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Abstract

These notes, based on lectures presented at the ICTP Spring School on
Superstrings and Related Matters in April 2001, provide an introduction to
Little String Theory.
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1 Introduction

Much has been learned over the years by studying string dynamics near
various kinds of “impurities.” Examples include string propagation on orb-
ifolds [1], where one finds “twisted sectors” corresponding to fundamental
strings trapped at the orbifold singularities, and vacua with D-branes which
contain localized excitations corresponding to open strings ending on the
branes.

In both of these examples, the states localized at the impurity couple to
the bulk — e.g. two open strings ending on a D-brane can fuse into a closed
string that can leave the brane. It is sometimes possible to decouple the
physics of the localized modes from bulk dynamics by taking a low energy
limit, E << myg, where m, = 1/+/o is the string scale, associated with the
tension of the fundamental string 7' = 1/27a/.

Whenever this limit gives rise to an interacting theory, it corresponds to
a local quantum field theory (QFT), such as the non-abelian gauge theories
found on branes. This embedding of field theoretic dynamics into string
theory led in recent years to many insights into field theory and string theory
(see e.g. [2, 3] for reviews).

The purpose of these lectures is to describe another class of impurities
— Neveu-Schwarz fivebranes [4], or equivalently singularities of Calabi-Yau
manifolds and other spaces!. One of the striking features of the dynamics
of N S5-branes is that it can be decoupled from the bulk without taking the
low energy limit o/ — 0. The decoupled theory of N S5-branes is known as
Little String Theory? (LST). It has the following properties:

(1) The theory is non-local. In particular, upon compactification on tori,
LST exhibits T-duality.

(2) It has a Hagedorn density of states at high energies, p(E) ~ E%exp(Sy E).

(3) The theory can be defined in six or fewer spacetime dimensions. It has
super — Poincare invariant vacua with sixteen or fewer supercharges.

(4) LST is a non-gravitational theory: there is no massless spin two particle
in the spectrum.

!Orbifolds are examples of such singularities, but in [1] they are in fact resolved by a
finite expectation value of a modulus — the B field [5]. We will be interested below in
situations where this v.e.v. is zero or at least very small.

A name due to [6].
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(5) The theory appears to have well defined off-shell Green functions, un-
like (closed) critical string theory, where it is believed that only on-shell
observables can be studied.

Note that while properties (1) and (2) are reminiscent of critical string the-
ory, properties (3), (4) and (5) are different in the two cases.

The main purpose of these lectures is to describe in more detail some of
the above properties and the techniques that were used to study them. Most
of these results were obtained by using holography, and this is the approach
that will be followed here. In particular, We will not describe an alternative
approach to LST based on a discrete light-cone quantization (DLCQ) of the
theory, which utilizes a certain 1 + 1 dimensional sigma model [7, 8, 9]. For
a review of that approach and LST in general as of mid-1999, see [10].
There are several reasons why I think LST is of some interest. Among them:

(1) In most (compactified) supersymmetric string theories one finds mod-
uli spaces of vacua. For generic values of the moduli the perturbative
description is non-singular, but one can often tune the moduli so that a
singularity appears somewhere on the compact manifold. The dynam-
ics near the singularity is described by LST. Thus LST is part of the
dynamics of rather conventional looking string vacua at special points
in the moduli space. Furthermore, when supersymmetry is broken, it
is possible that the theory is dynamically driven to such singular points
in moduli space.

(2) LST is relevant for the study of strongly coupled gauge theories, which
can be realized on N S5-branes wrapped around Riemann surfaces or
D-branes stretched between fivebranes (see [2] for a review). There are
also applications to matrix theory [11], which in fact provided some of
the original motivation for the construction of this theory [12, 13].

(3) It was proposed that LST might be phenomenologically relevant for
brane world scenarios with a relatively low string scale [14].

More generally, LST appears to be a structure that is intermediate in com-
plexity between local QFT and critical string theory. It has the non-locality
and Hagedorn spectrum characteristic of critical string theory, but not the
complications associated with gravity. A better understanding of its struc-
ture might shed light on string theory, strongly coupled gauge theory (QCD
strings), holography and other matters.
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The plan of these lectures is as follows. We start in section 2 by describing
the limit in which the dynamics of N S5-branes decouples from bulk physics.
In section 3 we discuss the holographic description of this limit and some
of the properties of LST mentioned above. In particular, we exhibit some
observables and physical states in the theory.

In section 4 we discuss the high energy thermodynamics of LST. We
show that the spectrum has a Hagedorn growth and compute the Hagedorn
temperature and the first subleading term in the entropy which shows that
the thermodynamics is unstable. In section 5 we introduce and study a
class of vacua of LST which can be analyzed in a controlled weak coupling
expansion.

Section 6 contains some comments on aspects of LST that we cannot treat
in detail due to lack of time, including singularities of Calabi-Yau manifolds
which give rise to d < 6 dimensional vacua of LST and models with reduced
supersymmetry, D-branes in the vicinity of N S5-branes, and instabilities in
LST. In section 7 we discuss some open problems.

2 The decoupling limit of flat NS5-branes

Consider a vacuum of type II string theory which contains NV parallel N S5-
branes?, which are extended in the directions (z!,--- , %) and are localized
in (z°,--. ,2%). We will initially take the fivebranes to be at the same point
and will later examine the deformations that separate them in the directions
(6,7,8,9).

The presence of the fivebranes breaks the Lorenz symmetry:
SO(9,1) = SO(5,1) x SO(4). (2.1)

From the fivebrane worldvolume point of view, SO(5,1) is the Lorenz sym-
metry, while SO(4) is an internal R-symmetry. The fivebranes also break
half of the supersymmetry, reducing the number of unbroken supercharges
from thirty two to sixteen. In terms of six dimensional supersymmetry along
the fivebranes, ITA fivebranes preserve a chiral (2,0) supersymmetry*, while
IIB fivebranes preserve (1,1) supersymmetry.

Since N S5-branes are dynamical objects, like D-branes, one expects to
find a rich spectrum of excitations on the branes. To decouple the dynamics

3Neveu-Schwarz fivebranes are magnetically charged under the Neveu-Schwarz B,
field. See e.g. [15] for a review of some of their properties.
“Le. two complex supercharges in the 4 of Spin(5,1).
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on the fivebranes from the bulk, consider the limit

gs — 0; 2 = fixed. (2.2)
mg
Processes in which modes that live on the fivebranes are emitted into the
bulk as closed strings are suppressed in this limit, since the corresponding
amplitudes are proportional to g; and thus go to zero. At the same time,
the dynamics on the NS5-branes does not become free in this limit. One
way to see this is to consider the low energy limit of the resulting theory and
to show that it is not free.

Consider first the low energy limit of N N S5-branes in type IIB string
theory. S-duality relates this to N D5-branes; thus the low energy theory is
a six dimensional gauge theory with (1, 1) supersymmetry and gauge group
U(N). The gauge coupling of the theory on the D5-branes is

2
iQ = Ms (2.3)
9p gs
Using the transformation of g; and mg under S-duality one finds that the
gauge coupling on the N S5-branes is

1 2
=mj. 24
9% 24

Thus in the limit (2.2) the gauge coupling remains fixed. Since the gauge the-
ory in question is non-renormalizable, the gauge coupling gy in fact changes
with the scale, approaching zero at long distances and growing at short dis-
tances. At energies of order ms the gauge theory description breaks down
and more data needs to be supplied to define the theory. As we will see,
there are in fact additional degrees of freedom in the theory at (roughly)
that scale, and the full density of states is much larger than that in any local
QFT. At any rate, since the dynamics at scales F ~ mg is not free, the full
theory must be interacting.

Note that the above arguments are only valid for N > 1 fivebranes. The
low energy theory on a single N S5-brane is free®. Indeed, we will see later
that LST is interacting only for N > 1.

5In the ITA case it contains a self-dual B, field, five massless scalars and fermions
related to them by (2,0) supersymmetry. In the IIB theory one finds a gauge field, four
scalars and fermions, related by (1,1) supersymmetry.
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The infrared dynamics of N ITA N S5-branes is more involved. One
finds in this case a non-trivial IR fixed point with (2,0) superconformal
symmetry [16]. To see that something special is happening in the IR imagine
separating the fivebranes in the (6,7,8,9) directions. In the IIB theory, one
then finds massive states corresponding to D-strings stretched between the
fivebranes; their masses go to zero as the fivebranes approach each other.
The resulting massless states are the off-diagonal U(N) gauge bosons on the
fivebranes.

