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Abstract 

This thesis, written as a compendium of articles, investigates some broad consequences of 
allowing for the dynamical change of spacetime topology in string theory, in the context 
of the Swampland Program. 

In the frst four articles presented in this thesis, we investigate dynamical realizations 
of the cobordisms to nothing predicted by the Cobordism Conjecture. This comes down 
to considering solutions to the equations of motion where the compact space pinches of 
at fnite distance in spacetime. We studied these setups in a wide variety of examples in 
string theory, which allowed us to characterize the backreaction of the singular extended 
objects (cobordism defects) that are located at the point of pinch-of. We found that they 
always explore infnite distances in moduli space, pointing to a link with the Distance 
Conjecture. This is not surprising from the perspective that these cobordisms represent 
dualities between any two efective feld theories of quantum gravity in a general sense. 
It also means that the UV nature of these objects goes well beyond an EFT description. 
Furthermore, we showed that all of these solutions feature a generic behaviour, locally, 
near the singularity. These dynamical cobordisms are generally intricately linked to the 
presence of a scalar (tadpole) potential, which shows the importance of understanding 
the Distance Conjecture beyond proper moduli spaces. Finally, we discussed dynamical 
cobordisms where the solution runs along a time- or light-like dimension, and described 
known vacuum destroying bubbles in supercritical string theories as bordisms to nothing. 

In the ffth article we discussed the identifcation and cancellation of global gauge/dif-
feomorphism anomalies in efective feld theories of quantum gravity, where topology change 
should be allowed. We described how this can be done through the computation of an 
appropriate bordism group. We then implemented this for the three ten dimensional non-
supersymmetric and non tachyonic string theories, showing that they are free of anomalies. 
Anomaly infow arguments also allowed us to shine light on the worldvolume theories of 
fvebranes in these theories. 

Finally, we considered whether the various extended objects in string theory (like D-
branes, or the cobordism defects) could be used to probe UV physics, since they naturally 
warp spacetime and source a potential for the scalars. In the last two articles we discuss 
how to probe UV physics using black holes. We frst showed that large BPS black holes in 
4d N = 2 compactifcations of type II string theories can allow us to probe the geometry 
of the underlying compact space solely by measuring its charges and its size. If one wants 
to probe the physics at the species scale where full-fedged quantum gravity comes into 
play, one needs to consider instead the smallest possible black hole that one can defne 
in a theory. We considered small, singular black holes and showed that they developed 
a stretched species scale sized horizon when curvature corrections are taken into account 
near its core. This had the virtue of unifying the various defnitions of the species scale. 
It also begs the question of whether or not full-fedged quantum gravity is always hidden 
behind a horizon. 

After briefy motivating quantum gravity and string theory, we introduce bordism 
groups and outline the various aspects of the Swampland Program that will be needed in 
this thesis. After the articles, we fnish with an overview of the results published in the 
papers. 
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Resumen 

Esta tesis, escrita como un compendio de artículos, investiga algunas consecuencias amplias 
de permitir el cambio dinámico de la topología del espacio-tiempo en la teoría de cuerdas, 
en el contexto del Programa del Swampland. 

En los primeros cuatro artículos presentados en esta tesis, investigamos realizaciones 
dinámicas de los cobordismos hacia la nada predichos por la Conjetura de Cobordismo. 
Esto implica considerar soluciones a las ecuaciones de movimiento donde el espacio com-
pacto se pellizca a una distancia fnita en el espacio-tiempo. Estudiamos estos escenarios 
en una variedad de ejemplos en la teoría de cuerdas, lo que nos permite caracterizar los 
objetos extendidos singulares (defectos de cobordismo) que se encuentran en el punto de 
pellizco. Encontramos que siempre exploran distancias infnitas en el espacio de módulos, 
apuntando a un vínculo con la Conjetura de Distancia. Esto no es sorprendente desde la 
perspectiva de que estos cobordismos representan dualidades entre cualquier par de EFTs 
de gravitación cuántica en un sentido general. También signifca que la naturaleza UV de 
estos objetos va mucho más allá de la EFT. Además, mostramos que todas estas soluciones 
presentan un comportamiento genérico, localmente, cerca de la singularidad. Estos cobor-
dismos dinámicos están generalmente vinculados a la presencia de un potencial escalar, 
lo que muestra la importancia de comprender la conjetura de distancia más allá de los 
espacios de módulos. Finalmente, discutimos cobordismos dinámicos donde la solución se 
desarrolla a lo largo de una dimensión temporal o tipo luz, y describimos burbujas que 
destruyen el vacío en teorías de cuerdas supercríticas como bordismos hacia la nada. 

En el quinto artículo discutimos la identifcación y cancelación de anomalías globales 
de gauge/difeomorfsmo en teorías efectivas de campos de gravitación cuántica, donde se 
debería permitir el cambio de topología. Describimos cómo esto puede hacerse mediante 
el cálculo de un grupo de cobordismo apropiado. Luego lo implementamos para las tres 
teorías de cuerdas no supersimétricas y no taquiónicas de diez dimensiones, mostrando que 
están libres de anomalías. Los argumentos de “anomaly infow” también nos permitieron 
arrojar luz sobre las teorías de worldvolume de las cincobranas en estas teorías. 

Finalmente, consideramos si los diversos objetos extendidos en la teoría de cuerdas 
(como las D-branas o los defectos de cobordismo) podrían usarse para sondear la física UV, 
ya que naturalmente deforman el espacio-tiempo y generan un potencial para los escalares. 
En los dos últimos artículos discutimos cómo sondear la física UV usando agujeros negros. 
Primero mostramos que los agujeros negros grandes BPS en compactifcaciones de 4d 
N = 2 de teorías de cuerdas de tipo II nos permiten sondear la geometría del espacio 
compacto subyacente solo midiendo sus cargas y su tamaño. Si uno quiere sondear la física 
a la escala de especies donde la gravedad cuántica completa entra en juego, es necesario 
considerar en su lugar el agujero negro más pequeño posible que se pueda defnir en una 
teoría. Consideramos agujeros negros pequeños y singulares y mostramos que desarrollan 
un horizonte del tamaño de la escala de especies cuando se tienen en cuenta las correcciones 
de curvatura cerca de su centro. Esto tenía la virtud de unifcar las diversas defniciones 
de la escala de especies. También plantea la pregunta de si la gravedad cuántica completa 
está siempre oculta detrás de un horizonte. 

Después de motivar brevemente la gravedad cuántica y la teoría de cuerdas, in-
troducimos grupos de cobordismo y delineamos los diversos aspectos del Programa del 
Swampland que serán necesarios en esta tesis. Después de los artículos, terminamos con 
una descripción general de los resultados publicados en los artículos. 
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1 
Motivation & Context 

Quantum gravity (QG) stands at the edge of modern theoretical physics, aiming to reconcile 
the two main paradigms of modern physics: quantum mechanics and general relativity. 
While both theories are extremely successful in their respective domains, they confict 
when applied together at very small length scales, such as those encountered near the 
singularities of black holes or during the earliest moments of the universe. 

On the one hand, general relativity (GR) describes gravity as the curvature of space-
time caused by the presence of mass and energy. It provides a comprehensive framework 
for understanding the dynamics of massive objects, such as planets, stars, and galaxies. It 
has been extensively tested and confrmed through numerous astrophysical observations. 
On the other hand, quantum mechanics (QM) revolutionized our understanding of the 
microscopic nature of matter, describing the behavior of particles and fundamental forces 
with remarkable precision. Most of the time, these two drastically diferent theories do not 
clash since they operate at diferent scales: in most places in the universe, gravity is weak 
and can be treated classically with GR, providing a background on which to defne the 
QM that describes the other forces. There are however isolated regions of space and time 
where the two theories clash. Schematically, these a regions where gravity is as strong as 
the other fundamental forces and the classical description of gravity by GR breaks down. 
For instance, in the early universe, during periods of extremely high energy and density, the 
classical description of spacetime by GR breaks down. Similarly, classical descriptions of 
gravity break down near a black hole’s singularity. Understanding the behavior of matter 
and energy near black holes and at the beginning of the universe thus requires a quantum 
description of gravity. 

The quest for a theory of quantum gravity has therefore become one of the central 
goals of contemporary theoretical physics. Such a theory would not only shed light on the 
earliest moments of cosmic evolution and on black hole singularities but more importantly 
provide a deeper understanding of the fundamental nature of space, time, and gravity. 
String theory, loop quantum gravity, and other approaches ofer promising avenues for 
exploring these enigmatic questions. 

Understanding the unifcation of GR and QM into a full-fedged quantum gravity 
theory remains a huge challenge to this day. The frst obstacle is due to the fact that there 
are many conceptual diferences between the two frameworks that make such a unifcation 
very subtle. We will now go over some of these aspects, in an efort to identify some of the 
characteristics that a quantum gravity theory should have. 
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Chapter 1. Motivation & Context 

1.1 Aspects of Quantum Gravity 

Classical theories of physics are formulated with respect to a fxed background spacetime. 
For instance, in Newtonian mechanics, time is absolute, and space is considered an un-
changing background along which particles move. In special relativity, while the laws of 
physics are invariant under Lorentz transformations, there is still a fxed Minkowski space-
time background. GR, however, revolutionized our understanding of gravity by introducing 
the idea that spacetime curvature is caused by the distribution of matter and energy. In 
GR, the gravitational feld is encoded in the curvature of spacetime, and particles move 
along geodesics in this curved spacetime. The key feature of general relativity is its back-
ground independence. The theory does not presume any fxed spacetime background 
against which gravitational phenomena occur. Instead, the geometry of spacetime is de-
termined dynamically by the distribution of matter and energy according to Einstein’s 
equations. 

In GR, spacetime is treated as a smooth, continuous manifold. In this framework, 
spacetime can be divided into infnitely small intervals, allowing for precise measurements 
and predictions of physical phenomena. However, QM introduces the idea of quantization, 
where physical quantities such as energy, momentum, and angular momentum are divided 
into discrete quanta. In the context of quantum gravity, the notion of quantized spacetime 
suggests that spacetime itself might be composed of fundamental building blocks or quanta 
at the Planck scale, which is the scale at which quantum gravitational efects become 
important. At that scale, quantized spacetime could give rise to quantum fuctuations in 
the fabric of spacetime itself. These fuctuations would manifest as uncertainty in the 
geometry and topology of spacetime. The idea that a quantum gravity theory should 
account for the possibility of changes in the topology of spacetime will play a fundamental 
role in this thesis. 

If spacetime is quantized into discrete little blocks in full-fedged quantum gravity, 
then why is it that we observe the smooth background spacetime that we know and love? 
This apparent tension is resolved through the concept of the emergence of spacetime. 
Background independence asserts that the geometry of spacetime should not be imposed 
from the outside but should emerge from the fundamental principles of the theory itself. 
In this view, spacetime and gravitational dynamics emerge at low energies as collective 
phenomena from the underlying quantum degrees of freedom, similar to how fuid dynamics 
emerges from the collective behavior of molecules. This emergent nature of spacetime and 
dynamics has been studied in various contexts and there have been some attempts to make 
it into a quantitative statement in known theories of quantum gravity. We will come back 
to this in later sections. 

The existence of a fundamental length scale associated with the quantization of 
spacetime nevertheless sets a limit on the resolution of spacetime measurements. Below 
this scale, the notion of continuous spacetime would lose its meaning. What would it mean 
to probe quantum gravitational efects in a physical (thought) experiment? In other words, 
if we could “see” a singularity in spacetime where quantum gravitational efects came into 
play, what would it look like? Another question is whether it is even possible to have such 
a naked singularity? Probing length scales smaller than the Planck length would require 
energies so high that they would generically collapse into a black hole due to the strong 
gravitational forces involved. This is a heuristic argument, but it goes in the favour of hid-
ing quantum gravitational efects behind a horizon. Characterizing such black holes and 
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1.2. Aspects of String Theory and the String Landscape 

naked singularities and studying whether or not they can be used as probes of quantum 
gravitational efects will be a large part of this thesis. 

Finally, one last aspect of quantum gravity that ties in with all that is mentioned 
above is the holographic principle, which suggests that spacetime itself may be an 
emergent phenomenon arising from the entanglement structure of a quantum feld theory 
living on its boundary [1, 2]. This principle was initially motivated by the study of black 
holes. Black holes possess an entropy proportional to their horizon area, suggesting a deep 
connection between the information content of a black hole and its surface area. This led 
to the proposal that the entropy of a black hole could be thought of as encoded on the 
horizon surface rather than within its volume. The holographic principle found its most 
profound realization in the AdS/CFT correspondence [3]. This correspondence states that 
the dynamics of a gravitational theory in an Anti de-Sitter spacetime can be fully described 
by the behavior of a quantum feld theory on a fxed and fat spacetime, efectively encod-
ing fve-dimensional gravity in terms of a four-dimensional quantum feld theory. 

We have just described some features that a theory of quantum gravity should have. 
We saw that the notion of a background spacetime on which one can defne quantum feld 
theories and interactions should arise as a low energy description, at scales well bellow 
the Planck mass. This leads to a physical theory that one can compare to the laws of our 
universe, and perhaps even attempt to make predictions. In the next section, we will detail 
how this can be done in the context of a specifc theory of quantum gravity: string theory. 
While loop quantum gravity ofers intriguing insights and has made signifcant progress in 
addressing certain issues related to the quantization of gravity, it is hard to connect to real 
world physics since there are many subtleties in identifying a low-energy limit in which 
one can recover GR [4]. For this reason, our focus being on the low energy theories that 
stem from quantum gravity, we will base our discussion in string theory for the rest of this 
thesis. 

1.2 Aspects of String Theory and the String Landscape 

This section is meant to give a glimpse into the structure of string theory and outline how it 
exhibits the special features of quantum gravity theories described in the previous section. 
We will then describe how we can connect string theory to low-energy, four-dimensional 
physics. For a more in-depth introduction to string theory, see [5, 6]. 

String theory is a theory of quantum gravity with renowned success. In its essence, 
it posits that the fundamental building blocks of the universe are not point-like particles 
but rather tiny, one-dimensional entities known as strings. String theory thus only has 
one fundamental scale, the string length ls. These strings are assumed to propagate in a 
d-dimensional spacetime. In perturbative string theory, we assume that spacetime is fat 
Minkowski space and we quantize the oscillatory modes of the string and fnd its spectrum. 
All of the modes of the string describe particle states in spacetime. The massless modes 
lead (at the very least) to a d-dimensional graviton, a 2-form gauge feld and scalar feld ϕ, 

ϕthe dilaton, that parametrizes the coupling of the string gs = e . All of the heavy modes of 
the string have masses at the string scale, they therefore decouple from physics at energy 
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Chapter 1. Motivation & Context 

scales much lower than ms = l−1 . We therefore obtain a d-dimensional low-energy efective s 
feld theory (EFT) that describes these three felds propagating on a fat spacetime. 

Non-perturbative 
Approaches

SPT on flat 
background

Strongly-interacting
worldsheet

SPT still well-defined

+ string loop 
corrections

1

1
+ 

va
ni

sh
in

g 
be

ta
-fu

nc
tio

ns

AdS/CFT?

SFT?

0
EFT on 10D 
Minkowski

EFT on weakly-
curved space + GR

EFT on weakly-
curved space + GR 

+ curvature corrections 

No EFT, 
strings propagating freely

on background

EFT on 10D
Minkowski

+ corrections

Figure 1.1: A diagram describing our understanding of string theory according to the value of 
the string coupling gs and the curvature of spacetime relative to the string scale. At weak coupling 
and low curvatures, we have 10D EFTs of string theory, describing various particles moving on the 
background described by general relativity. At strong curvatures, the worldsheet theory becomes 
strongly coupled but string perturbation theory is still well defned (the path integral over the 
moduli space of Riemann surfaces still makes sense). At strong coupling, string perturbation 
theory completely breaks down and we have to resort to other methods. 

We can incorporate weakly curved spacetime into this discussion as a perturbation 
around the fat background. The big surprise that is responsible for some of the fame of 
string theory is that, in order for the worldsheet theory to remain consistent in curved 
spacetime, the metric has to satisfy Einstein’s equations. In this way, GR arises naturally 
in the low-energy limit of string theory. Therefore, at low energies E ≪ l−1 and as longs 
as spacetime is weakly curved, string theory is described by a low-energy efective theory 
that describes the dynamics of the 2-form gauge feld, the dilaton and all other massless 
modes of the string, propagating on a background spacetime dictated by GR. In this limit, 
string theories thus reduce to theories that look like our world, though in a higher number 
of dimensions and possibly with a lot more supersymmetry. 

For the simplicity of this discussion, we will mostly consider the eight known ten-
dimensional non-tachyonic string theories, fve of which lead to supersymmetric spacetimes 
[7–12]. There are other consistent string theories but they always have a tachyon in their 
spectrum, which signals an instability of the ten-dimensional vacuum. All eight of these 
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1.2. Aspects of String Theory and the String Landscape 

theories, shown in black in Figure 1.2, reduce at low energies to ten-dimensional EFTs with 
matter and gauge felds minimally coupled to gravity. 

M-th

E8xE8

SO(32) IIB

IIA 0A

0B

SO(16)xSO(16)

I Usp(32) U(32)

T T T

Figure 1.2: A diagram representing the eight ten-dimensional non-tachyonic string theories in 
black and some arrows demonstrating how they are related to each other, to M-theory (in purple) 
and to tachyonic type 0 string theories (in gray). 

Emergent Spacetime At low energies E ≪ l−1 , a massless oscillatory mode of thes 
string gives rise to a graviton in spacetime, which satisfes the equations of motion of GR 
in weakly curved spacetime. When one goes up in energies and considers string theory at 
the string scale, this efective description completely breaks down and one needs to take 
into account all of the massive oscillatory modes of the string. That is, you can not only 
consider the massless excitations which lead to familiar particle states in spacetime, you 
need to consider the string itself as the primary object of interest. In this sense, spacetime 
and GR only emerge at low energies. Importantly, at the string scale, you consider strings 
themselves moving in a fat “background”, but in no shape or form is this theory describing 
GR. The better description would be in terms of some gas of strings, perhaps in the spirit 
of [13], or in terms of string feld theory [14]. Even in the limit gs → 0, one would have 
to consider a non-interacting theory of strings moving around in fat space. When talking 
about the emergence of a spacetime, we always refer to the one that is governed by general 
relativity and that only exists in the low-energy limit of string theory. 

Background Independence in String Theory Above, we discussed how we quant-
ized the oscillations of the string on a fat background and showed at low-energies that 
this could be considered to be a fat (or weakly-curved) spacetime. This was for practical 
reasons, as quantizing the string on curved backgrounds is a very daunting task. From 
the perspective of the worldsheet, it is not obvious that string theory is background in-
dependent: because we picked a background to quantize it, background independence of 
the quantum theory is not manifest. However, in the low-energy EFTs, there are subtle 
ways in which the background independence of the full theory can be seen. For instance, 
there are dualities between string theories that map a string theory on a background X 
to another one (possibly the same one) on a diferent background Y, as is schematically 
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Chapter 1. Motivation & Context 

depicted in Figure 1.2. The duality states that the spectrum of the two theories are ex-
actly the same. This hints to the fact that the choice of background may be somewhat 
irrelevant. Furthermore, the most studied realization of the holographic principle is the 
AdS/CFT correspondence which equates the partition function of a string theory on an 
AdS spacetime with the partition function of a conformal feld theory in fat space, in one 
dimension less. This means that all of the gravity in AdS can be recast in terms of CFT 
correlators in fat space. While the original formulation of the AdS/CFT correspondence 
involves AdS spacetime, there have been extensions and generalizations to other spacetime 
backgrounds. Furthermore, in holography the geometry of the extra (holographic) dimen-
sion is not meant to be fxed, and one technically has to sum over all geometries (even 
topologically diferent ones) that are compatible with the asymptotic boundary conditions. 
This versatility suggests that the essential features of the correspondence are not tied to 
any specifc background geometry but rather refect the holographic principle in a profound 
way. Finally, in non-perturbative formulations of string theory, such as string feld theory, 
background independence could play a more prominent role (see e.g. [15]). 

The String Landscape In order to make contact with our four-dimensional world, we 
need to compactify some of the extra dimensions. This comes down to wrapping some of 
them on a compact manifold of size lKK and making l−1 ≫ E. This will have the efect of KK 
decomposing all of the ten-dimensional felds into their Fourrier modes: the massless modes 
survive the compactifcation and appear in the lower-dimensional theory whilst the heavy 
modes, often called Kaluza-Klein replicas, decouple from the lower-dimensional physics 
due to their mass mKK = l−1 ≫ E. During the process of compactifcation, the parts of KK 
the ten-dimensional felds that propagate in the internal dimensions lead to new dynamical 
scalars in the lower-dimensional theory, called moduli. They parametrize the geometry of 
the compact manifold. 

Through this process, from the ten-dimensional efective feld theories that arise 
as the low-energy limit of string theories, we can recover four-dimensional efective feld 
theories with gravity, gauge and matter felds, and an array of scalar felds that are either 
the dilaton or the moduli associated to the compact space. Do these theories look like our 
world? can we use them to make predictions from string theory? 

The fact is that there are many (perhaps infnitely) diferent ways of performing 
this compactifcation, depending on which compact manifold we choose and what extra 
ingredients we add in along the way. The bigger problem is that only a few of these choices 
are simple enough to make the full compactifcation tractable mathematically and they 
all yield very diferent four dimensional low energy theories. These theories all describe 
general relativity, but have diferent particle contents, vacuum energy density and diferent 
symmetries. They are said to populate the Landscape of string theory. Indeed, although 
compactifying string theory to four dimensions is well understood conceptually, it is very 
hard to perform in mathematical detail except for some isolated cases that preserve a lot 
of (super)symmetries. A lot of progress has been made in recent years to fnd detailed, 
top-down examples of compactifcations that lead to realistic universes, but it is fair to say 
that very few, if any at all, are under full computational control. 
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1.3 The Swampland Program 

Faced with this computational difculty, one can ask whether or not it is possible to obtain 
any low energy theory from string theory. In recent years, this has been shown not to be 
true. There are some theories that simply cannot be obtained from string theory at low 
energies. Identifying the characteristics that separate these theories from the ones that can 
has been the whole premise of the Swampland Program [16]. The Swampland Program aims 
to distinguish between efective theories that arise from a consistent theory of quantum 
gravity - those in the “Landscape” - and those that do not, that are said to be in the 
“Swampland”. In other words, the Swampland Program provides criteria that efective feld 
theories must satisfy to be considered as low-energy limits of a consistent theory of quantum 
gravity, such as string theory. EFTs that are in the Swampland are therefore thought to 
be inconsistent with fundamental principles of a UV-complete theory of quantum gravity. 
The Swampland Program has generated signifcant interest and research activity within 
the string theory community and beyond, as it provides valuable insights into the structure 
of quantum gravity and the landscape of efective feld theories that truly stem from it. 

The Swampland Conjectures, which form the basis of the program, are the criteria 
that segregate the EFTs in the landscape from those in the swampland. They are obtained 
in general by noticing patterns in theories that are known to stem from top-down construc-
tions in string theory. Sometimes we can trace back these patterns to a fundamental aspect 
of quantum gravity theories such as background independence. There are also occasions 
where they can be motivated by black hole physics. A subset of these conjectures are 
on such good theoretical standing that they can be proven in (near-)generality in string 
theory. We will now outline some of the conjectures and Swampland-related themes that 
will be relevant for this thesis. Along the way we will point out how they resonate with 
some of the fundamental features of quantum gravity theories discussed above. For a more 
complete review of the Swampland, see e.g. [17, 18]. 

1.3.1 Bordisms and the Swampland 

In this section, we frst introduce bordism groups for the layman, in the hopes of providing 
a bit of clarity on what kind of information these groups contain. Then, we will use them 
in the context of the cobordism conjecture [19] and later in the context of identifying and 
classifying global anomalies in theories with dynamical gravity. 

1.3.1.1 Bordism Groups for dummies 

In this chapter we provide a brief introduction to bordism groups for readers that have 
little (or no) knowledge of algebraic topology. For a mathematical introduction on bordism 
groups see [20]. For more in-depth discussions with a special focus on physical applications, 
see [19, 21,22]. 

Bordism groups are elaborate mathematical objects used in algebraic topology to 
classify closed manifolds up to a certain equivalence relation called bordism. Put simply, 
a bordism groups collect equivalence classes of closed manifolds of a given dimension, 
considering two manifolds Xd into X̃d to be equivalent if there exists a higher-dimensional 
manifold Wp+1 whose boundary is the disjoint union of Xd into X̃d. This is depicted schem-
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atically in Figure 1.3a. This higher dimensional manifold parametrizes the deformation of 
Xd into X̃d. 

(a) A bordism between two manifolds (b) A bordism to nothing 

Figure 1.3: a) Xd and X̃d are bordant to eachother, they are in the same equivalence class. b) 
Xd is in the same equivalence class as the neutral element. Xd is said to be bordant to nothing. 

Schematically, the bordism group Ωd is the set of equivalence classes of d-dimensional 
manifolds, where two manifolds are considered equivalent if they are bordant to eachother: �∼Ωd = {d-dimensional manifolds Xd} bordism (1.1) 

Group Structure Bordism groups Ωd have an abelian group structure, with addition 
under the disjoint union of manifolds. There is therefore a neutral element, the equivalence 
class of “nothing”. This means that some manifolds Xd can be bordant to nothing, which 
is to say that they are boundaries. In that case, there is a higher dimensional manifold 
Wp+1 that parametrizes how Xd can be shrunk into a point, as depicted in Figure 1.3b. 
The inverse is given by an appropriate orientation-reversed version of Xd such that their 
disjoint union is bordant to nothing, as depicted in Figure 1.4b. 

(a) The bordism of a disjoint union (b) The inverse 

Figure 1.4: a) The disjoint union of Xd and Yd is bordant to X̃ 
d. b) The inverse of Xd is defned 

as the manifold that is such that the disjoint union of Xd and its inverse is bordant to nothing. 

Structure Things get a bit more complicated when you want to consider bordisms 
between manifolds that satisfy extra conditions. So far, we have not specifed anything 
about Xd except for the fact that it is a manifold, this is the most basic form of bordism, 
known as unoriented bordism. We can also consider the bordism of oriented manifolds 
in which case we call it oriented bordism. More generally, we can consider the bordisms 
of manifolds with a specifc structure. When there is additional structure, the notion of 
cobordism must be formulated more precisely: the structure has to extend to the Wd+1 
dimensional manifolds that defnes the bordism. 
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Defning a structure intuitively comes down to fnding a way to translate a bundle of 
a topological group G into a vector bundle on the entire tangent space of Xd. For instance, 
for G = SO, a structure is equivalent to a choice of orientation of Xd. For G = Spin, it is a 
choice of spin structure. Let us denote a generic structure by a ξ-structure. When defned 
formally, a ξ−structure on Wd+1 is known to induce a structure on its boundary. In that 
way, we can defne bordisms between manifolds Xd and X̃d with ξ-structure through a 
manifold Wd+1 with a ξ-structure. 

It can help to think of adding structure as trivializing a new class of topological 
invariants. For instance, for a d-manifold to be orientable, its frst Stiefel-Whitney class [23] 
must vanish, and on top of that, for it to be a spin manifold, its second Stiefel-Whitney 
class must vanish as well. Once the vanishing of these classes is imposed, the manifold 
under consideration can be shown to admit a spin structure. The point is that there are 
various spin structures for each dimension d, and this is exactly what the spin bordism 
groups quantify. 

ξGenerators and Invariants If the bordism group under consideration Ω vanishes, d 
then all d-manifolds with ξ-structure can be deformed into one another and into nothing. 
However, when they are not trivial, they generically take the form: 

ξΩ =∼ Z × · · · × Z × Zp1 × Zp2 · · · (1.2)d | {z } | {z } 
r times p times 

for pi non-negative integers. This decomposition is true in all cases of interest in this thesis 
but there is no theorem proving that is it true in general. The frst part correspond to the 
free part of the group, whilst the second part corresponds to torsional classes. Manifolds 
that are part of a torsional class indexed by Z i are such that only the disjoint union ofp 
ip copies of them is bordant to nothing. Equation (1.2) means that any d-manifold with 

ξ-structure is in an equivalence class of bordism that can be indexed by r integers and p 
fractions of integers given by 1/pi . 

To see where these integers (and fractions of integers) are coming from, we need to 
consider bordism invariants. These are topological invariants that, when evaluated on a 
manifold, yield (one of) the aforementioned indices. With a complete set of r + p bordism 
invariants, one can identify precisely in what bordism equivalence class a manifold belongs 
to. In particular, these invariants help in identifying the generators of the bordism group: 
the set of d-manifolds that are representative of the bordism class under consideration. For 
instance, Pontryagin numbers and Stiefel-Whitney numbers [23] are oriented cobordism 
invariants; they determine an oriented manifold’s oriented cobordism class completely. 

Determining the bordism invariant is in general easier said than done, they are not 
always simple integrals of characteristic classes of some tangent or gauge bundle. For 
instance, for spin bordism they are more complicated quantities known as eta-invariants 
of Dirac operators. In such cases, fnding the relevant generator is not always easy. 

Bordisms and Cohomology To a bordism theory Ωξ , we can associate a generalized 
ξ ξcohomology theory, with homology groups Ω (W ) for any space W . Ω (W ) describes d d 

the set of equivalence classes of d-manifolds Xd equipped with a map into W . If W is a 
point then we fall back on the bordism group described above. Generalized cohomology 
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theories share all of the axioms of a cohomology theory except for the dimension axiom: 
the bordism groups of a point are not trivial for d > 0. 

In physical setups, we often have to describe the bordisms of d-manifolds with ξ-
structure and with a non trivial G-bundle, which one can imagine to be some sort of 

ξgauge bundle. In this case, the bordism groups one has to consider are Ω (BG) whered 
BG is the classifying space of G which classifes the various physically distinct G-bundles. 

ξ ξImportantly, even if we know all of the Ω = Ω (pt) and the homology of the space W ,d d 
ξthis does not mean that we can compute Ω (W ). The Atiyah-Hirzebruch spectral sequence d 

ξhowever gives a starting point for these calculations by reducing the computation of Ω (W )d 
to that of various homology groups on W (for more information on this, see e.g. [24]). 

Final Remarks 

ξ L ξ• For many types of ξ-structure (but not all of them) Ω∗ = d Ω is a Z-graded ring. d 
This is the case for oriented bordism, spin bordism, string bordism etc. but not for 
pin± bordism. That means that on top of abelian group structure described above, 
they allow for multiplication under the cartesian product of two manifolds. The ring 
is Z-graded by the dimensions of the manifolds. 

• Given the discussion above, one might wonder what is the diference between con-
ξ ξ+BG sidering Ωd(BG) and considering Ωx (pt) where the G-bundle is added to the 

structure. The diference is that adding structure can in general involve intertwining 
the G-bundle with the tangent bundle of Xd. Intuitively, the diference is the same 
as the diference between considering a manifold with spin structure and consider-
ing a spinor bundle on a manifold. One is a characteristic of the tangent bundle 
everywhere, and the other is just a localized bundle. 

In the next sections we will see how bordism groups can be used in the context of QG and 
the Swampland Program. 

1.3.1.2 The Cobordism Conjecture 

The cobordism conjecture [19] applies to string theories compactifed on a p-dimensional 
manifolds Xp. The conjecture states that any two backgrounds must equivalent in a precise 
sense described by the mathematical construction of bordism groups. In this way, it speaks 
to the fundamental nature of quantum gravity: that its observables should be background 
independent. It quantifes the fact that there should always exist a physical process in 
quantum gravity that can deform any background into any other. 

Saying that one should be able to deform any and all p-dimensional backgrounds into 
one another in quantum gravity comes down to saying that all p-dimensional backgrounds 
are part of the same equivalence class in bordism. If all p-dimensional manifolds are in the 
same bordism class, then they have to be in the class of “nothing”, i.e. the trivial class. 
The cobordism conjecture can therefore be stated as: 
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The Cobordism Conjecture 

Consider a D-dimensional QG theory compactifed on a d-dimensional compact man-
ifold, all bordism classes must be trivial: 

∀d such that d ≤ D, ΩQG 
d = 0 . (1.3) 

From the perspective of the lower-dimensional efective feld theories obtained from 
the compactifcation, this means that any two of these theories can be connected by a 
domain wall as in Figure 1.5a and that any such theory should admit a boundary, as in 
Figure 1.5b. 

(a) A bordism between two manifolds (b) A bordism to nothing 

Figure 1.5: Bordisms from the perspective of the lower dimensional EFTs one gets after compac-
tifying on Xd and X̃d. A bordism between Xd and X̃d looks like a domain wall (a) and a bordim 
to nothing looks like a boundary (b). 

The difculty here is in defning what are the topology-changing processes allowed in 
full-fedged quantum gravity. Of course, we do not know the whole set of such processes. In 
mathematics, bordism are usually considered between manifolds with specifc structures. 
For instance, spin bordism groups Ωspin describe the bordisms between d-dimensionald 
manifolds equipped with a spin structure. Ideally, we would know what kind of structure 
is appropriate to describe quantum gravity backgrounds but for that we would need a full-
fedged, non-perturbative description of string theory. Instead, we consider much simpler 
bordism groups that are only meant to approximate those of full-fedged quantum gravity. 
For instance, we know that the low-energy EFTs we get from string theory generically 
contain fermions. This means that they should only be compactifed on manifolds that 
admit a spin structure. We can therefore consider spin bordism as a frst approximation 
of ΩQG . As we go along and further constrain the type of structure that our theoriesd 
should admit, we can refne our description in terms of more elaborate bordism groups 
that account for this added structure. 

If one of these approximate bordism groups are non-trivial, it only signals the fact 
that the bordism groups we consider are too poor an approximation of ΩQG and thatd 
new structure needs to be added to the theory in order to trivialize these classes. In this 
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way, the cobordism is predicting the existence of new structure in the theory that should 
trivialize all the classes: 

Ωapprox. ⇒ Ωapprox+new structure ̸= 0 = = 0 . (1.4)d d 

More precisely, the presence of a non-trivial bordism class would signal the presence of an 
uncancelled global topological charge in the compact space, given by the bordism invari-
ants, that prevent you from shrinking it to a point: Z 

Q = [topological OP]d (1.5) 
Xd 

where we have represented the bordism invariant as an integral of some sort of characteristic 
class over the compact space, but it can be something more exotic, as discussed in the 
previous section. The presence of this topological operator supported on Xd signals the 
presence of a (D − d − 1)-form global symmetry (see e.g. [25] for a review on higher-form 
symmetries). This global charge has the efect of putting a “label” on the background Xd, 
which should not be allowed in a background independent theory. The statement that 
ΩQG = 0 thus means that there must be new structure in quantum gravity that gets rid of d 
this global symmetry.1 How can we get rid of a global symmetry? There are two options: 

1. Breaking the symmetry: this amounts to introducing a defect that is charged 
under this symmetry and can thus absorb the uncancelled topological charge in the 
compactifcation. The objects that are charged under the (D − d − 1)-form global 
symmetry generated by this charge are (D − d − 1)-dimensional defects. 

A simple example of this was discussed in [19]. It is the case of the one-dimensional 
spin bordism group 

Ωspin = Z2 , (1.6)1 

which is generated by the circle with periodic spin structure. A fermion with anti-
periodic boundary conditions on this circle creates a confguration that you cannot 
deform to a point. In the case of the ten-dimensional heterotic string theories, their 
compactifcation on the circle with periodic string structure should be perfectly con-
sistent, so this symmetry has to be broken by an eight-dimensional defect, which has 
yet to be identifed. 

2. Gauging the symmetry: this amounts to introducing a dynamical (D − d)-form 
that couples to (the Hodge dual of) the (D − d)-form current associated to the sym-
metry. Doing so in a consistent way eventually leads to new consistency conditions 
on the theory. 

A simple example of this was discussed in [19]. It is the case of the four-dimensional 
spin bordism group 

Ωspin = Z , (1.7)4 

which is generated by the K3 surface. Gauging this symmetry means to couple it to 
a 6-form gauge feld. Consider heterotic string theories turning of all gauge bundles 

1As a side note, this shows how the cobordism conjecture can thus be seen as a direct implication of a 
diferent, more general Swampland conjecture: the no global symmetries conjecture [26]. In a few words, 
this conjecture states that any global symmetry should be gauged or broken in quantum gravity. When 
applied to topological symmetries such as that generated by (1.5), it reduces to the cobordism conjecture. 
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and forgetting about the branes. Consistency of the theory requires this 6-form to 
be the magnetic NSNS feld, B6, and leads to the observation that K3 carries fve 
units of NS5 brane charge. This is the known fact that compactifying heterotic 
string theories on K3 is inconsistent on its own. Therefore, one can either choose 
to ignore K3 completely, or to refne the description by considering heterotic string 
theories with gauge bundles and/or fve-branes that can cancel this charge. The frst 

twisted−string option comes down to considering twisted-string bordism Ω = 0 and4 
the second comes down to breaking the symmetry by introducing NS5 branes in the 
compactifcation to cancel the charge. The second option seems the most natural, 
given that we know heterotic string theories have gauge felds and fve-branes in their 
spectrum. 

The new (D − d − 1)-dimensional defects predicted by the cobordism conjecture 
can in general be highly non-supersymmetric and unstable and will most likely back-react 
on the geometry in a singular way. Isolating the properties of these objects from the 
EFT’s perspective is thus a very daunting task. For examples of direct applications of the 
cobordism conjecture (at the topological level), see for instance [22, 27–36]). 

In particular, even in cases where the bordism classes are trivial and we need not 
introduce a new defect, describing how the domain walls between EFTs (or equivalently, 
the boundaries, since you can glue two boundaries to make a domain wall) predicted by 
the cobordism conjecture should appear in spacetime is difcult. This can be seen from 
the simple fact that you can have two completely diferent string theories with diferent 
degrees of freedom on each side. The domain wall has to be such that it converts all of 
the degrees of freedom of one theory into that of the other. In this way, the domain wall 
is implementing a duality in a general sense. This means that its physics are highly non-
perturbative and therefore out of reach of the low-energy physics of the EFT. From this, 
one can already see that such objects will generally be singular from the perspective of the 
EFT. 

The work in Chapter 2 of this thesis takes a step in the direction of describing these 
new defects and how they backreact on spacetime. We now turn to another corner of the 
Swampland Program where bordism groups play and important role. 

1.3.1.3 Bordisms and Global Anomalies 

Bordism groups also play an important role in the identifcation of global gauge and difeo-
morphism anomalies in EFTs of quantum gravity. Anomaly cancellation is important in 
any consistent theory, but there are specifc types of anomalies that arise when topology-
changing processes should be allowed. 

Consider an anomaly in a theory on a spacetime Xd, that is, consider a gauge trans-
formation or a difeomorphism under which the path integral is not invariant. When this 
anomalous transformation can be made arbitrarily small (close to the identity), we call the 
anomaly “local”. Local anomalies are the most problematic type of gauge/gravitational 
anomaly since the path integral is not invariant under an infnitesimal transformation. 
They are the sort of anomaly that can be computed using triangle Feynman diagrams (in 
four dimensions). These anomalies are reviewed in [37], using the modern formalism of the 
anomaly polynomial in two dimensions more. 
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When local anomalies are shown to vanish, we are left with global anomalies. These 
are anomalies associated to gauge transformations and difeomorphisms that cannot be 
deformed to the identity. A famous example of a global gauge anomaly is Witten’s SU(2) 
anomaly [38]. The modern way of computing global anomalies is through what is known 
as an anomaly theory, which lives on a (d+1)-dimensional manifold whose boundary is the 
spacetime manifold Xd. This theory is not meant to be describing a physical theory in 
one dimension more, instead, it is thought of as a means to parametrize the anomalous 
global gauge transformation. Indeed, the anomaly theory is engineered to give exactly the 
opposite anomaly of that of the path integral, such that when coupled together, the total 
anomaly cancels (for a pedagogical review, see [21]). 

It turns out that is it can be easier to compute the anomaly using the anomaly theory 
than it is to compute it in the partition function. The reason, is that when local anomalies 
cancel, global anomalies become bordism invariants of the (d+1)-dimensional spaces. This 
means that detecting a potential global anomaly can be done “simply” by computing the 
relevant bordism groups in d +1 dimensions. Of course, this can be easier said than done, 
depending on the structure we have to impose on the bordism groups. 

The anomaly theory on the higher-dimensional manifold Yd+1 parametrizes the space 
of gauge and metric confgurations on Xd. In particular, the space Yd+1 can have holes and 
accounts for topology change of Xd. Evaluating the path integral on a topology changing 
transition is impossible without a non-pertubative description of QG since these processes 
are usually singular from the perspective of the EFT. The bordism groups thus shed light on 
the consistency conditions that arise from global anomaly cancellation in theories with dy-
namical gravity. This can be viewed as a bottom-up approach to the Swampland Program. 

Chapter 3 will describe how this works in more detail. In particular, we will show 
how bordism groups were used to assess whether or not global anomalies cancel in the 
three ten-dimensional non-supersymmetric and non-tachyonic string theories in Figure 1.2. 
This ends our introduction to bordism groups in a Swampland context, we now turn to 
introducing another seemingly unrelated Swampland conjecture. 

1.3.2 The Distance Conjecture 

Before stating the distance conjecture, let us recall that there are two kinds of scalar felds 
in EFTs that come from string theory. 

Firstly there is the dilaton, that exists already in ten dimensions and therefore also 
in any EFT obtained from compactifying the ten-dimensional ones. It is linked to the 

ϕstring coupling as gs = e . When the dilaton goes to ±∞, our string theory becomes 
infnitely weakly or strongly coupled. These are limits that are usually linked to string 
dualities. In these limits, the string theory we started with is leaving its regime of validity 
and the degrees of freedom of the dual string become the appropriate degrees of freedom 
to describe the process at low energies. When gs → 0, they are the modes of the string 
theory we started with, and when gs → ∞ they are usually the modes of a dual string. For 
example, one can see in Figure 1.2 that type I at strong coupling is dual to SO(32) string 
theory at infnitely weak coupling. In both cases, there is a tower of heavy string modes 
that becomes light in both of these limits, that of the string at strong coupling, and that 
of the dual string at weak coupling. 
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Then, there are the moduli that arise only after compactifcation, that parametrize 
the geometry of the compact manifold. For instance, if you compactify one of the ten 
dimensional theories on a circle or radius R, you will obtain a dynamical scalar in the nine-
dimensional theory that is linked to R as follows: σ ∼ log R. This scalar can also go to ±∞ 
in the nine-dimensional spacetime. We see that if σ → +∞, R → ∞ and so we observe 
a decompactifcation of the circle. In this limit, the nine-dimensional EFT breaks down 
completely as all of the KK modes become light. If σ → −∞, then R → 0 and the circle is 
pinching of. In these limits, stringy physics are at play, since the better description is that 
of the T-dual string theory compactifed on a radius R−1 → ∞. Therefore the pinching of 
in the original frame is a decompactifcation in the T-dual frame, and the tower of states 
becoming light is that of the KK modes in the T-dual frame. These modes correspond to 
winding states in the original frame. T-duality is where the stringy physics comes in to 
play: the string being an extended objects can not only propagate in internal dimensions 
but also wrap around them. 

The moral of the story is that no matter what scalars you consider in your EFTs 
of string theory, there is always an infnite tower of states becoming light when you go 
to infnite distance in scalar feld space,2 that signal the break down of the EFT. This 
is exactly the statement of the distance conjecture. It is motivated by a wide variety of 
examples in string theory, where in these limits, there is always an infnite tower of massive 
states getting exponentially light. The conjecture is stated as follows: 

The Distance Conjecture 

In any efective feld theory of quantum gravity, there is a tower of states becoming 
light as one goes to infnite distance in feld space φ → ∞ with characteristic mass 
m [39]: 

m 
Mp 

∼ e −λφ , λ ∈ O(1) . (1.8) 

The reason for the exponential dependence on distance in feld space is motivated 
by the two types of towers that we observe in string theory: KK towers and string towers, 
which both have masses that depend exponentially on the corresponding moduli. There 
is in fact a conjecture that those are the only two options in string theory [40]. The SDC 
has been discussed in many examples in string theory, see for instance [39–61]. 

From the discussion above, it is clear that infnite distance limits in feld space are 
where the UV physics happen. They are always taking us to regions of the parameter 
space of our theory where the EFT is at the limit of its range of validity. When they are 
not simple decompactifcation limits, these infnite distance limits generically take us to 
a frame where the dual theory is a better low-energy description than the one we started 
with. 

1.3.3 Probes of Quantum Gravity 

It is of obvious interest to quantum gravity phenomenologists to be able to probe quantum 
gravitational efects in a physical experiment. One option would be to exploit the extended 
objects that naturally exist in string theory. These can be black holes, (black-) branes, 

2Importantly, note that in the context of the distance conjecture, we always consider canonically nor-
malized kinetic terms for the scalar felds, in the Einstein frame. 

15 



Chapter 1. Motivation & Context 

they can be singular, or have a horizon. A simple example of this are D-branes in type 
II theories. In full-fedged string theory they correspond to the end points of open strings 
and are very well understood. In the low-energy EFTs of string theory, they arise as non-
perturbative objects that back-react on gravity in a very singular way. All branes except 
the D3 are the location where both the curvature and the dilaton blow up, refecting the 
fact that D-branes cannot be fully described in the EFT. 

Interestingly, these D-branes as well as other examples of UV (cobordism) defects 
(see Chapter 2) are generally located at infnite distance in moduli space, showcasing the 
fact that they are better described in a dual frame. This also explains how the domain walls 
between theories predicted by the cobordism conjecture back-react so singularly on space-
time, they are intrinsically linked to dualities, which in turn comes from the background 
independence of String Theory. 

Being that they are singular at their core, these objects are by defnition not con-
trolled probes of UV physics. It is tempting to take a black hole instead or a black brane, 
whose horizon is large enough such that curvatures are small and corrections can be ig-
nored. These large black holes can in fact constitute controlled probes, and they will 
be used in Chapter 4 this thesis to uncover topological properties about the underlying 
compactifcation. 

However, if one wants to probe physics at such high energies that the true efects of 
full-fedged string theory come into play, one ought to use more singular probes. In fact one 
might even wonder whether it makes sense to probe such an energy scale, since spacetime 
and dynamics completely break down there. Let us frst ask what this scale actually is. 
The naive answer is to assume it is the Planck scale, since that is when loop corrections to 
the graviton propagator become relevant. In reality, there is a subtlety to this argument: 
in a theory with light particle spaces, this scale is actually [62, 63]: 

Mpl
Λsp = 1 (1.9) 

N d−2 

This energy scale has been dubbed “Species scale” in the literature. The point is, that in the 
presence of a large number of light species, the scale at which full-fedged quantum gravity 
comes into efect can be a lot lower than the Planck scale. With the distance conjecture in 
mind, we see that the species scale gets lowered at infnite distance in moduli space. This 
means that the singular probes discussed above (D-branes and other cobordism defects) 
are regions of spacetime where the species scale is greatly lowered. Identifying the tower 
and how fast the species scale becomes light in these limits has been studied in [61,64–66]. 
The species scale has also been studied in the interior of moduli space in [67–69]. 

One may wonder then whether or not we could use these probes to ride our way up 
all the way to the Species scale. In Chapter 4 we will discuss this and see that curvature 
corrections near the singular core might always hide the full-fedged quantum gravity efects 
behind a species-scale sized horizon. 

1.4 Outline of the thesis 

After this general introduction, the second part of the thesis contains the collection of 
seven articles in the published versions. Four of them should be read one after the other, 
as they pertain to the same subject: dynamical realizations of cobordisms in spacetime. 

16 



1.4. Outline of the thesis 

They are presented in Chapter 2. Chapter 3 contains one stand-alone article, on the topic 
of bordisms and global gauge and gravitational anomalies in non-supersymmetric string 
theories. The last two articles are presented together in Chapter 4 as they both deal with 
probing UV efects with extended objects. We leave the conclusions for the last part of 
the thesis, in Chapter 6 where the main results of these works are summarized. 
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1 Introduction and conclusions

Supersymmetry breaking string vacua (including 10d non-supersymmetric strings) are
generically affected by tadpole sources for dynamical fields, unstabilizing the vacuum [1, 2].
We refer to them as dynamical tadpoles to distinguish them from topological tadpoles, such
as RR tadpoles, which lead to topological consistency conditions on the configuration (note
however that dynamical tadpoles were recently argued in [3] to relate to violation of swamp-
land constraints of quantum gravity theories). Simple realizations of dynamical tadpoles
arose in early models of supersymmetry breaking using antibranes in type II (orientifold)
compactifications [4–7], or in 10d non-supersymmetric string theories [8].
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Dynamical tadpoles indicate the fact that equations of motion are not obeyed in the
proposed configuration, which should be modified to a spacetime-dependent solution (more
precisely, solution in which some fields do not preserve the maximal symmetry in the corre-
sponding spacetime dimension, but we stick to the former nomenclature), e.g. rolling down
the slope of the potential. This approach has been pursued in the literature (see e.g. [9–13]),
although the resulting configurations often contain metric singularities or strong coupling
regimes, which make their physical interpretation difficult.

In this work we present large classes of spacetime1 dependent field configurations
sourced by dynamical tadpoles, which admit a simple and tractable smoothing out of such
singularities. Remarkably, these examples reveal a set of notable physical principles and
universal scaling behaviours. We argue that the presence of a dynamical tadpole implies
the appearance of ends of spacetime (or walls of nothing) at a finite spacetime distance,
which is (inversely) related to the strength of the tadpole. These ends of spacetime more-
over correspond to cobordism defects (or end of the world branes) of the theory implied by
the swampland cobordism conjecture [14, 15]. In most setups the cobordism defects end
up closing off the space into a compact geometry (possibly decorated with branes, fluxes
or other ingredients), thus triggering spontaneous compactification.

We can sum up the main features described above, and illustrated by our examples,
in two lessons:

Finite distance. In the presence of a dynamical tadpole controlled by an order parame-
ter T , the spacetime-dependent solution of the equations of motion cannot be extended to
spacetime distances beyond a critical value ∆ scaling inversely proportional to T , with a
scaling relation

∆−n ∼ T . (1.1)

In our examples, n = 1 or n = 2 for setups with an underlying AdS-like or Minkowski
vacuum, respectively.

Dynamical cobordism. The physical mechanism cutting off spacetime dimensions at
scales bounded by the ∆ above, is a cobordism defect of the initial theory (including the
dynamical tadpole source).

To be precise, when there are multiple spacetime directions to be closed off, the actual
defect is the cobordism defect corresponding to circle or toroidal compactifications of the
initial theory, with suitable monodromies on non-trivial cycles. This is analogous to the
mechanism by which F-theory on half a P1 provides the cobordism defect for type IIB on
S1 with SL(2,Z) monodromy [14] (see also [16]).

As explained, we present large classes of models illustrating these ideas, including (susy
and non-susy) 10d string theories and type II compactifications with D-branes, orientifold
planes, fluxes, etc. For simplicity, we present models based on toroidal examples (and
orbifolds and orientifolds thereof), although many of the key ideas easily extend to more

1Actually, we restrict to configurations of fields varying over spatial dimensions (rather than time); yet
we abuse language and often refer to them as spacetime-dependent.
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general setups. This strongly suggests that they can apply to general string theory vacua.
Very remarkably, the tractability of the models allows to devise spontaneous compacti-
fication whose endpoint corresponds to some of the (supersymmetric extensions of the)
SM-like D-brane constructions in the literature. As will be clear, our examples can often
be regarded as novel reinterpretations of models in the literature.

Although our examples are often related to supersymmetric models, supersymmetry is
not a crucial ingredient in our discussion. Dynamical tadpoles correspond to sitting on the
slope of potentials, which, even in theories admitting supersymmetric vacua, correspond to
non-supersymmetric points in field space. On the other hand, supersymmetry of the final
spacetime-dependent configuration is a useful trick to guarantee that dynamical tadpoles
have been solved, but it is possible to build solutions with no supersymmetry but equally
solving tadpoles.

Our results shed new light on several features observed in specific examples of classical
solutions to dynamical tadpoles, and provide a deeper understanding of the appearance of
singularities, and the stringy mechanism smoothing them out and capping off dimensions
to yield dynamical compactification. In particular, we emphasize that our discussion unifies
several known phenomena and sheds new light on the strong coupling singularities of type
I’ in [17] and in heterotic M-theory [18] (and its lower bound on the 4d Newton’s constant).
There are several directions which we leave for future work, for instance:

• As is clear from our explicit examples, many constructions of this kind can be obtained
via a reinterpretation of known compactifications. This strongly suggests that our
lessons have a general validity in string theory. It would be interesting to explore
the discussion of tadpoles, cobordism and spontaneous compactifications in general
setups beyond tori.

• A general consequence of (1.1) is a non-decoupling of scales between the geometric
scales controlling the order parameter of the dynamical tadpole and the geometric size
of the spontaneously compactified dimensions. This is reminiscent of the swampland
AdS distance conjecture [19]. It would be interesting to explore the generation of
hierarchies between the two scales, possibly based on discrete Zk gauge symmetries
as in [20].

• Our picture can be regarded as belonging to the rich field of swampland constraints
on quantum gravity [21] (see [22–24] for reviews). It would be interesting to study
the interplay with other swampland constraints. In particular, the relation between
the strength of the dynamical tadpole and the size of the spacetime dimensions is
tantalizingly reminiscent of the first condition on |∇V |/V of the de Sitter conjec-
ture [25–27], with T = |∇V | and if we interpret V as the inverse Hubble volume
and hence a measure of size or length scale in the spacetime dimensions. It would
be interesting to explore cosmological setups and a possible role of horizons as al-
ternative mechanisms to cut off spacetime. Also, the inequality admittedly works in
different directions in the two setups, thus suggesting they are not equivalent, but
complementary relations.
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• It would be interesting to apply our ideas to the study of other setups in which
spacetime is effectively cut off, such as the capping off of the throat in near horizon
NS5-branes due to strong coupling effects, or the truncation in [28] of throats of the
euclidean wormholes in pure Einstein+axion theories [29].

• Finally, we have not discussed time-dependent backgrounds.2 These are obviously
highly interesting, but their proper understanding is likely to require new ingredients,
such as end (or beginning) of time defects (possibly as generalization of the spacelike
S-branes [30, 31]).

Until we come back to these questions in future work, the present paper is organized
as follows. In section 2 we reinterpret the Klebanov-Strassler (KS) warped throat sup-
ported by 3-form fluxes as a template illustrating our two tadpole lessons. Section 2.1
explains that the introduction of RR 3-form flux in type IIB theory on AdS5 × T 1,1 pro-
duces a tadpole. The varying field configuration is the Klebanov-Tseytlin solution, which
leads to a metric singularity at a finite distance scaling as (1.1), as we show in section 2.2.
In section 2.3 we relate the KS smoothing of this singularity with cobordism defects. In
section 2.4 we extend the discussion to other warped throats. In section 3 we present a
similar discussion in toroidal compactifications with fluxes. Section 3.1 introduces a T5
compactification with RR 3-form flux, whose tadpole backreacts producing singularites at
finite distance as we show in section 3.2. In section 3.3 we argue they are smoothed out by
capping off dimensions and triggering spontaneous compactification. In section 4 we build
examples in the context of magnetized D-branes. In section 4.1 we describe the tadpole
backreaction and its singularities, which are removed by spontaneous compactification in
section 4.2. In section 5 we turn to the dilaton tadpole of several 10d strings. In sec-
tion 5.1 we consider massive type IIA theory, where the running dilaton solutions produce
dynamical cobordisms by introduction of O8-planes as cobordism defects of the IIA theory,
eventually closely related to type I’ compactifications. In section 5.2 we discuss a similar
picture for M-theory on K3 with G4 flux, and a Horava-Witten wall as its cobordism defect.
In section 5.3 we consider the 10d non-supersymmetric USp(32) theory, in two different
approaches. In section 5.3.1 we build on the classical solution in [9] and discuss its singu-
larities in the light of the cobordism conjecture. In section 5.3.2 we describe an explicit
(and remarkably, supersymmetry preserving) configuration solving its tadpole via magne-
tization and spontaneous compactification on T6. In section 6 we discuss an interesting
application, describing a 6d model with tadpoles, which upon spontaneous compactifica-
tion reproduces a semi-realistic MSSM-like brane model. Finally, appendix A discusses the
violation of swampland constraints of type IIB on AdS5×T 1,1 when its tadpole is not duly
backreacted, in a new example of the mechanism in [3].

2 The fluxed conifold: KS solution as spontaneous cobordism

In this section we consider the question of dynamical tadpoles and their consequences in
a particular setup, based on the gravity dual of the field theory of D3-branes at a coni-

2For classical solutions of tadpoles involving time dependence, see e.g. [11].
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fold singularity. The discussion is a reinterpretation, in terms useful for our purposes, of
the construction of the Klebanov-Tseytlin (KT) solution [32] and its deformed avatar, the
Klebanov-Strassler (KS) solution [33]. This reinterpretation however provides an illumi-
nating template to discuss dynamical tadpoles in other setups in later sections.

We consider type IIB on AdS5 × T 1,1, where T 1,1 is topologically S2 × S3 [34]. This is
the near horizon geometry of D3-branes at the conifold singularity [34] (see also [35–37]),
which has been widely exploited in the context of holographic dualities. The vacuum is
characterized by the IIB string coupling eφ = gs and the RR 5-form flux N . The model
has no scale separation, since the T 1,1 and AdS5 have a common scale R, given by

R4 = 4π gsNα′2 . (2.1)

In any event, we will find useful to discuss the model, and its modifications, in terms of the
(KT) 5d effective theory introduced in [32]. This is an effective theory not in the Wilsonian
sense but in the sense of encoding the degrees of freedom surviving a consistent truncation.
In particular, it includes the dilaton φ (we take vanishing RR axion for simplicity), the
NSNS axion Φ =

∫
S2 B2 and the T 1,1 breathing mode q (actually, stabilized by a potential

arising from the curvature and the 5-form flux), which in the Einstein frame enters the
metric as

ds210 = R2
(
e−5q ds25 + e3qds2T 1,1

)
. (2.2)

This approach proved useful in [38] in the discussion of the swampland distance conjec-
ture [39] in configurations with spacetime-dependent field configurations (see [19] for a
related subsequent development, and [40, 41]).

2.1 The 5d tadpole and its solution

Let us introduce M units of RR 3-form flux in the S3, namely

F3 = M ω3 , (2.3)

where ω3 is defined in eq. (27) in [33]. We do not need its explicit expression, it suffices
to say that it describes a constant field strength density over the S3. The introduction of
this flux sources a backreaction on the dilaton and the metric, namely a dynamical tadpole
for φ and q. In addition, as noticed in [38], it leads to an axion monodromy potential
for Φ [42–45]. The situation is captured by the KT effective action (with small notation
changes) for the 5d scalars φ, Φ and q, collectively denoted by ϕa

S5 = − 2
κ25

∫
d5x
√−g5

[1
4R5 −

1
2Gab(ϕ)∂ϕa∂ϕb − V (ϕ)

]
, (2.4)

with the kinetic terms and potential given by

Gab(ϕ)∂ϕa∂ϕb = 15(∂q)2 + 1
4(∂φ)2 + 1

4e
−φ−6q(∂Φ)2 , (2.5)

V (ϕ) = −5e−8q + 1
8M

2 eφ−14q + 1
8(N +MΦ)2e−20q . (2.6)
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Clearly gsM2 is an order parameter of the corresponding dynamical tadpole. In the fol-
lowing we focus on the case3 of N being a multiple of M .

Ignoring the backreaction of the dynamical tadpole (i.e. considering constant profiles
for the scalars over the 5d spacetime) is clearly incompatible with the equations of motion.
Furthermore, as argued in [3], it can lead to violations of swampland constraints. In
particular, since the introduction of F3 breaks supersymmetry, if the resulting configuration
was assumed to define a stable vacuum, it would violate the non-susy AdS conjecture [46];
also, as we discuss in appendix A, it potentially violates the Weak Gravity Conjecture [47].

Hence, we are forced to consider spacetime-dependent scalar profiles to solve the equa-
tions of motion. Actually, this problem was tackled in [33], with the scalars running with
r, as we now review in the interpretation in [38]. There is a non-trivial profile for the axion
Φ, given by

Φ = 3gsM log(r/r0) . (2.7)

This implies the cancellation of the dilaton tadpole, which can be kept constant eφ = gs,
as follows from its equation of motion from (2.5), (2.6)

∇φ ∼ −e−6q−φ(∂Φ)2 + e−14q+φM2 . (2.8)

2.2 Singularity at finite distance

The varying Φ corresponds to the introduction of an NSNS 3-form flux in the configuration

H3 = −gs ∗6d F3 , (2.9)

where the 6d refers to T 1,1 and the AdS5 radial coordinate r, and the Hodge duality is
with the AdS5×T 1,1 metric. This is precisely such that the complexified flux combination
G3 = F3 − τH3 satisfies the imaginary self duality (ISD) constraint making it compatible
with 4d Poincaré invariance in the remaining 4d coordinates (and in fact, it also preserves
supersymmetry). The backreaction on the metric thus has the structure in [48, 49]. The
metric (2.2) takes the form

ds 210 = Z−
1
2 ηµνdx

µdxν + Z
1
2
(
dr2 + r2ds2T 1,1

)
, (2.10)

where Z obeys a Laplace equation in AdS5, sourced by the fluxes, and reads

Z(r) = 1
4r4 (gsM)2 log(r/r0) . (2.11)

The warp factor also enters in the RR 5-form flux, which decreases with r as

N(r) =
∫

S5
F5 = gsM

2 log(r/r0) . (2.12)

This matches nicely with the monodromy for the axion Φ as it runs with r [38]. These
features (as well as some other upcoming ones) were nicely explained as the gravity dual
of a Seiberg duality cascade in [33].

3This implies that the configuration is uncharged under a discrete ZM symmetry, measured by N mod
M , and associated to the redundancy generated by transformation φ→ φ+ 1, N → N −M , see footnote 5.
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This 5d running solution in [32] solves the dynamical tadpole, but is not complete, as
it develops a metric singularity at r = r0. This is a physical singularity at finite distance in
spacetime, whose parametric dependence on the parameters of the initial model is as follows

∆(r) =
∫ r

r0
Z(r)

1
4 dr ∼

∫ r

r0
(gsM)

1
2
[
log(r/r0)

] 1
4
dr

r

∼ (gsM)
1
2
[
log(r/r0)

] 5
4 = (gsN)

1
4

N

gsM2 ∼ R
N

gsM2 . (2.13)

In the last equalities we used (2.12), (2.1). Hence, starting with an AdS5 × T 1,1 theory
with N units of RR 5-form flux, the introduction of M units of RR 3-form flux leads
to a breakdown of the corresponding spacetime-dependent solution at a distance scaling
as ∆ ∼ M−2. Recalling that the dynamical tadpole is controlled by an order parameter
T = gsM

2, this precisely matches the scaling relation (1.1) of the Finite Distance Lesson.

2.3 Dynamical cobordism and the KS solution

As is well known, the singularity in the KT solution is smoothed out in the KS solution [33].
This is given by a warped version of the deformed conifold metric, instead of the conical
conifold singularity, with warp factor again sourced by an ISD combination of RR 3-form
flux on S3 and NSNS 3-form flux on S2 times the radial coordinate. At large r the KS
solution asymptotes to the KT solution, but near r ∼ r0, the solutions differ and the KT
singularity is replaced by the finite size S3 of the deformed conifold.

Hence, the Finite Distance Lesson still applies even when the singularity is removed,
and the impossibility to extend the coordinate r to arbitrary distances is implemented by
a smooth physical end of spacetime. The purpose of this section is to highlight a novel
insight on the KS solution, as a non-trivial realization of the swampland cobordism conjec-
ture [14, 15]. The latter establishes that any consistent quantum gravity theory must be
trivial in (a suitably defined version of) cobordism. Namely in an initial theory given by an
n-dimensional internal compactification space (possibly decorated with additional ingredi-
ents, like branes or fluxes), there must exist configurations describing an (n+1)-dimensional
(possibly decorated) geometry whose boundary is the initial one. The latter describes an
end of the world defect (which we will refer to as the ‘cobordism defect’) for the spacetime
of the initial theory. Since the arguments about the swampland cobordism conjecture are
topological, there is no claim about the unprotected properties of the cobordism defect,
although in concrete examples it can preserve supersymmetry; for instance, in maximal
dimensions, the Horava-Witten boundary is the cobordism defect for 11d M-theory, and
similarly the O8-plane is the cobordism defect of type IIA theory.4

In our setup, the initial theory is AdS5 × T 1,1 with N units of RR 5-form flux and M
units of RR 3-form flux on S3. From the above discussion, it is clear that the KS solution

4Other 10d theories are conjectured to admit cobordism branes, but they cannot be supersymmetric and
their nature is expected to be fairly exotic, and remains largely unknown. We will come back to this point
in section 5.3.1.
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is just the cobordism defect of this theory.5 The remarkable feature is that the end of
spacetime is triggered dynamically by the requirement of solving the equations of motion
after the introduction of the RR 3-form flux, hence it is fair to dub it dynamical cobordism.
Hence, this is a very explicit illustration of the Dynamical Cobordism Lesson.

This powerful statement will be realized in many subsequent examples in later sections,
and will underlie the phenomenon of spontaneous compactification, when the cobordisms
close off the spacetime directions bounding them into a compact variety.

2.4 More general throats

A natural question is the extension of the above discussion to other AdS5×X5 vacua with
3-form fluxes. This question is closely related to the search for general classes of gravity
duals to Seiberg duality cascades and their infrared deformations, for which there is a
concrete answer if X5 is the real base of a non-compact toric CY threefold singularity Y6,
which are very tractable using dimer diagrams [50, 51] (see [52] for a review).

From our perspective, the result in [53] is that the X5 compactification with 3-form
flux F3 admits a KS-like end of the world (cobordism defect6) if Y6 admits a complex
deformation which replaces its conical singularity by a finite-size 3-cycle corresponding to
the homology dual of the class [F3]. In cobordism conjecture terms, in these configurations
the corresponding global symmetry is broken, and spacetime may close off without further
ado (as the axion monodromy due to the 3-form fluxes allows to eat up the RR 5-form
flux before reaching the end of the world). Such complex deformations are easily discussed
in terms of the web diagram for the toric threefold, as the splitting of the web diagram
into consistent sub-diagrams [53]. Simple examples include the deformation of the complex
cone over dP2 to a smooth geometry, or the deformation of the complex cone over dP3 to
a conifold, or to a smooth geometry.

There are however singularities (or 3-form flux assignments), for which the complex
deformations are simply not available. One may then wonder about how our Dynamical
Cobordism lesson applies. The answer was provided in particular examples in [54–56]: the
infrared end of the throat contains an explicit system of fractional D-branes, which in the
language of the cobordism conjecture kill the corresponding cobordism classes, and allow
the spacetime to end. As noticed in these references, the system breaks supersymmetry,
and in [55] it was moreover noticed (as later revisited in [57]) to be unstable and lead to
a runaway behaviour for the field blowing up the singularity. Hence, this corresponds to
an additional dynamical tadpole, requiring additional spacetime dependence, to be solved.
Simple examples include the complex cone over dP1, and the generic Y p,q theories. We will
not enter the discussion of possible mechanisms to stabilize these models, since following [58]
they are likely to require asymptotic modifications of the warped throat ansatz (i.e. at all
positions in the radial direction, including the initial one).

5Recalling footnote 3, the case of N multiple of M implies the vanishing of a ZM charge, and allows the
cobordism defect to be purely geometrical; otherwise the cobordism defect ending spacetime must include
explicit D3-branes, which are the defect killing the corresponding cobordism class [14].

6We note in passing that the regions between different throats in the multi-throat configurations [53]
can be regarded as domain walls interpolating between two different, but bordant, type IIB vacua.
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3 Type IIB fluxes and spontaneous compactification

In this section we construct an explicit 5d type IIB model with a tunable dynamical tadpole,
and describe the spacetime-dependent solution solving its equations of motion, which is in
fact supersymmetry preserving. The configuration displays dynamical cobordism resulting
in spontaneous compactification to 4d. The resulting model is a simple toroidal compacti-
fication with ISD NSNS and RR 3-form fluxes [48, 49], in particular it appeared in [59, 60].
With this perspective in hindsight, one can regard this section as a reinterpretation of
the latter flux compactification. Our emphasis is however in showing the interplay of the
dynamical tadpoles in the 5d theory and the consequences in the spacetime configuration
solving them.

3.1 The 5d tadpole and its solution

Consider type IIB on T5, which for simplicity we consider split as T2 × T2 × S1. We
label the coordinates of the T2’s as (x1, y1) and (x2, y2), with periodicity 1, and introduce
complex coordinates as z1 = x1 + τ1y1, z2 = x2 + τ2y2. We also use a periodic coordinate
x3 ' x3 + 1 to parametrize the S1. For simplicity, we do not consider moduli deviating
from this rectangular structure,7 and also take the T5 to have an overall radius R,

ds2 = R2[(dz1)2 + (dz2)2 + (dx3)2] . (3.1)

The result so far is a standard 5d supersymmetric T5 compactification.
We introduce a non-trivial dynamical tadpole source by turning on an RR 3-form flux

(using conventions in [49])
F3 = (2π)2α′N dx1 dx2 dx3 . (3.2)

The introduction of this flux does not lead to RR topological tadpoles, but induces dynam-
ical tadpoles for diverse fields. In the following we focus on the dynamics of the 5d light
fields R, τ1, τ2, the dilaton φ and the NSNS axion Φ defined by

B2 = Φ dy1 dy2 . (3.3)

The discussion of the dynamical tadpole is similar to the T 1,1 example in section 2, so
we sketch the result. There is a dilaton tadpole, arising from the dimensional reduction of
the 10d kinetic term for the 3-form flux,

∇2 φ = 1
12 e

φ (F3)2 . (3.4)

Since (F3)2 is a constant source density, which does not integrate to zero over T5, there is
no solution for this Laplace equation if we assume the solution to be independent of the 5d
spacetime coordinates. One possibility would be to allow for 5d spacetime dependence of φ
(at least in one extra coordinate, as in [9]). Here we consider a different possibility, which

7As usual, they can be removed in orbifold models, although we will not focus on this possibility.
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is to let the NSNS axion Φ acquire a dependence on one of the 5d coordinates, which we
denote by y, as follows

Φ = −(2π)2α′ N
t3
y ⇒ H3 = −(2π)2α′ N

t3
dy1 dy2 dy . (3.5)

We have thus turned on NSNS 3-form field strength in the directions y1, y2 in T5 and the
5d spacetime coordinate y. Here the sign has been introduced for later convenience, and
t3 is a positive real parameter allowing to tune the field strength density, whose meaning
will become clear later on.

Including this new source, the dilaton equation of motion becomes

∇2 φ = 1
12
[
eφ (F3)2 − e−φ (H3)2

]
. (3.6)

Hence, the spacetime-dependent profile (3.5) can cancel the right hand side and solve the
dilaton tadpole when

e2φ (F3)2 = (H3)2 . (3.7)

We can thus keep the dilaton constant eφ = gs. Taking for simplicity purely imaginary
τ1 = it1 and τ2 = it2, the condition (3.7) is simply

gs t1 t2 t3 = 1 . (3.8)

In addition to the dilaton, the 3-form fluxes backreact on the metric and other fields,
which we discuss next.

3.2 The singularities

We now discuss the backreaction on the metric and other fields. For convenience, we use
the complex coordinates z1, z2 and z3 = x3 + iy. In terms of these, we can write the
combination

G3 = F3 − τH3 = (2π)2
4 α′N(dz1 dz2 dz3 + dz1dz2dz3 + dz1dz2dz3 + dz1dz2dz3) . (3.9)

Regarding T5 × R1
y as a (non-compact) CY, this is a combination of (2, 1) and (0, 3)

components, which is thus ISD. There is a backreaction on the metric and RR 4-form of
the familiar black 3-brane kind. In particular, the metric includes a warp factor Z

ds 210 = Z−
1
2 ηµνdx

µdxν + Z
1
2 R2[dz1dz1 + dz2dz2 + dz3dz3] , (3.10)

where xµ runs through the four Poincaré invariant spacetime coordinates. The warp factor
is determined by the Laplace equation

− ∇̃2Z = gs
12G3 ·G3 = gs

6 (F3)2 , (3.11)

with the tilde indicating the Laplacian is computed with respect to the unwarped, flat
metric, and in the last equation we used (3.7).
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Note that, since y parametrizes a non-compact dimension, there is no tadpole problem
in solving (3.11) i.e. we need not add background charge. One may then be tempted to
conclude that this provides a 5d spacetime-dependent configuration solving the 5d tadpole.
However, the solution is valid locally in y, but cannot be extended to arbitrary distances
in this direction. Since the local flux density in T5 is constant, we can take Z to depend
only on8 y, hence leading to a solution

− d2Z

dy 2 = gs
6 (F3)2 ⇒ Z = 1− gs

12(F3)2 y2 , (3.12)

where we have set an integration constant to 1. The solution hits metric singularities at

y−2 = 1
12gs(F3)2 , (3.13)

showing there is a maximal extent in the direction y. Let us introduce the quantity
T = 1

12gs(F3)2, which controls the parametric dependence of the tadpole. Then, the dis-
tance between the singularities is

∆ =
∫ T −1/2

−T −1/2
Z

1
4 dy = 2√

T

∫ 1

0
(1− t2) 1

4 dt , (3.14)

with t =
√
T y. We thus recover the scaling (1.1) with n = 2,

∆−2 ∼ T . (3.15)

Hence the appearance of the singularities as a consequence of the dynamical tadpole is as
explained in the introduction.

3.3 Cobordism and spontaneous compactification

The appearance of singularities is a familiar phenomenon. In this section we argue that
they must be smoothed out, somewhat analogously to the KS solution in section 2. The fact
that it is possible follows from the swampland cobordism conjecture [14, 15], namely there
must exist an appropriate cobordism defect closing off the extra dimension into nothing.
Since there are two singularities, the formerly non-compact dimension becomes compact,
in an explicit realization of spontaneous compactification.9

In the following, we directly describe the resulting geometry, which turns out to be a
familiar T6 (orientifold) compactification with ISD 3-form fluxes. Consider type IIB theory
on T2 ×T2 ×T2, with

F3 = (2π)2α′N dx1 dx2 dx3 , H3 = (2π)2α′N dy1 dy2 dy3 . (3.16)

We use zi = xi + itiy
i, hence the above defined t3 is the complex structure modulus for

the T2 involving the newly compact dimension. For moduli satisfying (3.8) the T6 flux
combination G3 is given by (3.9), which is ISD and indeed compatible with 4d Poincaré

8In fact, this is the leading behaviour at long distances, compared with the T5 size scale R.
9Spontaneous compactification has been discussed in the context of dynamical tadpoles in [9].
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invariance as usual. Notice that in this case, it is possible to achieve a large size for the
new compact dimension t3 � 1 by simply e.g. taking small gs. This corresponds to the
regime of small 5d tadpole, with the relation

t−23 ∼ g 2
s ∼ T 2 , (3.17)

in agreement with the maximal distance relation in the previous section.
Consistency, in the form of C4 RR tadpole cancellation, requires the introduction of

O3-planes at fixed points of the involution R : zi → −zi (together with mobile D3-branes).
From the perspective of the 5d theory, the additional dimension is compactified on an inter-
val, with two end of the world defects given by the O3-planes, which constitute the cobor-
dism defects of the configuration (possibly decorated with explicit D3-branes if needed).

