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Black holes in Melvin universe

Muhammad Rizwana,1, K. Saifullahb,1

1Department of Mathematics, Quaid-i-Azam Univerity, Islamabad, Pakistan

Received: date / Accepted: date

Abstract A technique was developed by F. J. Ernst in
1976 for immersing black hole spacetimes in Melvin’s
magnetic universe. This method for magnetizing lack
holes uses Harrison’s transformations. In this paper we
review the earlier work done on magnetizing the Schwar-
zschild, Reissner-Nordström and Kerr-Newman black
holes.

1 Introduction

In 1952 W. B. Bonner gave the solution for empty
space having cylindrical symmetry containing electro-
magnetic field and discussed its physical interpretation
[1,2]. This was subsequently rediscovered by M. A. Mel-
vin [3]. It is now usually referred to as the “Melvin uni-
verse”. The metric that describes Melvin universe is [3,
4]

ds2 = (1 + 1
4B2Ω2)2(°dt2 + dΩ2 + dz2)

+ (1 +
1
4
B2Ω2)°2Ω2d¡2, (1)

with t, z 2 (°1, +1), Ω 2 [0,1), ¡ 2 [0, 2º). The
electromagnetic field can be described by the Maxwell
tensor

F = e°i√B(dz ^ dt), (2)

where √ is a real parameter of duality rotation. In par-
ticular, for √ = 0, the Maxwell tensor is F = Bdz ^
dt which describes an electric field pointing along the
z-direction, whereas for √ = º/2 one obtains F =
B(1 + 1/4B2Ω2)°2ΩdΩ ^ d¡, which represents a purely
magnetic field oriented along the z-direction. It is a
spacetime which is static cylindrically symmetric and
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in which there exists an axial magnetic and/or elec-
tric field aligned with the z-axis, and the magnitude of
the field is determined by the parameter B. This so-
lution represents a universe which contains a parallel
bundle of electric or magnetic flux held together by its
own gravitational pull. Further, for B = 0, the met-
ric is Minkowski metric in cylindrical coordinates. If
B 6= 0, the metric is not asymptotically flat because
1 + 1/4B2Ω2 does not go to 1 at any z.

The above Melvin magnetic solution has been con-
sidered as a useful model in, among others, the stud-
ies of astrophysical processes, quantum black hole pair
creation and gravitational collapse. Its importance de-
rives also from the fact that it appears as a limit in
more complicated solutions and is therefore considered
as a background for a number of interesting solutions.
It was shown already by Melvin [5] and Thorne [6]
that the spacetime is, somewhat surprisingly, stable
against small radial perturbations, as well as arbitrarily
large perturbations which are confined to a finite region
about the axis of symmetry.

In 1976, F. J. Ernst using Harrison’s transformation
[7] presented a procedure for transforming asymptot-
ically flat axially symmetric solutions of the coupled
Einstein-Maxwell equations into solutions resembling
Melvin’s magnetic universe [8,9]. He used this tech-
nique for the removal of the nodal singularity of the
C-metric [10], and studied the Schwarzschild, Reissner-
Nordström and Kerr-Newman black holes in Melvin
universe [8,9]. Recently, Ernst’s solution generating tech-
nique is used by M. Astorino for embedding hairy black
holes in Melvin universe [11] and by G. W. Gibbons et.
al. for Kerr-Newman black holes [12]. In this paper we
present a review of this work and discuss some exam-
ples that illustrate how Ernst used Harrison’s transfor-
mation [7] to generate some electrovac solutions, which
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are of physical interest. In Section 2 we shall discuss
how Ernst obtained Melvin universe using Harrison’s
transformation. Sections 3 and 4 deal with Schwarz-
schild and Reissner-Nordström black holes in Melvin
universe. In Section 5 we review the work [12] done on
Kerr-Newman solution having electric as well as mag-
netic charge in Melvin universe. A brief conclusion is
given at the end.

