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Abstract

We report on the results of a study on the channel tZ — eu using
neural networks (NN). This study is different from previous studies of
e channel in the sense that here we have taken into account the elec-
tron and muon id selection criterion as chosen in conventional analysis.
These studies, conducted for run 1a correspond to an integrated lumi-
nosity of 13.9pb~!. We observe one event in data with a background of
0.038 & 0.008(stat.) considering Z — 77 — ep and WW — eu as major
background to this channel. We shall present a full status report of this

analysis for run 1a, 1b and 1c data in an upcoming note.




1 Introduction

Top quark! events are being studied in the dilepton (ee, ep, pps, ev), lepton-+jets
and all-jets channels at D@. In this note we discuss the use of feed forward
neural networks for the study of ex channel. The neural network approach is
a multivariate technique, where networks map input feature space into one or
more outputs. It is well established that this output is an approximation to a
Bayes posterior probability? and thus provides an optimal method to separate
signal from background. The discriminant in this case is the output of the

neural network, which for three layer feed forward neural net is given by

O(z) = Q(E wjkg(z WeiZi)
k i

Where the z s are the input vectors like Ef., PF, E:’I..'“, E‘%-"z, Hr,Er , etc.
which in our case specify an event, w;; and wg; are the weights that are
adjusted during the learning of the neural net and g represents a non lin-
ear transfer function like h—ﬂl_—,;-j The Bayes discriminant for neural nets is
R(z) = 1_00' =1y- Neural networks have to be trained with the sufficient num-
ber of training patterns to obtain an optimai Jiscrimination. We have done
the studies of permuting different variables and effect of using different neu-
ral network training schedules. From this work we have arrived at the set of

variables and the training schedule that gives us better discrimination.

In section 2 we describe the data sets used in this analysis, section 3 de-
scribes the neural network training schedule and section 4 presents the analysis

and results with some conclusions.




2 Data Sample

In pp collisions the top quarks are produced mostly in pairs through ¢¢ anni-
hilation. The standard model top decays to b quark through W boson. These
are flavour changing charged currents.
q§ — ti — Wb+ Wb

Now, W Boson further decay to leptons or quarks.

_— { e/ufr+v  (1/3)

qg — 2jets (2/3)

In tf — eu, one of the W goes to e and other goes to u or vice versa. So in
final state we have two high Pr leptons, two high Pr jets and missing Er
from neutrinos.

Study of top quark is performed in eu channel of collider data collected
during run la (1992-93 data sample), which corresponds to an integrated lu-
minosity of 13.9 pb~1.

The major background to this channel is the production of Z — 717 — ep
and WW — eu. Together with collider data we have 6 different classes of
events. We have simulated top quarks events for different top mass (160GeV,
170GeV, 180GeV, 190GeV) using Herwig5.8 Monte Carlo. We have also sim-
ulated background events for Z — rr — ep having PZr > 25GeV and
WW — eu using Pythia. All these events were energy scale corrected with
the package CAFIX 5.0. We will use a small set of these MC events to train a

neural net.

8 Training Schedule and Variables

- The training of the neural network 3 is done by using a small set of Monte

Carlo events. These sets are prepared by using the following cuts
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Er® > 15GeV

Pr# > 15GeV

Njets > 1 (n < 2.5 and Er’® > 15GeV)

plus some loose particle identification cuts. We have used total 2000 training
pattern vectors. To make & priori probability same for the signal and the back-
ground, we hav;e taken 1000 pattern vector (events) from top 170GeV Monte
Carlo as signal and 1000 from the background monte carlo, which consists of

500 Z — 17 — ey and 500 WW — ep.

3.1 Training Schedule

We started training the net with 500 cycles and went up to 10000 cycles. There
was no significant effect over this spectrum, but we dia observe that the effi-
ciency of net fell with over training. We reached the conclusion that training
with 1000 cycles was optimal. Further we have tried to split the net to over
come the problem of a small training sample . We even tried to permute
different input variables to get better discrimination. The different variables
which we tried are

1) Ef%, Transverse energy of the leading electron

2) Pf, Transverse momentum of the leading muon

3) Er’,'.‘u, Transverse energy of the leading jet

4) E‘;"z, Transverse energy of next to leading jet

5) Hr, Where Hr is defined as Z E} with| ¢ |< 2.5and B} > 15GeV
alljets
6) MASSLL, Electron Muon invariant mass (MEEM)

7) Er , Muon corrected missing transverse energy
8) Fr , Missing transverse energy (Calorimeter only)

9) Ad.,, ¢ difference between electron and muon

4




10) Adjet1,jer2, ¢ difference between jetl and jet2

3.2 Variables

We tried different permutations of the input variables mentioned above. We
used the set which gives us an optimal discrimination. This set consists of six
variables.