4 Solving dynamical tadpoles via magnetization

In this section we consider a further setup displaying dynamical tadpoles, based on com-
pactifications with magnetized D-branes [61–65]. In toroidal setups, these have been (ei-
ther directly or via their T-dual intersecting brane world picture) widely used to realize
semi-realistic particle physics models in string theory. In more general setups, magnetized
7-branes are a key ingredient in the F-theory realization of particle physics models [66–68].

4.1 Solving dynamical tadpoles of magnetized branes

We consider a simple illustrative example. Consider type IIB theory compactified on
T2×T2 (labelled 1 and 2, respectively) and mod out by ΩR1(−1)FL , where R1 : z1 → −z1.
This introduces 4 O71-planes spanning (T2)2 and localized at the fixed points on (T2)1.
We also have 32 D7-branes (as counted in the covering space), split as 16 D7-branes (taken
at generic points) and their 16 orientifold images. This model is related by T-duality on
(T2)1 to a type I toroidal compactification, but we proceed with the D7-brane picture.

We introduce M units of worldvolume magnetic flux along (T2)2 for the U(1) of a
D7-brane10

1
2πα′

∫

T2
F2 = M . (4.1)

The orientifold requires we introduce −M units of flux on the image D7-brane.11 This also
ensures that there is no net induced Z-valued D5-brane charge in the model, and hence no
associated RR tadpole, in agreement with the fact that the RR 6-form is projected out. In
addition, there is a Z2 K-theory charge [70] which is cancelled as long as M ∈ 2Z.

The introduction of the worldvolume flux leads to breaking of supersymmetry. As
is familiar in the discussion of supersymmetries preserved by different branes [71], we
introduce the angle

θ2 = arctan(2πα′ F ) = arctan (Mχ) , (4.2)

where F is the field strength and χ is the inverse of the T2 area, in string units.
10If N the D7-branes are coincident, it is also possible to use the overall U(1) ⊂ U(N). We will stick to

the single D7-brane for the moment, but such generalization will arise in later examples.
11For simplicity we consider vanishing discrete NSNS 2-form flux [69], although such generalization will

arise in later examples.
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This non-supersymmetric configuration introduces dynamical tadpoles. For small θ2,
the extra tension can be described in effective field theory as an FI term controlled by
θ [72–74]. In fact, in [75] a similar parametrization was proposed for arbitrary angles. By
using the DBI action, the extra tension has the structure

V ∼ 1
gs

(√
1 + (tan θ2)2 − 1

)
. (4.3)

This leads to a tadpole for the dilaton and the (T2)2 Kähler modulus.
We now consider solving the tadpole by allowing for some spacetime-dependent back-

ground. Concretely, we allow for a non-trivial magnetic field −F on two of the non-compact
space coordinates, parametrized by the (for the moment, non-compact) coordinate z3. In
fact this leads to a configuration preserving supersymmetry since, defining the angle θ3 in
analogy with (4.2), we satisfy the SU(2) rotation relation θ3 + θ2 = 0 [71]. In other words,
the field strength flux has the structure

F2 = F (dz2dz2 − dz3dz3) , (4.4)

which is (1, 1) and primitive (i.e. J ∧F2 = 0), which are the supersymmetry conditions for
a D-brane worldvolume flux.

Hence, it is straightforward to find spacetime-dependent solutions to the tadpole of
the higher-dimensional theory, at the price of breaking part of the symmetry of the lower-
dimensional spacetime. In the following we show that, as in earlier examples, this eventually
also leads to spontaneous compactification.

4.2 Backreaction and spontaneous compactification

The spacetime field strength we have just introduced couples to gravity and other fields,
so we need to discuss its backreaction.

In fact, this is a particular instance of earlier discussions, by considering the F-theory
lift of the D7-brane construction. This can be done very explicitly by taking the config-
uration near the SO(8)4 weak coupling regime [76]. The configuration without magnetic
flux M = 0 simply lifts to F-theory on K3×T2 × R2, where the (T2)1 (modulo the Z2
orientifold action) is the P1 base of K3, and the T2 and R2 explicit factors correspond to
the directions z2 and z3, respectively. As is familiar, the 24 degenerate fibers of the K3
elliptic fibration form 4 pairs, reproducing the 4 orientifold planes, and 16 D7-branes in
the orientifold quotient. Actually, the discussion below may be carried out for F-theory on
K3 at generic points in moduli space, even not close to the weak coupling point.

The introduction of magnetization for one 7-brane corresponds to the introduction of a
G4 flux along the local harmonic (1, 1)-form supported at an I1 degeneration (or enhanced
versions thereof, for coincident objects), of the form

G4 = ω2 ∧ F (dz2dz2 − dz3dz3) . (4.5)

This flux is self-dual, and in fact (2, 2) and primitive, which is the supersymmetry preserving
condition for 4-form fluxes in M/F-theory [48, 77]. The backreacted metric is described
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by a warp factor satisfying a Laplace equation sourced by the fluxes, similar to (3.11).
Considering the regime in which the warp factor is taken independent of the internal space
and depends only on the coordinates in the R2 parametrized by z3, the constant flux
density leads to singularities at a maximal length scale ∆

∆−2 ∼ F 2 . (4.6)

This is another instance of the universal relation (1.1) with T ∼ F 2, hence n = 2.
This is in complete analogy with earlier examples. Hence, we are led to propose

that the smoothing out of these singularities is provided by the compactification of the
corresponding coordinates, e.g. on a T2, with the addition of the necessary cobordism
defects, namely orientifold planes and D-branes.12

To provide an explicit solution, we introduce the standard notation (see e.g. [63, 64])
of (n,m) for the wrapping numbers and the magnetic flux quanta on the (T2)i’s for the
directions i = 1, 2, 3. In this notation, the O71-planes and unmagnetized D71-branes
are associated to (0, 1) × (1, 0) × (1, 0), while the magnetized D71-branes13 correspond to
(0, 1)× (1,M)× (1,−M), and (0, 1)× (1,−M)× (1,M) for the orientifold images. In other
words, we require a flux quantization condition on (T2)3 as in (4.1), up to a sign flip.

Since now the last complex dimension is compact, there is an extra RR tadpole cancella-
tion condition, which requires the introduction of 16 O73-planes, wrapped on (T2)1×(T2)2
and localized at fixed points in (T2)1, namely with wrapping numbers (1, 0)×(1, 0)×(0, 1).
This introduces an extra orbifold action generated by (z1, z2, z3) → (z1,−z2,−z3), so the
model can be regarded as a (T-dual of a) magnetized version of the D9/D5-brane T4/Z2
orientifolds in [78, 79]. Allowing for n additional mobile D73-branes (as counted in the
covering space, and arranged in orbifold and orientifold invariant sets), the RR tadpole
cancellation conditions is

2M2 + n = 32 . (4.7)

The supersymmetry condition is simply that the T2 parameters satisfy χ2 = χ3.
From the perspective of the original 6d configuration, the tadpole in the initial T2×T2

configuration has triggered a spontaneous compactification. Since the additional O-planes
and D-branes required to cancel the new RR tadpoles are localized in z3, they can be
interpreted as the addition of I-branes to cancel the cobordism charge of the original model.

It should be possible to generalize the above kind of construction to global K3-fibered
CY threefolds with O7-planes. The local fibration in a small neighbourhood of a generic
point of the base provides a local 6d model essentially identical to our previous one. On

12To be precise, the cobordism defects of an S1 compactification of the model. This is analogous to
the mechanism by which F-theory on half a P1 provides the cobordism defect for type IIB on S1 with
SL(2,Z) monodromy [14] (see also [16]). In fact, since magnetized branes often lead to chiral theories in
the bulk, this extra circle compactification allows them to become non-chiral and admit an end of the world
describable at weak coupling, see the discussion below (5.14) in section 5.3. We will nevertheless abuse
language and refer as cobordism defect to the structures involved in the final spontaneous compactification
under discussion.

13If the magnetization is in the U(1) ⊂ U(N) of a stack of N coincident branes, see footnote 10, the
corresponding wrapping goes as (N,M).
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the other hand, the global geometry defining how the two extra dimensions compactify
would correspond to another possible spontaneous compactification, with the ingredients
required for the cancellation of the new RR tadpoles.

However, a general drawback of this class of models is that the scales of the compact
spaces in the directions 2 and 3 are of the same order.14 Thus, there is no separation of
scales, and no reliable regime in which the dynamics becomes that of a 6d model. This is
easily avoided in more involved models, as we will see in the examples in coming sections.

5 Solving tadpoles in 10d strings

In this section we consider dynamical tadpoles arising in several 10d string theories, and
confirm the general picture. We illustrate this with various examples, with superymmetry
(massive type IIA and M-theory on K3), and without it (non-supersymmetric 10d USp(32)
theory).

5.1 Massive IIA theory

We consider 10d massive type IIA theory [80]. This can be regarded as the usual type IIA
string theory in the presence of an additional RR 0-form field strength F0 ≡ m. The string
frame effective action for the relevant fields is

S10 = 1
2κ 2

10

∫
d10x

√
−G

{
e−2φ[R+ 4(∂φ)2]− 1

2(F0)2 −
1
2(F4)2

}
+ Stop , (5.1)

where Stop includes the Chern-Simons terms. In the Einstein frame GE = e−
φ
2G, we have

S10,E = 1
2κ 2

∫
d10x

√
−GE

{[
R− 1

2(∂φ)2
]
− 1

2e
5
2φm2 − 1

2e
1
2φ(F4)2

}
. (5.2)

Here we have usedm to emphasize this quantity is constant. This theory is supersymmetric,
but at a given value of φ, it has a tadpole controlled by

T ∼ e 5
2φm2 . (5.3)

This is in particular why the massive IIA theory does not admit 10d maximally symmetric
solutions. In the following we discuss two different ways of solving it, leading to Minkowski
or AdS-like configurations.

5.1.1 Solution in 9d and type I’ as cobordism

To solve the tadpole (5.3) we can consider a well-known 1/2 BPS solution with the dilaton
depending on one coordinate x9. Since the flux m can be regarded as generated by a set
of m distant D8-branes, this is closely related to the solution in [81]. We describe it in

14In the toroidal example, if the magnetization along (T2)2 is on the overall U(1) ⊂ U(16) of 16 coincident
D7-branes, the magnetic field along z2 is F ∼M/16; this weakened tadpole implies an increase of the critical
size of the spontaneously compactified dimensions by a factor of 4.
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conventions closer to [17], for later use. In the Einstein frame, the metric and dilaton
background have the structure

(GE)MN = Z(x9)
1
12 ηMN , eφ = Z(x9)−

5
6 , with Z(x9) ∼ B −mx9 , (5.4)

where B is some constant (in the picture of flux generated by distant D8-branes, it relates
to the D8-brane tensions). The solution hits a singularity at x9 = B/m. Starting at a
general position x9, the distance to the singularity is

∆ =
∫ B

m

x9
Z(x9)

1
24 dx9 ∼ Z(x9)

25
24 m−1 ∼ m−1e− 5

4φ , (5.5)

where in the last equality we have traded the position for the value the dilaton takes there.
Recalling (5.3), this reproduces the Finite Distance scaling relation (1.1) with n = 2,

∆−2 ∼ T . (5.6)

It is easy to propose the stringy mechanism capping off spacetime before or upon reach-
ing this singularity, according to the Dynamical Cobordism lesson. This should be the
cobordism defect of type IIA theory, which following [14] is an O8-plane, possibly with
D8-branes.

In fact, this picture is implicitly already present in [17], which studies type I’ theory,
namely type IIA on an interval, namely IIA on S1 modded out by ΩR with R : x9 → −x9,
which introduces two O8−-planes which constitute the interval boundaries. There are 32
D8-branes (in the covering space), distributed on the interval, which act as domain walls
for the flux F0 = m, which is piecewise constant in the interval. The metric and the dilaton
profile are controlled by a piecewise linear function Z(x9). The location of the boundaries
at points of strong coupling was crucial to prevent contradiction with the appearance of
certain enhanced symmetries in the dual heterotic string (the role of strong coupling at
the boundaries for the enhancements was also emphasized from a different perspective
in [82, 83]). In our setup, we interpret the presence of (at least, one) O8-plane as the
cobordism defect triggered by the presence of a dynamical tadpole in the bulk theory.

5.1.2 A non-supersymmetric Freund-Rubin solution

We now consider for illustration a different mechanism to cancel the dynamical tadpole,
which in fact underlies the spontaneous compactification to (non-supersymmetric15) AdS4×
S6 in [80]). The idea is that, rather than solving for the dilaton directly, one can introduce
an additional flux F4 along three space dimensions and time (or its dual F6 on six space
dimensions) to balance off the dilaton sourced by F0. This can be used to fix φ to a
constant, and following [80] leads to a scaling

F4 ∼ m2 d(vol)4 , (5.7)
15Thus, it should be unstable according to [46]. However, being at a maximum of a potential is sufficient

to avoid dynamical tadpoles, so the solution suffices for our present purposes.

– 16 –



J
H
E
P
0
6
(
2
0
2
1
)
1
7
0

where d(vol)4 is the volume form in the corresponding 4d. Using arguments familiar by
now, the constant F4 backreaction on the metric is encoded in a solution of the 4d Laplace
equation with a constant source, leading to a solution quadratic in the coordinates (to avoid
subtleties, we take solutions depending only on the space coordinates). This develops a
singularity at a distance scaling as

∆2 ∼ |F4|−2 ∼ m−4 ∼ T , (5.8)

where in comparison with (5.3) we have taken constant dilaton.
The singularities are avoided by an AdS4×S6 compactification, whose curvature radius

is R ∼ m2, in agreement with the above scaling. From our perspective, the compactification
should be regarded as a dynamical cobordism (where the cobordism is actually that of the
10d theory on an S5 (i.e. equator of S5)).

5.2 An aside on M-theory on K3

In this section we relate the above system to certain compactifications of M-theory and to
the Horava-Witten end of the world branes as its cobordism defect. Although the results
can be obtained by direct use of M-theory effective actions, we illustrate how they can be
recovered by applying simple dualities to the above system.

Consider the above massive IIA theory with mass parameter m, and compactify on
T4/Z2. This introduces O4-planes, and requires including 32 D4-branes in the configura-
tion, either as localized sources, or dissolved as instantons on the D8-branes. Actually this
can be considered as a simple model of K3 compactifications, where in the general K3 the
O4-plane charge is replaced by the contribution to the RR C5 tadpole arising from the CS
couplings of D8-branes and O8-planes to trR2.

We now perform a T-duality in all the directions of the T4/Z2 (Fourier-Mukai trans-
form in the case of general K3). We obtain a similar model of type I’ on T4/Z2, but
now with the tadpole being associated to the presence of m units of non-trivial flux of the
RR 4-form field-strength over T4 (namely, K3). Also, the dilaton of the original picture
becomes related to the overall Kähler modulus of K3. Finally, we lift the configuration
to M-theory by growing an extra S1 and decompactifying it. We thus end up with a 7d
compactification of M-theory on K3, with m units of G4 flux,

∫

K3
G4 = m. (5.9)

This leads to a dynamical tadpole, cancelled by the variation of the overall Kähler modulus
(i.e. the K3 volume) along one the 7d space dimensions, which we denote by x11. As in
previous sections, this will trigger a singularity at a finite distance in x11, related to the
tadpole by ∆−2 ∼ T . The singularity is avoided by the physical appearance of a cobordism
defect, which for M-theory is a Horava-Witten (HW) boundary [84]. This indeed can
support the degrees of freedom to kill the G4 flux, as follows. From [85], the 11d G4 is
sourced by the boundary as

dG4 = δ(x11)
(

trF 2 − 1
2trR2

)
, (5.10)
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where δ(x11) is a bump 1-form for the HW brane, and F is the field-strength for the E8
gauge fields in the boundary. Hence, the m units of G4 in the K3 compactification can be
absorbed by a HW boundary with an E8 bundle with instanton number 12 + m (the 12
coming from half the Euler characteristic of K3

∫
K3 trR2 = 24).

The above discussion is closely related to the picture in [18], which discusses compact-
ification of HW theory (namely, M-theory on an interval with two HW boundaries) on K3
and on a CY threefold. It includes a Kähler modulus varying over the interval according
to a linear function16 and the appearance of a singularity at finite distance. In that case,
the HW brane was located at the strong coupling point, based on heuristic arguments, and
this led, in the CY3 case, to a lower bound on the value of the 4d Newton’s constant.

Our perspective remarkably explains that the location of the HW wall is not an arbi-
trary choice, but follows our physical principle of Dynamical Cobordism, and the bound
on the Newton’s constant is a consequence of that of Finite Distance!

5.3 Solving tadpoles in the non-supersymmetric 10d USp(32) theory

The previous examples were based on an underlying supersymmetric vacuum, on top of
which the dynamical tadpole is generated via the introduction of fluxes or other ingredients.
In this section we consider the opposite situation, in which the initial theory is strongly
non-supersymmetric and displays a dynamical tadpole from the start. In particular we
consider the non-supersymmetric 10d USp(32) theory constructed in [4], in two different
ways: first, we use our new insights to revisit the spacetime-dependent solution proposed
in [9] (see also [10] for other proposals); then we present a far more tractable solution
involving magnetization, which in fact provides a supersymmetric compactification of this
non-supersymmetric 10d string theory.

5.3.1 The Dudas-Mourad solution and cobordism

The non-supersymmetric 10d USp(32) theory in [4] is obtained as an Ω orientifold of type
IIB theory. The closed string sector is as in type I theory, except that the O9−-plane is
replace by an O9+-plane. Cancellation of RR tadpoles requires the introduction of open
strings, which must be associated to 32 D9-branes. The closed string sector is a 10d N = 1
supergravity multiplet; the orientifold action on the D9-branes breaks supersymmetry,
resulting in an open string sector with USp(32) gauge bosons and gauginos in the two-index
antisymmetric representation. All anomalies cancel, a remarkable feat from the field theory
viewpoint, which is just a consequence of RR tadpole cancellation from the string viewpoint.

Although the RR tadpoles cancel, the NSNS tadpoles do not, implying that there is
no maximally symmetric 10d solution to the equations of motion. In particular there is a
dynamical dilaton tadpole of order the string scale, as follows from the terms in the 10d
(Einstein frame) action

SE = 1
2κ2

∫
d10x
√
−G

[
R− 1

2(∂φ)2
]
− TE9

∫
d10x
√
−G 64 e

3φ
2 , (5.11)

16In the presence of explicit M5-branes, it is a piecewise linear function. It is straightforward to include
them in our cobordism description if wished, with explicit branes considered as part of the cobordism defect.
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where TE9 is the (anti)D9-brane tension. The tadpole scales as T ∼ TE9 g
3/2
s , with the

dilaton dependence arising from the fact that the supersymmetry breaking arises from the
Moebius strip worldsheet topology, with χ = 3/2.

Ref. [9] proposed solutions of this dynamical tadpole with 9d Poincaré invariance, an d
the dilaton varying over one spacetime dimension (see also [86, 87] for more recent, related
work). In the following we revisit the solution with dependence on one spatial coordinate
y, from the vantage point of our Lessons.

The 10d solution is, in the Einstein frame,

φ = 3
4αEy

2 + 2
3 log |√αEy|+ φ0 ,

ds 2E = |√αEy|
1
9 e−

αEy
2

8 ηµνdx
µdxν + |√αEy|−1e−

3φ0
2 e−

9αEy
2

8 dy2 , (5.12)

where αE = 64k2T9. There are two singularities, at y = 0 and y → ∞, which despite
appearances are separated by a finite distance

∆ ∼
∫ ∞

0
|√αEy|−

1
2 e−

3φ0
4 e−

9αEy
2

16 dy ∼ e−
3φ0
4 α
− 1

2
E . (5.13)

The fact that the solution has finite extent in the spatial dimension on which the fields
vary is in agreement with the Finite Distance Lesson, and in fact satisfying its quantitative
bound (1.1)

∆−2 ∼ T . (5.14)

We can now consider how the Dynamical Cobordism Lesson applies in the present
context. Following it, we expect the finite extent in the spatial dimensions to be physically
implemented via the cobordism defect corresponding to the 10d USp(32) theory. In general
the cobordism defect of bulk chiral 10d theories are expected to be non-supersymmetric,
and in fact rather exotic, as their worldvolume dynamics must gap a (non-anomalous) set of
chiral degrees of freedom. In fact, on general grounds they can be expected to involve strong
coupling.17 An end of the world defect imposes boundary conditions on bulk supergravity
fields, which at weak coupling should be at most linear in the fields, to be compatible with
the superposition principle. A typical example are boundary conditions that pair up bulk
fermions of opposite chiralities. However, the anomaly cancellation in the 10d USp(32)
theory involves fields of different spins, which cannot be gapped by this simple mechanism,
and should require strong coupling dynamics (a similar phenomenon in a different context
occurs in [88]).

This strong coupling fits nicely with the singularity at y → ∞, but the singularity at
y = 0 lies at weak coupling. The simplest way out of this is to propose that the singularity
at y = 0 is actually smoothed out by perturbative string theory (namely, α′ corrections,
just like orbifold singularities are not singular in string theory), and does not turn into
an end of the world defect. Hence the solution (5.12) extends to y < 0, and, since the
background is even in y, develops a singularity at y → −∞. This is still at finite distance
∆ scaling as (5.14), and lies at strong coupling, thus allowing for the possibility that the
singularity is turned into the cobordism defect of the 10d USp(32) theory.

17We are indebted to Miguel Montero for this argument, and for general discussions on this section.

– 19 –



J
H
E
P
0
6
(
2
0
2
1
)
1
7
0

It would be interesting to explore this improved understanding of this solution to the
dilaton tadpole. Leaving this for future work, we turn to a more tractable solution in the
next section.

5.3.2 Solving the tadpole via magnetization

We now discuss a more tractable alternative to solve the dynamical tadpole via magneti-
zation, following section 4.

Stabilizing the tadpole via magnetization is, ultimately, equivalent to finding a com-
pactification (on a product of T2’s) which is free of tadpoles, for instance by demanding it
to be supersymmetric. Hence we need to construct a supersymmetric compactification of
the non-supersymmetric 10d USp(32) theory [4].

As explained above, the 10d model is constructed with an O9+-plane and 32 D9-branes.
Hence, we need to introduce worldvolume magnetic fields in different 2-planes, in such a
way that the corresponding angles add up to 0 mod 2π. It is easy to convince oneself that
this requires magnetization in at least three complex planes, ultimately triggering a T2 ×
T2×T2 compactification. In order to preserve supersymmetry, we need the magnetization
to induce D5-brane charges, rather than D5-brane charge, hence we need the presence of
three independent kinds of negatively charged O5−i -planes, where i = 1, 2, 3 denotes the
T2 wrapped by the corresponding O5-plane. We are thus considering an orientifold of
T6/(Z2 × Z2) with an O9+-plane, and 8 O5−i -planes.18

The wrapping numbers for the O-planes, and for one simple solution of all constraints
for the D9-branes (and their explicitly included orientifold image D9-branes), are

Object Nα (n1α,m1
α) (n2α,m2

α) (n3α,m3
α)

O9+ 32 (1, 0) (1, 0) (1, 0)
O5−1 −32 (1, 0) (0, 1) (0,−1)
O5−2 −32 (0, 1) (1, 0) (0,−1)
O5−3 −32 (0, 1) (0,−1) (1, 0)
D9 16 (−1, 1) (−1, 1) (−1, 1)
D9′ 16 (−1,−1) (−1,−1) (−1,−1)

It obeys the RR tadpole conditions for the Z-valued D9- and D5-brane charges, and
the discrete Z2 RR tadpole conditions for D3- and D7i-brane charges [70].

The supersymmetry condition determined by the O-plane wrappings is
∑

i

arctan(−χi) ≡ θ1 + θ2 + θ3 = 0 mod 2π . (5.15)

The model is in fact T-dual (in all T6 directions) to that in section 5 of [59].
It is easy to see that the above condition forces at least one of the T2 to have O(1) area

in α′ units. From our perspective, this a mere reflection of the fact that the 10d dynamical
18For such combinations of orientifold plane signs, see the analysis in [89], in particular its table 6. We

will not need its detailed construction for our purposes.
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tadpole to be canceled is of order the string scale, hence it agrees with the scaling ∆−2 ∼ T .
Happily, the use of an α′ exact configuration, which is moreover supersymmetric, makes
our solution reliable. This is an improvement over other approaches e.g. as in section 5.3.1.

Although we have discussed the compactification on (an orientifold of) T6 directly,
we would like to point out that it is easy to describe it as a sequence of T2 spontaneous
compactifications, each eating up a fraction of the initial 10d tadpole until it is ultimately
cancelled upon reaching T6. However, this picture does not really correspond to a physical
situation, given the absence of decoupling of scales. This is true even in setups which
seemingly allow for one T2 of parametrically large area. Indeed, consider for instance the
regime χ3 ∼ 2λ and χ1, χ2 ∼ λ−1, for 0 < λ � 1, which corresponds to θ1, θ2 ∼ π

2 + λ,
θ3 ∼ π − 2λ. This corresponds to a compactification on substringy size (T2)1 × (T2)2 and
a parametrically large (T2)3. However, the fact that the (T2)1, (T2)2 can be T-dualized
into large area geometries shows that there is not true decoupling of scales: in the original
picture, the small sizes imply that there are towers of light winding modes, whose scale is
comparable with the KK modes of (T2)3. Hence, the lack of decoupling is still present, as
expected from our general considerations in the introduction.

6 The SM from spontaneous compactification

In this section we explore an interesting application of the above mechanism, and provide
an explicit example of a 6d theory with brane-antibrane pairs, and a dynamical tadpole
triggering spontaneous compactification to a 4d (MS)SM-like particle physics model. Inter-
estingly, the complete chiral matter and electroweak sector, including the Higgs multiplets,
are generated as degrees of freedom on cobordism branes. Only the gluons are present in
some form in the original 6d models.

Consider the type IIB orientifold of T4/Z2 with orientifold action Ω constructed in [78,
79], possibly with magnetization. To describe it, we introduce the notation in [69, 90] of
wrapping numbers (niα,mi

α), where niα and mi
α provide the wrapping number and magnetic

flux quantum of the D-brane α on the ith T2, respectively. We consider the following stacks
of D-branes (and their orientifold images, not displayed explicitly)

Nα (n1α,m1
α) (n2α,m2

α)
Na+d = 6 + 2 (1, 3) (1,−3)
Nh1 = 4 (1,−3) (1,−4)
Nh2 = 4 (1,−4) (1,−3)

40 (0, 1) (0,−1)

The O9- and O5-planes correspond to the wrapping numbers (1, 0)× (1, 0) and (0, 1)×
(0,−1) respectively. The stacks a and d are taken different and separated by Wilson lines,
but they can be discussed jointly for the time being. They correspond to 8 D9-branes
with worldvolume magnetic fluxes 72 units of D5-brane charge. The stacks h1 and h2
correspond to 8 additional D9-branes, with 96 with units of induced D5-branes charge.
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The addition of 40 explicit D5-branes leads to RR tadpole cancellation (once orientifold
images are included). In terms of the wrapping numbers, we have

∑

α

Nαn
2
αn

3
α = 16 ,

∑

α

Nαm
2
αm

3
α = −16 . (6.1)

The model is far from supersymmetric due to the presence of D5-D5 pairs, and in fact
has a decay channel to supersymmetric model by their annihilation. On the other hand,
even at the top of the tachyon potential, the theory is not at a critical point of its potential
due to dynamical tadpole for the closed string moduli, namely the area moduli of the T2’s.
In other words, the excess tension depends on these, as they enter the angles determining
the deviation from the supersymmetry condition

arctan
(
m1
α

n1α
χ1

)
+ arctan

(
m2
α

n2α
χ2

)
= 0 . (6.2)

For instance, we can make the stacks a, d supersymmetric, by choosing

χ1 = χ2 , (6.3)

but the D-branes h1 and h2 break supersymmetry. Hence, there is a dynamical tadpole
associated to the excess tension of these latter objects.

The dynamical tadpole can be solved by introducing magnetization along two of the
6d spacetime dimensions. The backreaction of this extra flux forces these two dimensions
to be compactified on a T2, with the addition of cobordism I-branes [15], which in general
includes orientifold planes and D-branes, as in the examples above. We take these extra
branes to be arranged in two new stacks b and c. Overall, we end up with an orientifold of
T6/(Z2 × Z2), with D-brane stacks and topological numbers given by

Nα (n1α,m1
α) (n2α,m2

α) (n3α,m3
α)

Na+d = 6 + 2 (1, 3) (1,−3) (1, 0)
Nb = 2 (0, 1) (1, 0) (0, 1)
Nc = 2 (−1, 0) (0,−1) (0, 1)
Nh1 = 2 (1,−3) (1,−4) (2,−1)
Nh2 = 2 (1,−4) (1,−3) (2,−1)

40 (0, 1) (0,−1) (0, 1)

The model satisfies the RR tadpole conditions
∑

α

Nαn
1
αn

2
αn

3
α = 16 ,

∑

α

Nαn
1
αm

2
αm

3
α = 16 ,

∑

α

Nαm
1
αn

2
αm

3
α = 16 ,

∑

α

Nαm
1
αm

2
αn

3
α = −16 . (6.4)

This corresponds to O9-planes along (1, 0) × (1, 0) × (1, 0), and O5-planes along (0, 1) ×
(0,−1)×(1, 0), as already present in the 6d theory, and cobordism O5-planes along (0, 1)×
(1, 0)× (0, 1) and (1, 0)× (0, 1)× (0, 1).
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The model still contains only 3 stacks of D-branes with non-trivial angles, so that they
are just enough to fix the 2 parameters χi of the T2’s. The O-planes fix the supersymmetry
condition signs to

arctan
(
m1
α

n1α
χ1

)
+ arctan

(
m2
α

n2α
χ2

)
− arctan

(
m3
α

n3α
χ3

)
= 0 . (6.5)

Using the branes above, we get

χ1 = χ2 , χ3 = 14χ1
1− 12χ 2

1
. (6.6)

The regime of large (T2)3 corresponds to small χ3, which is also attained for small χ1.
Note that in this context the last condition χ1 ∼ χ3 encodes the relation between the 6d
tadpole and the inverse area of the spontaneously compactified T2.

The model is, up to exchange of directions in the T6 and overall sign flips, precisely
one of the examples of 4d MSSM-like constructions in [59, 60]. The gauge group is U(3)a×
USp(2)b×U(1)c×U(1)d, where we break the naive USp(2)c by Wilson lines or shifting off
the O-plane for the corresponding D5-branes. Taking into account the massive U(1)’s due
to BF couplings, this reproduces the SM gauge group. In addition, open strings between
the different brane stacks reproduce a 3-family (MS)SM chiral matter content, and the
MSSM Higgs doublet pair. Hence, we have described the spontaneous compactification of
a 6d model to a semi-realistic MSSM-like 4d theory.

A fun fact worth emphasizing is that most of the SM spectrum is absent in the original
6d model, and arises only after the spontaneous compactification. In particular, all the
MSSM matter and Higgs chiral multiplets, as well as the electroweak gauge sector, arise
from open string sectors involving the b and c branes, which arises as cobordism branes.
It is remarkable that cobordism entails that spontaneous compactification implies not just
the removal of spacetime dimensions, but also the dynamical appearance of novel degrees
of freedom. It is tantalizing to speculate on the potential implications of these realizations
in cosmological or other dynamical setups.
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A Dynamical tadpoles and swampland constraints

In this appendix we use the model in section 2 to illustrate the result in [3] that, in
theories with a dynamical tadpole which is not duly backreacted on the field configuration,
the mistreatment can show up as violations of swampland constraints.
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We consider type IIB theory on AdS5×T 1,1 and introduce M units of RR 3-form flux.
In the coordinates in [33, 34], it reads

F3 = 1
2M [sin θ1(cos θ2dθ1dφ1dφ2 + dθ1dφ1dψ) + sin θ2(cos θ1dθ2dφ1dφ2 − dθ2dφ2dψ)] .

It has constant coefficients in terms of fünf -bein 1-forms gi in [33] F3 = 1
2Mg5(g1g2 +

g3g3), hence its kinetic term |F3|3 is constant over the T 1,1 geometry. This acts as a
constant background source for e.g. the Laplace equation for the dilaton, which has no
solution over the compact T 1,1 geometry. This inconsistency of the equations of motion,
assuming no backreaction on the underlying geometry, signals the dynamical tadpole in
the configuration. In the following we will argue that it moreover can lead to violation of
the Weak Gravity Conjecture [47].

For concreteness we focus on the simplest set of states, corresponding to 5d BPS
particle states in the original theory (M = 0), with the BPS bound corresponding to
the WGC bound, for the gauge interaction associated to the KK U(1) dual to the U(1)R
symmetry of the dual CFT. For small R-charge n � N , these particle states are dual to
chiral primary single-trace mesonic operators of the SU(N)2 theory, e.g. tr (A1B1 . . . A1B1);
in the AdS side, they correspond to KK gravitons with momentum n on the S1. For very
large R-charge, the KK gravitons polarize due to Myers’ effect [91] into giant gravitons [92],
and their dual operators are determinant or sub-determinant operators [93]. Note that on
T 1,1 we have D3-branes wrapped on homologically trivial 3-cycles (but sustained as BPS
states by their motion on S1), hence they are different from (di)baryonic operators, which
correspond to D3-branes wrapped on the non-trivial S3 [94].

Our strategy is to consider these states in the presence of F3, but still keeping the
geometry as AdS5 × T 1,1 (i.e. with no backreaction of the dynamical tadpole), and show
that the interaction of F3 makes these states non-BPS, hence violating the WGC bound.
This analysis will be quite feasible in the giant graviton regime 1 � n ∼ N , by using the
wrapped D3-brane worldvolume action. Admittedly, proving a full violation of the WGC
would require showing the violation of the BPS condition for all values of n; we nevertheless
consider the large n result as a compelling indication that the WGC is indeed violated in
this configuration, thus making its inconsistency manifest.

Supersymmetric 3-cycles for D3-branes are easily obtained from holomorphic 4-cycles
in the underlying CY threefold [95, 96] (see also [97]). Describing the conifold as z1z2 −
z3z4 = 0, any holomorphic function of these coordinates f(x, y, z, w) = 0 defines a holo-
morphic 4-cycle corresponding to a giant graviton D3-branes, i.e. wrapped on a trivial19

3-cycle in T 1,1. We focus on a simple class of D3-branes studied in detail in [98]. They
are defined by the 4-cycle z1 =

√
1− α2, with α ∈ [0, 1] being a real constant, encoding

the size of the 3-cycle (with α = 0, 1 corresponding to the pointlike KK graviton and the
maximal giant graviton, respectively). We will follow the analysis in [98] with the inclusion
of the effect of F3 on the D3-brane probe.

19Di-baryonic D3-branes are on the other hand associated to non-Cartier divisors in the conifold, i.e.
4-cycles which can be defined in terms of the ai, bi homogeneous coordinates of the linear sigma model,
but cannot be expressed as a single equation f(zi) = 0.
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It is convenient to change to new coordinates {χ1, χ2, χ3, α, ν}




χ1 = 1
3(ψ − φ1 − φ2)

χ2 = 1
3(ψ + 3φ1 − φ2)

χ3 = 1
3(ψ − φ1 + 3φ2)





√
1− α2 = sin θ1

2 sin θ2
2

ν = 2u
α2+u2 with u = cos θ12 cos θ22

(A.1)

These are adapted to the D3-brane embedding, which simply reads

σ0 = t, σ1 = ν (doubly-covered), σ2 = χ2, σ3 = χ3 .

The double covering is very manifest for the maximal giant graviton, α = 1, z1 = 0. It cor-
responds to the defining equation z3z4 = 0, which splits in two components, corresponding
to two (oppositely oriented) copies of the non-trivial20 S3. The double covering remains
even for non-maximal giants, even though they correspond to irreducible 4-cycles.

The RR 3-form field strength in these coordinates is

F3 = M([a12 dχ1 ∧ dχ2 + a13 dχ1 ∧ dχ3 + a23 dχ2 ∧ dχ3] ∧ dα
+ [v12 dχ1 ∧ dχ2 + v13 dχ1 ∧ dχ3 + v23 dχ2 ∧ dχ3] ∧ dν) ,

(A.2)

with 



a12 = 9
4α(1±

√
1−ν2
1−c )

a13 = 9
4α(−1±

√
1−ν2
1−c )

a23 = 9
4α( −c1−c)





v12 = ∓9
4

c(ν2−c)
ν3
√
1−ν2(1−c)

v13 = ∓9
4

c(ν2−c)
ν3
√
1−ν2(1−c)

v23 = −9
4

c2

ν3(1−c)

where we have introduced c = 1−
√

1− α2ν2. We can fix a gauge and find the RR 2-form

C2 = M(c12dχ1 ∧ dχ2 + c13dχ1 ∧ dχ3 + c23dχ2 ∧ dχ3) , (A.3)

with 



c12 = −9
8(−α2 ∓ 2

√
1−ν2c
ν2 )

c13 = −9
8(α2 ∓ 2

√
1−ν2c
ν2 )

c23 = 9
8
(α2ν2−2c)

ν2

Its pullback on the D3-brane worldvolume is

P [C2] = Mχ̇1(c12dt ∧ dχ2 + c13dt ∧ dχ3) +Mc23dχ2 ∧ dχ3 . (A.4)

We can now compute the effect of this background on the D3-brane by using its world-
volume action. This is easy in the S-dual frame, in which the RR 2-form couples to the
D3-brane just like the NSNS 2-form in the original DBI+CS D3-brane action.21 After
integrating over χ2, χ3, this reads

S = SBDI + SCS = 64π2
9

∫
dtL ,

with L =
∫ 1

0
dν 2

(
− T3

√
− det (P [G]µν + P [C2]µν) + µ3R

4c4χ̇1
)
,

(A.5)

20In terms of the linear sigma model coordinates we have z1 = a1b1, z2 = a2b2, z3 = a1b2, z4 = a2b1,
and the two components correspond to a1 = 0 and b1 = 0, which are non-Cartier divisors.

21Related to this, one can check that the above background is neither pure gauge on the D3, nor cannot
be removed by a change in the worldvolume gauge field strength flux.
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where the factor of 2 of the double-covering of ν has been added, and the last term arises
from the CS coupling to the RR 4-form as in [98].

We are interested in focusing on the angular momentum of the state Pχ1 = ∂L
∂χ̇1

conju-
gate to the angular coordinate χ1. This reads

Pχ1 = 3
2

∫ 1

0
dν

( √
3πAgν NT3(χ̇1)√
N gν(B −A(χ̇1)2)

+ 9πc4µ3N
)
, (A.6)

with

A = 81
64ν4 {−4M2[(2(1− α2ν2)c− α2ν2)c]− 3πN(α2 − 1)ν2c2} ≡ AM2M2 +ANN ,

B = 81
64ν4

{
4M2[(4− α2ν2

)
c2 − 2α2ν2c

]

+ πN
[
2α4ν4 +

(
α2ν2 − 2c

)
(−3α2ν2 − 3ν2 + 8)

]}

≡ BM2M2 +BNN .

(A.7)
In the last equalities we have highlighted the parametric dependence on N and M .

Despite the fact that we have not managed to find a closed form for the result, since
M � N we can find an expansion for the integrand in the form

n = p0(α, ν, χ̇1)N + p2(α, ν, χ̇1)M2 +O(M4) , (A.8)

where the coefficient functions are computable, but we will not need their explicit expres-
sions.

The coefficient p0 is the survivor for theM = 0 case, and leads to an integer momentum.
On the other hand, the subleading correction p2 produces a momentum which is not integer.
This already signals a problem, since (as the geometry is considered undeformed even
after introducing F3) the gauge coupling of the KK U(1) is as in the M = 0 case, hence
charges under it should be integer in the same units. Hence one can directly claim that
the assumption of ignoring the dynamical tadpole backreaction lead to violation of charge
quantization, in contradiction with common lore for consistency with quantum gravity [99].

The above discussion however seems to contradict the fact that any quantum exci-
tation on a periodic S1 direction must have quantized momentum to have a well-defined
wavefunction. In fact, an alternative interpretation of the above mismatch is that the D3-
brane probe computation assumes a well-defined worldvolume embedding, in particular
well-defined (hence classical) trajectories for the 5d particle. It is only for BPS states in
supersymmetric vacua that such a computation is guaranteed to end up producing quan-
tized momenta. The fact that our holomorphic embedding ansatz fails to do so is just a
reflection that the actual integer-quantized states are not described by holomorphic equa-
tions. Since the latter condition is the one ensuring the match between the particle mass
and charge, it is clear that non-holomorphic embeddings will produce larger masses for the
same charge, hence violating the BPS/WGC bound.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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1 Introduction and conclusions

A remarkable proposal in the Swampland Program of quantum gravity constraints on
effective field theories [1] (see [2–4] for reviews) is the Cobordism Conjecture [5], that is
based on the expected absence of exact global symmetries in quantum gravity. In short, it
states that any configuration in a consistent theory of quantum gravity should not carry
any cobordism charge. In practice, it implies that any configuration in a consistent theory
of quantum gravity should admit, at the topological level, the introduction of a boundary
ending spacetime into nothing,1 in the sense of [6] (see [7, 8] for recent related discussions).
Accordingly, we will refer to such boundaries as walls of nothing. Equivalently, it implies
that any two consistent theories of quantum gravity must admit, at the topological level,
an interpolating configuration connecting them, as a generalized domain wall separating
the two theories. We will refer to such configurations as interpolating domain walls.

1This boundary may be dressed by additional defects, such as D-branes or O-planes in string setups, to
absorb the relevant charges.
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The Cobordism Conjecture is topological in nature. However, it can lead to remarkable
breakthroughs when supplemented by additional assumptions. For instance, the extra
ingredient of supersymmetry of the theory (and possibly of its walls) has led to highly
non-trivial constraints in lower dimensional theories, see e.g. [9, 10].

An important step forward in endowing cobordism walls with dynamics was taken
in [11], in the study of theories with tadpoles for dynamical fields (dubbed dynamical
tadpoles, as opposed to topological tadpoles, such as RR tadpoles, which lead to topological
consistency conditions on the configuration2). These are ubiquitious in the presence of
scalar potentials, and in particular in non-supersymmetric string models. In theories with
dynamical tadpoles the solutions to the equations of motion vary over the non-compact
spacetime dimensions. Based on the behaviour of large classes of string models, it was
proposed in [11] that such spacetime-dependent running solutions must hit cobordism walls
of nothing at a finite distance ∆ in spacetime3 (as measured in the corresponding Einstein
frame metric), scaling as ∆−n ∼ T with the strength of the tadpole T . These examples
included holographic AdS5 × T 1,1 compactifications with RR 3-form flux, type IIB 3-form
flux compactifications, magnetized D-brane models, massive IIA theory, M-theory on K3
with G4 flux, and the 10d non-supersymmetric USp(32) string theory. On the other hand,
interpolating cobordism walls connecting different theories were not discussed. One of the
motivations of this work is to fill this gap.

We argue that, when a running solution in theories with dynamical tadpoles hits a wall,
the behaviour of the configuration across the wall, and in particular the sharp distinction
between interpolating domain walls and walls of nothing, is determined by the behaviour
of scalar fields as one reaches the wall, via a remarkable correspondence:

• When scalars remain at finite distance points in moduli space as one hits the wall, it
corresponds to an interpolating domain wall, and the solution continues across it in
spacetime (with jumps in quantities as determined by the wall properties);

• On the other hand, when the scalars run off to infinity in moduli space as one reaches
the wall (recall, at a finite distance in spacetime), it corresponds to a wall of nothing,
capping off spacetime beyond it.

We also argue that scalars reaching singular points at finite distance in moduli space
upon hitting the wall still define interpolating domain walls, rather than walls of nothing;
hence, walls of nothing are not a consequence of general singularities in moduli space, but
actually to those at infinity in moduli space. This suggests that, in the context of dynamical
solutions,4 the walls of nothing of the Cobordism Conjecture are closely related to the
Swampland Distance Conjecture.5 We indeed find universal scaling relations between the

2Note however that dynamical tadpoles were recently argued in [12] to relate to violation of swampland
constraints of quantum gravity theories.

3For related work on dynamical tadpoles in non-supersymmetric theories, see [13–20].
4Note that, in setups with no dynamical tadpole, one can still have e.g. cobordism walls of nothing

without scalars running off to infinity: for instance, 11d M-theory, which does not even have scalars, admits
walls of nothing defined by Horava-Witten boundaries; similar considerations may apply to potential theories
with no moduli (or with all moduli stabilized at high enough scale).

5The status of the SDC in spacetime dependent running solutions was addressed in [21].
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(finite) distance to the wall in spacetime and the scale of the SDC tower [22]. In addition,
we uncover a universal scaling relation between the curvature scalar in running solutions
and the SDC tower scale that is reminiscent of the Anti de Sitter Distance Conjecture
(ADC) [23].

We illustrate these ideas in several large classes of string theory models, including
massive IIA, and M-theory on CY threefolds. Moreover, we also argue that our framework
encompasses the recent discussion of EFT string solutions in 4d N = 1 theories in [24] (see
also [25]), where saxion moduli were shown to attain infinity in moduli space at the core
of strings magnetically charged under the corresponding axion moduli. We show that EFT
string solutions are the cobordism walls of nothing of S1 compactifications of the 4d N = 1
theory with certain axion fluxes on the S1. Our scalings also relate to those between EFT
string tensions and the SDC tower scale in [24].

The paper is organized as follows. In section 2 we present the main ideas in the
explicit setup of running solutions in massive IIA theory, and their interplay with type I’
solutions [26]. In section 3 we carry out a similar discussion for M-theory on CY threefolds
with G4 flux (in section 3.1) and their relation to strongly coupled heterotic strings [27].
In section 3.2 we use it to discuss domain walls across singularities at finite distance in
moduli space, following [28]. In section 4 we discuss the S1 compactification of general 4d
N = 1 theories. In section 4.1 we introduce dynamical tadpoles from axion fluxes, whose
running solutions hit walls of nothing at which saxions run off to infinity. In section 4.2 we
relate the discussion to the EFT strings of [24]. In section 5 we discuss the moduli space
distances in walls of nothing and interpolating walls in 4d N = 1 theories with non-trivial
superpotentials of the kind arising in flux compactifications. In section 6 we discuss our
proposal in non-supersymmetric string theories, in particular the 10d USp(32) string. In
section 7 we offer some final remarks and outlook. Appendix A provides some observations
on cobordism walls in holographic throats.

2 Cobordism walls in massive IIA theory

Walls of nothing and infinite moduli space distance. In this section we consider
different kinds of cobordism walls in massive IIA theory [29], extending the analysis in [11].
The Einstein frame 10d effective action for the relevant fields is

S10,E = 1
2κ 2

∫
d10x

√
−GE

{[
R− 1

2(∂φ)2
]
− 1

2e
5
2φF 2

0 −
1
2e

1
2φ(F4)2

}
, (2.1)

where the Romans mass parameter is denoted by F0 to suggest it is a 0-form field strength
flux. This theory is supersymmetric, but has a dilaton tadpole

T ∼ e 5
2φF 2

0 , (2.2)

so the theory does not admit 10d maximally symmetric solutions. The solutions with
maximal (super)symmetry are 1/2 BPS configurations with the dilaton depending on one
coordinate x9, closely related to that in [30]. In conventions closer to [26], the Einstein
frame metric and dilaton are

(GE)MN = Z(x9)
1
12 ηMN , eφ = Z(x9)−

5
6 , with Z(x9) ∼ −F0 x

9 , (2.3)
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where we have set some integration constant to zero. The solution hits a singularity at
x9 = 0. The spacetime distance from a general position x9 to the singularity is [11]

∆ =
∫ 0

x9
Z(x9)

1
24 dx9 ∼ Z(x9)

25
24 F−1

0 ∼ F−1
0 e−

5
4φ ∼ T − 1

2 , (2.4)

in agreement with the scaling relation ∆−2 ∼ T , that was dubbed Finite Distance les-
son in [11]. Following the Dynamical Cobordism proposal therein, the singularity is re-
solved in string theory into a cobordism wall of nothing, defined by an O8-plane (possibly
dressed with D8-branes to match the F0 flux to be absorbed),6 ending the direction x9 as
a boundary.

We now notice that, since Z → 0 implies φ→∞ as x9 → 0, the dilaton runs off to infin-
ity in moduli space as one hits the wall, as befits a wall of nothing from our discussion in the
introduction. According to the SDC, there is an infinite tower of states becoming massless
in this region, with a scale decaying exponentially with the moduli space distance D as

MSDC ∼ e−λD , (2.5)

with some positive O(1) coefficient λ.
It is interesting to find a direct relation between these quantities and the spacetime

distance to the wall. The distance in moduli space is given by φ =
√

2D, as can be seen
from the kinetic term for φ in (2.1). From (2.4) we have

∆ ∼ e−
5

2
√
2
D
, MSDC ∼ ∆

2
√
2

5 λ . (2.6)

Hence the SDC tower scale goes to zero with the distance to the wall with a power-like
scaling.

It is a natural question to ask if this tower of states becomes light in the actual dynam-
ical configuration (rather than in the adiabatic framework of the standard formulation of
the SDC). In this particular setup, the SDC tower corresponds to D0-branes which end up
triggering the decompactification of the M-theory eleventh dimension. In the dynamical
solution, there are a finite number of extra massless states, responsible for the enhancement
of the perturbative open string gauge group to the exceptional symmetries which are known
to arise from the heterotic dual theory [26] (see also [31]). On the other hand, there is no
signal of an infinite tower of states becoming massless simultaneously. The appearance of
the SDC in the dynamical context has thus different implications as compared with the
usual adiabatic formulation.

Let us now turn to another novel, and tantalizing, scaling. The scalar curvature for
the running solution reads

|R| ∼ (−x9)−
25
12 ∼ e

5√
2
D
. (2.7)

Using this, we can write the SDC tower scale in terms of the scalar curvature as

MSDC ∼ e−λD ∼ |R|−
√
2
5 λ . (2.8)

6This imposes a swampland bound on the possible values of F0 that are consistent in string theory.
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This scaling is highly reminiscent of the Anti de Sitter Distance Conjecture (ADC) of [23],7
even though the setup under consideration is very different.8 Note however that, as in the
ADC, it signals a failure of the decoupling of scales, and hence a breakdown of the effective
field theory near the wall of nothing. This fits nicely with our observation that the wall
can only be microscopically defined in the UV complete theory, and works as a boundary
condition defect at the level of the effective theory.

Interpolating domain walls. There is a well known generalization of the above solu-
tions, which involves the inclusion of D8-branes acting as interpolating domain walls across
which F0 jumps by one unit. The general solution of this kind is provided by (2.3) with a
piecewise constant F0 and a piecewise continuous function Z [26].

The D8-brane domain walls are thus (a very simple realization of) cobordism domain
walls interpolating between different Romans IIA theories (differing just in their mass
parameter). The point we would like to emphasize is that, since Z remains finite across
them, the dilaton remains at finite distance in moduli space, as befits interpolating domain
walls from our discussion in the introduction.

3 Cobordism walls in M-theory on CY3

In this section we recall results from the literature on the strong coupling limit of the
heterotic string, also known as heterotic M-theory [27, 32–34] (see [35, 36] for review and
additional references). They provide straightforward realizations of the different kinds of
cobordism walls in M-theory compactifications on CY threefolds. The discussion general-
izes that in [11], and allows to study the behaviour at singular points at finite distance in
moduli space, in particular flops at conifold points.

3.1 M-theory on CY3 with G4 flux

We consider M-theory on a CY threefold X, with G4 field strength fluxes on 4-cycles. For
later convenience, we follow the presentation in [28]. We introduce dual basis of 2- and
4-cycles Ci ∈ H2(X) and Di ∈ H4(X), and define

∫

Di

G4 = ai ,

∫

Ci
C6 = λ̃i . (3.1)

We also denote by bi the 5d vector multiplet of real Kähler moduli, with the usual Kähler
metric and the 5d N = 1 prepotential

Gij = −1
2

∂2

∂bi∂bj
lnK , K ≡ 1

3!dijkb
ibjbk , (3.2)

with dijk being the triple intersection numbers of X. We have the familiar constraint K = 1
removing the overall modulus V , which lies in a hypermultiplet.

7It is possible that the result is ultimately linked to the generalized distance conjectures in [23]; we leave
this as an open question for future work.

8In contrast to the ADC, that considers the limit of vanishing curvature of a family of AdS vacua, in
our setup the scalar curvature blows up as the singularity is approached. However, we do find a power-like
scaling similar to the ADC one.
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The 5d effective action for these fields is

S5 = −M
9
p,11
2 L6

[∫

M5

√−g5

(
R+Gij(b)∂Mbi∂Mbj + 1

2V 2∂MV ∂
MV + λ(K − 1)

)

+ 1
4V 2G

ij(b)ai ∧ ?aj + dλ̃i ∧ ai
]
−
N+1∑

n=0
α

(n)
i

∫

M
(n)
4

(
λ̃i + bi

V

√
g4

)
. (3.3)

Here λ is a Lagrange multiplier, and L the reference length scale of the Calabi-Yau. With
hindsight, we include 4d localized terms which correspond to different walls in the theory,
with induced 4d metric g4.

The G4 fluxes ai induce dynamical tadpoles for the overall volume and the Kähler
moduli bi. There are 1/2 supersymmetric solutions running in one spacetime coordinate,
denoted by y, with the structure

ds2
5 = e2Ads2

4 + e8Ady2 ,

V = e6A , bi = e−Af i ,

e3A =
( 1

3!dijkf
if jfk

)
,

(dλ̃i)µνρσ = εµνρσe
−10A

(
−∂11b

i + 2bi∂11A
)
. (3.4)

The whole solution is determined by a set of one-dimensional harmonic functions. They
are given in terms of the local values of the G4 fluxes,

dijkf
jfk = Hi , Hi = aiy + ci . (3.5)

Here the ci are integration constants set to have continuity of the Hi, and hence of the
fi, across the different interpolating domain walls in the system, which produce jumps as
follows. Microscopically, the interpolating domain walls correspond to M5-branes wrapped
on 2-cycles [C] = ∑

niC
i, leading to jumps in the fluxes that in units of M5-brane charge

are given by
∆ai = ni . (3.6)

Hence, interpolating domain walls maintain the theory at finite distance in moduli
space. This is not the case for cobordism walls of nothing, which arise when eA → 0, and
hence V → 0, which sits at infinity in moduli space. This regime was already discussed (in
the simpler setup of K3 compactifications) in [11], where the cobordism domain was argued
to be given by a Horava-Witten boundary (dressed with suitable gauge bundle degrees of
freedom, as required to absorb the local remaining G4 flux), in agreement with the strong
coupling singularity discussed in [27]. The wall appears at a finite spacetime distance ∆
following the scaling ∆−2 ∼ T in [11]. In what follows, we describe the scaling relations of
the moduli space distance and the SDC tower at these walls of nothing.

Since they are characterized by the vanishing of the overall volume of X, it is enough to
follow the behaviour of V and the discussion simplifies. Restriction to this sector amounts
to setting all fi ≡ f in (3.4), and all Hi ≡ H. Also, since the wall of nothing arises when
H → 0, we can take this location as y = 0 and write

e2A ∼ H(y) ∼ αy . (3.7)

– 6 –
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Using the metric in (3.4), the spacetime distance from a point y > 0 is

∆ =
∫ y

0
(αy)2dy = 1

3α
2 y3 . (3.8)

We are also interested in the traversed distance in moduli space D. Using the kinetic term
in (3.3), the relevant integral to compute is

D = −
∫ 1√

2V
dV

dy
dy . (3.9)

Using V ∼ H3, we get as leading behavior near the singularity

D ' − 3√
2

log y = − 1√
2

log 3∆
α2 , (3.10)

where in the last equality we used (3.8). This implies

∆ ∼ e−
√

2D , (3.11)

and leads to a power-like scaling of the SDC tower mass

MSDC ∼ ∆
λ√
2 . (3.12)

Computing the curvature scalar from (3.4), we get

|R| ∼ e2
√

2D . (3.13)

So the SDC tower scale can be expressed, in an ADC-like manner, as

MSDC ∼ |R|−
λ

2
√

2 . (3.14)

We thus recover a similar behaviour to the examples in section 2.

3.2 Traveling across finite distance singularities in moduli space

The setup of M-theory on a CY3 X allows to address the question of whether walls of
nothing could arise at finite distance in moduli space, if the scalars hit a singular point in
moduli space. This is actually not the case, as can be explicitly shown by following the
analysis in [28] for flop transitions.

Specifically, they considered the flop transition between two Calabi-Yau manifolds with
(h1,1, h2,1) = (3, 243), in the setup of a CY3 compactification of the Horava-Witten theory,
namely with two boundaries restricting the coordinate y to an interval. In our more general
setup, one may just focus on the dynamics in the bulk near the flop transition as one moves
along y. Hence we are free to locate the flop transition point at y = 0.

In terms of the Kähler moduli ti = V
1
3 bi of X, and changing to a more convenient

basis
t1 = U , t2 = T − 1

2U −W , t3 = W − U , (3.15)
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and similar (proper transforms under the flop) for X̃, the Kähler cones of X and X̃ are
defined by the regions

X : W > U > 0 , T >
1
2U +W , (3.16)

X̃ : U > W > 0 , T >
3
2U . (3.17)

This shows that the flop curve is C3, and the area is W −U , changing sign across the flop.
Near the flop point y = 0, the harmonic functions for the two CYs X and X̃ have the

form

X at y ≤ 0 X̃ at y ≥ 0
HT = −18y + kT , H̃T = 18y + kT ,

HU = −25y + k0 , H̃U = 24y + k0 ,

HW = 6y + k0 , H̃W = −5y + k0 . (3.18)

Hence

X at y ≤ 0 X̃ at y ≥ 0
HW−U = 31y , H̃W−U = −29y . (3.19)

Even though the flop point is a singularity in moduli space, and despite the sign flip for
W−U , the harmonic functions are continuous and the solution remains at finite distance in
moduli space. This agrees with the picture that it corresponds to an interpolating domain
wall. In fact, as discussed in [28], the discontinuity in their slopes (and the related change
in the G4 fluxes) makes the flop point highly analogous to the above described interpolating
domain walls associated to M5-branes.

The above example illustrates a further important aspect. It provides an explicit
domain wall intepolating between two different (yet cobordant) topologies. It would be
extremely interesting to extend this kind of analysis to other topology changing transitions,
such as conifold transitions9 [38]. This would allow for a further leap for the dynamical
cobordism proposal, given that moduli spaces of all CY threefolds are expected to be
connected by this kind of transitions [39].

We have thus established that physics at finite distance in moduli space gives rise to
interpolating domain walls, rather than walls of nothing, even at singular points in moduli
space. The implication is that the physics of walls of nothing is closely related to the
behaviour near infinity in moduli space and hence to the SDC. In the following section we
explore further instances of this correspondence in general 4d N = 1 theories.

4 S1 compactification of 4d N = 1 theories and EFT strings

In this section we study a systematic way to explore infinity in moduli space in general 4d
N = 1 theories. This arises in a multitude of string theory constructions, ranging from

9For a proposal to realize conifold transitions dynamically in a time-dependent background, see [37].
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heterotic CY compactifications to type II orientifolds on CY spaces [40]. Our key tool is
an S1 compactification to 3d with certain axion fluxes. We will show that the procedure
secretly matches the construction of EFT strings in [24] (see also [25]). Actually, this
correspondence was the original motivation for this paper.

4.1 Cobordism walls in 4d N = 1 theories on a circle

We want to consider general 4d N = 1 theories near infinity in moduli space. According
to [41–43], the moduli space in this asymptotic regime is well approximated by a set of
axion-saxion complex fields, with metric given by hyperbolic planes. We start discussing
the single-field case, and sketch its multi-field generalization at the end of this section.

Consider a 4d N = 1 theory with complex modulus S = s+ ia, where a is an axion of
unit periodicity and s its saxionic partner. We take a Kähler potential

K = − 2
n2 log(S + S̄) . (4.1)

The 4d effective action is

S =
M2
P,4
2

∫
d4x
√−g4

{
R4 −

n−2

s2

[
(∂s)2 + (∂a)2

]}
,

=
M2
P,4
2

∫
d4x
√−g4

{
R4 − (∂φ)2 − e−2nφ (∂a)2

}
,

(4.2)

where in the last equation we have defined φ = 1
n log ns.

We now perform an S1 compactification to 3d with the following ansatz for the metric10

and the scalars

ds2
4 = e−

√
2σds2

3 + e
√

2σR2
0dθ

2 ,

φ = φ(xµ) , a = θ

2πq + a(xµ) , (4.3)

where xµ denote the 3d coordinates and θ ∼ θ + 2π is a periodic coordinate. Regarding
the axion as a 0-form gauge field, the ansatz for a introduces q units of its field strength
flux (we dub it axion flux) on the S1. We allowed for a general saxion profile to account
for its backreaction, as we see next.

The dimensional reduction of the action (4.2) gives (see e.g. [44])

S3 = MP,3
2

∫
d3x
√−g3

{
R3 −Gab∂µϕa∂µϕb − V (ϕ)

}
, (4.4)

where

Gab∂µϕ
a∂µϕb = (∂σ)2 + (∂φ)2 + e−2nφ (∂a)2 , (4.5a)

V (ϕ) = e−2
√

2σ−2nφ
(

q

2πR0

)2
, (4.5b)

and MP,3 = 2πR0M
2
P,4 is the 3d Planck mass.

10We omit the KK U(1) because it will not be active in our discussion.
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The last term in the 3d action corresponds to a dynamical tadpole for a linear combi-
nation of the saxion and the radion, induced by the axion flux. We thus look for running
solutions of the 3d equations of motion. We focus on solutions with constant axion in 3d
a(xµ) = 0, for which the equations of motion read

1√−g3
∂ν
(√−g3g

µν∂µσ
)

= −
√

2 e−2
√

2σ−2nφ
(

q

2πR0

)2
, (4.6a)

1√−g3
∂ν
(√−g3g

µν∂µφ
)

= −n e−2
√

2σ−2nφ
(

q

2πR0

)2
. (4.6b)

We consider solutions in which the fields run with one of the coordinates x3 (which with
hindsight we denote by r ≡ x3). We focus on a particular 3d axion-saxion ansatz

s(r) = s0 −
q

2π log r

r0
, a(r) = a0 , (4.7)

for which the radion can be solved as

√
2σ = 2

n
(φ− φ0) + 2 log r

R0
= 2
n2 log

(
1− q

2πs0
log r

r0

)
+ 2 log r

R0
. (4.8)

This, together with (4.7), provides the scalar profiles solving the dynamical tadpole. The
motivation for this particular solution is that it preserves 1/2 supersymmetry, as we discuss
in the next section in the context of its relation with the 4d string solutions in [24].

Note that as r → 0, the radion blows up as σ → −∞, implying that the S1 shrinks to
zero size, and the metric becomes singular. As one hits this singularity, the saxion goes to
infinity, so we face a wall at which the scalars run off to infinity in moduli space. According
to our arguments, it must correspond to a cobordism wall of nothing, capping off spacetime
so that the r < 0 region is absent; hence the suggestive notation to regard this coordinate
as a radial one, an interpretation which will become more clear in the following section.
The finite distance ∆ to the wall can be shown to obey the scaling ∆−2 ∼ T introduced
in [11].

Note that the asymptotic regime near infinity in moduli space s � 1 corresponds to
the regime

r � r0e
2π
q

(s0−1)
. (4.9)

Hence the exploration of the SDC’s implications requires zooming into the region close to
the wall of nothing.

Let us emphasize that the microscopic structure of the wall of nothing cannot be
determined purely in terms of the effective field theory, and should be regarded as provided
by its UV completion.11 On the other hand, we can use effective field theory to obtain
the scaling relations between different quantities, as in the string theory examples in the
previous sections.

11In particular, possible constraints on q could arise from global consistency of the backreaction.
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The scaling relations. We can now study the scaling relations between spacetime and
moduli space distances, and the SDC tower scale. From the spacetime profiles for σ and
φ, it is easy to check that the contribution from the radion dominates in the r → 0 limit.
The resulting scaling between the moduli space distance D and r is

r ' e−D , (4.10)

showing again that D →∞ as r → 0. On the other hand, the spacetime distance ∆ in the
same limit gives

d∆ ' r

R0

(
− q

2πs0
log

(
r

r0

)) 2
n2 ' 1

R0

(
− q

2πs0

) 2
n2
D2/n2

e−2DdD . (4.11)

Upon integration one gets an incomplete gamma function that, after keeping the leading
order in D →∞, finally gives

∆ ∼ e−2D+ 2
n2

logD . (4.12)

This is an exponential behaviour up to logarithmic corrections. It would be interesting to
relate this to existing results on log corrections to Swampland conjectures (see [45]), but
we skip them for now. The resulting relation allows to write the scalings of the SDC tower
scale as

MSDC ∼ e−λD ∼ ∆
λ
2 , (4.13)

that is again a power-like relation with O(1) exponents.
Let us turn to computing the scaling of the SDC scale with the scalar curvature R.

The general expression for R is rather complicated, but simplifies in the leading order
approximation at r = 0

log |R| ' −4 log r ' 4D . (4.14)

Hence, the SDC tower mass scales as

MSDC ∼ e−λD ∼ |R|−
1
4λ . (4.15)

Amusingly, we again recover a power-like scaling highly reminiscent of the ADC.

Multi-field generalization. Let us end this section by mentioning that the above simple
model admits a straightforward generalization to several axion-saxion moduli ai, si. One
simply introduces a vector of axion fluxes qi and generalizes the above running solution to

ai = ai0 + θ

2πq
i , si(r) = si0 −

qi

2π log r

r0
. (4.16)

The corresponding backreaction on σ is
√

2σ = −K(r) +K0 + 2 log r

R0
. (4.17)

We leave this as an exercise for the reader, since the eventual result is more easily recovered
by relating our system to the 4d string-like solutions in [24], to which we now turn.
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4.2 Comparison with EFT strings

The ansatz (4.7) is motivated by the relation of our setup with the string-like solutions to
4d N = 1 theories discussed in [24], which we discuss next. This dictionary implies that
those results can be regarded as encompassed by our general understanding of cobordism
walls of nothing and the SDC.

In a 4d perspective, (4.7) corresponds to a holomorphic profile z = reiθ

S = S0 + q

2π log z

z0
. (4.18)

The axion flux in (4.3) implies that there is a monodromy a→ a+q around the origin z = 0.
Hence, the configuration describes a BPS string with q units of axion charge. The solution
for the metric can easily be matched with that in [24]. The 4d metric takes the form

ds2
4 = −dt2 + dx2 + e2Zdzdz̄ , (4.19)

with the warp factor
2Z = −K +K0 = 2

n2 log s

s0
. (4.20)

This matches the 3d metric (4.19) by writing

ds2
3 = e

√
2σ
(
−dt2 + dx2

)
+ e2Z+

√
2σdr2 , (4.21)

and (4.8) ensures the matching of the S1 radion with the 4d angular coordinate range.
∫ 2π

0
dθeσ/

√
2R0 =

∫ 2π

0
dθeZr . (4.22)

Hence, in 4d N = 1 theories there is a clear dictionary between running solutions in S1

compactifications with axion fluxes and EFT string solutions. The compactification circle
maps to the angle around the string; the axion fluxes map to string charges; the coordinate
in which fields run (semi-infinite, due to the wall of nothing) maps to the radial coordinate
away from the string; the saxion running due to the axion flux induced dynamical tadpole
maps to the string backreaction on the saxion, i.e. the string RG flow; the scalars running
off to infinity in moduli space as one hits the wall of nothing map to the scalars running
off to infinity in moduli space as one reaches the string core. Note that the fact that the
wall of nothing is not describable within the effective theory maps to the criterion for an
EFT string, i.e. it is regarded as a UV-given defect providing boundary conditions for the
effective field theory fields.

This dictionary allows to extend the interesting conclusions in [24] to our context.
For instance, the relation between the string tension and its backreaction on the geometry
provides a scaling with the spacetime distance. This is the counterpart of the scaling
relations we found in our 3d dynamical cobordism discussion in the previous section.

On another line, the Distant Axionic String Conjecture in [24] proposes that every
infinite field distance limit of a 4d N = 1 effective theory consistent with quantum gravity
can be realized as an RG flow UV endpoint of an EFT string. We can thus map it into the
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proposal that every infinite field distance limit of a 4d N = 1 effective theory consistent
with quantum gravity can be realised as the running into a cobordism wall of nothing in
some axion fluxed S1 compactification to 3d. It is thus natural to extend this idea to a
general conjecture

Cobordism Distance Conjecture. Every infinite field distance limit of a effective theory
consistent with quantum gravity can be realized as the running into a cobordism wall of
nothing in (possibly a suitable compactification of) the theory.

The examples in the previous sections provide additional evidence for this general form
of the conjecture, beyond the above 4d N = 1 context.

5 4d N = 1 theories with flux-induced superpotentials

In the previous section we discussed cobordism walls in compactifications of 4d N = 1 theo-
ries on S1 with axion fluxes. Actually, it is also possible to study running solutions and walls
in these theories without any compactification. This requires additional ingredients to in-
troduce the dynamical tadpoles triggering the running. Happily, there is a ubiquitous mech-
anism, via the introduction of non-trivial superpotentials, such as those arising in flux com-
pactifications. We discuss those vacua and their corresponding walls in this section. The
discussion largely uses the solutions constructed in [46], whose notation we largely follow.

Let us consider a theory with a single axion-saxion complex modulus Φ = a+ iv. The
4d effective action, in Planck units, is

S = −
∫
d4x
√−g

[
1
2R+ |∂Φ|2

4(Im Φ)2 + V (Φ,Φ)
]

(5.1)

with the N = 1 scalar potential

V (Φ,Φ) = eK
(
KΦΦ |DΦW |2 − 3|W |2

)
. (5.2)

We focus on theories of the kind considered in [46], where the superpotential is induced
from a set of fluxes mI , eI , with I = 0, 1, and is given by

W = eIf
I(Φ)−mIGI(Φ) (5.3)

for f I , GI some holomorphic functions whose detailed structure we do not need to specify.
In general, these fluxes induce a dynamical tadpole for Φ, unless it happens to sit at

the minimum of the potential. The results in [46] allow to build 1/2 BPS running solutions
depending on one space coordinate y with

ds2 = e2Z(y)dxµdx
µ + dy2 . (5.4)

For the profile of the scalar, the solution has constant axion a, but varying saxion.
Defining the ‘central charge’ Z = eK/2W and Z∗ its value at the minimum of the potential
(and similarly for other quantities), the profile for the scalar v is

v(y) = v∗ coth2
(1

2 |Z∗| y
)
. (5.5)
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Note that in [46] this solution was built as ‘the left hand side’ of an interpolating domain
wall solution (more about it later), but we consider it as the full solution in our setup.
Note also that we have shifted the origin in y with respect to the choice in [46].

The backreaction of the scalar profile on the metric is described by

Z(y) = d+ e−
1
2 K̂0

[
log

(
− sinh

(1
2 |Z∗| y

))
+ log cosh

(1
2 |Z∗|y

)]
, (5.6)

where d is just an integration constant and K̂0 is an additive constant in the Kähler
potential.

The solution exhibits a singularity at y = 0, which (since the metric along y is flat) is
at finite distance in spacetime from other points. On the other hand it is easy to see that
the scalar v runs off to infinity as we hit the wall, since

v(y)→ 4 v∗ |Z∗|−2 y−2 as y → 0 . (5.7)

We can obtain the scaling of the moduli space distance with the spacetime distance. Using
the kinetic term in (5.1),

D = −
∫ 1√

2v
dv

dy
dy ' −

√
2 log y ' −

√
2 log ∆ . (5.8)

In the last two equalities we have used (5.7) and (5.4) respectively. We thus get a familiar
power-like scaling for the SDC scale

MSDC ∼ ∆
√

2λ . (5.9)

We also recover the ADC-like scaling with the scalar curvature. At leading order in y → 0
one finds

log |R| ' −2 log y '
√

2D , (5.10)
which gives

MSDC ∼ |R|−
1√
2
λ
. (5.11)

This all fits very nicely with our picture that the solution is describing a cobordism wall
of nothing, and that the solution for y > 0 is unphysical and not realized. This provides
an effective theory description of the cobordism defects for general 4d N = 1 theories, in
a dynamical framework. It would be interesting to find explicit microscopic realizations of
this setup.

Let us conclude this section by mentioning that it is possible to patch together sev-
eral solutions of the above kind and build cobordism domain walls interpolating between
different flux vacua. In particular in [46] the solution provided ‘the left hand side’ of one
such interpolating domain wall solution whose ‘right hand side’ was glued before reaching
(in our choice of origin) y = 0, hence before encountering the wall of nothing. The partic-
ular solution on the right hand side was chosen to sit at the minimum of the corresponding
potential, for which there is no tadpole and thus the functions D and v are simply set to con-
stants, fixed to guarantee continuity. Consequently, the solutions remain at finite distance
in moduli space, in agreement with our picture for interpolating domain walls. In some
sense, the flux changing membrane is absorbing the tadpole, thus avoiding the appearance
of the wall of nothing. We refer the reader to [46] (see also [25]) for a detailed discussion.
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6 Walls in 10d non-supersymmetric strings

The above examples all correspond to supersymmetric solutions, and even the resulting
running solutions preserve some supersymmetry. This is appropriate to establish our key
results, but we would like to illustrate that they are not restricted to supersymmetric
setups. In order to illustrate that these ideas can apply more generally, and can serve as
useful tools for the study of non-supersymmetric theories, we present a quick discussion
of the 10d non-supersymmetric USp(32) theory [47], building on the solution constructed
in [13] and revised in [11].12

The 10d (Einstein frame) action reads

SE = 1
2κ2

∫
d10x
√
−G

[
R− 1

2(∂φ)2
]
− TE9

∫
d10x
√
−G 64 e

3φ
2 , (6.1)

where TE9 is the (anti)D9-brane tension. The theory has a dynamical dilaton tadpole
T ∼ TE9 g

3/2
s , and does not admit maximally symmetric solutions. The running solution

in [13] preserves 9d Poincaré invariance, and reads

φ = 3
4αEy

2 + 2
3 log |√αEy|+ φ0 ,

ds 2
E = |√αEy|

1
9 e−

αEy
2

8 ηµνdx
µdxν + |√αEy|−1e−

3φ0
2 e−

9αEy
2

8 dy2 , (6.2)

where αE = 64k2T9. There are two singularities, at y = 0 and y → ∞, which despite
appearances are located at finite spacetime distance, satisfying the scaling ∆−2 ∼ T intro-
duced in [11]. In this case, there is no known microscopic description for the underlying
cobordism defect, but we can still consider the effective theory solution to study the theory
as we hit the walls.