The analogous process for ITA involves D2-branes stretched between the
fivebranes. The ends of the D2-branes are strings bound to the fivebranes.
Their tension goes to zero when the fivebranes coincide [17]. These tension-
less strings signal the interacting nature of the low energy limit of the ITA
fivebrane theory — the (2,0) superconformal field theory.

Thus, we conclude that the limit (2.2) corresponds to an interacting
theory on the N S5-branes decoupled from the bulk. What sort of theory is
it? Already at the level of the present discussion there are a few hints of
non-local/stringy behavior. Let us mention two:

(1) T-duality: Compactify some or all of the dimensions (1,2,3,4,5) on
circles. N S5-branes are known to transform to themselves under T-
duality along their worldvolume. Since the limit (2.2) commutes with
T-duality, inversion of the radius of a single circle (R — 1/m2R) ex-
changes the ITA and IIB LST’s, while inversion of an even number of
radii is a symmetry of the theory.

(2) The theory contains strings with tension 7' = 1/27¢’, which can be
interpreted as fundamental strings bound to the fivebranes. In the
IIB caseS, these strings can be constructed in the low energy gauge
theory as instanton solutions, which are extended (say) in (0,1) and
localized in (2,3,4,5). The tension of these strings is proportional
to the instanton action, 1/g%, which using (2.4) is indeed tension of
a fundamental string. Of course, this construction gives rise to long
strings, and it is not clear what are the properties of short strings which
actually govern the dynamics, but it suggests that LST is a theory of
strings. Later we will see further evidence that supports this.

It is instructive to compare the decoupling limit (2.2) with the limits studied
in D-brane physics. Usually, to decouple the physics of D-branes from the

SA similar construction can be performed in the IIA case.
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bulk one considers the low energy limit

£ — 0; g5 = fixed, (2.5)
mg
and the decoupling from the bulk is the standard low energy decoupling of
QFT from gravity. In contrast, the limit (2.2) for D-branes gives rise in
general to a free theory on the branes, since g; determines both the open
and the closed string couplings.
A limit for N D-branes which is more analogous to (2.2) is

N — 00; gs = 0; A= g;N = fixed; m£ = fixed. (2.6)
S
The open string coupling A is fixed; hence the theory on the D-branes remains
interacting. Since g; — 0, the closed string sector decouples, despite the fact
that a low energy limit has not been taken. The resulting theory is an open
string theory without closed strings; it has some things in common with LST
although there are differences as well.

3 A holographically dual description of LST

The construction described in the previous section is useful for establishing
the existence of LST, but it does not provide efficient techniques for study-
ing the theory. To proceed, we will use a holographically dual description
proposed in [18] (see also [19, 20]). This duality is a generalization of the
AdS/CFT correspondence [3]; it postulates that LST is equivalent to ten
dimensional string theory in the background of the fivebranes, in the limit
(2.2). In this section we will describe the fivebrane geometry and will briefly
discuss the duality of [18].

The metric, dilaton and NS B-field around N NS5-branes in type 11
string theory are [4]:

Ndo' . .
ds®* = dz,dz" + (1+ ;1 Ydz'dz',
r
Nd/
= G+, (3.1)
Hijp = —e€ijud'®,
where p =0,1,2,--- ,5 are worldvolume coordinates and %, j,k,l = 6,7,8,9

are transverse ones. We parameterize the space transverse to the branes by
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spherical coordinates,
dzidz’ = dr? 4 r2dQ3. (3.2)

To take the limit (2.2) one must send 7 — 0 at the same rate as gs;. Defining
r = gsexpo we have in this limit

ds® = dz,dz” + N/ (do? + d93),
(3.3)
d® = —o,

and we suppress the B-field (3.1). String propagation in this geometry cor-
responds to an “exact conformal field theory” [4]:

R> x Ry x SU(2) . (3.4)

IR>! is the worldvolume of the fivebranes. IRy is the real line labeled by
¢ = VNdo/o. The dilaton goes like (3.3):

_ Q@ 52
T=5h Q= .

The last factor in (3.4) describes the angular three-sphere in (3.3). The B-
field (3.1) is precisely such that the CFT on the three-sphere, whose radius
is

(3.5)

Rsphere =VNd ’ (36)

is described by a level N WZW model. We see that the number of fivebranes
N determines the slope of the linear dilaton, @, and the level of SU(2) cur-
rent algebra. More precisely, since (3.4) is a background for the superstring,
the worldsheet theory contains, in addition to the bosonic coordinates, ten
free fermions: 9*, u = 0,1,2,--- , 5, the superpartners of z*; ¢, i = 3, +, —,
the superpartners of the SU(2) currents J%; and 9?, the superpartner of ¢.
The total level N of the SU(2) current algebra receives a contribution of
N —2 from the worldsheet bosons, and 2 from the fermions 1%, which trans-
form in the adjoint of the total SU(2) current algebra. The total central
charge of the worldsheet theory (3.4) is

<6+%x6)+(1+%+%>+<3(NN7_2)+3X%>:15, (3.7)
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which is the correct value for the superstring.

The background (3.4) is thus expected to be holographically dual to the
LST on the fivebranes. We next discuss some features of this duality. First
note that while the string coupling (3.5) vanishes far from the fivebranes (i.e.
as ¢ — 00), it diverges as one approaches the branes (¢ — —oo, or r — 0 in
(3.1)). The N S5-branes have the remarkable property that quantum effects
near the branes cannot be turned off no matter how small the string coupling
is far from the branes [4]. This makes it clear that LST is not a free theory”,
as argued above, but it raises the question whether one can analyze the
physics of the string background (3.4), (3.5) perturbatively. We will return
to this question below.

As is familiar from the AdS/CFT correspondence, on-shell observables
in the “bulk” theory — string theory on (3.4) — correspond to off-shell observ-
ables in the “boundary” theory — the LST corresponding to N N S5-branes.
More precisely, off-shell observables in LST correspond to non-normalizable
observables in string theory on (3.4), whose wavefunctions are supported
near the “boundary” at ¢ — oo. This can be understood as follows (in
analogy with the AdS case).

Consider (say) a scalar field ¥ on the manifold (3.4), corresponding to
one of the modes of the string. As ¢ — oo, the field behaves as (assuming
for simplicity a profile constant on the angular S3):

U(p, zH) ~ Z CretvPeiku” (3.8)
k

where
A2 =k k" + C. (3.9)

C is a constant which depends on the mass of the scalar field. Choosing the
positive root of (3.9), we see that the mode (3.8) is non-normalizable and
thus the coefficients C}, do not fluctuate — they are not integrated over in the
process of integrating over all field configurations in the path integral [21].
Thus, we can think of the Cj as fixed sources. The string partition sum
with the fixed boundary conditions (3.8) as ¢ — 00, Zhuk(Ck), can be

“For N > 2 fivebranes. Note that for N = 1, the bosonic SU(2) current algebra has
formally a negative level, N —2 = —1, and the construction breaks down. This is usually
taken to mean that a single fivebrane does not have a throat region (3.4) associated with
it, and the dynamics on it becomes trivial in the limit (2.5).
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interpreted as the generating functional of off-shell Green functions in the
six dimensional LST via:

Zbulk(Ck) = (exp (— ZCkG(k)) )LST ; (310)
k

where ©(k,) is the off-shell observable which couples to the source Ci. Qual-
itatively, (3.10) is natural because modes that are non-normalizable in the
“near-horizon” geometry (3.4) are nothing but bulk modes in the full geom-
etry (3.1); they are supported at finite 7. Thus, they are not part of the LST
but rather are fixed background sources (in the limit (2.2)), which couple to
the brane modes via couplings like (3.10).

Similarly, normalizable modes in the geometry (3.4) correspond to states
in LST, since in the full geometry (3.1) they correspond to modes localized
on the fivebranes (i.e. at r — 0). To illustrate all this, we next give an
example each of off-shell observables and states in LST, as described in the
holographically dual picture.