2 Melvin universe by Ernst’s technique

The line element of Minkowski space in cylindrical co-
ordination is given by

ds2 = °dt2 + dz2 + dΩ2 + Ω2d¡2, (3)

and the general form of stationary axial symmetric line
element can be written as [8]

ds2 = f°1[°2P°2dªdª§ + Ω2dt2]° f(d¡° !dt)2. (4)

On comparing Eqs. (3) and (4) we have

f = °Ω2, ! = 0, P = Ω°1, dª =
(dz + idΩ)p

2
. (5)

The complex gravitational potential " associated with
gravity is defined by

" = f ° |©|2 + i', (6)

where © is the complex electromagnetic potential, whose
real and imaginary parts are electrostatic and magneto-
static potentials, respectively and |©| is the magnitude
of complex potential. If Er, Eµ, Hr and Hµ are the ra-
dial and angular components of electric and magnetic
fields, the complex electromagnetic potential may be
evaluated by

Hr + iEr = P
@©

@µ
, Hµ + iEµ = °P

@©

@r
. (7)

In Eq. (6) ' is the twist potential. If one defines the
symbol

r = r
@

@r
+ i

@

@µ
, (8)

the twist potential may be determined by equation

°Ω°1f2r! = ir' + ©§r©° ©r©§. (9)

Here ©§ is the conjugate of ©. Since initially there is no
electromagnetic field, so complex gravitational, electro-
magnetic and twist potentials are given by

" = f = °Ω2,© = 0, ' = 0. (10)

Now by Harrison’s transformations new functions are
defined as [8]

§ = 1 + B©° 1
4B2", (11)

"
0

= §°1", (12)
©

0
= §°1(©° 1

2B"), (13)

and under this transformation functions, f and ! are
transformed into new functions f

0
and !

0
as

f
0
= Re"

0
+ |©

0
|2 = |§|°2

f, (14)
r!

0
= |§|2r! + Ωf°1(§§r§° §r§§), (15)

where the operator r is diÆerent for diÆerent cases,
while the function P and Ω are unmodified. From Eqs.
(11) - (13)

§ = 1 +
1
4
Ω2B2, (16)

"
0
= §°1" = ° Ω2

1 + 1
4Ω2B2

, (17)

f
0
= |§|°2

f = ° Ω2

(1 + 1
4Ω2B2)2

. (18)

As § = 1 + 1
4Ω2B2 is real so §§r§ ° §r§§ = 0, and

from Eq. (5) ! = 0, so !
0
= 0. Using the new functions

f
0
and !

0
in Eq. (4) the transformed line element is [8]

ds2 = (1 +
1
4
B2Ω2)2[°dt2 + dz2 + dΩ2]

+ (1 +
1
4
B2Ω2)°2Ω2d¡2, (19)

with the electromagnetic potential

©
0
=

1
2
§°1BΩ2 =

1
2

BΩ2

(1 + 1
4Ω2B2)

. (20)

From the above equation the components of magnetic
field are

Hz = §°2B, HΩ = 0 = H¡. (21)

This solution is same as Melvin’s magnetic universe (1).

3 Schwarzschild black hole in Melvin universe

The Harrison transformation can be used to magne-
tize the Schwarzschild black hole. The metric of the
Schwarzschild black hole is given by

ds2 = °(1°2M

r
)dt2+

dr2

(1° 2M
r )

+r2dµ2+r2 sin2 µd¡2,(22)

or

ds2 = ° 1
r2

(r2 ° 2Mr)dt2 +
r2dr2

(r2 ° 2Mr)
+ r2dµ2

+ r2 sin2 µd¡2. (23)
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Comparing the above equation with Eq.(4) we have
f = °r2 sin2 µ, ! = 0, Ω = (r2 ° 2Mr)1/2 sin µ,(24)

P = (r2 sin µ)°1, dª =
1p
2

µ
dr

(r2 ° 2Mr)1/2
+ idµ

∂
.

(25)
The radial and angular components of electric and mag-
netic fields satisfy the equation

Hr+iEr = P
@©

@µ
, Hµ+iEµ = °P (r2°2Mr)1/2 @©

@r
.(26)

If one defines the symbol

r = (r2 ° 2Mr)1/2 @

@r
+ i

@

@µ
, (27)

the twist potential may be determined by
°Ω°1f2r! = ir' + ©§r©° ©r©§. (28)
Since initially there is no electromagnetic field, also ! =
0, so the complex gravitational, electromagnetic and
twist potentials are given by
" = f = °r2 sin2 µ, © = 0, ' = 0, (29)
while Eqs. (11)-(13) yield

§ = 1 + B©° 1
4
B2" = 1 +

1
4
B2r2 sin2 µ, (30)

"
0
= §°1" = °(1 +

1
4
B2r2 sin2 µ)°1r2 sin2 µ, (31)

©
0
= §°1(©° 1

2
B")

=
1
2
(1 +

1
4
B2r2 sin2 µ)°1Br2 sin2 µ. (32)

The transformed fields f
0
and !