We consider the two singularities at y = 0,∞, and look at the behaviour of the
solution near them. The distance from a generic point y to the singularites is given by the
integral [11]

∆ ∼
∫
|√αEy|−

1
2 e−

3φ0
4 e−

9αEy
2

16 dy , (6.3)

on the intervals [y, 0] when y → 0, and [y,∞] when y →∞. They give (lower and upper)
incomplete gamma functions

∆0 ∼ γ
(

1
4 ,

9αEy2

16

)
and ∆∞ ∼ Γ

(
1
4 ,

9αEy2

16

)
. (6.4)

By expanding at leading order as y → 0 and y →∞, one gets

∆0 ∼ y
1
2 and ∆∞ ∼ y−

3
2 e−

9αEy
2

16 . (6.5)

The moduli space distance is φ =
√

2D. Its leading behavior is D ' −
√

2
3 ln y as

y → 0+ and D ' 3αE
4
√

2y
2 as y →∞. This leads to the scaling relations

y → 0+ : ∆0 ∼ e−
3

2
√

2
D
,

y →∞ : ∆∞ ∼ D−
3
4 e
− 3

2
√
2
D ∼ e−

3
2
√

2
D− 3

4 lnD
. (6.6)

12For other references related to dynamical tadpoles in non-supersymmetric theories, see [14–20].
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In both cases we have the moduli space distance running off to infinity as we approach
the wall. This is in agreement with their interpretation as cobordism walls of nothing.13

Moreover, we recover the a familiar power-like scaling of the SDC mass scale with the same
numerical factors in both cases

MSDC ∼ e−λD ∼ ∆
2
√

2
3 λ . (6.7)

It is interesting to see that one can also recover a standard power-like scaling for both
singularities if the moduli space distance D is compared with the spacetime curvature
scalar R. The latter reads

|R| = √αE e
3φ0
2

(2
9y
−1 + 7

2αEy + 9
8α

2
Ey

3
)
e

9αE
8 y2 . (6.8)

Let us start with the y → 0 singularity. We can approximate the logarithm of the scalar
curvature as

log |R| ' − log y ' 3√
2
D . (6.9)

This allows to rewrite the SDC scaling in the form of the ADC-like scaling

MSDC ∼ e−λ∆ ∼ |R|−
√

2
3 λ . (6.10)

Let us now turn to the y →∞ limit. In this case the logarithm of the scalar curvature
is approximated to

log |R| ' 9αE
8 y2 ' 3√

2
D , (6.11)

thus recovering the same behavior as for the other singularity.
As announced, we find a nice power-like scaling, reminiscent as usual of the ADC

relations. It is amusing that the precise coefficient arises in both the strong and weak
coupling singularities, which may hint towards some universality or duality relation in this
non-supersymmetric 10d model.

7 Final remarks

In this work we have considered running solutions solving the equations of motion of
theories with tadpoles for dynamical fields. These configurations were shown to lead to
cobordism walls of nothing at finite distance in spacetime [11], in a dynamical realization
of the Cobordism Conjecture. We have also discussed interpolating domain walls across
which we change to a different (but cobordant) theory/vacuum. We have shown that the
key criterion distinguishing both kinds of walls is related to distance in field space: walls of
nothing are characterized by the scalars attaining infinite distance in moduli space, while
interpolating domain walls remain at finite distance in moduli space.

13The interpretation of the y → 0 singularity as a wall of nothing was deemed unconventional, since it
would arise at weak coupling. It is interesting that we get additional support for this interpretation from
the moduli space distance behaviour.
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Hence, cobordism walls of nothing provide excellent probes of the structure of the
effective theory near infinite distance points, and in particular the Swampland Distance
Conjectures. This viewpoint encompasses and generalizes that advocated for EFT strings
in 4d N = 1 theories in [24]. We have found interesting new general scaling relations
linking, for running solutions, the moduli space distance and the SDC tower mass scale to
geometric spacetime quantities, such as the distance to the wall or the scalar curvature.
The latter takes a form tantalizingly reminiscent of the Anti de Sitter Distance Conjecture
(ADC), suggesting it may relate to the generalized distance in [23].

We have illustrated the key ideas in several large classes of string models, most often
in supersymmetric setups (yet with nontrivial scalar potentials to produce the dynami-
cal tadpole triggering the running); however, we emphasize that we expect similar be-
haviours in non-supersymmetric theories, as we have shown explicitly for the 10d non-susy
USp(32) theory.

There are several interesting open question that we leave for future work:

• We have mainly focused on space-dependent running solutions. It is clearly interesting
to consider time-dependent solutions, extending existing results in the literature [13–20],
and exploit them in applications, in particular with an eye on possible implications for
inflationary models or quintessence.

• A particular class of time-dependent solutions are dynamical bubbles. In particular, a
tantalizing observation is that in the original bubble of nothing in [6], the 4d radion
modulus goes to zero size (which lies at infinite distance in moduli space of the S1

compactification) as one hits the wall. Although the setup is seemingly unrelated, it
would be interesting to understand universal features of bubbles of nothing along the
lines considered in our work.

• The appearance of ADC-like scaling relations in our running solutions possibly signals
an underlying improved understanding of infinite distance limits in dynamical (rather
than adiabatic) configurations. For instance, as shown in [21], the r → ∞ limit in the
Klebanov-Strassler solution [48] avoids the appearance of a tower of states becoming
massless exponentially with the distance. This was related to having a non-geodesic
trajectory in moduli space (see [49] for a general discussion about non-geodesics and
the SDC). However, as dictated by the lack of separation of scales in this model, an
ADC-like scaling is yet respected as the scalar curvature goes to zero in this limit. This
could point to a more universal way of writing the SDC in dynamical configurations.

• In all the examples we find precise numbers relating the parameter in the SDC λ to
the power in the ADC-like scaling. It would certainly be interesting to find a pattern
in these values and possibly relate them to properties of the infinite distance limits
along the lines of [41–43]. On a similar line of thought, it has been argued that in
supersymmetric cases the ADC’s scaling parameter should be 1/2 [23], assuming this
applies to our setup, it would be interesting to extract the SDC’s parameter λ from our
supersymmetric examples with an ADC-like scaling. It would be remarkable that they
match the existing proposals for the value of λ.
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• The ADC-like scaling may also signal some potential interplay with the Gravitino Dis-
tance Conjecture [50, 51]. One expects to find a power relation between the mass of the
gravitino and the scalar curvature of the solution, it would be certainly interesting to
test this and to look for some pattern in the corresponding powers.

• The trajectory in moduli space in spacetime-dependent solutions has a strong presence
in the study of black holes, in particular attractor equations and flows. The attempts to
relate them to the SDC (see e.g. [52]) can have an interesting interplay with our general
framework.

• We certainly expect interesting new applications of our results to the study of non-
supersymmetric strings, and to supersymmetry-breaking configurations in string theory.

We hope to report on these problems in the near future.
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A Holographic examples

In [11] it was shown that Dynamical Cobordism underlies the structure of the gravity
dual of the SU(N) × SU(N + M) conifold theory, namely fractional brane deformation
of AdS5 × T 1,1. This in fact explains the appearance of a singularity at finite radial
distance [53] and its smoothing out into a configuration capping of the warped throat [48],
as a cobordism wall of nothing. In this appendix we provide some examples of other
warped throat configurations which illustrate the appearance of other cobordism walls
of nothing, and cobordism domain walls interpolating between theories corresponding to
compactification on horizons of different topology. The discussion is strongly inspired by
the constructions in [54] (see also [55]).

A.1 Domain wall to a new vacuum

As a first example we consider a configuration in which a running of the conifold theory
hits a wall (given by the tip of a KS throat) interpolating to an AdS5 × S5 vacuum. The
latter is the maximally symmetric solution of a theory at the bottom of its potential, i.e.
with no dynamical tadpole. We carry out the discussion in terms of the dual field theory,
which translates easily into the just explained gravity picture. The dilaton is constant in
the whole configuration, so we skip factors of gs.
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Consider the conifold theory with SU(N) × SU(N + M) at some scale, i.e. at some
position r there are N units of 5-form flux and M units of 3-form flux. The Klebanov-
Tseytlin solution [53] gives a running for the effective flux

N(r) = N +M2 log(r) , (A.1)

and we get a singu at a value r0 defined by

N +M2 log r0 = 0 ⇒ r0 = e−N/M
2
. (A.2)

Naively, the singularity would seem to be smoothed out into a purely geometric background
with a finite size S3. Indeed, this is the full story if N is multiple of M , namely N = KM :
in the field theory, the SU(KM) × SU(KM + M) theory suffers a cascade of K Seiberg
dualities in which K decreases by one unit in each step. Morally, the cascade ends when
the effective K = 0 and then we just have a pure SU(M) SYM, which confines and develops
a mass gap. This is the end of the RG flow, with no more running, hence the spacetime in
capped off in the IR region of the dual throat.

However, as also noticed in [48], the story is slightly different if N = KM + P . After
the K steps in the duality cascade, one is left over with an SU(P ) gauge theory with
three complex scalar degrees of freedom parametrizing a deformed mesonic moduli space
corresponding to (the symmetrization of P copies of) the deformed conifold. This gauge
theory flows to N = 4 SU(P ) SYM in the infrared, which is a conformal theory. In the
parameter range 1 � P � M � N , the whole configuration admits a weakly coupled
supergravity dual given by a KS throat at which infrared region we have a finite size S3,
at which P D3-branes (which we take coincident) would be located; however, since P is
large, they backreact and carve out a further AdS5 × S5 with P units of RR 5-form flux,
which continues the radial direction beyond the KS throat endpoint region. Hence, this
region acts as an interpolating domain wall between two different (but cobordant) theories,
namely the conifold throat (with a dynamical tadpole from the fractional brane charge),
and the AdS5 × S5 vacuum (with no tadpole, and preserving maximal symmetry). The
picture is summarized in figure 1.

A.2 Domain wall to a new running solution

Running can lead to an interpolating domain wall, across which we find not a vacuum,
but a different running solution (subsequently hitting a wall of nothing, other interpolating
domain walls, or just some AdS vacuum). We now illustrate this idea with an example
of a running solution A hitting a domain wall interpolating to a second running solution
B, which subsequently hits a wall of nothing. The example is based on the multi-flux
throat construction in [54] (whose dimer picture is given in [56]). It is easy to devise other
generalizations displaying the different behaviours mentioned above.

Consider the system of D3-branes at the singularity given by the complex cone over
dP3. The gauge theory is described by the quiver and dimer diagrams14 in figure 2.

14For references, see [55, 57–59].
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Figure 1. Domain wall interpolating between the conifold theory with fractional branes, and an
AdS vacuum. Figure a) shows a heuristic intermediate step of a KS solution with a number P of left-
over probe D3-branes. If P is large, the appropriate description requires including the backreaction
of the D3-branes, which lead to a further AdS throat, to the left of the picture in figure b). Hence
the running of the dynamical tadpole in the right hand side ends in a domain wall separating it
from an AdS vacuum.

Figure 2. The quiver and dimer diagrams describing the gauge theory on D3-branes at the tip of
the complex cone over dP3.

We can add fractional branes, i.e. rank assignments compatible with cancellation of
non-abelian anomalies. There are several choices, corresponding to different fluxes on the
3-cycles in the dual gravitational theory. Some of them correspond to 3-cycles which can
be grown out of the singular origin to provide a complex deformation of the CY. These
are described as the splitting of the web diagram into sub-webs in equilibrium, see [56]. In
particular we focus on the complex deformation of complex cone over dP3 to a conifold,
see the web diagram in figure 3.

There are two kinds of fractional branes, associated to M and P . In the gravity dual,
these correspond to RR 3-form fluxes on 3-cycles (obtained by an S1 fibration over a 2-cycle
on dP3), and there are NSNS 3-form fluxes in the dual 3-cycles. These are non-compact,
namely they span a 2-cycle (dual to the earlier 2-cycle in dP3) and the radial direction. For
more details about the quantitative formulas of this kind of solution, see section 5 of [60].
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Figure 3. a) Web diagram of the complex cone over dP3 splitting into three sub-webs. b) Rank
assignment (fractional branes) that trigger those complex deformations.

Figure 4. a) Quiver of the dP3 theory in the last step of the first cascade, which turns into the
conifold upon strong dynamics of the nodes 1 and 4. b) Same story in the dimer picture.

If we focus in the regime15 P �M , then the larger fluxM implies a larger correspond-
ing component of the H3 flux, which means a faster running of the corresponding 5d NSNS
axion. The axion associated to the flux P also runs, but more slowly. In the field theory,
the duality cascade is controlled by M , so that N is reduced in multiples of M (at leading
order in P/M). When N is exhausted we are left with a rank assignment as given in fig-
ure 4a. The result of the strong dynamics triggered by M can be worked out in field theory
as in [54] or using dimers as in [56]. All the info about this last description is in figure 4b.

The result is a conifold theory with M regular branes and P fractional branes. This is
the standard KS story (with just different labels for the branes): M decreases in sets of P
until it is exhausted, then the running stops due to strong dynamics. In the gravity dual, we

15Note that in [54] the regime is the opposite, but both kinds of fractional branes are similar, so the result
is the same up to relabeling.
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Figure 5. Domain wall interpolating between the theory on dP3 with (M + P ) fractional branes,
and a conifold theory with M regular branes and P fractional ones. The running of one of the
dynamical tadpoles in the dP3 theory stops at the wall but the other continues running until it
reaches the S3 at the bottom of the KS throat.

have a KS throat sticking out and spacetime ends on the usual S3 (alternatively, ifM is not
a multiple of P , there is a number P of leftover D3-branes, which, if large, can trigger a fur-
ther AdS throat as in section A.1. A sketch of the gravity dual picture is shown in figure 5.

Note that this kind of domain wall interpolates into two topologically different com-
pactifications. As we cross it, the compactification space changes, and the spectrum of
light fields changes (at the massless level, one of the axions ceases to exist). In this sense,
it is a cobordism domain wall connecting two different quantum gravity theories [5].

A.3 Cobordism domain walls to disconnected solutions

The construction of singularities admitting complicated patterns of complex deformations
(or resolutions) can be carried out systematically for toric singularities, using the tech-
niques in [55]. This can be used to build sequences of domain walls realizing a plethora
of possibilities. For our last class of examples, we consider cobordism domain walls to
disconnected theories.

This has already been realized in the geometry used in [61] to build a bifid throat, i.e.
two throats at the bottom of a throat, see figure 6. These had been proposed in [62] as
possible hosts of axion monodromy inflation models (see [63–67] for additional references).

Actually, a far simpler way of getting a running solution with a domain wall to a
disconnected set of e.g. vacua is to consider the KS setup in section A.1, with the P
leftover D3-branes split into two stacks P1 and P2 of D3-branes at separated locations
on the S3 (with P1, P2 � 1). This corresponds to turning on a vev v for a Higgsing
SU(P ) → SU(P1) × SU(P2) (with P1 + P2 = P ) with a scale for v much smaller than the
scale of confinement Λ of the original SU(KM + P ) × SU(KM + M + P ) theory. In the
gravity dual, we have a running solution in the holographic direction, towards low energies;
upon reaching Λ, we have the S3 domain wall, out of which we have one AdS5 × S5-like
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Figure 6. Picture of a bifid throat. It represents a domain wall implementing a cobordism between
one theory and a disconnected set of two quantum gravity theories.

Figure 7. Picture of a bifid throat with two AdS tongues. It represents a domain wall implementing
a cobordism between one theory and a disconnected set of two AdS theories.

vacuum (with flux P ), until we hit the scale v, and the single throat splits into two AdS5×S5

throats (with fluxes P1, P2). If v ' Λ, the splitting of throats happens in the same regime
as the domain wall ending the run of the initial solution. This is depicted in figure 7.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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Abstract: The Cobordism Conjecture states that any Quantum Gravity configuration
admits, at topological level, a boundary ending spacetime. We study the dynamical
realization of cobordism, as spacetime dependent solutions of Einstein gravity coupled to
scalars containing such end-of-the-world ‘branes’. The latter appear in effective theory
as a singularity at finite spacetime distance at which scalars go off to infinite field space
distance. We provide a local description near the end-of-the-world branes, in which the
solutions simplify dramatically and are characterized in terms of a critical exponent, which
controls the asymptotic profiles of fields and the universal scaling relations among the
spacetime distance to the singularity, the field space distance, and the spacetime curvature.
The analysis does not rely on supersymmetry. We study many explicit examples of such
Local Dynamical Cobordisms in string theory, including 10d massive IIA, the 10d non-
supersymmetric USp(32) theory, Bubbles of Nothing, 4d N = 1 cosmic string solutions, the
Klebanov-Strassler throat, Dp-brane solutions, brane configurations related to the D1/D5
systems, and small black holes. Our framework encompasses diverse recent setups in which
scalars diverge at the core of defects, by regarding them as suitable end-of-the-world branes.
We explore the interplay of Local Dynamical Cobordisms with the Distance Conjecture and
other swampland constraints.
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1 Introduction

The Cobordism Conjecture [1] states that in any consistent theory of quantum gravity all
cobordism classes are trivial. In simple terms, it must admit at the topological level a
configuration ending spacetime.1 Such end-of-the-world configuration may correspond to a
boundary (such as the 10d Horava-Witten boundary of 11d M-theory [2, 3]), a bubble of
nothing in which some compactification space shrinks to zero size [4] (see [5–8] for some
recent works), or more exotic possibilities, and may possibly be dressed with charged objects,
such as branes, orientifold planes or generalizations (dubbed I-folds in [9]). The cobordism
conjecture, already at this topological level, has produced interesting results, see [6, 9–13]
for some references.2

An exploration of the Cobordism Conjecture beyond the topological level was undertaken
in [21, 22] via the study of spacetime varying solutions to the equations of motion in theories
with dynamical tadpoles, namely, potentials which do not have a minimum and thus do not
admit maximally symmetric solutions (see [23–26] for early work and [27–30] for related
recent developments, and [31, 32] for a complementary approach to cobordism solutions).
In the solutions in [21, 22], which we refer to as Dynamical Cobordisms, the fields run along
a spatial coordinate until the solution hits a singularity at finite distance in spacetime,
which (once resolved in the full UV theory) ends spacetime.

These solutions exhibit sharp features in the region near the singularity. For instance,
the scalars go off to infinite distance in moduli (or field) space at the spacetime singularity.
Moreover, in the effective field theory description, the field space distance D, the spacetime
curvature R and the spacetime distance ∆ to the singularity are related by interesting
scaling laws, namely (in Planck units)

∆ ∼ e− 1
2 δD, |R| ∼ eδD (1.1)

for suitable positive coefficient δ.
The singularities in these solutions are resolved in the full UV description, in terms of the

corresponding cobordism configuration. In string theory examples, the latter often admits a
tractable microscopic description involving geometries closing-off spacetime, possibly dressed
with defects, as explained above. In this spirit, they were dubbed ‘cobordism defects’ or
‘walls of nothing’ in [21, 22]. In this work we will mainly focus on the effective field theory
description, where they remain as singular sources, which we refer to as End-of-The-World
(ETW) branes.3

The universal form of the scaling relations (1.1) was found by inspecting several explicit
examples, but it suggests that a simple universal local description near the ETW branes
should be possible in the effective theory. In this paper we provide this local description by
studying Dynamical Cobordisms near walls at which the scalars run off to infinite field space

1Equivalently, any two quantum gravity theories admit, at the topological level, a domain wall connecting
them. For this paper we will emphasize the formulation as in the main text.

2Spacetimes with boundaries have also been considered in the holographic setup, see [14–20] for some
recent approaches.

3This follows the nomenclature in some of the references in footnote 2.
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distance. In this local description, the solutions simplify dramatically and are characterized
in terms of a critical exponent δ, which controls the asymptotic profiles of fields and the
scaling relations (1.1) in a very direct way. The analysis does not rely on supersymmetry
and can be applied to non-supersymmetric setups.

This provides a powerful universal framework to describe ETW branes within effective
field theory, as we illustrate in many different examples. We exploit it to describe Dynamical
Cobordisms in several 10d string theories, including non-supersymmetric cases. We also
use it to characterize warped throats [33, 34] as Dynamical Cobordisms. We moreover
show that the familiar 10d Dp-brane supergravity solutions can be regarded as Dynamical
Cobordisms of sphere compactifications with flux, and are described by our local analysis
with the D-branes playing the role of ETW branes. Finally, we argue that 4d small black
hole solutions (see [35, 36] for some reviews), including those of the recent work [37], can
be similarly regarded as Dynamical Cobordisms of S2 compactifications with flux, with the
small black hole core playing the role of ETW brane.

Our models provide setups in which scalars explore large field space distances in
a dynamical setup (as pioneered in [38], see also [39]), in contrast with the alternative
adiabatic approach. Hence our description of Local Dynamical Cobordisms is the natural
arena for the dynamical realization of swampland proposals4 dealing with infinity in scalar
moduli/field space.

The paper is organized as follows. In section 2 we present the general formalism for
the local description of Dynamical Cobordisms. In section 2.1 we present the general
equations of motion, and in section 2.2 we apply them to describe the local dynamics near
ETW branes, and derive the universal scaling relations. In section 3 we apply the local
description to several 10d examples, including massive IIA theory in section 3.1 and the
non-supersymmetric USp(32) theory of [40] in section 3.2. In section 4 we interpret D-brane
supergravity solutions as Dynamical Cobordisms (section 4.1) and express them as ETW
branes in the local description (section 4.2). Similar ideas are applied in section 4.3 to
the EFT string in 4d N = 1 theories in [41], and in section 4.4 to the Klebanov-Strassler
warped throat [33, 34]. In section 5 we discuss small black holes as Dynamical Cobordisms.
In section 5.1 we warm up by expressing the supergravity solution of D2/D6-branes on
T4 as a Dynamical Cobordism, and in section 5.2 we relate it to small black holes via a
further T2 compactification. In section 5.3 we consider more general small black holes,
such as those in [37], and derive scaling relations despite the absence of a proper Einstein
frame in 2d. In section 6 we discuss the interplay of Swampland constraints with the
results of our local description for the behaviour of several quantities near infinity in field
space. In section 6.1 we consider the Distance Conjecture, the de Sitter conjecture and
the Transplanckian Censorship Conjecture. In section 6.2 we discuss potentially large
backreaction effects when the UV description of the ETW branes involve a large number
of degrees of freedom, suggesting mechanisms to generate non-trivial minima near infinity
in field space. In section 7 we offer some final thoughts. In appendix A we generalize
the ansatz in the main text to allow for non-zero constant curvature in the ETW brane

4See [38] for a related viewpoint.
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worldvolume directions (section A.1), and apply it to describe Witten’s bubble of nothing as
a 4d Dynamical Cobordism and provide its local description (section A.2). In appendix B
we discuss subleading corrections to the local description, specially relevant in cases where
the leading contributions vanish.

2 Local dynamical cobordisms

In this section we formulate our local effective description near End of The World (ETW)
branes, in terms of gravity coupled to a scalar field. We would like to emphasize that
we consider a general scalar potential, but remarkably derive non-trivial results for its
asymptotic behaviour near infinity in field space. The key input is just that the dynamics
should allow for the scalar to go off to infinity in field space in a finite spacetime distance.

Interestingly, the scalar potential generically behaves as an exponential near infinity in
moduli/field space, suggesting a first-principles derivation of the ‘empirical’ evidence for
such exponential potentials, coming from string theory and other swampland considerations
(see [42–44] for reviews). In particular, exponential potentials and constraints on them have
been discussed in [31, 32], for the restricted case of bubbles of nothing (i.e. UV completed
to a purely geometrical higher dimensional configuration, à la [4]). In contrast, our analysis
holds for fully general ETW branes (and hence, allows for more general potentials, including
cases without this asymptotic growth).

We focus on the case of a single scalar; however, our discussion also applies to setups
with several scalars, by simply combining them into one effective scalar encapsulating the
dynamics of the solutions (as illustrated in several of our examples in later sections).

2.1 General ansatz

Consider d-dimensional Einstein gravity coupled to a real scalar5 field with a potential,

S =
∫
ddx
√−g

(1
2R−

1
2 (∂φ)2 − V (φ)

)
, (2.1)

where we are taking MPl = 1 units. We focus on d > 2, and deal with the d = 2 case in
some explicit examples in section 5.

ETW branes define boundaries of the d-dimensional theory, hence they are described
as real codimension 1 solutions. We take the ansatz

ds2 = e−2σ(y)ds2
d−1 + dy2 ,

φ = φ(y) ,
(2.2)

where y parametrizes the coordinate transverse to the ETW brane.
We consider flat metric in the (d−1)-dimensional slices. The corresponding analysis for

general non-zero constant curvature, carried out in the same spirit and leading to essentially
similar results, is presented in appendix A.

5Even though our analysis holds for general potential, we often refer to the scalar as modulus, and its
field space as moduli space.
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The equations of motion are

φ′′ − (d− 1)σ′φ′ − ∂φV = 0 , (2.3)

1
2(d− 1)(d− 2)σ′ 2 + V − 1

2φ
′ 2 = 0 , (2.4)

(d− 2)σ′′ − φ′ 2 = 0 , (2.5)

where prime denotes derivative with respect to y. The first one is the equation of motion for
the scalar; for the Einstein equations, they split into transverse and longitudinal components
to the ETW brane, giving two independent equations, subsequently combined into the last
two equations.

The analysis of these equations is more amenable in terms of a new quantity, the
tunneling potential introduced in [45, 46] (see also [47–52])

Vt(φ) ≡ V (φ)− 1
2φ
′ 2 . (2.6)

Using it to eliminate the scalar from the eoms we get

(d− 1)
√

2 (V − Vt)σ′ − ∂φVt = 0 , (2.7)

1
2(d− 1)(d− 2)σ′ 2 + Vt = 0 , (2.8)

(d− 2)σ′′ − 2 (V − Vt) = 0 . (2.9)

Finally, combining the first two equations to eliminate σ we get
1
4(d− 2) (∂φVt)2 + (d− 1) (V − Vt)Vt = 0 . (2.10)

This is a d-dimensional generalization of a condition found in [50] in the context of do-
main walls.

Now, given a potential V (φ), one can use this equation to solve for the tunneling
potential Vt(φ), and then use (2.6) and (2.8) to solve for φ(y) and σ(y) respectively. In
addition, one should check that (2.9) is also satisfied.

Before moving on, let us comment on the implications that these equations have
for the signs of the relevant quantities. From equation (2.8) we learn that Vt ≤ 0. In
addition, from (2.6) we get that V − Vt ≥ 0. Notice that these two facts are consistent
with equation (2.10). Finally, combining the last inequality with (2.9) we learn that σ′′ ≥ 0.
When solving our system of equations we will systematically pick signs so that these
inequalities are satisfied.

A nice way of parametrizing the freedom of choosing the potential is by writing

V (φ) = a(φ)Vt(φ) , (2.11)

where we have to impose that a(φ) ≤ 1 for the reason explained above. Plugging this
into (2.10) one can easily get to the solution

log
(
Vt
V 0
t

)
= ±2

√
d− 1
d− 2

∫ φ

φ0

√
1− a

(
φ̃
)
dφ̃ , (2.12)

where we are taking V 0
t ≡ Vt(φ0) as boundary condition.
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2.2 Local description of end of the world branes

As explained in the introduction, we are interested in solutions for which the scalar attains
infinity in field space i.e. φ→ ±∞ at a point at finite distance in spacetime, defining an
ETW brane. Without loss of generality we take this boundary to be y = 0, and the infinity
in field space as φ→∞.

From (2.12), it is clear that the asymptotic behavior as y → 0, φ→∞ is controlled by
the asymptotic profile of a(φ). We know from the previous section that a(φ) ≤ 1 and we
restrict our analysis to the cases where a(φ) has a well-defined and constant limit a < 1
as φ→∞ (we briefly remark on the behavior a→ 1 below (2.15)). Indeed, although one
can cook up potentials realizing other possibilities, we have not encountered them in any of
the string theory examples in later sections. We therefore ignore other possibilities in what
follows, leaving for future work the question about the consistency of such behaviors from
the viewpoint of UV completions. Note that the constraint a < 1 includes a = 0, which
corresponds to solutions with potential negligible with respect to the kinetic energy for the
scalar (at least asymptotically).

Taking constant a, (2.12) gives

Vt(φ) ' −c eδ φ , (2.13)

where c > 0 is related to the boundary condition used before. As explained in appendix B,
we also allow c to hide some φ-dependence, corresponding to subleading corrections. The
leading behaviour is an exponential controlled by the critical exponent δ, given by

δ = 2
√
d− 1
d− 2 (1− a) . (2.14)

Here we choose the plus sign for δ. As we will see later this will imply that ETW brane
explores φ→∞ as explained above.

The critical exponent δ controls the structure of the local solution, in particular the
asymptotic profile of fields as y → 0, and the scaling relations among different physical
local quantities.

Recall that the freedom of choosing a potential is parametrized by a. It is then
interesting to ask how the potential itself looks like when approaching the end of the world.
Plugging (2.13) into (2.11) we find

V (φ) ' −a c eδ φ . (2.15)

Note that we get an exponential dependence, for any value of a < 1. As a side-note, for
a = 1, the potential V may take different forms e.g. power-like, growing strictly slower than
exponentials.

Also notice that, since c > 0, the sign of the potential is completely determined by that
of a. Moreover, using the relation between a and the critical exponent δ in (2.14), we can
put bounds on the latter depending on the sign of the potential. Namely, for V > 0 we must
have a < 0, which implies δ > 2

√
d−1
d−2 , while if V < 0 then 0 < a < 1, yielding δ < 2

√
d−1
d−2 .

We thus neither have negative potentials whose exponential behaviour is arbitrarily strong,
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nor positive potentials whose exponential behaviour is arbitrarily mild. The explanation
is that such exponentials would lead to φ′2 � V as we approach the ETW brane, and
therefore they correspond to the a = 0 case of our analysis.

It is interesting that we have derived fairly generically an exponential shape of the
potential near infinity in moduli space, from the requirement that the theory contains
ETW branes, namely configurations reaching infinity in moduli space at finite spacetime
distance. In section 6.1 we will study its interplay with a variety of swampland constraints
on scalar potentials. We note however that theories with milder growth of the potential
(most prominently, theories with vanishing potential and exact moduli spaces) are still
included in the analysis, and correspond to a(φ)→ 0. The corresponding statement that
V → 0 in this case actually means that the theory can have any potential as long as it
grows slower than φ′ 2.

From (2.6) we can obtain the asymptotic profile of φ as y → 0

φ(y) ' −2
δ

log


δ

2

4

√
2c d− 2
d− 1 y


 . (2.16)

Here we are ignoring an additive integration constant, irrelevant in the φ→∞ limit. We
have also fixed another integration constant by demanding that the function blows up for
y → 0. The leading term as y → 0 is

φ(y) ' −2
δ

log y . (2.17)

Hence the scalar goes off to infinity as we approach the end of the world. This motivates
the appearance of a lowered cutoff as we approach the wall, above which a more complete
microscopic description simply resolves the singularity; this resonates with the swampland
distance conjecture, as we discuss in section 6.1.

Plugging (2.16) into (2.8) we can also solve for σ(y). The final result is

σ(y) ' ± 4
(d− 2)δ2 log y . (2.18)

Here we ignore an integration constant which can be reabsorbed by a change of coordinates.
Note that, to comply with (2.9), we only need to pick the minus sign.

Furthermore, the d-dimensional scalar curvature is given by

R = (d− 1)
(
2σ′′ − dσ′ 2

)
∼ 1
y2 . (2.19)

We thus recover that the curvature blows up as we approach the end of the world, leading
to a naked singularity in the effective field theory description.

Notice that we have ignored a prefactor that, interestingly, vanishes for the special case
δ2 = 2d

d−2 . For that value one should consider the next-to-leading order term in the y → 0
expansion. In what follows we ignore this case and keep the generic one.

Since the scalar φ is normalized canonically, the field space distance D as y → 0
is (2.17). Also, the distance in spacetime to the singularity is given by y. Hence from (2.17)

– 6 –
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and (2.19) we obtain the universal relations

∆ ∼ e− δ2 D , |R| ∼ eδ D . (2.20)

The solutions provides a simple universal description of dynamical cobordism in terms
of the effective field theory. The microscopic description of the cobordism defect is available
only in the UV complete theory, and is thus model-dependent (but known in many cases, see
our explicit examples in later sections). From our present perspective, the only microscopic
information we need is the very existence of such defects, guaranteed by the swampland
cobordism conjecture [1].6 It is thus remarkable that, the simple requirement that scalars
go to infinity at finite spacetime distance leads to a complete local description of the EFT
behaviour near a dynamical cobordism. Moreover, it constrains the structure of the theory,
in particular it naturally yields an exponential behavior of the scalar potential near infinity
in field space.

The above local description can be used to prove a general relation, introduced in [21],
between the dynamical tadpole (defined as the derivative of the potential T = ∂φV (φ)) at
a given point and the spacetime distance ∆ to the ETW brane, which in our examples is
given by

∆ ∼ (T )−
1
2 . (2.21)

Indeed, using (2.15) and (2.17), we obtain T evaluated at a point y∗:

T |y=y∗ = ∂φV |y=y∗ = −a c δ eδφ|y=y∗ = −a c δ (y∗)−2 , (2.22)

∆ is constructed as the distance from a point y∗ to the singularity at y = 0, we therefore
have ∆ = y∗. We hence have a general relation7

∆ =
( −T
a c δ

)− 1
2
∼ (T )−

1
2 . (2.23)

This relation places a bound on the spacetime extent of a solution whose running is induced
by a dynamical tadpole, as emphasized in [21, 22], due the dynamical appearance of an
end of spacetime. We would nevertheless mention that there exist solutions with spacetime
boundaries even in situations with no dynamical tadpole. The simplest example is Horava-
Witten theory, which corresponds to M-theory on an interval with two boundaries. Even
in our present context of scalars running off to infinity at finite spacetime distance, it is
possible to find ETW branes in cases with vanishing potential V = 0 (or asymptotically
negligible potentials, a = 0).

6To be more precise, there are theories in which the cobordism higher-form symmetry is gauged, rather
than broken by the existence of the defects. In such cases, the gauging imposes the constraint that the
total charge cancels in the configuration; our analysis applies to those cases as well, with the ETW brane
corresponding to a mere ending of spacetime with no explicit charged defects, similar to a bubble of nothing,
see appendix A.2.

7For the particular case of the warped throat in 4.4 this corrects the statement in [21].
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3 Some 10d examples

In this section we consider examples of 10d theories with Dynamical Cobordism solutions
in [21, 22], and use the above local description to easily derive their structure. The results
nicely match the asymptotic behavior of the complete solutions in the literature.

3.1 The 10d massive type IIA theory

We consider the 10d massive type IIA theory. The effective action in the Einstein frame for
the relevant fields is

S10,E = 1
2κ2

∫
d10x
√−g

{
R− (∂φ)2 − 1

2e
5
2
√

2φF 2
0 −

1
2e
√

2
2 φ|F4|2

}
, (3.1)

where F0 denotes the Romans mass parameter. The
√

2 factors in the exponents ensure
that the normalization of the scalar agrees with our conventions.

This theory has a potential
V = 1

2e
5√
2φF 2

0 , (3.2)

hence it does not admit 10d maximally symmetric solutions. On the other hand there are
9d Poincaré invariant (and in fact 1/2 supersymmetric) running solutions of the equations
of motion in which the dilaton (and other fields) depend on a space coordinate, e.g. x9.
The metric and dilaton profile read

ds2
10 = Z

(
x9
)1/12

ηµνdx
µdxν ,

e
√

2φ = Z
(
x9
)−5/6

,

(3.3)

where the coordinate function is Z
(
x9) = −F0x9. This solution hits a singularity at

x9 = 0, which was proposed to correspond to an end of the world brane in [21, 22]. In the
microscopic theory, it corresponds to an O8-plane (possibly with D8-branes), as in one of
the boundaries of the interval of type I’ theory [53].

In the following we show how the local structure of the Dynamical Cobordism can be
obtained from the analysis in the previous section.

The only input of the local analysis is the potential (3.2). Matching it with the local
analysis expression (2.15), we obtain the following values for δ and, using (2.14) for a:

δ = 5√
2
, a = −16

9 . (3.4)

Plugging this into (2.17) we obtain the dilaton profile

φ ' −2
√

2
5 log y. (3.5)

We can now obtain the profile for σ (2.18)

σ ' − 1
25 log y , (3.6)
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which determines the metric via (2.2). As usual, the local description predicts the scalings

∆ ∼ e−
5

2
√
2 D , |R| ∼ e

5√
2 D . (3.7)

These results from the local analysis are in agreement with the scaling relations obtained in
the paper [21] from the complete solution. In fact, this can be done very easily from (3.3),
by a change of coordinates

y =
∫ x9

0

(
−F0x̃

9
)1/24

dx̃9, (3.8)

in terms of which the solution acquires the form of (2.2)

ds2
10 =

[25
24 (−F0) y

]2/25
ds2

9 + dy2 ,

e
√

2φ =
[25

24 (−F0) y
]−4/5

.

This indeed corresponds to profiles for σ (via (2.2)) and φ in agreement with (3.6) and (3.5)
respectively.

3.2 The 10d non-supersymmetric USp(32) string

Let us consider a second example in the same spirit, but in the absence of supersymmetry.
We consider the 10d non-supersymmetric USp(32) theory, built in [40] as a type IIB
orientifold with a positively charged O9-plane and 32 anti-D9-branes. The 10d Einstein
frame action for the relevant fields is

SE = 1
2κ2

∫
d10x
√
−G

{
R− (∂φ)2

}
− TE9

∫
d10x
√
−G 64 e

3√
2φ . (3.9)

We have introduced factors of
√

2 relative to the conventions in [40], to normalize the scalar
as in previous sections.

This theory has a dilaton tadpole, due to the uncanceled NSNS tadpoles, and hence
does not admit maximally symmetric 10d solution. On the other hand, there are 9d Poincaré
invariant running solutions of its equations of motion [23], given by

ds 2
E = |√αEr|

1
9 e−

αEr
2

8 ηµνdx
µdxν + |√αEr|−1e

− 3φ0√
2 e−

9αEr
2

8 dr2 ,

φ = 3
4
√

2
αEr

2 +
√

2
3 log |√αEr|+ φ0 , (3.10)

where αE = 64κ2TE9 , and φ0 is a reference value for the dilaton. The coordinate r was
denoted by y in [23] but here, we preserve y for the coordinate of the local analysis near
end of the world branes.

The solution hits two singularities, at r → 0 and at r → +∞, which are at finite
spacetime distance, yet the scalar attains infinity in fields space (φ→ −∞ at r → 0, and
φ → ∞ at r → ∞, respectively). As discussed in [21, 22], it thus describes a Dynamical
Cobordism with two end of the world branes. The existence of two boundaries, and hence a
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finite size spacetime coordinate, arises in this example, but is not a general feature of running
solutions, as we have seen in previous sections. It would be interesting to understand a
general criterion discriminating between the two possibilities, but we leave this question for
future work. In any event, even in setups with two boundaries, our local analysis applies to
each of them individually, as we discuss next. Indeed, let us now exploit the local analysis
to display the scalings near these walls, with the scalar potential in (3.9) as sole input.

3.2.1 r → 0
From equation (3.10), we see that r → 0 corresponds to the limit φ→ −∞. The potential
in (3.9) vanishes in that limit. As a consequence, we have an ETW brane in which the
potential becomes negligible, i.e., the critical exponents for the local model are

δ = 3√
2
, a = 0. (3.11)

The local analysis then leads to the dilaton and radion profiles

φ ' 2
√

2
3 log y , σ ' −1

9 log y . (3.12)

Note that we have chosen the sign of φ→ −∞ as y → 0.
These results allow to obtain the universal scalings for the curvature and spacetime

distance with the field space distance (2.20), namely

∆ ∼ e−
3

2
√

2D , |R| ∼ e
3√
2D . (3.13)

It is easy to check that the above profiles and scaling reproduce the behaviour of the
complete solution (3.10). This can be shown by the following coordinate change to bring it
into the ansatz (2.2):

y =
∫ √
|√αEr|−1e

− 3φ0√
2 e−

9αEr2
8 dr ∼

[
Γ
(1

4 ,
9αE
16 r2

)
− Γ

(1
4 , 0

)]
∼ √r . (3.14)

In the last step we have taken the leading behaviour as r → 0. By also taking the leading
behaviour in (3.10), plugging in y, and reading off σ as it appears in (2.2) we finally recover
the profiles predicted by the local analysis in (3.12).

3.2.2 r →∞
This should be described by a local model where φ→ +∞ at y → 0, i.e. the origin of a new
local coordinate (which corresponds to r →∞). In this case the potential in (3.9) is blowing
up, hence via (2.15) and (2.14), we get δ = 3/

√
2, a = 0, just as in (3.11). The result

a = 0 may seem puzzling, since from (2.15) this would seem to imply V → 0. However, one
should recall that in the local description a = 0 simply means that V � φ′2. Indeed, it may
happen that c blows up as φ→∞ in such a way that it compensates having a→ 0 in this
same limit. We will explicitly check this later on.

The dilaton and radion profiles read

φ ' −2
√

2
3 log y , σ ' −1

9 log y . (3.15)
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The dilaton sign differs from (3.12) in order to have φ→ +∞ as y → 0. We also recover
the scalings for ∆ and R with D, which are again given by (3.13).

Let us now show that the above local model indeed reproduces the r → ∞ regime
of (3.10). The required change of variables is now

y =
∫ ∞

r
|√αE r̃|−1/2e−

3
4φ0e−

9αEr
2

16 dr̃ ∼ Γ
(1

4 ,
9αE
16 r2

)
∼ r− 3

2 e−
9αE
16 r2 . (3.16)

The integration limits are chosen so that the finite distance singularity at r →∞ is located
at the origin for the new coordinate. In the last step we have taken the leading behaviour
of the Gamma function as r →∞.

Taking the logarithm of this expression and keeping the leading behaviour we get

log y ' −9αE
16 r2 . (3.17)

Finally, by also taking the leading behaviour in (3.10), reading off σ as it appears in (2.2)
and plugging in our previous expression for y, we recover the profiles anticipated by the
local analysis in (3.15).

Let us now come back to the issue of having a = 0 while not having vanishing potential.
First, let us check that indeed φ′2/V →∞ as we approach the ETW brane. We can compute
it, with no approximations, as

φ′2

V
∼
(

3αE
2
√

2
r +
√

2
3

1
r

)2

, (3.18)

where we are ignoring irrelevant numerical prefactors. Importantly, for this computation
one has to remember that φ′ is the derivative with respect to y, not with respect to r. As
advanced, we find that this blows up to infinity in both r → 0 and r →∞ limits.

Moreover, using this result one can compute the tunneling potential as φ→∞ as

Vt '
φ′2

2 ∼ r
2V ∼ φ e

3√
2φ ∼ e

3√
2φ+log φ

, (3.19)

where we have plugged in the value of V from (3.9) and r2 ∼ φ from the r →∞ limit of
φ(r) in (3.10). As advertised, we find a case in which the coefficient c in (2.13) blows up
as we approach the wall of nothing. This is consistent with our local analysis because, as
we see in the last equality, c does not blow up faster than the exponential, i.e., it gives
subleading corrections to log Vt (see appendix B for more details).

4 Branes as cobordism defects

The local analysis of section 2 provides a general framework to describe effective ETW branes,
encapsulating Dynamical Cobordisms of the underlying theory. An interesting observation
is that, in compactified theories with fluxes, the cobordism requires the introduction of
charged objects. Namely, those required to break the corresponding cobordism charge to
avoid a global symmetry, which should be absent in Quantum Gravity. A typical example
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Figure 1. Dp-branes as cobordism defect in theories with (8−p) compact dimensions from the higher
and lower dimensional perspective. Our local (p+ 2)-dimensional description of the S8−p-truncation
corresponds to the local structure of a Dynamical Cobordism of a more general compactification
on X8−p.

is the introduction of NS5- and D-branes in bubbles of nothing in compactifications with
NSNS and RR fluxes (see [6] for a recent discussion on bubbles of nothing).

Therefore it is interesting to explore the description of such objects in the local picture
of section 2. As a simple illustrative setup, in this section we describe the geometry around
a stack of Dp-branes in the language of the local analysis of section 2. In local terms, it
corresponds to regarding the Dp-brane supergravity solution as a compactification of the
10d theory on S8−p with flux, yielding a d = (p+ 2)-dimensional running solution along
one of the coordinates (morally the radial coordinate), which has finite extent and end on
an effective ETW brane. The microscopic description of the latter is actually given by the
Dp-brane in the UV.

The above idea generalizes the description in [22] of the EFT strings solutions in [41]
as cobordism defects of S1 compactifications of the underlying 4d N = 1 theory with axion
flux along the S1.

We note that the compactification of the 10d theory on the S8−p around a Dp-brane
actually corresponds to a truncation onto the SO(9−p)-invariant sector. Sphere truncations
have long been studied in the literature, in particular in the holographic context, see [54]
for a discussion for Dp-brane solutions. However, in our context we should regard the
sphere truncation as a fair local description of Dynamical Cobordisms in actual compact-
ifications, including those with scale separation, allowing for a more physical notion of
lower-dimensional effective theory. Our local analysis should be regarded as part of the
latter. This is depicted in figure 1, and is illustrated quantitatively in a similar example for
Witten’s bubble of nothing in appendix A.2.
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Finally, although we phrase our discussion in terms of Dp-branes, notice that other
string theory branes admit similar analysis; in fact, the NS5-brane is essentially the same as
the D5-brane, since we are working in the Einstein frame, in which S-duality acts manifestly.

4.1 Compactification to a running solution

Let us begin with a precise description of the general procedure of compactifying a codimen-
sion (n+ 1) brane-like solution in d+n dimensions down to a running solution (codimension
1) in d dimensions. In next sections, we will apply this reasoning to the Dp-branes as
cobordism defects of S8−p compactifications.

Take the general metric of a codimension n object in d+ n-dimensions:

ds2 = e−2µ(r)ds2
d−1 + e2ν(r)

(
dr2 + r2dΩ2

n

)
. (4.1)

The directions in ds2
d−1 span the worldvolume of the object, while we have split the transverse

directions into radial and angular ones.
We want to perform an Sn truncation to look at this solution from the d-dimensional

perspective. We thus take the compactification ansatz

ds2 = e−2αω(r)ds2
d + e2βω(r)r2

0ds
2
n , (4.2)

where r0 is a reference scale. By requiring that the d-dimensional action is in the Einstein
frame and has canonically normalized kinetic term for the radion ω we get the following
constraints for α and β:

γ ≡ α

β
= n

d− 2 β2 = d− 2
n(d+ n− 2) . (4.3)

The first one implements the Einstein frame requirement, while in the second one we already
apply both conditions. Note that for d = 2 we recover the familiar statement that there is
no Einstein gravity in 2 dimensions. We will deal with reductions to 2d in section 5, and
consider d > 2 in what follows.

By matching the compactification ansatz (4.2) with the metric in (4.1) we obtain the
profile for the radion

e2βω(r) = e2ν(r)
(
r

r0

)2
, (4.4)

as well as the lower-dimensional metric

ds2
d = e2αω(r)

(
e−2µ(r)ds2

d−1 + e2ν(r)dr2
)
. (4.5)

In order to put solutions in the general form (2.2) used for the local description in
section 2, we introduce a new coordinate

y =
∫
eαω(r)eν(r)dr , (4.6)

in terms of which we can borrow the results (2.15)–(2.20) from the local description.
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From the viewpoint of the d-dimensional theory, there is a non-trivial potential arising
from the curvature of the Sn, and possibly other sources (such as fluxes, etc). Generically
the total potential does not have a minimum, hence the running solutions can be regarded
as induced by a dynamical tadpole. Applying the results in [21, 22], the d-dimensional
solution must describe a Dynamical Cobordism ending on an ETW brane, to which we can
apply the local analysis in section 2.

Note that however there are cases with a non-trivial minimum. A prominent example is
the S5 compactification with a large number N of RR 5-form field string flux units (see [55]
for a discussion in similar terms). The minimum corresponds to a setup with no tadpole,
and admits a maximally symmetric solution, namely the celebrated AdS5 × S5. Because of
this, we will not consider the D3-branes in our discussion, and focus on genuinely running
solutions.

4.2 D-branes as Dynamical Cobordisms

In this section we regard the 10d Dp-brane solutions as S8−p compactifications and re-
express them in terms of the local description of ETW branes of the (p+ 2)-dimensional
theory of section 2. Note that, in contrast with section 3, we do not intend to derive the
local solutions from a (p+ 2)-dimensional scalar potential; rather we take the familiar 10d
solutions and express their near brane asymptotics as local (p+ 2)-dimensional ETW brane
solutions.

Consider the Dp-brane solution in the 10d Einstein frame, with 0 ≤ p ≤ 8. The 10d
metric and dilaton profile take the form

ds2
10 = Z (r)

p−7
8 ηµνdx

µdxν + Z (r)
p+1
8
(
dr2 + r2dΩ2

8−p
)
, (4.7)

Φ = (3− p)
4
√

2
log (Z(r)) , (4.8)

where the warp factor is given by the harmonic functions

Z(r) = 1 +
(
ρ

r

)7−p
for 0 ≤ p ≤ 6 , (4.9)

Z(r) = 1− N

2π log
(
r

ρ

)
for p = 7 , (4.10)

Z(r) = 1− |r|
ρ

for p = 8 . (4.11)

Here ρ > 0 is a length scale. For the cases p 6= 7 it depends on the number of Dp-branes,
N , while for p = 7 this dependence does not enter in ρ but has been made explicit in
the solution.

As we have explained, these formulas should be regarded as the local description near
the D-branes in possibly more general compactifications, namely the above Z(r) should
be though of as local expansions around the D-brane location of the warp factor in more
general compactification spaces, cf. figure 1.

We immediately see that for p 6= 3, the dilaton reaches infinite values near the point
r = 0, the core of the Dp-brane. As explained above, we do not consider the case p = 3,
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since it relates to AdS minimum of the theory. The solution does not run towards an ETW
brane but towards a minimum in the potential. Similarly, for p = 8, the dilaton reaches
finite values at r = 0. This fits with the identification of D8-branes as interpolating walls
instead of walls of nothing in [22]. In the following we restrict to p 6= 3 and 1 ≤ p ≤ 7, the
lower bound to avoid reduction to 2d (postponed until section 5), and the upper bound to
have non-trivial sphere compactification.

The Dp-brane is a solution of the following generic type II theory with a dilaton
and RR field:

S10 ∼
1
2

∫
d10x
√−g10

{
R10 − (∂Φ)2 − 1

2n!e
aΦ|Fn|2

}
. (4.12)

where n = 8 − p. This 10d theory does not have a scalar potential. However, once
compactified on S8−p with N units of F8−p flux, the curvature of the sphere as well
as the flux itself will generate dynamical tadpoles for the ensuing radion and (p + 2)-
dimensional dilaton. Indeed, let us perform this compactification explicitly and show
that we find ourselves in an end-of-the-world scenario, reproducing the associated scaling
relations of [22].

Taking a compactification ansatz of the form (4.2) we obtain the d = (p+2)-dimensional
Einstein frame metric:

ds2
d =

(
r2

r2
0
Z(r)

p+1
8

) 8−p
p {

Z(r)
p−7
8 ηµνdx

µdxν + Z(r)
p+1
8 dr2

}
, (4.13)

where the Greek indices correspond to directions along the world volume of the p-brane.
The (p+ 2)-dimensional dilaton inherits the same profile as the original one and one obtains
the radion’s profile through matching:

e2βω(r) = r2

r2
0
Z(r)

p+1
8 . (4.14)

The radion is canonically normalized if β2 = p
8(8−p) .

The solution has a spacetime singularity at r = 0, at which both the dilaton and radion
blow up. We can now compute the relevant scaling quantities, namely the spacetime distance
∆d to the singularity, the curvature scalar |Rd| near the singularity, and the distance D
traversed in field space. For the former two we obtain:

∆d ∼




r

(p−3)2
2p for p ∈ [1, 6] and p 6= 3 ,

r8/7 for p = 7 .
(4.15)

|Rd| ∼




r
− (p−3)2

p for p ∈ [1, 6] and p 6= 3 ,

r−16/7 for p = 7 .
(4.16)

For the field space distance near the singularity, we obtain the following by plugging in the
profiles of the radion (4.14) and dilaton (4.7):

D(r) =
∫

(dω2 + dΦ2)1/2dr '





− |3−p|2

√
9−p
p log r for p ∈ [1, 6] and p 6= 3 ,

− 4√
14 log r for p = 7 .

(4.17)
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The solution thus describes Dynamical Cobordisms with the following scaling relations:

∆d ∼ e
|p−3|
p

√
p

9−p D , |Rd| ∼ e
2|p−3|
p

√
p

9−p D for p ∈ [1, 6] and p 6= 3 , (4.18)

and
∆9 ∼ e−

2
√
14

7 D , |R9| ∼ e
4
√

14
7 D for p = 7 . (4.19)

This shows that Dp-brane are cobordism defects, which reduced on the surrounding
S8−p can be described as ETW branes. In the following we describe their structure in terms
of the local description of section 2.2. This will allow us a much simpler computation of the
above scaling relations.

The objective is to put the d-dimensional metric in domain-wall form (2.2). In the
notation of section 4.1, one obtains:

σ(r) = −αω(r) + µ(r) = −8− p
p

log
(
Z(r)

p+1
16

(
r

r0

))
− p− 7

16 log (Z(r)) . (4.20)

The new coordinate y is obtained as

y =
∫ r

eαω(r)eν(r)dr =
∫ r

Z(r)
p+1
2p

(
r

r0

) 8−p
p

dr . (4.21)

For a general Dp-brane with p 6= 3, 7, in the limit r → 0 we have

y =
∫ r (ρ

r

)(7−p) p+1
2p
(
r

r0

) 8−p
p

dr ∼ r
(p−3)2

2p . (4.22)

Using equation (4.20), this yields

σ(r) ' σ
(
y

2p
(p−3)2

)
' − (9− p)

(p− 3)2 log y . (4.23)

We may compare this to the profile for σ put forward by the local description described in
section 2.2:

σ(y) ' − 4
p δ2 log y . (4.24)

We can thus extract the value of δ and, for completeness, that of a:

δ2 = 4(p− 3)2

p(9− p) , 1− a = − (p− 3)2

(p− 9)(p+ 1) . (4.25)

Thus, we have, from equation (2.17):

D(y) ' −2
δ

log y ' −|p− 3|√9− p
2√p log r . (4.26)

We have thus recovered exactly the profile (4.17), without having to use the explicit scalar
profile. From (2.20), we also recover the scaling relations (4.18), namely:

∆d = y ∼ e−
|p−3|
p

√
p

9−p D , |Rd| ∼ e2 |p−3|
p

√
p

9−p D . (4.27)
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Hence, in this case we have used the local description to recover the field-space distance and
scaling relations near the singularity without knowing the full details of the d-dimensional
theory. In fact, we can use the local description to derive the asymptotic behaviour of
interesting d-dimensional quantities. For instance, the scalar potential scales near the
singularity as (2.15):

V (D) = −c
(

1− (p− 3)2

(9− p)(p+ 1)

)
e

2(p−3)√
p(9−p)

D
. (4.28)

This is a very interesting bottom-up approach. In the actual d-dimensional action, the
potential would depend on the radion and dilaton with contributions from the curvature of
the sphere and the flux traversing it. However, the local description encapsulates only the
dependence on the effective scalar dominating the field distance D near the ETW brane,
erasing any other irrelevant UV information. From the previous equation we find that the
potential is negative as we approach the ETW brane (recall c > 0). With the extra input
that the curvature and the flux contributions to the potential are negative and positive
respectively, the local description is then telling us that it is the curvature term the one
that dominates in this limit.

For the D7-brane, the coordinate y is given by

y =
∫ r

eαω(r)eν(r)dr =
∫ r (

−N2π log
(
r

ρ

)) 4
7
(
r

r0

) 1
7
dr ∼ r 8

7 , (4.29)

where we have neglected the logarithmic contribution compared to the polynomial one.
Similarly, we have:

σ(r) ' σ
(
y

7
8
)
' −αω

(
y

7
8
)
' −1

8 log y . (4.30)

Hence, comparing this to equation (2.18), we find:

δ2 = 32
7 , a = 0 . (4.31)

This means that the asymptotic potential vanishes, in the sense of φ′2 � V . Plugging this
value of δ2 into equation (2.17) and (2.20), we recover the same field space distance and
scaling relations as in the computations of the previous section:

D(y) ' −
√

7
8 log y ' − 4√

14
log r , (4.32)

∆9 = y ∼ e−
√

8
7 D , |R9| ∼ e2

√
8
7 D . (4.33)

4.3 Revisiting the EFT strings

In [41, 56] it was proposed that in 4d N = 1 theories the limits in which saxionic scalars
go to infinity in moduli space can be studied as radial flows in 4d supersymmetric EFT
string solutions magnetically charged under the corresponding axionic partners. In [22] the
result was recovered by considering running solution of the compactification of the theory
to 3d with axion fluxes along the S1: the solutions implement a Dynamical Cobordism
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ending spacetime along the running direction, and the EFT string arises as the cobordism
defect required to get rid of the axion flux. In this section we revisit the analysis in [22]
from the local description, with the EFT string becoming an ETW brane. As expected,
the analysis is fairly similar to the 10d D7-brane example in the previous section; indeed,
upon compactification of the 10d theory on a CY3, the wrapped D7-branes turns into the
simplest avatar of the EFT strings in [41, 56].

In the 4d EFT string solution [41, 56], the profile for the scalars is given by

s(r) = s0 −
q

2π log r

r0
, (4.34)

a(θ) = a0 + θ

2πq . (4.35)

In our 3d interpretation, equation (4.35) describes the axionic flux over the S1, and
equation (4.34) solves the dynamical tadpole for the saxion.

The 4d metric takes the form

ds2
4 = −dt2 + dx2 + e2Ddzdz̄ , (4.36)

with z = reiθ. The warp factor is given by

2D = −K +K0 = 2
n2 log s

s0
, (4.37)

where the Kähler potential is K = − 2
n2 log s. This D should not be confused with the field

space distance, and we trust the reader to distinguish them by the context.
Matching the 4d metric (4.36) to the setup in section 4.1 with n = 1, we obtain the 3d

coordinate y:

y =
∫ r

eαω(r)eν(r)dr =
∫ r (

1− q

2πs0
log r

r0

) 2
n2 r

r0
dr ∼ r2 , (4.38)

where we have once more neglected the logarithm compared to the polynomial contribution.
Then, we can put the 3d metric in the domain-wall form (2.2), in the r → 0 limit, with:

σ
(
y

1
2
)

= −γβω
(
y

1
2
)
' − log

((
1− q

2πs0
log y

1
2

r0

) 1
n2 y

1
2

r0

)
' −1

2 log y . (4.39)

Comparing this to (2.18), we obtain

δ2 = 8 , a = 0 . (4.40)

We can use these parameters to recover the profiles and scaling of the local solution. For
instance, we obtain that φ′2 � V , as in the D7-brane case. We also obtain the field-space
profile and scaling relations8 from (2.17) and (2.20):

D(y) ' −
√

1
2 log y , (4.41)

∆ = y ∼ e−
√

2D , |R| = e2
√

2D . (4.42)

We thus find that the full solution can be described in terms of the local description,
with the EFT string described in terms of an ETW brane.

8This result corrects a factor of
√

2 arising from |D| ' |σp| ' −
√

2 log(r), which was missing in [22].
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4.4 The Klebanov-Strassler throat

In the previous examples we have shown that D-branes can play the role of ETW branes
in running solutions of compactifications with fluxes. We would like to mention, however,
an alternative mechanisms in which Dynamical Cobordisms can get rid of fluxes in the
compactification, namely when the running involves axion monodromy.9 This is most
clearly illustrated in the celebrated Klebanov-Strassler (KS) solution [34], related to the
compactification of type IIB theory on the 5d Sasaki-Einstein space T 1,1 with N units of
RR 5-form flux and M units of RR 3-form flux on an S3 ⊂ T 1,1.

As shown in [21], the KS solution can be regarded as a Dynamical Cobordism, in which
the tip of the throat ends spacetime at finite spacetime distance in the radial direction,
smoothing out (or UV completing) the singularity of the related Klebanov-Tseytlin (KT)
solution [33]. In this section we show that the structure of the KT solution is indeed that
of an ETW brane from the viewpoint of the 5d effective theory.

Consider the KT solution [33], whose 10d Einstein frame metric reads:

ds2
10 = h−1/2(r)ηµνdxµdxν + h1/2(r)

(
dr2 + r2ds2

T 1,1

)
, (4.43)

with
h(r) = b0 + M2 log (r/r∗)

4r4 . (4.44)

The singularity is at rs such that h(rs) = 0, signalling the location of the ETW brane.
One can show that ∂rh 6= 0 at r = rs, hence we may expand this harmonic function near
this point as

h(r) ∼ r − rs ≡ r̃ . (4.45)

We now take the compactification ansatz

ds2
10 = L2

(
e−5qds2

5 + e3qds2
T 1,1

)
(4.46)

with L an overall scale. Matching with (4.43) we get the profile for the breathing mode

q(r) = 1
6 log

((
r

L

)4
h(r)

)
' 1

6 log r̃ , (4.47)

where in the last equality we have taken the near ETW limit. We also get the 5d Einstein
frame metric:

L2ds2
5 =

((
r

L

)2
h

1
2

) 5
3 (
h−

1
2 ηµνdx

µdxν + h
1
2dr2

)
. (4.48)

From it we can derive the relation between r̃ and the radial coordinate y in the local analysis,
which is

r̃ ∼ y 3
5 . (4.49)

Reading off the warp factor

e−2σ =
((

r

L

)2
h

1
2

) 5
3

h−
1
2 ∼ r̃ 1

3 ∼ y 1
5 , (4.50)

9For axion monodromy in inflation, see [57–64].
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we finally find
σ(y) ' − 1

10 log y . (4.51)

Hence, the 5d KT solution near the singularity fits with the form of an ETW brane in our
local description with

δ = 2
√

30
3 , a = −3

2 . (4.52)

We can also check that the solution for the scalars also fits in the local model description.
The NSNS axion is given by

T (r) = T̃ +M log r ' Ts + M

rs
r̃ , (4.53)

again in the near ETW brane limit. Here Ts = T (rs), which we can keep arbitrary. The
field space metric from the 5d action in [33] is given by

dD2 = 30(∂q)2 + 1
2g
−1
s e−6q(∂T )2 . (4.54)

Using the profiles for q and T in the r̃ → 0 limit, we have

(∂q)2 ' 1
36r̃2 , e−6q(∂T )2 '

(
M

rs

)2 1
r̃
. (4.55)

For r̃ → 0, the breathing modes dominates the field space distance in field-space. Fol-
lowing [65], it is then an asymptotically geodesic trajectory. This is in contrast with the
r → ∞ limit, for which the field-space trajectory was shown to be highly non-geodesic
in [38]. Hence we have

dD2 ' 30(∂q)2 ' 5
6 r̃
−2 . (4.56)

Upon integration and using (4.49) we obtain

D(y) ' −
√

30
10 log y . (4.57)

This again takes the form found in our local analysis, for the above coefficients (4.52).
Finally, we also check that the 5d scalar potential from [33] scales as predicted by the

local model. The complete potential is

V (φ) = −5e−8q + 1
8gsM

2e−14q + 1
8(N +MT )2e−20q . (4.58)

Plugging in T = Ts and D ' −
√

30 q as dictated by (4.56), we get

V (D) = −5e
4
√
30

15 D + 1
8gsM

2e
7
√
30

15 D + 1
8(N +MTs)2e

2
√
30

3 D . (4.59)

For N + MTs 6= 0, we find that the last term dominates as D → ∞. As predicted by
our local analysis, it has an exponential behaviour with D with the coefficient δ given
in (4.52). Moreover, as predicted by finding a < 0, the coefficient in front of this exponential
is positive.

We hope these examples suffice to convince the reader that the local description provides
a simple and efficient framework to discuss the structure of Dynamical Cobordisms near
the ETW brane.
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5 Small black holes as Dynamical Cobordisms

The analysis of the previous section for single-charge D-brane solutions can be similarly
carried out for systems of multiple charges, namely combining D-branes of different di-
mensionalities. Such systems have been extensively employed in the construction and
microscopic understanding of black holes, both with finite horizon, starting with [66], or
with vanishing classical horizon area (small black holes) (see [35, 36] for some reviews).
In this section we describe brane configurations, closely related to the celebrated D1/D5
system, leading to small black holes, and describe them as cobordism defects of suitable
sphere compactifications of the underlying theory. The resulting dimensionally truncated
theory corresponds to a 2d theory of gravity and an effective scalar (2d dilaton gravity), for
which we find scaling relations analogous to the higher dimensional cases. This description
relates the Dynamical Cobordisms to the realization of the Swampland Distance Conjecture
in small black holes10 in [37].

5.1 The D2/D6 system on T4

We consider a configuration of D6- and D2-branes in the following (1/4 susy preserving)
configuration

D6 : 0 1 2××× 6 7 8 9 (5.1)
D2 : 0 1 2×××××× (5.2)

where the numbers correspond to directions spanned by the brane worldvolumes and ×’s
mark transverse directions. We consider all branes to coincide in the mutually transverse
directions 345. We moreover smear the D2-branes in the direction 6789. Eventually
these directions will be taken to be compact, so the smeared description is valid for small
compactification size.

In the 10d Einstein frame the metric and dilaton profile are given by harmonic super-
position (see [70] for background)

ds2 =Z6(r)−
1
8Z2(r)−

5
8 ηµνdx

µdxν+Z6(r)
7
8Z2(r)

3
8 (dr2+r2dΩ2

2 )+Z6(r)−
1
8Z2(r)

3
8dxmdxm,

Φ(r) = 1
2
√

2
log
(
Z6(r)−

3
2Z2(r)

1
2
)
, (5.3)

where r is the radial coordinate in 345, dΩ2
2 is the volume of a unit S2 in this R3, and

m = 6, 7, 8, 9. The harmonic functions are

Z6(r) = 1 + ρ6
r
, Z2(r) = 1 + ρ2

r
. (5.4)

As announced, we now consider compactifying the directions 6789 on a T4 (similar
results hold for K3 compactification, as usual), with the compactification ansatz

ds2 = e
− t√

2ds2
6 + e

t√
2ds2

T 4 . (5.5)
10For other approaches to Swampland constraints using (large and small) black holes, see e.g. [67–69].
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Matching this ansatz to (5.3), we obtain the canonically normalized radion

t(r) =
√

2 log
(
Z6(r)−

1
8Z2(r)

3
8
)
. (5.6)

The 6d Einstein frame metric reduces to:

ds2
6 = e

t√
2
(
Z6 (r)−

1
8 Z2 (r)−

5
8 ηµνdx

µdxν + Z6 (r)
7
8 Z2 (r)

3
8
(
dr2 + r2dΩ2

2
))

= Z (r)−
1
4 ηµνdx

µdxν + Z (r)
3
4
(
dr2 + r2dΩ2

2
) (5.7)

where Z(r) = Z6(r)Z2(r).
One can see that the dilaton and radion are both blowing up upon reaching the point

r = 0, which is at finite spacetime distance, hence the configuration can be dubbed a 6d
small black 2-brane.

As in section 4, we can describe the configuration as a Dynamical Cobordism of the 6d
theory compactified on an S2 with suitable 2-form fluxes (for the RR 2-form field strength
and the T4 reduction of the RR 6-form field strength). To implement this, we take the
general ansatz:

ds2
6 = e−2ασds2

4 + r2
0e

2βσdΩ2
2 . (5.8)

In the resulting 4d theory, there are non-trivial potential terms for the new radion σ

arising from the curvature of S2 and the 2-form fluxes. Imposing the Einstein frame in
4d comes down to setting γ = α

β = 1. One can then choose β such that the radion σ(r)
has a canonically normalized kinetic term and one obtains β = 1

2 . From matching this
compactification ansatz to equation (5.7), we obtain the canonically normalized radion σ,

σ(r) = log
(
r2

r2
0
Z(r)

3
4

)
, (5.9)

and the following 4d Einstein frame metric

ds2
4 = eσ

(
Z(r)−

1
4 ηµνdx

µdxν + Z(r)
3
4dr2

)
=
(
r

r0

)2 (
Z(r)

1
2 ηµνdx

µdxν + Z(r)
3
2dr2

)
.

This solution is a 4d Dynamical Cobordism, with the D2/D6-brane system playing the role
of cobordism defect. The solution has the structure of an ETW brane; there are 3 running
scalars going off to infinite distance at the singularity at r = 0, which is straightforward to
show lies at finite spacetime distance. Indeed, near r = 0, we have

∆ =
∫ r

0

(
r

r0

)
(Z6(r)Z2(r))

3
4dr ∼ √r . (5.10)

Furthermore, near the singularity, the distance in field space goes like:

dD2 = dΦ2 + dσ2 + dt2 ' 1
2
dr2

r2 → D ' − 1√
2

log(r) (5.11)

Near the singularity, the Ricci scalar in 4d behaves as:

|R| ∼ r−1 (5.12)
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These lead to the familiar scaling relations near r = 0:

|R|− 1
2 ∼ ∆ ∼ e−

1√
2 |D| . (5.13)

Since the above full solution has the structure of a Dynamical Cobordism, it should
be possible to express it in the framework of our local description, with the D2/D6-brane
system playing the role of the ETW brane. Let us define the new coordinate:

y =
∫ r ( r

r0

)
(Z6(r)Z2(r))

3
4 dr ∼ √r , (5.14)

where we have considered the leading behaviour near r = 0.
Using equation (4.4), we have:

σ
(
y2
)

= −1
2 log

(
y4

r2
0
Z
(
y2
) 1

2

)
' − log y . (5.15)

Matching this to the profile in (2.17), we see that δ2 = 2 and a = 2
3 . Then we automatically

fall back on the previous field-space distance and scaling relations using equations (2.17)
and (2.20):

D(y) ' −
√

2 log y , (5.16)

∆ = y ∼ e−
1√
2 D ∼ |R|− 1

2 . (5.17)

This gives yet another nice check of the usefulness of the local analysis.

Beyond the Einstein frame. One last remark that will be relevant in the next sections
is that scaling relations similar to those of (5.13) can be found, independent of the frame
chosen during the compactification. Indeed, if one insists on keeping γ (and thus, also β)
general and tracking it throughout the computations, one obtains the new coordinate near
r = 0:

∆ = y ∼ r 1
4 (γ+1) and |R| ∼ r− 1

2 (γ+1) . (5.18)

Note that, if γ < −1, then these scalings behave opposite to those we have seen for
ETW branes. This illustrates that the scalings mentioned rely on using the Einstein frame
metric to describe the ETW brane.

In setups where one needs (or finds convenient) to use general frames, the condition
for an ETW brane is that the picture of a scalar going off to infinity at finite spacetime
distance can be attained by a suitable change of frame. In this respect, we note that there
is an extra subtlety in dealing with the field space distance in general frames. Indeed, not
being in the Einstein frame implies that the radion is multiplying the Einstein-Hilbert term
in the action:

S4 ⊃
1
2

∫
d4x
√−g4e

2βσ(1−2γ)
{
e2βγσ

(
R4 − (∂t)2 − (∂Φ)2 − β2

(
6γ2 − 8γ + 6

)
(∂σ)2

)}
.

(5.19)
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It thus makes sense to define the field space distance measured in units set by this coefficient
of the Ricci scalar in the action. This field space distance near the singularity in this general
frame reads:

dD2 = dΦ2 + β2
(
6γ2 − 8γ + 6

)
dσ2 + dt2

D ' −
√

6γ2 − 8γ + 10
4 log r .

(5.20)

Hence, we can derive the following universal scaling relations in a general frame:

∆ ∼ e−
γ+1√

6γ2−8γ+10
|D| ∼ |R|− 1

2 . (5.21)

Note that these reduce to those of (5.13) when setting γ = 1, as required by the Einstein
frame. As a side note, one cannot recover this result in the local description detailed in
section 2.2 as it was constructed in the Einstein frame. We leave such a more general
formulation of the local construction for future work.

5.2 Small black holes from the D2/D6 system on T4 × T2

Let us now consider turning our D6/D2-brane systems into a (small) black hole, by a further
compactification on T2.

We take the ansatz
ds2

6 = e−qds2
4 + eqds2

T 2 . (5.22)

By matching this ansatz to the 6d metric obtained previously (5.7), we get the 4d Einstein
frame metric:

eq(r) = Z (r)−
2
8 ,

ds2
4 = (g4)ij dxidxj = eq(r)

(
−Z (r)−

2
8 dt2 + Z (r)

6
8
(
dr2 + r2dΩ2

2
))

= −Z (r)−
1
2 dt2 + Z (r)

1
2
(
dr2 + r2dΩ2

2
)
. (5.23)

This solution describes a small black hole (in fact, equivalent to the celebrated D1/D5-brane
one, by T-duality in one of the T2 directions), of the kind considered in [37].

To motivate the relation with the more general discussion in the next section, let us
make the following heuristic argument. Although our solution has three scalar fields, the
radial evolution can be reduced to one effective scalar as follows. Near r = 0, all three
scalars have the same profile, so we may combine them in one effective scalar D whose
effective action near r = 0 is of the form

S4 ∼
1
2

∫
d4x
√
g4

{
R4 − (∂D)2 − 1

4e
1√
2D|F2|2

}
(5.24)

where we have restricted to the U(1) linear combination under which the D2/D6 system
is charged.

With this proviso, we can frame this particular example with the more general class of
small Black Holes considered in [37], to be discussed next.
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5.3 General small black holes

In the context of the swampland program, [37] proposed the use of 4d small black hole
solutions to provide further evidence for a number of a number of Swampland conjectures.
A particularly important property is that the 4d solutions contain scalars going off to
infinite field space distance at the black hole core. In the spirit of previous sections, in
this section we show that these 4d solutions can be turned into 2d Dynamical Cobordisms
upon reducing on the S2, with the small black hole playing the role of the ETW brane. In
fact we will check that the 2d running solution satisfies the familiar scaling relations (for a
general frame, since there is no Einstein frame in 2d).

Let us briefly review the key features of such solutions. We consider 4d Einstein-Maxwell
coupled to a scalar controlling the gauge coupling. We take the action

S4d ∼
1
2

∫
d4x
√−g4

(
R4 − (∂φ)2 − e2aφ|F2|2

)
. (5.25)

We focus on exponential dependence, since it provided the most explicit class considered
in [37]. It also fits with the special role of exponential functions in local descriptions of
ETW branes.

Without loss of generality, we take a > 0 so that φ→∞ corresponds to weak coupling
for the U(1) gauge field. Note that this a should not be confused with the parameter
in (2.11), and we trust the reader to distinguish them by the context.

In this theory, electrically charged extremal black holes take the form

ds2
4 = −f(r)dt2 + f(r)−1dr2 + r2R(r)2dΩ2

2 , (5.26)

where

R(r) =
(

1− rh
r

) a2
1+a2

, f(r) =
(

1− rh
r

) 2
1+a2

. (5.27)

In addition, the profile for the scalar is given by

φ(r) = φ0 −
√

2 a
1 + a2 log

(
1− rh

r

)
. (5.28)

The scalar goes off to infinity at the horizon r = rh, which is however not smooth, since
the S2 shrinks to zero size, leading to a small black hole.

