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Abstract The mathematical theory of gravitational lensing has revealed many
generic and global properties. Beginning with multiple imaging, we review
Morse-theoretic image counting formulas and lower bound results, and complex-
algebraic upper bounds in the case of single and multiple lens planes. We dis-
cuss recent advances in the mathematics of stochastic lensing, discussing a gen-
eral formula for the global expected number of minimum lensed images as well
as asymptotic formulas for the probability densities of the microlensing random
time delay functions, random lensing maps, and random shear, and an asymptotic
expression for the global expected number of micro-minima. Multiple imaging in
optical geometry and a spacetime setting are treated. We review global magnifica-
tion relation results for model-dependent scenarios and cover recent developments
on universal local magnification relations for higher order caustics.

Keywords Gravitational lensing, Singularities

1 Introduction

1.1 Overview and conventions

Two important anniversaries related to gravitational lensing occurred in 2009:
90 years ago the first observation of this effect was announced at a joint meet-
ing of the Royal Society and the Royal Astronomical Society, as a successful test
of Einstein’s new theory of gravity; and 30 years ago Walsh, Carswell and Wey-
man reported the first observation of an extragalactic example of lensing. Espe-
cially since then, the subject has become a thriving research field at the interface
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of astronomy, theoretical physics and mathematics. Some current research high-
lights on astrophysical and cosmological applications of lensing have been dis-
cussed earlier in this Special Issue, as well as possible lensing tests of modified
theories of gravity in the spirit of the original corroboration of General Relativity.

Of course, it has also emerged that gravitational lensing theory is a rich
research area in its own right within mathematical physics. This aspect can be
approached from three different directions: the widely used and astrophysically
important thin-lens, weak-deflection approximation;1 optical geometry, which
considers the properties of spatial light rays, a simplification that also makes the
method applicable to astrophysically relevant models; and a full general relativis-
tic spacetime method that studies null geodesics. These approaches have proved to
be mathematically quite rich, with applications of singularity theory, differential
topology, Lorentzian geometry, algebraic geometry, and probability theory. In this
review article, we discuss recent work in this direction on two aspects of the weak
deflection limit, image counting and magnification.

One of the most basic problems in gravitational lensing is the number of
images produced. Yet, already this apparently simple question turns out to be
difficult. Image counting results using Morse theory and complex methods are
reviewed in Sect. 2 for the single lens plane case, and in Sect. 3 for multiple
lens planes. The expected number of images in stochastic lensing is discussed in
Sect. 4, in particular for the asymptotic microlensing case of Sect. 5. From the
point of view of optical geometry, image multiplicity is also a global effect as
outlined in Sect. 6. Finally, conditions for the occurrence of multiple images in
spacetime are summarized in Sect. 7. Going beyond image number, finer infor-
mation on lensed images can be gained from the magnification. It turns out that
image magnifications obey global magnification relations for certain lens models,
and local magnification relations near singularities up to and beyond codimension
three, which are universal. These results, which involve deep properties of singu-
larities and algebraic geometry, are discussed in Sects. 8, 9, and 10, respectively.

Hence, the topics covered in this article involve a diverse range of mathe-
matical tools from geometric topology to stochastics. In the sections on image
counting, we concentrate on the precise statement of the established results and
their mathematical conditions. Since the properties of magnification relations are
rather less well understood as yet, we present recent results in that direction in a
more discursive style. Section 11 summarizes the scope for future work on some
open problems.

Theorem convention Our criteria for deciding whether a mathematical result is
called a theorem will be driven by its importance in advancing our understanding
of the physical and/or mathematical aspects of lensing.

Citation conventions The first time a result from a paper is mentioned, the name(s)
of the author(s) are stated next to the bibliographic reference. Thereafter, citations
of the same result have the bibliographic reference without the names. The authors
of this article are cited as AOP for Petters and MCW for Werner.

1 The thin-lens, weak-deflection approximation is sometimes called the impulse approxima-
tion.
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Fig. 1 A schematic of single-plane gravitational lensing. A pointlike light source is at y on
the light source plane S. A light ray from the source is deflected through an angle α̂ by the
gravitational influence of the lens on the lens plane L

Miscellaneous conventions All light sources are treated as point-like. The symbol
≡ indicates that a definition is given. Physical quantities are given in appropriate
dimensionless forms.

1.2 Notation for some basic weak deflection lensing concepts

Denote the dimensionless potential of a gravitational lens by ψ . The (dimension-
less) surface mass density κ , the components of the shear Γ1,Γ2, and its magnitude
Γ are:

κ(x) =
1
2

∇
2
ψ(x), Γ1(x) =

1
2

(ψuu(x)−ψvv(x)), Γ2(x) = ψuv(x),

Γ (x) =
√

Γ 2
1 +Γ 2

2 ,

where x = (u,v). Note that x is dimensionless, i.e., x = r/dL with r the physical
impact vector in the plane of the physical lens at angular diameter distance dL; see
Fig. 1. Since dL � |r|, we can treat x as an angular vector. A singularity of ψ is a
point a ∈R2 such that either ψ(x)→−∞ or ∇2ψ(x)→∞ as x→ a. In particular,
an infinite singularity of ψ is a singularity a for which ψ(x)→−∞ as x→ a. We
shall call ψ nonsingular if it has no singularities. The potential ψ is assumed to
be smooth (C∞) everywhere on R2, except on the set A of singularities of ψ .

Let Ty : L→R be the (dimensionless) single-plane time delay function induced
by a lens potential ψ , where L = R2−A with A the set of singularities of ψ:

Ty(x) =
|x−y|2

2
−ψ(x).

Unless stated to the contrary, we assume that A is a finite set. The point y lies
in the light source plane S = R2; see Fig. 1. The light source plane S is the set
of all “angular” source positions y = s/dS, where s is the source position in the
Euclidean plane at angular diameter distance dS and orthogonal to the line of sight;
in a cosmological setting, the Euclidean length of s is proper a distance.

By Fermat’s principle [68; 77], the light rays connecting y to the observer are
given by the critical points of Ty, i.e., solutions x ∈ L of
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0 = ∇Ty(x) =−y+x−∇ψ(x),

where the gradients are with respect to the rectangular coordinates x = (u,v).
The above equation determines the single-plane lensing map corresponding to
Ty : L→ R, namely, the transformation η : L→ S defined by:

η(x) = x−∇ψ(x).

The lensed images of a light source at y are the elements of η−1(y) or, equiva-
lently, the critical points of Ty. Through this correspondence, we speak of mini-
mum, saddle, and maximum lensed images.

Example (Microlensing) We define microlensing generally as due to a lens con-
sisting of g stars with masses m1, . . . ,mg at respective positions ξ 1, . . . ,ξ g, con-
tinuous matter with constant density κc ≥ 0 and an external shear γ ≥ 0, which
accounts for the gravitational potential of the galaxy in which such stars are typi-
cally situated. The lens potential of microlensing is then given by:

ψg(x) =
κc

2
|x|2− γ

2
(u2−v2)+

g

∑
j=1

m j log |x−ξ j|,

where x = (u,v). The induced time delay function Tg,y at y is

Tg,y(x) =
1
2
|x−y|2− κc

2
|x|2 +

γ

2
(u2−v2)−

g

∑
j=1

m j log |x−ξ j|

and the corresponding lensing map ηg is

ηg(x) = ((1−κc + γ)u,(1−κc− γ)v)−
g

∑
j=1

m j
x−ξ j

|x−ξ j|2
.