3.1 Example 1: Chiral operators in LST

As discussed above, the low energy limit of IIB LST is a U(N) gauge theory
with (1,1) supersymmetry. This theory contains four scalar fields in the
adjoint of SU(N), X*, i = 6,7,8,9, which parameterize the locations of the
N fivebranes in (6,7,8,9). The gauge invariant off-shell operators

TrX“X®2... X" n=234,---N, (3.11)

where we only take the completely symmetric and traceless combination in
(41,--+ ,in), are lowest components of short multiplets of supersymmetry.
Writing the SO(4) symmetry in (2.1) as

50(4) jad SU(2)L X SU(2)R , (3.12)
the operators (3.11) transform in the spin (%, %) representations. In string

theory on (3.4) these chiral operators are described as follows. The SU(2)r, x
SU(2)r symmetry on (3.12) corresponds to the left and right moving SU(2)
symmetries in the SU(2)y WZW model in (3.4). Physical primaries of this
symmetry are V., » with the same spin (2j = 0,1,2,--- , N —2) under both
SU(2)’s. (m,m) are the eigenvalues of (J3,.J3).
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The lowest lying observables have the form (in the —1 picture)

Eapb® PPt v (3.13)
where o, 8 = 0,1,2,---9 and {,g is a polarization tensor satisfying the usual
physical state conditions. One can show that (3.11) correspond to®

. . . _ 25
TEX X2 X o (V) e viar®, j+1=7 (3.14)

On the right-hand side of (3.14), 9 stands for the three fermions associated
with the SU(2) WZW and the brackets mean that 1, which has spin 1 under
SU(2)r, is coupled with Vj into a spin j + 1 combination (and similarly for
the right movers). Thus, the non-normalizable operators (3.14) transform
under SU(2);, x SU(2)g as

in exact agreement with what was found for (3.11) above. Applying the
spacetime supercharges gives the other members of the supermultiplets.
Thus, the sets of short representations of supersymmetry in LST and in
string theory on (3.4) agree.

3.2 Example 2: Normalizable states

A large set of normalizable states is obtained by considering vertex operators
of the form

V(g) ~ el F+iN9 (3.16)

on IRy. Recall that the vertex operators are related to the wavefunctions
(3.8) by a factor of gs, which here is a function of ¢ (3.5). Therefore, (3.16)
actually corresponds to a wavefunction

U(g) ~e?, (3.17)

which is (é-function) normalizable, and thus gives rise to states in LST. Since
A is arbitrary, there is in fact a continuum of such states. To compute their
masses, consider the states (3.13) as an example. The mass shell condition
reads:

k. k" —B(B+Q) =0. (3.18)

8We set k, to zero for simplicity.
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Plugging in g = —% + i, we find

1

M? =
No

+ 2. (3.19)

Thus, we find a continuum above the gap ms/ V/N. The gap is given by a
natural scale in LST; looking back at (2.4), we see that it is the 't Hooft
coupling of the low energy super Yang Mills theory (for IIB fivebranes).

3.3 The strong coupling problem

As we have seen before, the background (3.4) has the property that the
string coupling depends on ¢; it goes to zero as ¢ — oo and diverges as
¢ — —oo. In this subsection we would like to discuss the physical origin
of this behavior and its implications. The strong coupling region ¢ — —o0
corresponds to the vicinity of the brane (r — 0). This is the low energy
region in the theory on the branes [19].

The low energy behavior of LST is different for ITA and IIB fivebranes.
In the IIB case, the low energy limit is a six dimensional U(N) gauge theory,
which is weakly coupled in the IR. Thus, in the limit ¢ — —oo of the near-
horizon geometry, which should be dual to the infrared limit on the brane [3],
string theory on (3.4) should reproduce the weakly coupled gauge theory on
the branes. Since one does not expect to find two different weakly coupled
description of the same physics, the “bulk” description should either be
strongly coupled, or exhibit large curvatures (or both). Since in our case the
curvature of (3.4) is small, it is natural to find that the string coupling is
growing in the infrared region.

In the ITA case the infrared limit of LST is somewhat different. As
discussed earlier, one finds in this case a non-trivial superconformal field
theory with chiral (2,0) supersymmetry, the (2,0) theory. Thus, it is not
obvious that one should run into any strong coupling problems in the dual
description.

To see what is going on, recall that type IIA string theory can be thought
of as an eleven dimensional theory, M-theory, compactified on a circle of
radius Ry, which is related to the eleven dimensional Planck scale l11, and
the string scale m, and coupling g, via

msRyy = £3,m3 = g,. (3.20)

The eleven dimensional theory contains membranes and fivebranes (the M2
and Mb5-branes), which preserve half of the supersymmetry; their tensions
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are (up to numerical constants) 1/13; and 1/1%,, respectively. The ITA N S5-
branes are Mj5-branes located at points on the circle. Thus, to study them
using holography we should construct the background around N coincident
M5-branes. Taking the limit (2.2), which corresponds to Ri1,l11 — 0 with
m fixed, one finds the eleven dimensional metric

ds® = H s [dz,da® + H(da?, + dr® + r?dQ3)] (3.21)

where

o0

N,

ne—oo [T2 + (z11 — 27nR11)?]

H= (3.22)

[NI[°H

T11 is a coordinate on the circle; it is periodic with period 27 R11. In the limit
r — 00, the background (3.21) goes over to (3.4). The radius of the z1; circle
goes to zero and one finds the linear dilaton behavior discussed above. As
7,211 — 0 only one term in the sum over n in (3.22) (say n = 0) contributes,
and the metric reduces to the near-horizon background of N coincident M5-
branes in eleven dimensions. This background, AdS7; x S*, is known to be
dual to the (2,0) superconformal field theory via AdS/CFT [3]. If N is large,
it can be studied using eleven dimensional supergravity; otherwise one needs
the full M-theory, which is not understood for these backgrounds.

Thus, we see that the growth of the coupling and associated breakdown
of string perturbation theory as ¢ — —oo in the background (3.4) have
slightly different origins in the ITA and IIB cases. However, regardless of
the origin of this problem, one can ask what is the dual description of LST
good for in view of its existence? We have already seen two examples of
applications of the formalism. Since off-shell observables correspond to non-
normalizable wavefunctions supported in the region ¢ — oo, we can classify
the observables of LST by analyzing such wavefunctions; since the coupling
is small at large ¢, perturbative string theory is suitable for this. Also, any
normalizable states that are supported in the weakly coupled asymptotic
region, like those described in section 3.2, can be studied using the formalism.

Correlation functions of the observables discussed above are in general
difficult to analyze. Since the string coupling goes to zero as ¢ — oo, distur-
bances on the boundary have to propagate to finite ¢ in order to interact.
Thus, to compute correlation functions in LST one needs information about
the strong coupling region. E.g. for ITA fivebranes, one has to understand
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M-theory in the background (3.21), (3.22) which seems difficult®.

There are actually some situations in which the strong coupling prob-
lem can be avoided. In the next section we describe an example of such a
situation, which is in fact of independent interest, the high energy density
thermodynamics of LST.

4 High energy thermodynamics of LST

At very high energy density one expects the thermodynamics of fivebranes to
be dominated by black brane states. Thus, in this section we will analyze the
thermodynamics of near-extremal fivebranes and deduce from it the entropy-
energy relation. We will find that the density of states has the Hagedorn
behavior

p(E) ~ E*efuE [1 +0 (%)] : (4.1)

One of our main purposes is to compute Sy and «. This section is based
on [23]. For some additional recent work on LST thermodynamics, see [24,
25, 26].

4.1 Thermodynamics of near-extremal fivebranes

The supergravity solution for N coincident near-extremal N §5-branes in the
string frame is [27]:

2 No' 2
ds? = — (1 - ;g) dt? + (1 + O‘) ( ar_ +r2dQ§> +dy?,  (42)

r2

). (4.3)

r = g is the location of the horizon, dy2 denotes the flat metric along the
fivebranes, and d)3 is the metric on a unit three-sphere, as before. The
solution also involves a non-zero NS By, field which we suppress. The
configuration (4.2), (4.3) has energy per unit volume

E 1 N
—=——— = +pu), 4.4
Vs (2m)5a (gz a ) 44

®For large N and energies much lower than ms one can use classical eleven dimensional
supergravity to compute correlation functions. See [22] for details.
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where

i

p (4.5)

= P
The first term in (4.4) is the tension of extremal N S5-branes and can be
ignored for the thermodynamic considerations below — it is a ground state
energy. u measures the energy density above extremality (in string units)
and g, is the asymptotic string coupling, which goes to zero in the decoupling
limit.