In the string theory context, small black holes can be easily built by using D-branes.
In fact, we now recast the above solution in a form closer to the solution (5.23), which
described our system of D2- and D6-branes on T4×T2. This was already anticipated when
we obtained (5.24), which has the structure of (5.25) (for a = 1

2
√

2).
Carrying out the coordinate change r → r + rh, the metric (5.26) becomes

ds2
4 = −

(
1 + rh

r

)− 2
1+a2

dt2 +
(

1 + rh
r

) 2
1+a2 (

dr2 + r2dΩ2
2
)
. (5.29)

Similarly, the scalar reads

φ(r) = φ0 +
√

2 a
1 + a2 log

(
1 + rh

r

)
. (5.30)
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This has the structure of (5.23) with Z(r) = (1 + rh/r)
4

1+a2 . Note that the core of the small
black hole now lies at r = 0.

We now perform the reduction on S2 to express these solutions as 2d running solutions
describing a local Dynamical Cobordism, with the small black hole playing the role of the
ETW brane. We will also recover the corresponding (general frame) scaling relations.

Since there is no Einstein frame in 2d, we perform the S2 reduction with the following
general ansatz:

ds2
4 = e−2αωds2

2 + e2βωr2
0dΩ2 . (5.31)

The 2d action obtained from the compactification contains the terms

S2d ⊃
1
2

∫
d2x
√−g2 e

2βω
(
R2 − (∂φ)2 − 6β2 (∂ω)2

)
. (5.32)

These expressions already show the impossibility to define an Einstein frame: it would
require β = 0, and this would kill the radion’s kinetic term. We therefore keep β general,
so we deal with a dilaton-gravity theory. By matching the ansatz (5.31) with the 4d
metric (5.29) we get the profile for the radion

ω(r) = 1
β

log
(
r

r0

(
1 + rh

r

) 1
1+a2

)
, (5.33)

and the 2d metric

ds2
2 =

(
r

r0

)2γ

−

(
1 + rh

r

)− 2(1−γ)
1+a2

dt2 +
(

1 + rh
r

) 2(1+γ)
1+a2

dr2


 , (5.34)

where γ = α
β .

Computing the 2d Ricci scalar and taking the leading order in r → 0 we get

|R| ∼ r−2 (γ+1)a2

1+a2 , (5.35)

where we are ignoring a constant prefactor.11

Similarly, the spacetime distance from a given r to the singularity, at leading order in
r → 0, scales as

∆ ∼ r
(γ+1)a2

(1+a2) . (5.36)

We note that, as expected, the scaling is the familiar ETW one if γ > −1. As explained
above, the fact that 2d gravity is topological means that the criterion for an ETW brane in
a solution should be that the usual relations hold in some suitable frame.

Let us now recover the usual scalings with the field distance. Recalling the latter is
measured in units set by the coefficient of the Ricci scalar in the action, we can it read off
from (5.32) as:

dD2 = dφ2 + 6β2dω2 . (5.37)
11This prefactor vanishes for either a2 = 1 or a2 = −2γ. We will skip these cases without further discussion.
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Plugging the profiles (5.28) and (5.33) at leading order as r → 0 and integrating the line
element we recover

D(r) ' −a
√

2 + 6a2

1 + a2 log r . (5.38)

Finally, together with the previous results for the distance to the end of the world and the
curvature, we obtain the scalings

∆ ∼ e− δ2 D , |R| ∼ eδ D , (5.39)

with
δ = 2(γ + 1)a√

2 + 6a2 . (5.40)

Hence, we recover the general frame scaling relations introduced in section 5.1. This shows
that small black hole solutions can be regarded as just another instance of Dynamical
Cobordism, and that they admit local scaling relations identifying the small black hole core
with ETW branes in 2d.

6 Swampland constraints and surprises from the UV

In this section we discuss interesting interplays of the scalar running off to infinity in field
space in Local Dynamical Cobordisms and the Swampland constraints.

6.1 Swampland distance conjecture and other constraints

Many studies of Swampland constraints are related to infinity in scalar moduli/field space
(see [42–44] for reviews). Since Dynamical Cobordisms explore infinite field space distances,
in this section we discuss the interplay with different Swampland constraints, especially the
Distance Conjecture [71] (see [38, 39, 65, 72–83] and the reviews above for other approaches).

Let us focus on the simplest expression of the Distance Conjecture, which states that,
when the scalars are taken to infinite field space distance D (in an adiabatic approach,
namely, by changing the spacetime independent vevs), there is a tower of states becoming
exponentially light, and thus the cutoff of the effective theory is lowered as

Λ ∼ e−αD , (6.1)

with some positive order 1 coefficient α.
This scaling can be combined in an interesting way with our scalings near ETW branes.

For instance, using (2.20), we have
Λ ∼ ∆

2α
δ . (6.2)

This matches with our intuition that the full description of the ETW brane requires UV
completing the effective theory. It is important to note that the appearance of an infinite
tower in the adiabatic version of the Distance Conjecture does not necessarily imply the
appearance of a tower in the present Dynamical Cobordism context. On the other hand, the
lowered cutoff certainly signals that there could be situations where the naive ETW brane
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picture as described in effective theory may be corrected. We will see explicit examples in
section 6.2.

Using also (2.20), we get that the cutoff scale relates to the spacetime curvature as

|R| ∼ Λ−
δ
α , (6.3)

(where we have taken the generic case δ 6= (2d/(d− 2))1/2 for concreteness). This relation,
already noted in [22] is reminiscent of (although admittedly different in spirit from) that
in [39] for AdS vacua.

From this perspective, the correlation between the appearance of the naked singularity
and the running of the scalar going off to infinity suggests that the lowered cutoff of the
swampland distance conjecture is responsible for regulating the singularity, which would
be resolved in a more complete microscopic UV description. This remark is in the spirit
of [41] (see also [56]) and [37], where the singular behaviour of certain defects (EFT strings
or small black holes, respectively) is related to scalars going off to infinite distance.

From our perspective, the relation follows from the Dynamical Cobordism Distance
Conjecture in [22]. In our present terms: every infinite field distance limit of an effective
theory consistent with quantum gravity can be realized as a solution running into a cobordism
ETW brane (possibly in a suitable compactification of the theory).

In particular, in sections 4 and 5 we provided a description of general defects as
ETW branes of Dynamical Cobordisms. This general framework encompasses the defects
in [37, 41] as particular examples.

An interesting spin-off of our local analysis is that it constrains the asymptotic form of
the potential. Namely, whenever it is not vanishing (actually, negligible as compared with
the scalar kinetic energy) it has an exponential form with a critical exponent δ, cf. (2.15).
It is thus interesting to compare this asymptotic form of the potential with Swampland
constraints expected to hold near infinity in scalar field space.

Let us consider the de Sitter conjecture in the version of [84] (see [76, 85] for the refined
one), namely |∇V |/V > O(1). From (2.15) we have

V ′

V
= δ . (6.4)

Since in general the critical exponent δ ∼ O(1), the potential satisfies the de Sitter
conjecture. This fits nicely with the idea that the latter is expected to hold near infinity in
moduli/field space.

Moreover, let us compare with the Transplanckian Censorship Conjecture [86]

|∇V | ≥ 2√
(d− 1)(d− 2)

V . (6.5)

When V < 0, the constraint is trivial; on the other hand, when V > 0, in our setup we must
have a < 0, and the expression (2.14) for δ guarantees that the above inequality is satisfied.
A caveat for the above statements is that both the de Sitter and the Transplanckian
Censorship conjectures involve the gradient ∇V , whereas our local description provides
the potential only along one direction, the effective scalar dominating the running near

– 28 –



J
H
E
P
0
6
(
2
0
2
2
)
1
4
2

the ETW brane. Hence, the comments above would hold under the assumption that the
effective scalar in the local description follows a gradient flow. It would be interesting to
assess this point in explicit models, and we leave this as an open question for future work.

6.2 Large N surprises from the UV

In the previous section we have discussed that the Distance Conjecture implies a lowered
cutoff as one approaches the ETW brane. Indeed, as mentioned at several points, the
microscopic description of the ETW branes lies in the underlying UV completion. In most
of our examples, the corresponding cobordism defect is known, so that the end of the world
picture can be confirmed in the full theory. However, it is conceivable that in some specific
cases there exist UV effects hidden at the core of the ETW brane potentially modifying
this picture. In this section we present two examples, where such corrections exist and
lead to large backreactions, ultimately turning the candidate ETW brane into a domain
wall interpolating to a new region beyond the apparent singularity. A further interesting
observation is that both examples are related to large N physics and holography.

Large number of M2-branes. Consider as our first example a stack of N D2-branes
in flat 10d spacetime (or at a smooth point in any other compactification). Locally around
the D2-brane location the S6 truncation yields a 4d theory with an ETW brane, at which a
scalar (a combination of the radion and the dilaton) goes to infinity in field space. One
may follow the theory in this limit and, as noted in [54], realize that the strong coupling is
solved by lifting to M-theory, and turning the D2-branes into M2-branes. For small N , the
UV completion of the effective ETW brane is thus merely a stack of M2-branes removing
the flux and allowing spacetime to end, as befits a Dynamical Cobordism.

On the other hand, for N large we have a different behavior: the large number of
M2-branes backreact on the geometry and generate an infinite AdS4 × S7 throat. The
effective theory ETW brane has a UV description with so many degrees of freedom that it
actually generates a gravity dual beyond the wall.

From the perspective of the running scalars, the AdS4×S7 represents a minimum of the
(S7 radion) potential. Hence the full D2/M2 solution describes the running of the theory
from the slope of the potential down to a stable minimum, at which the theory relaxes to a
maximally symmetric solution, instead of hitting an end of the world. The location of the
minimum in field space is hidden near infinity in the original D2-brane effective description.
Hence, the large N allows for the appearance of a minimum at strong coupling, which is
nevertheless tractable.12

Moreover, the full D2/M2 solution describes a dynamical cobordism from the M-theory
perspective. Far away from the stack of branes we can use the description in terms of
D2-branes. As described above the 4d theory would be obtained by compactifying Type
IIA on an S6. This would be further lifted to M-theory on S6 × S1. On the other hand, we
have just argued that close to the stack of branes the 4d theory is given by M-theory on
S7. We then see that this solution describes a dynamical cobordism between to different

12This is reminiscent of the argument [87] that the scale separation (and hence the tractability) of the
AdS minima in [88, 89] is controlled by a large number of flux units.
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compactifications. Notice that this is not a cobordism to nothing, described by ETW
brane solutions.

Warped KS throat with large number of D3-branes. Our second example is based
on the warped throat considered in section 4.4. Recall we have type IIB theory compactified
on T 1,1 with N units of RR 5-form flux and M units of RR 3-form flux on the S3, and we
focus on the choice of parameters N = KM + P . At the level of the 4d effective theory, we
recover a KT solution with a singularity at a finite spacetime distance, at which a scalar (a
combination of the T 1,1 radion and the dilaton, but dominated by the former) goes off to
infinite field space distance.

The UV smoothing of this singularity is slightly trickier than the N = KM case of
section 4.4. It involves the smoothing of the singular conifold geometry into a deformed
conifold, with a finite size S3, but there remain P D3-branes at the tip of the throat. This
can be shown using the holographic dual field theory, as follows. There is a Seiberg duality
cascade from the initial SU(N)× SU(N +M) theory in which N effectively decreases in
multiples of M ; hence, in the last step of the cascade we have an SU(P ) × SU(M + P )
gauge theory, whose strong coupling dynamics leads to an remnant N = 4 SU(P ) theory,
as befits the above mentioned P probe D3-branes.

Hence, for small P the ETW brane of the 5d theory is microscopically described by the
smooth Klebanov-Strassler throat dressed with P explicit D3-branes, required to absorb
the remnant 5-form flux and allow spacetime to end.

On the other hand, for P large we have a different behavior: the large number of
D3-branes backreact on the geometry and generate an infinite AdS5 × S5 throat. The
effective theory ETW brane has a UV description with so many degrees of freedom that
it actually generates a gravity dual beyond the wall. The interpretation of this strong
correction in terms of the running scalars is similar to the one mentioned above, as the
apperance of an AdS minimum hidden near the infinite field space distance limit of the
effective description.

We have seen two examples in which a naive ETW brane in the effective description
has a UV description encoding large backreactions on the geometry recreating a geometry
beyond the wall. Alternatively, the corrections generate minima in the scalar potential in the
region near field space infinity of the effective description. It would be interesting to explore
in more detail these and other possible classes of examples exhibiting this phenomenon. We
hope to report on this in the future.

7 Conclusions

In this paper we have studied Dynamical Cobordism solutions in which theories of gravity
coupled to scalars develop an end of spacetime. The latter is encoded in the effective theory
as the appearance of a singularity at finite spacetime distance, at which some scalars run off
to infinite field space distance. We have provided a local description of the configurations
in the near ETW brane regime, and shown that the solutions are largely simplified, and fall
in universality classes characterized by a critical exponent δ, which controls the profiles of
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Example d δ a

Massive IIA 10 5√
2 − 16

5

Non-susy USp(32) string 10 3√
2 0

D7 branes 9 4
√

14
7 0

D6 branes 8
√

2 4
7

D5 branes 7 2√
5

5
6

D4 branes 6 1√
5

24
25

Klebanov-Strassler 5 2
√

30
3 − 3

2

Bubble of Nothing 4
√

6 0

D2 branes 4
√
14
7

20
21

D2/D6 on T 4 × S2 4
√

2 2
3

D1 branes 3
√

2 3
4

EFT string 3 2
√

2 0

Table 1. Table of examples in this paper, with the corresponding parameters for the local description
near the ETW brane.

the different fields and the scaling relations among the field space distance D, spacetime
distance ∆ and scalar curvature R.

We have studied several explicit models of ETW branes and characterized them in
the local description, computing their critical exponent. The different examples and their
key parameters are displayed in table 1. This list is intended to illustrate typical values of
these parameters. It would be interesting to explore more examples and to explore possible
connections among ETW branes described by the same parameters.

We have moreover shown that small black holes can also be regarded as Dynamical
Cobordisms, and satisfy similar scaling laws. It would be interesting to explore from the
cobordism perspective the recent applications of small black holes to the derivation of
swampland constraints.

There are several interesting open directions for the future:

• We have focused on solutions with spatial dependence. It would certainly be interesting
to explore time-dependent backgrounds, and their possible application to cosmology.

• In our local analysis we have focused on certain particular choices. For instance, we
have not considered solutions where |V | � |Vt|, and we have moreover taken solutions
controlled by a constant parameter a < 1. More general possibilities are in principle
allowed from a mere effective field theory perspective, but they are not realized in
any of the string theory examples we have explored. It is thus an interesting question
if there are UV complete models realizing them, or on the contrary, they are excluded
by some further arguments of consistency with Quantum Gravity.

• Finally, it would be interesting to get a better understanding of the possible appearance
of non-trivial corrections in the large field region near the ETW branes, in particular
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those leading to large backreactions signalling the existence of new minima of the
scalar potential. This could lead to further insights into the stabilization of moduli in
asymptotic regions of moduli/field space. The two examples mentioned in our work
signal an interesting interplay with large N limits and holography, which may provide
an extra leverage on these configurations.

We hope our work motivates interesting results in this and other directions.
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A Local Dynamical Cobordisms with curved (d− 1)-dimensional slices

A.1 General analysis for curved slices

We can generalize the discussion in section 2 to the case in which the ETW brane has
constant internal curvature Rd. Namely we take the foliation ansatz (2.2) with ds2

d−1
describing a constant curvature (d− 1)-dimensional metric. The equations of motion read

(d− 1)
√

2 (V − Vt)σ′ − ∂φVt = 0 , (A.1)

1
2(d− 1)(d− 2)σ′ 2 + Vt −

1
2e

2σRd = 0 , (A.2)

(d− 2)σ′′ − 2 (V − Vt)−
1

d− 1e
2σRd = 0 , (A.3)

where we have again introduced the tunneling potential defined in (2.6).
For Rd 6= 0, it is still possible to eliminate σ by combining the first two equations (and

their derivatives):

(d ∂φVt − (d− 1)∂φV ) ∂φVt = 2(d− 1)(Vt − V )
[
∂2
φVt + 2

d− 2((d− 1)V − (d− 2)Vt)
]
.

(A.4)
Importantly, in this derivation we need to assume Rd 6= 0, so that we do not expect to
necessarily recover the results in section 2.
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Restricting to the case V = aVt, with a a constant, we find that the solution to this
equation is

Vt(φ) = −c
(

cosh
(

(a(d− 1) + 2− d)φ√
(1− a)(d− 2)(d− 1)

))2− 2
a(d−1)+2−d

, (A.5)

where we have ignored an integration constant that is irrelevant for the φ→∞ limit.
Notice that, for a > 1, the coefficient in front of φ becomes imaginary and then what we

have is a cosine, rather than a hyperbolic cosine. As we are not interested in this behaviour
we from now on require a < 1. From computing φ′2 from this solution and requiring that it
must be positive, we then learn that we must have c > 0.

In addition, as we are interested in ETW branes, we want to require that φ′2 blows
up as φ → ∞. This is equivalent to having |Vt| → ∞ in this same limit, which in turn
implies that the power in (A.5) must be positive. This gives us that the only ETW brane
solutions are for a < d−2

d−1 . For this range of a, we can approximate the hyperbolic cosine by
an exponential (as we are interested in the limit φ→∞) and we have

Vt(φ) ' −c
(

exp
(

(a(d− 1) + 2− d)φ√
(1− a)(d− 2)(d− 1)

))2− 2
a(d−1)+2−d

= −c eδ φ . (A.6)

The coefficient δ is

δ = 2
√
d− 1
d− 2(1− a) . (A.7)

So for a < d−2
d−1 the case of a ETW brane with internal curvature coincides with the case

studied in the paper. Interestingly, this case turns out to be more restrictive than the
Rd = 0 one, for which any a < 1 described an ETW brane.

This solution was also assuming that a 6= d−2
d−1 . Plugging that particular value in (A.4),

we find that the equation of motion simplifies to

(∂φVt)2 = Vt · ∂2
φVt . (A.8)

This equation has the solution
Vt = −c eδ φ , (A.9)

with c and δ arbitrary constants. In order to describe an ETW brane we require δ > 0.
Interestingly, for this special value of a with Rd 6= 0, we find that we recover the exponential
behaviour, but with the freedom of choosing the critical exponent δ.

In both cases we find the same exponential behaviour for Vt. Therefore, just as in
section 2.2, we find that the potential takes the form

V (φ) ' −a c eδ φ . (A.10)

However, here we uncover that, for a given potential of this form, the setup with Rd 6= 0
allows for two possible values of a, namely the a < d−2

d−1 given in (A.7)), or the value a = d−2
d−1 ,

with δ and a independent. For this reason, from now on we keep a and δ as different

– 33 –



J
H
E
P
0
6
(
2
0
2
2
)
1
4
2

variables when solving the rest of the equations, and at the end we comment on the two
possibilities.

Using (2.6) we can obtain the profile for φ

φ(y) ' −2
δ

log
(
δ

2

√
2(1− a)c y

)
. (A.11)

Notice that this is the equivalent to (2.16), but with a and δ kept independent. The leading
behaviour is then given by

φ(y) ' −2
δ

log y , (A.12)

and thus the field only depends on the critical exponent.
We can now use (A.1) to get the profile for the warp factor σ:

σ ' − 1
(d− 1)(1− a) log y , (A.13)

where we have set an integration constant to zero without loss of generality. We recover the
equivalent to (2.18), albeit with a and δ kept independent. We see that the warp factor
doesn’t depend on δ, but specifically on the prefactor a of the potential.

Finally, we have to check that the solution is compatible with (A.3). From it we obtain
the condition

4
δ2 −

d− 2
(d− 1)(1− a) + Rd

d− 1 y
2− 2

(d−1)(1−a) = 0 . (A.14)

Let us now apply it for the two possible values for a:

• For a < d−2
d−1 , the power of y in the last term is positive, so that it is subleading in the

y → 0 limit. Moreover, recall that in this case δ relates to a via (A.7), which is the
precise the value for which the first two terms cancel each other. In conclusion, for
a < d−2

d−1 having Rd 6= 0 becomes irrelevant as we approach the ETW and we basically
recover the same results as in the Rd = 0 case.

• For a = d−2
d−1 , the exponent of y vanishes, and hence the Rd term is relevant. In this

case, consistency of the equations requires

δ = 2
(
d− 2− Rd

d− 1

)− 1
2
. (A.15)

Therefore, for this case δ is also fixed, but in terms of Rd. Notice that this quantity
must satisfy Rd < (d − 2)(d − 1). Provided this condition, we find that δ can take
any positive value.

This case corresponds to a metric ds2 = dy2 + y2ds2
d−1, hence it describes a conical

singularity. The singularity is absent in the case Rd = (d− 1)(d− 2), namely the curvature
of ds2

d−1 is that of Sd−1, and the geometry is locally smooth, and we have δ = 0 and no
exponential growth of the potential. Also, in order to have an ETW brane, the (d − 1)-
dimensional curvature must be lower than that of Sd−1.
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In conclusion, given a potential with an exponential behaviour as φ→∞, in the Rd 6= 0
case there exist two different kind of solutions. In the first one the value of Rd is irrelevant
and we recover the same behaviour as in the Rd = 0 case (but with a more constrained
critical exponent, δ > 2√

d−2). In the second, the curvature Rd is relevant and it must be
fixed by the critical exponent by (A.15).

A.2 Witten’s bubble of nothing

To illustrate the above general formulation for curved (d− 1)-dimensional slices, we consider
the example of the celebrated Witten’s bubble of nothing [4] (see [5–8] for other recent
realization of bubbles of nothing). We show it admits a description in an effective 4d theory
of gravity coupled to a scalar with zero potential, as a 4d Dynamical Cobordism, and
characterize its local description and critical exponent δ.

Related discussion of a 4d effective description of the configuration have appeared
in [90] (recently revisited in the context of bubbles in de Sitter space in [31, 32]).

Since we have restricted our discussion to dependence on spatial coordinates, we actually
consider the euclidean 5d Schwarzschild black hole solution, before the Wick rotation to
the expanding bubble solution. The 5d metric reads

ds2 =
(

1− R2

r2

)−1

dr2 + r2dΩ2
3 +

(
1− R2

r2

)
dφ2 . (A.16)

Here φ parametrizes an S1 fibered over the radial coordinate r, times and S3; the radial
coordinate is constrained to the range r ≥ R, and the S1 shrinks to zero size at the euclidean
horizon r = R (in a smooth way for the periodicity φ ∼ φ+ 2πR).

We would like to perform a reduction to 4d along the S1. This is a sphere reduction
analogous to those in section 4.1. Hence, we match this metric with (4.2), for n = 1, d = 4,
and, using (4.3), α = −

√
1/6 and β = −

√
2/3. We obtain that the radion ω in (4.2) is:

ω = −
√

3
8 log

(
1− R2

r2

)
. (A.17)

The 4d metric is given in (4.5) and reads

ds2
4 =

(
1− R2

r2

)− 1
2

dr2 +
(

1− R2

r2

) 1
2

r2dΩ2
3 . (A.18)

We would now like to zoom into the location of the ETW brane, the euclidean horizon
r = R. So we introduce the coordinate r̃ = 1− R2

r2 . Near r → R the metric scales as

ds2
4 ∼ r̃−

1
2dr̃2 + r̃

1
2dΩ2

3 . (A.19)

Now, we make the change (4.6):

y =
∫

dr̃

r̃1/4 ' r̃
3/4 . (A.20)
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Replacing r̃ ' y 4
3 in (A.19) we get the 4d metric as a foliation of S3 slices:

ds2
4 ∼ dy2 + y

2
3dΩ2

3 . (A.21)

This corresponds to a metric of the kind (2.2) for curved 3d slices, namely of the kind
studied in appendix A.1. Using (A.13) we can see that a = 0, and from (A.7) δ =

√
6.

Interestingly, this corresponds to the case in which the curvature of the slices is irrelevant,
and the solution is similar to the Rd = 0 case.

We could have also obtained the same result from the profile for the radion,

ω = −
√

3
8 log r̃ ' −

√
2
3 log y . (A.22)

By using (A.12), ω ' −2
δ log y, we read that δ =

√
6, hence a = 0.

Hence Witten’s bubble of nothing is described by a 4d Dynamical Cobordism running
solution with the scalar reaching off to infinite distance in fields space at a rate controlled
by the critical exponent δ =

√
6. This provides a simple local description in terms of an

ETW brane. From this perspective, the 5d solution provides the UV completion of the
ETW brane, which in this case is purely a geometrical closing-off of the geometry.

We would like to emphasize that this example provides an explicit realization of the
picture discussed in section 4, in particular figure 1 (albeit, with no brane dressing at the
tip). Namely, the complete solution involves a genuine compactification on a finite size
S1, yet it is described by a local EWT brane model identical to that obtained as an S1

reduction on a flat R2 (which, given the vanishing potential, straightforwardly leads to
a = 0, hence δ =

√
6). This supports the picture in section 4 that the sphere reductions in

the flat space transverse to the D-branes suffices to provide the local description even in
the (physically more interesting case) in which the transverse space is globally given by a
more involved geometry, implementing the actual compactification to the lower-dimensional
theory.

B Subleading corrections to the local description

In section 2.2 we took constant a as a proxy for the leading behaviour of a(φ) as φ→∞.
Here we consider the role of possible subleading corrections. We notice that these corrections
do not necessarily go to zero as φ→∞ in (2.12). For example, let us take

√
1− a(φ) =

√
1− a+ b

φ
. (B.1)

It is clear that a(φ) asymptotes to a as φ→∞, but after doing the integral in (2.12) the
correction to the leading behaviour given by the second term behaves as log φ. Indeed,
ignoring constant prefactors we get

Vt ∼ φ
2
√

d−1
d−2 beδ φ , (B.2)
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with δ defined in (2.14). Comparing with (2.13) we see that we can describe this example

with our leading order analysis if we allow for c ∼ φ
2
√

d−1
d−2 b. Notice that the example in

section 3.2 precisely realise this behaviour (see equation (3.19)).
As a general lesson, we can include these kind of corrections that do not vanish in the

φ → ∞ limit by promoting c from just a constant to a φ-dependent quantity that may
hide subleading corrections. In this way, it may happen that c → ∞ as φ → ∞ as long
as it blows-up slower than an exponential (otherwise it would not represent a subleading
behaviour).

This remark is specially interesting in the a(φ) → 0 case. From (2.15) we would
conclude that V → 0 if c is a finite constant. However, if allowing c → ∞ because of
possible subleading terms, it can happen that a times c remains finite in the φ→∞ limit.
In this way, we describe a solution in which φ′2 � V (i.e., a(φ)→ 0) without requiring that
V vanishes asymptotically.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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1 Introduction

One of the outstanding questions in string theory is the understanding of time-dependent
backgrounds and in particular the resolution of cosmological (i.e. spacelike) singularities
(see [1, 2] for reviews). On general grounds, and in analogy with timelike singularities, one
may expect that stringy effects smooth out the singularity, thus providing a microscopic
description of the beginning of time.

This is a natural proposal from the perspective of the Swampland Cobordism Conjec-
ture [3], which states that any consistent theory of quantum gravity should admit configu-
rations ending spacetime, namely boundaries or general cobordism defects leading to walls
of nothing.1 This also resonates with (a Lorentzian version of) the no-boundary proposal
for the Hartle-Hawking wavefunction of the universe [9].

1A prototype is the infinite volume limit of bubbles of nothing in higher-dimensional compactifications
in which the internal space shrinks to zero size [4] (see [5–8] for some recent work).
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From this perspective, such cosmological solutions would correspond to dynamical
time-dependent configurations with a beginning of time given by a cobordism defect ex-
tending in the spatial directions. This appealing picture is however hampered by the
general lack of understanding of the microscopic structure of spacelike singularities.

The cobordism conjecture has been exploited at the topological level with interesting
results, see e.g. [6, 10–15]. On the other hand, there is substantial progress in understanding
the implications of the cobordism conjecture at the dynamical level. The configurations
dubbed Dynamical Cobordisms in [16–18] (see also [19])2 describe spacetime dependent
solutions in which the fields run until they hit a real-codimension 1 singularity at finite
distance in spacetime, at which certain scalars run off to infinite distance in field space. In
several examples of such spatially varying solutions, the timelike singularities had a known
string theory UV description, which displayed an end of spacetime. Remarkably, [18]
showed that in the effective theory description these singularities (dubbed end-of-the-world
(ETW) branes) follow universal scaling laws, and are characterized by a single critical
exponent.

In this paper we take the natural next step of starting the study of time-dependent
Dynamical Cobordism with spacelike singularities and of shedding some light on their reso-
lution. The particular arena to explore these ideas are timelike linear dilaton backgrounds
in supercritical bosonic string theory.

Supercritical string theories provide consistent versions of string theory in a general
number D of spacetime dimensions, provided a suitable timelike linear dilaton background
is turned on [30–33]. They provide an excellent testing ground for general features of
string theory (see [34] for a recent example). In particular, and as will be relevant to our
discussion, they constitute a setup in which closed string tachyon physics has been subject
to quantitative analysis (see e.g. [35–41]).3 For our purposes, the main property of these
theories is that the timelike linear dilaton background makes them one of the simplest
time-dependent setups in string theory.

We express these backgrounds as time-dependent Dynamical Cobordisms, exhibiting
their beginning of time singularity and characterizing it as an ETW brane, with a precise
critical exponent. We moreover propose, providing non-trivial support for it, that the
stringy resolution of the singularity involves a region of (the strong coupling version of)
bulk tachyon condensation. This is a realization of the mechanism in [45] in a different
setup which, as promised, provides a stringy analogue of the Hartle-Hawking proposal.

Our approach is based on the realization that the beginning of time singularity, and the
walls of nothing described via lightlike tachyon condensation in [35] (see also [36–38, 46–48]
for related results) admit an ETW brane description in the effective theory with exactly
the same critical exponent. Moreover, we show that these configurations, which seemingly
contain two intersecting ETW walls, actually contain a single recombined one with two

2For the related topic of solutions in theories with dynamical tadpoles, see [20–23] for early work and [24–
29] for related recent developments.

3See [42–44] and references therein for discussion of the fate of localized closed tachyons and related
instabilities.
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different asymptotic regions, a lightlike one corresponding to tachyon condensation at weak
coupling and a spacelike one at strong coupling corresponding to the beginning of time.

A potential caveat to our analysis is the use of effective theories to describe tachyon
condensation phenomena, which involve stringy scales and are not fully understood for
closed tachyons (see [49] and references therein for further discussion). We however en-
counter that the main feature of the ETW wall, the critical exponent, is surprisingly robust
under corrections of the effective action. This suggest that the main results may survive
beyond the validity of the tools used to extract it in the present work. The same con-
siderations apply to the study of the beginning of time singularity, which lies at strong
coupling.

The paper is organized as follows. In section 2 we recall the Dynamical Cobordisms
of [16–18], and the structure of the ETW branes in terms of their critical exponent. In
section 3 we discuss the timelike linear dilaton background as a time-dependent solution:
in section 3.1 we express it as a Dynamical Cobordism with a beginning of time; in sec-
tion 3.2 we describe the singularity at the beginning of time as an ETW brane; and in
section 3.3 we explore its UV description in terms of a timelike tachyon condensate. In
section 4 we discuss walls of nothing arising in lightlike tachyon condensation and show
that they correspond to Dynamical Cobordisms with a lightlike ETW brane: in section 4.1
we recall the worldsheet description, and in section 4.2 we provide their spacetime descrip-
tion and characterize their ETW brane and critical exponent. In section 5 we combine
results and formulate our proposal that the UV description of the beginning of time in the
linear dilaton background is (a strong coupling version of) closed tachyon condensation.
In section 6 we offer some final thoughts. In appendix A we mention that the dimension
quenching mechanism in [36, 37] can be described as a dynamical cobordism describing an
interpolating wall [17] between theories of different dimension. Some calculational details
have been postponed to appendices B, C.

2 Overview of Dynamical Cobordisms

In a series of papers [16–18] the analysis of dynamical spacetime-dependent solutions realiz-
ing cobordisms to nothing was initiated (see also [19]). Such solutions, from the perspective
of the lower-dimensional effective field theory, present universal features that allow them
to be described in a general framework as follows.

Consider the lower-dimensional EFT to be D-dimensional4 Einstein gravity coupled
to a scalar with arbitrary potential (in MPl = 1 units):

S =
∫
dDx
√−g

(1
2R−

1
2 (∂φ)2 − V (φ)

)
. (2.1)

We consider solutions in which the metric and scalar vary along one coordinate, denoted
by y. The ansatz for the metric is

ds2 = e−2σ(y)ds 2
D−1 + dy2 . (2.2)

4We use D for the spacetime dimension and D for the field space distance.
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Here we follow earlier references and considered space-dependent running solutions. The
sign flips necessary for time-dependent ones will be taken into account in the concrete
examples of later sections.

In the following we take a flat metric for the D − 1 dimensional slices. All solutions
that describe a cobordism to nothing present a spacetime singularity at finite spacetime
distance ∆ where the scalars explore an infinite distance D in field space, this is the location
of the ETW wall. Indeed, the solution does not extend beyond this point which, without
loss of generality, we choose to be y = 0.

One of the highlights of the analysis in [18] is that the solutions near ETW branes
behave in a simple way. We quote some of the main expressions encapsulating this

φ(y) ' −2
δ

log y , σ(y) ' − 4
(D − 2)δ2 log y , |R| ' 1

y2 . (2.3)

with δ a scaling coefficient which characterizes the local solution near the ETW brane, and
|R| is the spacetime scalar curvature. Although [18] focused on space-dependent running
solutions, it is straightforward to extend the discussion to time-dependent ones, and recover
the same scaling laws.

From the above profiles, all solutions describing ETW walls present universal scaling
relations between ∆, D and the spacetime scalar curvature |R|, as follows

∆ ∼ e− δ2D , |R| ∼ eδD . (2.4)

We also get that the scalar potential behaves as5

V (φ) ' −a c eδ φ , (2.5)

for a constant a < 1 related to δ by

δ = 2
√
D − 1
D − 2 (1− a) . (2.6)

3 Supercritical strings as time-dependent Dynamical Cobordism

In this section we discuss the maximally symmetric configuration of supercritial strings,
and interpret the necessary linear dilaton background as a running solution which satisfies
the properties of a time-dependent Dynamical Cobordism. The local behaviour is hence
that of an ETW brane.

In this work we focus on the supercritical bosonic theory. We expect similar ideas
to apply to other supercritical theories, including supercritical type 0 or heterotic super-
strings [36, 37].

5Note that if y is timelike, the overall sign of the potential changes. The quantity c is a positive constant
related to the boundary condition used when solving the equations of motion. Subleading corrections to the
potential can be included by promoting c to a function c = c(φ) with slower growth than an exponential.
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3.1 Linear timelike dilaton as Dynamical Cobordism

Consider bosonic string theory in D-dimensional Minkowski space (in the string frame).
In order to satisfy the central charge constraint for the theory, there is a linear dilaton
background

Φ = vMX
M , (3.1)

with

v · v = −D − 26
6α′ , (3.2)

with contractions defined with respect to the flat Minkowski metric.
Hence, supercritical strings require a timelike dilaton gradient, whereas subcritical

strings require an spacelike one. The critical D = 26 theory does not require a dilaton
profile for consistency, but does admit a lightlike dilaton background. We thus expect our
discussion to extend this background of the critical theory as well.

These linear dilaton theories define conformal theories exactly in α′, which implies that
they satisfy the equations of motion of the spacetime (string frame) action

Sstr. = 1
2

∫
dDx

√
−G(s)e

−2Φ
[
−2(D − 26)

3α′ +R(s) + 4(∂Φ)2
]
. (3.3)

We explicitly denote string frame quantities with an s subindex, while quantities with
no subindex are implicitly defined in the Einstein frame.

In the following we focus on supercritical strings and timelike dilaton background

Φ = −qX0 , (3.4)

where q ≡ v0. Here we have absorbed a possible additive constant by shifting time, so that
the dilaton vanishes at X0 = 0. From the two solutions of (3.2) we choose the one leading
to weak coupling gs = eΦ in the future X0 →∞, namely

q =
√
D − 26

6α′ . (3.5)

In the next section, we reinterpret this linear dilaton background as a running solution
with an ETW wall at the origin of time.

3.2 The ETW brane at the beginning of time

The spacetime physics of the singularity was considered from a cosmological perspective
in [35]. Here we instead study it from the perspective of the ETW branes of dynamical
cobordism in section 2.

To discuss the spacetime physics, we focus on the Einstein frame, so the metric reads

ds 2 = exp
(

4qX0

D − 2

)
ηMNdx

MdxN . (3.6)

– 5 –
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We see that at X0 → −∞ the warp factor goes to zero, and we hit a singularity. We can
introduce a time coordinate y giving the invariant interval to the singularity as

y = D − 2
2q exp

(
2qX0

D − 2

)
, (3.7)

in terms of which (3.6) is recast as the time-dependent version of (2.2):

ds2 = −dy2 + 4q2y2

(D − 2)2 dx
mdxm , (3.8)

for m = 1, . . . , D − 1. We thus obtain

σ(y) = − log y . (3.9)

Comparing this to (2.3) gives:

δ = 2√
D − 2

. (3.10)

Expressing the dilaton in terms of a scalar φ with canonical kinetic term in the Einstein
frame as

φ = 2√
D − 2

Φ ∼ −
√
D − 2 log y . (3.11)

This is precisely the scaling relation for the scalar (2.3) for the value of δ in (3.10).
We also get the expected scaling of the potential. The Einstein frame action gives

S = 1
2

∫
dDx
√
−G

[
R − 4

D − 2 (∂Φ)2 − 2(D − 26)
3α′ exp

( 4Φ
D − 2

)]
, (3.12)

which, comparing with (2.5) and using the normalized dilaton (3.11) yields the precise
value of δ in (3.10).

To conclude, we recover the scaling relations (2.4), which state that the configuration
hits an ETW singularity at finite time in the past at which the scalar runs off to infinite
distance in field space. According to the cobordism interpretation of such singularities
in [17, 18], it defines a beginning of time, a boundary in the time direction, for this solution.

The microscopic description of the ETW brane requires some understanding of space-
like defects in string theory, which remains mostly terra incognita.6 In our particular
example, this is even more so since it lies at strong coupling.7 Despite these difficulties,
we find compelling evidence that the microscopic description of our spacelike ETW brane
is the strong coupling avatar of tachyon condensation. We propose a direct approach to
this proposal in the next section, and a further indirect, but quantitatively more reliable,
route to support this picture in section 4.

6See e.g. [50] for attemps invoking S-branes.
7For the critical type IIA with a lightlike dilaton background, a microscopic description for the analogous

singularity was proposed in [51], based on M(atrix) theory [52]. Such a description does not seem feasible
in our case.
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3.3 The timelike tachyon case

The resolution of spacelike singularities in a tractable worldsheet approach was addressed
in [45] in a setup with a shrinking 1-cycle, in terms of the condensation of a closed string
tachyon in the winding sector (see [53, 54] for proposed higher-genus generalizations). In
short, the regime near the singularity was proposed to be coated by a longer duration region
in which the tachyon condenses with an exponential profile. The latter describes an effective
Liouville wall in the time direction, beyond which no string excitation can propagate. This
was argued to be a stringy definition of the nothing in the Hartle-Hawking description of
the wavefunction of the universe [9]. In this picture, spacetime emerges smoothly as the
tachyon turns off. In our terms, it describes a cobordism to nothing in the time direction.

In this section we explore a similar interpretation for the spacelike singularity encoun-
tered in our timelike linear dilaton setup. The idea is to consider an exponential profile
for the closed string tachyon of supercritical bosonic theory. The tachyon couples to the
worldsheet as a 2d potential. The condition for this deformation to be marginal, to linear
order in conformal perturbation theory, or equivalently, the linearized spacetime equation
of motion for the tachyon is

∂2T (X)− 2 vM ∂MT (X) + 4
α′
T (X) = 0 . (3.13)

We will discuss corrections to this later on.
For a general tachyon exponential profile

T (XM ) = µ exp(βM XM ) . (3.14)

we obtain a condition on β:

β · β − 2v · β + 4
α′

= 0 . (3.15)

We now focus on a timelike tachyon profile

T = µ exp(−β0X0) , (3.16)

with the condition

−(β0)2 + 2qβ0 + 4
α′

= 0 . (3.17)

There are two solutions to this quadratic equation. A possibility is to choose β0 < 0,
so that the tachyon grows for late times X0 → ∞. This is a good strategy to study the
process of tachyon condensation in a weakly coupled regime, see e.g. [38]. In fact, it is
closely related to our approach (albeit for lightlike tachyons) in section 4.

Here, instead, we are interested in having tachyon condensation at the beginning of
time, to provide a resolution of the spacelike ETW brane at y = 0, hence we need the
tachyon to grow in the past X0 → −∞, we thus require β0 > 0. Using (3.5) we have

β0 =
√
D − 26 +

√
D − 2√

6α′
. (3.18)
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We may now compare the relative growth of the string coupling gs = eΦ and of the
tachyon as X0 → −∞ to assess if the tachyon condensation could be studied using world-
sheet techniques. We have

T/gs = µ exp


−

√
D − 2

6α′ X
0


 . (3.19)

This shows that the tachyon grows parametrically faster than the string coupling as
X0 → −∞. This leads to the expectation that the worldsheet analysis provides a reli-
able description of the physics at early times. In analogy with [45], and based on the
extensive analysis in [35–37], the presence of the worldsheet potential creates a Liouville
wall expelling all string excitations, providing a microscopic definition of an ETW brane
in time.

The drawback of this approach is that it relied on trusting the linearized deformation
approximation, which is expected to experience strong higher order corrections.8 Therefore
the scenario can be at most regarded as a qualitative description. In the next section we
turn to a different approach, involving α′ exact solutions.

4 Lightlike tachyon condensation

We are thus led to consider solutions under better control. In this section we consider
an α′-exact solution of the supercritical linear dilaton theory with tachyon profile along a
lightlike direction. As established in [35, 36] for the bosonic theory, at late times this leads
to a wall of nothing moving at the speed of light, analogous to the asymptotic behaviour of
a bubble of nothing. After recalling the argument, we carry out a new spacetime analysis
that shows that at late times the background corresponds to a lightlike ETW brane, and
show that its critical exponent is exactly the same as for the beginning of time ETW brane
of the previous section. This tantalizing relation is a strong support for our interpretion of
the beginning of time is (a strongly coupled version of) a closed string tachyon condensation
phase, discussed in section 5.

4.1 Lightlike tachyon in the worldsheet description

Consider introducing an exponential tachyon background (3.14) along a lightlike direction
X+ = (X0 +X1)/

√
2

T = µ exp(βX+) . (4.1)

The linearized tachyon marginality condition (3.13) is satisfied for

β = 2
√

2
qα′

. (4.2)

At late times X0 → ∞, the string coupling is small and one may perform a reliable
worldsheet analysis. As shown in [35] and contrary to the timelike tachyon case, the

8For the β0 < 0 solution, corrections are interestingly expected to be suppressed in a large D approx-
imation, as exploited in [55]. Although large D could be interesting in our β0 > 0 case to increase the
hierarchy in (3.19), it does not lead to a similar suppression of corrections.
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deformation by the operator (4.1) is exact, as higher order corrections in the perturbation
vanish, since the lightlike nature of the insertions prevent the existence of non-trivial Wick
contractions. Furthermore, in light-cone coordinates the propagator of the X+/− fields
is oriented from X+ to X− and we know that all interaction vertices introduced by the
tachyon potential only depend on X+. These two facts combined show that there are no
possible Feynman diagrams beyond tree-level, which implies the solution is exact in α′.
One can thus conclude that the linearized tree-level solution (4.1) is exactly conformally
invariant.

The tachyon couples as a worldsheet potential, which grows infinitely at X+ → ∞.
This 2d potential prevents any string modes from entering the corresponding region, which
thus becomes a region of nothing. The physical interpretation of this is that the tachyon
configuration describes a wall of nothing propagating at the speed of light, which effectively
ends spacetime at an effective value of X+.

The finite range in X+ can be estimated by e.g. cutting off X+ when the T = 1. This
gives

∆X+ = −β−1 logµ/µ∗ , (4.3)

where µ∗ defines a reference position from which we measure the range to the wall. A more
precise derivation follows from the gedanken experiment of solving the motion of classical
strings incoming into the tachyon wall [35]. The initial speed reduces to zero at a turning
point, after which the string is pushed back by the tachyon wall and its speed asymptotes
to that of light. The turning point position in X+ in the formulas in [35] gives back the
result (4.3).

Given the importance of the notion of finiteness on the location of the tachyon wall, we
provide an alternative derivation, carried out by adapting the techniques in [45]. We briefly
sketch the results here and give more computational details in appendix B. Decomposing the
field X+(τ, σ) into its zero and nonzero modes X+(τ, σ) = X+

0 + X̂+(τ, σ) and performing
a Wick rotation, the Euclidean partition function reads:

Z (µ) =
∫
dX+

0

∫
DX̂+DX−DXiDgD(ghosts)e−Sdeformed

E , (4.4)

with the Euclidean action:

Sdeformed
E = 1

2πα′
∫
d2σE

√
g
[
∂σ0X̂+∂σ0X− + ∂σ1X−∂σ1X̂+ + ∂αX

i∂αX
i
]

+ 1
2π

∫
d2σE

√
gR2Φ(X) + iµE

2π

∫
d2σE

√
geβX

+
.

(4.5)

From this we see that when the tachyon condenses, at large X+, the path integral becomes
suppressed. This results in a truncation of contributions to the integral coming from string
oscillations with X+ 7→ ∞. This is the same mechanism as that of a Liouville wall in
Liouville theory: no physical degrees of freedom exist in this region. In fact, one can show
that the partition function in (4.4) can be directly related to that of the free theory (with
no tachyon deformation) as follows.
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After integrating out the zero-mode X+
0 , one can show that:

∂Z

∂µE
= − 1

βµE

∫
DX̂+DX−DXiDgD(ghosts)e−Sfree

E , (4.6)

where Sfree
E is the euclidean action of the worldsheet theory without the tachyon potential.

Integrating with respect to µ and fixing a cutoff for X+ such that µ∗ = eβX
+
∗ , we obtain:

Z1 = − log(µE/µ∗)
β

Ẑ , (4.7)

where Ẑ is the partition function for the 2d theory without the tachyon insertion. Hence
the partition function Z in the presence of the tachyon background related to that of the
theory without the tachyon Ẑ via the factor log(µE/µ∗)

β , which thus provides an effective
“size” of the direction X+, which matches that of (4.3).

The interpretation of the exponential tachyon as a wall of nothing receives further
support from the dimension quenching mechanism in [36]. In appendix A we review it
from the perspective of dynamical cobordisms in the spacetime perspective, to be discussed
next.

4.2 Spacetime description and lightlike ETW brane

In this section we study the spacetime description of the wall of nothing corresponding to
the lightlike tachyon, and show that it satisfies the properties of (the lightlike version of)
and ETW brane. This nicely confirms the worldsheet arguments of the previous section.

4.2.1 Effective action
In order to describe the spacetime dynamics of the lightlike tachyon configuration, we need
an effective spacetime action for the relevant fields, in particular for the tachyon. This is
already a subtle point, since tachyon condensation processes may in principle backreact on
the whole tower of stringy states, hence the validity of the truncation to an effective theory
with a finite set of fields is to some extent questionable.

In any event, this approach has been successful enough in open string tachyon effective
actions, and we may venture into its use for the closed case, hoping that fortune favors the
brave.

The construction of the most general 2-derivative effective action for the metric, dila-
ton and tachyon in supercritical string theory has been discussed in [35] and [38], whose
discussion we follow. In the string frame it has the structure

S = 1
2

∫
dDx

√
−G(s) e

−2Φ
[
f1R(s) + 4f2(∇Φ)2 − f3(∇T )2 − 2f4 − f5∇T · ∇Φ

]
. (4.8)

where the fi(T ) are general functions of the tachyon. By demanding that the equations
of motion are compatible with the linear dilaton background with an exponential tachyon
profile, one can show that the fi(T ) can be expressed in terms of f1(T ):

f2(T ) = f1(T ), f3(T ) = −f ′′1 (T )− f ′1(T )
T

, f5(T ) = 4 f ′1(T ) ,

f4 = 1
2

[
4 f1(T )

(
D − 26

6α′
)

+ T f ′1(T )
(
β · β + 8

α′

)
− T 2 f ′′1 (T )β · β

]
. (4.9)
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For general exponential tachyon profiles, the tachyon background is only a solution at
linearized order, hence we expect the above relations to receive corrections. For lightlike
tachyons, however, the solution is exact in worldsheet perturbation theory, hence the above
relations hold, and the corrections at most modify the behaviour of f1 at large T . Note
also that for lightlike tachyon profiles β ·β = 0 and the tachyon potential V(s) = f4 becomes
β-independent.

Going to the Einstein frame, we redefining the metric to absorb the f1 prefactor as
well as the usual dilaton factor,

(G(s))MN = e
4

D−2 Φf
− 2
D−2

1 GMN , (4.10)

the spacetime action is

S = 1
2

∫
dDx
√
−G

[
R− 4

D − 2
(
∂MΦ∂MΦ− f ′1

f1
∂MΦ∂MT

)
(4.11)

−
[
D − 1
D − 2

f ′21
f2

1
− f ′′1
f1
− f ′1
f1T

]
∂MT∂

MT − 2
3α′ e

4Φ
D−2 f

−D
D−2

1 ((D − 26)f1 + 12Tf ′1)
]
.

The complete expression for f1 is actually not known, beyond its expansion
around T = 0

f1 = 1− T 2 + . . . (4.12)

Nevertheless, [38] proposed a set of regularity conditions on the effective action, which to
some extent constrain f1 further, and several explicit solutions were proposed, concretely
f1 = exp(−T 2) and f1 = 1/ cosh(

√
2T ). Interestingly, in the large T regime (which is near

the wall of nothing, our main focus), both can be parametrized as

f1 ∼ A exp
(−b T k ) . (4.13)

Actually, an outcome of [38] is that the behaviour of the system is not particularly sensitive
to the precise form f1. In the following we focus on the dependence (4.13), but later show
that the same results hold, even at quantitative level, for very general forms of f1.

4.2.2 The local scalings

We propose that the lightlike tachyon background, in the weak coupling regime, corresponds
to a dynamical cobordism in X+, and that the tachyon wall corresponds to an ETW brane,
namely a singularity in effective theory at finite spacetime distance, and at which some
scalar runs of to infinite field theory distance. In the following we show that the scalings
derived from the Einstein frame spacetime solution are indeed of the ETW kind.

Note that, because the dynamical cobordism takes place via dependence on the lightlike
coordinate X+, in order to discuss spacetime distance, we choose slices of constant X0,
and measure spatial distance along X1, along which the dilaton remains constant.
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Again, recall that we focus on the dependence (4.13), but similar conclusions hold for
a very general class of profiles of f1. The running scalar along X1 is only the tachyon,
hence the distance in field space as we approach the wall is given by:

D =
∫ TETW

(√
f ′′1
f1

+ f ′1
f1

( 1
T
− D − 1
D − 2

f ′1
f1

))
dT ∼ b√

D − 2
T k

ETW , (4.14)

which diverges (for k > 1) since the tachyon goes to infinity at the ETW brane at X1 →∞.
Let us now check that the wall is indeed at finite spacetime distance in the Einstein

frame. The length along X1 is

∆ =
∫ ETW

f
1

D−2
1 dx1 = A

1
D−2

∫ ETW
exp

(
− bT k

D − 2

)
dx1

=
√

2
bk

A
1

D−2

∫ ETW
exp

(
− D√

D − 2

)
dD
D =

√
2

bk
A

1
D−2 Ei

(
− D√

D − 2

)
,

(4.15)

where this last function is the exponential integral, and is clearly convergent, showing that
the tachyon background behaves as dynamical cobordism ending at an ETW brane, where
the (tachyon) scalar runs off to infinite field space distance at a finite spacetime distance.

We can check the scaling relations of ETW branes of section 2. We can expand (4.15)
for D →∞ as

Ei
(
−D
a

)
∼ e−D/a

(
a

D + . . .

)
, (4.16)

and get

∆ ∼ exp
[
− D√

D − 2
− log

( D√
D − 2

)]
. (4.17)

Comparing this with (2.4) gives a value

δ = 2√
D − 2

. (4.18)

Namely, we recover an exponential relation. It is interesting to point out that the log
correction is reminiscent of that encountered in [17, 18] for the EFT strings in [56]. Also
note that, restricting to the leading exponential scaling, the critical exponent is independent
of k. This is a particular case of the claimed robustness of the results under changes of f1,
and will be explored in general in section 4.2.3.

We can also compute the scaling of the Ricci scalar, which, upon direct computation
gives

|R| ∼ exp
[

2D√
D − 2

+ log
(
D2

D − 2

)]
. (4.19)

Again, the leading terms gives the scaling corresponding to an ETW brane, with δ given
by (4.18), again remarkably independent of k.
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The potential, computed in the limit T 7→ ∞ with (4.11), also agrees nicely with the
general formula provided by the local analysis in (2.5):

V (T ) = − 8
α′
A−

2
D−2kb T ke

4φ
D−2 eδD = −a c(T ) eδD , (4.20)

with a ∈ [0, 1] and the subleading polynomial correction can be absorbed by the function
c(T ).9

Even more remarkably, the value of δ (4.18) for the lightlike tachyon agrees with the
critical exponent (3.10) of the ETW brane at the beginning of time of the linear dilaton
solution. This shows that both kinds of ETW branes are very similar, and is strongly
suggestive that they may admit similar microscopic descriptions. Hence, we claim that the
singularity at the beginning of time is a dynamical cobordism to nothing triggered by (the
strong coupling version of) the condensation of the closed string tachyon. We look deeper
into this argument in section 5 but before then, we show that this surprising matching of
the critical exponents holds for general profiles of f1.

4.2.3 General f1
Let us now show that the above structure, and in particular the same value for the critical
exponent δ, holds for general f1 under very mild conditions. In particular we demand that
f1 decays at large T faster then 1/T . This is a very reasonable requirement, in particular
notice that this ensures the convergence of the integral for the spacetime distance ∆ to the
ETW brane. Hence it implements the intuition that the wall of nothing propagating at
the spped of light hits in finite time any point at finite spacetime distance.

Consider now the integral for the field space distance

D =
∫ [

f ′′1
f1

+ f ′1
f1

( 1
T
− D − 1
D − 2

f ′1
f1

)] 1
2
dT . (4.21)

We start massaging the integrand of D, by noticing that

f ′′1
f1

+ f ′1
f1

( 1
T
− D − 1
D − 2

f ′1
f1

)
=
(
f ′1
f1

)′
+ f ′1
T f1

+ 1
D − 2

(
f ′1
f1

)2
, (4.22)

it is easy to show that for f1 decaying faster than 1/T , the dominant term is the last one. In
fact one can see by considering different profiles (e.g. power-law, exponential, exponential
of an exponential, etc) that, the faster the decay, the more the last terms dominates. Then

D ∼
∫ 1√

D − 2
f ′1
f1
dT . (4.23)

We may write this as

dD = 1√
D − 2

f ′1
f1
dT = 1√

D − 2
d log f1 =

√
D − 2 d log f

1
D−2

1 . (4.24)

9More details about such subleading corrections can be found in the appendix B of [18].
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Namely

f
1

D−2
1 = exp(−D/

√
D − 2) , (4.25)

where we have chosen the appropriate sign for the distance to be positive (recall that f1 is
a function that decreases to zero). This allow to express the spacetime distance as

∆ ∼
∫
f

1/(D−2)
1 dx1 ∼

∫
exp(−D/

√
D − 2)dT

T
. (4.26)

This has a similar structure to the intermediate expression in (4.15). Similar to the expo-
nential integral there, the above integral behaves just like the exponential in the integrand,
leading to the scaling

∆ = exp(−D/
√
D − 2) , (4.27)

which reproduces the value of δ in (4.18). Indeed, one can check that the additional terms
in the integrand lead to subleading corrections, of the kind in (4.17) (for a proof of this
statement under mild assumptions, we refer the reader to appendix C).

5 The strong coupling region and the origin of time

In this section we argue that the microscopic description of the ETW brane at the beginning
of time is a region of (the strong coupling version of) closed string tachyon condensation.

The ETW brane recombination. Let us now consider the full lightlike tachyon config-
uration, including the strongly coupled region, and consider the interplay of the two ETW
branes we have encountered.

In the string frame variables there are two asymptotic regions, controlled by seemingly
different physics. The first is the region X0 → −∞, with X1 finite (hence X+ → −∞),
which corresponds to a linear timelike dilaton configuration, with negligible tachyon back-
ground. The second is the region X+ → ∞ at finite X1 (hence X0 → ∞), which cor-
responds to a lightlike tachyon configuration at weak string coupling. Both regions are
disjoint, as they only coincide at infinity in X0 → −∞, X+ →∞ (hence we needX1 →∞).

In the Einstein frame, these asymptotic regimes turn into singularities at finite distance
in spacetime, triggered by the running off of suitable scalars (the tachyon or the dilaton) to
infinite distance in field space. Following the dynamical cobordism interpretation advocated
in [16–18], these are ETW branes chopping off the region of spacetime beyond them.

An important observation is that the effective theory in which one describes ETW
branes is not valid at arbitrarily short distances to the singularity. The singularity is
expected to be smoothed out by new UV physics which implies the existence of a cutoff in
the applicability of the effective theory. This translates into cutting of a strip of spacetime
around the singularities, hence providing a notion of ‘strechted’ ETW brane in effective
theory. This can be obtained in different ways, for instance by imposing a maximal bound
on the scalar curvature. Instead, we use a criterion directly inspired by the swampland
distance conjecture [57], as follows.
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The distance conjecture states that when an effective theory reaches to a large distance
D in field space, its effective cutoff scales as

Λ ∼ e−αD , (5.1)

for some order 1 coefficient α. The actual distance conjecture moreover claims that there
is an infinite tower of states becoming light with Λ, but this formulation corresponds to
an adiabatic motion in moduli space, and such towers may actually not arise in dynamical
situations with spacetime dependence of the scalars [58].10 Hence we stick to the milder
statement that a cutoff is developed, whose origin in our context would stem from the UV
completion of the ETW brane.

In our configuration we hence consider the slice of spacetime at which the field space
distance (in the combined tachyon-dilaton system) reaches a large but finite value. From
the Einstein frame action (4.11), the relevant kinetic terms read

4
D − 2∂Φ · ∂Φ − 4

D − 2
f ′1
f1
∂Φ · ∂T +

(
−f
′′
1
f1
− f ′1
Tf1

+ D − 1
D − 2

f ′1
2

f 2
1

)
∂T · ∂T . (5.2)

We are interested in the behaviour near the intersection of the two singularities. Since this
lies at large T , we can simplify the last term using the argument in section 4.2.3. Using
(f ′1/f1)∂T = ∂ log f1, the kinetic term may be written

1
D − 2( 2∂Φ− ∂ log f1 )2 , (5.3)

so that the slices of constant distance are defined by

D ∼ 1√
D − 2

(2Φ− log f1) = const . (5.4)

Note that interestingly, the swampland distance cutoff (5.1) is

Λ ∼ e−αD ∼ exp
(
−αδ2 (2Φ− log f1)

)
=
(
e−2Φf1

)αδ/2
, (5.5)

where δ is given by (4.18). The factor inside brackets is the prefactor of the Einstein term in
the string frame action. The fact that it relates to the cutoff scale shows that one gets the
same spacetime slices if one uses a bound in the scalar curvature to limit the applicability
of the effective theory, rather than in the field space distance. Indeed, this is expected from
the scaling (2.3) of R with D near ETW branes.

The curve in the (x0, x1)-plane defined by (5.4) asymptotes to constant X0 on one side
and to constant X+ on the other. For illustration we may consider f1 as in (4.13) and get

2qx0 − bµkeβkx+ = const. (5.6)
10A simple example is the Taub-NUT geometry, which can be regarded as a spacetime-dependent solution

of S1 compactifications, in which the circle shrinks to zero size at a point in the base. Hence, it attains
infinite distance in the naive circle compactification moduli space, but no tower of light particles or other
disasters arise.

– 15 –



J
H
E
P
0
8
(
2
0
2
2
)
2
8
5

Figure 1. Depiction of a spacetime slice at which the solutions attain a large fixed field space
distance in the tachyon-dilaton space. The asymptotes near x0 ∼ 0 and x+ ∼ 0, should be regarded
as corresponding to the physical location of the ETW branes, which are hence recombined in the
middle region, and which for a boundary of spacetime, with nothing beyond them. The spray line
signal the location of the singularities.

This leads to slices of the form

x1 =
√

2
kβ

log(x0 + cst)− x0 +
√

2
kβ

log 2q
bµk

, (5.7)

for some constant cst related to the cutoff. In figure 1 we depict the structure of such
curves and of the resulting spacetime picture.

From this it is clear that what seemed to be an intersection between the two ETW
walls is in fact a smooth region that interpolates between the two. This hence strongly
motivates that this solution describes a one and only recombined ETW wall. Another
interesting indication for this is the fact that the dilaton-tachyon mixing in the effective
action (scaling like f ′1/f1 times powers of the string couplings) gets large for large tachyon
and strong coupling, namely near the naive intersection of the singularities. Hence, the
two walls, which asymptotically correspond to the dilaton or the tachyon running off to
infinite distance in their field space, become of a very similar nature in that intersection
region.

As a side note, one may wonder if our analysis extends to the case of critical D = 26
bosonic string theory. Indeed, this theory is tachyonic and, as mentioned in section 3.1,
it admits a lightlike dilaton background. It is then clear from the equation of motion for
the tachyon (3.13) that, if we take the dilaton along the direction X+, the only option is
to take the tachyon along X−. This means that the ETW branes corresponding to large
tachyon and strong coupling are of the intersecting kind, exactly like those described in
this section. It would be interesting to explore these lightlike linear dilaton backgrounds in
other critical theories, and make contact with existing proposals concerning the resulting
singularities [36, 51].
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6 Conclusions

In this paper we have studied timelike linear dilaton backgrounds of supercritical string
theories as time-dependent solutions in string theory, and addressed the question of the
resulting spacelike singularity, from the perspective of the cobordism conjecture. We have
quantitatively characterized the solution as a Dynamical Cobordism in which the dilaton
rolls until it hits infinite field space distance at a singularity at finite time in the past. We
have shown that the singularity in effective theory follows the scaling behaviour of ETW
branes. In order to clarify its microscopic description, we have considered lightlike tachyon
condensation backgrounds, whose microscopic description had been argued to correspond
to a stringy version of a bubble of nothing. Using an effective theory approach, we have
characterized them as ETW branes and have encountered precisely the same scaling expo-
nent as the beginning of time singularity. Together with the fact that both ETW branes
join smoothly from the effective theory perspective, this has motivated our proposal that
the spacelike singularity should correspond in string theory to a region of (a strong coupling
version of) closed tachyon condensation, giving rise to a cobordism boundary defining the
beginning of time.

There are several open questions and new directions:

• We have used an effective theory for the tachyon in terms of the undetermined func-
tion f1. Even though our results are robust under changes of the precise form of this
function, it would be interesting to determine it, or at least its asymptotic behavior
for large T .

• Conversely, it would be interesting to understand if the criterion that the theory
allows for a resolution of spacelike singularities can be used as a constraint on effective
theories. For instance, there exist choices of f1 which lead to lightlike tachyon ETW
branes with scalings different from the beginning of time one. Such theories may not
be compatible with a microscopic description of the latter, as the ETW brane may
not be compatible for recombination. It is thus tantalizing to claim that this can
be used as a criterion to exclude such choices of f1. It would also be interesting to
understand this possibility, possibly invoking other swampland constraints or physical
considerations.

• Although we have focused on the bosonic theory, there is a rich set of phenomena
arising in lightlike tachyon backgrounds in other string theories. We expect our ideas
to lead to interesting new insights into this web of transitions.

• Finally, an interesting corner in this circle of ideas is that of lightlike dilaton back-
grounds in critical string theories. They are toy models of cosmological singularities,
which in certain supersymmetric cases admit interesting proposals for their micro-
scopic description [51]. It would be exciting to use cobordism ideas to make progress
on the understanding of such backgrounds.

We hope to report on these and other questions in the near future.
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A Dimension quenching as an interpolating domain wall

In [17] it was argued that, when the scalars remain at finite distance in field space as one hits
the wall, the corresponding configuration described an interpolating wall between different
QG theories. This scenario is built in contrast with the end-of-the-world walls where the
fields reach infinite distance in field-space at the wall. Instead of the solution ending
abruptly at the location of a singularity, these interpolating solutions continue across the
wall into another theory. On each side of the interpolating wall, the field spaces may have
different structures but the location of the wall itself is at finite distance in both of them.
As a result, the interpolating wall must have all the right properties for communicating
between the two theories, whatever they may be. It is clear from this that the microscopic
nature of these walls can be hard to describe; it may in general be non-supersymmetric and
may involve strong-coupling physics. The existence of such objects is one of the predictions
of the Cobordism Conjecture [3].

The examples of interpolating walls in [17] were simple enough to be described by
standard supersymmetric objects. For example, D8 branes in massive type IIA string
theory were identified as such walls interpolating between “different” massive IIA theories
with different units of 0-form flux. Here, we re-interpret the dimension-quenching bubbles
of [36, 37] as interpolating walls between bosonic string theories of different dimensions.

Throughout this paper we have dealt with tachyons with exponential profiles along one
light-like direction. These solutions were shown to lead to bubbles of nothing, which fit in
the wall-of-nothing description. There are, however, slightly more complicated solutions
to the tachyon equation of motion (3.13). Following [36], we can consider a profile with
oscillatory dependence on another coordinate, denoted by X2:

T (X) = µ2
0 exp(βX+)− µ2

k cos(kX2) exp(βkX+) . (A.1)

This is a solution to the equation of motion with a timelike linear dilaton Φ = −qX0

background if:

qβk =
√

2
( 2
α′
− 1

2k
2
)
. (A.2)
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Since the tachyon couples to the worldsheet as a potential, the theory has a vacuum at X2 =
0. One can show that expanding around this vacuum in the limit where the wavelength of
oscillations k−1 is much larger than the string length ls yields:

T (X+, X2) = µ2

2α′ exp(βX+) : (X2)2 : , (A.3)

where µ2 = α′k2µ2
k, and dots denote normal ordering. We refer the reader to [36] for

additional aspects of the detailed derivation.
The physical interpretation of this is clear. Before the tachyon condenses, at X+ →

−∞, the string propagates in D − 1 spatial dimensions. As the string reaches a regime
where T ∼ 1 (namely X+ ∼ β−1 logµ), the potential confines the string to the region
where it is vanishing, at X2 = 0. Strings that oscillate along the X2 dimension will be
expelled from the region of large tachyon condensate. This bubble thus interpolates between
a region of D − 1 spatial dimensions to one where the string can effectively propagate in
D−2 dimensions. These types of bubbles were dubbed dimension-quenching or dimension-
changing bubbles.

Turning now to the dynamical cobordism perspective, one can see in (A.3) that the
tachyon field remains at a finite value (hence at a finite distance in field space) at the
location of this bubble at X2 = 0. This fits perfectly with the description of an interpo-
lating wall as described in [17]. We thus interpret these dimension-quenching bubbles as
examples of dynamical cobordism interpolating walls between bosonic theories of different
dimensions.

As a side note, one can construct similar bubbles that kill more than one dimension
by granting oscillatory dependence of the tachyon on extra dimensions. Furthermore, this
dimension-quenching mechanism also extends to superstring theories and can be used to
draw connections between supercritical Type 0 theories and their 10-dimensional critical
counterparts [36].

B The partition function with a lightlike tachyon background

The computation of the partition function in the presence of the lightlike tachyon back-
ground is obtained evaluating the path integral without vertex operator insertions:

Z (µ) =
∫
DX+DX−DXiDgD(ghosts)eiSdeformed

, (B.1)

where we have emphasized the fact that the integration along the lightlike directions does
not affect the spacelike directions (i = 2, . . . , D − 1). Being at weak coupling, we only
consider the one-loop contribution and so we have to evaluate the 2d action on a genus one
worldsheet:

Sdeformed =− 1
2πα′

∫

M1
d2σ
√
ggαβ

[
−∂αX+∂βX

− − ∂αX−∂βX+ + ∂αX
i∂βXi

]
+

+ 1
2π

∫

M1
d2σ
√
gR2φ(X)− 1

2πµ
∫

M1
d2σ
√
geβX

+
.

(B.2)
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In analogy with the procedure in [45], we decompose the field X+(τ, σ) into its zero and
nonzero modes:

X+(τ, σ) = X+
0 + X̂+(τ, σ) , (B.3)

we get a standard integration for the zero mode:

DX+ = dX+
0 DX̂+. (B.4)

Choosing the following convention to perform a Wick rotation:

τ 7→ iτE Xi 7→ iX i
E µ 7→ −iµE , (B.5)

equation (B.1) becomes:

Z (µ) =
∫
dX+

0

∫
DX̂+DX−DXiDgD(ghosts)e−Sdeformed

E . (B.6)

where the tachyonic potential gives an oscillating contribution to the integral in the con-
densate region. Such a behavior produces a truncation of the contributions to the integral
coming from configurations with X+ 7→ ∞. The Euclidean 2d action is:

Sdeformed
E = 1

2πα′
∫
d2σE

√
g
[
∂σ0X̂+∂σ0X− + ∂σ1X−∂σ1X̂+ + ∂αX

i∂αX
i
]

+ 1
2π

∫
d2σE

√
gR2φ(X) + iµE

2π

∫
d2σE

√
geβX

+
.

(B.7)

Using the variable change:

y = eβX
+
0 −→ dX+

0 = dy

βy
, (B.8)

and making the dependence of the integrand on X+
0 explicit, we obtain:

Z(µE) =
∫
DX̂+DX−DXiDgD(ghosts)

∫ ∞

0

dy

βy
e−S

kinetic
E −Sdilaton

E − iµE2π

∫
d2σE

√
gyeβX̂

+
,

(B.9)
where Skinetic

E + Sdilaton
E = Sfree

E are respectively the kinetic and the dilaton contributions
in the Euclidean action (B.7).

Now, let us consider the following quantity:

∂Z

∂µE
=
∫
DX̂+D(others)

∫ ∞

0

dy

β
e−S

free
E +−iµE2π

∫
d2σE

√
gyeβX̂

+ (−i
2π

∫
d2σE

√
geβX̂

+
)
.

(B.10)
Let us finally perform the integration on the zero mode. We obtain:

∂Z

∂µE
= − 1

βµE

∫
DX̂+DX−DXiDgD(ghosts)e−Sfree

E , (B.11)

where Sfree
E is the euclidean action of the world-sheet theory without the tachyon potential.

Integrating with respect to µ and fixing a cutoff for X+ such that µ∗ = eβX
+
∗ , we obtain:

Z1 = − log(µE/µ∗)
β

Ẑ , (B.12)
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where Ẑ is the partition function for the free 2d theory, namely without the tachyon inser-
tion and without integrating the zero modes of X+. Note that the tachyon’s contribution
to the partition function is entirely encoded in the zero modes.

We can interpret this factor as a “size” of the direction X+. Indeed, because of
the potential barrier created by the condensation of the tachyon, no physical degrees of
freedom penetrate inside the bubble wall, beyond X+ ∼ 1. As mentioned previously, the
path integral is suppressed in this region. The direction X+ thus has an effectively finite
“size” that agrees with the estimate in (4.3).

C The critical exponent for general f1

In this appendix we provide more details regarding how we obtain the scaling relation (4.27)
for a general f1 decaying faster than T−1. The starting point is (4.26), which we rewrite
as follows:

∆ ∼
∫

exp
(− D√

D − 2
− log(TD′) )dD , (C.1)

where the prime stands for derivation with respect to T . Proving that the first term in the
exponential is the dominant one in the limit T → ∞ comes down to comparing the two
terms:

− D√
D − 2

∼ log f1 and − log TD′ ∼ log
(

f1
|f ′1|T

)
. (C.2)

Notice that in the special case where f1 is power-like f1 = T−k, with k > 0, the second
term in the exponential is constant so one automatically obtains the scaling relation (4.27).
For other choices of f1, we wish to check that in the limit T →∞,

| log( f1
|f ′1|T

)|
| log f1|

→ 0 . (C.3)

We consider a positive and monotonically decreasing function f1, we require:
∣∣∣ log

(
f1
|f ′1|T

) ∣∣∣� | log f1| as T →∞ . (C.4)

We know for a fact that log f1 is negative when T → ∞. As we will show shortly,
log( f1

|f ′1|T
) is negative, then one can easily show that (C.4) implies:

|f ′1| � T−1 , (C.5)

which is true for any function f1 under consideration since f1 � T−1.
The question of whether (C.3) is verified is thus recast into the question of the sign of

log( f1
|f ′1|T

). In order to determine if this term is negative, we can write it as follows,

log
(

f1
|f ′1|T

)
= log

(
f1
T

)
− log(|f ′1|) . (C.6)
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One clearly sees that the first term is negative whilst the second is positive. We would
therefore like to show that the first one dominates:

| log
(
f1
T

)
| � | log(|f ′1|) →

f1
T
� |f ′1| (C.7)

This is condition is verified for all valid choices of f1 that are not power-like. Indeed, we
can use the trivial fact that f1 � T as T → ∞ to show that f1

|f ′1|
� T . In the case where

f1 is a power-like function the inequality is not strict as f1
T ∼ |f ′1|, but we still recover the

right scaling relations as mentioned previously.
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1 Introduction

It is widely known that there are five supersymmetric string theories in ten dimensions [1].
It is slightly less known that there are several other non-supersymmetric string theories
in ten dimensions, many of which have tachyons; and there are just three known models
in ten dimensions which are both non-supersymmetric in spacetime and tachyon free: the
SO(16) × SO(16) string [2, 3], the Sugimoto model [4], and the Sagnotti 0’B model [5, 6].
These non-supersymmetric models and their compactifications have been the subject of a
renovated interest in the recent literature (see e.g. [7–35]), presumably because they constitute
a promising arena to study quantum gravity away from the supersymmetric lamppost.

In spite of this recent surge of work, we still know remarkably little about the three tachyon-
free non-supersymmetric models in ten dimensions, particularly when compared with their
supersymmetric counterparts. In particular, the spectrum of all three non-supersymmetric
models is chiral in ten dimensions, and so it is potentially anomalous. Local anomalies
have long been known to cancel via non-supersymmetric versions of the Green-Schwarz
mechanism [2–6]. However, to our knowledge, except for an inconclusive analysis in [36] these
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models have not been shown to be free of global anomalies, as was done early on in [37–39]
for the supersymmetric chiral theories.1 A global anomaly could lead to an inconsistency of
the model, and having to discard it, or to new topological couplings that cancel it [40].

The purpose of this paper is twofold: on one hand, we compute the potential global
anomaly of the three tachyon-free non-supersymmetric string theories in quantum gravity
(albeit only a subclass of anomalies for the Sagnotti 0’B model), showing that it vanishes. We
do this using cobordism theory, and computing the relevant twisted string bordism groups.
This is a standard technique for proving anomaly cancellation results; see [40–47] for recent
anomaly cancellation theorems in string and supergravity theories using this technique.