We shall refer to the lensed images in microlensing as micro-images and may even
speak of micro-minima to designate minimum images in this context.

The (absolute) magnification of a lensed image is physically the ratio of the
flux of the image to the flux of the light source, which is given mathematically by
(e.g., [68], p. 85):

Mag(x;y) =
1

|det[Jacη ](x)|
, η(x) = y.

Note that det[Jacη ](x) = det[HessTy](x) = (1−κ(x))2−Γ 2(x). The signed mag-
nification of lensed image xi of y is defined by:

µi = (−1)Ind(xi)Mag(xi;y), η(xi) = y.

Here Ind(xi) is the Morse index of xi, i.e., the number of negative eigenvalues of
(HessTy)(xi), which is 0, 1, and 2 for a minimum, saddle, and maximum, respec-
tively.

The set Crit(η) of critical points of η is the set of all (formally) infinitely
magnified lensed images for all light source positions in S, which consists of all
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x ∈ L where det[Jacη ](x) = 0. When Crit(η) consists of curves, we shall speak
of the critical curves of η . The set of caustics of η is Caustic(η) = η(Crit(η))⊂
S, which is the set of all light source positions from which there is at least one
infinitely magnified lensed image. For physically relevant settings, the set Crit(η)
is bounded, which yields that Crit(η) and Caustic(η) are compact [68, p. 293].

The single-plane time delay function Ty is said to be subcritical at infinity if
for each non-caustic point y and |x| sufficiently large, the eigenvalues λ1(x;y) and
λ2(x;y) of HessTy(x) are positive. This means that

λ1(x;y) = 1−κ(x)+Γ (x) > 0, λ2(x;y) = 1−κ(x)−Γ (x) > 0. (1)

Condition (1) implies:

0≤ κ(x) < 1, 0≤ Γ (x) < 1.

In addition, the time delay surface (graph) of Ty then has positive Gauss curvature
for |x| sufficiently large. When Ty is subcritical at infinity and Ty(x)→∞ as |x| →
∞, we call Ty isolated.

Given that the lensed images of a light source at y are in 1-1 correspondence
with the critical points of Ty, we shall characterize each lensed image as either a
minimum, saddle, or maximum.

Notation:

1. N = total number of images.
2. Nmin = number of minimum images.
3. Nsad = number of saddle images.
4. Nmax = number of maximum images.
5. N+ = Nmin +Nmax = number of positive parity images.

2 Multiple imaging in single-plane lensing

2.1 Image counting formulas and lower bounds: single plane lensing

Einstein determined in 1912 [75] that a lens consisting of a single star, modelled
as a point mass, will produce two images of a background star that is not on a
caustic. Two stars on the same lens plane can produce either three or five images
for light sources off a caustic, a result found in 1986 by Schneider and Weiss [78].
The method in [78], however, involved lengthy calculations that directly solved
the lens equation for the images, an approach that would be impossible to carry
over to any finite number of stars or more general mass distributions.

In 1991, AOP [63; 64; 65] approached the image counting problem by employ-
ing Morse theory under boundary conditions and generic properties of time delay
functions to obtain a general theorem yielding counting formulas and lower
bounds for the number of images. The Morse theoretic approach is particularly
powerful because it gives specific counting information about the number of
images of different types and extends naturally to k-lens planes and a general
spacetime setting. For simplicity, we state the results in [63; 64; 65] only for
generic subcritical lensing (see [68, Chap. 11] for more):
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Theorem 1 [63; 64; 65] (Single-plane image counting formulas and lower
bounds) Let Ty : L → R be a single-plane time delay function induced by a lens
potential ψ with g≥ 0 singularities, all of which are infinite singularities. Suppose
that y is not on a caustic and Ty is isolated. Then for a generic2 Ty the number of
lensed images obeys:

1. N = 2N+ +g−1 = 2Nsad−g+1,N+ = Nsad−g+1.
2. N ≥ g+1,Nmin ≥ 1,Nsad ≥ Nmax +g.
3. If the corresponding lensing map is locally stable3 with Crit(η) bounded,

then for sufficiently large |y| the lower bounds on the number of images are
attained:
N = g+1,Nmin = 1,Nmax = 0, and Nsad = g.

As long as the hypotheses of Theorem 1 hold, the image counting information
is independent of the choice of gravitational lens model. The topological nature
of the counting formulas and lower bounds give them wide applicability. Part 1
of Theorem 1 states that the number of images has parity (even-ness or odd-ness)
opposite to the number of singularities, part 2 gives lower bounds—e.g., there are
at least g+1 images and at least g saddle images, and part 3 implies that the lower
bounds in Part 2 are actually the smallest number of images that are achievable.

Application to microlensing Theorem 1 applies to subcritical microlensing, i.e.,
lensing due to g point masses with continuous matter κc and shear γ satisfying
1−κc + γ > 0 and 1−κc− γ > 0. There is an even number of images if and only
if the number of stars is odd. Also, since there is no maximum images, we have

Nmin = Nsad−g+1.

This is a useful formula for checking whether images are overlooked in microlens-
ing simulations. Consult [68, Chap. 11] for a detailed discussion, where the cases
1−κc + γ > 0 and 1−κc− γ < 0 (strong shear lensing) and 1−κc + γ < 0 and
1−κc− γ < 0 (supercritical lensing) are also treated.

In the situation of a nonsingular lens, the following corollary of Theorem 1(1)
recovers (by setting g = 0) the single-plane Odd Number Image Theorem found
in 1981 by Burke [16], who proved the result using a different approach, namely,
the Poincaré–Hopf index theorem.

Corollary 1 [16] (Single-plane odd number image theorem) For a non-caustic
point y, let Ty be a single-plane isolated time delay function induced by a nonsin-
gular gravitational lens potential. Then the total number of images is odd:

N = 2N+−1 = 2Nsad +1.

2 Theorem 1 holds either for Ty or almost all sufficiently small linear perturbations of Ty, i.e.,
the functions Ty(x)+p ·x for every p ∈R2, except in a set of measure zero, with |p| sufficiently
small [68, p. 421].

3 Local stability is equivalent to the set of critical points of η consisting only of folds and
cusps
[68, p. 294].
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Nonsingular lensing is typically due to modeling galaxies as smooth on a
macro scale. Though the predicted number of images is odd, typically an even
number of images is observed. The reason is that maximum images are angularly
located where the surface mass density of the lens is supercritical (core of galax-
ies), which causes them to become significantly demagnified (e.g., [53], [68, p.
470]).

We saw from Theorem 1(2) that if an isolated lens has at least one singularity
(g≥ 1), which can be a point mass, singular isothermal sphere, etc., then the lens
can produce multiple images. Namely, there is a point in the light source plane
from which a light source has more than one lensed image, N > 1. How about
multiple imaging due to an isolated nonsingular lens? The following necessary
and sufficient condition for multiple imaging by such lenses was established in
1986 by Subramanian and Cowling [85]:

Theorem 2 [85] (Criterion for multiple images: single-plane nonsingular case)
For a non-caustic point y, let Ty be a single-plane isolated time delay function
induced by a nonsingular gravitational lens potential. Then:

1. N ≥ 3 if and only if there is a point x0 in the lens plane L such that
det[HessTy](x0)<0.

2. If there is a point x0 ∈ L where the surface mass density is supercritical,
κ(x0)>1, then a light source at y0 = η(x0) will have multiple images, N ≥ 3.