The near-horizon geometry is obtained by sending rg,g9s — 0, keeping
the energy density p fixed. Changing coordinates to r = rgcosho and Wick
rotating ¢ — it to study the thermodynamics, one finds

ds? = tanh? odt? + No'do? + No/dQ32 + dy?, 4.6
3 5
N
e?® = —. (4.7)
pcosh“c

This background corresponds to the worldsheet CFT

Hi/UQ1) x SU(2)x x R?, (4.8)
where
Hf = SL2,C)n L’;&;}f (4.9)

is the Euclidean AdS3 CFT which plays an important role in the AdS-CFT
correspondence; the coset H3 /U(1), parametrized by (o, t) in (4.6), is a semi-
infinite cigar [28]. The background (4.8) describes the high energy density
thermodynamics of fivebranes; it should be compared to (3.4), which is dual
to the zero temperature theory.

The absence of a conical singularity at the tip (o = 0 in (4.6)) requires
the circumference of the cigar to be

B =21V N (4.10)

Thus, Euclidean time lives on a circle of radius v No/, and the temperature
of the system is Ty = 1/8p. In particular, the temperature is independent
of the energy density u, which determines the value of the string coupling
at the tip of the cigar (4.7).
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The fact that the temperature is independent of the energy means that
the entropy is proportional to the energy (since § = g—g). Therefore, the free

energy is expected to vanish!?,
—BF=8—-pBE=0. (4.11)

In general in string theory the free energy is related to the string partition
sum via

_;Bf = log Z(ﬁ) = Zstringa (4'12)

where Zgiring is the single string partition sum, given by a sum over connected
Riemann surfaces [30]. The string path integral should be performed over
geometries in which Euclidean time is compactified on a circle of radius
R = pB/2m (asymptotically). As mentioned above, for high energies one
expects the thermodynamics to be dominated by the black brane geometry
(4.2), (4.6) and thus the free energy is proportional to the partition sum of
string theory in the background (4.8).
The string partition sum Zgine can be expanded as follows:

Zstring = 6_2¢0Z0 + Z1 + 62{)0 Z2 + .- , (413)

where exp(®g) is the effective string coupling in the geometry (4.6) and Zj,
the genus h partition sum in the background (4.8). Although the string
coupling varies along the cigar (see (4.7)), it is bounded from above by its
value at the tip,

N
e = (4.14)
o
Therefore, it is natural to associate (4.14) with the effective coupling in
(4.13). We see that the string coupling expansion in the background (4.8)
provides an asymptotic expansion of the free energy in powers of 1/u.
The leading term in the free energy (4.12), (4.13) goes like

—BF = %zo (4.15)

and corresponds to a free energy that goes like the energy (Zy is proportional
to the volume of the fivebrane). This term is expected to vanish (see (4.11)),

10Gee [29] for a related discussion in the low energy gravity approximation.
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and therefore we conclude that the spherical partition sum in the background
(4.8) should vanish. The fact that this is indeed the case follows from the
results of [31]; we will not discuss it further here (see [23]).

To compute 1/p corrections to the free energy we have to examine string
loop effects in the background (4.8). We next turn to the one loop correction
Zy (see (4.13)).

4.2 The leading 1/u correction to classical thermodynamics

As discussed above, one expects the entropy-energy relation to take the form
(4.1)

S(E)=pBgE + alog% +0 (%) ) (4.16)

where A is a dimensionful constant (a UV cutoff) which we will not keep
track of below. Consider the canonical partition sum

[e.e]
Z(B) = / dEp(E)e PE. (4.17)
0
Near the Hagedorn temperature one might expect Z(3) to be dominated by

the contributions of high energy states;'! if this is the case, one can replace
p(E) by (4.1) and find,

Z(B) ~ / dEE“ePn=PF ~ (g — g)—o L. (4.18)
The free energy (4.12) is thus given by

BF ~ (a+ 1)log(B — Bu). (4.19)

The energy computed in the canonical ensemble is

O(BF) a+1
E-— ~ ; 4.20
08 =B P (420
thus the free energy (4.19) can be written as
—BF ~(a+1)logE. (4.21)

""We will see that this assumption is valid slightly above the Hagedorn temperature, but
is not valid slightly below it.
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Comparing to the expansion (4.12) — (4.14) we see that the leading term in
the free energy arises from the torus (one loop) diagram in the background
(4.8), since it scales as 0, like Z; in (4.13).

The torus partition sum in the background (4.8) is in fact divergent,
since it is proportional to the infinite volume of the cigar, associated with
the region far from the tip, ¢ — o0o. As is standard in other closely related
contexts, we will regulate this divergence by requiring that

¢ < ¢uvy. (4.22)

In the fivebrane theory, this can be thought of as introducing a UV cutoff.
This makes the partition sum finite, but the bulk of the amplitude still comes
from the region far from the tip of the cigar. For the purpose of computing
this “bulk contribution” one can replace the cigar by a long cylinder with
¢ bounded on one side by the UV cutoff (4.22) and on the other by the
location of the tip of the cigar. Combining (3.5) and (4.14) we find that

1 @
—log— < ¢ < . 4.2
QOgN_¢_¢UV (4.23)
Thus, the length of the cut-off cylinder is
Ly = v — ~log 2 = —Liog B + const (4.24)
= dpy — —log — = —— nst. .

Since we are only interested in the energy dependence, we suppress in (4.24)
a large energy independent contribution. Any contributions to the torus
partition sum from the region near the tip of the cigar can also be lumped
into this constant. Note the minus sign in front of log F in (4.24). The length
Ly is of course positive; the minus sign simply means that Ly decreases as
E grows.

To recapitulate, for the purpose of calculating the bulk contribution to
the torus partition sum, we can replace the background (4.8) by

Ry x S' x SU(2)x x Rs. (4.25)

The linear dilaton direction is regulated as in (4.23). The circumference of
the St is By (4.10).

The background (4.25) is easy to analyze since it is very similar to that
describing flat space at finite temperature (see e.g. [32, 33, 34]). The bosonic
fields on the worldsheet are seven free fields, one of which (Euclidean time) is
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compact, and a level N —2 SU(2) WZW model. The worldsheet fermions are
free and decoupled from the bosons; their partition sum, and in particular
the sum over spin structures, is the same as in the flat space analysis, which
we briefly review next.

Collecting all the contributions to the thermal torus partition sum in the
background (4.25) we find, 2

_ BVl [ 1 \T? 1
Z = 4 /FTz 4201y |77(T)‘10ZN_2(T)X
(4.26)
4 A .
Z ZJHUN(n,m)dyUy(n,m)(79/1(0,7')) (191;(0_,7)> o—Ss(n,m)_
n,meZ p,v=1 7](7') 77(7’)

The modular integral runs over the standard fundamental domain F. Zy_o
is the partition sum of level N —2 SU(2) WZW 13 (see for example [35]),

N-2 N—2
Znoa(r) = ) X2 (@xE2 (@ = D I P @) (4.27)
m=0 m=0

where g = exp(27iT) and

(m+1)2
_ q 4N n m n
(N=2)(g) = P Z[l +m + 2nN)]gn(tHmNn) (4.28)
nq nez

We note for future reference that Zy_o is real and positive.

14, v denote the spin structure for left and right moving worldsheet fermions,
respectively. d§, = (&, —,+,—) are signs coming from the usual GSO pro-
jections for ITA and IIB superstrings at zero temperature; n, m are winding
numbers of Euclidean time around the two non-contractible cycles of the
torus. The soliton factor Sg(n,m) is given by

132

4l 19

Sg(n,m) (m? 4+ n?|7|* — 2rymn). (4.29)

Uu(n,m) are additional signs that are associated with finite temperature.
Their role is to implement the standard thermal boundary conditions, that

12We follow the conventions of [34], which should be consulted for additional details.
We also drop the subscript H on B, and will reinstate it later.

3We choose the A series modular invariant; the D and E series modular invariants can
also be studied and correspond to other vacua of LST [18].
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spacetime bosons (fermions) are (anti-)periodic around the Euclidean time
direction. One can show [34] that this requirement together with modular
invariance leads to:

Ui(nm) = 5 (14 (=14 (<1 + (~1)7)
Unym) = 3 (1= (~1)" 4 (<) 4 (~1)™)
Us(nm) = 3 (1+(=1)" + (=1)" = (=1)"*™) (4.30)
Ustnm) = 5 (1 (~1)" = (<)) 4 (~1)"™)

The terms with g = 1 in (4.26) vanish because of the presence of fermionic
zero modes for the (+, +) spin structure, or equivalently since 91 (0,7) = 0.