The second important result of our paper is precisely the calculation of these twisted string
bordism groups (which have not appeared in the literature before), which are summarized in
table 1 in the conclusions. The physics use of these bordism groups is that they can be used
to predict new, singular configurations (branes) of the corresponding non-supersymmetric
string theories, by means of the Cobordism Conjecture [48] (see [49–52] for similar recent
work in type II and supersymmetric heterotic string theories). Furthermore, the calculation
of the bordism groups themselves by means of the Adams spectral sequence is interesting in
its own right, and we expect that similar techniques can be used to compute string bordism
groups of e.g. six-dimensional compactifications, and more generally, to study anomalies of
any theory with a 2-group symmetry or a Green-Schwarz mechanism.

Along the way, we will encounter and comment on issues such as whether the heterotic
Bianchi identity can be taken to take values on the free part of cohomology or the torsion piece
must be included, or the connections between anomaly cancellation in eleven-dimensional
backgrounds and anomaly inflow on non-supersymmetric NS5 branes on these theories. We
also include a quick introduction to the Green-Schwarz mechanism in the modern formalism
of anomaly theory, providing for the first time a candidate for the worldvolume degrees of
freedom for the NS5 brane in the SO(16)× SO(16) string. We also study global anomalies
in the Z2 outer automorphism swapping the two factors of the SO(16) × SO(16) string,
showing that anomalies vanish.

The upshot of our paper is:

• The bordism group controlling anomalies of the Sugimoto string, ΩString-Sp(16)
11 , vanishes

(theorem 3.48), and therefore the theory is anomaly-free.2

• The bordism group ΩString-SU(32)⟨c3⟩
11 , controlling the anomaly of the Sagnotti 0’B model,

is isomorphic to 0 or Z2 (theorem 3.63). We do not know whether the anomaly vanishes,
although it does in all specific backgrounds we looked into.

• For the SO(16)× SO(16) heterotic string, (where the identity component of the global
form of the gauge group is actually Spin(16)× Spin(16), since the massless spectrum

1Even in this case, only gravitational and global anomalies in the identity component of the gauge group
have been considered.

2Modulo potential subtleties regarding the global structure of the gauge group, that we comment on in
the Conclusions.
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contains both spinors and vectors3), the bordism group ΩString-Spin(16)2
11 controlling the

anomaly vanishes (theorem 3.78), and therefore this theory is anomaly-free.

• There is also a Z2 gauge symmetry swapping the two factors of Spin(16), whose
anomaly we also studied. The bordism group controlling the anomaly has order 64 —
but nevertheless (theorem 4.30), the anomaly vanishes.

As a consequence of our calculations, we also can cancel an anomaly in a supersymmetric
string theory.

• When one takes into account the Z2 symmetry of the E8×E8 heterotic string swapping
the two copies of E8, the anomaly vanishes (corollary 4.34).

The cancellation of this anomaly is not a new result: it is a special case of the more
general work of [42]. Our argument rests on different physical assumptions and is a different
mathematical result; for example, we do not assume the Stolz-Teichner conjecture. Thus
we answer a question of [46], who showed the bordism group controlling this anomaly has
order 64 but did not address the anomaly, and asked for a bordism-theoretic argument
that the anomaly vanishes.

One key application of this Z2 symmetry of the E8 × E8 heterotic string is constructing
the CHL string [54], a nine-dimensional string theory obtained by compactifying the E8 ×E8
heterotic string on a circle, where the monodromy around the circle is the Z2 symmetry we
discussed above. An anomaly in the Z2 symmetry would have implied an inconsistency in
the CHL string. We find that the anomaly vanishes, in agreement with the results in [42],
which showed this from a worldsheet perspective; by contrast, we approach the question
from a pure spacetime perspective.

One can make an analogous construction for the SO(16) × SO(16) heterotic string,
compactifying it on a circle whose monodromy exchanges the two bundles. The result is a
nine-dimensional non-supersymmetric string theory whose gauge group is (perhaps a quotient
of) Spin(16). Studying this theory would be an interesting extension of similar constructions
in the E8 × E8 case [55] and in the SO(16) × SO(16) case without the monodromy [35].
Analogously to the CHL string, an anomaly in the Z2 symmetry of the SO(16) × SO(16)
heterotic string would lead to an inconsistency of this new theory, and our anomaly cancellation
result implies a consistency check for this theory on backgrounds where the gauge group is
Spin(16). It would be interesting to study this theory on more general backgrounds.

We have also identified a plethora of non-trivial bordism classes on these theories. It is
a natural direction to explore the nature and physics of the bordism defects associated to
these branes [49–51], a task we will not pursue in this paper. Furthermore, representatives of
the bordism classes we encountered provide natural examples of interesting compactification
manifolds for these non-supersymmetric strings to various dimensions; studying these, finding
out whether moduli are stabilized (including SUSY-breaking stringy corrections to the
potential) etc. is another important open direction to study.

3See [53] for an analysis detailing some possibilities for a global quotient in the SO(16)2 gauge group. In
this paper, we assume the simply-connected global form Spin(16)2 (so “SO(16)2” is an abuse of notation); this
has the advantage that all anomalies we find also exist for any other possibility (although with a nontrivial
global quotient, there could be more anomalies than the ones that we study here).
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This paper is organized as follows: in section 2 we provide a lightning review of modern
methods to study anomalies and how these cancel via the Green-Schwarz mechanism, as
well as a detailed description of how this happens for each of the three tachyon-free, non-
supersymmetric string theories. We believe this is the first time these important results are
collected together in a single reference, and with a unified notation. Section 3 contains our
main result — the calculation of bordism groups for these theories using the Adams spectral
sequence — together with a discussion of the natural cohomology theory for the Bianchi
identity to take values in. We also study in detail the relationship of higher-dimensional
anomaly cancellation to the worldvolume theory of magnetic NS branes. Section 4 extends
the anomaly calculation to the SO(16)× SO(16) string including the (gauged) automorphism
swapping the two Z2 factors. This multiplies the number of interesting bordism classes, but
anomalies still cancel. Finally, section 5 presents a table with our results, conclusions, and
potential further directions, including a few comments on how these anomalies might be
studied from a worldsheet point of view, in the line of [42, 45].

2 Local anomalies and the Green-Schwarz mechanism

The word “anomaly” describes the breaking of a classical symmetry by quantum effects. In a
Lagrangian theory, anomalies correspond to a lack of invariance of the path integral under
a symmetry transformation. They can arise for both global and gauge symmetries in field
theories. Anomalies in global symmetries only point to the fact that the symmetry cannot be
gauged; they can lead to anomaly matching conditions that heavily constrain the RG-flow and
strong coupling dynamics of the theory [56]. In contrast, anomalies in gauge theories point
to true inconsistencies: a gauge symmetry is by definition a redundancy of the theory and as
such can never be broken. In this paper, we will only consider anomalies in gauge symmetries.

The anomalies under consideration arise in field theories when they are coupled to gauge
fields and dynamical gravity. They then correspond to a lack of invariance of the path
integral under a gauge transformation/diffeomorphism (for a review, see [57]). When this
transformation can be continuously connected to the identity, we speak of local anomalies.
Their cancellation heavily constrains a theory; for example the gauge group of N = 1
supergravities in ten dimensions is constrained by anomaly cancellation to be either one
of four gauge groups: (a quotient of) Spin(32), E8 × E8, U(1)496 or U(1)248 × E8. The
last two can be ruled out as low-energy EFTs of a consistent theory of quantum gravity by
demanding the consistency of the worldvolume theory of brane probes in [58] (see also [11] for
developments in the context of orientifold models) and using more general arguments in [59].

When the anomalous symmetry transformation cannot be continuously connected to
the identity, then we speak of global anomalies (not to be confused with anomalies in global
symmetries!). Global anomalies and their cancellation will be at the heart of this paper.
It only makes sense to study them once local anomalies cancel. We therefore review local
anomaly cancellation in the remainder of this section, before discussing global anomalies
in the next ones.

The most direct way to study local anomalies is to compute certain one-loop Feynman
diagrams involving external gauge bosons and/or gravitons, and chiral fermions in the internal
legs; for ten-dimensional theories, the relevant diagram has 6 external legs [60].
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There is, however, a much more concise way of studying such anomalies, through what is
called an anomaly polynomial [57]. This is a certain formal polynomial in the gauge-invariant
quantities trFm and trRm, which are certain contractions of Riemann and gauge field strength
tensors that do not involve the metric. If the theory we wish to study lives in d spacetime
dimensions, the anomaly polynomial is of degree (d+2). Although the anomaly polynomial is
often discussed in the physics literature directly in terms of trFm and trRm, we find it more
natural and convenient to write it down in terms of (the free part of) Chern and Pontryagin
characteristic classes, more common in the mathematical literature. These can be written as
linear combinations of trFm and trRm via Chern-Weil theory as follows. The i-th Chern class
cr,i is associated to a complex vector bundle, in some representation r of the gauge group.
Via Chern-Weil theory, they are represented in cohomology by the following characteristic
polynomial of the field strength (here, t is just a dummy variable):4

∑

i

cr,i t
i = det

(
iF

2π t+ 1
)
, (2.1)

or, expanding the determinant,

∑

i

cr,i t
i = 1 + i trr(F )

2π t+ trr(F 2)− trr(F )2
8π2 t2 + · · · (2.2)

The traces are over the gauge indices and as such the i-th Chern class cr,i is a 2i-form. The
Pontryagin classes are characteristic classes associated to a real vector bundle, which we will
always take to be the spacetime tangent bundle. One way to define them is in terms of the
Chern classes of the complexification of the vector bundle. The total Pontryagin class is the
sum of the Pontryagin classes and its first few terms are as follows:

p = 1 + p1 + p2 + · · · (2.3)

p = 1− tr(R2)
8π2 + tr(R2)2 − 2 tr(R4)

128π4 · · · (2.4)

Similarly to the case of the Chern classes, the Pontryagin class pi is a 4i-form. The reason
we prefer these characteristic classes over the trace notation trFm and trRm is that, as will
be clear later, the anomaly polynomial is a sum of Atiyah-Singer indices, and these indices
are written in terms of these classes in the mathematical literature.

The precise relationship between local anomalies and the anomaly polynomial is as
follows. The anomalous variation of the quantum effective action δΛΓ can be related to the
(d+ 2)-dimensional anomaly polynomial through what is called the Wess-Zumino descent
procedure, which we briefly outline here. Since the characteristic classes are (locally) exact,
the anomaly polynomial itself is also (locally) exact. We can therefore locally write it as

Pd+2 = dId+1 (2.5)
4Representing characteristic classes with differential forms misses any torsional components of integral

cohomology, which is the more natural domain of characteristic classes. This subtlety will play an important
role when discussing certain global anomalies in later parts of this paper, but it is immaterial in the
present discussion.
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where Id+1 is called the (Lagrangian density of the) anomaly theory and locally satisfies
the descent property δΛId+1 = dId. It is related to an anomalous variation of the effective
action δΛΓ, which is local, by extending the spacetime manifold Xd into a (d+1)-dimensional
manifold Yd+1 whose boundary is Xd. One finds

δΛΓ =
∫

Xd=∂Yd+1
Id =

∫

Yd+1
dId = δΛ

[∫

Yd+1
Id+1

]
≡ δΛ [α(Yd+1)] , (2.6)

where the anomaly Id is only defined up to a closed form and α(Yd+1) is called the anomaly
theory. The anomaly corresponding to a given gauge transformation is then computed as
the integral of Id over the spacetime manifold Xd. It follows that local anomalies vanish
if and only if the anomaly polynomial vanishes.

The anomaly polynomial can be written as a sum of contributions from all of the fields
in the theory. Each contribution is given by an index density in (d+ 2)-dimensions, whose
integral over a compact manifold (with suitable structure, e.g. spin for fermions) gives the
index of the corresponding Dirac operator via the Atiyah-Singer index theorem. We now list
some of these contributions that will be relevant in what follows. The index density associated
to a left-handed Weyl fermion in the representation r of a gauge group with field strength F is:

I1/2 =
[
Â(R) trr eiF/2π

]
d+2

, (2.7)

where the term trr eiF/2π is sometimes referred to as the Chern character. The notation
[· · · ]d+2 means that one should select the (d+ 2)-form part of the enclosed expression. Â(R)
is called the A-roof polynomial, and it can be expanded as:

Â(R) = 1− p1
24 + (7p21 − 4p2)

5760 + −31p31 + 44p1p2 − 16p3
967680 · · · (2.8)

Note that expression (2.7) can be easily applied to a fermion that is a singlet under the gauge
group, in which case the Chern character reduces to 1. The contribution to the anomaly
polynomial corresponding to a left-handed fermion singlet is therefore simply:

IDirac =
[
Â(R)

]
d+2

. (2.9)

The index density associated to a left-handed Weyl gravitino in (d+ 2) dimensions is:

I3/2 =
[
Â(R)

(
tr eiR/2π − 1

)
trr eiF/2π

]
d+2

. (2.10)

Finally, a self-dual tensor gives a contribution:

ISD =
[
−1
8L(R)

]

d+2
, (2.11)

where L(R) is called the L-polynomial or Hirzebruch genus, and it can be expanded as follows:

L(R) = 1 + p1
3 + −p21 + 7p2

45 + 2p31 − 13p1p2 + 62p3
945 + · · · (2.12)

Armed with these index densities, we can now review anomalies in ten-dimensional N = 1
supergravities. With this supersymmetry, the only multiplets are the gravity and vector
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multiplets [60]. There are pure gravitational anomalies coming from the chiral gravitini in
the gravity multiplet as well as Majorana-Weyl spinors in both gravity and vector multiplets.
There can also be gauge anomalies involving the fermions in the vector multiplet, which
transform in the adjoint representation of the gauge group (they are gaugini). The anomaly
polynomial of these theories is computed using (2.7)–(2.11) summing over all chiral fields
(dilatino, gravitino, and gaugini), and reduces to the following expressions for the Spin(32)/Z2
and the E8 × E8 theories respectively:

P
Spin(32)/Z2
12 = −p1 + c32,2

2 × 1
192

(
16 c232,2 − 32 c32,4 + 4 c32,2 p1 + 3 p21 − 4 p2

)
, (2.13)

PE8×E8
12 = −

p1 + c
(1)
16,2 + c

(2)
16,2

2
× 1

192
(
8 (c(1)16,2)2 + 8 (c(2)16,2)2 + 4 (c(1)16,2 + c

(2)
16,2) p1 − 8 c(1)16,2 c

(2)
16,2 + 3 p21 − 4 p2

)
.

(2.14)

Here, the Chern classes are expressed in the vector representations of Spin(32) and the SO(16)
subgroups of each E8 respectively, and the (1) and (2) indices differentiate between each of
the two E8 gauge groups. These expressions agree with the ones in [60] once (2.1)–(2.4) are
used to put Chern and Pontryagin classes back into traces. The anomaly polynomial does
not vanish, and at first sight this would mean that the theories are inconsistent. However,
both anomaly polynomials factorize in the following schematic form:

P12 = X4X8 , (2.15)

where the X4 is a four-form and X8 is an eight-form. This factorization property is the key
to cancelling the anomaly, through what is known as the Green-Schwarz mechanism [60, 61].
There is another field in these theories that can contribute to the aforementioned diagrams:
the massless Kalb-Ramond B-field. Consistency of the 10-dimensional supergravity requires
that the B-field not be invariant under gauge and gravitational interactions, and in fact
it must satisfy an identity of the form

dH3 = X4 , (2.16)

where H3 ≡ dB2 − ωCS is the gauge-invariant curvature of the B-field built from the Chern-
Simons forms of gauge and spin connections that appears in the (super)gravity couplings.
X4 = dωCS is a linear combination of characteristic classes of gauge and gravitational bundles.
There is more to the Bianchi identity at the global level, a subject which we will discuss
in section 3.1.

In this case, the anomaly corresponding to a factorized anomaly polynomial (2.15) can
be cancelled by introducing the following term in the action:

−
∫
B2 ∧X8 . (2.17)

This term in the action is actually generated by string perturbation theory, as shown in [62]
in the heterotic case, and it contributes a term −dB2 ∧X8 to the Lagrangian density of the
anomaly theory. Using the Bianchi identity and (2.5), we see that this adds a term −X4X8 to
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11D

IIA

IIB

I

HO

HE

TT

S1S1/Z2

Ωgs ↔ g−1
s

0A

0B

T

Ω

0’B

Ω

Sp(16)

HO I

HE II

SO(16)× SO(16) (−)FL+FR

Figure 1. A diagram showing how the three tachyon-free non-supersymmetric string theories
relate to the supersymmetric ones and M-theory, via various worldsheet orbifolds. For instance, the
SO(16)2 is obtained from the E2

8 heterotic by orbifolding spacetime and gauge group fermion number,
F = FL + FR. We also list some tachyonic examples via red dot-dashed arrows, although we are
not exhaustive.

the anomaly polynomial, exactly canceling the term in (2.15) so that the total local anomaly
vanishes. This is the basic principle of the Green-Schwarz mechanism where the anomaly
is cancelled by introducing an extra term in the action.

The main focus of this paper is however the three known5 ten-dimensional non-tachyonic,
non-supersymmetric string theories, which also feature a B-field and a Green-Schwarz mecha-
nism to cancel local anomalies. The diagram in figure 1 sums up how these non-supersymmetric
theories are related to eachother and to the supersymmetric ones via gaugings of various
worldsheet symmetries. We will now briefly describe the matter content of these theories
as well as their anomalies.

• The Sugimoto model

The Sugimoto string [4] can be thought of as the non-supersymmetric sibling of the
supersymmetric type I Spin(32)/Z2 string. The main departure for us is that the gauge
algebra is sp(16) instead, and thus the Chern classes are taken in the fundamental
representation of this group.6 This distinction arises from the different kind of orientifold
projection of type IIB, which introduces anti-D9 branes and an O9 plane with positive
Ramond-Ramond charge and tension. The sign change in the reflection coefficients
for unoriented strings scattering off the O9 is such that the Chan-Paton degeneracies
reconstruct representations of the symplectic group Sp(16).

As in the type I case, the closed-string sector arranges into an N = 1 supergravity
multiplet, while the chiral fermions from the open-string sector arrange into the anti-

5It was recently proven that there are no other examples in the heterotic context [63].
6Note that we use sp(16) and Sp(16) instead of the notation USp(32) that is often employed in the literature.
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symmetric rank-two representation of the gauge group, leading to the same anomaly
polynomial formally. This representation is however reducible and contains a singlet;
this is nothing but the Goldstino that accompanies the breaking of supersymmetry [64–
67]. The low-energy interactions comply with the expected Volkov-Akulov structure of
nonlinear supersymmetry [68–70], although there is no tunable parameter that recovers
a linear realization. All in all, since the anomaly polynomial is formally identical to the
type I case, it factorizes as follows:

P Sugimoto
12 =−p1+c32,2

2 × 1
192

(
16c232,2−32c32,4+4c32,2 p1+3p21−4p2

)
. (2.18)

• The Sagnotti model

The type 0’B string [5, 6] of Sagnotti is built from an orientifold projection of the
tachyonic type 0B string, where the unique tachyon-free choice involves an O9 plane with
zero tension. The resulting gauge group is U(32), Ramond-Ramond p-form potentials
with p = 0 , 2 , 4 (the latter having a self-dual curvature) survive the projection and
they get anomalous Bianchi identities for the gauge-invariant curvatures,

dH1 = X2 ,

dH3 = X4 ,

dH5 = X6

(2.19)

where X2 = c32,1, X4 is formally identical to the one in Sugimoto and type I strings,
and X6 is a polynomial in p1, c32,1, c32,2 and c32,3. The Bianchi identity for X2 tells us
that the low-energy gauge group reduces to SU(32), since c32,1 is set to zero. Physically,
the anomalous Bianchi identity for the RR axion induces the kinetic term |dC0 +A|2,
with A the gauge field of the diagonal u(1). This is just the Stückelberg mass term
for A. All these RR fields with anomalous Bianchi identities play a crucial role in
the cancellation of local anomalies via a more complicated Green-Schwarz mechanism
involving a decomposition of the anomaly polynomial [6] of the form

P 0’B
12 = X2X10 +X4X8 +X6X6 . (2.20)

As we will see, setting X6 to zero implies that c32,3 is also trivial, and so we shall
impose this condition when studying global anomalies of this theory.

• The heterotic model

The case of the SO(16)× SO(16) string [2, 3] is slightly different. Along with its two
supersymmetric counterparts, it is the unique ten-dimensional heterotic model that is
devoid of tachyons. It is built from a projection of either of the two heterotic models,
most directly the E8×E8 one under the projector built from a combination of spacetime
fermion number and an E8 lattice symmetry. As a result, it does not have any chiral
fields that are uncharged under the gauge symmetry, and in particular it does not have
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a gravitino. Its anomaly polynomial was derived in [2, 3] and factorizes as:

P
SO(16)2
12 = −

p1 + c
(1)
16,2 + c

(2)
16,2

2
× 1

24
(
(c(1)16,2)2 + (c(2)16,2)2 + c

(1)
16,2 c

(2)
16,2 − 4 c(1)16,4 − 4 c(2)16,4

)
,

(2.21)

where the (1) and (2) indices differentiate between each of the two SO(16) gauge groups.
The Green-Schwarz mechanism is carried by the Kalb-Ramond field, which survives the
projection as befits a heterotic model [71].

All in all, local anomalies vanish for all three non-supersymmetric string theories, by the
Green-Schwarz mechanism (or a more complicated version of it). This was already known in
the literature, but leaves open the possibility for the presence of global anomalies. Global
anomalies are those that arise in gauge/diffeomorphism transformations that cannot be
continuously connected to the identity. These anomalies are not detected by the anomaly
polynomial. In the following section we detail how one can study these anomalies and we
evaluate them for the case of the three non-supersymmetric tachyon-free string theories.

3 Global anomalies and bordism groups

In the previous section, we have summarized prior results in the literature regarding anomaly
cancellation of ten-dimensional non-supersymmetric string theories via the Green-Schwarz
mechanism. Importantly, the Green-Schwarz mechanism only guarantees cancellation of
local anomalies — it guarantees that the (super)gravity path integral is gauge invariant as
long as we only consider gauge transformations infinitesimally close to the identity. More
generally, one also need discuss global anomalies, namely anomalies in gauge transformations
that cannot be continuously deformed to the identity. The archetypal example of such a
global anomaly is Witten’s SU(2) anomaly [72]. If one includes topology-changing transitions,
one has even more general anomalies (dubbed Dai-Freed anomalies in [73]), involving a
combination of gauge transformations and spacetime topology change. In this paper, we will
take the point of view that such anomalies should cancel in a consistent quantum theory
of gravity, where spacetime topology is supposed to fluctuate.

The framework of anomaly theories introduced briefly in the previous section (2.5) can
also be used to study global anomalies of Lagrangian theories such as the ones we are
interested in. Given a d-dimensional quantum field theory, an anomaly on a manifold Xd

(possibly decorated with gauge field, spin structure, etc.) means that the partition function
Z(Xd) is not invariant under gauge transformations (or diffeomorphisms, for the case of a
gravitational anomaly). In a modern understanding (see [73–77] for detailed reviews, and
also [78, 79] for a discussion in the context of the 6d Green-Schwarz mechanism), the anomaly
can be captured by an invertible (d+ 1)-dimensional field theory α with the property that,
when evaluated on a manifold with boundary Yd+1 with ∂Yd+1 = Xd, the product

Z(Xd) · e−2πiα(Yd+1) (3.1)

is invariant under gauge transformations. The d-dimensional QFT arises as a boundary
mode of the (d + 1)-dimensional invertible field theory α, and the anomaly is re-encoded
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in the fact that (3.1) is not the partition function of a d-dimensional quantum field theory
— its value depends in general on Yd+1 and the particular way on which the fields on Xd

are extended to Yd+1.
In general, it may be very difficult to determine α. However, in weakly coupled Lagrangian

theories, we have a prescription to associate an anomaly theory to each of the chiral degrees
of freedom involved. For instance, the anomaly theory for a Weyl fermion in d-dimensions
(d even) is given by the so-called eta invariant of a (d+ 1)-dimensional Dirac operator with
the same quantum numbers as the fermion we started with [75, 80],

e2πiαfermion(Yd+1) = e2πiηd+1(Yd+1). (3.2)

If one has several fermions, the total anomaly theory is simply the product of these (so that
the η invariants add up). There are other topological couplings that can also contribute
to the anomaly theory, as we will see below.

Two different open manifolds Yd+1 and Y ′
d+1, both having Xd as a boundary, will yield

values for the partition function (3.1) differing by a factor

e2πiα(Yd+1)e−2πiα(Y ′
d+1) = e2πiα(Yd+1∪Y ′

d+1). (3.3)

The manifold Yd+1∪Y ′
d+1 is just a general closed (d+1)-dimensional manifold. In an anomaly

free-theory, the partition function in (3.1) should not depend on the choice of extension;
therefore, in this picture, anomaly cancellation is simply the statement that the anomaly
theory α(Ỹd+1) be trivial when evaluated on a closed manifold Ỹd+1.

The particular case in which Ỹd+1 itself is a boundary, Ỹd+1 = ∂Zd+2, corresponds to
local anomalies, which allows us to connect the discussion to the preceding section. The η
invariants introduced above, that give the anomalies for chiral fermions, can in this case
be evaluated by means of the APS index theorem [81],

η(Ỹd+1) = Index−
∫

Zd+2
Pd+2, (3.4)

where Pd+2 is the anomaly polynomial of the previous subsection, and the “Index” is an integer.
We thus recover the usual, perturbative, anomaly cancellation condition in terms of the
anomaly theory. In theories where anomalies are cancelled via the Green-Schwarz mechanism,
another ingredient is necessary. The ten-dimensional action has an extra Green-Schwarz
term (2.17), which is the boundary mode of an 11d invertible field theory

αGS(Y11) =
∫

Y11
H ∧X8. (3.5)

The total anomaly theory is therefore the sum of the fermion anomaly and αGS(Y11). On
a manifold which is itself a boundary, Ỹ11 = ∂Z12,

∫

Ỹ11
H ∧X8 =

∫

Z12
dH ∧X8 =

∫

Z12
X4 ∧X8, (3.6)

where in the last equality we used the constraint that we are restricting to twisted string
manifolds satisfying the (anomalous) Bianchi identity dH = X4. Taking this last contribution
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into account, we see that the local anomaly coming from the GS term can cancel that of the
fermions, provided that the anomaly polynomial factorizes as discussed in section 2.

In the rest of this paper, we will assume that local anomalies cancel, and ask what is
the value of the total anomaly theory,

e2πiαtot = e2πiαfermionse2πiαGS (3.7)

when evaluated on 11-dimensional closed manifolds which are not boundaries. This task
seems daunting at first, since, depending on the collection of background fields, there can be
infinitely many such manifolds. Fortunately, one can prove7 [75] that the partition function
of the anomaly theory αtot (mod 1) is a bordism invariant,8

e2πiαtot(Y (1)
11 ) = e2πiαtot(Y (2)

11 ) if Y
(1)
11 ∪ Y (2)

11 = ∂Zd+2. (3.8)

This reduces the problem significantly: since αtot (mod 1) is a bordism invariant, one need
only evaluate it on a single representative per bordism class. Furthermore, these classes
form an abelian group, the bordism group (of manifolds suitably decorated with a twisted
string structure and gauge bundle). Bordism groups have appeared prominently in the field
theory and quantum gravity literature, and there are many techniques available for their
computation (see [51] for a detailed introduction). Thus, to compute these anomalies, we will
just compute the relevant bordism groups and evaluate the anomaly theory on generators.
Notice that if it happens that the relevant bordism group Ω11 is 0, there are no global
anomalies to check! That this happens was in fact shown by Witten in [37, 38] for the E8×E8
string when one does not take into account the Z2 symmetry switching the two E8 gauge
fields.9 See [39] for an analysis of type I string.

More recently, [42, 45] used the Stolz-Teichner conjecture to analyze global anomalies
in supersymmetric, heterotic string theory even in stringy backgrounds, lacking a geometric
description. In this paper we content ourselves with the target space treatment described
above, which may miss anomalies of non-geometric backgrounds. In the following, we present
the calculation and results for the three ten-dimensional non-supersymmetric string theories
described in section 2. But before that, we will describe and justify more carefully the precise
structure that will be assumed in our bordism calculations.

3.1 Bianchi identities and twisted string structures

As described in the previous subsection, the computation of global anomalies can be organized
in terms of a bordism calculation and an anomaly theory, which is just a homomorphism
from the bordism group to U(1). The precise bordism group to be used (i.e. the particular

7The proof is a straightforward application of the APS index theorem (3.4), see [75].
8There is also a more theoretical and more general proof that the partition function of the anomaly theory

is a bordism invariant, due to Freed-Hopkins-Teleman [82] and Freed-Hopkins [83]; they show that up to a
deformation, which is irrelevant for anomaly calculations, the partition function of any reflection-positive
invertible field theory is a bordism invariant.

9If one does want to take this Z2 symmetry into account, for example to study the CHL string, the relevant
Ω11 is nonzero [46, Theorem 2.62], and it was not known whether the global anomaly cancels. We will show
that it does cancel in this paper, in section 4.
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structure that our manifolds are required to have) depends on the theory we are interested
in. For instance, all heterotic string theories under consideration include fermions, so we
will consider only manifolds (and bordism between them) carrying a spin structure; the
anomaly theory is related to the η invariant for a certain Dirac operator on this manifold.
This means that the second Stiefel-Whitney class of the allowed manifolds where the anomaly
theory is to be evaluated will vanish,

w2 = 0. (3.9)

In heterotic string theories, also the Bianchi identity (2.16) needs to be taken into account.
Equation (3.6) illustrates that cancellation of perturbative anomalies requires us to assume
dH = X4 even off-shell.10 Therefore, we will restrict our bordism groups to consist of
11-dimensional manifolds in which (2.16) is satisfied. In particular, we will set

∫

M4
X4 = 0 (3.10)

for any closed 4-manifold M4. The precise expression of X4 in terms of characteristic classes
depends on the particular theory under study. The particular case

X4 =
p1
2 (3.11)

has been studied in the mathematical literature, and receives the name of a string structure.
The X4’s that appear in heterotic string theories are always of the form

X4 = a
p1
2 (Tangent bundle) + b c2(Gauge bundle), a, b ∈ Z, (3.12)

and we will refer to the data of a solution to this equation for chosen a and b as a twisted
string structure. This notion appeared in the mathematical literature in [84, Definition 8.4].

The bordism groups related to the three non-supersymmetric string theories we are
going to consider are

ΩString−Sp(16)
11 , ΩString−SU(32)⟨c3⟩

11 , ΩString−Spin(16)2
11 , (3.13)

for the Sugimoto, Sagnotti, and SO(16) × SO(16) heterotic theories, respectively; these
are the bordism groups of twisted string manifolds where the particular choice of twisted
string structure is spelled out by the Green-Schwarz mechanisms for these theories as we
discussed in section 2.

Remark 3.14. Before presenting the results for the bordism groups, we must discuss an
important subtlety, which affects the bordism calculation. Up to this point in this paper, we
have been cavalier when writing down characteristic classes such as “p1” or “c2”, and defined
these characteristic classes as closed differential forms (e.g. in (2.4)) by way of Chern-Weil
theory. However, these differential forms have quantized periods, as is the case for data
coming out of any quantum theory, and a proper treatment of the Green-Schwarz mechanism
should take this into account. There are two ways to do this.

10If we insist on keeping the B-field as a background; see the discussion at the end of this section.
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1. The simplest approach is to lift to Z-valued cohomology: the quantized periods are
a reminder that the de Rham classes of the Chern-Weil forms of p1, c2, etc., lift
canonically to classes in H4(BG;Z) for various Lie groups G, and on many manifolds
M , these integer-cohomology lifts of these characteristic classes can be torsion! Thus
it is natural to wonder whether the B-field should be an element of H3(–;Z) and the
Bianchi identity (3.12) should take place in H4(–;Z). The definitions of string structure
and twisted string structure in mathematics assume this lift has taken place.

2. Alternatively, one could lift to differential cohomology Ȟ4(–;Z), which amounts to
observing that it is not just the Z-cohomology lift which is natural, but also the data
of the Chern-Weil form; differential cohomology is a toolbox for encoding both of these
pieces of data. Indeed, for any compact Lie group G and class c ∈ H∗(BG;Z), there is a
canonical differential refinement č ∈ Ȟ∗(B∇G;Z) [85, 86], where B∇G is the classifying
stack of G-connections.11 Thus we could instead ask: should we begin with a B-field in
Ȟ3(–;Z) and ask for the Bianchi identity to take place in Ȟ4(–;Z)? This combines the
two other formalisms we considered, differential forms and integral cohomology.

The answer in the mathematics literature is often the second option, beginning with Freed [39,
section 3] and continuing in, for example, [46, 87–104]. In particular, [94, 95] interpret
the data entering into the Green-Schwarz mechanism as specifying a connection for a Lie
2-group built as an extension of the gauge group by BU(1), providing an appealing physical
interpretation of the lift to differential cohomology.

We are interested in classifying anomalies, and while there is an interesting differen-
tial refinement of the story of the bordism classification of anomalies due to Yamashita-
Yonekura [105–107], the deformation classification of anomalies ultimately can proceed
without differential-cohomological information, because it boils down to studying bordism
groups. Because of this, we will work with characteristic classes in integral cohomology, noting
here that the correct setup of the Green-Schwarz mechanism taking torsion and Chern-Weil
forms into account uses differential cohomology, and that for our computations it makes
no difference.

Note that cancellation of perturbative anomalies around (3.6) only requires the free part of
X4 ∈ H4(–;Z) to be trivial in a compact manifold, and poses no obvious restriction on torsion.
Reference [38] studies a particular example suggesting that this should be the case, but does
not attempt to make a general argument. To ascertain whether the torsion piece of X4 must
also be trivialized or not, consider the physical origin of the Bianchi identity, which is itself a
two-dimensional version of the Green-Schwarz mechanism described above (see e.g. [58, 108]).
Consider a worldsheet wrapped on a 2-manifold Σ2 of the ambient ten-dimensional spacetime
manifold M10. The configuration should be invariant under spacetime diffeomorphisms, and
gauge transformations, which are manifested as global symmetries of the worldsheet. However,
in heterotic or type I theories, the worldvolume degrees of freedom are chiral, and anomalous
under these transformations. The anomaly theory, which we denote αworldsheet, is encoded by

11If you do not want to think about stacks, this statement is essentially equivalent to the notion that for
a principal G-bundle P → M with connection Θ, the differential characteristic class č(P, Θ) ∈ Ȟ∗(M ;Z) is
natural in (P, Θ).
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a three-dimensional η invariant. Applying the APS index theorem (3.4), we obtain

exp(2πiαworldsheet) = exp
(
2πi

∫
X4

)
, (3.15)

where X4 is a certain differential form built out of characteristic classes, and which is precisely
the X4 appearing above (indeed, (3.15) is usually taken to give the definition of X4). As
things stand, any configuration with an insertion of a fundamental string worldsheet on Σ2 has
a gravitational anomaly; however, the worldsheet also has an electric coupling to the B-field,

exp
(
2πi

∫

Σ2
B2

)
, (3.16)

whose anomaly theory is simply

αB =
∫
H. (3.17)

Now, the total worldsheet anomaly is

exp
(
2πiαworldsheet

total

)
= exp

(
2πiαworldsheet

)
exp (2πiαB) . (3.18)

The physical consistency condition is that the total anomaly is trivial

exp
(
2πiαworldsheet

total

)
= 1, for all M3. (3.19)

When M3 is a boundary, anomaly cancellation is achieved, as above, by setting dH = X4,
precisely the Bianchi identity described above. However, this is not all there is to (3.19).
Assuming that anomalies vanish when M3 is a boundary, exp(2πiαworldsheet

total (M3)) is actually
only dependent on the integer homology class of M3. In fact, since it is a map that assigns a
phase to each 3-cycle in the ambient 10-dimensional manifold M10, it can be regarded as an
element of H3(M10; U(1)), with U(1) coefficients. Using the long exact sequence in cohomology
associated to the short exact sequence of groups Z → R → U(1), we obtain that [76]

H3(M10;R) → H3(M10; U(1)) → H4(M10;Z) → H4(M10;R), (3.20)

where the third map is taking the free part of the integer cohomology class. In general,
exp(2πiαworldsheet

total ) will have pieces both in the image of the first map and in its cokernel.
An example where the anomaly theory has a non-trivial piece in the image of the first map
of (3.20) can be obtained by compactifying heterotic string theory on a Bieberbach 3- manifold,
a fixed-point free quotient of the torus T 3.12 Since T 3 is Riemann-flat, a quick analysis would
suggest that the Bianchi identity is satisfied automatically with no gauge bundle or B-field
turned on. However, trying to implement this manifold directly in the worldsheet results in a
theory which is not level-matched. The problem is that exp(2πiαworldsheet

total ) with no gauge
bundle turned on is nontrivial for most Bieberbach manifolds, and so the anomaly theory
is a nontrivial class in H3(M10;R). Cancelling this anomaly forces either a B-field (discrete
torsion) to be turned on, or a non-trivial flat gauge bundle to be present.

12We thank Cumrun Vafa for pointing out this example to one of us.
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The rest of the anomaly theory is in the image of the second map in (3.20), and can
therefore be represented by a certain torsion integer cohomology class in H4(M10;Z), whose
free part vanishes. We will now show that this is in fact the torsion part of X4−dH . Consider
a torsion 3-cycle M3 of order k, i.e. such that kM3 is the boundary of some 4-manifold N4.
Let us see how to compute the anomaly in this case. First, the anomaly theory αworldsheet

total
is a linear combination of η invariants, which in this particular case can be re-expressed as
linear combinations of gravitational and gauge Chern-Simons numbers as discussed above.
The Chern-Simons invariant is additive on disconnected sums, and so, we have

αworldsheet
total (M3) =

1
k
αworldsheet

total (kM3). (3.21)

Next, we can use the fact that kM3 = ∂N4, to write (after exponentiation)13

exp
(
2πiαworldsheet

total (M3)
)
= exp

(2πi
k

(
IndexN4 +

∫

N4
(X4 − dH)

))
. (3.22)

This expression is not obviously independent of the choice of N4, but when (X4− dH) is pure
torsion, it actually is. The reason is that the quantity

∫
N4

(X4 − dH) may be rewritten as a
linking pairing in homology [109]. If we Poincaré dualize (X4 − dH)tor to a torsion 6-cycle
M6, the linking pairing between M6 and M3 is constructed by choosing a boundary N4 for
kM3 and computing

∫
N4

(X4 − dH) modulo k. Importantly, the result does not depend on
the choice of N4 (see [109] for a review and proof of these facts).

In short, the full analog of the Bianchi identity is (3.19). Unpacking this condition,
we recover that:

• There is the condition on any 3-manifold M3 that
∫

M3
H =

∫

M3
CSX4

3 , (3.23)

where CSX4
3 is a (local) Chern-Simons form obeying dCSX4

3 = X4. This will force
discrete B-fields to be turned on in certain situations, such as on Bieberbach manifolds
(these were referred to as “worldsheet discrete theta angles” in [79]).

• As a consequence of the previous point, when M3 is a boundary, we get that the Bianchi
identity dH = X4 must hold over the integers.

The general analysis we just carried out is somewhat abstract; in the next subsection, we
will verify its correctness by explicitly checking, in a variety of backgrounds, that anomalies
in ten dimensions only cancel if the torsional part of the Bianchi identity holds.

Finally, we comment on another possible way in which the anomaly calculation could have
been set, avoiding the calculation of string bordism groups altogether, as in [79]. Anomalies
are always studied with respect to a choice of background fields. The approach we have
followed here takes the metric g, the gauge field A, and the 2-form field B as background
fields, and imposes the Bianchi identity as a restriction on the allowed backgrounds. However,

13The anomaly theory is a linear combination of real-valued eta invariants, thus division by k is well-defined
and there is no phase ambiguity.
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in a quantum theory of gravity, there are no global symmetries, and therefore, there are no
background fields either. This is manifested in the fact that all three of g,A,B are actually
dynamical fields that we are supposed to path-integrate over. Treating these as backgrounds
is justified if there is some sort of weak coupling limit in which the fields become frozen.
This is automatically the case at low energies in any ten-dimensional string theory, since
the couplings of all of g,A,B are dimensionful and become irrelevant in the deep IR. It
is not the case e.g. in six dimensions, where antisymmetric tensor fields are often strongly
coupled and cannot be treated perturbatively. In such cases, the only approach available is
to explicitly perform the path integral over the tensor fields, compute their effective action,
and verify that the resulting path integral indeed cancels against the contributions of other
chiral fields. There is no meaningful analog of the notion of having a string structure, since
no weak coupling notion is available. The anomaly theory (as a function of the metric and
background gauge fields) can then studied on general spin manifolds (and not just string
manifolds), and anomalies cancel in a standard way, because the B-field (which is integrated
over) couples to background 4 and 8-forms X4 and X8, and has a mixed anomaly captured by
the anomaly polynomial

∫
X4X8, just what is needed to cancel the anomaly of the fermions.

From a perturbative string worldsheet point of view, we feel it is more natural to keep B

as a background field; furthermore, the techniques we use in this paper can be extended to
compute lower-dimensional string bordism groups, which control solitonic objects in these
non-supersymmetric theories via the Cobordism Conjecture [48].

3.2 Evidence for torsional Bianchi identities

In the previous subsection, we gave an argument that the Bianchi identity holds at the level
of torsion, too. The argument relies heavily on string perturbation theory, and one may
worry e.g. that it does not capture strongly coupled situations. In this section, we provide
independent evidence, which does not rely on the worldsheet at all, that the Bianchi identity
holds at the level of integer cohomology. We do so by computing Dai-Freed anomalies of
supersymmetric and non-supersymmetric string theories on simple eleven-dimensional lens
spaces. Lens spaces are quotients of spheres by Zp groups; they are the simplest examples of
manifolds whose cohomology is purely torsional (except in bottom and top degrees, as usual).
In particular, their first Pontryagin classes are torsion; the upshot of the calculation in this
section is that spacetime anomalies on lens spaces seem to vanish if and only if the Bianchi
identities are satisfied at the level of integral cohomology, including torsional classes.

Now we turn to the details of evaluating anomalies on lens spaces; we refer the reader
to [40, 51] for more on lens spaces and the corresponding expressions for eta invariants.
(Eleven-dimensional) lens spaces are defined to be quotients of the form

L11
p = S11/Zp, (3.24)

where the Zp action acts as scalar multiplication by e2πi/p on the six complex coordinates
C6 and where we embed the covering S11 as the unit sphere. An important property of
these lens spaces is that the Green-Schwarz term,

H ∧X8, (3.25)
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will automatically vanish on lens spaces, since H3(S11/Zn;Z) = 0. As a result, the calculation
of the full anomalies of string theories on lens spaces reduces to determining the anomalies of
the chiral fields. We will now evaluate the anomaly theory of the Type I and the Heterotic
string theories (supersymmetric and non-supersymmetric) on certain eleven-dimensional
lens spaces.

3.2.1 Type I and HO heterotic theories
As the Green-Schwarz (GS) contribution to the anomaly theory vanishes on lens spaces, the
remaining fermion anomaly theory of the type I and HO heterotic theory is given by

α(L11
p ) = ηRS

0 (L11
p )− 3 ηD

0 (L11
p ) + ηD

adj(L11
p ) . (3.26)

The Rarita-Schwinger eta invariant ηRS arises from the anomaly theory of a ten-dimensional
gravitino according to αgravitino = ηRS − 2ηD [40]. In order to evaluate this anomaly theory
on L11

p , one can derive the branching rules for the adjoint representation of Spin(32) in terms
of the charge-q irreducible Zp representations Lq. This branching depends on how Zp is
included in the gauge group. We choose a family of inclusions of the form

Zp ↪→ U(1) k
↪→ SU(N) ↪→ Spin(2N) , (3.27)

according to which the (complexified) vector representation of Spin(2N) splits as

2N −→ N ⊕ N∗ . (3.28)

The parameter k denotes an inclusion that places the U(1) fundamental representation L
in k diagonal blocks, in pairs L ≡ L ⊕ L−1, and the rest in the trivial representation L0.
Then, the vector representation of Spin(2N) further splits into

2N −→ N ⊕ N∗ −→ [kL⊕ (N − 2k)L0]⊕ [kL⊕ (N − 2k)L0] . (3.29)

In order to find the branching rules for other representations, it is convenient to use Chern
characters. Letting x ≡ c1(L), the Chern character of N (and N∗) decomposes into

ch(N) −→ k
(
ex + e−x)+ (N − 2k) . (3.30)

Then we can build the characters for adjoint, symmetric and antisymmetric SU(N) represen-
tations, from which we can reconstruct the characters for Spin(2N) representations of interest,
such as the adjoint (antisymmetric) and spinorial. The resulting branching rules involve the
representations Lq ≡ Lq ⊕ L−q. In particular, the adjoint of Spin(2N) branches according to

adj −→ k(2k − 1)L2 ⊕ 4k(N − 2k)L⊕ [N(2N − 1)− 2k(2k − 1)− 8k(N − 2k)]L0 , (3.31)

which gives the corresponding eta invariant. Using the expressions

ηD
q (L11

p ) = 2p6 + 21p4 + 168p2 − 191− 42p4q2 + 210p2q4 − 630p2q2
60480p

+ −252pq5 + 1260pq3 − 1008pq + 84q6 − 630q4 + 1008q2
60480p ,

ηRS
0 (L11

p ) = 22p6 − 273p4 − 3192p2 + 3443
60480p ,

(3.32)
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the anomaly simplifies to

α
(k)
Spin(32)(L

11
p ) = (p2 − 1)(p4 + (11− 5k)p2 + 10(k − 3)2)

60p . (3.33)

In order to compare the cases in which α = 0 mod 1 to the Bianchi identity, let us recall
that the total Pontryagin class of L2k−1

p is p(L2k−1
p ) = (1 + y)k with y a generator of

H4(L2k−1
p ;Z) ∼= Zp. Thus p1(L11

p ) = 6y, and one can show that the canonical choice of p1
2

afforded by the spin structure is p1
2 = 3y. On the other hand, according to the branching

rule (3.29), the total Chern class of the associated vector bundle is c = (1− y)2k, and thus
c2 = −2k y. Therefore,

p1 + c2
2 = (3− k) y (3.34)

vanishes if and only if k = 3 mod p. Plugging in k = 3 +mp with m integer, the anomaly
does vanish (mod 1), and it does not vanish otherwise.

3.2.2 E8 × E8 theory
The calculation for the E8 × E8 theory is almost the same as in the preceding case. The
anomaly theory has the same form of (3.26), the only difference being the branching of the
adjoint representation adj = (248,1)⊕ (1,248). We employ the same construction as before,
embedding Zp into the Spin(16) subgroup of E8. The general construction is thus specified
by a pair (k1, k2) pertaining to the two E8 factors. One then has to compute the branching
for the 120 and the spinorial 128 of Spin(16) which compose the adjoint representation of
E8. The former has been presented in the preceding section, now with N = 8, while the
latter can be constructed computing Chern characters of antisymmetric representations of
SU(8) whose direct sum gives the branching of the spinorial representation:

128+ ⊕ 128− −→
8⊕

m=0

(
8
m

)
. (3.35)

The Chern character for the various antisymmetric representations can be found by expanding
the graded Chern character for the exterior algebra Λ(V ) = ⊕nΛn(V )

ch(Λ(V )) ≡
∑

n

tn ch(Λn(V )) , (3.36)

which can be computed exploiting the property Λ(U ⊕ V ) ≃ Λ(U) ⊗ Λ(V ) and that, for
line bundles L,

ch(Λ(L)) = 1 + t ec1(L) . (3.37)

Thus, (3.30) gives

ch(Λ(N)) −→ (1 + t ex)k (1 + t e−x)k (1 + t)N−2k . (3.38)

For instance for N = 8 and k = 1, summing the even or odd rank characters leads to

ch(128) −→ 64 + 32
(
ex + e−x) , (3.39)
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which means that the spinorial representations branch according to 128 → 32L ⊕ 64L0.
Analogously, 120 → L2 ⊕ 24L ⊕ 70L0, so that all in all

248 −→ L2 ⊕ 56L⊕ 134L0 . (3.40)

The anomaly for this particular choice (k1, k2) = (1, 0) then simplifies to

α
(1,0)
E8×E8

(L11
p ) = p6 + 5p4 + 34p2 − 40

60p
(3.41)

which vanishes (mod 1) for p = 2. Let us now look at the Bianchi identity. The Chern
class of the adjoint E8 × E8 associated bundle is

c = (1− 4y) (1− y)56 , (3.42)

with y a generator of H4(L11
p ;Z), and thus c2 = −60y. For E8 × E8 we have to divide c2

2
by 30 in the Bianchi identity, thus getting

p1
2 + c2

60 = 2 y . (3.43)

This class only vanishes if p = 2, which is the same value for which the anomaly vanishes!
Similarly, for (k1, k2) = (1, 1) the Bianchi class is y, which never vanishes (except for the
trivial case p = 1), and accordingly the anomaly never vanishes either.

One can carry on with more complicated embeddings computing the spinorial branching
of 128: for (k1, k2) = (2, 1) the Bianchi class vanishes, and indeed the anomaly turns out
to always vanish mod 1. At first glance, the case (k1, k2) = (2, 0) appears to present an
exception, since the Bianchi class is y ̸= 0 but the anomaly vanishes for p = 5. However, in
order to find the relationship between torsional Bianchi identities and anomalies, for given
torsion the anomaly should vanish for all allowed backgrounds, and the (1, 1) embedding
has the same Bianchi class but nonvanishing anomaly for p = 5.

The general expression for any (k1, k2) for the E8×E8 theory is more involved due to how
the spinorial representations branch, but the procedure to compute the anomaly is systematic.

3.2.3 Non-supersymmetric theories

Let us now address the non-supersymmetric cases. An immediate consequence of the above
result for the supersymmetric heterotic theories is that the anomaly on lens spaces satisfying
the torsional Bianchi identity also vanishes for the non-SUSY heterotic theory, since its chiral
matter content is in the virtual difference of the corresponding representations [71]. This fact
will turn out to be useful when discussing fivebrane anomaly inflow in section 3.4.2.

For the Sagnotti model, the anomaly theory can be written as [5, 6]

α0′B(L11
p ) = αself-dual(L11

p )− ηD
antisym(L11

p )
= −αRS

0 (L11
p ) + 3 ηD

0 (L11
p )− ηD

antisym(L11
p )

(3.44)

since it contains a four-form RR field with self-dual curvature, similarly to type IIB. Following
the same procedure as before, now with the simpler inclusion Zp ↪→ U(1) ↪→ SU(32), one
can evaluate the fermionic anomalies; for the self-dual field, in the second line of eq. (3.44)
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we have used anomaly cancellation in type IIB supergravity to recast its anomaly theory in
terms of fermionic contributions, along the lines of [40]. Thus we obtain

α
(k)
0′B(L

11
p ) = −(p2 − 1)(5k2 − 5k(p2 + 12) + 2(p4 + 11p2 + 90))

120p . (3.45)

The Chern class of the associated fundamental bundle is now c = (1− y)k, so that c2 = −k y
and the Bianchi class

p1 + c2
2 =

(
3− k

2

)
y (3.46)

vanishes for k = 6 mod p. Notice that c3 = 0 as well for these bundles, since the total Chern
class only contains powers of y ∈ H4(L11

p ,Z). Substituting k = 6 +mp for integer m, the
anomaly vanishes as expected, but not otherwise.

The calculation for the Sugimoto model is essentially identical: the anomaly theory is
simply αSugimoto = −α0′B, since the antisymmetric fermion has now positive chirality and
the gravitino and dilatino contribute the opposite of the self-dual tensor. The inclusion
we employ is Zp ↪→ U(1) ↪→ Sp(1) ≃ SU(2) k

↪→ Sp(16), under which the 32 representation
branches according to

32 −→ kL⊕ (32− 2k)L0 . (3.47)

Since the resulting Bianchi class is also the same, one obtains the same result: the anomalies
cancel on lens backgrounds which satisfy the Bianchi identity at the torsional level.

3.3 Vanishing bordism classes

We now turn to the main results of this paper — the calculation of string bordism groups
with twisted string structures corresponding to the non-supersymmetric strings, by means
of homotopy theory. These sections cover in some detail the mathematical aspects of the
calculation; a table summarizing the results can be found in the Conclusions.

3.3.1 Sp(16)

At this point we make our first bordism computation: that every closed, spin 11-manifold M
with a principal Sp(16)-bundle P satisfying the Green-Schwarz identity 1

2p1(M) + c2(P ) = 0
is the boundary of a compact spin 12-manifold on which the Sp(16)-bundle and Green-
Schwarz data extend. This implies that the anomalies we study in this paper vanish for
the Sugimoto string.

To make these computations, we use the Adams and Atiyah-Hirzebruch spectral sequences.
By now these are standard tools in the mathematical physics literature, so we point the
reader to [51, 110] for background and many example computations written for mathematical
physicists. The computations in this paper are a little more elaborate: twisted string bordism
rather than twisted spin bordism. There are fewer such calculations in the literature, but
we found the references [46, 111–114] helpful.

On to business. The data of a G-gauge field and a B-field satisfying a Bianchi identity
is expressed mathematically as a principal bundle for a Lie 2-group extension of G by
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BU(1). Such extensions are classified by H4(BG;Z) [115, Corollary 97]. Let String(n)-Sp(16)
denote the Lie 2-group which is the extension of Spin(n) × Sp(16) by BU(1) classified by
1
2p1 + c2 ∈ H4(B(Spin(n)× Sp(16));Z), and String-Sp(16) be the colimit as n→ ∞ as usual.
A string-Sp(16)-structure on a manifold M is data of a spin structure, a Sp(16)-bundle
P , and a trivialization of the Green-Schwarz term 1

2p1(M) + c2(P ): exactly what we need
for the Sugimoto string.

Though we are primarily interested in showing ΩString-Sp(16)
11 = 0, the lower-dimensional

bordism groups are barely more work.

Theorem 3.48. The low-dimensional String-Sp(16) bordism groups are:

ΩString-Sp(16)
0

∼= Z ΩString-Sp(16)
6

∼= Z2

ΩString-Sp(16)
1

∼= Z2 ΩString-Sp(16)
7

∼= Z4

ΩString-Sp(16)
2

∼= Z2 ΩString-Sp(16)
8

∼= Z⊕3 ⊕ Z2

ΩString-Sp(16)
3

∼= 0 ΩString-Sp(16)
9

∼= (Z2)⊕3

ΩString-Sp(16)
4

∼= Z ΩString-Sp(16)
10

∼= (Z2)⊕3

ΩString-Sp(16)
5

∼= Z2 ΩString-Sp(16)
11

∼= 0.

Proof. Let V → BSp(16) be the vector bundle associated to the defining representation; it
is rank 64 as a real vector bundle. Then by an argument analogous to [51, section 10.4],
there is an isomorphism ΩString-Sp(16)

∗ ∼= ΩString
∗ ((BSp(16))V −64), where (BSp(16))V −64 is the

Thom spectrum of the virtual vector bundle V −R64 → BSp(16). The Thom spectrum XV of
V → X is a homotopy-theoretic object whose homotopy groups can be expressed as certain
kinds of bordism groups by the Pontrjagin-Thom theorem; the upshot is that string bordism
groups of XV are isomorphic to (X,V )-twisted string bordism groups of a point. See [51,
section 10.4] for more information and references.

If tmf denotes the spectrum of connective topological modular forms, then it follows
that the map ΩString

∗ (X) → tmf ∗(X) is an isomorphism in degrees 15 and below whenever
X is a space or connective spectrum [112, Theorem 2.1] (the latter condition includes all
Thom spectra we study in this paper). Therefore for the rest of the proof we focus on
tmf ∗((BSp(16))V −64). These are finitely generated abelian groups, so we may work one prime
at a time (see [51, section 10.2]).

As input, we will need the following calculation of Borel.

Proposition 3.49 (Borel [116, section 29]). H∗(BSp(16);Z) ∼= Z[c2, c4, . . . , c32], where ci is
the pullback of the ith Chern class under the map BSp(16) → BU(32).

For large primes p (i.e. p ≥ 5), we want to show that tmf ∗((BSp(16))V −64) lacks p-torsion
in degrees 11 and below. This follows because when p ≥ 5, the homotopy groups of the
p-localization tmf (p) are free and concentrated in even degrees [117, section 13.1], and the
Z(p) cohomology of BSp(16) (hence also of (BSp(16))V −64, by the Thom isomorphism) is
always free and concentrated in even degrees as a consequence of proposition 3.49 and
the universal coefficient theorem, so the Atiyah-Hirzebruch spectral sequence computing p-
localized tmf ∗((BSp(16))V −64) collapses with only free summands on the E∞-page, preventing
p-torsion in tmf ∗((BSp(16))V −64) in the range we care about.
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For p = 3, the 3-localized Atiyah-Hirzebruch spectral sequence does not immediately
collapse, so we use the Adams spectral sequence (and we will see that this Adams spectral
sequence does immediately collapse). The Adams spectral sequence takes the form

Es,t
2 = Exts,t

A (H∗(X;Zp),Zp) =⇒ πs
t−s(X)∧p . (3.50)

Let us explain this notation. We pick a prime p; then A is the p-primary Steenrod algebra,
the Zp-algebra of all natural transformations H∗(–;Zp) → H∗+t(–;Zp) that commute with the
suspension isomorphism. The mod p cohomology of any space or spectrum X is thus naturally
a Z-graded A-module, so we may apply ExtA, the derived functor of HomA. This gives us
two gradings: the original Z-grading on cohomology is the one labeled t, and the grading
arising from the derived functors is the one labeled s. On the right-hand side of (3.50), πs

∗
denotes stable homotopy groups, and (–)∧p denotes p-completion. We will not need to worry
in too much detail about p-completion: we will only ever p-complete finitely generated abelian
groups A, for which the p-completion carries the same information as the free summands and
the p-power torsion summands of A. Thus we will typically be implicit about p-completion —
in particular, Zp always denotes the cyclic group of order p, not the p-adic integers.

We are interested in tmf -homology (or really string bordism), rather than stable homotopy,
which means replacing X with tmf ∧X in (3.50); then the Adams spectral sequence converges
to tmf t−s(X)∧p .

By work of Henriques and Hill (see [111, 117]), building on work of Behrens [118] and
unpublished work of Hopkins-Mahowald, there is a change-of-rings theorem for the 3-primary
Adams spectral sequence for tmf simplifying (3.50) to

Es,t
2 = Exts,t

Atmf (H∗(X;Z3),Z3) =⇒ tmf ∗(X)∧3 . (3.51)

Here Atmf is the graded Z3-algebra

Atmf = Z3⟨β,P1⟩/(β2, (P1)3, β(P1)2β − (βP1)2 − (P1β)2), (3.52)

with |β| = 1 and |P1| = 4. For the Adams E2-page, Atmf acts on H∗(X;Z3) by sending β
to the Bockstein for 0 → Z3 → Z9 → Z3 → 0 and P1 to the first mod 3 Steenrod power.
See [111–114] for more information and some example computations with this variant of the
Adams spectral sequence.

As input, we need to know how β and P1 act on H∗((BSp(16))V −32;Z3). This is
determined in [114, Corollary 2.37] from the input data of the action of the images of β and
P1 on the mod 3 Steenrod algebra on H∗(BSp(16);Z3). As the cohomology of BSp(16) is
concentrated in even degrees, β must act trivially, and thus likewise for the Thom spectrum
(BSp(16))V −64. Shay [119] computes the action of P1 on mod 3 Chern classes;14 the formula
implies that in H∗(BSp(16);Z3), P1(c2) = c4 + c22 and P1(c4) = c4c2. For the Thom
class, P1(U) = Uc2 [114, Theorem 2.28]. Using the Cartan formula, we can compute the
Atmf -module structure on H∗((BSp(16))V −64;Z3).

Definition 3.53. If M is a Z-graded module over a Z-graded algebra A, we will let ΣkM

denote the same underlying A-module with the grading shifted up by k, i.e. if x ∈ M is
homogeneous of degree m, then x ∈ ΣkM has degree m+ k. We will write Σ for Σ1.

14We also found Sugawara’s explicit calculations of this formula in [120, section 5] helpful.

– 23 –



J
H
E
P
0
2
(
2
0
2
4
)
0
9
2

The notation Σk is inspired by the suspension of a topological space, which has the effect
of increasing the degrees of elements in cohomology by 1.

Definition 3.54. Let N3 denote the nontrivial Atmf -module extension of Cν by Σ8Z3, where
Cν is the Atmf -module defined in [114, section 3.2].

Then, there is an Atmf -module isomorphism

H∗((BSp(16))V −64;Z3) ∼= N3 ⊕ Σ8N3 ⊕ P, (3.55)

where P is concentrated in degrees 12 and above (so we can ignore it). We draw the
decomposition (3.55) in figure 3, left.

We need to compute ExtAtmf (N3,Z3). To do so, we use the fact that the short exact
sequence of Atmf -modules (which we draw in figure 2, top)

0 Σ8Z3 N3 Cν 0 (3.56)

induces a long exact sequence on Ext groups; traditionally one draws the Ext of the first and
third terms of a short exact sequence in the same Adams chart, so that the boundary maps
have the same degree as a d1 differential. See Beaudry-Campbell [110, section 4.6, section 5]
for more information and some examples for modules over a different algebra A(1), and [114,
figures 2, 3, and 5] for some Atmf -module examples.

We will draw the long exact sequence in Ext corresponding to (3.56) in figure 2. To
do so, we need ExtAtmf (Z3), which is due to Henriques-Hill [111, 117], and ExtAtmf (Cν),
which is computed in topological degree 14 and below in [114, figure 2]. Our notation for
names of Ext classes follows [114, section 3]; ExtAtmf (Σ8Z3) is a free ExtAtmf (Z3)-module
on a single generator, so call that generator z.15 Most boundary maps are nonzero for
“degree reasons,” meaning that their domain or codomain is the zero group. For t− s ≤ 14,
there are two exceptions: ∂(z) could be ±αy or 0, and ∂(αz) could be ±βx or 0. Since the
boundary maps commute with the ExtAtmf (Z3)-action and α(αy) = βx,16 these two boundary
maps are either both zero or both nonzero. To see that they are both nonzero, we use that
Ext0,8

Atmf (N3) ∼= HomAtmf (N3,Σ8Z3) = 0, so z ∈ Ext0,8
Atmf (Σ8Z3) is not the image of an Ext

class for N3, so ∂(z) ̸= 0.
With this Ext in hand, we can draw the E2-page of the Adams spectral sequence in

figure 3, right. The spectral sequence collapses at E2 in the range we study for degree reasons.
The straight lines denote actions by h0 ∈ Ext1,1

Atmf (Z3,Z3), which lift to multiplication by 3,
so we see there is no 3-torsion in degrees 11 and below.

Lastly, for p = 2, we use the Adams spectral sequence again; the outline of the proof is
quite similar to the p = 3 case, but the details are different. Specifically, we will once again

15There are two classes which generate ExtAtmf (Σ8Z3) as an ExtAtmf (Z3)-module, and one is −1 times the
other. For the purposes of this paper, it does not matter which one we call z and which one we call −z.

16The equation α(αy) = βx is stated in [114, Remark 3.21], but not proven there. One way to prove it is to
compare with the equivalent α-action αy 7→ βx in ExtAtmf (N1) in the long exact sequence in (ibid., figure 5):
because ∂(αy) = ±βw and αβw ≠ 0, and because α(∂(–)) = ∂(α · –), α(αy) ̸= 0, hence must be ±βx, and we
can choose the generator x so that we obtain βx and not −βx. The calculation of ∂(αx) in (ibid., Lemma
3.24) does not use any information about α(αy).
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Σ8Z3 N3 Cν

s 
t− s  0 4 8 12

0

4

z αzx
h0y

c4y
c6x

αy

βx

s 
t− s  0 4 8 12

0

4

h0z
x

h0y

c4x c4y
c6x

Figure 2. Top: the short exact sequence (3.56) of Atmf -modules. Lower left: the induced long exact
sequence in Ext. Lower right: ExtAtmf (N3) as computed by the long exact sequence.

0

4

8

12

16

U

Uc22

s 
t− s  0 2 4 6 8 10

0

2

4

Figure 3. Left: the Atmf -module structure on H∗((BSp(16))V −64;Z3) in low degrees; the pictured
submodule contains all elements in degrees 11 and below. Right: the E2-page of the Adams spectral
sequence computing tmf ∗((BSp(16))V −64)∧3 .

use the Adams spectral sequence and a standard change-of-rings theorem to simplify the
calculation of the E2-page, but the algebra of cohomology operations is different.

Let A(2) be the subalgebra of the mod 2 Steenrod algebra generated by Sq1, Sq2, and
Sq4. There is an isomorphism H∗(tmf ;Z2) ∼= A ⊗A(2) Z2 [121, 122], which by a standard
argument simplifies the E2-page of the 2-primary Adams spectral sequence to

Es,t
2 = Exts,t

A(2)(H
∗(X;Z2),Z2) =⇒ tmf ∗(X)∧2 . (3.57)

The next thing to do is to determine how A(2) acts on H∗((BSp(16))V −64;Z2). Since
this cohomology ring vanishes in degrees not divisible by 4, Sq1 and Sq2 act trivially. For
Sq4, [110, section 3.3] says Sq4(U) = Uw4(V ) = c2, and the Wu formula computes the
Steenrod squares in H∗(BSp(16);Z2), using that the mod 2 reductions of the generators in
proposition 3.49 are Stiefel-Whitney classes. This allows us to completely describe the A(2)-
action on H∗((BSp(16))V −64;Z2) in the degrees we need: Sq4(U) = Uc2, Sq4(Uc22) = Uc32,
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0

4

8

12

U

Uc22 Uc4

s 
t− s  0 2 4 6 8 10

0

2

4

6

Figure 4. Left: the A(2)-module structure on H∗((BSp(16))V −64;Z2) in low degrees; the pictured
submodule contains all elements in degrees 11 and below. Right: the E2-page of the Adams spectral
sequence computing tmf ∗((BSp(16))V −64)∧2 .

Sq4(Uc4) = Uc6, and all other actions by Sq1, Sq2, or Sq4 starting in degree 11 or below
vanish. Thus, if M4 denotes the A(2)-module consisting of two Z2 summands in degrees 0
and 4 connected by a Sq4, there is an isomorphism

H∗((BSp(16))V −64;Z2) ∼=M4 ⊕ Σ8M4 ⊕ Σ8M4 ⊕ P, (3.58)

where P contains no elements in degrees 11 or below, and hence will be irrelevant to our
calculations. We draw (3.58) in figure 4, left.

Bruner-Rognes [113, section 4.4] compute ExtA(2)(M4); using their result, we give the
E2-page of the Adams spectral sequence computing tmf ∗((BSp(16))V −64)∧2 in figure 4, right.

Looking at the E2-page, most differentials are ruled out by degree considerations or the
fact that they must commute with the action of h0 or h1. The only options left are d2 and d3
out of E0,8

r and d2 : E2,12
2 → E4,13

2 .

Lemma 3.59. All classes in E0,8
2

∼= (Z2)⊕2 survive to the E∞-page.

Proof. Classes x ∈ E0,•
2 of an Adams spectral sequence for G-bordism correspond naturally

to (a subset of) Z2-valued characteristic classes cx for manifolds with G-structure, and x

survives to the E∞-page if and only if there is a closed manifold M with G-structure such
that

∫
M cx = 1; see [41, section 8.4].

For the Adams spectral sequence for string-Sp(16) bordism at p = 2, the two classes
corresponding to a basis of E0,8

2 are the mod 2 reductions of c22 and c4. To finish this lemma,
we will find closed string-Sp(16) 8-manifolds on which these classes do not vanish.

• The quaternionic projective plane HP2 has a tautological principal Sp(1)-bundle P :=
S11 → HP2; let P∨ → HP2 be the same space with the quaternion-conjugate Sp(1)-
action, and let Q → HP2 be the principal Sp(16)-bundle induced from P∨ by the
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inclusion i : Sp(1) → Sp(16). Using the fact that i pulls c2 back to c2 and Borel
and Hirzebruch’s calculation of the characteristic classes of HP2 [123, section 15.5,
section 15.6] (see also [41, section 5.2] for a good review), the reader can verify that
(HP2, Q) has a unique string-Sp(16) structure, meaning in particular that c2(Q) =
−1

2p1(HP2), and that
∫
HP2 c2(Q)2 = 1.

• For c4, take S8 with principal Sp(16)-bundle P → S8 classified by either generator of

[S8, BSp(16)] = π8(BSp(16))
∼=→ π8(BSp) = π0(BSp) = Z, (3.60)

using Bott periodicity. Since H4(S8;Z) = 0, c2(P ) and 1
2p1(S8) vanish and therefore

(S8, P ) is string-Sp(16); and
∫

S8 c4(P ) = 1 essentially by definition.

The differential out of E2,12
2 does not vanish — to see this, consider the map

f : HP1 −→ HP∞ ≃ BSp(1) −→ BSp(16) (3.61a)

and the induced map on Thom spectra

f∗ : tmf ∗((HP1)f∗V −64) −→ tmf ∗((BSp(16))V −64). (3.61b)

The map f∗ induces a pullback map on mod 2 cohomology and on Adams spectral sequences;
the map on mod 2 cohomology is the quotient by all elements of degree greater than 4, so
the effect on Adams spectral sequences is to kill all summands in Ext except for the red
summands. As H∗((HP1)f∗V −64;Z2) consists of two Z2 summands in degrees 0 and 4, joined
by a Sq4, the Adams spectral calculating its 2-completed tmf -homology is worked out by
Bruner-Rognes [113, Theorem 8.1], who show that d2 : E2,12

2 → E4,13
2 is an isomorphism.

Thus this differential persists to the Sp(16) Adams spectral sequence.

3.3.2 U(32)

Now we discuss the Sagnotti string, whose gauge group is U(32). The Green-Schwarz
mechanism for this theory involves three classes in degrees 2, 4, and 6 canceling c1, c2, and
c3 of the gauge bundle, respectively.

We may impose the degree-2, 4, and 6 conditions on BU(32) in any order. Starting with
c1, we obtain BSU(32); then, let BSU(32)⟨c3⟩ denote the fiber of the map

c3 : BSU(32) −→ K(Z, 6). (3.62)

A map X → BSU(32)⟨c3⟩ is equivalent data to a rank-32 complex vector bundle V → X

with SU-structure and a trivialization of c3(V ). There is a tautological such vector bundle
Vt → BSU(32)⟨c3⟩, which is the pullback of the tautological bundle over BSU(32).

Finally, the degree-4 condition for a U(32)-bundle V over a manifold M asks for a
trivialization of 1

2p1(M)+c2(V ). Thus, we ask for a (BSU(32)⟨c3⟩, Vt)-twisted string structure
on M , i.e. a map f : M → BSU(32)⟨c3⟩ and a string structure on TM ⊕ f∗Vt; the Whitney
sum formula for 1

2p1 unwinds this into the usual Green-Schwarz condition. We will be a little
casual with the notation and call a (BSU(32)⟨c3⟩, Vt)-structure a String-SU(32)⟨c3⟩-structure,
even though we do not construct a Lie 2-group String-SU(32)⟨c3⟩ realizing this twisted string
structure (and indeed, there is no guarantee one exists).
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Theorem 3.63. ΩString-SU(32)⟨c3⟩
11 is isomorphic to either 0 or Z2.

The ambiguity is in a differential we were not able to resolve. Unfortunately, this means
we were not able to use bordism-theoretic methods alone to calculate the anomaly of the
Sagnotti string. Our proof also yields partial information on lower-dimensional bordism
groups; there is ambiguity due to Adams spectral sequence differentials, some of which we
suspect are nonzero.

Proof. Before we start our analysis, we need to understand H∗(BSU(3)⟨c3⟩;A) for various
coefficient rings A. As BSU(32)⟨c3⟩ is the fiber of c3 : BSU(32) → K(Z, 6), the fiber of
BSU(32)⟨c3⟩ → BSU(32) is ΩK(Z, 6) ≃ K(Z, 5); moreover, this fibration pulls back from the
universal fibration with fiber K(Z, 5), namely the loop-space-path-space fibration for K(Z, 6):

K(Z, 5) K(Z, 5)

BSU(32)⟨c3⟩ ∗

BSU(32) K(Z, 6).c3

=

⌟
(3.64)

We will compute H∗(BSU(32)⟨c3⟩;A) for various A using the Serre spectral sequence, along
with some information gained from the map of Serre spectral sequences induced by (3.64).

As for the Sugimoto string, we work one prime at a time.

Lemma 3.65. For p ≥ 5, there is no p-torsion in H∗(BSU(32)⟨c3⟩;Z) in degrees 12 and
below, and all free summands are concentrated in even degrees.

Proof. It suffices to work with cohomology valued in the ring Z[1/6] of rational numbers
whose denominators in lowest terms are of the form 2m3n, as tensoring with Z[1/6] preserves
all p-power torsion for p ≥ 5.

Cartan [124] and Serre [125] computed H∗(K(Z, n);Z[1/6]); their formulas imply that
when p ≥ 5, Hk(K(Z, 5);Z[1/6]) is torsion-free for k ≤ 12, and vanishes apart from
H5(K(Z, 5);Z[1/6]) ∼= Z[1/6].

Now consider the Serre spectral sequence for the fibration on the left in (3.64) using
cohomology with Z[1/6] coefficients. The map of fibrations (3.64) induces a map of Serre
spectral sequences, and this map is an isomorphism on E0,•

2 . Since this map commutes
with differentials, this means the fate of all classes in E0,•

2 is determined by their preimages
in the spectral sequence for K(Z, 5) → ∗ → K(Z, 6). For example, we know thanks to
Serre [126, section 10] that in that spectral sequence, E transgresses to the mod 2 reduction
of the tautological class F of K(Z, 6). Therefore in the spectral sequence for BSU(32)⟨c2⟩, E
transgresses to the pullback of F , which is c3. The Leibniz rule then tells us d6(xE) = xc3
for x ∈ H∗(BSU(32);Z[1/6]); since this cohomology ring is polynomial, xc3 ̸= 0 as long
as x ̸= 0, so these differentials never vanish. Therefore the nonzero part of the E∞-page,
at least in total degree 12 and below, is a quotient of E∗,0

2 = H∗(BSU(32);Z[1/6]). Since
H∗(BSU(32);Z[1/6]) is free and concentrated in even degrees. This implies the E∞-page is
also free and concentrated in even degrees in total degree 12 and below, which implies the
lemma statement.
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Corollary 3.66. For p ≥ 5, ΩString-SU(32)⟨c3⟩
k lacks p-torsion for k ≤ 11.

Proof. We want to compute ΩString
∗ ((BSU(32)⟨c3⟩)Vt−64), and as noted above, we may replace

ΩString
∗ with tmf for the degrees k in the corollary statement. Because of lemma 3.65 and the

fact that tmf (p) has homotopy groups concentrated in even degrees and lacks p-torsion, the
Atiyah-Hirzebruch spectral sequence computing tmf ∗((BSU(32)⟨c3⟩)Vt−64)∧p collapses with
no p-torsion in the range 11 and below.