We prove Theorem 2 to illustrate how some of the previous counting results and
ideas are used theoretically.

Proof (1) If N > 1, then Corollary 1 yields N = 2Nsad + 1 ≥ 3, so Nsad ≥ 1.
Because there is at least one saddle image, say, xsad, the point xsad ∈ L sat-
isfies det[HessTy](xsad) < 0. Conversely, if there is a point x0 ∈ L such that
det[HessTy](x0) < 0, then a light source at y0 = η(x0) has at least one sad-
dle image. Since Nsad ≥ 1,Nmin ≥ 1, and the number of images is odd, we
have N ≥ 3.

(2) If κ(x0) > 1, then image x0 cannot be a minimum since minima are located
where the surface mass density is subcritical (e.g., [68, p. 423]). Then x0 is
either a saddle or maximum. For x0 a maximum, Theorem 1(2) with g = 0
(nonsingular case) yields Nsad ≥Nmax ≥ 1, which yields N ≥ 3 (since Nmin ≥
1). For x0 a saddle, we get N ≥ 1 because there is also at least one minimum
and the number of images must be odd. ut

The sufficient condition κ(x0) > 1 for multiple images of a source at y0 =
η(x0) is not also a necessary condition. A perturbed Plummer lens has the follow-
ing respective potential and surface mass density:

ψ(x) =
κ0

2
log(1+ |x|2)− γ

2
(u2−v2), κ(x) =

κ0

(1+ |x|2)2 ,

where γ > 0 is the external shear and x = (u,v). This lens is subcritical everywhere
for 0 < κ0 < 1, but can still produce multiple images (e.g., [68, p. 429]).

Multiple imaging is also discussed in Sect. 6 from the optical geometry point
of view, and for nonsingular lenses in a spacetime context in Sect. 7.
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2.2 Maximum number of images: single plane lensing

A natural next question is to determine the maximum attainable number of images
due to g stars. Using a trick with complex quantities, Witt [89] showed in 1990 that
g point masses will generate at most g2 + 1 images. Since it was unclear how to
extend the trick in [89] to multiplane lensing, AOP [67] gave in 1997 an alternative
proof of the upper bound using resultants, an approach generalizable to multiple
lens planes (see Sect. 3.2).

Combining the above upper bound result with Theorem 1(2), the number of
images is bounded as follows:

g+1≤ N ≤ g2 +1. (2)

For two point masses g = 2, Eq. (2) yields N = 3,4 or 5. However, we cannot
have N = 4 since by Theorem 1(1) an even number of stars has to produce an odd
number of images. Hence, N = 3 or 5, which recovers the result in [78].

It remained unclear whether the quadratic upper bound of g2 + 1 in (2) can
be attained. In 1997, Mao et al. [48] conjectured that the maximum number of
lensed images should be linear in g. They also constructed a lens system con-
sisting of g point masses of equal mass 1/g on the vertices of a regular polygon
and showed that this symmetrical system produces a maximum number of 3g+1
images. The latter is a linear lower bound on the maximum number of images for
g point masses. Rhie [74] showed in 2003 that by putting a mass mε > 0 at the
center of the regular polygon, but with equal masses 1/(g− 1) on its vertices, a
total of 5g−5 images can be achieved for sufficiently small masses. Using a mod-
ification of the method in [48], Bayer and Dyer [13] gave in 2007 a much simpler
proof of the result in [74] and improved our understanding of the result by deter-
mining an upper bound m? of the central mass such that the maximum number
5g−5 of images is attained for all mε < m?. The conjecture was finally settled in
2006 when Khavinson and Neumann [43] employed complex rational harmonic
functions to show that the total number of images is at most 5g− 5. The results
are summarized below:

Theorem 3 (Maximum number of images: single-plane case) For g ≥ 2 point
masses on a lens plane and a light source not on a caustic, the number of images
satisfies:

1. [43] N ≤ 5g−5.
2. The upper bound 5g−5 is attainable for:

(a) [48] g = 3 if the point masses have equal mass 1/g and lie on the
vertices of an equilateral triangle centered at the origin and inscribed
in a circle of radius r bounded above as follows:

r < rcr ≡

[(
g−2

g

)g−2/2

−
(

g−2
g

)g/2
]g−2/g

.

(b) [13; 74] g ≥ 4 if g− 1 of the point masses have equal mass 1/(g− 1)
and lie on the vertices of a regular polygon centered at the origin and
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Fig. 2 A schematic of k-plane gravitational lensing. The action of the lensing map is captured
by tracing light rays backwards from a subset P of L1 to the light source plane S. Credits: After
[68, p. 199]

inscribed in a circle of radius r < rcr, and a point mass of mε is at the
center of the polygon with mass upper bound given by:

0 < mε < m? ≡ r2
(

g+5
g−1

)
− r6

1+ r6 .

We now have the following sharp (i.e., attainable) bounds on the total number of
images due to point masses:

g+1≤ N ≤ 5g−5, g≥ 2. (3)

Remark For lensing by a general matter distribution, there is no overarching max-
imum number of images because a mass clump can always be added to a lens to
create more images.

3 Multiple imaging in multiplane lensing

To set up the image counting results for multiple lens planes, we review some of
the notation and concepts needed. Consult [68, Chap. 6] for more details.

Let Li be the ith lens plane counting from observer to the light source plane
and set X = (x1, . . . ,xk) ∈ L1×·· ·×Lk; see Fig. 2. Denote the gravitational lens
potential on Li by ψi, where i = 1, . . . ,k, and the light source plane by S = R2

with its elements y ∈ S. Let T (k)
y : L1 × ·· ·×Lk → R, be the k-plane time delay

function induced by the potentials ψi and denote the associated k-plane lensing
map by η(k) : P → S. Here P = R2 − B ⊆ L1, where B is the set of light path
obstruction points. Note that for single-plane lensing P = L1 = L and B = A (set
of singularities of the potential ψ1 = ψ).

The set Crit
(

η(k)
)

of critical points of η(k) is the locus of all infinitely mag-
nified lensed images for all light source positions in S, while the set of caustics
of η(k) is Caustic

(
η(k)

)
= η(k)

[
Crit

(
η(k)

)]
⊂ S, i.e., the set of all light source

positions from which there is at least one infinitely magnified lensed image. When
Crit

(
η(k)

)
is bounded, then both Crit

(
η(k)

)
and Caustic

(
η(k)

)
are compact [68,

p. 293].
The k-plane time delay function T (k)

y is called subcritical at infinity if for each
non-caustic point y and |X| sufficiently large, the eigenvalues of HessT (k)

y (X) are
positive, i.e., the time delay surface has positive Gauss-Kronecker curvature for
|X| sufficiently large. If T (k)

y is subcritical at infinity and T (k)
y (X)→∞ as |X| →∞,

then T (k)
y is called isolated.
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By Fermat’s principle, the critical points of T (k)
y determine the lensed images

of a source at y (e.g., [68], Chaps. 3, 6), so the lensed images are then identified
as generalized saddles of index i, where i = 0,1, . . . ,2k.

Notation:

1. Ni = number of images of index i. Here N0 and N2k are, resp., the number of
minima and maxima.

2. N+ = ∑i(even) Ni = number of even index images.
3. N− = ∑i(odd) Ni = number of odd index images.
4. N = N+ +N− = total number of images.