The torus partition sum (4.26) can be rewritten in a way that makes it
manifest that the coefficient of SV5L4/4 is positive,

BVsLy / d2r 1 \7? 1
71 = — ZIN_
! i )om \Gan) poEine X

2

4
S 1D Uun,m)s,9;,(0,7)| e Slmm), (4.31)

n,meZ |u=2

It is not difficult to check that the integral (4.31) is convergent at 79 — oo,
the only region where a divergence could occur.

To exhibit the interpretation of (4.31) as a sum over the free energies
of physical string modes one can proceed as follows [30, 32, 33]. Using the
modular invariance of the integrand and the covariance of (n,m), one can
extend the integral from the fundamental domain to the strip

S: -

<7< ;0 T2 > Oa (432)

1
2

N | —

while restricting to configurations with n = 0 in (4.31). This leads to

_BVLy [P 1 NP1
) (s Zv-2(7)

9 \4m2a! Ty T

2
oo

4
> D UL(0,m)6,9,,(0,7)| e Om), (4.33)

m=—00 |u=2
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The integral over 71 projects on physical states (i.e. those with Ly = L),
while 79 plays the role of a Schwinger parameter. Because of the Jacobi
identity 93(0, 7) —95 (0, 7) +93(0,7) = 0, and the fact that Us(0,m) = (—)™,
Us3(0,m) = Uy(0,m) = 1, the sum over m in (4.33) can be restricted to odd
integers. It is not difficult to check in this representation too that the integral
over T, is convergent.

We are now ready to determine the parameter « in (4.16), (4.21). Using
the relation (4.12) between the free energy F and the string partition sum,
as well as (4.21), we see that Z; should be proportional to log E. This is
indeed the case in (4.33) since the length L, goes like —log E (see (4.24)).
Combining these relations we find that

BV [P 1\ 1
ol = 40 Jyn \iwam)  pmm 2
00 4 2
> 1D UL0,m)8,95,(0,7)| e 58Om), (4.34)

m=—00 |u=2

We see that o+ 1 is negative.'* Physically, it is clear that it is counting the
free energy of the perturbative string modes which live in the vicinity of the
black brane. An interesting point which was mentioned in [36, 37] is that «
is an extensive quantity — it is proportional to the volume of the fivebrane
Vs, in contrast, say, to the one particle free energy in critical string theory,
where the analogous quantity is of order one.

The integral (4.34) appears in general to be rather formidable and we
do not know whether it can be performed exactly. In the remainder of this
section we will compute it in the limit N — oo, where the computation
simplifies.

For large N the partition sum corresponding to the three-sphere, Zy_o(7),
simplifies significantly. Indeed, for N > 1 (4.27) can be approximated as

1 > (p+1)?
Zn_o(T) = > gl (p+1)% (4.35)

' 0Of course, since the r.h.s. of (4.34) is proportional to Vs which is assumed to be very
large, we can neglect the +1 on the left-hand side.
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Returning to the evaluation of «, (4.34), we have
12

BVs (1 \? 1 &1
atl = ——(T> / 972 | p(r)
4Q \ 47« 5 T, n(r)
2 2

> Z -t (p+1)% Tty

me2Z+1 p=0

94 + 03 — 94| (0, 7).

(4.36)

At this point it is useful to recall that the inverse temperature £ in (4.36)
is in fact the Hagedorn temperature of LST, (4.10). In the large N limit,
B ~ VN becomes large (or, equivalently, the Hagedorn temperature is
small in string units) and the exponential term in (4.36) suppresses the
amplitude, unless 7 is large as well (of order N). Therefore, the 7 integral
in (4.36) is dominated by the large 7o region, which corresponds to the free
energy of the supergravity modes. To compute the integral we recall the
asymptotic forms of the ¥ and 7 functions at large 7o (see e.g. [38])

92(0, 7) = Z q%("_%y = 2q§(1 +q+...)
n=—oo
0 1 1
930, 7) = > q" = 1422 +...
n=-—00
95(0,7) = Y (~1)"gr" =1-2¢7 +... (4.37)
n—=—oo
1 e 1
n(r) = qu [[0-q") =q%+....
n=1

Plugging in (4.36) and using the definition of the modified Bessel function
12\ [ 2,
K (z) = = (2 / Pl gy, (4.38)
2 z 0

o0

27r2k+1) T/ )
a+1l = 7T6NOA 5/2 z;()( p-l—l ) (p+1)

(V2r(p+1)(2k + 1)) ~ —4.08 - 10~*V5(No')™%/% = —a, V5.
(4.39)

we find

K 1
2
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Note that, as expected, « is negative. Of course, as is clear from (4.36), we
can write a+1 as —a1 V5 with a; a positive constant for all N, but in general
a1 receives contributions from massive string modes and is thus given by a
complicated modular integral. The large N behavior of a; is simpler and is
given by (4.39). It should be emphasized that, as mentioned above, the large
N result (4.39) comes entirely from the thermodynamics of the supergravity
modes in the near-extremal fivebrane background (4.6), (4.7), and thus could
have been obtained by a supergravity calculation.

The fact that o goes like N~%/2 for large N was found in a different way
n [36], by analyzing the deformation of the classical solution (4.6) at one
string loop. The analysis described here determines the coefficient of N~5/2,
and in particular its sign, which is important for the thermodynamics.

In the discussion above, the fivebrane was assumed to be effectively
non-compact. It is interesting to study the thermodynamics of fivebranes
wrapped around compact manifolds, and in particular the dependence of «
on the size and shape of the manifold. As an example of the sort of depen-
dence one can expect, consider compactifying the fivebrane on (S')® where
all five circles have the same radius R. It is sufficient to consider the case
R > v/ since smaller radii give rise to the same physics due to T-duality.

As is standard in string theory, the effect of this is to replace the contri-
bution of the non-compact zero modes on R® by the momentum and winding
sum on (S1)3:

Vs o/ (LypR)? o' (L_pR)?
At Y ) g (m=ar) | (4.40)
l,peEZ

Consider for simplicity the limit N — oo discussed above. As mentioned
after eq. (4.36), since the Hagedorn temperature is very low, the modular
integral is dominated in this case by 7 ~ N. If the radius R is much
larger than v N¢/, the sum over momenta on the r.h.s. of (4.40) can be
approximated by an integral and gives the same contribution as in the non-
compact case (namely the Lh.s. of (4.40)). For R ~ v/Na' one has to
include a few low lying momentum modes — this is a transition region. For
Vo' < R < v/Nao! one can neglect all contributions of momentum (and
winding) modes, just like one is neglecting the contributions of oscillator
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states. Thus, we get in this case

B 1 * dro O _p2er)? (p+1)’n
l=——--—— —=.1024 E 4ralT 2N —
@t 2Q \4r2a' ) Jo T2 = ¢ ’
=

256 (27T(Zk +1)2

~1/2
p+1)2 ) (p+1)2K_1(V2r(p + 1)(2k + 1)) = —3.693.

T
k,p=0
(4.41)

Interestingly, we find that for small fivebranes « is independent of the number
of fivebranes N in the N — oo limit. Note also that in this case it is
important to keep the +1 on the Lh.s. of (4.41), since « is of order one.

To summarize, the power « that appears in the high energy density of
states (4.1) is negative, and exhibits an interesting dependence on the size
of the spatial manifold that the fivebranes are wrapping. For manifolds of
size much larger than the characteristic scale of LST, vV N¢o/, « is propor-
tional to the volume of the manifold, while for sizes much smaller than this
charateristic scale, it saturates at a finite value, which is independent of N
(for large N), (4.41). If the density of states (4.1) is due to strings confined
to the fivebranes, then these strings belong to a new universality class, with
typical configurations not exceeding the size vV N¢/. It would be interesting
to understand this universality class better (see also [36]).

4.3 Comments on the near-Hagedorn thermodynamics of LST

The main result of the previous subsections is that the temperature-energy
relation has the form (4.20), with « given by (4.36) or for large N by (4.39),
(4.41). Since it is negative, the temperature is above the Hagedorn tempera-
ture, and the specific heat is negative. This raises two immediate questions:

(1) What is the thermodynamics for temperatures slightly below the Hage-
dorn temperature?

(2) What is the nature of the instability, reflected by the negative specific
heat, above the Hagedorn temperature?