0
from Eqs. (14) and

(15) are

f
0
= |§|°2

f = ° r2 sin2 µ

(1 + 1
4B2r2 sin2 µ)2

, !
0
= 0. (33)

Using f
0
from !

0
from the above equations and unmodi-

fied functions P and Ω from Eq. (4) we obtain the trans-
formed line element [8]

ds2 = |§|2 [°(1° 2M

r
)dt2 +

dr2

(1° 2M
r )

+ r2dµ2] + |§|°2
r2 sin2 µd¡2. (34)

In this case the magnetic field components are given by
Hr = §°2B cos µ, (35)

Hµ = °§°2B(1° 2M

r
)1/2 sin µ. (36)

Note that if M = 0 the above metric becomes Melvin’s
magnetic universe, while for M 6= 0 there is an event
horizon at r = 2M and the angular component of mag-
netic field vanishes at the event horizon. Further, the
metric has singularity at r = 0, as in the case of Schwarz-
schild metric. If we take B = 0, this reduces to the
Schwarzschild solution.

4 Reissner-Nordström black hole in Melvin
universe

The application of the procedure to the Reissner-Nords-
tröm black hole is not so simple. In this case E £ H
serves as a source for twist potential, and the trans-
formed metric is not static as in the case of the Schwarz-
schild black hole, but stationary. The spacetime of Reis-
sner-Nordstr öm black hole is

ds2 = °(1° 2M

r
+

q2

r2
)dt2 + (1° 2M

r
+

q2

r2
)°1dr2

+ r2dµ2 + r2 sin2 µd¡2, (37)

or, we can write

ds2 = ° 1
r2

(r2 ° 2Mr + q2)dt2 + r2(r2 ° 2Mr + q2)°1dr2

+ r2dµ2 + r2 sin2 µd¡2. (38)

Comparing Eq. (38) with Eq. (4) we note that

f = °r2 sin2 µ, ! = 0, Ω = (r2 ° 2Mr + q2)1/2 sin µ, (39)

P = (r2 sin µ)°1, dª =
1p
2

µ
dr

(r2 ° 2Mr + q2)1/2
+ idµ

∂
.

(40)

The complex electromagnetic potential ©, whose real
and imaginary parts are electrostatic and magnetosta-
tic potentials, respectively, may be evaluated by the
equations

Hr + iEr = P
@©

@µ
, (41)

Hµ + iEµ = °P (r2 ° 2Mr + q2)1/2 @©

@r
. (42)

Solving the above equation we have © = °∂q cos µ. If
one defines the symbol

r = (r2 ° 2Mr + q2)1/2 @

@r
+ i

@

@µ
, (43)

the twist potential ' can be determined from

°Ω°1f2r! = ir' + ©§r©° ©r©§. (44)

Since © is pure imaginary so ©§r© ° ©r©§ = 0, also
! = 0, so the twist potential is also equal to zero i.e.
' = 0. The complex gravitational potential " associated
with gravity is given by

" = f ° |©|2 + i' = °r2 sin2 µ ° q2 cos2 µ, (45)

while Eqs. (11) - (14) take the form

§ = 1 + B©° 1
4
B2"

= 1 +
1
4
B2(r2 sin2 µ + q2 cos2 µ)° iBq cos µ, (46)
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"
0
= §°1"

= °
√

r2 sin2 µ + q2 cos2 µ

1 + 1
4B2(r2 sin2 µ + q2 cos2 µ)° iBq cos µ

!
,(47)

f
0
= |§|°2

f

= ° r2 sin2 µ

(1 + 1
4B2(r2 sin2 µ + q2 cos2 µ))2 + (Bq cos µ)2

,(48)

and !
0
can be evaluated by the equation

r!
0
= Ωf°1(§§r§° §r§§). (49)

Integrating Eq. (49) yields the following expression for
!

0

!
0
= °2Bqr°1 + B3qr +

1
2
B3q3r°1 ° 1

2
B3qr°1

£ (r2 ° 2Mr + q2) sin2 µ + const. (50)

Consequently, the transformed metric takes the form
[8]

ds2 = |§|2 [°(1° 2M

r
+

q2

r2
)dt2 + (1° 2M

r
+

q2

r2
)°1dr2

+ r2dµ2] + |§|°2
r2 sin2 µ(d¡° !