3.1 Counting formulas and lower bounds in multiplane lensing

In 1991, AOP [63; 64; 65] extended to k-lens planes the image counting results
of Theorem 1, including the Odd Number Image Theorem. All the results are
topological in nature, which give them wide applicability. As before, we state the
results only for the subcritical case (see [68, Chap.12] for more):

Theorem 4 [63; 64; 65] (Multiplane counting formulas and lower bounds) Let
T (k)

y : L1×·· ·×Lk → R be a k-plane time delay function induced by lens poten-
tials ψ1, . . . ,ψk, where each ψi has gi singularities, each of which is an infinite
singularity. Assume that y is a non-caustic point and T (k)

y is isolated. Then for a

generic4 T (k)
y the number of lensed images satisfies:

1. N = 2N+−∏
k
i=1(1−gi) = 2N−+∏

k
i=1(1−gi),N+ = N−+∏

k
i=1(1−gi).

2. N ≥∏
k
i=1(1+gi).

3. N0 ≥ 1, N j ≥ ∑1≤`1<···<` j≤k g`1 . . .g` j for 1 ≤ j ≤ k, and N j ≥ 0 for k +1 ≤
j ≤ 2k−1.

4. If the corresponding lensing map η(k) is locally stable and Crit
(

η(k)
)

is
bounded, then for sufficiently large |y| the above lower bounds on the number
of images of different types are attained:

N =
k

∏
i=1

(1+gi), N0 = 1, N j = ∑
1≤`1<···<` j≤k

g`1 · · ·g` j f or 1≤ j ≤ k,

and N j = 0 f or k +1≤ j ≤ 2k−1.

Corollary 2 (Multiplane odd number image theorem) For a non-caustic point y,
let T (k)

y be a isolated k-plane time delay function induced by nonsingular gravita-
tional lens potentials. Then:

N = 2N+−1 = 2N−+1.

4 Theorem holds either for T (k)
y or T (k)

y (X)+ p̂ ·X, for sufficiently small p̂ ∈ R2k, except in a
set of measure zero [68, pp. 452–455].
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3.2 An upper bound on the number of images

A natural question is whether there are multiplane lensing bounds on the number
of images analogous to the single-plane ones in (2) or (3). The following 1997
theorem of AOP [67] is what is known so far:

Theorem 5 [67] (Multiplane upper bound) Let y be a non-caustic point. Then the
total number of images due to gravitational lensing by g point masses on g lens
planes with one point mass on each lens plane is bounded as follows:

2g ≤ N ≤ 2
(

22(g−1)−1
)

, g≥ 2. (4)

By Theorem 4(1,4), the lower bound of 2g is sharp and the total number of
images is always even. Theorem 5 was proven using the theory of resultants.

4 General stochastic lensing: the expected number of minimum images

Stochastic lensing occurs when a component of a system is random, typically, the
lens. This relates to the broader study of random functions, a subject that has been
explored in mathematics primarily for Gaussian random fields (e.g., Adler and
Taylor [5], Azais and Wschebor [12], Forrester and Honner [26], Li and Wei [45],
Shub and Smale [81], Sodin and Tsirelson [82; 83; 84], and references therein).
However, in gravitational lensing most of the realistic lensing scenarios produce
non-Gaussian random fields that have not been previously considered (e.g., see
Theorem 7 below). Therefore, a new mathematical framework needs to be devel-
oped for the study of stochastic lensing. A natural first step in stochastic lensing is
to study the expectation of the random number of lensed images. We shall present
some recent rigorous mathematical work in that direction. Physical applications of
stochastic lensing can be found in the study of dark matter on galactic scales (for
example, Schechter and Wambsganss [76], Keeton [40] and references therein).

The expectation of N+(D,y), the number of positive parity lensed images
inside a closed disk D in the lens plane of a light source at position y, is given
by the following Kac-Rice type formula (see [70]):

E [N+(D,y)] =
∫
D

E
[
((1−κ(x))2−Γ

2(x))1GA(x)
∣∣η(x) = y

]
fη(x)(y)dx,

(5)

for almost all y. Here, 1GA is the indicator function on GA=
{

ν ∈ R2 : G(ν)∈(0,∞)
}

,
where G(x) = det[Jacη ](x), and fη(x) is the probability density function (p.d.f.)
of the lensing map at x.

This formula holds for a fixed light source position. Unfortunately, this posi-
tion is unknown in most lensing observations. Therefore, a physically relevant
extension of (5) is to view the light source position as a random variable whose
probability density function is compactly supported over a subset of the light
source plane having positive measure. This result can be further generalized to
the entire light source plane. To do so, a countable compact covering {S} of light
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source plane is considered, with each set S in the family having the same positive
area. A corresponding family {YS} of random light source positions Y is con-
structed, with each Y uniformly distributed over a set S. The global expectation
of the number of positive parity lensed images, denoted by Ê [N+(D,Y ;S)]{S},
is then defined as the average of E[N+(D,y)] over the family {YS} (equivalently,
over the family S). This notion was introduced in [70].

AOP et al. [70] determined a general formula for the global expected number
of positive parity images:

Theorem 6 [70] (Global expected number of positive parity images) The global
expectation of the number of positive parity lensed images in D is given by:

Ê [N+(D,Y ;S)]{S} =
1
|S0|

∫
D

E
[
det [Jacη ] (x)1GA(x)

]
dx, (6)

where |S0|= area(S).

The importance of Theorem 6 is its applicability to a wide range of lensing sce-
narios, with few assumptions on the distribution of the random gravitational field
within each scenario. Below we will discuss an application of this theorem to
image counting in microlensing.

5 Stochastic microlensing: asymptotics

The mathematical analysis of the p.d.f.s and expectations in microlensing is very
difficult. An asymptotic approach is a natural first step that will be important for
understanding first order terms and how deviations from them occur at subsequent
orders. For example, we shall see that, though the lensing map of microlensing is a
bivariate Gaussian at first order, the mapping deviates from Gaussianity at the next
orders. The p.d.f.s of the time delay function and shear will also be seen to be non-
Gaussian. Unfortunately, this means that most of the technology already devel-
oped in the mathematical theory of random fields will not be applicable directly
to stochastic lensing.

5.1 Notation

The stochastic microlensing scenario we shall discuss is one with uniformly dis-
tributed random star positions. Recall from the Introduction that the potential is
given by

ψg(x) =
κc

2
|x|2− γ

2
(u2−v2)+

g

∑
j=1

m j log |x−ξ j|,

where x = (u,v), the time delay function at y by

Tg,y(x) = d1(x;y)−
g

∑
j=1

m j log |x−ξ j|,
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where d1(x;y) = 1
2 |x−y|2− κc

2 |x|
2 + γ

2

(
u2−v2

)
, and the components of the lens-

ing map ηg = (η1,g,η2,g) by:

η1,g(x) = (1−κc + γ)u−
g

∑
j=1

m
U j−u

(U j−u)2 +(Vj−v)2 ,

η1,g(x) = (1−κc− γ)v−
g

∑
j=1

m
Vj−v

(U j−u)2 +(Vj−v)2 ,

where ξ j = (U j,Vj).

Notation and assumptions:

1. Equal masses: m j = m, where j = 1, . . . ,g.
2. R =

√
g/π and κ∗ = π m.

3. B(0,R): closed disc of radius R centered at the origin 0.
4. The random point mass positions ξ1, . . . ,ξg are independent and uniformly

distributed over B(0,R).