As usual, p = 2 and p = 3 are harder.

Lemma 3.67.

2. H∗(BSU(32)⟨c3⟩;Z2) ∼= Z2[c2, G, c4, H, J,K, c6, L, . . . ]/(. . . ), with |ci| = 2i, |G| = 7,
|H| = 8, |J | = 10, |K| = 11, and |L| = 12; all missing generators and relations are in
degrees 13 and above. In addition, we have the following Steenrod squares:

• Sq1 vanishes on the named generators except Sq1(G) = H + λ1c4 and Sq1(K) =
L+ λ2c2c4 + λ3c6 for some λ1, λ2, λ3 ∈ Z2.

• Sq2 vanishes on the named generators except for Sq2(H) = J and possibly on c6,
K, and L.

• Sq4(c2) = c22, Sq4(c4) = c2c4 + c6, Sq4(G) = K, and Sq4(H) = L.

3. H∗(BSU(32)⟨c3⟩;Z3) ∼= Z3[c2, c4, J, c6, . . . ]/(. . . ) with |ci| = 2i and |J | = 10, and with
all missing generators and relations in degrees 13 and above; ci denotes the pullback
of the mod 3 reduction of the ith Chern class along BSU(32)⟨c3⟩ → BSU(32), and
P1(c2) = c22 + c4 and P1(c4) = c2c4.

Proof. This is a standard argument with the Serre spectral sequence for the fibration on the
left in (3.64), so we sketch the details.

For the mod 2 cohomology, we need as input H∗(BSU(32);Z2) ∼= Z2[c2, c3, . . . , c32] with
|ci| = 2i [116, section 29]: these are the mod 2 reductions of the Chern classes. We also need
H∗(K(Z, 5);Z2), which was computed by Serre [126, section 10]. This is a polynomial ring on
infinitely many generators; the six in degrees below 13 are E ∈ H5, the mod 2 reduction of the
tautological class; G := Sq2(E); H := Sq1(H); I := Sq4(E); K := Sq4(G); and L := Sq5(G).

In the Serre spectral sequence, the class E transgresses to c3, and the proof is the same as
in the proof of lemma 3.65. Similarly, we divine the fate of the other classes on the line p = 0:

• In the Serre spectral sequence for the rightmost fibration in (3.64), G transgresses via
d8 to Sq2(F ) by the Kudo transgression theorem [127], so in the leftmost fibration,
dr(G) = 0 for r ≤ 7, and d8(G) = Sq2(c3) = 0. Thus G is a permanent cycle.

• In a similar way, H transgressing to Sq3(F ) via d9 pulls back to imply d9(H) =
Sq3(c3) = 0, so H is also a permanent cycle. Likewise, E2 is a permanent cycle, because
in the fibration over K(Z, 6), it supports the transgressing d11(E2) = Sq5(F ), and
Sq5(c3) = 0, and similarly K and L are permanent cycles.

• I = Sq4(E) transgresses to Sq4(c3) = c5 + c2c3.
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The Leibniz rule then cleans up the rest of the spectral sequence in degrees 12 and below.
This gives us the ring structure. For the Steenrod squares, we use the information of the
A-action on H∗(BSU(32);Z2) coming from the Wu formula, together with the A-actions we
gave when describing H∗(K(Z, 5);Z2) above. There is ambiguity in the Steenrod squares in
H∗(BSU(32)⟨c3⟩;Z2) coming from the loss of information passing to the associated graded
on the E∞-page, which is the source of λ1, λ2, and λ3 in the theorem statement. However,
by pulling back to the analogous fibration over BSU(2), where the fiber bundle admits a
section (as c3 of an SU(2)-bundle is canonically trivial), so we can use the Künneth formula
to compute Steenrod squares. Pulling back to SU(2) loses all information about ci for i > 2,
so this leaves ambiguity in c4 and c6 as described in the theorem statement, but resolves the
ambiguity involving c2. Some ambiguity can be erased by redefining generators, which is how
we disambiguate Sq4(H) = L, but this still leaves the choices listed in the theorem statement.

For Z3 cohomology, we begin with H∗(K(Z, 5);Z3) ∼= Z3[E,P1(E), βP1(E),P2(E), . . . ],
with the remaining generators in degrees 15 and above, where E ∈ H5(K(Z, 5);Z3) is the
mod 3 reduction of the tautological class. Just like for Z2 cohomology, E transgresses via d5
to c3; then the Kudo transgression theorem [127] tells us

• P1(E) transgresses via d10 to P1(c3) = c2c3 − c5 = −c5 by the E10-page (as d5(c2E) =
c2c3), and

• βP1(E) is a permanent cycle (it transgresses to β(−c5) = 0, which we know for degree
reasons).

We obtain P1(ci) from Sugawara’s calculations [120, section 5] of Shay’s formula [119]. With
the fate of these classes known, the Leibniz rule cleans up the rest of the spectral sequence in
total degrees 12 and below to obtain the theorem statement.

Now, just as in the proof of theorem 3.48, we run the Adams spectral sequences at p = 3
and p = 2. The twist by Vt twists the action of P1 at p = 3, and the action of Sq4 at p = 2,
in an analogous way. Reusing names of Atmf -modules from section 3.3.1, we conclude that
there is an Atmf -module isomorphism

H∗((BSU(32)⟨c3⟩)Vt−64;Z3) ∼= N3 ⊕ Σ8N3 ⊕ Σ10N3 ⊕ P, (3.68)

where P is concentrated in degrees 12 and above, so will not affect us. We draw (3.68) in
figure 5, left. We calculated ExtAtmf (N3) in figure 2; using this, we discover that, like for the
Sugimoto string, in degrees 11 and below, the E2-page consists only of h0-towers in degrees 0,
4, and 8, so there can be no 3-torsion. See figure 5, right, for a picture of this Adams spectral
sequence.

Last, p = 2. The ambiguity in the Steenrod actions is not severe enough to get in the
way of the existence of an isomorphism of A(2)-modules

H∗((BSU(32)⟨c3⟩)Vt−64;Z2) ∼=M4 ⊕ Σ7N1 ⊕ Σ8M4 ⊕ Σ8M4 ⊕ Σ11N2 ⊕ P (3.69)

where P is concentrated in degrees 12 and above, so will be irrelevant for us, and:
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Figure 5. Left: the Atmf -module structure on H∗((BSU(32)⟨c3⟩)Vt−64;Z3) in low degrees; the
pictured submodule contains all elements in degrees 11 and below. Right: the E2-page of the
Adams spectral sequence computing tmf ∗((BSU(32)⟨c3⟩)Vt−64)∧3 . This figure is part of the proof of
theorem 3.63.

• N1 is isomorphic to A(2)⊗A(1)Q in degrees 6 and below (i.e. the quotients of these two
A(2)-modules by their submodules of elements in degrees 7 and above are isomorphic);
and

• N2 is isomorphic to A(2)⊗A(1) Q in degrees 3 and below.

Here Q is the “question mark,” the A(1)-module which has a Z2-vector space basis {x0, x1, x3}
with |xi| = i, and with Sq1(x0) = x1, Sq2(x1) = x3 (all other A(1)-actions are trivial for
degree reasons). The module Σ11N2 is generated by Uc2G. We draw the decomposition (3.69)
in figure 6, left.

Bruner-Rognes [113, section 4.44] calculate ExtA(2)(M4). For N1 and N2, we use that
an isomorphism of A(2)-modules in degrees k and below implies the existence of an isomor-
phism of Ext groups in topological degrees k − 1 and below, so it is good enough to know
ExtA(2)(A(2)⊗A(1) Q); then the change-of-rings theorem (see, e.g., [110, section 4.5]) implies

ExtA(2)(A(2)⊗A(1) Q) ∼= ExtA(1)(Q), (3.70)

and Adams-Priddy [128, table 3.11] compute ExtA(1)(Q). Putting all this together, we can
draw the E2-page in figure 6, right. In the range relevant to us, the E2-page is generated as
an ExtA(2)(Z2)-module by the following ten summands.

1. Coming from Ext(M4): a1 ∈ Ext0,0, a2 ∈ Ext3,7, a3 ∈ Ext1,6, a4 ∈ Ext2,9, and
a5 ∈ Ext2,12.

2. Coming from Ext(Σ7N1): b1 ∈ Ext7,0 and b2 ∈ Ext2,12.

3. Coming from Ext(Σ8M4): c ∈ Ext0,8.

4. Coming from Ext(Σ8M4): d ∈ Ext0,8.

5. Coming from Ext(Σ11N2): e ∈ Ext0,11.

These are subject to various relations: notably, if x is any one of these generators, h2x = 0.
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Figure 6. Left: the A(2)-module structure on the quotient of H∗((BSU(32)⟨c3⟩)Vt−64;Z2) by
its submodule of elements in degrees greater than 12; the pictured submodule contains all ele-
ments in degrees 11 and below. Right: the E2-page of the Adams spectral sequence computing
tmf ∗((BSU(32)⟨c3⟩)Vt−64)∧2 . This figure is part of the proof of theorem 3.63. We were unable to
determine the value of d2(e): it is either 0 or h21d.

Once we take into account the fact that differentials commute with h0 and h1, we still
need to determine d2(b1), dr(c), dr(d), d2(a5), d2(b2), and dr(e).

Lemma 3.71. For all r, dr(c) = 0 and dr(d) = 0; d2(a5) = h21a4.

The values of these differentials are the same as for the corresponding classes in the
Adams spectral sequence for the Sugimoto string, and the proofs are the same as we gave for
them in section 3.3.1.

Ultimately we need to address d2 : E0,11
2 → E2,13

2 . If this differential vanishes, there
is also potential for d6 : E0,11

6 → E6,16
6 to be nonzero. The fate of these two differentials

determines whether ΩString-SU(32)⟨c3⟩
11 is nonzero, so it is unfortunate that the techniques we

applied were unable to resolve them.
We are able to obtain some partial information, though.

Lemma 3.72. If d2(e) = 0, so that d6(e) is defined, then d6(e) = 0.

Proof. d6(e) ∈ E6,16
6 . No other nonzero differentials have source or target E6,16

r , so E6,16
6

∼=
E6,16

2
∼= (Z2)⊕2, spanned by the classes w1h21a1 and h40b2. Here w1 ∈ Ext4,12

A(2)(Z2) is the class
whose image in ExtA(1)(Z2) is the Bott periodicity class. Thus there are λ1, λ2 ∈ Z2 such that

d6(e) = λ1w1h
2
1a1 + λ2h

4
0b2. (3.73)

Because d6 commutes with h0 and h0e = 0, λ2 = 0.
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To show λ1 = 0, consider the map of Adams spectral sequences induced by the map
from the tmf -homology to the ko-homology of (BSU(32)⟨c3⟩)Vt−32. The map on E2-pages is
the map

ExtA(2)(H∗((BSU(32)⟨c3⟩)Vt−32;Z2),Z2) −→ ExtA(1)(H∗((BSU(32)⟨c3⟩)Vt−32;Z2),Z2)
(3.74)

induced by the inclusion A(1) → A(2) of algebras. It is possible to compute the right-
hand Ext groups using the decomposition (3.69) and the techniques in [110]; one learns
that e and w1h21a1 both remain nonzero after (3.74), so it suffices to compute d6(e) in
the ko-homology Adams spectral sequence. There, though, the submodule Ma1 of the Ext
groups generated by a1 splits off: because Vt − 32 is spin, there is a Thom isomorphism
ko∗((BSU(32)⟨c3⟩)Vt−32) ∼= ko∗(BSU(32)⟨c3⟩), so ko∗(pt) splits off; as this splitting lifts to the
level of spectra, it also splits Ma1 off of the Adams spectral sequence, so all differentials into
Ma1 from any other summand vanish. Thus d6(e) cannot be h21w1a1 in the ko-homology Adams
spectral sequence, so the same is true in the tmf -homology Adams spectral sequence.

Likewise, since E2,12
2

∼= (Z2)⊕4, spanned by the classes a5, b2, h21c, and h21d, then there
are λ1, . . . , λ4 ∈ Z2 such that

d2(e) = λ1a5 + λ2b2 + λ3h
2
1c+ λ4h

2
1d. (3.75)

Lemma 3.76. In (3.75), λ1 = 0, λ2 = 0, and λ3 = 0.

Proof. Because h0b2 ≠ 0 but h0h21 = 0, if λ2 ̸= 0, then h0d2(e) ̸= 0. However, since d2
commutes with h0-multiplication, and h0e = 0, λ2 must vanish and d2(e) ∈ span(a5, h21c, h21d).

By lemma 3.71, d2(c) = 0 = d2(d) = 0, so d2(h21c) = d2(h21d) = 0, and d2(a5) = h21a4.
Therefore d2 : span(a5, h21c, h21d) → E4,13

2 is nonzero on a class µ1a5 + µ2h21c+ µ3h21d if and
only if µ1 ̸= 0. Thus λ1 = 0: otherwise d2(d2(e)) ≠ 0, and it is always true that d2 ◦ d2 = 0.

For λ3, consider the map r : BSU(3)⟨c3⟩ → BSU(32)⟨c3⟩ and the map r∗ it induces of
Adams spectral sequences. The pullback r∗ on cohomology kills c4 but leaves c2 and G alone;
therefore on Ext groups, e ∈ Im(r∗) (because e is the filtration 0 class corresponding to c2G),
h21c ∈ Im(r∗) (because c is the filtration 0 element corresponding to c22), and h21d ̸∈ Im(r∗)
(because d corresponds to c4). The map r∗ commutes with differentials, so d2(e) ∈ Im(r∗),
which is only consistent if λ3 = 0.

Determining whether λ4 = 0 appears to be difficult. This would be a good problem
to address because if λ4 ̸= 0, so that d2(e) ̸= 0, then the bordism group controlling the
anomaly of the Sagnotti string would vanish, and the anomaly would cancel, at least on
the class of backgrounds we studied.

Because the class e potentially causing a nonzero bordism group is in Adams filtration 0,
the corresponding bordism invariant is the integral of a modulo 2 characteristic class, explicitly

∫
c2G. (3.77)

The class G ∈ H7(BSU(32)⟨c3⟩;Z2) is a little mysterious, so we go into some more detail; it
is an example of a secondary characteristic class in the sense of Peterson-Stein [129].
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Recall that by a trivialization of a cohomology class z ∈ Hk(X;A), where A is an abelian
group, we mean a null-homotopy of a map fz : X → K(A, k) whose homotopy class represents
z. There is a space of such trivializations, and a standard result in obstruction theory implies
that its set of path components is a torsor over Hk−1(X;A). In other words, given two
trivializations of fz, their difference is well-defined as an element of Hk−1(X;A).

The Wu formula implies Sq2(c3) = 0 in H8(BSU(32);Z2), and in fact provides a canonical
trivialization for Sq2(c3). Pulling back to BSU(32)⟨c3⟩ trivializes c3, and therefore provides
a second trivialization of Sq2(c3). The difference between these two trivializations is the
class G ∈ H7(BSU(32)⟨c3⟩;Z2).

As a final comment, if we knew of a manifold with a non-trivial integral of c2G, it
would by definition be a generator of the bordism group. We could evaluate the anomaly
theory on it in order to determine whether or not the anomaly vanishes. Regrettably, we
do not know of such a manifold.

3.3.3 Spin(16) × Spin(16)

Next we discuss the symmetry type of the non-supersymmetric heterotic string with gauge
Lie algebra so(16)⊕ so(16). Although usually called SO(16)2, there are fields transforming in
spinor representations in the massless spectrum of the theory which means that we should
instead consider Spin(16)2. There is a further subtlety: according to [53], the gauge group G is
the quotient of Spin(16)× Spin(16) by the diagonal Z2 subgroup ⟨(k, k)⟩, where k ∈ Spin(16)
is either central element not equal to ±1.17

As the computation of H∗(BG) is complicated, we will make a simplifying assumption:
only working with the double cover Spin(16) × Spin(16), as we mentioned above. Thus
our anomaly cancellation results are only partial information: if we found an anomaly for
Spin(16)2, it would imply the existence of an anomaly for the actual gauge group G. However,
we found that anomalies cancel for Spin(16)2, which is only partial information: there could
be an anomaly of the theory which vanishes when restricted to gauge fields induced from
a Spin(16)2 gauge field. It would be interesting to address the more general question of
the anomaly for G.18

Let String-Spin(16)2 be the Lie 2-group which is the string cover of Spin× Spin(16)×
Spin(16) corresponding to the degree-4 cohomology class 1

2p
(1)
1 − 1

2p
(2)
1 − 1

2p
(3)
1 , where c(i) refers

to the cohomology class c coming from the ith factor of BSpin or BSpin(n).19 Quotienting
String-Spin(16)2 by the Spin(16)2 factor produces a map to Spin; composing with Spin → O
we obtain a tangential structure as usual.

17Strictly speaking, the analysis of [53] does not take into account the full string spectrum. Therefore, a
priori the correct gauge group G may differ from this particular quotient of Spin(16)2.

18Like for any double cover, for any odd prime p, the quotient BSpin(16)×BSpin(16) → BG is a p-primary
equivalence, so the lack of p-primary torsion we establish for Spin(16) × Spin(16) remains valid for G.

19Elsewhere in the paper we have referred to 1
2pL

1 and 1
2pR

1 as Chern classes, and indeed they are Chern classes
of the representations that play a role in the Green-Schwarz mechanism for this string theory. However, the
bordism computation we perform in this section only depends on the characteristic class, not the representation
(this is the thesis of [114]), so to emphasize this independence, we use the more intrinsic name 1

2p1, as this
class is one-half of the first Pontrjagin class of the vector representation of Spin(n).
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Theorem 3.78. In degrees 11 and below, the String-Spin(16)2 bordism groups are:

ΩString-Spin(16)2
0

∼= Z ΩString-Spin(16)2
6

∼= 0

ΩString-Spin(16)2
1

∼= Z2 ΩString-Spin(16)2
7

∼= 0

ΩString-Spin(16)2
2

∼= Z2 ΩString-Spin(16)2
8

∼= Z2 ⊕ Z3 ⊕ Z

ΩString-Spin(16)2
3

∼= 0 ΩString-Spin(16)2
9

∼= (Z2)⊕2 ⊕ (Z2)⊕2 ⊕ Z2

ΩString-Spin(16)2
4

∼= Z⊕ Z ΩString-Spin(16)2
10

∼= (Z2)⊕3 ⊕ (Z2)⊕3 ⊕ Z2

ΩString-Spin(16)2
5

∼= 0 ΩString-Spin(16)2
11

∼= 0.

The colors in the theorem statement will be explained below; they correspond to different
summands in (an approximation to) MT (String-Spin(16)2).

Proof. The inclusion i : Spin(16) → Spin induces a map Bi : BSpin(16) → BSpin which is
15-connected, because it is an isomorphism on cohomology in degrees 15 and below. This
map sends 1

2p1 to 1
2p1, so is compatible with the construction of String-Spin(16)2 — that

is, if String-Spin2 is defined in the same way as String-Spin(16)2 but using Spin instead of
Spin(16), then i induces a map of tangential structures

i2 : B(String-Spin(16)2) → B(String-Spin2), (3.79)

as well as the analogous map on bordism groups. Because i is 15-connected, i2 is also 15-
connected, so the induced map of Thom spectra is also 15-connected (e.g. check on cohomology,
where it follows from 15-connectivity of i2 via the Thom isomorphism). Therefore for k ≤ 15,
the map ΩString-Spin(16)2

k → ΩString-Spin2
k induced by i is an isomorphism. Therefore for the

rest of this proof, we can work only with String-Spin2 bordism without affecting the results.
Concretely, a string-Spin2 structure on a vector bundle E → X is data of a spin

structure on E and two virtual spin vector bundles V L, V R → X and a trivialization of
1
2p1(E)− 1

2p1(V L)− 1
2p1(V R). Since 1

2p1 is additive in direct sums [46, Lemma 1.6], this is
equivalent to a trivialization of 1

2p1(E − V L − V R), meaning that a string-Spin2 structure is
equivalent to the data of V L and V R and a string structure on W := E − V L − V R.

The data (E, V L, V R) and (E,W, V R) are equivalent, as V L = E −W − V R, and the
spin structure on V L can be recovered from the spin structures on E, W , and V R by the
two-out-of-three property (the string structure on W includes data of a spin structure).
Therefore the data of a string-Spin2 structure on E → X is equivalent to the following data:

• a spin structure on E,

• a virtual string vector bundle W → X, and

• a virtual spin vector bundle V R → X.

Taking bordism groups, we learn

ΩString-Spin2
∗

∼=−→ ΩSpin
∗ (BSpin×BString). (3.80)
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For any spaces A and B, the stable splitting Σ∞
+ (A) ≃ Σ∞A ∨ S and its analogue for B

together imply a stable splitting

Σ∞
+ (A×B) ≃ S ∨ Σ∞A ∨ Σ∞B ∨ Σ∞(A ∧B), (3.81a)

implying that for any generalized homology theory h,

h∗(A×B) ∼= h∗(pt)⊕ h̃∗(A)⊕ h̃∗(B)⊕ h̃∗(A ∧B). (3.81b)

Here h̃(X) denotes “reduced h-homology” of a space X, meaning the quotient h(X)/i∗(h(pt))
induced by a choice of basepoint i : pt → X. Thus for example Ω̃Spin

∗ (X) denotes reduced
spin bordism, etc. Apply (3.81b) for h = ΩSpin

∗ , A = BSpin, and B = BString:

ΩString-Spin2
∗ ∼= ΩSpin

∗ (BSpin×BString)
∼= ΩSpin

∗ ⊕ Ω̃Spin
∗ (BSpin)⊕ Ω̃Spin

∗ (BString)⊕ Ω̃Spin
∗ (BSpin ∧BString).

(3.81c)

The colors in (3.81c) indicating the pieces of this direct-sum decomposition correspond to the
colors in the theorem statement displaying which pieces of the bordism groups come from
which summands in (3.81c).

The final step is to determine the four summands in (3.81c).

• ΩSpin
∗ was calculated by Milnor [130, section 3] and Anderson-Brown-Peterson [131].

• Ω̃Spin
∗ (BSpin) was calculated by Francis [132, section 2.2].

• Ω̃Spin
∗ (BString) was computed by Davis [133] at p = 2. At odd primes, these groups are

easy to calculate in the range we need: because BString is 7-connected, Ω̃Spin
k (BString)

vanishes for k < 8; for 8 ≤ k ≤ 11, use the Atiyah-Hirzebruch spectral sequence. Work
of Stong [134] and Giambalvo [135] implies that in degrees 11 and below, H̃∗(BString;Z)
consists of a single summand isomorphic to Z in degree 8, and the remaining groups
vanish. This suffices to collapse the Atiyah-Hirzebruch spectral sequence into the blue
groups in the theorem statement.

• For A = Z or Z2, H̃k(BSpin;A) vanishes for k < 4, and Hk(BString;A) vanishes
for k < 8, so by the Künneth formula, H̃k(BSpin ∧ BString;A) vanishes for k < 12.
Therefore the Atiyah-Hirzebruch spectral sequence for Ω̃Spin

∗ (BSpin ∧BString) vanishes
in degrees 11 and below.

Remark 3.82 (Analogy with E8 × E8). The two-step simplification of String-Spin(16)2 (first
replace Spin(16) with Spin, then recast as spin bordism of a space) is directly analogous to
Witten’s [136, section 4] simplification of the symmetry type of the E8 × E8 heterotic string:
first, there is a 15-connected map BE8 → K(Z, 4), so in dimensions relevant to string theory
we may replace the former with the latter; then Witten recast the data of the two maps to
K(Z, 4) and the twisted string structure given by the Green-Schwarz procedure as a spin
structure and a single map to K(Z, 4).
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Remark 3.83 (Analogy with Spin(32) and detecting a non-supersymmetric 0-brane). The
same two-step procedure also works for the Spin(32)/Z2 heterotic string when one restricts
to Spin(32)-bundles, showing that the relevant twisted string bordism groups coincide with
ΩSpin

∗ (BString), which vanishes in dimension 11. As with Spin(16)× Spin(16), this is only
partial information towards a complete anomaly cancellation result.

However, the partial information provided by these bordism groups is already useful:
combined with the Cobordism Conjecture [48], it detects Kaidi-Ohmori-Tachikawa-Yonekura’s
non-supersymmetric 0-brane [50]. To see this, consider ΩSpin

8 (BString) ∼= Z3: two of the Z
summands come from ΩSpin

∗ (pt), and as such are generated by HP2 and the Bott manifold;
the third Z summand is represented by S8 with the map to BString given by the generator
of [S8, BString] = π8(BString) ∼= Z. Tracing through the simplification from twisted string
bordism of BSpin(32) to the spin bordism of BString, we see that this S8 has the Spin(32)-
bundle arising from the generator of π8(Spin(32)) ∼= Z, which is detected by p2.

The Cobordism Conjecture predicts that associated to this bordism class (or rather its
image in the corresponding bordism group for Spin(32)/Z2), there is a 0-brane in Spin(32)/Z2
heterotic string theory whose link is S8 with this Spin(32)-bundle and twisted string structure.
This is precisely the 0-brane discovered by Kaidi-Ohmori-Tachikawa-Yonekura [50]. Those
authors also discuss a 6-brane in the Spin(32)/Z2 heterotic string, but its description uses
π1(Spin(32)/Z2) ∼= Z2, so it is invisible to the Spin(32) computation we made here.

3.4 Physical intuition from fivebrane anomaly inflow

As we have just seen, the relevant bordism groups vanish, and therefore there are no Dai-Freed
anomalies (except possibly for the Sagnotti string). It is instructive to study the vanishing
of anomalies more explicitly in particular examples, to better understand the physics at
play. Let us recall from section 3 the structure of the anomaly theory for ten dimensional
theories that feature a Green-Schwarz mechanism:

αGS(Y11) =
∫

Y11
H ∧X8. (3.84)

The boundary mode of this eleven dimensional field theory gives exactly the contribution
of the Green-Schwarz term to the classical action:

SGS =
∫

Y10
B2 ∧X8. (3.85)

In this section, we consider simple backgrounds of the factorized form Y11 = S3 ×M8 for the
anomaly theory (3.84). We will also take one unit of three-form H flux threading the sphere,
so that the Green-Schwarz term gives a nontrivial contribution, and M8 a spin manifold
equipped with a gauge bundle E such that p1(M8)+c2(E)

2 is trivial in integer cohomology.
Unlike more general backgrounds, these factorized ones allows for an intuitive understanding
of how anomalies are cancelled, via inflow.

On these backgrounds, the eta invariant contribution to the anomaly theory (coming
from the fermions) vanishes on account of the factorization property

η(A×B) = η(A) index(B), (3.86)
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where A is odd-dimensional. The eta invariant of fermions on S3
H vanishes modulo 1, as it is

the same as the eta invariant on a three-sphere, which is the boundary of R4. As a result,
the anomaly theory simplifies to the Green-Schwarz term

α(S3
H ×M8) =

∫

M8
X8 . (3.87)

If we can now show that this quantity is always an integer, Dai-Freed anomalies will vanish
on all such factorized backgrounds. This result does not hinge on the precise bordism groups
computed in the preceding section.

In order to prove that eq. (3.87) is always an integer, we can connect it with the anomaly
inflow mechanism on a fivebrane. Specifically, S3

H is a non-trivial bordism class, and one
possible boundary for it in string theory is a fivebrane. The fivebrane is a codimension four
object, and it is characterized precisely by the fact that the angular S3 in the transverse space
is threaded by one unit of H-flux. These fivebranes are precisely D5-branes in the orientifold
models and NS5-branes in the heterotic model. We will now show that X8 coincides with the
anomaly polynomial of such a fivebrane, up to terms which vanish when the Bianchi identity
holds. In the presence of fivebranes coupling to B6, the dual of B2, the classical gauge variation
of the effective action is compensated by the quantum anomaly of the chiral worldvolume
degrees of freedom. For this inflow mechanism to work, the anomaly polynomial of a single
fivebrane has to be I8 = X8 (up to terms that vanish on a twisted String manifold). To see
this, notice that the bulk action receives additional worldvolume contributions of the form

S = Sbulk + SGS + Swv + µ

∫

W
B6 , (3.88)

where W denotes the worldvolume of the fivebrane(s) and B6 the dual of B2. The bulk action
Sbulk, which describes the ten-dimensional effective (super)gravity theory, is accompanied by
the Green-Schwarz term SGS of eq. (2.17) to cancel bulk anomalies. The brane is instead
described by the worldvolume DBI action Swv accompanied by the magnetic coupling to
B6, which is the relevant coupling in the following argument. The equation of motion for
B6 and the corresponding dual Bianchi identity are

d ⋆ dB6 = µ δ(W ↪→M10) ,
dH3 = µ δ(W ↪→M10) ,

(3.89)

where H3 = dB2 and the δ is a distribution-valued four-form that describes the embedding of
W in spacetime. Correspondingly, the Bianchi identity for the gauge invariant field strength
H ≡ H̃3 = dB2 − ωCS, which ordinarily reads dH = X4, also receives a new localized
contribution. Because of this Bianchi identity, there is a new classical contribution to the
gauge variations. Using descent, X8 = dX

(0)
7 , δX(0)

7 = dX
(1)
6 , one finds

δnewSGS = −
∫

M10
dB2 ∧ δX(0)

7

= −
∫

M10
dH3X

(1)
6

= −µ
∫

W
X

(1)
6 ,

(3.90)

– 38 –



J
H
E
P
0
2
(
2
0
2
4
)
0
9
2

which cancels by inflow provided that the worldvolume theory of the D5-brane has an anomaly
polynomial I8 = µX8 [137, 138]. With our choice of units, the elementary charge µ = n5 ∈ Z
counts the number of fivebranes.

As described in section 2, the anomaly polynomial is a sum of indices, given by the
APS index theorem for each one of the anomalous degrees of freedom propagating on the
fivebrane. As such, we know that I8 is an integer and we can conclude from the previous
discussion that X8 must also be an integer. This anomaly inflow argument thus allows one
to show that the anomaly (3.87) always vanishes.

For the orientifold models, this mechanism can be implemented explicitly, since these
theories have D5-branes whose worldvolume degrees of freedom are known. We describe
this in detail in section 3.4.1.

On the heterotic side, although the SO(16)×SO(16) theory is known to have NS5 branes,
their worldvolume degrees of freedom are not known and so we have to resort to other
arguments to prove that the anomaly (3.87) vanishes. The proof can be found at the end of
section 3.4.2. There is, however, a more physical way of understanding why anomalies cancel
in the heterotic case: one can show that the anomaly polynomial of SO(16)× SO(16) can
be directly related to that the supersymmetric heterotic theories. Therefore, one use this
connection to show that anomalies cancel for SO(16)× SO(16) by showing that they cancel
in the supersymmetric cases. This is done explicitly in section 3.4.2.

Finally, since we have proven that anomalies vanish in the heterotic case, we can reverse
the anomaly inflow argument above to speculate about the worldvolume degrees of freedom
of the NS5 brane. Indeed, we identify what kind of degrees of freedom give rise to the correct
anomaly polynomial so as to have X8 = I8. We do so away from strong coupling effects, in
the puffed-up instanton limit of the NS5 brane. This is detailed in section 3.4.3.

3.4.1 Sp(16) and U(32)

Let us begin with the orientifold models. This cancellation of anomalies by inflow was
first constructed for the case of Spin(32)/Z2 in [137, 138]. The chiral fermions on the
worldvolume of the D5-brane consist of one vector multiplet of Spin(32)/Z2 and two gauge
singlets, such that,

(X8)Spin(32)/Z2 − ISpin(32)/Z2 = − 1
24p1(X4)Spin(32)/Z2 , (3.91)

where (X8)Spin(32)/Z2 and (X4)Spin(32)/Z2 can be read off from (2.13). This shows how one
recovers I8 = X8 up to a term that vanishes on a twisted string manifold.

One may wonder where the extra term in (3.91) comes from, even if we know it to
vanish on a twisted string manifold. This can be understood as follows; from the perspective
of the ten-dimensional supergravity action, a D5-brane amounts to introducing a delta
function localized on the brane. The D5-brane gives a localized contribution to the 10d
action of the form B2 ∧ Y4 ∧ δ4 where Y4 is some 4-form which in this case is reduces to
Y4 = − 1

24p1, expanding the A-roof genus in the Chern-Simons effective worldvolume action.
Indeed, using the Bianchi identity for the H3 flux, we see that this term contributes to
the anomaly polynomial as:

∫

Z12
X4 ∧ Y4 ∧ δ4 =

∫

X8
X4 ∧ Y4 . (3.92)
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Therefore, the appearance of the extra term in (3.91) can be traced down to not properly
taking into account the delta-function source that corresponds to the localized D5-brane.

The same mechanism happens in the two non-supersymmetric orientifold models, as was
found by [139] along the lines of [138, 140]. The worldvolume degrees of freedom on D5-branes
can be extracted from one-loop open-string amplitudes [141], and the chiral fermions arrange
in the virtual representation

(N(N + 1)
2 ,1

)
−
(N(N − 1)

2 ,1
)
− (N,32) (3.93)

of SO(N)× Sp(16) (for the Sugimoto model20) or U(N)×U(32) (for the Sagnotti model). In
order to compare the anomaly polynomial I8 (without worldvolume gauge field) with the
bulk X8, one needs to decompose characteristic classes of the bulk tangent bundle in terms
of the worldvolume tangent bundle TW and normal bundle N . In detail,

p1(TM10) = p1(TW ) + p1(N) ,
p2(TM10) = p2(TW ) + p1(TW ) p1(N) + p2(N) ,

p1(N) = c1(N)2 − 2 c2(N) ,
p2(N) = c2(N)2 = χ(N)2 .

(3.94)

When the normal bundle of the worldvolume is trivial, one obtains

I8 −X8 ∝ p1(TM10)X4 , (3.95)

and therefore the inflow mechanism implies that X8 integrates to an integer on any spin
8-manifold with X4 = 0. When the normal bundle is non-trivial, there are additional
contributions to the above expression, proportional to the Euler class of N . However, the
full brane action also contains another term [137, 138] proportional to B2 rather than B6,
which induces another classical variation to be canceled by inflow. As a result, the anomaly
polynomial of the fivebrane worldvolume theory is not quite the above I8, but has an additional
contribution that cancels the normal bundle terms [138]. In more detail, adding a coupling of
the type

∫
W B2Y4 to the fivebrane worldvolume action contributed a new classical variation

to the effective action, which arises by descent from ∆I8 = −(X4 + n5 χ(N))Y4. Therefore,
the full anomaly polynomial of the fivebrane worldvolume ought to be I8 = n5X8 −∆I8,
again up to terms that vanish on twisted String backgrounds. This additional coupling
can be shown to cancel the normal bundle terms in the anomaly [138] (see also [142] for
a discussion in the context of M-theory).

3.4.2 SO(16) × SO(16)

For the heterotic model, no such result is available, since the worldvolume degrees of freedom
of NS5-branes are not understood without supersymmetry or dualities at one’s disposal.
However, one can nonetheless express X8 as an index of six-dimensional chiral fields; since
index are manifestly integers, this will be enough to establish that anomalies cancel. In order

20In this case, a single brane corresponds to N = 2.
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to do so, let us observe that the formal difference of representations of the chiral fermions of
the non-supersymmetric heterotic model can be rewritten as21

(128,1) + (1,128)− (16,16)
= (128,1) + (1,128) + (120,1) + (1,120)
− (120,1)− (1,120)− (16,16) ,

(3.96)

The matter fields in the first line after the equal correspond precisely to the decomposition of
the adjoint of e8 ⊕ e8 into representations of the so16 ⊕ so16 subalgebra; they are the field
content that would arise after giving a vev to an adjoint e8 ⊕ e8 field. Similarly, the fields
in the second line are (with reversed chirality) those fields that would arise after adjoint
Higgsing from the so(32) algebra to its so16 ⊕ so16 subalgebra. What we are seeing here is
that, at a formal level (as far as the chiral spectrum is concerned), the SO(16)2 is equivalent
to one copy of the E8 × E8 string stacked on top of a copy of the Spin(32)/Z2 string, with
opposite chirality, and Higgsed to a common subgroup with algebra so16 ⊕ so16. Therefore,
we can write, at the level of anomaly polynomials, the equality

PE8×E8
12 |SO(16)2 − P

Spin(32)/Z2
12 |SO(16)2 = P

SO(16)2
12 , (3.97)

where we have merely restricted to SO(16)2 bundles inside of the two groups above. Since
each of the supersymmetric string theories are anomaly-free by themselves, the formal linear
combination will also be. This argument, which can be carried out at the level of eta invariants
etc. and not just anomaly polynomials, is yet another proof of the fact that the SO(16)2
theory is anomaly free,22 without relying explicitly on bordism calculations. Furthermore,
in particular, this holds for the Green-Schwarz terms, which are

(X8)Spin(32)/Z2 |SO(16)2 − (X8)E8×E8 |SO(16)2

= 1
24
(
(c(1)16,2)2 + (c(2)16,2)2 + c

(1)
16,2 c

(2)
16,2 − 4 c(1)16,4 − 4 c(2)16,4

)
= (X8)SO(16)2 .

(3.98)

It is unclear whether this connection between the non-supersymmetric SO(16)×SO(16) theory
and the supersymmetric theories persists beyond a formal equality at the level of (super)gravity,
or whether on the contrary it has a deeper meaning. Some previous work [143, 144] (see
also [145]) identified connections between supersymmetric and non-supersymmetric strings
via interpolating models, which are nine-dimensional compactifications recovering either
supersymmetric or non-supersymmetric strings in different decompactification limits. In
particular, an interpolating model was constructed between the SO(16) × SO(16) theory
and the supersymmetric Spin(32)/Z2 theory, matching the worldsheet CFT descriptions
and solitons in between the two.23

The cancellation of anomalies by fivebrane inflow for the SO(16)× SO(16) theory thus
follows from that of the two supersymmetric heterotic theories. The anomaly inflow in the

21To our knowledge, this was first explicitly stated in the literature in [71], though we learned from Luis
Álvarez-Gaumé that the authors of [2] were also aware of this fact.

22Even with the right global quotient.
23Since the non-supersymmetric theories have NS-NS tadpoles and would-be moduli run in the absence of

(large) stabilizing fluxes [146, 147] and/or spacetime warping [148, 149], there may be additional subtleties in
understanding the dynamics of this duality.
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case of Spin(32)/Z2 was discussed above (3.91). The case of E8×E8 is slightly more involved
and we will discuss it now. The anomaly inflow of the NS5-brane was famously discussed
in [150] where the limit in which an instanton in E8 ×E8 becomes point-like was matched to
the world volume theory of the NS5 brane at strong coupling. For our purposes, we can ignore
strong coupling dynamics and focus on matching a 6-dimensional anomaly theory of chiral
fermions to (X8)E8×E8 which can be read off from (2.14). This guarantees that (X8)E8×E8 is
an integer and that local anomalies cancel in 10d. We now detail how this can be done.

One can show that (X8)E8×E8 can be decomposed as follows:

(X8)E8×E8 =
(c(1)16,2 − c

(2)
16,2)2

32 + 1
24X

2
4 + ISD + 2 IDirac (3.99)

where ISD+2 IDirac is the index of a self-dual form field and 2 fermion singlets in 8 dimensions.
The index of a self-dual form field in 8 dimensions can be shown to be an integer over 8 [42].
Indeed, it can be written in terms of the signature of the 8-manifold as follows [103]:

ISD = −σ8 . (3.100)

On the other hand, the index of chiral fermions is always an integer. In order to simplify
the first term in (3.99), we can rewrite the Chern classes in an embedded SU(2) subgroup
of each E8, which are known to be integer-valued. Therefore, on a twisted string manifold,
X8 reduces to:

X8 =
(c(1)2,2 − c

(2)
2,2)2

8 − σ

8 + n with n ∈ Z (3.101)

where 1
2c

(i)
16,2 −→ c

(i)
2,2 are the 2nd Chern classes in the fundamental of the SU(2) subgroup

of the i-th E8. The Bianchi identity (X4)E8×E8 = 0 gives us

c
(2)
2,2 = −p12 − c

(1)
2,2 . (3.102)

Plugging this into (3.101), we see that the condition for anomalies to vanish comes down
to showing that the following quantity is an integer:

(c(1)2,2)2

2 +
c
(1)
2,2 p1

4 + p21
32 − σ

8 . (3.103)

As it happens, it was shown in [103] that the last two terms give (28 times) an integer.
Indeed, one can show that:

28 IDirac =
p21
32 − σ

8 . (3.104)

Now, to show that the first two terms of (3.103) are an integer, one can note that on a twisted
string manifold, p1

2 is a characteristic vector of H4(X;R). This, in particular, means that:
p1
2 c

(i)
2,2 mod 2 = (c(i)2,2)2 mod 2 . (3.105)

Therefore we have shown that on a twisted string manifold, X8 is always an integer; and
so there can never be an anomaly.
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Given that the X8 of SO(16)× SO(16) is a linear combination of those of E8 × E8 and
Spin(32)/Z2, we can infer that (X8)SO(16)2 is an integer and so that all anomalies vanish for
this non-supersymmetric theory. Nevertheless, for completeness, let us detail explicitly how
(X8)SO(16)2 can be proven to be an integer. One can write (X8)SO(16)2 as follows:

(X8)SO(16)2 = − 1
32(c

(1)
16,2 − c

(2)
16,2)2 − ISD − 4 IDirac (3.106)

− 1
48(X4)SO(16)2(c

(1)
16,2 + c

(2)
16,2 + 3p1) + I16(1)

Dirac + I16(2)
Dirac

where I16(i)
Dirac is the contribution of a fermion that transforms in the 16 of SO(16)i, which

is known to be integer-valued. Therefore, on a twisted string manifold, the cancellation of
anomalies comes down to showing that the following quantity is an integer:

− 1
32(c

(1)
16,2 − c

(2)
16,2)2 − ISD = − 1

32(c
(1)
16,2 − c

(2)
16,2)2 +

σ

8 (3.107)

Given that one can put the 2nd Chern classes in the SU(2) subgroup of SO(16) as c(i)16,2 → 2c(i)2,2;
the proof goes exactly as in the E8 × E8 case.

One can sometimes read-off the chiral field content of a theory from the anomaly
polynomial. For instance, for the E8 × E8 case, the anomaly polynomial (3.99) suggests
that the chiral field content of the NS5 brane is a self-dual form field and 2 fermion singlets.
There are no chiral fields charged under the gauge group, since all the gauge-dependent parts
of (3.99) are in the factorized piece. As it happens, this exactly the chiral field content of
a 6d (1, 0) tensor multiplet, which is precisely the worldvolume field content of the NS5
brane in E8 × E8 string theory. This answer is essentially determined by anomalies together
with supersymmetry. In the non-supersymmetric case of the SO(16)2 string, reading off
the chiral field content from (3.106) in the same way suggests that the chiral field content
of the SO(16)2 NS5 brane is:

• Four fermion singlets,

• A fermion transforming in the (16,1)⊕ (1,16) of SO(16),

• A self-dual 2-form field.

There are some subtleties in assessing whether or not these are truly the chiral degrees of
freedom propagating on this non-supersymmetric brane. First of all, there is no supersymmetry
to constrain the worldvolume theory of the NS5 brane which can therefore carry any kind of
chiral degrees of freedom. As we have seen from (3.104) and (3.100), indices can sometimes
be exchanged for one another and yet give the same integer. This means that the X8 does not
completely fix the worldvolume content of the NS5 brane, and that any chiral field content
with the same anomaly as the one proposed above remains a possibility. Another reason why
we cannot be sure that (3.106) correctly describes the degrees of freedom propagating on the
NS5 brane is that we cannot be sure that an NS5 brane (understood as a small instanton
where the full spacetime gauge group symmetry gets restored) exists to begin with. Unlike in
the supersymmetric case, in general we expect that the size modulus of the instanton, being
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Figure 7. A sketch of a fivebrane puffing up into an instanton which can be described within the
effective field theory.

non-supersymmetric, receives a potential due to quantum effects that may lead to the small
instanton limit being obstructed. The study of the strong coupling effects near the small
instanton limit is beyond the validity of effective field theory, and thus beyond the scope of this
paper (although it may be amenable to a version of the constructions in [50]), but we point
out that, if the limit does exist and the small instanton transition does survive, the transition
point would be a natural place to look for a non-supersymmetric interacting CFT, a cousin
of the E8 SCFT. It would be interesting to explore this further. On the other hand, studying
the anomaly inflow on the worldvolume of the puffed-up NS5 brane instanton is accessible
within the effective field theory (see figure 7). We do this explicitly in the next section.

3.4.3 Anomaly inflow on puffed-up fivebrane instantons

The above result shows that there are no Dai-Freed anomalies on factorized backgrounds
of the form S3

H × M8, since X8 integrates to an integer. Anomaly inflow on fivebranes
dictates that X8 be the anomaly polynomial associated to the worldvolume theory on a single
fivebrane, possibly up to terms that vanish when the Bianchi identity is satisfied. As explained
above, without direct access to the relevant degrees of freedom on the fivebrane worldvolume,
studying the anomaly inflow on the point-like NS5 brane is impossible. Luckily, one can still
examine the anomaly inflow on the worldvolume of puffed-up fivebrane instantons, which
can be described in the low-energy approximation. Puffing-up the fivebrane corresponds
to delocalizing it along its transverse dimensions, making it look like a four dimensional
gauge instanton.

Introducing an instanton Higgses one of the SO(16) factors, say the first SO(16)(1),
according to SO(16) → SU(2)(a) × SU(2)(b) × SO(12), so that the vector and spinor rep-
resentations branch into

16 = (1(a),1(b),12) + (2(a),2(b),1) , (3.108a)
128 = (2(a),1(b),32) + (1(a),2(b), 3̄2) . (3.108b)
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If the instanton bundle only involves SU(2)(a), there an SU(2)(b) × SO(12)× SO(16)(2)
unbroken symmetry and the background has fermion zero modes (fzm) arising from the
representations (8s,16(1),16(2)) and (8c,128(1),1(2)) of the spacetime isometries and the
original gauge group. As a result, one has




1 fzm in the rep (8s,2(b),1,16(2)) ,
1 fzm in the rep (8c,1(b),32,1(2)) .

(3.109)

The two types of fermion zero modes have different chirality, and thus the corresponding
worldvolume anomaly polynomial reads

P8 =
1
2[Â(R)(ch(F )(2(b),1,16(2)) − ch(F )(1(b),32,1(2)))]8 , (3.110)

which evaluates to

P8 =
1
24
[− 2p1c12,2 + p1(c(2)16,2 + 8c(b)2,2)− c212,2 − 4c12,4

+ 2(c(2)16,2 + 2c(b)2,2)(c
(2)
16,2 + 4c(b)2,2)− 4c(2)16,4

]
.

(3.111)

The next step is to evaluate X8 on this background. This amounts to decomposing charac-
teristic classes according to the branching rules, and one finds

c
(1)
16,2 → c12,2 + 2c(a)2,2 + 2c(b)2,2 ,

c
(1)
16,4 → 2c12,2c

(a)
2,2 + 2c12,2c

(b)
2,2 + c12,4 − 2c(a)2,2c

(b)
2,2 + (c(a)2,2)2 + (c(b)2,2)2 .

(3.112)

Finally, (c(a)2,2)2 should be replaced by zero, since it is proportional to the square of the
worldvolume current δ(W ) of the fivebrane. All in all, when the dust settles one arrives at

X8 − P8 =
1
24
(
2c12,2 − c

(2)
16,2 − 8c(b)2,2

) (
c12,2 + 2c(b)2,2 + c

(2)
16,2 + p1

)
, (3.113)

where the second factor corresponds to X4 for the unbroken piece of the gauge group. The
inflow therefore works when X8 and P8 are equal on manifolds where the Bianchi identity
holds. A similar argument works for more general choices of instanton bundles.

For the orientifold models, one expects the small limit of the “fat” fivebrane instantons
to yield the worldvolume degrees of freedom of D5-branes. This is a nice crosscheck that we
detail now. For the Sugimoto model (the calculation is identical in the Sagnotti model), the
anomaly polynomial P8 associated to the fermion zero modes of the instanton is

P8 = [Â(R)ch(F )30]8 =
1

192
(
8p1c30,2 − 4 (8c30,4 + p2) + 16c230,2 + 7p21

)
, (3.114)

since under the branching Sp(16) → SU(2)×USp(30) the adjoint representation, containing
the gauginos, decomposes according to

495 = (2,30) + (1,434) + (1,1)

where the only charged contribution comes from the first term on the right-hand side. In
the small limit, the SU(2) Chern classes vanish and the remaining ones are enhanced to
Sp(16) classes, ending up with

P small
8 = 1

192
(
8p1c32,2 − 4 (8c32,4 + p2) + 16c232,2 + 7p21

)
= X8 +

1
24 X4 p1. (3.115)

Thus reproducing the anomaly polynomial of a D5-brane worldvolume up to terms that
vanish on the allowed backgrounds.
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4 Anomalies and bordism for the swap Z2 action

4.1 Overview and the bordism computation

The E8 × E8 heterotic string theory has a Z2 symmetry given by swapping the two copies
of E8, so it is possible to expand the gauge group of the theory to (E8 × E8) ⋊ Z2. To
our knowledge, this fact first appears in [53, section I] (see also [151, section 2.1.1]). The
question of anomaly cancellation for this string theory is completely different in the absence
versus in the presence of this extra Z2: without it, the anomaly is known to vanish, as
Witten [136, section 4] showed it is characterized by a bordism invariant ΩSpin

11 (BE8) → C×,
and Stong [152] showed ΩSpin

11 (BE8) ∼= 0. But with the Z2 swapping symmetry turned on, the
relevant bordism group has order 64 [46, Theorem 2.62] courtesy of a harder computation;
even though we cannot determine this group exactly, we will show that the anomaly vanishes,
in accordance with the results in [107] obtained from a worldsheet perspective.

In this section, we discuss a closely analogous story for the Spin(16) × Spin(16) non-
supersymmetric heterotic string. The gauge group Spin(16)×Z2 Spin(16) (where the diagonal
Z2 we quotient by corresponds to either of the subgroups in each Spin(16) whose quotient is
not SO(16)) admits a Z2 automorphism switching the two Spin(16) factors, enlarging the
gauge group of this theory to (Spin(16) ×Z2 Spin(16)) ⋊ Z2; see [53, section III].

In this paper, we chose to work with Spin(16)× Spin(16), which simplifies the bordism
computations at the expense of applying to only some backgrounds. The Z2 symmetry
enlarges the gauge group to G16,16 := (Spin(16) × Spin(16)) ⋊ Z2. The Green-Schwarz
mechanism is analogous: if x ∈ H∗(BSpin(16);A) for some coefficient group A, let xL and
xR denote the copies of x in H∗(B(Spin(16) × Spin(16));A) coming from the first, resp.
second copies of Spin(16) via the Künneth formula. Then the class 1

2p
L
1 + 1

2p
R
1 , which was

the characteristic class of the Green-Schwarz mechanism in the absence of the Z2 symmetry,
descends through the Serre spectral sequence for the fibration

B(Spin(16)× Spin(16)) BG16,16

BZ2

(4.1)

to define a class in H∗(BG16,16;Z), and the Green-Schwarz mechanism asks, on a spin
manifold M with a principal G16,16-bundle P → M , for a trivialization of

1
2p1(M)− (12p

L
1 + 1

2p
R
1 )(P ). (4.2)

Let G16,16 denote the Lie 2-group corresponding to this data, i.e. the string cover of Spin×
G16,16 corresponding to the class (4.2). Quotienting by G16,16 defines a map to Spin and
therefore a tangential structure in the usual way; a G16,16-structure on a vector bundle
E → M is a spin structure on E, a double cover π : M ′ → M , a pair of rank-16 spin
vector bundles V L and V R on M ′ identified under the deck transformation of M ′, and a
trivialization of 1

2p1(E)− (12p1(V L)− 1
2p1(V R)) (the class 1

2p1(V L) + 1
2p1(V R) descends from

M ′ to M). If the double cover M ′ → M is trivial, this is equivalent to a Spin-Spin(16)2
structure as defined in section 3.3.3.
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Theorem 4.3.

ΩG16,16
0

∼= Z ΩG16,16
6

∼= Z2

ΩG16,16
1

∼= (Z2)⊕2 ΩG16,16
7

∼= Z16

ΩG16,16
2

∼= (Z2)⊕2 ΩG16,16
8

∼= Z⊕3 ⊕ (Z2)⊕i

ΩG16,16
3

∼= Z8 ΩG16,16
9

∼= (Z2)⊕j

ΩG16,16
4

∼= Z⊕ Z2 ΩG16,16
10

∼= (Z2)⊕k

ΩG16,16
5

∼= 0 ΩG16,16
11

∼= A,

where either i = 1, j = 4, and k = 4, or i = 2, j = 6, and k = 5, and A is an abelian group
of order 64 isomorphic to one of Z8 ⊕ Z8, Z16 ⊕ Z4, Z32 ⊕ Z2, or Z64.

The fact that ΩG16,16
11 ̸= 0 implies that the Spin(16) × Spin(16) heterotic theory with

its Z2 swapping symmetry could have an anomaly; we will nevertheless be able to cancel
it later in this section.

Proof. The proof is nearly identical to the analogous calculation for the E8 × E8 heterotic
string, which is done in [46, section 2.2, section 2.3]; therefore we will be succinct and direct
the reader there for the details.

Let V → BSpin(16)× BSpin(16) be the direct sum of the tautological vector bundles
on the two factors. The Z2 swapping action on BSpin(16) × BSpin(16) lifts to make V
into a Z2-equivariant vector bundle, so V descends to a vector bundle we will also call V
over BG16,16. Since the action of Z2 is compatible with the spin structures on the two
tautological bundles, V → BG16,16 is spin, so w1(V ) = 0 and w2(V ) = 0; and essentially by
definition, 1

2p1(V ) = 1
2p

L
1 + 1

2p
R
1 . Therefore just as for the other theories we studied, there is

an isomorphism
ΩG16,16
∗

∼=→ ΩString
∗ ((BG16,16)V −32). (4.4)

This is the biggest difference between the computations for the Spin(16) × Spin(16) and
E8 × E8 theories: see [46, Lemma 2.2]. Much of the theory developed in [46, section 2]
and in [114] and applied to the E8 × E8 theory in loc. cit. can therefore be avoided for the
Spin(16)× Spin(16) case; nevertheless, the calculation is pretty similar.

First we must establish the absence of p-torsion for primes p > 3. This is analogous to
the other twisted string bordism computations in this paper, and we do not go into detail.

At p = 3, we follow [114, section 3.2]. First we need H∗(BG16,16;Z3); the Serre spectral
sequence for Z3 cohomology and the fibration (4.1) collapses to an isomorphism

H∗(BG16,16;Z3)
∼=−→ H∗(B(Spin(16)× Spin(16));Z3)Z2 . (4.5)

In the degrees relevant to us, H∗(BSpin(16);Z3) is generated by the Pontrjagin classes p1
and p2 with no relations in degrees 11 and below, so we obtain the following additive basis
for H∗(BG16,16;Z3) in degrees 11 and below: 1, pL

1 + pR
1 , (pL

1 )2 + (pR
1 )2, pL

2 = pR
2 , and pL

1 p
R
1 .

Using this, we determine the Atmf -module structure on H∗((BG16,6)V −32;Z3) using [114,
Corollary 2.37]: if U denotes the Thom class, β(U) = 0 and P1(U) = −U(pL

1 + pR
1 ) (as
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Figure 8. Left: the Atmf -module structure on H∗((BG16,16)V −32;Z3) in low degrees; the pictured
submodule contains all elements in degrees 11 and below. Right: the E2-page of the Adams spectral
sequence computing tmf ∗((BG16,16)V −32)∧3 .

1
2x = −x in a Z3-vector space). Using this and the Cartan formula, we find an Atmf -module
isomorphism

H∗((BG16,16)V −32;Z3) ∼= N3 ⊕ Σ8N3 ⊕ Σ8N3 ⊕ P, (4.6)

where N3 is as in definition 3.54 and P is concentrated in degrees 12 and above, and will
be irrelevant for us. We draw (4.6) in figure 8, left. Using the calculation of ExtAtmf (N3)
from figure 2, we can draw the E2-page of the Adams spectral sequence in figure 8, right; it
collapses to show there is no 3-torsion in degrees 11 and below.

Finally p = 2. First, we need H∗(BG16,16;Z2); Evens’ generalization [153] of a theorem
of Nakaoka [154, Theorem 3.3] gives us the following additive basis for these cohomology
groups in degrees 13 and below:

• classes of the form cL + cR, where c ranges over a basis of H∗(BSpin(16);Z2) in degrees
13 and below;

• the classes wL
4w

R
4 , wL

6w
R
6 , wL

4w
R
k +wL

kw
R
4 for k = 6, 7, 8, and (wL

4 )2wR
4 +wL

4 (w2
4)R; and

• finally, we have classes of the form xm, wL
4w

R
4 x

m, and wL
6w

R
6 x

m, where x is the
generator of H1(BZ2;Z2), pulled back by the quotient G16,16 → Z2 by the normal
Spin(16)× Spin(16) subgroup.

Quillen’s detection theorem [155, Proposition 3.1] computes the A(2)-action on these
classes. Since V has vanishing w1 and w2, but w4(V ) = wL

4 + wR
4 , Sq1(U) = 0, Sq2(U) =

0, and Sq4(U) = U(wL
4 + wR

4 ). Using this, we can obtain A(2)-module structure on
H∗((BG16,16)V −32;Z2) by direct computation with the Cartan formula similarly to [46,
Proposition 2.41].

Proposition 4.7. Let M be the quotient of H∗((BG16,16)V −32;Z2) by all elements in degrees
14 and above. Then M is the direct sum of the following submodules.

1. M1, the summand containing U .

2. M2 := H̃∗(RP∞;Z2) (modulo elements in degrees 14 and above).
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Figure 9. The A(2)-module structure on H∗(B((Spin(16)× Spin(16))⋊Z2)V −32;Z2) in low degrees.
The figure includes all classes in degrees 13 and below. Here α := (wL

4 )2wR
4 + wL

4 (wR
4 )2).

3. M3, the summand containing U((wL
4 )2 + (wR

4 )2).

4. M4, the summand containing UwL
4w

R
4 .

5. M5, the summand containing UwL
4w

R
4 x.

6. M6, the summand containing U(wL
4w

L
6 + wR

4 w
R
6 ).

7. M7, the summand containing U((wL
4 )2wR

4 + wL
4 (wR

4 )2).

8. M8, the summand containing U(wL
4w

L
8 + wR

4 w
R
8 ).

9. M9, the summand containing U(wL
4w

R
8 + wL

8w
R
4 ).

We draw this decomposition in figure 9.
The next step is to split off some of these summands in a manner similar to [46, Corollary

2.36]. Morally this is exactly the same simplification we used in theorem 3.78 and discussed
further in remark 3.82, but the details are a little more complicated.

Definition 4.8. Let ξ : BG16,16′ → BO be the tangential structure defined analogously to
BG16,16, but with Spin in place of Spin(16).

Lemma 4.9. The map Spin(16) ↪→ Spin induces a map ΩG16,16
k → ΩG′

16,16
k which is an

isomorphism for k ≤ 14.

This means that, for our string-theoretic applications, it does not matter whether we use
BG16,16 or BG′

16,16.
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Proof. We want to show that the map MTG16,16 → MTG′
16,16 of bordism spectra is an

isomorphism on πk for k ≤ 14. By the Whitehead theorem we may equivalently use Hk(–;Z),
and by the Thom isomorphism, it suffices to show the map BG16,16 → BG′

16,16 is an
isomorphism on Z-cohomology in degrees 14 and below. The cohomology rings of these
spaces can be computed in two steps: first the Serre spectral sequence for the fibration
B(Spin(16)× Spin(16)) → BG16,16 → BZ2, then the Serre spectral sequence for the fibration
B2U(1) → BG16,16 → BG16,16; and analogously for BG′

16,16 with Spin in place of Spin(16).
For each of these two steps, the map Spin(16) → Spin induces a map of Serre spectral
sequences. and because H∗(BSpin;Z) → H∗(BSpin(16);Z) is an isomorphism in degrees 15
and below, we learn that at each of the two steps, the two spectral sequences are isomorphic
in degrees 14 and below, which implies the map BG16,16 → BG′

16,16 induces an isomorphism
on cohomology in degrees 14 and below.

Proposition 4.10. There is a spectrum Q and a splitting

MTG′
16,16

≃−→ MTSpin ∨Q, (4.11)

such that the pullback map on cohomology corresponding to the projection MTG′
16,16 → Q is

a map

H∗(Q;Z2) ∼= A⊗A(2) L −→ H∗(MTG′
16,16;Z2) ∼= A⊗A(2) H

∗((BG16,16)V −32;Z2) (4.12)

given by the inclusion of an A(2)-module L ↪→ H∗((BG16,16)V −32;Z2), followed by applying
A⊗A(2) –; the quotient of L by all classes in degrees 14 and above is isomorphic to

M2 ⊕M3 ⊕M4 ⊕M5 ⊕M7 ⊕M8 ⊕M9. (4.13)

Proof. The idea is the same as [46, Corollary 2.36]: show that a spin structure induces a
G′

16,16-structure, such that forgetting back down to BSpin recovers the original spin structure.
Any spin vector bundle E → M has a canonical G′

16,16-structure with a trivial double
cover M ′ :=M ⨿M , V L equal to E on one copy of M inside M ′ and equal to 0 on the other
copy of M , and V R the image of V L under the deck transformation, as 1

2p1(V L) + 1
2p1(V R)

(descended to M) is canonically identified with 1
2p1(E). Composing with the forgetful

map BG′
16,16 → BSpin gives a map BSpin → BSpin homotopy equivalent to the identity

and therefore maps of spectra MTSpin → MTG′
16,16 → MTSpin, yielding the splitting as

promised.
To see the statement on cohomology, one can look at the edge morphism in the Serre

spectral sequence for B2U(1) → BG′
16,16 → BG′

16,16.

As we already know spin bordism groups in the dimensions we need, we focus on computing
π∗(Q)∧2 . Because the cohomology of Q is of the form A⊗A(2) L, the change-of-rings theorem
simplifies the Adams spectral sequence for Q to the form

Es,t
2 = Exts,t

A(2)(L,Z2) =⇒ πt−s(Q)∧2 ; (4.14)

we will then add on the summands coming from ΩSpin
∗ to obtain the groups in the theorem

statement. The first thing we need is ExtA(2) of M2, M3, M4, M5, M7, M8, and M9.
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1. Davis-Mahowald [156, table 3.2] compute Ext(M2).

2. In degrees 14 and below, M3 is isomorphic to Σ8A(2)⊗A(1)Z2 (meaning the quotients of
these modules by their submodules of elements in degrees 15 and above are isomorphic).
Therefore when t− s ≤ 14, there is an isomorphism

Exts,t
A(2)(M3,Z2) ∼= Exts,t

A(2)(A(2)⊗A(1) Z2,Z2), (4.15a)

and the change-of-rings theorem (see, e.g., [110, section 4.5]) implies that in all degrees,

ExtA(2)(A(2)⊗A(1) Z2,Z2) ∼= ExtA(1)(Z2,Z2). (4.15b)

Liulevicius [157, Theorem 3] first calculated the algebra ExtA(1)(Z2,Z2).

3. As an Ext(Z2)-module, Ext(M4) ∼= Z2[h0] with h0 ∈ Ext1,1 [46, (2.43)].

4. Ext(M5) is computed in [46, figure 2].

5. Finally, for M7, M8, and M9, we only need to know their Ext groups in degrees 12
and below. For i = 7, 8, 9, there is a surjective map Mi → Σ12Z2 whose kernel is
concentrated in degrees 14 and above, so (e.g. using the long exact sequence in Ext
associated to a short exact sequence of A(2)-modules [110, section 4.6]) for t− s ≤ 12,
Ext of each of these modules is isomorphic to Ext(Σ12Z2), which was computed by May
(unpublished) and Shimada-Iwai [158, section 8].

These assemble into a description of the E2-page of (4.14) (compare [46, Proposition 2.46]).

Proposition 4.16. The E2-page of the Adams spectral sequence for Q in degrees t− s ≤ 12
is as displayed in figure 10. In this range, the E2-page is generated as an ExtA(2)(Z2)-module
by ten elements:

• p1 ∈ Ext0,1, p3 ∈ Ext0,3, p7 ∈ Ext0,7, and b ∈ Ext2,10, coming from Ext(M2);

• a1 ∈ Ext0,8 and a3 ∈ Ext3,15, coming from Ext(M3).

• a2 ∈ Ext0,8, coming from Ext(M4).

• c ∈ Ext0,9 and d ∈ Ext0,11, coming from Ext(M5).

• e ∈ Ext0,12, coming from Ext(M7).

• f ∈ Ext0,12, coming from Ext(M8).

• g ∈ Ext0,12, coming from Ext(M9).

The next step is to evaluate the differentials. Unlike the other Adams spectral sequences
we considered in this paper, there are several differentials to address, even after using that
differentials commute with the action of h0, h1, and h2:

• d2 on a1, a2, a3, c, d, e, f , and g,

• d3 on a1, a2, and a3, and

• d4, d5, and d6 on e, f , and g.

The argument is nearly the same as in [46, Lemmas 2.47, 2.50, and 2.56].
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Figure 10. The E2-page of the Adams spectral sequence computing tmf ∗((BG16,16)V −32)∧2 . In
lemma 4.17 we show that d2(a2) = h22p1 and that many other differentials vanish. We do not know
the values of d2(c) or d2(h1c), which is why those differentials are denoted with dotted lines.

Lemma 4.17. d2(a2) = h22p1, and all differentials vanish on a1, a3, e, f , and g.

Proof. If ξ′ denotes the tangential structure identical to G16,16 except with K(Z, 4) in place
of BSpin(16), then the class 1

2p1, interpreted as a map BSpin(16) → K(Z, 4), induces a map
of tangential structures from G16,16-structure to ξ′-structure, hence also a map of Thom
spectra, hence a map of Adams spectral sequences. The E2-page for Ωξ′

∗ is computed in [46,
figure 3] in the range t− s ≤ 12, and looks very similar to our E2-page in figure 10; using the
comparison map between these two spectral sequences, we conclude the differentials in the
lemma statement.

The comparison map would also tell us d2(c), except that the fate of this differential in
ξ′-bordism is not known.

Lastly, we address the class d ∈ E0,11
2 . Since d has topological degree 11, its fate affects

the size of ΩG16,16
11 , hence the possible anomaly theories for the Spin(16)× Spin(16) theory.

Definition 4.18. Embedding each Sk ↪→ Rk+1 and using the notation (x⃗, y⃗, z⃗) for a vector
in R5 × R5 × R4, let Z2 act on S4 × S4 × S3 by the involution

(x⃗, y⃗, z⃗) 7−→ (−y⃗,−x⃗,−z⃗). (4.19)

This action is free on S4 × S4 × S3; let Y11 denote the quotient.

Y11 is an (S4 × S4)-bundle over RP3.
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Lemma 4.20. Y11 has a spin structure.

Proof. To prove this, we will stably split the tangent bundle of Y11. This is a standard
technique; for more examples from a similar perspective, see [41, section 5.2, section 5.5.2], [51,
Examples 14.51 and 14.54; Lemma 14.56; Propositions 14.74, 14.83, and 14.101], and [46,
Lemma 2.68].

Recall that, since the normal bundle to Sk ↪→ Rk+1 is trivialized by the unit outward
normal vector field v⃗, there is an isomorphism ϕ : TSk⊕R ∼= Rk+1; since v⃗ is O(k+1)-invariant,
ϕ promotes to an isomorphism of O(k + 1)-equivariant vector bundles, where O(k + 1) acts
trivially on the normal bundle and via the defining representation on Rk+1.

Applying this thrice, we have an isomorphism of vector bundles

T (S4 × S4 × S3)⊕ R3 ∼=−→ R5 ⊕ R5 ⊕ R4. (4.21)

The Z2-action on S4 × S4 × S3 we used to define in Y11 in definition 4.18 extends to a linear
action on R5×R5×R4, upgrading (4.21) to an isomorphism of Z2-equivariant vector bundles.
In a little more detail:

• Z2 acts on T (S4 × S4 × S3) as the derivative of the involution (4.19).

• Z2 acts on R5 ⊕R5 ⊕R4 as the Z2-representation described by the same formula (4.19).

• Z2 acts on the normal R3 by inverting and swapping the first two coordinates, and
inverting the third: (x, y, z) 7→ (−y,−x,−z).24

The isomorphism (4.21) of Z2-equivariant vector bundles descends through the quotient
by Z2 to an isomorphism of vector bundles on Y11; trivial bundles made equivariant by
a Z2-representation descend to vector bundles associated to that representation and the
principal Z2-bundle π : S4 × S4 × S3 → Y11.

In particular, if σπ → Y11 denotes the line bundle associated to π and the sign repre-
sentation σ of Z2 on R and R denotes the trivial representation, then the Z2-representation
(x, y) 7→ (−y,−x) on R2 is isomorphic to σ ⊕ R. Using this, we obtain an isomorphism of
vector bundles

TY11 ⊕ σπ ⊕ R2 ∼=−→ σ⊕5
π ⊕ R5 ⊕ σ⊕4

π . (4.22a)

Therefore we have an isomorphism of virtual vector bundles

TY11
∼=−→

virt.
σ⊕8

π + R3. (4.22b)

For any vector bundle V , V ⊕4 is spin, as can be verified with the Whitney sum formula, and
the existence of a spin structure is an invariant of the virtual equivalence class of a vector
bundle, so we can conclude.

Proposition 4.23. Y11 admits a G16,16-structure such that the bordism invariant
∫

Y11
wL
4w

R
4 x

3 = 1. (4.24)
24In particular, unlike most of the standard examples of the stable splitting technique, the normal bundle is

not equivariantly trivial. This is because the image of the Z2-representation in O(14) is not contained in the
subgroup O(5) × O(5) × O(4).
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Proof. The following data describes a G16,16-structure on Y11: identify S4 = HP1 and
consider the tautological quaternionic line bundle L → HP1 on the first S4 factor, and
L∗ := HomH(L,H) on the second S4 factor. These have associated Sp(1) = Spin(3) bundles;
inflate via Spin(3) ↪→ Spin(16) to obtain a (Spin(16) × Spin(16))-bundle on S4 × S4 × S3.
The two Spin(16)-bundles are switched when one applies the involution (4.19), so on the
quotient Y11, we obtain a principal G16,16-bundle P → Y11.

To verify the claim in the first sentence of our proof, we need to check that a spin
structure on Y11 and the principal G16,16-bundle P → Y11 satisfy the Green-Schwarz condition
1
2p1(TY11)+

1
2p1(V L)+ 1

2p1(V R) = 0. In fact, the two parts of this expression vanish separately.

• In (4.22b), we learned that TY11 is virtually equivalent to σ⊕8
π ⊕ R3. This bundle

turns out to admit a string structure, meaning 1
2p1(TY11) = 0. It suffices to prove

that σ⊕8 → BZ2 admits a string structure, where σ is the tautological line bundle.
To see this, recall that σ⊕4 (like the sum of 4 copies of any vector bundle) is spin, so
σ⊕8 ∼= σ⊕4 ⊕ σ⊕4 factors σ⊕8 as the direct sum of two spin vector bundles. Then use
the Whitney sum formula for 1

2p1 of a direct sum of spin vector bundles [46, Lemma
1.6] to conclude that in H4(BZ2;Z),

1
2p1(σ

⊕8) = 2 · 12p1(σ
⊕4). (4.25)

Maschke’s theorem implies that for k ≥ 1, multiplication by 2 kills all elements in
Hk(BZ2;Z), so 1

2p1(σ⊕8) = 0.

• The bundles L and L∗ over S4 have inverse values of p1, hence also of 1
2p1 (since

H4(S4;Z) is torsion-free, the latter follows from the former). Therefore when we
descend from S4 × S4 × S3 to Y11, the class 1

2p1(V L) + 1
2p1(V R) is 0.

Finally, we need to verify
∫

Y11
wL
4w

R
4 x

3 = 1. Since H11(Y11;Z2) ∼= Z2, it suffices to show that
the pullback of wL

4w
R
4 x

3 ∈ H11(BG16,16;Z2) along the classifying map fP : Y → BG16,16 for
P → Y11 is nonzero. To do this, first factor fP into the following diagram of three fibrations:

S4 × S4 S4 × S4 BSpin(16)×BSpin(16)

Y11 X BG16,16

RP3 BZ2 BZ2.

j

⌟
fP

(4.26)

Here X is the S4 × S4-bundle over BZ2 defined analogously to Y11 but using S∞ = EZ2
instead of S3. The map j : S4 × S4 → BSpin(16)×BSpin(16) is the map classifying L and
L∗.

The diagram (4.26) induces maps between the Serre spectral sequences of the three
fibrations; using it, one can compute the pullback of wL

4w
R
4 x

3 to Y11 and see that it is nonzero,
as promised.

Corollary 4.27. In the Adams spectral sequence in figure 10, d survives to the E∞-page; in
particular, d2(d) = 0.
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Proof. We reuse the strategy from lemma 3.59: since d is in filtration 0, it corresponds to
some characteristic class c ∈ H11(BG16,16;Z2), and d survives to the E∞-page if and only if
there is some closed 11-dimensional G16,16-manifold M such that

∫
M c = 1. By inspection of

figure 9, c = wL
4w

R
4 x

3, so by proposition 4.23 we can take M = Y11.

The last step in this calculation is to address extensions. The argument is nearly identical
to [46, Lemma 2.59 and Proposition 2.60], though one now has the extra classes hk

0a1 for
k ≥ 0, h1a1, and h21a1 in degrees 8, 9, and 10 respectively which were not present in the
E8 × E8 spectral sequence. Fortunately, this new ambiguity is fully resolved by applying the
“2η = 0 trick” to classes of the form h1x in standard ways, for example as in [159, Corollary
F.16(2)], [160, (5.47)], [51, Lemmas 14.29 and 14.33], and [46, Lemma 2.59], and one learns
that there are no hidden extensions in degrees 10 and below. Unfortunately, just like in the
E8 × E8 case [46, Theorem 2.62], we have not ruled out the possibility of a hidden extension
in ΩG16,16

11 .

The generators described in [46, section 2.2.1, section 2.2.2] for Ωξhet
∗ pull back to generate

most of the corresponding G16,16 bordism groups: the difference between a G16,16-structure
and a ξhet-structure is that in the latter, Spin(16) is replaced by E8, so to support our claim
that the generators there pull back to generators of G16,16-bordism, we must argue that the
(E8 ×E8)⋊Z2-bundles are induced from G16,16-bundles. As usual we may replace BE8 with
K(Z, 4), so this amounts to checking that for the generating manifolds in [46, section 2.2.1,
section 2.2.2], the degree-4 classes entering the Green-Schwarz mechanism can be written
as 1

2p1(V ) for some rank-16 spin vector bundle V . By adding trivial summands, we may
use lower-rank spin vector bundles.

By inspection of the list of generators in [46, section 2.2.1, section 2.2.2], it suffices to
show this for HP2: the rest of the list of generators there either have degree-4 classes equal
to 0, have their ξhet-structure induced from a spin structure (so that we may use the tangent
bundle to define the G16,16-structure as in the proof of proposition 4.10), or are products of
manifolds otherwise accounted for. For HP2, the degree-4 classes come from the tautological
quaternionic line bundle, hence define a G16,16-structure.