1) E%, Transverse energy of the leading electron

2) E‘;-"z, Transverse energy of next to leading jet

3) Hr Defined above

4) J; , Missing transverse energy (Calorimeter only)

5) MASSLL, Electron Muon invariant mass (MEEM)

6) Adey, ¢ difference between electron and muon

We trained the nehra.l net with these six input variables (Fig2,3), five hidden
nodes and one output node. During training the weights between different
nodes are adjusted according to backpropagation ® updating. The figure 1
shows the connectivity between different nodes. The thickness of the connect-

ing lines represents the different strengths between different nodes.

4 Analysis and Results

4.1 Analysis

Besides the electron id and muon id cuts, which are the same as that of the
conventional analysis. The other cuts are

e E% > 15GeV, [n|< 2.5

e P4 > 15GeV

e Njets> 2 with E}™* > 15GeV, | n|< 2.5
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e Neural Network cut NN> 0.85

The electrons are selected with an isolation of < 0.1 and a five parameter
likelihood® of < 0.5. Here we are not using the Hr, 5 and EJ*’ > 20GeV
cuts. Instead of these three cuts we are using Neural network cut of 0.85.
We have chosen this cut for the maximum S/B at a given efficiency (times
branching fraction). For this analysis we considered the events having electrons
in cc or ec and muons in cf. we are not considering those events having muons
in ef. Our trigger + ¢/u id efficiencies for € (cc,cf) is 0.63 and for € (ec,cf) is
0.46.

4.2  Results

Based on 13.9pb~! of data, the expected top and background yields are shown
in table 1. After all cuts, 1 event remains (Fig.6), with-an expected background
of 0.038 + 0.008(stat.). The distributions for various top masses and two back-
grounds after passing through the neural net are shown in Fig.4,5. Figures
7,8,9,10 show the one and two dimensional distributions of various variables
before and after the neural cut for Herwig ¢t Monte Carlo and Z — 77 — ep

Monte Carlo.

5 Conclusions

We have described an analysis method looking for tf — ey using neural net-
works. We observe 1 event in data with a background of 0.038 + 0.008(stat.).
The S/B ~ 8 for a top mass of 170 GeV. The efficiency (times branching frac-
tion) is 0.378 + 0.007(stat.) for top a mass of 170 GeV. We are applying this
analysis to run 1b and 1c also. We will also estimate other backgrounds like

6




Samples | Expected Yield in 13.9pb~!
Topl160 0.40-+ 0.008 -
Topl70 0.31+ 0.006
Top180 0.24: 0.004
Top190 0.20+ 0.003
ww 0.010+0.003
Zrr 0.028+0.006
L Total Bkg. 0.038:0.008
Data (la) 1

Table 1: Expected top, background and data events passing all the cuts. Errors are statistical
only

fakes etc. using this analysis.
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Neural Network Architecture

Network Output

Figure 1: Neural Net Architecture showing different strengths between different nodes.
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Figure 2: Distributions of six signal variables having 1000 patterns These are the inputs to

neural net. as signal.
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Figure 3: Distributions of six background variables having 1000 patterns. These are the
inputs to neural net as background.
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Figure 4: Distributions of neural network output for top160, top170 and top180
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Figure 7: Distributions of six variables for top170 before and after (shaded histograms)

neural cut.
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Figure 8: Scatter plots for top170 before (left) and after (right) NN cut
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Figure 9: Distributions of six variables for Z — 77 — eu before and after (shaded his-

tograms) neural cut.
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Figure 10: Scatter plots for Z — 77 — eu before (left) and after (right) NN cut
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