Now, normalize the random time delay function and random lensing map as
follows:

T ∗g,y(x)≡ Tg,y(x)+gm logR, η
∗
g(x)≡

ηg(x)
√

logg
.

Write the components of the random shear tensor due only to stars as follows:

Γ1,g(x) =
g

∑
j=1

m
[
(U j−u)2− (Vj−v)2

]
[(U j−u)2 +(Vj−v)2]2

,

Γ2,g(x) =
g

∑
j=1

2m(U j−u)(Vj−v)

[(U j−u)2 +(Vj−v)2]2
.

For fixed y and x, we denote the possible values of the previous random quantities
as follows:

1. t = possible values of T ∗g,y(x).
2. (h,k) = possible values of η∗g(x).
3. (z,w) = possible values of (Γ1,g(x),Γ2,g(x)).
4. G =

(
z2 +w2

)1/2 = possible values of the magnitude of the shear.

For the asymptotic p.d.f. of the normalized random lensing map, we shall need
the quantities

a1 =
(1−κc + γ)u√

logg
, a2 =

(1−κc− γ)v√
logg

, σ
∗
g =

κ∗√
π

√
log
(
Bg1/2

)
logg

,

B =
2
√

πe1−γe

κ∗
,
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where γe is Euler’s constant. For the asymptotic p.d.f. of the random shear, we
shall use:

H1(G) = κ
2
∗

9G2−6κ2
∗

4(κ2
∗ +G2)2 (7)

and

H2(G; |x|) =
κ∗|x|2

m
κ2
∗
(
6κ2

∗ −9G2
)

2(κ2
∗ +G2)2 −

κ2
∗
(
8κ4

∗ −24κ2
∗G

2 +3G4
)

4(κ2
∗ +G2)3

+
15κ4

∗
(
8κ4

∗ −40κ2
∗G

2 +15G4
)

32(κ2
∗ +G2)4 . (8)

Note that H2 depends on κ∗|x|2/m, which is the mean number of point masses
within the disc of radius |x| centered at the origin.

5.2 Asymptotic p.d.f.s of random time delay function, random lensing map,
and random shear

In 2009, AOP et al. [69; 70] used a rigorous mathematical approach to characterize
up to order three the asymptotic p.d.f.s of the microlensing normalized random
time delay function, normalized random lensing map, and random shear:

Theorem 7 Fix y ∈ S and x = (u,v) ∈ B(0,R). Then:

1. [69] (Random normalized time delay function) In the large g limit, the
asymptotic p.d.f. of T ∗g,y(x) takes the following form:

fT ∗g,y(x)(t) =

{( 2
m

)g (t−d1−c)g−1

(g−1)! exp
[
− 2(t−d1−c)

m

]
, t>d1+c

0, t < d1 + c

}
+O

(
g−3/2

)
.

The first term of the p.d.f. is a Gamma distribution.
2. [69] (Random normalized lensing map) In the large g limit, the asymptotic

p.d.f. of η∗g(x) takes the following form:

fη∗g(x)(h,k) =
e
− (h−a1)2+(k−a2)2

2(σ∗g)2(√
2πσ∗

g
)2

[
1−κ∗

(h−a1)u+(k−a2)v
σ2

g

+
κ2
∗

4π

(
(h−a1)2 +(k−a2)2−2(σ∗

g )2
)(

σ∗
g
)4 log(logg)

]

+O
(

1
log2 g

)
. (9)

The first term of the p.d.f. is a bivariate Gaussian distribution, but the next
two terms highlight that η∗g(x) already becomes non-Gaussian for large finite
g.
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3. [70] (Random shear) In the large g limit, the asymptotic p.d.f. of (Γ ∗
1,g(x),Γ ∗

2,g(x))
takes the following form:

fΓ1,g(x),Γ2,g(x)(z,w) =
κ∗

2π (κ2
∗ +G2)3/2

[
1+

H1(G)
g

+
H2(G; |x|)

g2

]
+O(g−3), (10)

where G =
(
z2 +w2

)1/2 denotes the possible values of the magnitude of the
shear. The first term of the p.d.f. is a stretched bivariate Cauchy distribution.

By Eq. (10), the asymptotic p.d.f. of the magnitude of the shear, namely,
Γg(x) =

√
Γ 2

1,g(x)+Γ 2
2,g(x), is given as follows [70]:

fΓg(x)(G) =
κ∗G

(κ2
∗ +G2)3/2

[
1+

H1(G)
g

+
H2(G; |x|)

g2

]
+O(g−3).

Remarks

1. The first term in (9) was basically found in 1986 by Katz, Balbus, and
Paczyński [39], who actually determined the first term of the p.d.f. of the
bending angle due only to stars, namely, the p.d.f. of the random vector
αg(x) = ηg(x)− ((1−κc + γ)u,(1−κc− γ)v).

2. The first term in (10) was found in 1984 by Nityananda and Ostriker [54].

Subsequent work in 2009 by Keeton [40] used semi-analytical and numerical
methods to study the stochastic properties of the lens potential, deflection angle,
and shear under different assumptions about the distributions of the stars’ masses
and positions.

5.3 Global expected number of micro-minima

Wambsganss et al. [86] determined the limit g → ∞ of the (global5) expected
number E0 of minima in the entire plane R2 for microlensing without shear. This
was extended to the case with shear in 2003 by Granot et al. [36]:

E0 =
κ∗

2π|(1−κtot)2− γ2|

∫
B

(1−κc)2− (γ +z)2−w2

(κ2
∗ +G2)3/2 dzdw,

where κtot = κ∗+κc and γ is same shear employed at the microlensing scale.
The value E0 resulting from the limit g→∞ is, of course, independent of g and

can be treated as the first term in an asymptotic expansion in 1/g. On the other
hand, since the first term E0 is independent of g, if we have only the term E0, then
there is no way to know analytically the smallest g needed to lie within a certain
approximation of the global expected number of micro-minima. This is especially

5 The terminology “global expected number of minima” was actually introduced in [70],
where the difference between the expected number of minima and global expected number of
minima was clarified.
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important in numerical simulations. Therefore, we need to find more terms in the
asymptotic expansion.

AOP et al. [70] applied Theorem 6 and Theorem 7(3) to determine rigorously
the global expected number of micro-minima up to three orders:

Theorem 8 [70] (Global expected number of micro-minima) Let D be a closed
disc and suppose that continuous matter is subcritical, i.e., 0 ≤ κc < 1. Then, in
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the large g limit, the first three asymptotic terms of the global expectation of the
number of minimum images in D is given by:6

Ê [Ng,min(D,Y ;S)]{S} =
κ∗ µD,S0

2π

∫
B

(1−κc)2− (γ +z)2−w2

(κ2
∗ +G2)3/2

×
[

1+
H1(G)

g
+

H2(G;a0)
g2

]
dzdw+O

(
g−3) , (11)

where µD,S0 = |D|
|S0|

,B is a closed disc of radius 1−κc centered at (−γ,0), and

a0 = 1
|D|
∫

D |u|2du.

Theorem 8 gives us the leading three terms in an asymptotic expansion of the
global expected number of micro-minima in any reference disc D, not necessarily
in the entire plane. The first term in that expansion (11) is more general than E0
because E0 applies to the whole plane. A possible physical model for the factor
µD,S0 in (11) is the macro-scale magnification given by:

µD,S0 =
1

|(1−κtot)2− γ2|
.