Consider first the behavior well below the Hagedorn temperature, 5 > Bp.
In this regime, the thermodynamics is expected to reduce to that corre-
sponding to the extreme IR limit of LST, which is the (2,0) six dimensional
SCFT for type ITA LST, or six dimensional (1,1) SYM for IIB. From the
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point of view of the holographic description, this regime corresponds to the
strong coupling region of the near-horizon geometry of the fivebranes, and
thus should not be well described by the perturbative theory on the cigar
(4.6).

What happens as the temperature approaches Ty from below? One
might expect that due to the Hagedorn growth in the density of states (4.1),
the high energy part of the spectrum dominates as 8 — Sp, and the partition
sum becomes better and better approximated by (4.18). What actually
happens depends on the value of «, as we discuss next.

Consider first the case of large V5 (R > v/ N/ in the discussion at the end
of section 4.2). In this case, || is large, and the contribution to the partition
sum of the high energy part of the spectrum, (4.18), goes rapidly to zero as
B — Bmx- The integral over E is dominated by states with moderate energies,
whose contribution to the partition sum is analytic at S8g. It is clear that the
mean energy remains finite as we approach the Hagedorn temperature from
below, and that thermodynamic fluctuations are suppressed (by a factor
of the volume Vj5). Since the Hagedorn temperature is reached at a finite
energy, it corresponds to a phase transition.

As V5 decreases, « decreases as well, until it reaches the value (4.41). The
fluctuations in energy in the canonical ensemble increase with decreasing a.
To see that, consider the case R < v N¢' in the discussion at the end of
section 4.2. Since —5 < a < —4 in that case, the expectation values (E™)
with n > 4 in the canonical ensemble diverge as

(E") ~ (B — Bu)~ " (4.42)

In such situations, one is instructed to pass to the microcanonical ensemble,
in which the energy is fixed and the temperature is defined by

_ Ologp ]
B=—p =Prt+tgpt (4.43)

where on the r.h.s. we included the first two terms in a perturbative expan-
sion in 1/E. The perturbative evaluation of 8 in (4.43) gives a temperature
above the Hagedorn temperature. This of course does not imply that LST
cannot be defined at temperatures below Ty ; instead, it means that to study
the theory at such temperatures one must compute S(E) to all orders in 1/E,
include non-perturbative corrections, and solve the equation (4.43) to find
the energy E corresponding to a particular 8 > fg. From the form of the
leading terms in S(F) it is clear that the solution of this equation will cor-
respond to finite £. We are led again to the conclusion that the Hagedorn
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temperature is reached at a finite energy and thus is associated with a phase
transition.

Since the study of the non-extremal fivebrane geometry in the previ-
ous sections is perturbative in 1/F, it is not useful for studying the regime
B8 > Bm. Nevertheless, it seems clear that the specific heat is positive there
(this is certainly the case for the infrared theory on the fivebranes). Fur-
thermore, since the energy — temperature relation is such that the Hagedorn
temperature is reached at a finite energy, we are led to the second ques-
tion raised in the beginning of this section: what is the nature of the high
temperature phase of LST?

The perturbative analysis of the near-extremal fivebrane, which is valid
for 3 slightly below B, predicts that the thermodynamics is unstable. Usu-
ally, in such situations the instability is associated with a negative mode in
the Euclidean path integral (a tachyon). Examples include the instability
of flat space at finite temperature in Einstein gravity [39], and the thermal
tachyon that appears above the Hagedorn transition in critical string the-
ory. The one loop instability found above leads one to believe that a similar
negative mode should appear in LST above the Hagedorn temperature.

In [23] it was shown that there is a natural candidate for this, a mode
that lives near the tip of the cigar and is classically massless. It is likely that
one loop corrections give a tachyonic correction to the mass of this state
above the Hagedorn temperature, but this has not been proven and we will
not discuss the detailed properties of this state here.

5 Weakly coupled LST

In the previous section we saw that the high energy thermodynamics of LST
can be analyzed reliably using the holographically dual description, since at
large energy density the strongly coupled region on IRy is eliminated, and
the coupling never exceeds (4.14), a value that can be made arbitrarily small
by increasing the energy density. In this section we will describe another
situation where something similar happens at zero temperature, by studying
the theory away from the origin of its moduli space of vacua. This section
is based on [40].

Recall that the theory of N fivebranes contains four massless scalars in
the adjoint of U(N), X', i = 6,7,8,9, parameterizing motions in (6,7,8,9).
ITA fivebranes have one more scalar X!, which is compact, but we will not
discuss it here. The moduli space of vacua of LST is R*" /Sy for IIB and
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(R* x §')N /Sy for IIA. The origin corresponds to coincident fivebranes;
other points are labeled by relative separations of the fivebranes.
The four scalars X can be parametrized by two complex N x N matrices,

A =X8 44X,

(5.1)
B =X%+4iX".
Consider a point on the moduli space where
(4) = 0,
- (5.2)
s i 2mi(N -1
<B> = Todiag(l,e%,e4N,---,e N )

This corresponds to fivebranes symmetrically distributed around a circle of
radius ro in the (6,7) plane. The gauge invariant characterization of this
vacuum is

(Tr BNy =+ (5.3)

with all other v.e.v.’s of the operators (3.11) set to zero. Since for a single
fivebrane the worldvolume dynamics is trivial, in order to get a non-trivial
result in the limit (2.2), we have to tune 7o — 0 as we take the limit. E.g.,
in the IIB case the masses of D-strings stretched between N S5-branes

’f‘omg

gs

My ~

(5.4)

must be kept finite in the limit. This leads one to consider the double scaling
limit
gs = 0; roms — 0 (5.5)

with My /m (5.4) held fixed.
Distributing the branes on a circle as in (5.2) breaks the SO(4) R-
symmetry

SO(4) = SO(2) x Zy . (5.6)

We will next show that is also eliminates the strong coupling singularity at
¢ — —oo discussed above.
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The first thing we have to understand is how to describe the vacuum
(5.3) in the holographically dual theory. In section 3.1 we found the vertex
operators corresponding to the gauge invariant operators (3.11). It is not
difficult to see that

N
2

(

T BN & ¢+¢+V%_1;§_1,%_16XP [ — 1)(;5] : (5.7)

2
VN
Adding the vertex operator (5.7) to the worldsheet action is equivalent, via
the prescription (3.10), to adding the operator Tr BY to the action of LST.
In order to turn on a v.e.v. of Tr BY instead, as in (5.3), we have to use the
same vertex operator but replace the charge 8 in (3.13) by

f——-Q—5 (5.8)

Thus, to describe the vacuum (5.3) we must study the worldsheet Lagrangian

_ _ _. /N
L= Lo+ MGGtV w v e V¥ fee. (59)

2

where we explicitly wrote the worldsheet supercharges which are needed to
turn a (—1,—1) picture vertex operator to a (0,0) picture one (the appro-
priate picture for a term in the worldsheet Lagrangian). A is a coupling
related to rg. Lo is the free Lagrangian describing string propagation on
(3.4). Since the coupling A\ breaks explicitly the SU(2); x SU(2)r symme-
try, it is convenient to analyze its effect by rewriting the background (3.4)
as

SU(2)

R>! x R Stx —=)/z 5.10
<o (8 ) 12 (10
where SU(2)/U(1) is an N = 2 minimal model, and S* a circle of radius
vV Nd!'. Denoting the coordinate along the circle by Y, one can show that
the interaction in (5.9) can be written as

SL=XG_1G_se @) e (5.11)

This interaction is familiar in CFT as the N = 2 Liouville interaction. Thus,
we find that to describe the vacuum (5.3), we must replace the infinite cylin-
der Ry x S* in (5.10) by the N = 2 Liouville model. Note that:

(1) The fact that the interaction (5.9), (5.11) preserves N = 2 supercon-
formal invariance is related to the fact that spacetime supersymmetry
remains unbroken along the moduli space of LST.
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(2) The interaction (5.11) grows as ¢ — —oo. One can show that it resolves
the strong coupling singularity discussed in section 3. We will see this
directly momentarily.

To study N = 2 Liouville theory, it is convenient to use a dual description
of this background. It was argued in [40] that N = 2 Liouville is equivalent
via strong-weak coupling duality on the worldsheet to CFT on the cigar,
H3 /U(1), which was discussed in section 2. The parameter N which enters
the definition of N = 2 Liouville (5.11) via @ is mapped under the duality
to the level of the underlying SL(2) current algebra.

