep-lat].

http://dx.doi.org/10.1103/PhysRevD.91.054011
http://arxiv.org/abs/1507.03735
http://arxiv.org/abs/1904.10166
http://dx.doi.org/10.1103/PhysRevD.79.094002
http://arxiv.org/abs/0902.4624
http://dx.doi.org/10.1142/S0217732314501065
http://arxiv.org/abs/1403.4582
http://dx.doi.org/10.1140/epja/i2017-12386-2
http://dx.doi.org/10.1103/PhysRevD.19.2197
http://dx.doi.org/10.1016/0370-2693(80)90906-5
http://dx.doi.org/10.3952/lithjphys.49110
http://dx.doi.org/10.3952/lithjphys.49110
http://arxiv.org/abs/0808.1220
http://dx.doi.org/10.1103/PhysRevD.92.076008
http://arxiv.org/abs/1503.05184
http://dx.doi.org/10.1103/PhysRevD.95.116005
http://arxiv.org/abs/1609.02512
http://arxiv.org/abs/1609.02512
http://dx.doi.org/10.1016/j.physletb.2009.02.056
http://arxiv.org/abs/0902.3297
http://dx.doi.org/10.1088/0253-6102/58/5/17
http://arxiv.org/abs/1112.2274
http://dx.doi.org/10.1007/JHEP04(2013)042
http://arxiv.org/abs/1212.6065
http://dx.doi.org/10.1088/0954-3899/41/6/065003
http://dx.doi.org/10.1088/0954-3899/41/6/065003
http://arxiv.org/abs/1404.2091
http://dx.doi.org/10.1140/epjc/s10052-012-2019-9
http://dx.doi.org/10.1140/epjc/s10052-012-2019-9
http://arxiv.org/abs/1111.7087
http://arxiv.org/abs/1112.3214
http://dx.doi.org/10.1103/PhysRevD.97.114017
http://arxiv.org/abs/1801.09697
http://dx.doi.org/10.1103/PhysRevD.90.094507
http://arxiv.org/abs/1409.0497
http://arxiv.org/abs/1409.0497


94 BIBLIOGRAPHY

[88] S. Meinel, “Excited-state spectroscopy of triply-bottom baryons from lattice QCD,” Phys.
Rev. D85 (2012) 114510, arXiv:1202.1312 [hep-lat].

[89] R. A. Briceno, H.-W. Lin, and D. R. Bolton, “Charmed-Baryon Spectroscopy from Lattice
QCD with Nf = 2 + 1 + 1 Flavors,” Phys. Rev. D86 (2012) 094504, arXiv:1207.3536
[hep-lat].

[90] M. Padmanath, R. G. Edwards, N. Mathur, and M. Peardon, “Spectroscopy of
triply-charmed baryons from lattice QCD,” Phys. Rev. D90 no. 7, (2014) 074504,
arXiv:1307.7022 [hep-lat].

[91] PACS-CS Collaboration, Y. Namekawa et al., “Charmed baryons at the physical point in
2+1 flavor lattice QCD,” Phys. Rev. D87 no. 9, (2013) 094512, arXiv:1301.4743
[hep-lat].

[92] C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis, and G. Koutsou, “Baryon spectrum
with Nf = 2 + 1 + 1 twisted mass fermions,” Phys. Rev. D90 no. 7, (2014) 074501,
arXiv:1406.4310 [hep-lat].

[93] K. U. Can, G. Erkol, M. Oka, and T. T. Takahashi, “Look inside charmed-strange baryons
from lattice QCD,” Phys. Rev. D92 no. 11, (2015) 114515, arXiv:1508.03048 [hep-lat].

[94] J. Carbonell, B. Desplanques, V. A. Karmanov, and J. F. Mathiot, “Explicitly covariant
light front dynamics and relativistic few body systems,” Phys. Rept. 300 (1998) 215–347,
arXiv:nucl-th/9804029 [nucl-th].

[95] R. G. Arnold, C. E. Carlson, and F. Gross, “Elastic electron-Deuteron Scattering at
High-Energy,” Phys. Rev. C21 (1980) 1426.

[96] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics, vol. 4 of
Course of Theoretical Physics. Pergamon Press, Oxford, 1982.