It is only in this case that the first term in (11) coincides with E0.
Another consequence of Theorem 8 is it enables us to estimate how small we

can choose g in order to have the first three terms in the asymptotic expansion (11)
lie within a certain percentage of the global expected number of micro-minima.
Theorem 8 also shows us analytically how accurate an approximation the first
term is to the exact global expectation by quantifying how the next two higher-
order terms perturb the first one.

Remark The third-order term in (11) depends on the mean number of point masses
within the disc of radius |x| centered at the origin, namely, the quantity κ∗|x|2/m;
compare Eq. (8).

6 Multiple images in optical geometry

6.1 The optical metric and Fermat’s principle

The trajectories of spatial light rays can also be studied in optical geome-
try, which is conceptually between the thin-lens, weak-deflection approxima-
tion used in the previous sections and the full spacetime treatment of null
geodesics. Optical geometry, which is also known as Fermat geometry or
optical reference geometry, is a useful tool to investigate gravitational and
inertial forces in General Relativity [4]. Recently, it has also been applied

6 The quantities H1 and H2 were defined in (7) and (8).
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to field theory near black hole horizons by Gibbons and
Warnick [31], and to analogue models of gravity in Finsler geometry by Gibbons
et al. [30].

Fermat’s principle and optical geometry in the conformally stationary case
was discussed in detail by Perlick [58]. To illustrate this approach, consider for
simplicity a static spacetime metric

ds2 = g00 (dt)2 +gi j dxidx j,

where the summation convention is used, and a null curve parametrized by
0 ≤ ν ≤ 1, say, with tangent vector k. Then the variational principle yields (e.g.,
Frankel [24]):

δ t =
1

g
(

∂

∂ t ,k
)

(1)

1∫
0

g(δx,∇kk)dν = 0,

if the null curve is in fact a null geodesic with ∇kk = 0. Hence, one obtains Fer-
mat’s principle of stationary arrival time, rather than stationary travel time as in
the case of flat space used in the impulse approximation. Now recasting the space-
time line element as follows, we see that the spatial light rays are geodesics of the
optical metric gopt with Riemannian signature,

(dt)2 =−
gi j

g00
dxidx j ≡ gopt

i j dxidx j,

by Fermat’s Principle.

6.2 Gauss–Bonnet and lensed images

Optical geometry offers a different perspective on image multiplicity in gravita-
tional lensing, which is also partially topological. This can be understood with the
Gauss–Bonnet Theorem, which connects the local optical geometry with global
properties of the light rays. Gibbons [29] discussed this for cosmic strings, and
this method was recently extended to spherically symmetric metrics by Gibbons
and MCW [32] and Gibbons and Warnick [31]. In this approach, the occurrence
of two images can be expressed as a digon of light rays:

Theorem 9 [29; 31; 32] (Light ray digons) Let (S,gopt) be a totally geodesic,
simply connected surface endowed with an optical metric gopt and Gaussian cur-
vature K. Let D⊂ S be a geodesic digon7 bounded by two light rays intersecting at
the light source s ∈ S and the observer o ∈ S with corresponding positive interior
angles θs and θo. Then:

7 A geodesic digon in a lensing scenario is a polygon with two vertices, bounded by the two
geodesics intersecting at the source and the observer.
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Fig. 3 Isometric embedding in R3 of the equatorial plane of the Schwarzschild solution in the
optical metric. The waist occurs at the radius of the photon sphere, r = 3m. The Gaussian cur-
vature is negative everywhere

θs +θo =
∫ ∫

D

KdS.

Example The Schwarzschild solution with mass parameter m is an instructive
example. The equatorial plane in the optical metric outside the photon sphere is
shown in Fig. 3, and it can be seen that the Gaussian curvature is negative every-
where. Indeed, a calculation of the Gaussian curvature gives

K =− 2m

r3
(
1− 2m

r

)3/2

(
1− 3m

2r

)
< 0.

Spatial light rays, which are the geodesics of S, must therefore diverge locally, and
the equation of the Theorem cannot be fulfilled. So the fact that two light rays can
intersect at the source s and the observer o in Schwarzschild geometry shows that
S cannot be simply connected—and indeed it is not because of the event horizon
at r = 2m. Hence, the topological contribution to the Gauss–Bonnet theorem turns
out to be essential for image multiplicity.

On the other hand, if a lens produces multiple images and is non-singular so
that S is simply connected, then we expect that K changes sign instead. This is in
fact the case, as illustrated by the following example.

Example Consider the Plummer model with mass m0 and scale radius r0. This is a
reasonable approximation for an extended non-relativistic gravitational lens (i.e.,
a galaxy) which allows multiple imaging: three images are produced if the light
source is in the maximal caustic domain. The corresponding spacetime metric can
be modelled as a solution for a static, spherically symmetric fluid subject to the
Tolman–
Oppenheimer–Volkoff equation (see [32] for details). Of course, there is no event
horizon in this model, so the surface S is simply connected and its optical metric
approaches that of the Schwarzschild solution with K < 0 at large radii r, since m0
is finite. Therefore, the equation of Theorem 9 holds, and the Gaussian curvature
of the optical metric must be positive in a sufficiently large sub-region of S so that
the right-hand side is positive. A calculation of K to lowest order yields

K =−2m0

r3
0

(
1+(r/r0)

2
)− 3

2

(
1− 3

1+(r/r0)
2

)
+O(m2

0),

which confirms that K > 0 for small radii.
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A more detailed analysis shows that the Gauss–Bonnet theorem can also be
used to calculate deflection angles. In the case of the singular isothermal sphere,
for instance, the optical metric describes a cone so that the gravitational deflection
emerges as a consequence of the cone’s deficit angle, rather like a spatial analogue
of lensing by cosmic strings.

7 Multiple images in spacetime

7.1 Necessary and sufficient conditions for multiple images

The theories for spatial light rays provide useful frameworks for gravitational lens-
ing, especially since the impulse approximation can easily be applied to models
of astrophysical interest. However, the fundamental arena of optics in General
Relativity is of course spacetime. The study of wavefront singularities in space-
time was pioneered by Friedrich and Stewart [25], who classified stable wave-
front singularities in Minkowski space and considered the relationship with the
initial value problem in General Relativity (see also Low [46]). The general form
of Fermat’s Principle in spacetime was investigated by Kovner [44], and a pre-
cise proof for arbitrary Lorentzian manifolds (M,g) was first obtained by Perlick
[57] in 1990. This also laid the foundation for a rigorous study of the conditions
for multiple images in spacetime, which made an earlier result by Padmanabhan
and Subramanian [56] more precise. Perlick showed that the existence of a con-
jugate point or a cut point along a null geodesic is a sufficient condition, which
becomes necessary if further conditions on the topology or causal structure of M
are imposed:

Theorem 10 (Multiple images in spacetime) [60] Let (M,g) be a four-dimensional
time-oriented Lorentzian manifold.

1. Sufficient conditions: Let λ be a future-pointing null geodesic affinely
parametrized by s, and fix λ (s1) = p ∈M.
(a) If there is a s2 > s1 such that λ (s2) is conjugate to λ (s1) along λ ,

then there is a timelike curve through each λ (s),s > s2, which can be
reached from p along another future-pointing null geodesic.

(b) If there is a s2 > s1 such that λ (s2) is the future cut point of p along λ ,
then there is a timelike curve through each λ (s),s > s2, which can be
reached from p along another future-pointing null geodesic.