0
dt)2, (51)

where § and !
0

are given by Eqs. (46) and (50). The
above metric is known as the Reissner-Nordström black
hole in Melvin universe which is the charged general-
ization of Schwarzschild black hole in Melvin universe.
If q = 0 then this metric reduces to the Schwarzschild
black hole in Melvin universe, and if B = 0, then the
above metric reduces to Reissner-Nordström black hole.

Finally, the components of the electric and magnetic
fields may be evaluated from electromagnetic potential
©

0
. The results are

Hr + iEr = §°2[i(
q

r2
){1° 1

4
B2(r2 sin2 µ + q2 cos2 µ)}

+ B(1° 1
2
iBq cos µ)(1° q2

r2
) cos µ], (52)

Hµ + iEµ = °B |§|2 (1° 1
2
iq2 cos µ)

£ (1° 2M

r
+

q2

r2
)1/2 sin µ. (53)

5 Kerr-Newman black hole in Melvin universe

The spacetime describing magnetized Kerr-Newman bl-
ack hole of mass M , angular momentum per unit mass
a, carrying electric charge q and magnetic charge p,
embedded in a Melvin’s universe of magnetic field B is
[12]

ds2 = H[°fdt2 + R2(
dr2

¢
+ dµ2)]

+
ß sin2 µ

HR2
(d¡° !dt)2, (54)

where

R2 = r2 + a2 cos2 µ, (55)
¢ = (r2 + a2)° 2Mr + q2 + p2, (56)
ß = (r2 + a2)2 ° a2¢ sin2 µ, (57)

f =
R2¢

ß
, (58)

H = 1 +
H(1)B + H(2)B

2 + H(3)B
3 + H(4)B

4

R2
, (59)

with

H(1) = 2aqr sin2 µ ° 2p(r2 + a2) cos µ,

H(2) =
1
2
[(r2 + a2)2 ° a2¢ sin2 µ] sin2 µ

+
3
2
q2(a2 + r2 cos2 µ),

H(3) = °qa¢

2r
[r2(3° cos2 µ) cos2 µ + a2(1 + cos2 µ)]

° 1
2
p(r4 ° a4) sin2 µ cos µ +

qq2a[(2r2 + a2) cos2 µ + a2]
2r

° pa2¢ sin2 µ cos µ ° 1
2
pq2(r2 + a2) cos3 µ

+
aq(r2 + a2)2(1 + cos2 µ)

2r
,

H(4) =
1
16

(r2 + a2)2R2 sin4 µ

+
1
4
M2a2[r2(cos2 µ ° 3)2 cos2 µ

+ a2(1 + cos2 µ)2] +
1
16

q4[r2 cos2 µ

+ a2(1 + sin2 µ)] cos2 µ +
1
4
Ma2r(r2 + a2) sin6 µ

+
1
4
Ma2q2r(cos2 µ ° 5) sin2 µ cos2 µ

+
1
8
q2(r2 + a2)(r2 + a2 + a2 sin2 µ) sin2 µ cos2 µ.

Here q2 = q2 + p2, and

! =
1
ß

[(2Mr°q2)a+!(1)B+!(2)B
2+!(3)B

3+!(4)B
4],(60)

with

!(1) = °2qr(r2 + a2) + 2ap¢ cos µ,

!(2) = °3
2
aq2(r2 + a2 + ¢ cos2 µ),

!(3) = 4qM2a2r +
1
2
apq4 cos3 µ +

1
2
qr(r2 + a2)[r2 ° a2

+(r2 + 3a2) cos2 µ] +
1
2
ap(r2 + a2)[3r2 + a2 ° (r2

°a2) cos2 µ] cos µ ° aMq2(2aq + pr cos3 µ)° apMr

£[2R2 + (r2 + a2) sin2 µ] cos µ +
1
2
apq2[3r2 + a2
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+2a2 cos2 µ] cos µ +
1
2
qq2r[(r2 + 3a2) cos2 µ ° 2a2]