[97] L. Adhikari, Y. Li, M. Li, and J. P. Vary, “Form factors and generalized parton
distributions of heavy quarkonia in basis light front quantization,” Phys. Rev. C99 no. 3,
(2019) 035208, arXiv:1809.06475 [hep-ph].

[98] S. D. Glazek and J. M. Namyslowski, “Nucleon Wave Function with Running Quark
Masses,” Acta Phys. Polon. B19 (1988) 569–587.

[99] B. L. Ioffe, “Calculation of Baryon Masses in Quantum Chromodynamics,” Nucl. Phys.
B188 (1981) 317–341. [Erratum: Nucl. Phys.B191,591(1981)].

[100] K. Raya, M. A. Bedolla, J. J. Cobos-Mart́ınez, and A. Bashir, “Heavy quarkonia in a
contact interaction and an algebraic model: mass spectrum, decay constants, charge radii
and elastic and transition form factors,” Few Body Syst. 59 no. 6, (2018) 133,
arXiv:1711.00383 [nucl-th].

[101] J. J. Dudek, R. G. Edwards, and D. G. Richards, “Radiative transitions in charmonium
from lattice QCD,” Phys. Rev. D73 (2006) 074507, arXiv:hep-ph/0601137 [hep-ph].

[102] M. S. Bhagwat and P. Maris, “Vector meson form factors and their quark-mass
dependence,” Phys. Rev. C77 (2008) 025203, arXiv:nucl-th/0612069 [nucl-th].

[103] T. A. Lahde, “Exchange current operators and electromagnetic dipole transitions in heavy
quarkonia,” Nucl. Phys. A714 (2003) 183–212, arXiv:hep-ph/0208110 [hep-ph].

[104] R. Dhir, C. S. Kim, and R. C. Verma, “Magnetic Moments of Bottom Baryons: Effective
mass and Screened Charge,” Phys. Rev. D88 (2013) 094002, arXiv:1309.4057 [hep-ph].

http://dx.doi.org/10.1103/PhysRevD.85.114510
http://dx.doi.org/10.1103/PhysRevD.85.114510
http://arxiv.org/abs/1202.1312
http://dx.doi.org/10.1103/PhysRevD.86.094504
http://arxiv.org/abs/1207.3536
http://arxiv.org/abs/1207.3536
http://dx.doi.org/10.1103/PhysRevD.90.074504
http://arxiv.org/abs/1307.7022
http://dx.doi.org/10.1103/PhysRevD.87.094512
http://arxiv.org/abs/1301.4743
http://arxiv.org/abs/1301.4743
http://dx.doi.org/10.1103/PhysRevD.90.074501
http://arxiv.org/abs/1406.4310
http://dx.doi.org/10.1103/PhysRevD.92.114515
http://arxiv.org/abs/1508.03048
http://dx.doi.org/10.1016/S0370-1573(97)00090-2
http://arxiv.org/abs/nucl-th/9804029
http://dx.doi.org/10.1103/PhysRevC.21.1426
http://dx.doi.org/10.1103/PhysRevC.99.035208
http://dx.doi.org/10.1103/PhysRevC.99.035208
http://arxiv.org/abs/1809.06475
http://dx.doi.org/10.1016/0550-3213(81)90315-1, 10.1016/0550-3213(81)90259-5
http://dx.doi.org/10.1016/0550-3213(81)90315-1, 10.1016/0550-3213(81)90259-5
http://dx.doi.org/10.1007/s00601-018-1455-y
http://arxiv.org/abs/1711.00383
http://dx.doi.org/10.1103/PhysRevD.73.074507
http://arxiv.org/abs/hep-ph/0601137
http://dx.doi.org/10.1103/PhysRevC.77.025203
http://arxiv.org/abs/nucl-th/0612069
http://dx.doi.org/10.1016/S0375-9474(02)01362-3
http://arxiv.org/abs/hep-ph/0208110
http://dx.doi.org/10.1103/PhysRevD.88.094002
http://arxiv.org/abs/1309.4057


BIBLIOGRAPHY 95

[105] A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij, D. Nicmorus, and
K. Pumsa-ard, “Magnetic moments of heavy baryons in the relativistic three-quark model,”
Phys. Rev. D73 (2006) 094013, arXiv:hep-ph/0602193 [hep-ph].

[106] V. Simonis, “Improved predictions for magnetic moments and M1 decay widths of heavy
hadrons,” arXiv:1803.01809 [hep-ph].
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