2. Necessary conditions: Fix a timelike curve γ and a point p ∈M.
(a) If there are two future-pointing null geodesics from p to γ which are

null homotopic, then there is a future-pointing null geodesic from p to
γ which contains a point conjugate to p.

(b) If (M,g) is strongly causal and if there are two future-pointing null
geodesics from p to γ , then the intersection with γ comes on or after
the future cut point of p along at least one of the null geodesics.

Having established conditions for existence, one can now proceed with counting
results for null geodesics.
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7.2 The odd number theorem in a spacetime setting

The proofs of the Odd Number Theorem for single and multiple lens planes dis-
cussed in Sects. 2 and 3 employ finite dimensional Morse theory in the impulse
approximation. Interestingly, this result can also be extended to spacetime under
certain assumptions. McKenzie [50] showed this using the degree of a map
between two spatial spheres, which requires stationarity of the spacetime, and
gave a proof using Uhlenbeck’s Morse theory for null geodesics on globally hyper-
bolic Lorentzian manifolds. However, these conditions appear to be too restrictive
for realistic spacetimes, as discussed by Gottlieb [35]. An extension to infinite
dimensional Morse theory on the Hilbert space of null curves was developed Per-
lick [59] and Giannoni, Masiello and Piccione [28]. The resulting Morse relations
have been applied by Giannoni and Lombardi [27] to prove a version of the Odd
Number Theorem. In 2001, Perlick [61] defined the concept of a simple lens-
ing neighborhood, which formalizes a physically meaningful lensing geometry
to avoid some of the technical complexities, and proved the following spacetime
version of the Odd Number Theorem:

Theorem 11 [61] (Odd number of null geodesics) Let U be a simple lensing
neighborhood in a four-dimensional time-oriented Lorentzian manifold (M,g).
Fix a point p ∈U and a timelike curve γ in U such that it has no endpoints on the
boundary ∂U. If γ intersects neither p nor the caustic of the past light cone of p,
then the number of past-pointing null geodesics from p to γ completely within U
is finite and odd.

A rigorous treatment of the optics in a spacetime setting can be found in Perlick
[62].

8 Global magnification relations for special lens models

In gravitational lensing, when a source gives rise to multiple images, the magnifi-
cations of these images often obey certain relations. The simplest example of such
a relation is provided by a single point-mass lens. In this setting a source gives rise
to two lensed images, and it can be shown that their signed magnifications always
sum to unity:

µ1 + µ2 = 1 (one point mass)

(e.g., [68], p. 191). The surprising fact about this result is that it holds irrespec-
tively of the mass of the point mass and its position on the lens plane. It is also a
“global” relation, by which is meant that it involves all of the images of a given
source and not merely a subset of them.

Witt and Mao [90] generalized this result to a two point-mass lens. They
showed that for a source lying anywhere inside the caustic curve, a region which
gives rise to five lensed images (the maximum number in this case), the sum of
the signed magnifications of these images is also unity:

µ1 + µ2 + µ3 + µ4 + µ5 = 1 (two point masses).
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Like its predecessor, this relation is “global” and holds irrespectively of the lens’s
configuration, provided the source lies inside the region giving rise to the maxi-
mum number of images. Rhie [73] subsequently extended this result to N point
masses. Dalal [19] and Witt and Mao [91] then showed that other common lens
models, such as singular isothermal spheres and ellipses (SISs and SIEs) and ellip-
tical power-law potentials, possess similar global magnification relations, even
when these models include shear.

Dalal and Rabin [20] provided a residue approach that systematized and
expanded on the above work. They began with the Euler trace formula, which
they proved using residue calculus. The Euler trace formula identifies sums of
magnifications as coefficients of certain coset polynomials; we shall return to this
in Sect. 10.3 below. The method in [20] uses meromorphic differential forms in
several complex variables. By considering a meromorphic 2-form on C2 consist-
ing of polynomials whose common zeros are the image positions of the lensing
map, the authors were able to use the Global Residue Theorem, which states that
on compact manifolds the sum of all the residues of a meromorphic form vanishes.
This allows one to replace the common zeros of a form in C2, viewed as a subset
of the compact manifold CP2, by minus the sum of residues at infinity in CP2. In
this way magnification sums were transformed to a condition about the behavior
of the lens equation at infinity. Their results are summarized in Theorem 12.

Residue calculus methods were also used by Hunter and Evans [38], wherein
magnifications of images were realized as residues of complex integrands. By
Cauchy’s theorem, sums of magnifications are then equivalent to a contour
integral. This method was used to derive magnification relations for elliptical
power-law potentials which expanded upon the work of [91]. As first shown
in [91], for an elliptical power law potential ψ(x) ∝

(
u2 +v2q−2

)b/2, where q
is the ratio of the minor to major axes, the total signed magnification denoted
by B is exactly B = 2/(2− b) for the cases b = 0,1; for other values, it is
an approximation. The contour integral method used in [22; 38] covered not
only all cases when B is an integer, including second and third magnification
moments, reciprocal moments, and random shear, but also cases with non-integer
values of B as well. In 2002, Evans and Hunter [22] extended their results
in [38] to include elliptical power-law potentials with a core radius, and cal-
culated magnification invariants for subsets of the images with even and odd
parities.

Theorem 12 [20] The models listed below possess the following zeroth and first
magnification moments:

Model ∑ j µ j ∑ j µ jz j

Point masses 1 zs +∑ j
m j

zs−z j

Point masses + shear 1
1−γ2

zs+γzs

(1−γ2)2

SIE 2 2zs

SIE + elliptical potential 1 zs +2γzs− z3
s

32k2 γ2

SIS + shear 2
1−γ2

2(zs+γzs)

(1−γ2)2

SIE + shear 2
1−γ2

2(zs+γe2iθγ zs)
(1−γ2)2
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Notation: m j is the mass of jth point mass, γ is the shear with orientation θγ , and
z j and zs are, respectively, the position of the jth lensed image and the position
of the source using complex variables. The singular isothermal ellipse (SIE) has
a projected deflection potential ψ(x) = k

√
u2 +v2q−2, where k is a constant of

proportionality and q is the axis ratio. The singular isothermal sphere (SIS) has
q = 1.

9 Local magnification relations: caustics up to codimension 3

9.1 Quantitative fold and cusp magnification relations: single plane lensing

All of the above magnification relations are “global” because they involve all the
lensed images of a given source. But they are not universal because their relations
were derived in the context of specific types of lens models (point-mass lenses,
SIEs, etc.) There is another type of magnification relation, a so-called “local”
magnification relation, that is universal in the sense that it holds for a generic
family of lens models. It is called a “local” relation because it holds for a subset
of the total number of lensed images. Such relations arise when the source lies
close to a caustic singularity. The two simplest types of such singularities are the
fold and the cusp. For a source near a fold, there will be two images straddling
the critical curve, while for a source near a cusp, there will be a triplet of images.
Interestingly, the signed magnifications of this doublet and triplet always sum to
zero (e.g., Blandford and Narayan [15], Schneider and Weiss [79], and Zakharov
[92]):

µ1 + µ2 = 0(fold), µ1 + µ2 + µ3 = 0(cusp). (12)

These relations are important in gravitational lensing because they can be used to
detect dark substructure in galaxies with “anomalous” flux ratios. These anomalies
arise as follows. For quasars with four lensed images, it is often the case that
the smooth mass densities used to model the galaxy lens reproduce the number
and positions of the lensed images, but fail to reproduce the image flux ratios.
Mao and Schneider [49] showed that in such situations the cusp magnification
relation (12) fails. They attributed this failure to the assumption of smoothness in
the galaxy lens, and argued that this smoothness breaks down on the scale of the
image separation. This suggests the presence of substructure in the galaxy lens.
The possibility of this became even more intriguing when Metcalf and Madau
[51] and Chiba [18] showed that dark matter would be a natural candidate for this
substructure.