+qM [r4 ° a4 + r2(r2 + 3a2) sin2 µ],

!(4) =
1
2
a3M3r(3 + cos4 µ)° 1

8
aq4[r2(2 + sin2 µ) cos2 µ

+a2(1 + cos4 µ)] +
1
16

aq2(r2 + a2)[r2(1° 6 cos2 µ

+3 cos4 µ)° a2(a + cos4 µ)]° 1
4
a3M2q2(3 + cos4 µ)

° 1
16

aq6 cos4 µ +
1
4
aM2[r4(3° 6 cos2 µ + 3 cos4 µ)

+2a2r2(3 sin2 µ ° 2 cos4 µ)° a4(1 + cos4 µ)]

+
1
8
aMq4r cos4 µ +

1
8
aMq2r[2r2(3° cos2 µ)

£ cos2 µ ° a2(1° 3 cos2 µ ° 2 cos4 µ)] +
1
8
aMr

£(r2 + a2)[r2(3 + 6 cos2 µ ° cos4 µ)
°a2(1° 6 cos2 µ ° 3 cos4 µ)].

The electromagnetic vector potential is

A = (©0 ° !©3)dt + ©3d¡, (61)

where

©0 =
©

(0)
0 + ©

(1)
0 B + ©

(2)
0 B2 + ©

(3)
0 B3

4ß
, (62)

with

©
(0)
0 = 4[°qr(r2 + a2) + ap¢ cos µ,

©
(1)
0 = °6aq2(r2 + a2 + ¢ cos2 µ),

©
(2)
0 = °3q[(r + 2M)a4 ° (r2 + 4Mr + ¢ cos2 µ)r3

+ a2(2q2(r + 2M)° 6Mr2 ° 8M2r ° 3r¢ cos2 µ)]
+ 3p¢[3ar2 + a3 + a(a2 + q2 ° r2) cos2 µ] cos µ,

©
(3)
0 = °1

2
a[4a4M2 + 12a2M2q2 + 2a2q4 + 2a4Mr

° 24a2M3r + 4a2Mq2r ° 24a2M2r2 ° 4a2Mr3

° q2r4 ° 6Mr5 ° 6r¢{2M(r2 + a2)° q2r} cos2 µ

+ a4q2 ° 12M2r4 + ¢(q4 ° 3q2r2 + 2Mr3

+ a2(4M2 + q2 ° 6Mr)) cos4 µ],

and

©3 =
©

(0)
3 + ©

(1)
3 B + ©

(2)
3 B2 + ©

(3)
3 B3

R2H
, (63)

with

©
(0)
3 = aqr sin2 µ ° p(r2 + a2) cos µ,

©
(1)
3 =

1
2
[ß sin2 µ + 3q2(a2 + r2 cos2 µ)],

©
(2)
3 =

3
4
aqr(r2 + a2) sin4 µ ° 3

4
p(r2 + a2)2 sin2 µ cos µ

+3a2pMr sin2 µ cos µ +
3
2
aqm[r2(3° cos2 µ)

£ cos2 µ + a2(1 + cos2 µ)]° 3
4
aqq2r sin2 µ cos2 µ

°3
4
pq2[(r2 ° a2) cos2 µ + 2a2] cos µ,

©
(3)
3 =

1
4
q2(r2 + a2)[r2 + a2 + a2 sin2 µ cos2 µ]° 1

2
a2q2

£Mr(5° cos2 µ) sin2 µ cos2 µ +
1
2
a2M2[r2(3

° cos2 µ)2 cos2 µ + a2(1 + cos2 µ)2] +
1
2
a2Mr(r2

+a2) sin6 µ +
1
8
R2(r2 + a2)2 sin4 µ +

1
8
q4[r2 cos2 µ

+a2(2° cos2 µ)2] cos2 µ.

6 Conclusion

We have described Ernst’s solution generating tech-
nique [8–10] which uses Harrison’s transformations for
magnetizing black holes. We have reviewed the ear-
lier work in this direction on Schwarzschild, Reissner-
Nordström and Kerr-Newman black holes. Note that if
we take electric charge e and magnetic charge p equal to
zero the metric for Kerr-Newman black hole in Melvin
universe reduces to Kerr black hole in Melvin universe.
Further if we take the rotation parameter a equal to
zero the metric reduces to the magnetized Schwarz-
schild black hole. If we put the magnetic field B = 0
all the metrics reduce to their unmagnetized versions.
Other properties of these magnetized black holes and
further work in this direction [13] will be reported else-
where.
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