Thus the list of generators in [46, section 2.2.1, section 2.2.2] accounts for most of the
generators of the G16,16-bordism groups we have computed. A few manifolds are as yet
unaccounted for.

1. There is an 8-dimensional G16,16-manifold Y8 generating a Z and whose image in the
Adams E∞-page is a1. The Z2 summands lifting h1a1 and h21a1 are also unaccounted
for, and can be generated by Y8 × S1

nb, resp. Y8 × S1
nb × S1

nb.

2. Depending on the fate of d2(c), there may be a Z2 summand in ΩG16,16
9 whose generator

lifts the class c ∈ E9,0
∞ . In [46, section 2.2.1] no generator was provided and we also do

not know what manifold this would be.

3. A generator lifting the class d ∈ E0,11
∞ was left as an open question in [46, sec-

tion 2.2.1(11)]. Thanks to proposition 4.23, we can choose Y11.
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Proposition 4.28. Let V → S8 be the rank-16 spin vector bundle whose classifying map
is either generator of [S8, BSpin(16)] = π8(BSpin(16)) ∼= Z (by Bott periodicity), and let
P → S8 be the G16,16-bundle induced by V L := V , V R = 0, and the trivial Z2-bundle.
Then (S8, P ) admits a G16,16-structure, and for any such structure, its G16,16-bordism class
is linearly independent from the classes of HP2, B, RP7 × S1

nb, and X8 described in [46,
section 2.2.1(8), section 2.2.2], and is not a multiple of any other class.

Thus (S8, P ) is the generator lifting a1 ∈ E0,8
∞ .

Proof. It suffices to find a bordism invariant ψ : ΩG16,16
8 → Zm for some m such that the value

of ψ on (S8, P ) is linearly independent from the values on the other generators, and also not
a multiple of any other element of Zm. For X8 and RP7 × S1

nb, this will be vacuously true,
because the G16,16-bordism classes of these manifolds are torsion, so we focus on the two
HP2s and the Bott manifold described in [46, section 2.2.1(8)].

Letm = 2 and ψ be given by the two Z-valued invariants
∫
p2(M) and

∫
(p2(V L)+p2(V R)).

The latter is a priori an invariant of manifolds with a Spin(16) × Spin(16)-bundle, but it
survives the Serre spectral sequence to define an invariant of G16,16-bundles and therefore of
G16,16-manifolds.

For the G16,16-structure on the Bott manifold and both G16,16-structures on HP2 specified
in [46, section 2.2.1(8)],

∫
p2(M) ̸= 0. However,

∫

S8
p2(S8) = 0 (4.29a)

∫

S8
(p2(V L) + p2(V R)) =

∫

S8
p2(V ) = ±1, (4.29b)

the former because TS8 is stably trivial and the latter somewhat tautologically from the
definition of V . Therefore ψ(S8, P ) is linearly independent from ψ evaluated on the other
bordism classes we have considered. Finally, we know that the bordism class of (S8, P ) is
not a multiple of some other class because (4.29b) is ±1, and if the class of (S1, P ) were
a multiple, the values of all Z-valued bordism invariants on it would be divisible by some
natural number greater than 1.

Thus we have found generators for all classes except for c and h1c, which may or may
not be trivial, depending on the value of an Adams differential.

4.2 Cancelling the anomaly

Now that we have the generators of ΩG16,16
11 in hand, we proceed to calculate the partition

function of the anomaly theory on these generators and show that it is trivial. We are able
to do this without knowing the isomorphism type of ΩG16,16

11 , similarly to Freed-Hopkins’
approach in [41].

Theorem 4.30. Let α denote the anomaly field theory for the Spin(16)2 heterotic string on
G16,16-manifolds. Then α is isomorphic to the trivial theory.

Proof. Recall that α ∼= αf ⊗ αX8 , where αf is the anomaly of the fermionic fields and αX8 is
the anomaly coming from the term − ∫ B2 ∧X8 (2.17) that the Green-Schwarz mechanism
adds to the action, as we discussed in section 2.
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We will calculate α on a generating set for ΩG16,16
11 . Based on [51] and the above discussion,

the two generators are
B × RP3 and Y11 (4.31)

with G16,16-structures described in the previous subsection, corresponding physically to
turning on appropriate gauge bundles. Here B is a Bott manifold, i.e. a closed spin 8-manifold
satisfying Â(B) = 1, and indeed any choice of B that admits a string structure may be used
in this computation. We will use the Bott manifold constructed by Freed-Hopkins in [41,
section 5.3]; those authors show 1

2p1(B) = 0, so B is string, and that p2 = −1440b, where b is
a generator of H8(B;Z) ∼= Z. Any other Bott manifold is cobordant to this one, so we will
not botter studying them all.

The first generator we evaluate α on is B × RP3. As discussed in [46, section 2.2.1], this
generator has G16,16-bundle induced from the principal Z/2-bundle S3 ×B → RP3 ×B and
any inclusion Z2 ↪→ G16,16 complementary to the normal Spin(16)2 subgroup. From a physics
point of view, this means the Spin(16) gauge bundles are trivial: the Z2 symmetry switches
two copies of the trivial bundle. This implies X8 = 0, so αX8 is trivial. For αf , we must
calculate the η-invariants of the spinor bundles associated to the gauge bundles. We will
first dimensionally reduce our theory on B, to obtain a 2d effective theory, and study the
corresponding anomaly, which is the dimensional reduction of αf , on RP3. As the defining
property of a Bott manifold is that the Dirac index is 1, and the gauge bundle is switched off
in our example, the 2d spectrum is identical to the ten-dimensional one, so showing that the
anomaly on RP3 is trivial will imply αf (B × RP3) = 1.

We need to know the gauge bundle on RP3,25 but because the gauge bundle is trivial
on B, we can describe the G16,16-bundle on RP3 as induced from the Z2-bundle S3 → RP3.
Thus we should see how the G16,16-representations describing the fermions branch when we
restrict to Z2.

• The 10d fermions in the (128,1)⊕ (1,128) give a total of 128 2d fermions transforming
as singlets of the swap, and another 128 transforming in the sign representation.

• For the 10d fermions in the (16,16), the swap is implemented via a matrix with sixteen
blocks each having eigenvalues ±1, again giving 128 fermions in each of the trivial and
sign representations of the swap Z2. Since the 10d fermions have opposite chirality to
those in the previous point, the resulting 2d fermions also come in opposite chirality.

With these matter assignments, we obtain a total of 128 Z2 charged fermions of each chirality,
which collectively are anomaly-free (and therefore, gravitational anomalies cancel). Therefore,
there is no anomaly under the swap on any background, such as RP3: the η-invariants all
cancel out. Thus αf (B × RP3) vanishes and the overall anomaly αf ⊗ αX8 vanishes on
B × RP3.

For Y11, which is an (S4 × S4)-bundle over RP3, we perform a twisted compactification
on S4 × S4 and study the anomaly of the resulting 2d theory on RP3. Because Y11 is not

25In general keeping track of tangential structures on dimensional reductions can be complicated (see,
e.g., [161, section 9], but because B has a string structure and the tangential structure of the theory is a
twisted string structure, we do not need to worry about this detail.

– 57 –



J
H
E
P
0
2
(
2
0
2
4
)
0
9
2

a product, we must take a little more care with this procedure, but it is not so difficult to
show that the assignment from a string 3-manifold N with principal Z/2-bundle P → N to
the manifold

κ(N) := (S4 × S4)×Z2 N, (4.32)

where the two copies of S4 are given the same Z2-action and Spin(16)-bundles as we used in
the construction of Y11, produces a G16,16-manifold for all N and is compatible with bordism,
allowing κ to define a functor of bordism categories and therefore a twisted compactification
as promised.

The covering S4 has Spin(16)2 bundles characterized by a second Chern class

c
SO(16),i
2 = (−1)i(b1 + b2), (4.33)

where b1, b2 are the volume forms of both S4 factors. Now, rather than explicitly computing
the dimensional reductions of αf and αX8 on RP3, we take advantage of the fact that α is a
deformation invariant, so we may deform our 2d theory into something where the value of
the anomaly on RP3 is more obviously trivial.26 Specifically, we can take a limit in moduli
space where the instantons become singular and pointlike, turning into a non-supersymmetric
version of the heterotic NS5-brane; as explained in section 3.4.2, the resulting theory becomes
symmetric between the two Spin(16) factors, implying that, just like in the supersymmetric
heterotic string theories, small instantons of both gauge factors are identified. After deforming
in this way the gauge bundle on both Spin(16) factors, we are left with a single pointlike
NS5 and a single anti-NS5 in each sphere, which annihilate, leading to a trivial and therefore
anomaly-free configuration for the compactified theory, and implying that α(Y11) = 1.

As a bonus, we can answer a question of [46], giving a bordism-theoretic argument
for the analogous anomaly cancellation question for the E8 × E8 heterotic string. This
anomaly cancellation result was first established by Tachikawa-Yamashita in [42] by a
different argument.

Corollary 4.34. The anomaly field theory α for the E8 ×E8 heterotic string theory taking
into account the Z2 swap symmetry is trivial.

Proof. The argument for Y11 also works in the supersymmetric E8 × E8 theory, since the
instantons may also be embedded in E8. In the supersymmetric case, the pointlike limit of
the instanton is the ordinary, supersymmetric heterotic NS5-brane, as illustrated in [150], so
the E2

8 anomaly vanishes on Y11.
For B × RP3, dimensional reduction leads to 248 singlet and 248 fermions (from the E8

adjoints) charged under the sign representation. Since the relevant anomaly is controlled by

ΩSpin
3 (BZ2) = Z8, (4.35)

26The SO(16) × SO(16) string is non-supersymmetric, and therefore the deformations we have just outlined
in the previous paragraph may be obstructed dynamically; for instance, there may be a potential obstructing
the small instanton limit. However, since we only wish to compute the anomaly, we may ignore such effects;
the only ingredient we really need is the fact, proven in section 3.4.2, that in the small instanton limit the
anomaly becomes symmetric between both Spin(16) factors.
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and 248 is a multiple of 8, we conclude there is no swap anomaly either. Finally, we already
know that gravitational anomalies cancel in B × RP3, since if we forget about the swap this
is just an ordinary string background.

In summary, we have shown that anomalies vanish under both generators of the swap
bordism group, both for Spin(16)2 and E8 × E8. The supersymmetric case is covered by
the worldsheet analysis in [42], which takes into account twists including the swap we just
discussed. Thus, we recover a special case of the general anomaly cancellation result there.
On the other hand, our approach covers the non-supersymmetric SO(16)2 case (for the case
of geometric target spaces only).

5 Conclusions

Our world is non-supersymmetric, and that fact alone means that non-supersymmetric corners
of the string landscape warrant much more attention than they have received so far, both as
a source of interesting backgrounds that might connect more directly to our universe, as well
as a new trove of data to check and refine Swampland constraints. In this paper we have
moved a bit in this direction by computing the bordism groups and anomalies associated to
twisted string structures in the three known non-supersymmetric, tachyon free string models
in ten dimensions. The results we obtained are summarized in table 1 for the Sugimoto
and Spin(16)2 groups; for the more complicated Sagnotti 0’B model, we were just able to
show that there is a potential Z2 anomaly.

From the results of the table, it is clear that both Spin(16)2 and Sugimoto models are free
of global anomalies. One might have expected this from the fact that they have a consistent
worldsheet description. However, there can be non-perturbative consistency conditions that
are not automatically satisfied by the existence of a consistent worldsheet at one-loop, see
for instance [162], where a K-theory tadpole is not detected by the closed string sector. It
would be very interesting to determine in full generality whether existence of a consistent
worldsheet is sufficient to guarantee consistence of the target spacetime. Although we have
not settled the question of consistency in the Sagnotti string, we expect that it is also free of
anomalies; for instance, upon circle compactification, it can be related to a “hybrid” type I’
setup involving an O8+ plane and an O8−, both of which are individually consistent [139].

Perhaps the more interesting result of our work is table 1 itself, listing the bordism
groups of the Spin(16)2 and Sugimoto theories. An obvious follow-up to this paper is to
use the Cobordism Conjecture [48] together with the groups in table 1 to predict new,
non-supersymmetric objects in the non-supersymmetric string theories, similarly to what
has been done in type II in [51]. While it is natural to expect these new branes to be
non-supersymmetric, it may be worthwhile to pursue this direction in more detail.

One subtlety that must be kept in mind, when considering our results, is that we did
not necessarily use the correct global form of the gauge group in our calculations. With the
exception of the SO(16)2 ⋊ Z2, we focused on simply connected versions of all the groups,
which immensely simplified the calculations. Since any bundle before taking a quotient is
still an allowed bundle after taking the quotient, our results show that a very large class of
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k ΩString−Spin(16)2
k ΩG16,16

k ΩString−Sp(16)
k ΩString-SU(32)⟨c3⟩

k

0 Z Z Z Z
1 Z2 Z2

2 Z2 Z2
2 Z2 Z2

2 Z2 Z2
3 0 Z8 0 0
4 Z2 Z⊕ Z2 Z Z
5 0 0 Z2 Z2
6 0 Z2 Z2 0 or Z2
7 0 Z16 Z4 Z2 or Z4 ⊕ Z2
8 Z6 Z3 ⊕ Zi

2 Z3 ⊕ Z2 Z3 ⊕ Z2 or Z3 ⊕ Z2
2

9 Z5
2 Zj

2 Z3
2 Z3

2
10 Z7

2 Zk
2 Z3

2 Z⊕ Z2
2 or Z⊕ Z3

2
11 0 A 0 0 or Z2

Table 1. Twisted string bordism groups computed in this paper for the Spin(16)2 theory with and
without including the swap (second and third columns), for the Sugimoto string (fourth column), and
for the Sagnotti string (fifth column). In the second column, i, j, k are unknown integers, and A is an
abelian group of order 64 (see section 4 for details). In the fifth column, there are ambiguities due
to undetermined differentials in the Adams spectral sequence; see section 3.3.2 for details. In some
cases, the bordism group vanishes in degree 11, which automatically implies the corresponding theory
has no anomalies; we also show the anomaly can be trivialized for the Z2 outer automorphism of the
Spin(16)2 string, even though the bordism group is nonzero. The results in this table can be further
used to classify bordism classes and predict new solitonic objects in these non-supersymmetric string
theories following [48, 51].

allowed bundles in the Sugimoto and SO(16)2 theories are anomaly free,27 but particularly
in the Sugimoto case there may be more bundles to check if the gauge group is actually
Sp(16)/Z2. In the type I theory, we know the group is Spin(32)/Z2 and not just SO(32)
due to the presence of K-theory solitons transforming in a spinorial representation [163].
In the Sugimoto theory, the relevant K-theory is symplectic, and there do not seem to be
any such solitonic particles [4], suggesting that the group might actually be Sp(16)/Z2. It
would be interesting to elucidate this point and figure out whether there really are any global
anomalies beyond those studied here.

Another result of our paper is a series of arguments and checks that in any heterotic
string theory, the Bianchi identity must hold at the level of integer coefficients. Furthermore,
satisfying the Bianchi identity even at the level of integer coefficients is not enough to
guarantee consistency of the string background; there is also a consistency condition (tadpole)
that is detected by H3(M ;R). The general consistency condition is of course that the
anomaly of probe strings vanishes; more generally, it is natural to expect that all consistency
conditions (tadpoles) of any quantum gravity background come from consistency of probe
branes in said background.

Another limitation of our study is that, by following a (super)gravity approach, we must
restrict to studying anomalies on smooth backgrounds. String theories, both with and without

27The equivalence discussed at the beginning of subsection 3.4.2 shows that anomalies vanish for SO(16)2
even when the correct global form is taken into account.
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spacetime supersymmetry, make sense on much larger classes of backgrounds that do not admit
a geometric description, such as orbifolds, and which are only analyzed from a worldsheet
perspective. These cases are not covered by our analysis. Using modular invariance one can
show that the Green-Schwarz mechanism always cancels local anomalies in any consistent
worldsheet background [71, 164], with or without spacetime supersymmetry. The question
of whether global anomalies also cancel in these non-geometric backgrounds was addressed
in [42, 45], where all global anomalies are shown to cancel for all gauge groups and dimensions
in the ordinary supersymmetric heterotic string theories. This remarkable result rests on the
validity of the Segal-Stolz-Teichner conjecture [165], which connects deformation classes of
worldsheet theories (or, more generally, two-dimensional (0, 1) supersymmetric QFTs) to the
spectrum of (connective) topological modular forms (TMFs) [117, 166] (see also [167]). The
physical interpretation of this more refined generalized cohomology theory is related to “going
up and down RG flows” [168], and it includes the familiar string bordism deformations of the
target space manifold of a sigma model as well as more exotic, “non-geometric” deformations.

To construct an ordinary, spacetime-supersymmetric heterotic model, all that one needs
is a (0, 1) SQFT. Such a QFT always has a notion of a right-moving worldsheet fermion
number Fw

R , which is gauged by the usual GSO projection to construct a modular-invariant
partition function. The original Segal-Stolz-Teichner conjecture applies precisely to (0, 1)
SQFT’s. If we wanted to make such an argument for a spacetime non-supersymmetric string
theory (tachyonic or not), we face the obstacle that the GSO projection is different, and it
involves additional worldsheet symmetries. For instance, the SO(16)2 theory has a “diagonal”
modular invariant partition function, which requires a notion of a left-moving worldsheet
fermion number in addition to the (0, 1) SQFT structure. Thus, valid SO(16)2 worldsheet
theories are equipped with an additional left-moving Z2 symmetry, or equivalently, they are
equipped with both a spin structure and a Z2 symmetry. To repeat the argument of [42, 45],
one must work with Z2-equivariant TMF; it would be very interesting to do so.

When we started this project we were actually quite surprised that we could not find
a comment on global anomalies of non-supersymmetric tachyon-free strings28 anywhere in
the literature. After all, these constructions are all 25+ years old, and they have a quite
distinguished role in the string landscape. In a sense, they look more like our universe than
the more familiar, supersymmetric theories! Maybe the reason for this neglect is simply lack
of workforce; the last 25 years have brought so much progress on so many areas that the
community just had to focus on the most novel or promising ones, and simply left many
important questions unanswered. The physics of non-supersymmetric string theories was
a victim to this rapid progress. Despite this, recent research in this direction has yielded
e.g. metastable vacua [147, 169], novel end-of-the-world defects [170–176], and checks of
Swampland constraints [12, 20, 177]. The results that we have presented in this paper are
yet another step in this direction. We believe (and hope to have convinced at least some
readers) that non-supersymmetric string theories constitute a very interesting arena where
there seems to be an abundance of low-hanging fruit that is likely to yield novel lessons
both in the Landscape and the Swampland.

28Other than [36]; maybe we just missed it.
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1 Introduction

One of the basic features of String Theory compactifications is the ubiquity of moduli fields
— massless or light scalars that parametrize the internal compactification space and that
control the masses and couplings of the theory. The geometry of moduli fields is relevant to
the physical content of the theory and is captured by aspects of the Swampland Program
including the Distance Conjecture [1]. Given their relevance, it seems an important question
how would we probe the global geometry of moduli fields in terms of physical data at one
point in moduli space.

More concretely, suppose one has a theory with an exact or approximate moduli space,
and we live in a vacuum where the moduli φ take some value φ0. One can study directly
the physics of the vacuum at φ = φ0 by means of scattering experiments, and even learn
about the local geometry of the moduli space by studying these couplings. However it is,
in general, very difficult to design an experiment to probe the physics at some value φ = φ1
which is very far away from φ0. It is precisely in faraway regions where interesting physics
(such as decaying towers of states, emergence of perturbative string or decompactification
limits, etc.) is supposed to take place. In most string theory literature, one is satisfied
with studying the family of vacua parametrized by φ, as well as the φ dependence of vari-
ous observables such as masses and couplings. Yet this approach is somewhat unphysical:
changing the vev of φ everywhere at once costs infinite energy, and once one starts con-
sidering configurations where φ only changes in a region of finite size, other challenges
can appear. One difficulty in designing setups that will probe large variations ∆φ is that,
when these are transplanckian, they will have a significant gravitational backreaction of
their own, and whatever setup we consider is in danger of collapsing into a black hole.
This was studied in [2], as well as in the more recent series of papers [3, 4], where it was
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pointed out that probing arbitrarily large ∆φ is in principle possible in the effective field
theory, but requires resources (masses, size of the laboratory. . . ) exponentially large in
∆φ. Furthermore, the constructions described in [2] are not solving Einstein’s equations,
and so are regarded at best as interesting initial conditions, but they do not provide any
concrete way to probe the faraway regions in moduli space.

The basic goal of this short note is to explain how the attractor mechanism allows one
to overcome this challenge and do a form of “black hole spectroscopy”, where properties
of black holes at any one given point in moduli space can be used to probe the vacuum in
faraway regions of the moduli space. Indeed, in a 4d N = 2 theory, thanks to the attractor
mechanism (first constructed in [5] and further studied in [6–10]), the properties of the
vector multiplet moduli space far away from any given vacuum can be studied reliably
and in a robust way — simply engineer a black hole such that the near-horizon values of
all scalars XI

h differ significantly from those at infinity. The resulting geometry has the
same asymptotics as the vacuum, but the near-horizon geometry constitutes a very long
AdS2×S2 geometry, where the scalars are stabilized at the attractor value. The two regions
are joined by an intermediate throat in which the fields XI run. The size of the S2 (or
equivalently, the curvature of the AdS2) are furthermore controlled by the total value of the
black hole charge, which may be safely rescaled to arbitrarily large values without affecting
the attractor solution. What this means is that one can, while keeping the attractor value
fixed, engineer an AdS2 × S2 region where the size of the S2 is arbitrarily large, and in
which the physics looks locally like the vacuum solution on R4 with the attractor values of
the moduli, thus achieving a concrete “laboratory” in which the asymptotic vacuum can be
probed. To make this picture concrete, we will show explicitly how the triple intersection
numbers of the infinite distance limit, as well as the first subleading correction, can be
encoded in term of mass and degeneracy of charged BPS states that can be physically
measured in the asymptotic region.

If one has access to arbitrary mass/charge states, it becomes possible to study points
in moduli space which are arbitrarily far away and with any desired precision. It is more
interesting to study how the distance in moduli space and the resolution of the probing
depend on the resources — how well can we do if we have a maximum allowed mass,
charge for the states. We study this question in a simple two-parameter family of black
holes, finding agreement with the results in [2] that an exponential field range in moduli
space are intimately related to the masses which trigger the flow. However, unlike in [2],
we have a concrete setup where transplanckian field ranges are attained in the context of a
supersymmetric solution, in a time-independent way, thanks to the attractor mechanism.

The rest of the note includes a review of 4d N = 2 black holes and the attractor
mechanism in section 2, followed by the main application of black hole spectroscopy in
section 3, where we obtain the triple intersection numbers of an asymptotic limit in terms
of degeneracy of states. Section 4 quantifies just how far can we go in probing the moduli
space geometry for a given mass, and section 5 explains how we quantify the resolution of
points on moduli space using physical data at far away points. Section 6 contains a few
concluding remarks.
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2 Review of 4d N = 2 black hole solutions

We will start by reviewing some elements of Calabi-Yau three-fold X compactifications of
Type IIB string theory and their associated black hole solutions, which will be the core of
this paper. The reader interested in further details is encouraged to check [11, 12]; here we
will only describe the essentials of what we need. At low energies, the effective field theory
describing a Calabi-Yau compactification is a four-dimensional N = 2 supergravity, coupled
to nV = h1,2 abelian vector multiplets and nH = h1,1 + 1 hypermultiplets, where hi,j are
the Hodge numbers of the Calabi-Yau three-fold X. The vector multiplet moduli space is
a special Kähler manifold, and its scalars parametrize the complex structure of X. The
dynamics of the hypermultiplets decouples completely from that of the vectors in the black
holes we will consider, due to the 4d N = 2, so we will mostly ignore them in the following.

As explained e.g. in [13], the intersection pairing in the middle cohomology of the
Calabi-Yau defines a symplectic (antisymmetric) inner product. Constructing the complex
structure moduli space comes down to choosing a symplectic basis {AI , BI} of 3-cycles in
H3(X,Z) (and the corresponding basis of three forms {αI , βJ} of H3(X,Z)), which we take
to be orthonormal in the following sense:

〈αI , βJ〉 = −〈βJ , αI〉 =
∫

X
αI ∧ βJ = δJI

∫

AI
αJ = −

∫

BJ

βI = δIJ ;
∫

AI
βJ =

∫

BJ

αI = 0 ,
(2.1)

where {I, J} ∈ {0, . . . , h2,1}. Every Calabi-Yau manifold has a holomorphic (3,0)-form (see
e.g. [11]) that can be decomposed as follows in terms of its A- and B-periods {XI , FJ}:

XI =
∫

AI
Ω3 FJ =

∫

BJ

Ω3 ←→ Ω3 = XIαI − FJβJ . (2.2)

Performing a change Ω3 → efΩ3 has no impact on the complex structure of X. In terms
of the scalars XI , this amounts to an overall re-scaling XI → efXI from which it is clear
that only h2,1 of these h2,1 + 1 scalars are independent. The Kähler potential is given by
(see. eg [14])

K = −ln
(
i

∫

X
Ω3 ∧ Ω̄3

)
= −ln i

(
X̄IFI −XI F̄I

)
. (2.3)

One can now see that a rescaling of Ω3 corresponds to a Kähler transformation in 4d N = 2
language:

Ω3 → efΩ3 K → K− f − f̄ . (2.4)

The fact that the complex structure of X is unchanged by a rescaling of Ω3 translates
to the 4d N = 2 Lagrangian being invariant under Kähler transformations. One can
therefore define a Kähler metric on the complex structure moduli space that is invariant
under rescalings of Ω3 by using K as a Kähler potential. The metric obtained in this
way on complex structure moduli space gIJ̄ ∼ ∂I∂J̄K coincides with what can be read
off of the kinetic term of the 4d Lagrangian for the complex structure moduli. One can
choose a symplectic basis such that a single holomorphic function, the so-called prepotential
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F = F (X), encodes all the data of the topological theory. The B-periods can be reexpressed
in terms of the prepotential as:

FJ(X) = ∂F (X)
∂XJ

. (2.5)

One can construct black hole solutions in the 4d N = 2 effective theory by wrapping
D-branes on the various cycles of X (see eg. [9, 10, 15, 16]). These are generalizations of
Reissner-Nordström black holes, charged under the nV = h1,2 abelian vector multiplets.
These black holes have the remarkable property that they are attractors for the vector
multiplet moduli. This means that these moduli, in general, run along the radial direction
until they reach the black hole horizon where their value is entirely determined by the
supersymmetric equations of motion, in what is known as the attractor mechanism [5]. The
attractor equations that describe this flow relate the charges of the black hole to the values
of the moduli at the horizon. Throughout this work, we will use the attractor mechanism as
a tool to map black hole thermodynamic properties to the complex structure moduli space.

Let us now review the attractor mechanism of extremal 4d N = 2 black holes in more
detail. In type IIB language, one constructs such black holes by wrapping D3 branes on a
general 3-cycle C in X. Indeed, a black hole is identified by the decomposition of C onto the
basis {AI , BI} or equivalently by its corresponding electric and magnetic charges {pI , qJ}.
Take Γ to be the 3-form that is Poincaré dual of C, then the corresponding splitting of
magnetic and electric charges {pI , qJ} is given by:

pI =
∫

AI
Γ qJ =

∫

BJ

Γ . (2.6)

Consider a BPS solution charged under the 3-form Γ. Then, the central charge of the
black hole is given by:

Z = eK/2
∫

X
Ω3 ∧ Γ = eK/2(pIFI − qIXI) . (2.7)

The attractor mechanism acts as a potential for the moduli and drives them to minimizing
the central charge at the horizon of the black hole (note that the horizon values of the
moduli will differ significantly, in general, from their values at spatial infinity) [8]. This
minimization procedure leads to the attractor equations at the horizon, which relate the
holomorphic periods to the charges of the black hole and can be written as follows:

pI = Re
[
ChX

I
h

]
= ChX

I
h + C̄hX̄

I
h ,

qI = Re [ChFh I ] = ChFh I + C̄hF̄h I ,
(2.8)

where the “h” subscripts emphasize that these quantities are evaluated at the horizon and
where we have introduced C ≡ −2iZ̄eK/2. The vector multiplet moduli, which can be
expressed in terms of the XI , have arbitrary values infinitely far from the black hole, they
vary along the radial direction and are fixed by the attractor equations at the horizon.
Solving these equations for the periods at the horizon allows one to obtain the entropy of
the black hole (equivalently, its area), which is expressed in terms of the central charge as:

S = π|Zh|2 . (2.9)
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One can also compute the ADM mass of the black hole, which turns out to be

M2
ADM = |Z∞|2, (2.10)

where we have introduced the subscript to emphasize that the ADM mass is obtained
by evaluating the central charge Z, viewed as a function of the charges pI , qI and the
scalar values XI given in (2.7), with the scalars XI taken to have their asymptotic values,
i.e. evaluated at infinite distance from the black hole. In the particular case where the
asymptotic and near-horizon values of the scalars coincide, (2.10) and (2.8) agree: the
attractor value of the mass is just given by the near-horizon dynamics. When they do not,
the difference is due entirely to the running scalars outside of the horizon contributing to
the mass. This follows from the attractor equations, which imply [8]

|Z∞|2 − |Zh|2 =
∫ 0

−∞
dτ e−U/2

√

gIJ̄
dtI

dτ

dtJ̄

dτ
. (2.11)

In this expression, tI ≡ XI/X0 are the physical moduli, e2U is the time-component of the
black hole metric, and τ is a certain parametrization of the radial coordinate in which the
horizon sits at τ = −∞ and spatial infinity is at τ = 0. Thus, we see that the difference in
mass above the attractor value is just the backreaction of the running moduli.

Finally, we also note that the attractor equations and in particular the charges are
invariant under Kähler transformations, which act on the periods and C as follows:

K → K− f − f̄ , C → e−fC, XI → efXI , F → e2fF. (2.12)

One can obtain the h2,1 physical, invariant, moduli tI by choosing special coordinates such
asXI = tIX0. Throughout the next sections we will be solving the attractor equations (2.8)
by choosing a constant Ch. Solving the attractor equations with different values of Ch will
generate a set of black hole solutions with the same attractor point in moduli space but
different charges and masses.

In the next section we will exploit the attractor equations in an attempt to map topo-
logical data of the Calabi-Yau moduli space to thermodynamic properties of black holes.

3 Probing the prepotential with large black holes

Armed with the attractor mechanism described in the previous section, we will explain
how it can be used to achieve a simple form of black hole moduli space spectroscopy, where
we relate the properties of faraway points in moduli space to statistical, thermodynamic
properties of large charge BPS states in a given vacuum. As described above, the attractor
mechanism produces near-horizon AdS2 × S2 geometries where the value of the moduli
are controlled by the attractor mechanism and can in general be very different from the
asymptotic values of the moduli. For concreteness and simplicity, we will be interested in
black holes that take the vector multiplet moduli to near-infinite distance limits in their
moduli space. In these regions, the prepotential is constrained to take the well-known form:

F (X) = −DIJK
XIXJXK

X0 , (3.1)
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where CIJK = 6DIJK are integers which, in the Calabi-Yau context, receive the interpre-
tation of the triple intersection numbers of the mirror Calabi-Yau. But it is expected that
this structure follows from general quantum gravity principles, even when a Calabi-Yau
description is not present (see [17]).

With this, we see from (2.5) that the attractor equations will relate the charges of the
black hole directly to the XI at the horizon and the parameters DIJK (we take Ch to be
a constant at the horizon). Naturally, these charges will be very large since the moduli
are reaching near-infinite values. Turning things around, solving these equations for the
moduli at the horizon would allow us to express the entropy of the black hole (2.9) in
terms of the charges {pI , qJ} and DIJK . This would show that if one could measure the
entropy and charge of one of these large black holes experimentally, it would be possible
to deduce the values of the DIJK . One would therefore recover topological data of the
underlying Calabi-Yau from measuring black hole observables at a very different point in
moduli space. Furthermore, quantities like electric and magnetic charges, or the degeneracy
of charged BPS states (i.e., entropy of the black holes), are actual observables, which one
could measure experimentally.

We will just illustrate this method in the simplest example, and assume that we have
a single vector multiplet nV = 1. Then, there are just four periods, and from the prepo-
tential (3.1) we have

F1 = −3D111
(X1)2

X0 and F0 = D111
(X1)3

(X0)2 . (3.2)

One can set Ch = 1 at the horizon by a Kähler transformation, and then the attractor
equations are given by:

p0 = Re
[
X0
]

q0 = D111 Re
[

(X1)3

(X0)2

]

p1 = Re
[
X1
]

q1 = −3D111 Re
[

(X1)2

X0

]
. (3.3)

Solving these equations yields the central charge at the horizon in terms of the XI

fields,

|Z|2 = D111|X1X̄0 −X0X̄1|3
4|X0|4 . (3.4)

Equivalently, one can solve (3.3) for the periods and express the entropy in terms of the
charges and D111. For simplicity, we will assume that one of the charges vanishes (p0 = 0),
in which case we obtain the entropy as:

S = π|p1|

√
|q2

1 − 12D111p1q0|√
3

. (3.5)

The argument of the square root is always positive if we pick charges such that the attractor
equations have a solution. We emphasize that an expression such as (3.5) is anyway only
expected to hold for very large charges, and in a one-parameter family of solutions such that
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the attractor values of the scalar are approaching the infinite distance limit in which (3.1) is
approximately valid. One example of such a family can be parametrized as follows: in terms
of the physical modulus t = X1/X0, take the charges that scale, in the y ∼ |t| → ∞ limit, as

Q∞ =





p0 = 0
p1 = N

q0 = −y2N

q1 = 0

. (3.6)

Here, N is an overall rescaling of the charges, that does not affect the attractor value,
but which will be important in a number of applications in what follows. Importantly,
we have chosen a family of black holes whose charges solve (3.3) but do not depend on
D111 explicitly. We are trying to encode D111 in terms of observables such as charges and
the degeneracy of BPS states, and therefore, choosing charges depending on D111 would
amount to assuming the answer. For the family (3.6), the entropy formula simplifies to

S = 2π
√
D111 yN

2 . (3.7)

By counting the number of BPS states with such charges in a 4d N = 2 world, one could
use this formula to obtain an experimental evaluation of the triple-intersection number
D111, and provides a direct link between moduli space properties and properties of the
prepotential. This is an interesting result since one would not expect to be able to probe
far away moduli data from measurements in the middle of moduli space, without any
knowledge of the underlying compactification. Naturally, the formula (3.7) is to be taken
as proof of concept that such a relation can be made. The exact expression will change
if we consider a large black hole with charges that scale differently, or if one considers a
different Calabi-Yau for the compactification.

A natural next step is to determine whether this framework can also be used to detect
subleading corrections in the prepotential. To this effect, we will repeat the above analysis,
now including the first correction to the prepotential as one moves slightly into the bulk
of moduli space:

F (X) = −DIJK
XIXJXK

X0 + dIX
IX0. (3.8)

In the Calabi-Yau case, we can relate dI to topological properties of the mirror Calabi-Yau
via the formula ∫

CY
c2 ∧ αI = 24 dI , (3.9)

where c2 and αI are the second Chern class and the corresponding two-form of the mirror
Calabi-Yau. Again, one can write the attractor equations in the simplified case where there
is only one modulus, where they become

p0 = Re
[
X0
]

q0 = D111 Re
[

(X1)3

(X0)2

]
+ d1 Re

[
X1
]

(3.10)

p1 = Re
[
X1
]

q1 = −3D111 Re
[

(X1)2

X0

]
+ d1 Re

[
X0
]
. (3.11)
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One can solve these equations for the periods at the horizon and express the entropy in
terms of the charges. For a black hole with a single vanishing charge p0 = 0, one obtains:

S = π√
3
|p1|

√
12d1D111(p1)2 − 12D111p1q0 + (q1)2 . (3.12)

It is easy to see that this reduces exactly to (3.5) when d1 is set to zero. One can evaluate
the entropy of the large black hole with charges that scale as (3.6) in the y ∼ |t| → ∞ limit
and obtain:

S = 2πN2
√
D111(y2 + d1) . (3.13)

Expanding this near y →∞, one obtains

S = πN2
[
2
√
D111y + d1

√
D111

1
y

+O(y−3)
]
. (3.14)

Having previously measured D111 using (3.7) with extremely large black holes, one could
measure deviations of this expression for slightly smaller black holes and obtain d1
from (3.13).

An important point in all of the above is to note that we have been using the leading
behavior of the black hole entropy. This is valid for large N and one expects to receive
corrections suppressed by powers of 1/N2 [18]. So for example if we want the D111 term
to be measurable, we need to ensure that

√
D111y & O(1/N2) , (3.15)

which is automatically satisfied in our case since y � 1 and D111 is an integer. For the
subleading term to be measurable we need to make sure

d1
√
D111/y & O(1/N2) , (3.16)

which would be achievable if we pick N & √y. In addition to polynomial corrections in
prepotential, there are also exponential corrections:

F

X2
0

= −DIJKt
ItJ tK + dIt

I +KαIe
−αI t

I + . . . , (3.17)

where the coefficientsKαI are quantized in the primitive directions [19]. In the one modulus
example we have studied (where there is a single coefficient, α1 = 1), to get to the precision
to be able to measure KαI , we need to measure the degeneracy of large charge states, where

√
D111N

2 & O(y3 e2y) , (3.18)

which is consistent with the intuition that measurement of exponentially small corrections
require exponentially large charged BPS states. As we will discuss in the next section y

itself is exponential in distance in moduli space, so this is a double exponential in terms of
distance.

The above procedure could be refined indefinitely, recovering more and more informa-
tion about the Calabi-Yau by measuring the sizes of smaller and smaller black holes. At
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each order in y, one can solve the attractor equations with the corrected prepotential and
obtain the entropy in terms of the charges, the previously determined parameters and the
new undetermined ones. Measuring the size of an appropriate selection of black holes will
allow one to obtain the value of the undetermined parameters. The examples above describe
the case with a single vector multiplet; in general, when nV > 1, one will need a multi-
parameter family of black holes at each step. For instance, in the first step, one would need
a large black hole with charges analogous to (3.6) for each direction in moduli space in order
to recover all of the triple intersection numbers DIJK . Of course, this procedure becomes
increasingly more complicated as we go further away from the controlled corners of the
moduli space, though see [20], where a similar iterative procedure was used to find generic
solutions to the attractor equations at all orders, also incorporating instanton contributions.
At low orders, this method is equivalent to our own. Nevertheless, the fact that such a pro-
cedure can be carried out in principle suggests that there is no obstruction in recovering the
geometry of moduli space at any point, using physical measurements of charged BPS states
at other points. However, the BPS degeneracy of states is a function of the attractor point
alone, and it is not helpful in relating the asymptotic and attractor values of the moduli
in a meaningful way. In the next section we will address this question by considering the
energetics of the BPS states and relating it to asymptotic distances in moduli space.

4 Asymptotic black hole properties in moduli space

As we saw in the previous section, one can directly relate the prepotential, and thus, the
usual moduli space metric, to degeneracy of BPS states. This suggests that it might be
possible to obtain the full geometry of moduli space from other physical measurements. We
now show that the attractor flow can correctly capture the notion of asymptotic distance
near the boundaries of moduli space; namely, we will show that asymptotically in moduli
space, the entropy of large BPS states and also their masses can be directly related to the
distance in moduli space to their attractor points.

To do this, we once more consider black holes whose attractor point is near the bound-
ary of moduli space, as in the previous section. Using again the family of black holes with
charges (3.6), the corresponding periods at the horizon are given by:

Re
[
X0
]

= 0 , Im
[
X0
]

= −ND1/2
111y

−1 ,

Re
[
X1
]

= N , Im
[
X1
]

= 0 .
(4.1)

From these expressions, it is straightforward to obtain the Kähler potential (2.3) in this
limit:

K = − log
(
8N2√D111y

)
. (4.2)

The metric in moduli space is

ds2 = 2∂t∂t̄K|dt|2 = 3
2
|dt|2
=(t)2 = 3

2
dy2

y2 , (4.3)
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so that the distance in moduli space is given by:

d ∼
√

3
2 log y . (4.4)

From the formula for the entropy (3.7) obtained for this set of charges, one immediately
obtains

S ∼ N2e
√

2
3d . (4.5)

for this family of black hole solutions. A similar exponential relation holds asymptotically
for the ADM mass: using the general expression (2.10), one gets that

MBPS = eK∞/2|p1F
1
∞ − q0X

0
∞| = NeK∞/2|F 1

∞ + y2X0
∞|, (4.6)

where the subscript ∞ in any quantity denotes its asymptotic values. For large y, the last
term is leading, giving a dependence on the ADM mass that agrees parametrically with
the entropy, and so

MBPS ∼ Ne
√

8
3d, (4.7)

as well.
These expressions relate the mass of a large BPS state to the attractor point lying at

a far away distance in moduli space. In practice, it means that if one wants to probe the
moduli space at a large distance d, one needs to create a massive BPS state with energy
which is exponentially large in distance. This is reminiscent of the work by Nicolis [2]
where it was shown that, in a purely Newtonian setting, it was possible to construct
setups with scalar sources that lead to arbitrarily large field ranges, with a size that
grows exponentially on the field range. What we are finding is not only in agreement
with this, but more broadly, with the findings of [3, 4], which studied transplanckian field
displacements in a variety of setups (including 4d dilatonic black holes). As proposed
in [4], there really seems to be a universal feature of quantum gravity that arbitrarily
large field ranges can be probed at an exponential cost in physical resources. Other
instances where one can see this include the extended objects of [21, 22] which probe
infinite distances in moduli space; their tension goes exponentially with the distance. It
would be very interesting to find the physical mechanism underlying this phenomenon.

A scaling similar to (4.5) was recovered in [23] in relation to the Black Hole Entropy
Distance conjecture proposed in [24], a generalization of the ADC to black hole spacetimes.
Both [23, 24] proposed identifying the logarithm of the black hole entropy (the horizon area)
with a notion of distance, encoded in the change of the metric when the flux changes one
unit. The connection to (4.7) is precisely that, when the quantized black hole charges
change and the black hole area readjust, so do the vevs of the vector multiplet moduli, and
the notion of distance using these or directly the metric as in [23, 24] agree. In any case,
equation (4.5) shows that the black holes provide a thermodynamic interpretation for the
distance in moduli space, if only asymptotically.

Appendix A discussed the precise realization of the general discussion in this paper in
the context of a specific model, namely the mirror quintic M . The results agree with (4.5),
as they should.
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5 Resolution of the probing

As we have seen, BPS states can serve as effective probes of far away regions of moduli
space via their attractor geometry. However, when solving the attractor equations (3.3),
one needs to take into account Dirac quantization, which demands that the charges pI , qI
are quantized. In the Calabi-Yau picture, the quantization simply maps to the fact that
the D3 branes that form the black holes we study must wrap an integer homology class.

Dirac quantization implies that the picture of the moduli space provided by the black
holes is not continuous; rather, it is naturally a mesh of points in the moduli space. These
issues of quantization are however often ignored in the study of 4d N = 2 black holes,
simply because of the Kähler transformation (2.12). This transformation tells us that a
homogeneous rescaling of the charges does not affect attractor values; as a result, one may
simply scale the charges up, to very large values, achieving an arbitrarily dense mesh. While
this is true, if one is constrained to finite resources (finite black hole mass, charge, or equiv-
alently, entropy), the mesh allowed by Dirac quantization will be finite, leading to a finite
“resolution” in the probing of moduli space. We will determine this resolution momentarily.

In more detail, consider the attractor equations near the boundary of moduli
space (3.3). The general solution with non-vanishing charges p1 > 0, q0 < 0 is, asymp-
totically,

X1 = p1, X0 =

√
−p

3
1
q0
D111, t = X1

X0 =
√
− q0
p1D111

. (5.1)

We see that the attractor value of the physical modulus is insensitive to an overall rescaling
of the charges. As we make a small change in the charges, the value of t in (5.5) changes,
and we probe a nearby point of moduli space. The smallest such change that can take
place, compatible with Dirac quantization, is changing p1 by one unit while keeping q0
constant. Under such a change, we obtain that the infinitesimal change in moduli space
distance, δd, is given by

δd =
√

3
2
δt

t
=
√

3
8

1
p1
, (5.2)

where we have used the asymptotic form of the Kähler potential, K ∼ −3 log t. Using the
asymptotic relation between the moduli space distance and the change in t,

d ∼
√

3
2 log t ⇒ t ∼ e

√
2
3d, (5.3)

combined with (5.1), one can rewrite (5.2) as

δd =
√

3
8
t2D111
|q0|

∼
√

3
8
D111e

√
8
3d

|q0|
, (5.4)

in terms of the moduli space distance traversed by the black hole. Now, close to the infinite
distance limit, |t| → ∞, (5.1) tells us that p1 is much smaller than q0, and so the ADM mass

MBPS = eK∞/2
∣∣∣p1F

1
∞ − q0X

0
∞
∣∣∣ , (5.5)
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can be approximated by the second term,

MBPS ≈ eK∞/2X0
∞|q0|. (5.6)

This last equation allows us to replace |q0| by the black hole mass M in (5.4), yielding an
expression

δd =
√

3
8D111e

K∞/2X0
∞
e
√

8
3d

M
, (5.7)

and finally, defining the resolution of the moduli space probing as the inverse spacing (in
analogy with optics), we get

r ≡ 1
δd
∼ MBPS

e
√

8
3d

= N, (5.8)

where in the last equality we have used (4.7). This equation gives us a notion of how the res-
olution in moduli space scales with the size of a large black hole whose attractor point is at
a distance d in moduli space. Taking d to be a constant, we see that the resolution increases
with the amount of energy (black hole mass) at one’s disposal. This makes sense, as higher
masses and bigger black holes naturally mean higher charges and so the “mesh” of points
in moduli space becomes smaller. Furthermore, keeping the mass of the black hole fixed,
we see that the resolution will decrease exponentially as we try to explore farther points
in moduli space. This fits naturally with previous discussions in [25] relating the Distance
Conjecture to the Bekenstein bound and finiteness of quantum gravity amplitudes. The
number of states that quantum gravity admits in a box should be finite, and bounded by
the area of the box. This means that it should not be possible to construct distinguishable
states which probe infinite swaths of moduli space with arbitrarily large resolution in a box
of given size. The resolution of this puzzle is, precisely, that the resolution drops quickly
and makes far away points indistinguishable without increasing the size of the box.

6 Conclusions

Although the physics of moduli spaces is arguably one of the most important aspects of the
Swampland program and string compactifications, the question of how these moduli spaces
could be probed in practice, if one was found, has received comparatively little attention.
In this short note we have shown how, in 4d N = 2 theories, asymptotic properties of
moduli spaces are encoded in black hole solutions in a possibly very far away vacuum in
moduli space, finding that quantitative features of the prepotential can be deduced from
measurements of BPS degeneracies with appropriate charges. On top of this, the 4d N = 2
BPS states are able to reach arbitrarily large regions in moduli space, at a finite energy cost.

We also studied the quality of the moduli space picture provided by the BPS black holes
— how far in moduli space can we go, and with which resolution, given finite resources.
While this question is in general a complicated optimization problem, we studied a couple of
one-parameter families of black holes, finding that both the distance goes logarithmically
with the mass of the BPS black hole and that the resolution of the probing (which is
finite due to charge quantization) depend linearly on the size of the black hole. This is

– 12 –



J
H
E
P
0
4
(
2
0
2
3
)
0
4
5

in general agreement with the findings in [3, 4], and shows that studying a transplanckian
field range is possible in gravity, but takes an exponential amount of resources. It would
be interesting to explore potential connections between this finding and more information-
theoretic approaches to the Distance Conjecture recently put forth in [26, 27].

It is tantalizing that the distance conjecture is also an exponential relation between
the mass of the tower and distance in moduli space. However, that involves the mass going
exponentially down in distance, unlike the BPS mass that we need to probe such distances,
which increases exponentially with distance. It would be interesting to see if there is a
relation between these two facts.

One outstanding question is how to generalize our analysis to setups where supersym-
metry is not protecting the answer, such as non-supersymmetric string theories or even
questions involving hypermultiplets in 4d N = 2 theories, for which the attractor mecha-
nism does not provide protection. Although it is likely that qualitative different ingredients
are needed, we suspect that the basic point — that black holes are appropriate probes of
the moduli space — is likely to apply, too.

Finally, the perspective we have taken in this manuscript is reminiscent of the moduli
space holography picture of [28, 29]. In that reference, it was proposed that the bulk of
moduli space could be reconstructed from asymptotic data; in our setup, we have done the
reverse, studying asymptotic regions from a bulk point in moduli space. And much as in the
setup of [21, 22], we have a one-to-one mapping between moduli space and physical space,
sourced by the gradients of the fields. As these gradients can in principle be studied via
ordinary holography, our perspective may help bridge the gap between these two disparate
notions of holography.
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A Asymptotic mass formulae for the mirror quintic

In this section we will particularize the general discussion in this paper to a specific model,
namely the mirror quintic M . This is a Calabi-Yau threefold with hodge numbers h1,1 =
101 and h2,1 = 1. One can define it by considering the following quotient in P4:

M =
(
Σiz

5
i − 5ψΠizi

)
/Z3

5 . (A.1)
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The four periods of the mirror quintic were famously studied in [19]. In particular, they
can be combined into a period vector with respect to an integer symplectic basis (Ai, Bj)
of H3(M,Z), which in the large complex structure limit, ψ →∞, take the form [19]:

Π =




F0
F1
X0

X1




ψ→∞−−−−→ ΠLCSL =
(2πi

5

)3




5
6 t

3 + 25
12 t

−5
2 t

2 − 1
2 t

1
t



, with t = − 5

2πi log(5ψ) . (A.2)

The Kähler potential at the large complex structure point is thus given by

e−K|LCSL = 32π3 log3(5|ψ|)
75 . (A.3)

Now, we will solve the attractor equations (2.8) in a slightly different way than in the
main text; rather than the choice of charges in (3.6), we will use the choice of charges that
exactly leads to the attractor values in (A.2), in a gauge where Ch = N(2πi

5 )−3 and writing
t = x+ iy. One immediately obtains, in the limit y →∞:

Q∞ =





p0 = N

p1 = Nx

q0 = −5
2Nxy

2

q1 = 5
2Ny

2

. (A.4)

From (A.3), one obtains the distance in moduli space as d =
√

3
2 log y. Finally, we obtain

the entropy from (2.9) which, at leading order in y, is:

S ∼ N2y3 ∼ N2e
√

6d . (A.5)

This agrees with (4.5), with a different exponent since we picked a different set of charges.
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Abstract: The scale at which quantum gravity becomes manifest, the species scale Λs, has
recently been argued to take values parametrically lower than the Planck scale. We use
black holes of vanishing horizon area (small black holes) in effective field theories coupled
to quantum gravity to shed light on how the three different physical manifestations of the
species scale Λs relate to each other. (i) Near the small black hole core, a scalar field runs
to infinite distance in moduli space, a regime in which the Swampland Distance Conjecture
predicts a tower of exponentially light states, which lower Λs. (ii) We integrate out modes
in the tower and generate via Emergence a set of higher derivative corrections, showing
that Λs is the scale at which such terms become relevant. (iii) Finally, higher derivative
terms modify the black hole solution and grant it a non-zero, species scale sized stretched
horizon of radius Λ−1

s , showcasing the species scale as the size of the smallest possible black
hole describable in the effective theory.

We present explicit 4d examples of small black holes in 4d N = 2 supergravity, and
the 10d example of type IIA D0-branes. The emergence of the species scale horizon for
D0-branes requires a non-trivial interplay of different 8-derivative terms in type IIA and
M-theory, providing a highly non-trivial check of our unified description of the different
phenomena associated to the species scale.
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1 Introduction

Recent activity in the Swampland Program (see [1–4] for reviews) is providing strong support
that the cutoff of an effective field theory (EFT) consistent with quantum gravity is not
the Planck scale, but potentially a much lower one, the species scale Λs [5–9]. This implies
that objects which can be reliably described in the EFT have a lower bound in their size
of order Λ−1

s . This is a very profound statement since it leads to quantum gravity effects
at length scales which can potentially be parametrically larger than the Planck scale. This
happens for instance near infinite distance points in moduli spaces, where the (Swampland)
Distance Conjecture (SDC) [10] predicts the appearance of an infinite tower of light particles.
Additionally, bounds on how fast these towers and the species scale become light have been
proposed and tested in [11–14].
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A natural setup in which to explore and sharpen these ideas is in black hole physics.
In particular, charged extremal black holes with scalar dependent gauge kinetic functions
have an attractor mechanism [15–18] that fixes the vevs of such scalars at the horizon. By
appropriately choosing the charges of the black hole, one can tune the point of moduli space
that is probed by the horizon. A particular choice of charges leads to small black holes,
which classically have zero horizon area (i.e. a singularity), and for which scalars run off to
infinite distance as one approaches the black hole core (see [19–21] for other uses of small
black holes to explore swampland constraints and [20–29] for other spacetime-dependent
configurations probing infinite distances in field space). One would then expect that quantum
gravity effects smooth out the singularity by generating a stretched horizon of small but
finite size. According to our discussion above, this size should be given by the species scale
Λ−1
s (hence parametrically larger than the Planck length). Indeed, it was argued in [19] that

in order for small black hole solutions not to violate entropy bounds, they should acquire
a finite size, of the order of the UV cut-off.

Black holes have been used at multiple occasions in the literature to probe the species
scale [30, 31]. And conversely, the species scale itself is often defined as being the size
of the smallest possible black hole (SPBH) that one can reliably describe within an EFT
description [5, 32]. One of our objectives is to study how quantum gravitational effects at
the species scale come to modify small black hole solutions and ultimately promote them to
these non-singular, finite-sized SPBHs, in perfect agreement with the works of [19].

The appearance of stretched horizons for small black holes has long been explored in the
context of string theory, e.g. for supersymmetric (and non-supersymmetric) charged black
holes in 4d N = 4, 2 supersymmetric compactifications, by the inclusion of higher derivative
corrections, resulting in string scale stretched horizons.1 Actually this corresponds in those
examples to precisely the species scale in the infinite distance limit of the corresponding small
black hole, in agreement with our discussion above (see [30, 31] for related works).

In the above discussion, the appearance of the species scale associated to the SDC
tower seems accidental. We will however argue that there is a direct link, by showing that
integrating out the SDC tower produces, in the spirit of Emergence [35–38] (see [39–43] for
recent discussions), the higher curvature terms which ultimately lead to the stretched horizon,
which is thus naturally set by the species scale. Hence, we provide an explicit microscopic
mechanism for the emergence of species scale horizons for this class of small black holes.2
Our result moreover matches the approach in [47], where the species scale has been argued
to be the scale at which higher curvature terms become relevant.

Hence, our work allows us to bring together three definitions of the species scale: the
original definition accounting for the number of species in the SDC tower, the scale defining
the size of SPBHs, and the scale of higher curvature corrections. The central idea is that
small black hole solutions get resolved as SPBHs at the species scale, by including the effect
of higher derivative corrections emerging from integrating out the SDC tower. Given that
our main tool is small black holes, our results hold in asymptotic regimes in moduli space;

1For a complementary viewpoint, see [33, 34].
2It would be interesting to explore connections with other proposals to produce stretched horizons

parametrically larger thank the Planck scale for small black holes, such as the fuzzball proposal (see [44–46]
for reviews).
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it would be interesting to extend our understanding to test recent proposal involving the
species scale in the interior of moduli space [30, 47, 48].

We expect that the emergence of species scale stretched horizons should hold beyond
4d systems. In fact, the main point of this work is to explore this question for D0-brane
solutions of 10d type IIA. These behave as 10d charged small black holes, of classically
zero size, and at whose core the dilaton runs off to infinitely strong coupling. Swampland
considerations imply that a species scale horizon should arise. However, despite the fact
that systems of N D0-branes have been under scrutiny for decades from diverse perspectives,
including supersymmetric quantum mechanics [49, 50], M(atrix) theory [51], holography [52],
their combination [53], and MonteCarlo simulations (see [54] for a recent update), the only
discussion about D0-brane horizons seems to have appeared in [55].

We will provide several arguments for the existence of this species scale horizon for D0-
brane solutions; our arguments include microstate counting, finite temperature considerations
and the analysis of higher curvature terms using (a 10d version of) the entropy function. On
the other hand, we compute the familiar higher curvature R4 terms arising from emergence
by integrating out the SDC tower of BPS particles (which are D0-branes themselves) and
show that it does not suffice to generate the horizon. Hence, the appearance of the species
scale horizon implied by Swampland considerations demands the inclusion of further higher
derivative corrections. Indeed, we show that one indeed gets a finite size species scale horizon
once we include 8-derivative terms involving curvatures and RR 2-form field strength, a
computation which we carry out using a lift to 11d. This also nicely dovetails with the fact
that the species scale is the 11d Planck scale.

We regard this as impressive evidence of the non-trivial power of the species scale proposal,
which provides a rationale for the presence of these extra terms (which are otherwise largely
ignored in the literature), and hence probes deep UV properties of M-theory.

One general aspect in our analysis is that the limited knowledge of higher derivative
corrections implies that the computations can be carried out including only the leading terms.
However, the scales probed, and in particular the species scale, are such that in principle
the whole set of higher derivative terms contribute in comparable amounts (hence, the use
of leading is misleading). The key point however is that the main effect of the correction
is to turn the singular behaviour of the two-derivative approximation into a smoothed out
behaviour controlled by the species scale, and it suffices to truncate the infinite set of
higher derivative terms to a tractable finite subset which captures the essence of this change,
namely the presence of the species scale horizon, with the expectation that the remaining
terms modify only order 1 numerical factors, but not the parametric dependence producing
the species scale. In fact, in specific setups, such as 4d small black holes, this has been
substantiated using scaling and other arguments [56, 57]. We expect this lesson to apply to
other setups as well, including the 10d type IIA D0-branes. For this case, we do not have
a clear argument why a truncation of the higher derivative terms suffices to capture the
existence and parametric dependence of the stretched horizon. It would be interesting to
argue for this, for instance by looking for general scaling properties of the higher derivative
terms in the type IIA effective action with the dilaton.

The paper is organized as follows. In section 2 we consider small black holes in 4d N = 2.
Section 2.1 reviews the attractor mechanism, including higher curvature corrections, and in
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section 2.2 we study a class of 4d small black holes, the appearance of a species scale horizon
from the higher curvature corrections, and the emergence of the latter from integrating out
an SDC tower of KK gravitons of M-theory on S1 (times the CY3). In section 3 we turn
to the case of 10d type IIA D0-branes, regarded as small black holes. In section 3.1 we
carry out a microscopic computation of the entropy of the system of N D0-branes and of
the appearance of the species scale scaling as N1/2. Section 3.2 presents a complementary
discussion of the computation of the entropy from the perspective of the finite temperature
deformation of the D0-brane supergravity solution.

In section 4 we study the appearance of the horizon from higher derivative terms in the
action. In section 4.1 we perform an entropy function analysis of the spacetime solution,
and show that general R4 corrections can lead to the appearance of a species scale stretched
horizon matching the microscopic results. In section 4.2 we consider the emergence of certain
supersymmetric R4 terms from integrating out the SDC tower in the limit explored by the
solution (which is a D0-brane tower, or equivalently M-theory KK gravitons). In section 4.3
we apply the entropy function to these terms and show they still do not lead to the appearance
of the horizon. Finally, in section 4.4 we show that including terms involving the RR 2-form
field strength one recovers the species scale horizon for the system. We offer some final
thoughts and future prospects in section 5.

2 Warmup example: 4d small black holes

In this section, we illustrate our picture of the diverse appearances of the species scale using
small black holes in 4d N = 2 EFTs obtained from compactifications of type IIA theory
on a Calabi-Yau threefold. As is well known, there are large classes of BPS black hole
solutions displaying the attractor mechanism [15]: vector multiple moduli vary along the
radial direction, and, in the AdS2 × S2 near-horizon geometry, attain values which are fixed
in terms of the black hole charges and are independent of the asymptotic value of the moduli
(while hypermultiplets remain fixed all along the flow). Small black holes correspond to
solutions where the attractor mechanism drives the scalars to infinite distance in field space,
leading to a horizon of formally zero size and to a singularity. As has been studied extensively
in the literature (see [57, 58] for reviews), higher curvature corrections generically lead to a
stretched horizon and a finite entropy, matching microscopic computations in many classes
of examples. In section 2.1, we summarize these developments and describe the case of a
specific class of small black hole solutions in full detail.

Our new angle is discussed in section 2.2, where we argue that the Swampland Distance
Conjecture infinite tower of states becoming light in the infinite distance limit corresponding
to small black holes is precisely responsible, via emergence, for the appearance of higher
derivative terms producing the stretched horizon. We thus link the appearance of the species
scale as derived from the SDC tower, as controlling higher derivative corrections, and as
setting the size of the smallest possible black hole in the effective field theory. It is amusing
to see that swampland ideas play such a central role in the almost three decade-long success
story of microstate explanation of black hole entropy.3

3For other approaches to the Distance Conjecture and Black Holes, see [19–21, 28, 30, 59, 60]. For the
interplay of higher curvature corrections and swampland constrains, mainly the Weak Gravity Conjecture [61],
see e.g. [62–64].

– 4 –



J
H
E
P
0
1
(
2
0
2
4
)
0
0
3

2.1 4d N = 2 supergravity, attractors and higher derivative corrections

2.1.1 N = 2 supergravity black holes
Type II string theory on a Calabi-Yau threefold gives 4d N = 2 supergravity theories. We
will focus on the physics in vector multiplet moduli space, as hypermultiplets are inert.
Including the graviphoton, there are nV + 1 gauge bosons, labelled by I = 0, . . . , nV . The
structure of the bosonic Lagrangian is

L = R− 2giȷ̄ ∂µzi∂µz̄ ȷ̄ + ImNIJ F
I
µν F

J µν + ReNIJ F
I
µν

ϵµνρσ

2√−g
F J
ρσ , (2.1)

where the different quantities are defined using special geometry (see [65] for reference). The
scalars are parametrized by a set of projective coordinates XI , and the Kähler potential is
determined by the prepotential F (X), a holomorphic function of degree 2, as

K = − log i
(
X̄IFI −XI F̄I

)
, with FI = ∂IF . (2.2)

The gauge kinetic functions NIJ are also determined by special geometry, but we will skip
its detailed structure.

The microscopic description in type IIA theory is as follows. There are h1,1 vector
multiplets whose gauge bosons arise from the 10d RR 3-form integrated over 2-cycles ωi,
i = 1, . . . , h1,1. The Kähler moduli, complexified with the integrals of the NSNS 2-form
over the 2-cycles, give rise to the vector moduli; morally, the affine coordinates Zi. The
corresponding Fi ≡ ∂iF are asociated to the dual 4-cycles.

The structure of the prepotential in the large volume regime is

F0(X) = −1
6Cijk

XiXjXk

X0 , (2.3)

where Cijk are the integer triple intersection numbers of the Calabi-Yau. Away from the
large volume limit, the prepotential receives corrections from worldsheet instantons. Also,
as discussed later, certain higher derivative corrections can also be encoded in a corrected
prepotential.

The theory contains BPS black holes constructed out of D-branes wrapped on holomorphic
cycles in the CY. There is a vector of electric and magnetic charges Γ = (qI , pI). The central
charge is

Z = eK/2
(
qIX

I − FIp
I
)
. (2.4)

Regular black holes have a near-horizon AdS2 × S2 geometry. The values of the moduli at
the horizon and the entropy are fixed by the attractor equations

∂iZ(XI , X̄ Ī , qI , p
I)|h = 0 , S = π|Z(qI , pI)|h , (2.5)

where the subindex h indicates the value at the horizon. The solution can be expressed as

pI = Re[ChX
I
h] = ChX

I
h + C̄hX̄

I
h ,

qI = Re[ChFh I ] = ChFh I + C̄hF̄h I ,
(2.6)

where we have introduced C = −2iZ̄eK/2.
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In the type IIA setup, the charges q0 and qi correspond4 to D0-branes, and D2-branes
on 2-cycles, while the charges p0 and pi correspond to D6-branes on the CY and D4-branes
on 4-cycles.

A celebrated class (given its simple lift to M-theory [66]) is obtained by considering
sets of D4-branes wrapped pi times on the ith 4-cycle and a number q0 of D0-branes, for
|q0| ≫ pi ≫ 1. Its attractor behaviour can be easily analyzed in the large volume limit (2.3),
see [30] for a recent application. The attractor values for moduli, and the entropy, are
(we introduce q ≡ −q0)

X0 = −1
2

√
1
6Cijkpipjpk

q
, X i = − i

2p
i , S = 2π

√
1
6q Cijkpipjpk . (2.7)

The CY volume modulus at the horizon is thus

Vh =
√

q3

1
6Cijkpipjpk

. (2.8)

Note that we need q ≫ pi for a reliable large volume expansion. In section 2.2 we exploit this
class of models to build small black holes and discuss its corrections.

2.1.2 Higher derivative corrections and quantum attractors

The discussion of higher derivative corrections to the attractor mechanism has been studied
extensively in the literature. In particular, there is a class of N = 2 R2F 2g−2 F-term
corrections which are computed by the topological string, and whose effects on black holes can
be included systematically [67–69], see also [58, 70] for reviews. Following these references,
one uses the Weyl superfield Wµν = F+

µν −R+
µνλρθσ

λρθ + . . ., whose lowers component is the
(self-dual piece of the) graviphoton, and defines Υ = W 2. The F-term corrections can be
encoded in a degree 2 generalized prepotential

F (XI ,Υ) =
∞∑

g=0
Fg(XI)Υg . (2.9)

The lowest term F0 corresponds to the usual prepotential, and higher Fg’s are the genus g
topological string amplitude. In the presence of these corrections, the attractor equations
and the entropy are modified so we have

pI = i(XI
h − X̄I

h) , qI = i(FI(X,Υ)h − F I(X,Υh)) ,
Υ|h = −64 , S = π( |Zh|2 + 4Im(Υ∂ΥF )h ) . (2.10)

The structure of corrections near the large volume limit is

F (X,Υ) = −1
6Cijk

XiXjXk

X0 + di
XiΥ
X0 , (2.11)

4One should take into account induced D-brane charges, e.g. a single D4-brane wrapped on a K3 has −1
units of induced D0-brane charge due to Chern-Simons couplings to background curvature.
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where the Cijk are the triple-intersection numbers of the Calabi-Yau and the di are given
in terms of the second Chern classes of the Calabi-Yau by

di = − 1
24

1
64

∫

X6
c2(TX6) ∧ ωi (2.12)

with ωi a basis of H1,1(X6). While these corrections are present for general black holes,
for regular ones they are suppressed with respect to the two-derivative result. However,
they are crucial for small black holes for which the classical piece vanishes, so that the
extra pieces produce a non-zero entropy, namely a stretched horizon. In the following we
consider a particular class of small black holes, and show that the leading correction F1,
which contain 4-derivative R2 corrections, produce a stretched horizon. In section 2.2 we
will show that these corrections precisely follow from the SDC tower and that the horizon
size is controlled by the species scale.

We would like to point out that the results can also be derived in the formalism of
minimization of the entropy function in an AdS2 × S2 ansatz near horizon geometry [71].
The added terms in the Lagrangian encoded in the corrected prepotential contribute to a
modified entropy function. For small black holes, there is a run away but once the corrections
are included, the entropy function can actually be minimized, signaling the presence of a
horizon. This approach will be exploited in the 10d setup in section 4.1.

2.2 Small black holes, species scale horizons and the SDC tower

2.2.1 An illustrative class of stretched small black holes
We now consider a specific class of models, based on a 2-modulus version of the large volume
expansion (2.3). We take the prepotential

F = −X1(X2)2
X0 , (2.13)

where we have chosen C122 = 6 for simplicity. This is a simple template that can model
an internal space X6 given by K3×T2 (for which extensive studies of small black holes and
stretched horizons have been carried out, see [57] for a review), or K3-fibered CY threefolds.
The affine coordinates Z1 = X1/X0 and Z2 = X2/X0 correspond to the sizes of the T2 (or
the base P1 of the K3 fibration) and of the K3 (fiber), respectively.

We can easily build small black holes with a choice of non-zero charges p ≡ p1, q ≡ −q0,
and setting qi, p

0, p2 = 0. The central charge, in terms of ti = ImZi, is

Z = q + p(t2)2

2
√
2 (t1)1/2t2

. (2.14)

The attractor equations imply that t2 is stabilized at the horizon at

t2 =
√

q

p
, (2.15)

which is still in the large volume regime if q ≫ p, as we assume in the following. The attractor
mechanism also leads to t1 → ∞, so this scalar runs off to infinite distance in moduli space.
Consequently the overall volume in string units at the horizon also diverges:

e−Kh |X0
h|−2 = 8Vh = 8t1t22 → ∞ , (2.16)
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where the |X0
h|−2 factor accounts for the choice of projective coordinates on the special Kähler

manifold such that V is independent of the Kähler gauge. Using the formulas (2.5), the area
of the horizon and therefore the entropy vanish:

S = lim
t1→∞
t2=
√

q
p

π|Z| → 0 . (2.17)

We now show that the small black hole acquires a stretched horizon upon the inclusion
of the correction of the kind (2.11). In particular, we focus on the correction d1, so the
prepotential is

F = −X1(X2)2
X0 + d1

X1Υ
X0 , (2.18)

where the last two terms correspond to F1, the genus 1 topological string amplitude. This
corresponds to the class of solutions considered in [30] with pi = 0, i ̸= 1 (see also [57]
for a related class).

The moduli at the horizon and entropy are given by

Z1 = i

√
p q

2
√
d1Υh

, Z2 = 0 , S ∼ 4π
√
d1Υh p q . (2.19)

We see that the horizon no longer explores an infinite distance in moduli space and that the
entropy is non-vanishing. Hence the solution develops a stretched horizon that cloaks up
the singularity. The overall volume at the stretched horizon is modified by the curvature
corrections (see [58] and references therein) and is given by:

e−Kh |X0
h|−2 = 8Vh ∼ q(t1)h

p
∼ q3/2√

p d1Υh
, (2.20)

which is finite, and still in the large volume regime if q ≫ p.
Recall that the above result could have been obtained using the entropy function formalism,

but we skip its explicit discussion. Rather we turn to the discussion of the appearance of
the higher derivative correction from the SDC tower.

2.2.2 The species scale horizon
In a d-dimensional EFT weakly coupled to Einstein gravity, the species scale is given by:

Λs ∼
Md

N
1

d−2
s

, (2.21)

where Ns is the number of species below the species scale and Md is the d-dimensional Planck
mass. In EFTs obtained from string theory (or compactifications thereof), the number of light
species changes as one moves along the moduli space. Thus, the species scale is dependent
on the region of moduli-space under consideration. In particular, in infinite distance limits
in moduli space where infinite towers of states are becoming exponentially light [10], the
species scale falls as the number of light species increases drastically. In order to determine
the species scale, we must therefore study what infinite distance limit the (formerly) small
black hole was probing.
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Recall that the small black holes described in the previous section probes the infinite
distance limit t1 → ∞, with t2 fixed. Note that in this case, the overall volume modulus (2.16)
V ∼ t1(t2)2 also goes to infinity at the horizon, where V is the volume of the CY X6 in string
units. At fixed 4d Planck scale M2

p = M2
s V/g2s , the large V limit corresponds to a large gs

limit in string variables (a similar conclusion follows from the fact that the 4d dilaton lies
in a hypermultiplet, so it is constant along the attractor flow, hence V/g2s remains fixed).
Hence, the limit of our interest correspond to a large gs regime. There is therefore a tower of
D0-brane particles becoming light; this also follows from the fact that the central charge for k
D0-branes is given by ZD0 = k(t1)−1/2(t2)−1, which goes to zero in the limit. Actually, there
may be other towers of particles becoming light, but they correspond to branes wrapped on
some internal cycles, so they are suppressed in the regime q ≫ p. The D0-brane particles
thus encode the leading correction. Incidentally, we also note that the infinite distance limit
explored by the singular two-derivative solution is a standard decompactification limit to
M-theory compactified on X6, rather than an emergent string limit [72, 73]. Indeed, one can
show that the volume of the Calabi-Yau in M-theory units is related to the 4d dilaton and is
therefore constant, signalling that there is no decompactification to 11d M-theory.

The computation of the species scale in this infinite distance limit can be done in different
ways. We choose to focus on the approach of [48], where it was argued that higher derivative
corrections to the EFT could be used as a proxy for determining the species scale. In
this framework, the species scale acts as the energy scale that suppresses higher derivative
corrections to the EFT. This recipe was applied to the case of Calabi-Yau compactifications
of type II string theories to find that the species scales is given by:

Λs =
M4√
F1

, (2.22)

where once more, F1 is the genus 1 topological free energy. Taking (2.19) and F1 ∼ Z1d1Υ,
we see that at the horizon of the stretched black hole, we have:

S ∼
( Λs

M4

)−2
. (2.23)

The radius of the stretched horizon is therefore given exactly by the species scale.
Evaluating the species scale can also be done by counting the number of D0 states

that are light in the EFT, in the spirit of [39–43], using (2.21). In the next section we will
bridge these two interpretations of the species scale by showing how the higher derivative
corrections to the EFT Lagrangian originate from integrating out the tower of D0 states,
in the spirit of Emergence.

2.2.3 The SDC tower and higher derivative emergence
The SDC implies that the description of infinite distance limits in moduli space require
the inclusion of microscopic physics, in particular an infinite tower of states whose masses
decrease exponentially with the field distance [10]. On the other hand, in the previous section
we have argued that the singular behaviour of the solution is cloaked by a stretched horizon
if suitable higher derivative corrections are included. In this section we show that the two
UV ingredients are related, and in fact the distance conjecture implies the appearance of
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higher derivative corrections of the necessary kind to generate the stretched horizon. Hence,
the two explanations are two sides of the same phenomenon and link the different physical
interpretations of the species scale.

The key idea is that the R2 terms can be seen as generated by an infinite tower of
4d BPS D0-brane states, namely KK gravitons running on an S1 compactification of the
5d theory given by M-theory on X6. In fact, they correspond to the leading term in the
Gopakumar-Vafa expansion [74, 75] in the large volume limit (where the contribution from
D2-branes is subleading).