I will not describe the duality or the evidence for it here'®, but rather
will use it to conclude that the vacuum (5.2), (5.3) is dual to

1. (SL(2) SU(2)
R5! x ( o) X o) )/ZN. (5.12)

Note that the unbroken R-symmetry SO(2) x Zy of the vacuum (5.3) is
manifest in the description (5.12). The SO(2) symmetry corresponding to
rotations in the (8,9) plane is realized as the U(1) translation symmetry
around the cigar. The rotation symmetry in the (6,7) plane, which is broken
to Zy by the v.e.v. of B, corresponds to winding number around the cigar.
This quantum number is not conserved, since winding can slip off the tip of
the cigar. The Zy orbifold in (5.12) leads to a Zy remnant of it (since it

allows fractional windings € Z/N).

The radius of the circle on which the fivebranes lie, ry in (5.2), is related
to the value of the string coupling at the tip of the cigar, gcigar. The pre-
cise relation can be determined by noting that D-branes stretched between
fivebranes, whose mass is given by (5.4), correspond in (5.12) to D-branes
at the tip of the cigar, whose mass is m;/gcigar- This implies that

mg
Gcigar = Mo
w

(5.13)

Thus, the theory is weakly coupled when My >> mg; as My decreases,
we recover the original strongly coupled theory described holographically
by (3.4). As mentioned above, the behavior (5.13) is very reasonable: as
My /mgs — oo the fivebranes become infinitely separated and decouple (re-
call that the dynamics on a single fivebrane is trivial).

The weakly coupled nature of the theory (5.12) for My >> m; allows
one to determine the spectrum in a wide range of energies 0 < F << My,

15Gee [41, 42] for more detailed discussions.
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and to compute various off-shell correlation functions of the observables dis-
cussed in section 3. Interactions can be turned on gradually by increasing
eigar (5.13). For energies E > My one expects the weak coupling expan-
sion to break down. Physically, the reason for that is that in this regime
the symmetry breaking in (5.2) can be neglected, and the physics is that of
coincident fivebranes. All this is very similar to critical string theory, where
the string coupling expansion is associated with a large hierarchy of energy
scales, mg/my. For E ~ m, the string coupling expansion breaks down.

Two and three point functions as well as the spectrum of weakly coupled
LST were analyzed in [40]. We next illustrate the resulting structure by
discussing an example.

Consider the operator Tr BV (z). The dual vertex operator (5.7) can be
written in terms of the background (5.12) as

Tr BN (z) ¢ e~ 2em2" V0 (5.14)

with m = N/2. ¢, ¢ are the standard bosonized superconformal ghosts
needed for the —1 picture, Vj,, 7 is a Virasoro primary on the cigar carrying
p units of momentum and w units of winding, with

m= %(p-l—wN) ; mo= —%(p—wN) . (5.15)

In the case (5.14), p = 0 while w = 1 (i.e. m = m = N/2). The worldsheet
scaling dimension of Vj.p, , is

2 . .
x_m —j(+1)
A=A= 5.16
K (5.16)
Requiring that (5.14) be physical gives rise to the mass-shell condition
4
ok k* = N(J —m+1)(j +m). (5.17)

To compute the two point function of Tr BV (k,) we use the correspondence
(3.10):
(Tr BN (k) Tr BY (<ky)) = (€79 Pebnm™ Ve Pe b vy,
(5.18)
The only non-trivial part of the correlator on the r.h.s. is (VV). It was
computed in [43]:
I(1-2ET(-2j — DI(j —m+ 1)I(1 + j +m)
DT (2] + 20 (=j —m)D(m—5)
(5.19)

<Vj;m,fnvj;*mﬁm) = N[V(N)]2j+1
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where

1T+ )
v(N) = ;1“(17—%) i (5.20)

The two point function (5.19) has a series of poles; these can be interpreted
as contributions of on-shell states in weakly coupled LST, which are created
from the vacuum by the operator (5.14). The masses of these states can be
computed by using the relation (5.17) between j and M? = —k,k*. The
locations of the poles are given by

m|=j+n; n=12,3,--- (5.21)

These values of m and j belong to the principal discrete series representations
of SL(2). The corresponding states can be thought of as bound states that
live near the tip of the cigar [44]. Such bound states are to be expected since
winding modes around the cigar feel an effective attractive potential towards
the tip — their energy decreases as they approach the tip and shrink.

For the particular case (5.14), m = m = N/2, and the masses of these
states are given by

CM2=2(n—1)(N—n),
(5.22)
N+1>2n>1.

The second line in (5.22) comes from a unitarity constraint on j which must
be imposed, —1/2 < j < (N — 1)/2. Note that all the masses squared in
(5.22) are non-negative; For n = 1 one finds massless states, which corre-
spond to the eigenvalues of the scalar matrix B.

A few comments are in order here:

(1) By analyzing the behavior of the two point function (5.18), (5.19) one
can check that the residues of the poles corresponding to the states
(5.22) are positive, in agreement with the unitarity of the theory.

(2) In addition to the discrete spectrum given by (5.22), one also has the
continuum discussed in section 3 (3.19). One can show that the con-
tinuum starts right above the heaviest state (5.22). Thus the spectrum
of states that can be created from the vacuum by the operator (5.14) is
a finite discrete set, followed by a continuum (similar to the spectrum
of bound states and scattering states in quantum mechanics).
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It is interesting that the low lying spectrum of states associated with
N N S5-branes is independent of My, or equivalently the radius of the
circle on which the fivebranes are placed. This should be contrasted
with D-branes, for which masses of open strings stretched between dif-
ferent branes depend on the separation. When the distance between D-
branes goes to infinity, states associated with strings stretched between
different branes go to infinite mass and decouple. For N §5-branes, the
masses of low lying states remain finite, and the decoupling is due to
the vanishing of the effective coupling (5.13).

In addition to the poles (5.21), which corespond to principal discrete
series states near the tip of the cigar, the amplitude (5.19) has poles at
0<254+41€7Z,0<2j+4+1€ NZ. These poles have a different inter-
pretation than (5.21). They are associated with “bulk scattering pro-
cesses” which can occur anywhere in the infinite throat corresponding
to either the N = 2 Liouville (5.11), or SL(2)/U(1) (5.12) description.
This is discussed further in [42].

One can repeat the above discussion for other observables as well. The
resulting picture is similar; one always finds a finite set of discrete
states which live near the tip of the cigar, followed by a continuum of
states which propagate in the semi-infinite throat [40].

Since there is a Hagedorn growth in the number of observables (coming
from oscillator states on (5.12)), one finds a Hagedorn density of states
in LST. But the exponent By (4.1) does not grow like v/N as expected
from (4.10). Instead one gets By ~ 1/m,. This is not particularly
surprising since (4.10) is the expected behavior for high energies E >>
My, whereas the present analysis is only valid in the intermediate
regime my << F << Myy.

Three point functions of the off-shell observables discussed above can
be computed as well using the results of [43]. One finds a similar
analytic structure to that exhibited by the two point functions. There
are poles associated with external legs going on-shell; their locations
correspond again to the spectrum (5.22). The residues of these poles
describe the scattering amplitudes of the physical states; they seem to
have sensible physical properties. See [40] for details.
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6 Other aspects of LST

In this section we would like to briefly list some additional topics in Little
String Theory, which were not covered in detail in the lectures due to lack
of time.

6.1 Singular Calabi-Yau manifolds and lower dimensional vacua
of LST

The theory of N N S5-branes discussed in sections 2 — 5 is related to string
dynamics on an ALE space €?/Zy, which can be described as the manifold

AN rA+A=p (6.1)

in C3. For u = 0, (6.1) corresponds to a cone; non-zero u smoothes out the
tip of the cone. String propagation on R>! x C%/Zy is dual [45, 46] to a
vacuum with coincident fivebranes. The blowing up parameter y is related
by duality to the distance between the fivebranes. From the perspective of
the geometry (6.1), LST describes the dynamics of the modes localized at
the singularity, which can be decoupled from the rest of the theory.

This picture can be naturally generalized to a large class of vacua of LST
in d < 6 dimensions [47]. Consider, for example, string propagation on

R3>! x M, (6.2)

where M is a Calabi-Yau manifold with an isolated singularity, which looks
locally like

F(21,22,23,Z4) =0. (63)
Here F' is a quasi-homogeneous polynomial,
F(Xrl 21, )\T2z2, )\r323, )\T4Z4) = AF(Zl, 292423, 24) (64)

for some set of charges r1,72,73,74. Viewed as a hypersurface in C*, (6.3)
describes the vicinity of the singular point 21 = 29 = 23 = 24 = 0.

In analogy to the six dimensional situation (6.1), string theory in the
background (6.3) is expected to contain modes localized near the singularity;
these modes can be decoupled from the bulk in the same way as in the six
dimensional case.
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The decoupled dynamics at the singularity (6.3) is holographically dual
to string theory in the background

R*>! x Ry x (S* x LG(F)) /T, (6.5)

where LG(F) is a Landau-Ginsburg model with the superpotential given
by the quasi-homogeneous polynomial F'(z1,--- , z4) defining the singularity
(6.3). T is a discrete group whose origin is the chiral GSO projection in
the vacuum (6.5). As before, Ry is a linear dilaton direction, with the
slope ) determined such that the total central charge of (6.5) is fifteen,
as appropriate for a critical superstring vacuum. One can show that this
implies that

1 4
§Q2 = Z’l"a —1. (66)
a=1

Vacua of the form (6.5) preserve eight supercharges and give rise to N = 2
supersymmetric theories in four dimensions.
A simple example is

F=24+24+284+2, (6.7)
which corresponds to the conifold. In this case, (6.5) reduces to
R* x Ry x St (6.8)

which is the background holographically dual to string theory on the conifold.
Smoothing out the singularity as in (6.1) corresponds to replacing the factor
R, x S' in (6.8) by the cigar SL(2)/U(1) (or equivalently N = 2 Liouville).
In the same way that the ALE space (6.1) is dual to parallel fivebranes,
the background (6.7), (6.8) arises from two orthogonal N S5-branes inter-
secting along 3 + 1 dimensional Minkowski spacetime.
More generally, if

F(z1,-+ ,z1) = H(z1,20) + 23 + 73 (6.9)

the background (6.3) can be thought of as arising from an N S5-brane wrapped
around the surface H(z1,22) = 0 [48]. An interesting class of examples cor-
responds to H(z1,22) describing an ADE singularity (e.g. H = 2} + 23 for
Ap—_1), in which case the fivebrane wraps a Seiberg-Witten curve at the cor-
responding Argyres-Douglas point. For type 1IA fivebranes, at low energies
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the system approaches an interacting four dimensional N = 2 SCFT. In the
description (6.5), this SCFT corresponds to the strong coupling region in
the background (6.5), where the theory is eleven dimensional, and is diffi-
cult to study in detail (beyond the supergravity approximation). In [47] it
was shown that certain properties of chiral operators which can be studied
at weak coupling (such as the R-charges), agree with known results.

The construction described in this subsection can be generalized to other
dimensions and more complicated models in four dimensions. For some
work in this direction, see [49, 50, 51, 52, 53, 54]. Other vacua of LST
in six dimensions with less than maximal supersymmetry were discussed in

[55, 56, 57].

6.2 D-branes in the vicinity of NS5-branes

D-branes stretched between N S5-branes in the weak coupling limit g; — 0
have been seen in recent years to be very useful for studying the dynamics of
a wide class of gauge theories, which are realized as the low energy theories on
such branes [2]. In particular, D4-branes stretched between parallel adjacent
fivebranes realize N = 2 SYM and are very useful for embedding Seiberg-
Witten theory in string theory [58]. D4-branes stretched between orthogonal
fivebranes which share 3 + 1 dimensions, give rise to N = 1 SYM and are
very useful for studying Seiberg duality in string theory [59].

We have seen above that nearby fivebranes can be described by throat
geometries which involve the cigar SL(2)/U(1). Adjacent parallel fivebranes
are described by (5.12), while orthogonal fivebranes intersecting on 3 + 1
dimensional Minkowski spacetime correspond to R>' x SL(2)/U(1). D-
branes stretched between the fivebranes correspond in this description to D-
branes localized on the cigar and extended in some or all of the non-compact
directions. For example, a D4-brane stretched between parallel fivebranes
corresponds in the geometry (5.12) to a D3-brane in IR%!, which is localized
on the cigar, and is in one of the familiar boundary states in the N = 2
minimal model SU(2)/U(1). One can show that different boundary states
in the minimal model correspond to D-branes stretched between different
pairs of V.S5-branes.

Thus, one is led to study D-branes localized on the cigar. It is clear
that such D-branes will live near the tip of the cigar, since this is where the
string coupling is largest, and thus the energy of the D-branes is smallest.
The physics of D-branes living near the tip of the cigar is at present not
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completely understood, but progress has been made on two closely related
problems. In [60], D-branes in Liouville theory have been constructed which
can be thought of as being localized in the Liouville direction. It was found
that such D-branes are labeled by two integers, and exhibit very interesting
properties, such as having a finite number of Virasoro primaries in the open
string sector. This construction was generalized in [61] to Euclidean AdSs,
where similar D-branes were found.

Both Liouville theory and AdSs are known to share many properties with
the cigar and N = 2 Liouville CF'T’s. Thus, it is reasonable to expect that
localized D-branes exist on the cigar and N = 2 Liouville backgrounds as
well. It would be interesting to construct them and use their properties to
study gauge dynamics.

Another class of objects that figures in many brane constructions is D-
branes ending on N S5-branes. In some cases such branes can be studied
by analyzing them in the throat region of the fivebranes. For example,
consider a D-brane that ends on a stack of N fivebranes. Assuming that
the brane extends into the throat of the fivebranes,' one can study the
behavior of the brane inside the throat region described by (5.10), or for
separated fivebranes by (5.12). This analysis was carried out in [62], where
many properties of such D-branes that were previously deduced by using
spacetime considerations, were verified by using the technology of LST.

6.3 Low dimensional toy models of LST

From the modern perspective, the matrix model description of two dimen-
sional string theory (see e.g. [63]) for a review) provides an early example of
holography in string theory. Since the “bulk” theory involves in this case a
linear dilaton direction, the situation looks like a low dimensional toy model
of LST.

Unlike LST, which is difficult to formulate directly (except for the DLCQ
construction of [7]), here there is an alternative definition of the theory, which
is moreover exactly solvable to all orders in the string coupling expansion (or
equivalently, the 1/N expansion in the matrix model). This is especially in-
teresting since, like LST, two dimensional string theory is expected to exhibit
a Hagedorn growth in the density of states, as in (4.1), with the parameters

16This is a non-trivial assumption; it is believed that in some cases D-branes that end
on fivebranes do not extend into the throat. The simplest example is D-branes ending on
a single fivebrane, which does not have a throat region.
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Br and « known from thermodynamic considerations [64]. Therefore, two
dimensional string theory is an interesting toy model of the dynamics of LST
in higher dimensions.

In [64], the matrix model description was used to study some properties
of the Euclidean black hole solution of two dimensional string theory. In
particular, some steps were taken towards developing a description of the
states that give rise to the Hagedorn entropy (4.1) directly in the matrix
model.

7 Some open problems in LST

While a lot has been achieved, many interesting questions regarding Little
String Theory await resolution. Some examples of open problems are:

(1) We have seen in section 4 that LST has at high energies a Hagedorn
spectrum of states (4.1). This was established by a thermodynamic
analysis; it would be very interesting to exhibit the density of state
(4.1) by an explicit counting of states. In the background (3.4) corre-
sponding to coincident fivebranes (and the lower dimensional analogs
(6.5)), this is complicated by the fact that string theory in the linear
dilaton background is not weakly coupled. The weakly coupled theory
described in section 5 does have a Hagedorn spectrum of perturbative
states, but the Hagedorn coefficient Sg is smaller than that of the full
theory (4.10). As explained in section 5, this is not surprising — most
of the states contributing to (4.1) are expected to be non-perturbative.
As a first step to counting non-perturbative states in the background
(5.12), it would be interesting to enumerate states corresponding to
collections of D-branes living near the tip of the cigar, which were
briefly discussed in section 6.

(2) It would be interesting to understand the dynamics of D-branes stretch-
ed between NN S5-branes, which correspond to D-branes localized near
the tip of the cigar in the dual geometry (5.12). This might be useful
for application to gauge dynamics, as well as for providing a direct
formulation of LST, independent of holography.

(3) Most of the work on LST concerned spacetime supersymmetric vacua.
In the absence of spacetime SUSY one expects to find infrared insta-
bilities such as tachyons, and the system might decay to a more stable
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vacuum. It would be interesting to understand the physics associated
with supersymmetry breaking and vacuum instabilities in LST. First
steps in that direction were recently taken in [65].
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