Indeed, M-theory on X6 contains 5d BPS states which correspond to 11d gravitons on
the groundstate of the X6 compactification. These are given by the K3 cohomology classes,
giving an overall multiplicity of 24, times a linear dependence on the Kähler modulus of
Z1. These 5d BPS states can run with KK momentum in the S1 compactification to 4d,
leading to the 4d tower of D0-brane states.5

Hence the problem is just the computation of 1-loop diagram, see [76] for computations in
this spirit (see also [77–82] for related computations in other setups). For later convenience, we
present the general n graviton scattering amplitude in d dimensions in the worldline formalism:

Ad,n = 1
n!πd/2

∑

k

∫
ddp

∫ ∞

0

dτ

τ
τn e

−τ

(
p2+ k2

R2

)
. (2.24)

Here τ is the worldline parameter, k is the KK momentum, and R is the S1 radius.
We want to obtain the R2 corrections to the effective action, which are encoded in two

graviton scattering. For pedagogical reasons, it is easier to start from the 6d perspective
of M-theory on K3×S1 and postpone compactifying on the T2. Thus, we particularize to
d = 6, n = 2. The above expression corresponds to the contribution of a single K3 ground
state, and diverges in two ways: because of the integral and because of the infinite sum.
Since the sum over momentum modes is infinite, we can perform a Poisson resummation,
so that both are nicely combined. We get

1
π3/2A6,2 = π3/2K̃

∫ ∞

0
dτ̂ τ̂1/2

∑

l

e−πτ̂R2l2 = CK̃ + ζ(3)
πR3 K̃ , (2.25)

where τ̂ = τ−1. This Poisson summation trades the KK momentum k for the winding number
l of the worldline along the S1. The only divergence is now in the l = 0 piece, which has been
isolated as the first terms in the second equality; C is an unknown coefficient regularizing the
divergence. Including the K3 ground state multiplicity of 24 and the T2 modulus dependence
upon compactification to 4d, we have

1
π3/2A4,2 = 24Z1

[
CK̃ + ζ(3)

πR3 K̃

]
, (2.26)

where K̃ is a 4d kinematical matrix. This is of the form introduced in the prepotential (2.18),
hence it is precisely of the form required to produce a stretched horizon. We note that the
same 4d result (2.26) could have been obtained via a 1-loop computation in the 10d theory

5The D0-brane tower is actually analogous to that we will consider in the 10d context in section 4.2, as
they are simply related by compactification.
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compactified directly on K3×T2, with the Z1 prefactor arising from the momentum integral
over the T2. Hence, the 4d coupling of interest arises from higher derivative emergence.

This nicely illustrates the links among the appearance of the species scale from the SDC
tower, the higher-curvature corrections and the stretching of a small black hole into the SPBH.

We finish with a comment in hindsight. It is a well-known fact that the R2 corrections
encoded in the corrected prepotential can be seen to arise from the compactification of
suitable 10d R4 terms [83]. For concreteness, focusing on the particularly simple case of
compactification on X6 =K3×T2, we start from the familiar 10d supersymmetric R4 terms,
and put two curvature insertions in K3 to get a 6d R2 term, with a prefactor of χ(K3) = 24;
upon further integration over T2 (which provides no background curvature) we obtain the
4d R2 term with the Z1 prefactor. It is easy to generalize this argument to general CY3
compactifications and obtain the corrections6 (2.11) with di essentially determined by the
second Chern classes of X6

di ∼ c2 i =
∫

X6
R ∧R ∧ ωi , (2.27)

where ωi are the Poincaré dual 2-forms of the basis 2-cycles. In fact, the above is the
simplest way to derive the 4d R2 corrections [83] (see [30] for a recent application). The
dimensional reduction just described underlies the fact that the 4d R2 terms can be obtained
from integrating out a tower of 5d KK gravitons is related to a similar derivation of 10d R4

terms from 11d M-theory gravitons, as we describe in section 4.2.

3 D0-branes and the species scale horizon

We now turn to the discussion of the system of N D0-branes in 10d type IIA theory. We
will argue for the existence of a stretched horizon controlled by the species scale, and explore
its appearance from higher derivative couplings and their interplay with emergence upon
integrating out the states in the corresponding SDC tower.

We start by describing D0-brane systems as small black holes in the theory. The relevant
part of the string-frame type IIA action is

S = 1
2κ2

∫
d10x

√−g

[
e−2ϕ (R+ 4∂µϕ∂µϕ)− 1

2 |F2|2
]
, (3.1)

where 2κ2 = (2π)7α′4. The D0-brane solution is

ds2 = f(r)−1/2(−dt2) + f(r)1/2(dx2⊥) ,

e(ϕ−ϕ∞) = f(r)3/4 , (3.2)

f(r) = 1 + ρ7g∞s N

r7
, with ρ7 = (4π)

5
2 α′ 72 Γ

(7
2

)
.

6Actually, there is one further constant correction to the prepotential, proportional to the Euler characteristic
χ(X6), arising from integrating R3 over the space X6, and reabsorbing the resulting correction to the 4d
Einstein term via a change of frame [83]. This will not be relevant for our discussion.
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We will be more interested in the Einstein frame action

SIIA = 1
2

∫
d10x

√−g

(
R− 1

2(∂ϕ)
2 − 1

2e
3
2ϕ|F2|2

)
, (3.3)

where, from now on, we use 10d Planck units. The D0-brane solution reads

ds2 = f(r)−7/8(−dt2) + f(r)1/8(dx2⊥) ,

e(ϕ−ϕ∞) = f(r)3/4 , (3.4)

f(r) = 1 + ρ7g∞s N

r7
, with ρ7 = (4π)

5
2 α′ 72 Γ

(7
2

)
.

Although not usually described from this viewpoint, this solution provides an interesting
analogy with small black holes in lower dimensional theories. It has an S8 horizon of zero size
at its core, where a scalar (the dilaton) goes off to infinite distance in moduli space, resulting
in a singularity. The latter is not worrisome, because it simply reflects the presence of a source,
whose microscopic description is beyond the two-derivative supergravity approximation.

On the other hand, swampland arguments would imply that, as we are driven to the core
of the solution, namely near infinite distance limit in the dilaton moduli space, the effective
field theory should include additional degrees of freedom, corresponding to an SDC tower
of states. Inclusion of these in the effective field theory leads to a lowering of the cutoff
scale and hence a minimal size for the system, which would naturally be associated to a
species scale horizon. In the following sections we provide several arguments that such a
horizon exists and is given by the species scale.

3.1 Microscopic derivation of the entropy and of the species scale

The most direct way to argue that the D0-brane system develops a finite size horizon is to
show that it has a large number of microstates, to which one can associate an entropy. This
provides a lower bound on the effective size of the system, by holographic bounds.7 In this
section we perform the microscopic computation of the entropy of a system of D0-branes
with total charge N (which is familiar from similar combinatorics problems in string theory),
and also explain the microscopic derivation of the species scale (which is a novel result).

Recall that consistency of the description of 10d type IIA as M-theory on S1 requires
that, for each value of k, there is exactly one threshold bound state in the k D0-brane system
(corresponding to the 11d graviton with k units of KK momentum) [84]. Hence, for a total
D0-brane charge N , the number of microstates is given by the number of partitions p(N).
The asymptotic behaviour for large N is given by the celebrated Hardy-Ramanujan formula

p(N) ∼ 1
4
√
3N

exp
(
π

√
2
3
√
N

)
. (3.5)

The entropy of this thermodynamic ensemble for large charge is thus

S ∼
√
N , (3.6)

7Note that in general the Bekenstein-Hawking area law gets corrected when the action includes higher
curvature terms; hence, this relation will be made more precise in section 4.1.
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up to logN corrections. It is tantalizing to speculate the latter may be related to similar
log corrections to the species scale discussed in [85].

The above expression implies that the corresponding horizon size in a gravitational
description of the system is parametrically larger than the Planck scale, as we will explain in
later sections. In fact, the expectation that it corresponds to the species scale can already be
supported from the viewpoint of microscopic combinatorics, as we show next.

One may have expected that, in order for a charge N black hole to be describable in
an effective field theory, the latter should include at least N species (i.e. different D0-brane
bound states). However, this is not correct and highly overestimates the number of species.
In fact, rephrasing the definition in [48], the number of species Ns should be the minimum
necessary to explain the entropy of black hole entropy. In other words,8 if we consider a
theory with the number of species given by k and want to build a charge N black hole, the
number of ways to do so is given by pk(N), the number of partitions of N with each part
not larger than k. This is equivalent to the number of partitions of N into at most k parts.9
A classic result in [88] gives the asymptotic behaviour

limN→∞
pk(N)
p(N) = exp

(
− 2

C
e−

1
2Cx

)
(3.7)

for
k = C−1N

1
2 logN + xN

1
2 , with C = π

√
2
3 . (3.8)

Summing up, on the one hand the entropy of a black hole made out of N D0 branes in a
theory with k species is given by pk(N) in (3.7). On the other, we know the entropy of such
a black hole is given by p(N) ∼

√
N by microstate counting. We now show that this scaling

can be also recovered if and only if the number of species in the theory is at least of order√
N . Indeed, equation (3.7) gives an order one number as N → ∞ (so that both p(N) and

pk(N) are of the same order) unless x → −∞. Imposing that x should be bounded from
below, (3.8) automatically implies that k ≳

√
N asymptotically, where we are ignoring a

multiplicative logN correction. Hence, the number of species Ns =
√
N suffices to explain

the black hole entropy scaling. Equivalently, most microscopic configurations can be built
using blocks of bound states of at most Ns =

√
N D0-branes.

In fact, we incidentally note that the distribution is dominated by states containing
at least one bound state of exactly Ns =

√
N D0-branes. Following [89], we introduce the

number p(N, k) as the number of partitions of exactly k parts (equivalently, partitions with
at least one part exactly equal to k). One can define a probability measure for the likelihood
of a random microstate containing at least one bound state of k D0-branes:

fN,k = p(N, k)
p(N) ,

N∑

k=1
fN,k = 1 . (3.9)

8Similar counting problems arise in many other setups, for instance characterizing 1/2 BPS states with
potentially large R-charges in AdS/CFT, see e.g. [86, 87].

9The equivalence is clear by using the relation of partitions with Young diagrams. A partition of N = l1 +
. . . + lk with li ≥ li+1 with at most k parts can be depicted as a Young diagram with N boxes arranged in k

rows of lengths li. By conjugating the diagram, i.e. exchanging the roles of rows and columns, it corresponds
to a partition of N with arbitrary number of parts, but each part being at most k.
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Defining the quantity

X(k) = k√
N

− 1
C

log n , (3.10)

the probability distribution takes the asymptotic form

fN,k ∼ e−
C
2 e

− 2
C

X(k)
− e−

C
2 e

− 2
C

X(k−1)
. (3.11)

The probability was shown in [90] to be maximized at a value

k0 ∼
√
6
π

√
NL+ 6

π2 (3(L+ 1)/2− L2/4)− 1
2 , with L = log(

√
6N/π) . (3.12)

This shows that the species scale is exactly given by Ns =
√
N (and for instance, not smaller),

as we had anticipated.
In the previous description, we simply used the microscopic D0-brane combinatorics, and

the abstract definition of species scale. In an actual spacetime description of the system, it
will be manifest that the D0-brane stack is a small black hole exploring the infinite distance
limit of strong coupling, i.e. decompactification to 11d Mtheory. This will allow for the
interpretation of the species scales as the 11d Planck scale. We thus turn to the description
of the stretched horizon and the species scale from the spacetime perspective.

3.2 Hot D0-branes

In the previous section we have argued that the D0-branes solution develops an species scale-
sized stretched horizon. Naively, a direct approach to confirm the existence of a stretched
horizon would be to solve the equations of motion including all the higher derivative corrections.
However, given the lack of knowledge about the precise form of all such corrections, this
is actually not feasible. In this section, we propose an alternative way to use spacetime
equations of motion to explore the finite entropy of the system, in a universal way insensitive
to the details of such corrections. We can explore the resolution of the singularity by studying
the system at a finite temperature, and determine its properties as a function of N in the limit
of vanishing temperature. We will find that the entropy goes as N

1
2 , in perfect agreement

with the microstate counting of the previous section. This provides further evidence that the
would-be stretched horizon of a stack of D0 branes should have an area that scales as N

1
2 .

We take the near-extremal (finite temperature) solution for D0-branes (see e.g. [52]),
with a horizon r0. This comes down to introducing factors of

f0 =
(
1− r70

r7

)
(3.13)

in the metric (3.4), where r0 is tied to the energy density ϵ of the branes above extremality:

r70 ∼ α′4g2s ϵ . (3.14)

In the limit where ϵ → 0, we recover the extremal (zero temperature) stack of D0 branes.
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In the spirit of the gauge/gravity correspondence for general D-branes in [52], we will
carry out the computation of the entropy in the near-horizon limit

r → 0 , α′ → 0 , U = r/α′ = fixed , g2QM = (2π)−2gsα
′−3/2 = fixed . (3.15)

Here gQM is the coupling of the D0-brane worldvolume quantum mechanics. It is useful to
define the dimensionless coupling at some energy scale U

g2eff ∼ g2QMNU−3 ∼ λU−3 , (3.16)

where λ = g2QMN is the (dimensionful) ’t Hooft coupling.
The solution in the limit becomes

ds2

α′ = − U7/2
√
d0λ

f0 dt
2 +

√
d0λ

U7/2

(
dU2

f0
+ U2dΩ2

8

)
,

eϕ = (2π)2
d0

1
N

(
λd0
U3

)7/4
∼ g

7/2
eff
N

, (3.17)

where
d0 = 240π5 , U7

0 = a0 g
4
QM ϵ, a0 =

4480π7

3 . (3.18)

The horizon U0 can be expressed in terms of the temperature as:

T−1 = 4
7π
√
λd0U

−5/2
0 . (3.19)

We now move on to the Einstein frame to compute the entropy. The Einstein frame spatial
metric reads [91]:

ds2E = CU−7/8
(
dU2

f0
+ U2dΩ2

8

)
with C = l2sN

1/2d
1/8
0

2πλ3/8 . (3.20)

It is convenient to introduce a new radial variable R, with dimension of length, defined as
U9/8 = (R2/C). The metric becomes:

ds2E = 256
81

dR2

1−
(
RH
R

)112/9 +R2dΩ2
8 , (3.21)

where RH has the parametric dependence

RH ∼
(

T

λ1/3

)9/40
N1/4ls . (3.22)

So the entropy of the finite temperature black hole in terms of the dimensionless temperature
T/λ1/3 is given by

S ∼ N2 × (T/λ1/3)9/5 . (3.23)

Restoring the powers of N hidden in T and λ, we get the scaling behaviour

S ∼ (U5/2
0 /g

5/3
QM )9/5N1/2 . (3.24)

In the limit U0 → 0, one recovers the familiar zero entropy result. However, the point that the
above computation shows is that entropy of the system, when cloaked with a fixed horizon
size, scales as N1/2, in agreement with our discussion in section 3.1.
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4 Species scale horizon from emergent higher derivative terms

It is useful to have a more direct intuition, at the level of the geometry, about the appearance
of the species scale horizon for D0-branes uncovered in the previous section. In analogy
with the 4d small black holes in section 2.2, we expect this horizon to show up once higher
derivative corrections are included in the effective theory, which become relevant precisely
at the species scale. Moreover, such new terms are expected to arise from integrating out
the towers of light particles associated to the infinite distance limit of the formerly small
black hole, in the spirit of Emergence.

In this section we work out in detail this picture for the D0-brane system. We first
show that generic 10d R4 corrections lead to a finite size horizon. We then consider the
specific R4 couplings arising from integrating out a tower of D0-brane states (i.e. 11d KK
gravitons), which constitute the SDC tower associated to the infinite distance limit probed
by the small black hole solution (decompactification to 11d M-theory). Interestingly we find
that these familiar R4 terms do not suffice to generate the finite size horizon for the system
(let alone a species scale one). Turning things around, this suggests that the appearance
of the species scale horizon demanded by the swampland considerations requires a crucial
role of new physics beyond the usually considered R4 terms. In fact, we include a specific
set of supersymmetric 8-derivative terms involving the RR field strength 2-form, tractable
via a lift to 11d Mtheory, and show that they do produce the species scale horizon, thus
confirming the swampland expectations.

4.1 Entropy function analysis of general R4 terms

It is well established that the existence and properties of stretched horizons for 4d small black
holes in theories with higher-curvature corrections can be studied using the entropy function
formalism [71]. The idea is to use the ansatz for a putative near horizon AdS2 solution to
evaluate an entropy function, and to extremize it with respect to its parameters. In this
section we apply a similar logic to the solution of D0-branes in 10d type IIA, and argue that
the introduction of higher curvature corrections leads to a stretched horizon for the system.

Before entering the discussion, let us make a general comment. In this section we
only include general terms involving only the curvature, but no other fields. This is for
tractability, since curvature terms lead to closed expressions which can be analyzed in a
model-independent way, and suffice to illustrate the fairly generic appearance of stretched
horizons. The discussion of other corrections can be carried out for instance if a specific
set of such correction is fixed, as we do in section 4.4 for a set of 8-derivative corrections
including curvature and the RR 2-form field strength.

4.1.1 The D0-brane solution at two-derivative level

We start by recovering the key features of the two-derivative solution of the D0-brane system
from the entropy function formalism [71], as warmup for coming sections. As explained
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above, we introduce an AdS2 × S8 ansatz:

ds2 = v1

(
−r2dt2 + 1

r2
dr2
)
+ v2dΩ2

8 ,

Frt = e , F̃θϕ1···ϕ7 = 0 ,

eϕ = gs ,

(4.1)

where v1 and v2 control the AdS and sphere length scales. For the 2-form field strength
this introduces electric but not magnetic charge at the horizon. Finally, the last equation
sets the value of the string coupling at the horizon.

The entropy function is given (modulo some irrelevant overall factor) by evaluating the
action at the near horizon ansatz (4.1) and applying a Legendre transform with respect
to e, namely

E(N, gs, v, β, e) = eN −
∫

S8
dΩ8

√−g L|h . (4.2)

To evaluate this quantity for the ansatz (4.1) we compute

√−g = v1v
4
2
√
gΩ8 = v5

β

√
gΩ8 , (4.3)

R = − 2
v1

+ 56
v2

= 56− 2β
v

, (4.4)

|F2|2 =
1
2!FµνF

µν = − 1
v21

e2 = −β2

v2
e2 . (4.5)

With hindsight, we have introduced new variables v = v2 and β = v2/v1, to describe the
overall length scale of AdS2 × S8 and the relative scale separation. The result is

E(N, gs, v, β, e) = eN −
8π4v3

(
β2e2g

3/2
s − 4(β − 28)v

)

105β . (4.6)

The goal is to extremize this function with respect to gs, v, β and e, expressing the
result in terms of the D0-brane charge N . We start with the extremization with respect
to e, which gives

∂E
∂e

= 0 → e = 105N
16π4βv3g

3/2
s

. (4.7)

Substituting this result, the entropy function reads

E(N, gs, v, β) =
105N2

32π4βv3g
3/2
s

+ 32π4(β − 28)v4
105β . (4.8)

We now extremize with respect to v and β, and get

∂E
∂v

= ∂E
∂β

= 0 → v7 = 1575N2

4096π8g
3/2
s

, β = 49 . (4.9)
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Incidentally, the approximately order 1 value of β (taking volume factors into account)
is natural from the absence of scale separation in AdS vacua [92]. The resulting entropy
function now reads

E(N, gs) ∼
N8/7

g
6/7
s

. (4.10)

We see that there is no well-defined extremum for the parameter gs, it lies at gs → ∞.
This simply reflects the fact that the D0-brane solution drives the dilaton to infinity in moduli
space at its core, as observed above from the 10d solution. Indeed, we can recover other
features of the 10d solution from the entropy function, by studying the scaling of different
quantities with gs. For instance, from (4.9) and (4.4), we have that in the gs → ∞ limit

v2 = v ∼ 1
g
3/14
s

→ 0 , R ∼ g3/14s → ∞ . (4.11)

Namely, we recover that the horizon volume goes to zero, and the scalar curvature blows
up with exactly the same scalings as would be obtained directly from the D0 solution at its
core. Note that the gs we consider in this section is to be compared to the dilaton near the
core of the D0 stack in the solution (3.4). Indeed, gs is the value of the string coupling at
the horizon of the would-be black hole, whilst g∞s in (3.4) is the string coupling infinitely
far away from the stack of branes.

We therefore recover that the process of extremization of the Wald entropy function of
the near-horizon geometry of a black hole electrically charged under the RR 2-form in 10d
describes the near-core behaviour of a stack of D0 branes. The fact that the Wald entropy is
only extremized for a value of the string coupling at the core that is blowing up, with a horizon
that tends to zero size is exactly the behaviour expected from small black holes, as in section 2.
We conclude from this that the Wald entropy formalism constitutes a reliable description of
D0-brane stacks as small black holes. In the next section, we will introduce higher derivative
corrections to the 10d supergravity which will affect the Wald entropy in such a way that the
same exact minimization procedure will lead to a finite sized black hole instead of a small one.

4.1.2 The D0-brane solution and higher derivative terms

In analogy with the 4d small black hole case, we may expect that the D0-brane solutions can
develop a stretched horizon upon the inclusion of suitable higher derivative corrections. In
10d type IIA the first corrections allowed by supersymmetry arise at 8-derivative level. There
is a vast literature devoted to the computation of these corrections at tree and one-loop level
(see e.g. [76, 93–98]). However, for the present purposes it will be more efficient to assume
the presence of general R4 corrections (the example of supersymmetric R4 corrections will be
discussed explicitly in section 4.3). Also, as explained earlier, we focus on terms involving
only curvatures, which allows for a tractable model-independent analysis. The inclusion of
terms involving other fields is discussed in section 4.4 for a specific set of supersymmetric
8-derivative terms including the RR 2-form field strength.

We now describe the entropy function computation in the presence of general R4 cor-
rections. The corrections can be written as a linear combination of all possible contractions
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between eight inverse metrics and four Riemann tensors with all the indices down. Inspecting
the ansatz in (4.1), we see that each inverse metric gives either a 1/v1 or a 1/v2 contribution,
while each Riemann gives either a v1 or a v2. In terms of v and β, this means that any of these
contributions will take the form βa v−4, with a ranging from −4 to 8. For instance, the a = −4
one corresponds to the case in which all the Riemanns give v1 and all the metrics give 1/v2,
while the a = 8 one corresponds to all the Riemanns giving v2 and all the metrics giving 1/v1.

Following this reasoning, we can write the R4 term evaluated at the horizon as

LR4 |h = −g1/2s

p12(β)
β4

1
v4

, (4.12)

where p12 denotes a degree 12 polynomial, and the minus sign is there for future convenience.
Note that we already make explicit the dependence on the string coupling, which is fixed to
that of the R4 terms arising at first loop in perturbative Type IIA string theory. Motivated
by having gs → ∞ at the core of the D0 solution at the two-derivative level, we are neglecting
the tree level piece. One could worry that even higher loop contributions would dominate
as gs → ∞, but they actually vanish. This has been considered previously in the literature
from the Type IIA perspective [76, 99, 100] and, as it will become clearer in section 4.4, it
is required for a consistent uplift to M-theory in this limit.

Including the extra term in (4.12), the entropy function (4.2) reads

E(N, gs, v, β, e) = eN − 8
105π

4βe2g3/2s v3 +
16π4v

(
g
1/2
s p12(β) + 2(β − 28)β4v3

)

105β5 . (4.13)

The extremization with respect to e is insensitive to the new R4 term, so the result is
again (4.7). Plugging this result, the entropy function reads

E(N, gs, v, β) =
105N2

32π4βg
3/2
s v3

+
16π4

(
g
1/2
s p12(β)v + 2(β − 28)β4v4

)

105β5 . (4.14)

In order to display the effect of the higher derivative term in the dilaton, let us now
consider the extremization with respect to gs. We obtain

∂E
∂gs

= 0 → gs =
105
16π4

√
3
2

β2N√
p12(β)v2

. (4.15)

We see that the new contributions generically stabilize the dilaton. We note that the solution
only exist if p12(β0) > 0, where β0 is the yet to be determined value for β extremizing the
entropy function. The latter is determined by the extremization with respect to v, namely

∂E
∂v

= 128π4(β − 28)v3
105β = 0 → β = 28 . (4.16)

Note that we again obtain a value compatible with the absence of scale separation, suggesting
that this property is fairly robust against inclusion of higher derivative corrections.

Finally, the extremization with respect to β gives

∂E
∂β

∣∣∣∣
β=28

= 0 → v4 = 4 p12(28)− 21 p′12(28)
175616 · 61/4 π2 p12(28)1/4

√
5N
7 , (4.17)
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where p′12(β) is the derivative of the polynomial with respect to β. Hence, the existence
of the solution requires

p12(28) > 0 , 4 p12(28) > 21 p′12(28) . (4.18)

We will see the explicit evaluation of such polynomials for a particular R4 correction in
section 4.3.

In conclusion, under fairly general circumstances, the presence of higher derivative
corrections suggests the existence of a stretched horizon for 10d D0-brane solutions. From
the above expressions, the scaling of its properties with N is

S ∼
√
N , v4 ∼

√
N , β = 28 , gs ∼ N3/4 , e ∼ N−1/2 . (4.19)

The entropy of the system scales as
√
N , in agreement with the microstate counting in

section 3.1. Notice that this, as well as all the scalings above, rely heavily in the string
coupling dependence made explicit in (4.12) and corresponding to the one-loop contribution
in perturbative Type IIA string theory. The string coupling at the horizon blows up as
N → ∞, which is consistent with neglecting the tree level contribution in this regime. In
the next section we will shed some further light on these scalings, since they lead to the
appearance of the species scale.

4.1.3 The species scale and cosmic censorship

The species scale. Here we shortly note that the above horizon scale indeed corresponds
to the species scale of the SDC tower associated to the infinite distance limit probed by the
solution. This infinite distance limit corresponds to a decompactification to 11d M-theory
(consistently with the above mentioned fact that the horizon value of gs gets strong in the
large N regime). The extra dimension is reconstructed by the SDC tower of D0 branes, whose
species scale corresponds to the 11d Planck scale. Restoring the 10d Planck scale, we have

Λs ∼ M11 ∼ g−1/12
s M10 ∼ N−1/16M10 , (4.20)

where we have used the scaling of gs with N in equation (4.19). It is indeed easy to show
that this coincides with the inverse radius of the stretched horizon. Using the scaling of
v with N in (4.19), we have

r−1
h ∼ v−1/2M10 ∼ N−1/16M10 . (4.21)

Let us note that this agreement is easily understood by the fact that the stretched horizon
arises from the competition between the classical and the R4 terms in the effective action.
The scale at which these two can compete indeed corresponds to one of the notions of the
species scale [47]. The fact that it matches the species scale associated to the tower of D0s can
be directly checked in the effective action and, as we explain in section 4.2, can be understood
from the emergence of higher derivative terms coming from integrating out the tower of D0s.
Here we see that these two notions of species scale also coincide with the one of the smallest
BH describable within the EFT, in this case the stretched horizon of the D0 black hole.
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The D0-brane bound state size scale. We have emphasized the appearance of a finite
size for the system from the spacetime viewpoint, via the appearance of a stretched horizon.
However, as any quantum system, the D0-brane system has a characteristic size, in particular
that associated to the size of the D0-brane bound states. This has been studied in particular
in the context of M(atrix) theory. In this context, the outcome of [51, 101–103], is an estimate
of the size of a bound state of N D0-branes scaling as

R ≳ N1/3M−1
11 . (4.22)

This grows with N in a way seemingly stronger10 than the stretched horizon size rh ∼ M−1
11

discussed above. However, an important observation is that (4.22) is derived in the limit of
gs → 0 with M11 fixed, with gs the coupling in flat space. Hence, for a proper comparison, in
the evaluation of the horizon size rh ∼ N1/16M−1

10 ∼ g
−1/12
s N1/16M−1

11 , one should not use
the horizon value gs ∼ N3/4 in matching M10, but rather consider gs as a free asymptotic
parameter. Thus, in the gs → 0 and M11 fixed limit, the horizon size is parametrically larger
than the size of the bound state of gravitons, which are effectively cloaked behind the horizon.

A cosmic censorship interpretation. The above considerations motivate a cosmic
censorship interpretation of our result, which provides a different angle to other uses of
cosmic censorship in the analysis of swampland constraints (see e.g. [104, 105]). The classical
2-derivative solution displays a singularity. In the full theory, the pathological implications
of such singularities must be avoided, either by some desingularization [106], addition of
extra degrees of freedom as in orbifolds, or the appearance of a horizon cloaking it. We
have shown that in our system the latter occurs via the use of higher derivative interactions,
despite the fact that it does not happen in the low-energy two-derivative approximation.
Interestingly, this happens in the realm of the effective field theory, on the verge of its validity.
This is again tied up to the notion of the species scale as that at which the tower of higher
derivative interactions becomes relevant.

4.2 The D0-brane SDC tower and higher derivative emergence

The infinite distance limit in moduli space explored by the core of the solution is the strong
coupling limit of type IIA theory, which corresponds to the decompactification limit of
11d M-theory on S1. The tower of states predicted by the swampland distance conjecture
corresponds to D0-brane states,11 namely the KK momentum states of 11d graviton multiplets.
The computation is indeed simpler in this 11d picture, and is a higher-dimensional version of
that encountered in section 2.2.3. In fact is a well-established story that this set of states
can lead, at the 1-loop level, to the appearance of higher derivative corrections to the 10d
effective action, which can be interpreted as tree- and one-loop level (in gs) terms of type
IIA theory [76], as we now discuss.

10Note that the stronger growth also holds even if we restrict to the dominant bound state of k ∼ N1/2

D0-branes, as in section 3.1, which would yield R ∼ N1/6.
11We expect readers not to confuse the D0-brane states in the SDC tower with the D0-branes sourcing the

solution in the previous sections.
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The terms we are going to compute are the t8t8R4 terms,12 in principle of the kind
included in the analysis in section 4.1.2 (see also section 4.3 for more details on their structure).
They are protected by supersymmetry, so only the 1-loop diagram of BPS 11d graviton KK
modes can contribute. These can be easily computed from a worldline formalism. Using
the general expression (2.24), integrating over continuous momenta, and particularizing for
d = 10, n = 4, we get

A10,4 =
√
π

2R K̃

∫ ∞

0

dτ

τ2
∑

k

e−πτR−2k2 , (4.23)

where the prefactor K̃ contains all the kinematics, and is the linearized approximation to
the t8t8R4 term in the effective action. As in the 4d case, the above expression diverges in
two ways: because of the integral and because of the infinite sum. We can perform a Poisson
resummation, so that both are nicely combined and we get

1
π3/2A10,4 = K̃

∫ ∞

0
dτ̂ τ̂1/2

∑

l

e−πτ̂R2l2 = CK̃ + ζ(3)
πR3 K̃ , (4.24)

where τ̂ = τ−1. This Poisson summation trades the KK momentum k for the winding
number l of the worldline along the S1. The only divergence is now in the l = 0 piece,
which has been isolated as the first terms in the second equality; C is an unknown coefficient
regularizing the divergence.13

As anticipated, the quantum corrections coming from the SDC tower lead to a higher
derivative R4 correction, in principle of the kind invoked to lead to a stretched horizon.
There remains to perform a detailed evaluation of these terms and their effect in the entropy
function argument, which we postpone to section 4.3.

An important remark is that the R4 correction obtained in this way is ambiguous. The
4-graviton scattering is an on-shell quantity that is invariant under local field redefinitions
gij → gij + δgij , which is usually used to get rid of terms involving Ricci tensors (see e.g. [55]).
However, since the AdS2 × S8 ansatz has a non-vanishing Ricci tensor, doing this is not
innocuous for our purposes. We will thus stick to the full t8t8R4 term, including Ricci terms,
as it is the natural kinematic function that appears in this computation à la Emergence.
That this tensor structure gives the full off-shell R4 correction to the effective action was also
suggested in [95]. As evidence for this, it was found that the terms containing no more than
one Ricci tensor, which were reliably computed from the vanishing of the worldsheet beta
function, precisely match the ones appearing in the t8t8R4 structure.

Higher derivative emergence. When translated to the Type IIA frame, the first and
second terms in (4.24) precisely reproduce the t8t8R4 tensor structure of the 1-loop and

12As we will explain in section 4.3, the actual 10d type IIA R4 terms contain a further piece with an ϵ10ϵ10
structure. This however does not contribute to 4-graviton scattering amplitudes, or conversely is not captured
by our 4-graviton 1-loop amplitude (it would require a 5-point computation). This is analogous to the similar
statements for the odd-odd structure in the R4 computation from scattering amplitudes in string theory, see
e.g. [107].

13In [76], it was fixed by T-duality upon further S1 compactification. In our present context, there is no
way of fixing it without this kind of extra UV information. It would be interesting if performing the sum over
KK modes up to the species scale one could reproduce its precise value, along the lines of [39–43].
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tree-level string perturbation theory contributions, respectively. Therefore, this establishes
that these can be interpreted as coming from integrating out the full tower of D0-particles,
as well as the fast-movers in the massless 10d sector. Let us remark that this result is
very much in the spirit of the Emergence Proposal, albeit for higher derivative terms rather
than just the kinetic terms.

Note also that the above computation integrates out the full tower of states, i.e. not just
up to the species scale as in [39–43]. In fact, interpreting the latter recipe as a regularization
procedure to be applied when integrating out infinite number of states, one could hope to
recover the right value for C; we leave this as an interesting open question. On the other
hand, notice that integrating the full tower is in the spirit of the recent proposals in [42, 43].
It would be interesting to explore these connections further.

4.3 Supersymmetric 10d R4 terms are not enough

In this section, we particularize the analysis in section 4.1.2 to the specific R4 terms appearing
in the Type IIA effective action (for a concrete choice fixing all the already mentioned
ambiguities concerning these terms). By plugging the AdS2×S8 ansatz, we will compute the
polynomial appearing in equation (4.12) and check the conditions in equation (4.18).

We will show that, perhaps surprisingly, these supersymmetric R4 terms do not satisfy
the constraints in section 4.1.2 required to generate a finite size horizon. Note that this
does not invalidate the analysis of the entropy function, but rather shows that the appear-
ance of the horizon from pure higher curvature terms demands the use of other possibly
non-supersymmetric terms. Alternatively, one can maintain the problem in the realm of
supersymmetric corrections, and include higher derivative couplings involving the RR 2-form
field strength; these go beyond the analysis in section 4.1.2, and will be discussed in section 4.4.

Hence, we focus on the supersymmetric R4 corrections in 10d type IIA theory. Following
the notation in [98], at the eight derivatives level, the type IIA action gets supplemented
by additional terms quartic in the Riemann tensor at both tree level and first loop in the
string coupling gs:

SIIA = Sclass
IIA + 1

3 · 211 (S
tree + Sloop) , (4.25)

where Stree and Sloop both arise at level α′3. In fact, it has been conjectured that these are
the only two contributions to this type of term in string perturbation theory [76, 99, 100].
They can be written as follows in the Einstein frame and in 10d Planck units:

Stree = ζ(3)
2

∫
d10x

√−g e−
3
2ϕ
(
t8t8R

4 + 1
8ϵ10ϵ10R

4
)

, (4.26)

Sloop = π2

6

∫
d10x

√−g e
1
2ϕ
(
t8t8R

4 − 1
8ϵ10ϵ10R

4
)

, (4.27)

where the form of the t8t8R4 and ϵ10ϵ10R4 structures can be found in appendix A. Let us
only consider the 1-loop term, which is the leading one as gs → ∞.
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Evaluating t8t8R4 and 1
8ϵ10ϵ10R

4 on the AdS2 × S8 near-horizon geometry (4.1),
one obtains:

t8t8R
4 = 192

(
3β4 + 56β2 + 2520

)

v4
, (4.28)

1
8ϵ10ϵ10R

4 = 161280 (4β − 1)
v4

. (4.29)

Therefore, the 1-loop term can be put in the form (4.12) if

p12(β) ∼ −β4
(
3β4 + 56β2 − 3360β + 3360

)
, (4.30)

where we are ignoring an irrelevant positive-defined prefactor. Now we can check the conditions
in (4.18) for the existence of an extremum of the entropy function. The second one is satisfied,
while the first one is not. This implies that the familiar R4 terms used so far do not suffice
to generate the stretched horizon for the D0 solution.

This does not invalidate the main claim that the system should develop a species scale
horizon. As explained earlier, we expect other higher derivative couplings to contribute
non-trivially, and the horizon may very well develop when they are ultimately included.
Indeed, we will show in the next section that a simple modification of the above computation
promoted to M-theory allows to include couplings involving the RR 2-form F2, and lead to
a non-trivial species scale stretched horizon for the D0-brane system.

4.4 Including F2: species scale D0-brane horizon from M-theory couplings

In the previous section we showed that 10d supersymmetric R4 terms do not generate a
finite size horizon. Hence, the requirement that there should arise species scale horizon,
as demanded by swampland considerations, implies that one should look further. One
possibility is to consider other possibly non-supersymmetric pure higher curvature terms. A
more attractive avenue is to stay in the realm of supersymmetric terms but include higher
derivative couplings involving the RR 2-form field strength F2. These go beyond the analysis
in section 4.1.2, but, once a specific set of couplings is fixed, are amenable to a direct study
again via the entropy function.

In this section we include such terms, completing the analysis at the supersymmetric
eight derivatives level of the effective action. The most efficient way of doing this is by
encoding these terms in the 11d M-theory effective action, since both the 10d metric and
RR 1-form become part of the 11d metric. This is, by encoding the extremal near-horizon
ansatz in the 11d metric and plugging it into the M-theory effective action, supplemented by
R4 terms, we can effectively recover the 10d Lagrangian evaluated at the horizon including
both R4 and terms involving F2. Let us remark that we will keep the 10d point of view at all
times to focus in the presence of a stretched horizon for the D0 solution. This is, here we
think about the 11d effective action as just an efficient way of encoding the eight derivatives
terms involving F2 and evaluating them at the extremal near-horizon ansatz.

Our analysis is close to that in [55], with the difference that we emphasize the 10d
perspective in the computation. Even though we find analogous results, an important
difference in the analysis is that we keep the full t8t8R4 structure, while only purely Riemannian
terms were included in [55]. As already discussed in section 4.2, the Wald entropy analysis
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is sensitive to the terms including the Ricci tensor which, via Emergence, are naturally
encoded in the t8t8R4 structure. This is consistent with the results obtained in [95], where
the terms in t8t8R4 including one Ricci tensor were unambiguously shown to appear in the
Type IIA effective action.

Following again the notation in [98], and setting the three-form to zero for our purposes,
the M-theory effective action can be written at the eight derivatives level as

SM = 1
2κ211

∫
d11x

√
−ĝ

(
R̂+

(
4πκ211

)2/3

(2π)4 · 33 · 213
(
t̂8t̂8R̂

4 − 1
24ϵ11ϵ11R̂

4
))

. (4.31)

To simplify the computations, we will take κ11 = 1.14 The t̂8 and ϵ11 tensors are defined in
complete analogy with the Type IIA case. In fact, after writing these terms as contractions
of four Riemann tensors, the 11d R4 term look exactly the same as the 10d one. More details
about these structures can be found in appendix A.

As it is well-known, the circle compactification ansatz from 11 to 10 dimensions is:

ds̃2 = e−
1
6ϕds2 + e

4
3ϕ (dz − Cµdx

µ)2 . (4.32)

Plugging this into the effective action recovers the 10d Einstein frame Type IIA effective
action up to the eight-derivative level. Instead of doing this and then taking the extremal
AdS2 × S8 near-horizon ansatz, we perform the computation at the level of M-theory. That
is, we first encode the AdS2×S8 ansatz into the 11d metric, and then we plug it into the 11d
effective action. This allows us to read off the 10d Lagrangian evaluated at the horizon. For
this last step, we need to take into account the relation between the 11d and 10d determinant
of the metric appearing in the action. This gives the following relation:

LIIA|h = g−1/6
s LM |11d ansatz . (4.33)

To encode the extremal AdS2 × S8 near-horizon geometry in the 11d metric ansatz, we just
plug equation (4.1) into (4.32) to get

ds̃2 = −g−1/6
s v1

(
r2dt2 + 1

r2
dr2
)
+ g−1/6

s v2 dΩ2
8 + g4/3s (dz − e r dt)2 . (4.34)

Evaluated on this ansatz, the 11d Ricci scalar reads

R̂ = g1/6s

β2e2g
3/2
s − 4v(β − 28)

2v2 , (4.35)

where we introduced new variables v = v2 and β = v2/v1 as we did in section 4.1.1. When
plugged into (4.33), this recovers the two-derivative piece of the Type IIA Lagrangian
evaluated at the horizon (cf. equation (4.6)).

14Even though this might seem to imply that the results will be in 11d Planck units, when mapping to the
type IIA Einstein frame, the 11d Planck scale gets traded for the 10d one. Thus, the final results are actually
in 10d Planck units.
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Similarly, we evaluate the M-theory R4 terms in this ansatz, getting
(
t̂8t̂8 −

1
24ϵ11ϵ11

)
R̂4 = 3g2/3s

4v8
(
287β8e8g6s − 1392β7e6g9/2s v

+ 32
(
83β2 + 308

)
β4e4g3sv

2

− 768
(
3β3 + 28β − 280

)
β2e2g3/2s v3

+ 256
(
3β4 + 56β2 − 3360β + 3360

)
v4
)
.

(4.36)

As a check, we can recover the Type IIA R4 result from the previous section by setting e = 0
and plugging (4.36) into (4.33) (cf. equation (4.28) with the g

1/2
s factor appearing in (4.12)).

Putting these two results together in the 11d Lagrangian, using equation (4.33) and
plugging the result into the definition of the entropy function in (4.2), we finally obtain:

E(N,gs,v,β,e)= eN −
8π4v3

(
β2e2g

3/2
s −4(β−28)v

)

105β

−
(π
2
)2/3 g

1/2
s

2580480v3β

(
287β8e8g6s−1392β7e6g9/2s v+32

(
83β2+308

)
β4e4g3sv

2

−768
(
3β3+28β−280

)
β2e2g3/2s v3+256

(
3β4+56β2−3360β+3360

)
v4
)
.

(4.37)

Here we have already performed the integral in equation (4.2), taking into account the
determinant of the metric evaluated in the ansatz as given in (4.3).

The entropy function turns out to be rather involved, and we cannot extremize it
analytically. Doing so numerically would require fixing N to a set of different values,
extremizing the entropy function for each of these and then fitting the dependence on N of
the various quantities (gs, v, . . . ). Instead of doing so, let us perform a change of variables
inspired by the scalings found in section 4.1.2. We define

gs = g̃sN
3/4 , v = ṽ N1/16 , β = β̃ , e = ẽ N−1/2 . (4.38)

Introducing this into the entropy function, we get

E(N,g̃s, ṽ, β̃, ẽ)=
√
N

[
ẽ−

8π4ṽ3
(
β̃2ẽ2g̃

3/2
s −4(β̃−28)ṽ

)

105β̃

−
(π
2
)2/3 g̃

1/2
s

2580480 ṽ3β

(
287β̃8ẽ8g̃6s−1392β̃7ẽ6g̃9/2s ṽ+32

(
83β̃2+308

)
β̃4ẽ4g̃3s ṽ

2

−768
(
3β̃3+28β̃−280

)
β̃2ẽ2g̃3/2s ṽ3+256

(
3β̃4+56β̃2−3360β̃+3360

)
ṽ4
)]

.

(4.39)

This change of variables does the important job of factoring out all the N -dependence in the
entropy function, which is very non-trivial since all the terms had to conspire to give the
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same overall
√
N factor. Thanks to this, we can now focus on the terms in parenthesis and

look for its N -independent extrema numerically. If an extremum exist, then we see that the
scalings we found in section 4.1.2 are automatically guaranteed. Furthermore, given that
the overall factor in front of the entropy function is

√
N , the scaling of the entropy from

the microscopic counting in section 3.1 is also automatically guaranteed.
Finally, we look for extrema of the terms in parenthesis in the previous equation or,

equivalently, of E(1, g̃s, ṽ, β̃, ẽ). This cannot be done analytically, so we perform a numerical
search. The result is the following extremum:

g̃s ≈ 2.90365 , ṽ ≈ 0.159653 , β̃ ≈ 14.0556 , ẽ ≈ 0.0479134 . (4.40)

For these values, one can check that the derivatives of the entropy function are 14 orders
of magnitude smaller than the value of function itself. This indicates that, to a very good
approximation, this is an extremum of the entropy function. To make this extremum more
apparent, we can fix one of the variables to its value at the extremum and display the
three-dimensional gradient flow. This is shown in figure 1, where we can see the presence of a
non-trivial extremum. As it can be checked also by direct computation, we also see that the
extremum is in fact a saddle point. This fact is not relevant for the Wald entropy formalism,
that only requires the presence of an extremum. It would be interesting to understand
the thermodynamical stability of this stretched horizon, somewhat along the lines of [55].
However, this analysis presumably requires a systematic inclusion of even higher derivative
terms to achieve control of order one factors.

In conclusion, we found that the Type IIA action including all terms up to the eight
derivative level captures the presence of the species scale stretched horizon for the D0 solution.
In addition, the entropy associated to the horizon nicely fits the microscopic counting and
the near-horizon AdS2×S8 is not scale separated. This gives support to the idea that, even
though a proper geometric treatment of a stretched horizon requires the inclusion of all the
infinite amount of higher derivative operators, the classical level and the (complete) first
non-trivial higher derivative level seem to suffice for capturing its presence and its scaling
properties with the species scale.

As in the case of 10d R4, the new set of higher derivative terms can be understood as
arising from integrating out the SDC tower of D0-branes, in the spirit of Emergence. Indeed,
since all these couplings are related by 11d Poincaré invariance, the computation of the
4-point amplitude is essentially unchanged. From the 10d perspective, the difference is that
instead of computing 4-graviton scattering one should consider processes involving the RR
1-form field. Their worldline vertex operators are directly related [108], hence the structure of
the 1-loop integral is essentially unchanged, and the changes only involve the kinematic tensor
structure. This computation is directly not available in the literature, but it can be regarded
as a 10d decomposition of the computation of the 11d R4 correction from the 4-point 1-loop
superparticle amplitude in [109]. This suffices to show the emergence from the SDC tower of
the required higher derivative terms beyond the purely gravitational sector.

5 Conclusions

In this work we have clarified the links among the different avatars of the species scale in
the swampland program: (i) as cutoff of the effective theory specially in the presence of the
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(a) gs fixed. (b) v fixed.

(c) β fixed. (d) e fixed.

Figure 1. Gradient flows of the entropy function with one of the variables fixed. Lighter/yellow
colors denotes bigger values for the gradient, while darker/blue colors denote smaller ones.

infinite SDC tower of light particles near infinite distance points in moduli space, (ii) the
scale at which terms in the infinite series of higher derivative corrections in the gravitational
sector start competing with the two-derivative level, (iii) as the size of the smallest black
hole which admits a description within the EFT.

Our analysis uses small black holes, whose cores probe infinite distance limits in field
space, at which we can characterize the SDC tower of states leading to the species scale
in avatar (i). Upon integrating out the tower of states, the theory generates a series of
higher-dimensional operators, naturally leading to avatar (ii) of the species scale. Finally,
including these corrections in the black hole solution triggers the appearance of a stretched
horizon of a size given by the species scale in avatar (iii).15

15It is worth noticing that we consider BPS small black holes, and that the quantum gravity effects we are
taking into account come in the form of supersymmetry protected higher derivative corrections. It would be
interesting to see how our results might extend to cases with less supersymmetry.
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We have provided quantitative examples of this phenomenon, both in a class of 4d small
black holes, and in the fascinating case of 10d type IIA D0-branes. The latter case turned out
to be highly non-trivial, as the appearance of the species scale horizon required understanding
of 10d 8-derivative terms involving not only the curvature but also the RR 2-form field
strength. The nice packaging of those terms into an 11d R4 correction is a tantalizing hint
that the species scale can serve as a powerful probe of the UV physics of M-theory.

The 10d D0-brane example displays an interesting feature: the objects making up the
small black hole are precisely of the same kind as those in the SDC tower for the corresponding
infinite distance limit. This feature arises in the microscopic explanation of the entropy for
other black holes in string theory; but the remarkable fact about the D0-brane case is that
the higher derivative terms coming from integrating out the tower of D0-branes are crucial
to generate a geometric horizon for the D0-brane black hole itself!

This motivates us to entertain the following picture. According to the most radical
interpretation of the Emergence Proposal [35–38], not only these higher derivative terms
but the very dynamics of gravity would emerge from integrating out the towers of states.
In this spirit, the emergence of species scale stretched horizons studied in this work would
potentially apply to any black hole horizon. This suggests a possible general picture for
the emergence of horizons in quantum gravity: in the UV, the natural quantum system to
consider would be that formed by the states in the tower, with no dynamical gravity. When
going down to the IR, the species in the tower are integrated out. It is reasonable to expect
that this effective description cannot describe the previous physical system in full detail, but
it should be able to codify its coarse-grained properties, i.e., its macrostate. How is this
made possible? In the IR, gravity emerges and the system would be replaced by a black
hole that precisely reproduces this macrostate. In this sense, the emergence of a horizon
would be somehow required for the effective description to be able to keep the macroscopic
information about the formerly considered physical system.

It is also tantalizing to speculate that the entropy of the black hole is nothing but a
reflection of the entanglement entropy of the species after their degrees of freedom are traced
out. This goes in the spirit of ER=EPR [110], the N-portrait picture [111], or of the literature
on thermal M(atrix) theory black holes, see e.g. [112–118] (also [119, 120] for more recent
developments). On a related note, it would be interesting to understand if and how this
system made out of species could radiate and reproduce the evaporation of the black hole,
perhaps along the lines of [31].

Back to more earthly matters, our work suggest several interesting questions for further
research, for instance:

• We have focused on the interpretations of the species scale in asymptotic regions of
moduli space, which are those naturally explored by small black holes. It would be
interesting to extend our concept of unification of the three notions of species scale
and gain a similar understanding in the interior of moduli space, connecting with the
proposal in [30, 47, 48, 121], perhaps using large black hole probes as in [28].

• Even in asymptotic regimes, there is a strong ongoing activity in understanding the
precise treatment of the species scale in the process of integrating out the SDC tower of
states, with different proposals [39–43]. We hope the appearance of such computations
in our setup can serve to clarify the proper physical procedures.
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• The non-trivial constraints on higher derivative corrections for the appearance of
stretched horizons are reminiscent of similar conditions derived from positivity con-
straints in the swampland program or in the S-matrix bootstrap, see e.g. [62, 122–124].
It would be interesting to explore this possible connections further.

• The AdS2 × S8 ansatz in the entropy function analysis suggests, via holography, the
possible appearance of IR superconformal behaviour in the worldvolume theory on
the D0-brane, once the equivalent to the higher derivative corrections are taken into
account. It would be interesting to find further quantitative evidence for this proposal
from the field theory side.

• It would be interesting to see whether some of our results extend to lower codimension
cases. Higher-dimensional objects that probe infinite distance in field space and are
singular in the EFT (such as the End-of-the-World branes of [20, 24, 26, 125–128]16)
could, in the same way as the small black holes, be shown to develop a species scale
sized horizon using a modified version of the entropy function formalism.

• In some instances, higher derivative corrections have been shown to create new singu-
larities on the horizon of large black holes [139]. This is to be put in contrast with
our work, where curvature corrections instead smooth out singularities. It would be
interesting to better understand the mechanisms that make it such that curvature
corrections can seemingly both create and smooth out singularities in the EFT.

• There are interesting recent development regarding the possibility of log corrections
to the species scale [41, 48, 85]. In this respect, it is tantalizing that our microscopic
considerations in section 3.1 lead to such corrections. It would be interesting to exploit
our techniques to shed some light on this question.

We hope to come back to these questions in the near future.
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A Tensor structure of R4 corrections

In this appendix we recall the form of the t8t8R4 and ϵ10ϵ10R4 terms arising in 10d type IIA
theory (and closely related to those in 11d M-theory). We follow closely the notation in [36].

Let us start with the t8t8R4 structure, which denotes

t8t8R
4 = tA1···A8

8 tB1···B8
8 RA1A2B1B2 · · · RA7A8B7B8 , (A.1)

16For the related topic of solutions in theories with dynamical tadpoles, see [129–132] for early work
and [133–138] for related recent developments.
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where the t8 tensor can be written in terms of the metric as17

tA1···A8
8 = 1

5
[
−2
(
gA1A3gA2A4gA5A7gA6A8+gA1A5gA2A6gA3A7gA4A8+gA1A7gA2A8gA3A5gA4A6

)

+8
(
gA2A3gA4A5gA6A7gA8A1+gA2A5gA6A3gA4A7gA8A1+gA2A5gA6A7gA8A3gA4A1

)

−(A1↔A2)−(A3↔A4)−(A5↔A6)−(A7↔A8)
]
. (A.2)

After contracting all the metrics in t8 with the Riemman tensors in (A.1), the t8t8R4

structure can be written as:

t8t8R
4 = 12

(
RA1A2A3A4RA1A2A3A4

)2

+ 192 R A5 A6
A1 A3

RA1A2A3A4R A7 A8
A2 A4

RA5A7A6A8

− 192 R A5
A1A2A3

RA1A2A3A4R A6A7A8
A4

RA5A6A7A8

+ 24 R A5A6
A1A2

RA1A2A3A4R A7A8
A3A4

RA5A6A7A8

+ 384 R A5 A6
A1 A3

RA1A2A3A4R A7 A8
A2 A6

RA4A8A5A7

− 96 R A5A6
A1A2

RA1A2A3A4R A7A8
A3A5

RA4A6A7A8 .

(A.3)

Similarly, ϵ10ϵ10R4 structure denotes

ϵ10ϵ10R
4 = ϵC1C2A1···A8

10 ϵ10 C1C2B1···B8 R
B1B2

A1A2
· · · RB7B8

A7A8

= −2 · 8! δA1
[B1

· · · δA8
B8]R

B1B2
A1A2

· · · RB7B8
A7A8

,
(A.4)

where, in the last line, we have used the usual identity for contracting Levi-Civita tensors
(cf. equation (A.1) in [36]). Contracting all the Kronecker delta functions with the Riemann
tensors in (A.4), the ϵ10ϵ10R4 structure can be written as:
1
8ϵ10ϵ10R

4 =

−12
(
RA1A2A3A4RA1A2A3A4

)2

−192R A5 A6
A1 A3

RA1A2A3A4R A7 A8
A2 A4

RA5A7A6A8

+192R A5
A1A2A3

RA1A2A3A4R A6A7A8
A4

RA5A6A7A8

−24R A5A6
A1A2

RA1A2A3A4R A7A8
A3A4

RA5A6A7A8

+384R A5A6
A1A2

RA1A2A3A4R A7 A8
A3 A5

RA4A8A6A7

+384R A5 A6
A1 A3

RA1A2A3A4R A7 A8
A2 A5

RA4A7A6A8−768RA1A2R A3 A4
A1 A2

R A5A6A7
A3

RA4A5A6A7

+384RA1A2R A3A4A5
A1

R A6A7
A2A3

RA4A5A6A7+96RA1A2R
A1A2 RA3A4A5A6R

A3A4A5A6

−1536RA1A2R A3A4A5
A1

R A6 A7
A2 A4

RA3A7A5A6+768RA1A2RA3A4R A5 A6
A1 A2

RA3A5A4A6

−768R A3
A1

RA1A2R A4A5A6
A2

RA3A4A5A6−32RR A5A6
A1A2

RA1A2A3A4RA3A4A5A6

+128RR A5 A6
A1 A3

RA1A2A3A4RA2A6A4A5−768RA1A2RA3A4R A5 A6
A1 A3

RA2A5A4A6

−384RA1A2RA3A4R A5A6
A1A3

RA2A4A5A6+1536R A3
A1

RA1A2RA4A5RA2A4A3A5

+384RRA1A2R A3A4A5
A1

RA2A3A4A5−24R2 RA1A2A3A4R
A1A2A3A4

−384RRA1A2RA3A4RA1A3A2A4−192
(
RA1A2R

A1A2
)2

+384R A3
A1

RA1A2R A4
A2

RA3A4

−256RR A3
A1

RA1A2RA2A3+96R2 RA1A2R
A1A2−4R4 . (A.5)

17Notice the change of prefactor with respect to equation (B.3) of [36], so that, after expressing this structure
as contractions of four Riemann tensors, the result matches that in [95].
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Evaluating on Mathematica each of the contractions in (A.3) and (A.5) on the AdS2 × S8

ansatz in (4.1), adding them up, and substituting v = v2 and β = v2/v1, we get to the
result reported in equation (4.28).

As we used in section 4.4, both the t̂8t̂8R̂4 and the 1
24ϵ11ϵ11R̂

4 structures appearing
in the M-theory effective action in equation (4.31) look exactly the same as the terms we
just discussed. This is, once written in terms of contractions of 11d Riemman tensors, they
precisely reduce to the ones in (A.3) and (A.5). Evaluating these contractions on the 11d
metric ansatz in (4.34) with Mathematica, we recover the result in (4.36).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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5 
Global summary of results and discussion 

In this thesis, we investigated the implications of implementing dynamical change of the 
topology of spacetime, as should be allowed by a background independent theory of QG. In 
a frst part, we studied dynamical realizations of the processes predicted by the cobordism 
conjecture, in the context of the Swampland Program. This allowed us to characterize the 
singular extended objects that play the role of implementing these processes. Then, we 
studied how bordism groups can detect global gauge/difeomorphism anomalies in theories 
of quantum gravity. Finally we explored the diferent ways in which (singular and smooth) 
extended objects in string theory can, or not, be used as probes of UV physics. Let us 
briefy summarize the key points and the main results of each of the seven articles. 

In Chapter 2, we studied various aspects of dynamical realizations of cobordisms 
to nothing. These are solutions to the equations of motion that run along a spacetime 
dimension and where the compact space pinches of at fnite distance in spacetime. 

In the frst article, we considered string theory vacua with tadpoles for dynamical 
felds in the scalar potential and uncovered universal features of the resulting spacetime-
dependent solutions. We argued that the solutions can extend only a fnite spacetime 
distance ∆ away in the spacetime dimensions over which the felds vary, scaling as ∆n ∼ T 
with the strength of the tadpole T . We showed that naive singularities arising at this dis-
tance scale are physically replaced by ends of spacetime, related to the cobordism defects 
of the swampland cobordism conjecture and involving stringy ingredients like orientifold 
planes and branes, or exotic variants thereof. We illustrated these phenomena in large 
classes of examples, including AdS5 × T 1,1 with 3-form fuxes, 10d massive IIA, M-theory 
on K3, the 10d non-supersymmetric USp(32) strings, and type IIB compactifcations with 
3-form fuxes and/or magnetized D-branes. We also described a 6d string model whose tad-
pole triggers spontaneous compactifcation to a semirealistic 3-family MSSM-like particle 
physics model. 

In the second article, we continued studying spacetime-dependent solutions to string 
theory models with tadpoles for dynamical felds. We confrmed in many new explicit 
string theoretic examples, that such solutions have necessarily fnite extent in spacetime, 
and are capped of by boundaries at a fnite distance, in a dynamical realization of the 
Cobordism Conjecture. We showed that as the confguration approaches these cobordism 
walls of nothing, the scalar felds run of to infnite distance in moduli space, allowing 
to explore the implications of the Swampland Distance Conjecture. We uncovered new 
interesting scaling relations linking the moduli space distance and the SDC tower scale to 
spacetime geometric quantities, such as the distance to the wall and the scalar curvature. 
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Chapter 5. Global summary of results and discussion 

We show that walls at which scalars remain at fnite distance in moduli space correspond 
to domain walls separating diferent (but bordant) theories/vacua; this still applies even 
if the scalars reach fnite distance singularities in moduli space, such as conifold points. 
We illustrated our ideas with explicit examples in massive IIA theory, M-theory on CY 
threefolds, and 10d non-supersymmetric strings. In 4d N = 1 theories, our framework 
reproduces a recent proposal to explore the SDC using 4d string-like solutions. 

In the third article, we explain why one observes these universal patterns in the 
dynamical realization of cobordism, as spacetime dependent solutions of Einstein gravity 
coupled to scalars containing such end-of-the-world ‘branes’. The latter appear in efective 
theory as a singularity at fnite spacetime distance at which scalars go of to infnite feld 
space distance. We provided a local description near the end-of-the-world branes, in which 
the solutions simplify dramatically and are characterized in terms of a critical exponent, 
which controls the asymptotic profles of felds and the universal scaling relations among the 
spacetime distance to the singularity, the feld space distance, and the spacetime curvature. 
The analysis did not rely on supersymmetry. We studied many explicit examples of such 
Local Dynamical Cobordisms in string theory, including 10d massive IIA, the 10d non-
supersymmetric USp(32) theory, Bubbles of Nothing, 4d N = 1 cosmic string solutions, the 
Klebanov-Strassler throat, Dp-brane solutions, brane confgurations related to the D1/D5 
systems, and small black holes. Our framework encompasses diverse recent setups in 
which scalars diverge at the core of defects, by regarding them as suitable end-of-the-world 
branes. We also explored the interplay of Local Dynamical Cobordisms with the Distance 
Conjecture and other swampland constraints. 

Finally, in the fourth article, we took a step in the direction of studying time-
dependent dynamical cobordisms. We described timelike linear dilaton backgrounds of 
supercritical string theories as time-dependent Dynamical Cobordisms in string theory, 
with their spacelike singularity as a boundary defning the beginning of time. We pro-
posed and provided compelling evidence that its microscopic interpretation corresponds to 
a region of (a strong coupling version of) closed tachyon condensation. We argued that 
this beginning of time is closely related to (and shares the same scaling behaviour as) 
the bubbles of nothing obtained in a weakly coupled background with lightlike tachyon 
condensation. As an intermediate result, we also provided the description of the latter as 
lightlike Dynamical Cobordism. 

In Chapter 3, we studied Dai-Freed anomalies in non-supersymmetric string theories. 
These anomalies arise in theories with dynamical gravity and where spacetime topology 
change should be allowed. 

More specifcally, in the article, we studied the three tachyon-free non-supersymmetric 
string theories in ten dimensions. These theories provide a handle on quantum gravity away 
from the supersymmetric lamppost. Despite having been around for decades, they have 
not been shown to be fully consistent; although local anomalies cancel due to versions 
of the Green-Schwarz mechanism, there could be global anomalies, not cancelled by the 
Green-Schwarz mechanism, that could become fatal pathologies. We computed the twis-
ted string bordism groups that control these anomalies via the Adams spectral sequence, 
showing that they vanish completely in two out of three cases (Sugimoto and SO(16)2) 
and showing a partial vanishing also in the third (Sagnotti 0’B model). We also computed 
lower-dimensional bordism groups of the non-supersymmetric string theories, which are 
of interest to the classifcation of branes in these theories via the Cobordism Conjecture. 
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Using an anomaly infow argument, we were able to propose a worldvolume content of the 
SO(16)2 NS5-brane. As a byproduct of our techniques and analysis, we also reprove that 
the outer Z2 automorphism swapping the two E8 factors in the supersymmetric heterotic 
string is also non-anomalous. 

Lastly, in Chapter 6, we considered diferent types of black holes that could be used 
as probes of UV physics. 

In the frst article, we argued that supersymmetric BPS black holes can act as efcient 
fnite energy probes of the moduli space geometry thanks to the attractor mechanism. 
We focused on 4d N = 2 compactifcations and captured aspects of the efective feld 
theory near the attractor values in terms of physical quantities far away in moduli space. 
Furthermore, we illustrated how the standard distance in moduli space can be related 
asymptotically to the black hole mass. We also computed a measure of the resolution with 
which BPS black holes of a given mass can distinguish far away points in the moduli space. 
The black hole probes may lead to a deeper understanding of the Swampland constraints 
on the geometry of the moduli space. 

In the second paper, we instead considered singular black holes, that take us to the 
limits of the domain of validity of the whole notion of an EFT of QG, the species scale Λs. 
We used black holes of vanishing horizon area (small black holes) in efective feld theories 
coupled to quantum gravity to shed light on how the three diferent physical manifestations 
of the species scale Λs relate to each other. (i) Near the small black hole core, a scalar 
feld runs to infnite distance in moduli space, a regime in which the Swampland Distance 
Conjecture predicts a tower of exponentially light states, which lower Λs. (ii) We integrate 
out modes in the tower and generate via Emergence a set of higher derivative corrections, 
showing that Λs is the scale at which such terms become relevant. (iii) Finally, higher 
derivative terms modify the black hole solution and grant it a non-zero, species scale sized 
stretched horizon of radius Λ−1 , showcasing the species scale as the size of the smallests 
possible black hole describable in the efective theory. We present explicit 4d examples of 
small black holes in 4d N = 2 supergravity, and the 10d example of type IIA D0-branes. 
The emergence of the species scale horizon for D0-branes requires a non-trivial interplay of 
diferent 8-derivative terms in type IIA and M-theory, providing a highly non-trivial check 
of our unifed description of the diferent phenomena associated to the species scale. 
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6 
Resumen global de los resultados y discusión 

En esta tesis, investigamos las implicaciones de implementar el cambio dinámico de la to-
pología del espacio tiempo, como debería permitirlo una teoría independiente del fondo de 
gravedad cuántica (QG). En una primera parte, estudiamos realizaciones dinámicas de los 
procesos predichos por la conjetura de cobordismo, en el contexto del Programa Swamp-
land. Esto nos permitió caracterizar los objetos extendidos singulares que desempeñan 
el papel de implementar estos procesos. Luego, estudiamos cómo los grupos de bord-
ismo pueden detectar anomalías globales de calibre/difeomorfsmo en teorías de gravedad 
cuántica. Finalmente, exploramos las diferentes formas en que los objetos extendidos (sin-
gulares y suaves) en la teoría de cuerdas pueden, o no, ser utilizados como sondas de la 
física ultravioleta (UV). Resumamos brevemente los puntos clave y los principales resulta-
dos de cada uno de los siete artículos. 

En el Capítulo 2, estudiamos varios aspectos de las realizaciones dinámicas de cobor-
dismos hacia la nada. Estas son soluciones a las ecuaciones de movimiento que recorren una 
dimensión del espacio tiempo y donde el espacio compacto se estrangula a una distancia 
fnita en el espacio tiempo. 

En el primer artículo, consideramos vacíos de la teoría de cuerdas con “tadpoles” para 
campos dinámicos en el potencial escalar y descubrimos características universales de las 
soluciones resultantes dependientes del espacio tiempo. Argumentamos que las soluciones 
solo pueden extenderse una distancia fnita en el espacio tiempo ∆ en las dimensiones del 
espacio tiempo sobre las cuales los campos varían, escalando como ∆n ∼ T con la fuerza 
del “tadpole” T . Mostramos que las singularidades ingenuas que surgen a esta escala de 
distancia son físicamente reemplazadas por extremos del espacio tiempo, relacionados con 
los defectos de cobordismo de la conjetura de cobordismo y que involucran ingredientes de 
la teoría de cuerdas como planos orientables y branas, o variantes exóticas de estos. Ilus-
tramos estos fenómenos en grandes clases de ejemplos, incluyendo AdS5 × T 1,1 con fujos 
de 3-formas, IIA masivo en 10d, M-teoría en K3, las cuerdas USp(32) no supersimétricas 
en 10d, y compactifcaciones de tipo IIB con fujos de 3-formas y/o branas magnetizadas. 
También describimos un modelo de cuerda en 6d cuyo “tadpole” desencadena una com-
pactifcación espontánea a un modelo de física de partículas MSSM-like semi-realista de 3 
familias. 

En el segundo artículo, continuamos estudiando soluciones dependientes del espa-
cio tiempo para modelos de teoría de cuerdas con “tadpoles” para campos dinámicos. 
Confrmamos en muchos nuevos ejemplos explícitos de teoría de cuerdas, que tales solu-
ciones tienen necesariamente una extensión fnita en el espacio tiempo, y están tapadas por 
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límites a una distancia fnita, en una realización dinámica de la Conjetura de Cobordismo. 
Mostramos que a medida que la confguración se acerca a estas paredes de cobordismo 
hacia la nada, los campos escalares se alejan a una distancia infnita en el espacio de mó-
duli, permitiendo explorar las implicaciones de la Conjetura de Distancia. Descubrimos 
nuevas relaciones de escala interesantes que vinculan la distancia en el espacio de móduli 
y la escala de la torre SDC a cantidades geométricas del espacio tiempo, como la distancia 
a la pared y la curvatura escalar. Mostramos que las paredes en las que los escalares per-
manecen a una distancia fnita en el espacio de móduli corresponden a paredes de dominio 
que separan diferentes teorías/vacíos (pero bordantes); esto sigue aplicándose incluso si 
los escalares alcanzan singularidades a una distancia fnita en el espacio de móduli, como 
puntos de conifolds. Ilustramos nuestras ideas con ejemplos explícitos en la teoría IIA ma-
siva, M-teoría en tresfolds CY, y cuerdas no supersimétricas en 10d. En teorías 4d N = 1, 
nuestro marco reproduce una propuesta reciente para explorar la SDC usando soluciones 
tipo cuerda en 4d. 

En el tercer artículo, explicamos por qué se observan estos patrones universales en 
la realización dinámica del cobordismo, como soluciones dependientes del espacio tiempo 
de la gravedad de Einstein acoplada a escalares que contienen tales ’branas’ al fnal del 
mundo. Estas últimas aparecen en la teoría efectiva como una singularidad a una distancia 
fnita en el espacio tiempo en la que los escalares se alejan a una distancia infnita en el 
espacio de campo. Proporcionamos una descripción local cerca de las branas al fnal del 
mundo, en la que las soluciones se simplifcan drásticamente y se caracterizan en términos 
de un exponente crítico, que controla los perfles asintóticos de los campos y las relaciones 
de escala universales entre la distancia en el espacio tiempo a la singularidad, la distancia 
en el espacio de campo y la curvatura del espacio tiempo. El análisis no se basó en la 
supersimetría. Estudiamos muchos ejemplos explícitos de tales Cobordismos Dinámicos 
Locales en la teoría de cuerdas, incluyendo IIA masivo en 10d, la teoría USp(32) no 
supersimétrica en 10d, Burbujas de la Nada, soluciones de cuerdas cósmicas 4d N = 
1, la “throat” de Klebanov-Strassler, soluciones de Dp-branas, confguraciones de branas 
relacionadas con los sistemas D1/D5, y pequeños agujeros negros. Nuestro marco abarca 
diversas confguraciones recientes en las que los escalares divergen en el núcleo de los 
defectos, al considerarlos como branas adecuadas al fnal del mundo. También exploramos 
la interacción de los Cobordismos Dinámicos Locales con la Conjetura de Distancia y otras 
restricciones del Swampland. 

Finalmente, en el cuarto artículo, dimos un paso en la dirección de estudiar cobor-
dismos dinámicos dependientes del tiempo. Describimos fondos de dilatón lineal timelike 
de teorías de cuerdas supercríticas como Cobordismos Dinámicos dependientes del tiempo 
en la teoría de cuerdas, con su singularidad espacial como un límite que defne el comienzo 
del tiempo. Propusimos y proporcionamos evidencia convincente de que su interpreta-
ción microscópica corresponde a una región de (una versión de acoplamiento fuerte de) 
condensación cerrada de taquiones. Argumentamos que este comienzo del tiempo está 
estrechamente relacionado con (y comparte el mismo comportamiento de escala que) las 
burbujas de la nada obtenidas en un fondo débilmente acoplado con condensación de ta-
quiones null. Como resultado intermedio, también proporcionamos la descripción de esta 
última como Cobordismo Dinámico lightlike. 
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En el Capítulo 3, estudiamos las anomalías Dai-Freed en teorías de cuerdas no super-
simétricas. Estas anomalías surgen en teorías con gravedad dinámica y donde se debería 
permitir el cambio en la topología del espacio tiempo. 

Más específcamente, en el artículo, estudiamos las tres teorías de cuerdas no super-
simétricas sin taquiones en diez dimensiones. Estas teorías proporcionan un manejo de la 
gravedad cuántica lejos del poste de luz supersimétrico. A pesar de haber estado presentes 
durante décadas, no se ha demostrado que sean completamente consistentes; aunque las 
anomalías locales se cancelan debido a versiones del mecanismo de Green-Schwarz, podría 
haber anomalías globales, no canceladas por el mecanismo de Green-Schwarz, que podrían 
convertirse en patologías fatales. Calculamos los grupos de bordismo de cuerdas torcidas 
que controlan estas anomalías a través de la secuencia espectral de Adams, mostrando que 
desaparecen por completo en dos de los tres casos (Sugimoto y SO(16)2) y mostrando 
un desvanecimiento parcial también en el tercero (modelo 0’B de Sagnotti). También 
calculamos grupos de bordismo de dimensiones inferiores de las teorías de cuerdas no su-
persimétricas, que son de interés para la clasifcación de branas en estas teorías mediante 
la Conjetura de Cobordismo. Utilizando un argumento de fujo de anomalías, pudimos 
proponer un contenido de volumen mundial de la NS5-brana de SO(16)2 . Como subpro-
ducto de nuestras técnicas y análisis, también demostramos que el automorfsmo externo 
Z2 que intercambia los dos factores E8 en la cuerda heterótica supersimétrica también es 
no anómalo. 

Por último, en el Capítulo 6, consideramos diferentes tipos de agujeros negros que 
podrían utilizarse como sondas de la física UV. 

En el primer artículo, argumentamos que los agujeros negros BPS supersimétricos 
pueden actuar como efcientes sondas de energía fnita de la geometría del espacio de 
móduli gracias al mecanismo atrayente. Nos centramos en compactifcaciones N = 2 de 4d 
y capturamos aspectos de la teoría efectiva cerca de los valores atrayentes en términos de 
cantidades físicas lejanas en el espacio de móduli. Además, ilustramos cómo la distancia 
estándar en el espacio de móduli puede relacionarse asintóticamente con la masa del agujero 
negro. También calculamos una medida de la resolución con la que los agujeros negros BPS 
de una masa dada pueden distinguir puntos lejanos en el espacio de móduli. Las sondas 
de agujeros negros pueden llevar a una comprensión más profunda de las restricciones del 
Swampland en la geometría del espacio de móduli. 

En el segundo artículo, en cambio, consideramos agujeros negros singulares, que nos 
llevan a los límites del dominio de validez de toda la noción de una EFT de QG, la escala de 
especies Λs. Utilizamos agujeros negros con área de horizonte que tiende a cero (agujeros 
negros pequeños) en teorías efectivas acopladas a la gravedad cuántica para arrojar luz 
sobre cómo se relacionan entre sí las tres diferentes manifestaciones físicas de la escala de 
especies Λs. (i) Cerca del núcleo del agujero negro pequeño, un campo escalar se aleja a una 
distancia infnita en el espacio de móduli, un régimen en el que la Conjetura de Distancia 
predice una torre de estados exponencialmente ligeros, que disminuyen Λs. (ii) Integramos 
los modos en la torre y generamos mediante la Emergencia un conjunto de correcciones de 
derivadas superiores, mostrando que Λs es la escala en la que dichos términos se vuelven 
relevantes. (iii) Finalmente, los términos de derivadas superiores modifcan la solución del 
agujero negro y le otorgan un horizonte estirado de tamaño de escala de especies de radio 
Λ−1, mostrando la escala de especies como el tamaño del agujero negro posible más pequeño s 
que se puede describir en la teoría efectiva. Presentamos ejemplos explícitos de agujeros 
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negros pequeños en supergravedad N = 2 de 4d y el ejemplo de 10d de las D0-branas de 
tipo IIA. La emergencia del horizonte de escala de especies para las D0-branas requiere 
una interacción no trivial de diferentes términos de 8 derivadas en tipo IIA y M-teoría, 
proporcionando una verifcación altamente no trivial de nuestra descripción unifcada de 
los diferentes fenómenos asociados a la escala de especies. 
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