Being able to identify which anomalous lenses have substructure now became
a priority. Keeton et al. [41; 42] developed a rigorous framework by which to do
so, using the observable quantities:

Rfold ≡
µ1 + µ2

|µ1|+ |µ2|
=

F1−F2

F1 +F2
, Rcusp ≡

µ1 + µ2 + µ3

|µ1|+ |µ2|+ |µ3|
=

F1−F2 +F3

F1 +F2 +F3
,

where Fi is the observable flux of image i. The importance of these quantities is as
follows. If a source lies sufficiently close to a fold or cusp caustic, then (12) pre-
dicts that Rfold and Rcusp should vanish. If Rfold and Rcusp deviate significantly from
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zero (Monte Carlo methods were used to determine what constituted a significant
deviation), then that would indicate the presence of substructure in that particu-
lar lens. On this basis it was shown in [41; 42] that for the multiply imaged lens
systems they analyzed, 5 of the 12 fold-image lenses and 3 of the 4 cusp-image
lenses showed evidence of substructure.

9.2 Quantitative elliptic and hyperbolic Umbilics’ magnification relations: single
plane lensing

Consider a family of time delay functions Tc,y which induces a corresponding
family of lensing maps ηc. Here y is the source position on the source plane and
the parameter c can be any physical input, such as the core radius or external
shear.8 Using rigid coordinate transformations and Taylor expansions, the univer-
sal, quantitative form of the lensing map can be derived in a neighborhood of a
caustic [68; 77]. As mentioned above, the quantitative forms of lensing maps near
fold and cusp caustics obey the fold and cusp magnification relations (12). Aazami
and AOP [1] showed recently that the quantitative forms of lensing maps near cer-
tain higher-order caustic singularities, namely the elliptic and hyperbolic umbil-
ics, also satisfy magnification relations analogous to (12). Their work is summa-
rized by the following theorem:

Theorem 13 [1] For any of the smooth generic family of time delay functions Tc,y
corresponding to the elliptic umbilic or hyperbolic umbilic caustic singularities,
and for any source position in the indicated region, the following results hold:

1. D−
4 (Elliptic umbilic) satisfies the following magnification relation in its four-

image region:

µ1 + µ2 + µ3 + µ4 = 0.

2. D+
4 (Hyperbolic umbilic) satisfies the following magnification relation in its

four-image region:

µ1 + µ2 + µ3 + µ4 = 0.

An application of this theorem to substructure studies was also given in [1],
using the hyperbolic umbilic

(
D+

4

)
in particular. Analogous to the observables

Rfold and Rcusp, the authors considered the following quantity:

Rh.u. ≡
µ1 + µ2 + µ3 + µ4

|µ1|+ |µ2|+ |µ3|+ |µ4|
=

F1−F2 +F3−F4

F1 +F2 +F3 +F4
·

By Theorem 13, Rh.u. should vanish for a source lying sufficiently close to a hyper-
bolic umbilic caustic singularity and lying in the four-image region. One advan-
tage of Rh.u. is that it incorporates a larger number of images than Rfold and Rcusp,
and also applies to image configurations that cannot be classified as fold doublets
or cusp triplets. In fact recent work has shown that higher-order caustics like the
hyperbolic umbilic can be exhibited by lens galaxies. Evans and Witt [23], Shin

8 There is at most one universal unfolding parameter c for caustics up to codimension 3.
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Fig. 4 Multiple images of a source inside a cross section of a hyperbolic umbilic caustic in lens-
ing. In each panel, the figure on the left depicts the caustic curve with source position (solid box)
in the light source plane, while the figure on the right shows the critical curve with correspond-
ing image positions (solid boxes) in the lens plane. The + sign indicates that only minimum
and maximum images lie in the given region and the − sign labels a region where only saddle
images occur. Credits: Figure from [1]

and Evans [80], and Orban de Xivry and Marshall [55] have shown that realistic
lens models can exhibit swallowtail (A5) and butterfly caustics (A4), as well as
elliptic umbilics

(
D−

4

)
and hyperbolic umbilics

(
D+

4

)
. It is hoped that such lens-

ing effects will be seen by the Large Synoptic Survey Telescope, and thus that
higher-order relations such as Rh.u. will become applicable in the near future.

An example of the multiple imaging, critical curves, and caustic curves due to
a hyperbolic umbilic

(
D+

4

)
is shown in Fig. 4.

9.3 Universal local magnification relations: generic caustics up to codimension 3

9.3.1 Preliminaries: lensed images and magnification for generic mappings

Consider a smooth, n-parameter family Fc,s(x) of functions on an open subset of
R2 that induces a smooth (n− 2)-parameter family of mappings fc(x) between
planes (n≥ 2). The functions Fc,s are used to construct a Lagrangian submanifold
that is projected into the n-dimensional space {c,s} = Rn−2×R2; the projection
itself is called a Lagrangian map The critical values of this projection will then
comprise the caustics of fc (e.g., Golubitsky and Guillemin [34], Majthay [47],
Castrigiano and Hayes [17], and [68, pp. 276–286]). Arnold classified all sta-
ble simple Lagrangian map-germs of n-dimensional Lagrangian submanifolds by
their generating family Fc,s ([6], Arnold et al. [8, p. 330–331], and [68, p. 282];
see also Ehlers and Newman [21]).

Given fc(x) = s, we call x ∈ R2 a lensed image of the source (or target) point
s∈R2; note that our lensed images are never complex-valued. Equivalently, lensed
images are critical points of Fc,s, relative to a gradient in x. Next, we define the
signed magnification M(xi;s) at a critical point xi of Fc,s to be the reciprocal of
the Gaussian curvature at the point (xi,Fc,s(xi)) in the graph of Fc,s:

M(xi;s) =
1

Gauss(xi,Fc,s(xi))
·

The advantage of this definition is it makes clear that the signed magnifica-
tion invariants are geometric invariants. The signed magnification is expressible
in terms of fc since Gauss(xi,Fc,s(xi)) = det[HessFc,s](xi) and each fc satisfies
det[Jac fc] = det[HessFc,s]. It follows that

M(xi;s) =
1

det[Jac fc](xi)
,

which is the more common definition of magnification. If det[Jac fc](x) = 0, then x
is called a critical point of fc. The collection of such points form curves called crit-
ical curves. The target fc(x) of a critical point x is called a caustic point. Though
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these typically form curves as well, they could also be isolated points. Since there
are caustic curves for each value of the parameters c, varying these parameters
traces out a caustic surface, called a big caustic, in the larger space {s,c} = Rn.
An example of critical and caustic curves is shown in Fig. 4 for the hyperbolic
umbilic

(
D+

4

)
, along with various source and image configurations.

9.3.2 Universal magnification relations for generic caustics up to codimension 3

The following theorem about magnification relations for generic caustics up to
codimension 3 was established by Aazami and AOP [1]:

Theorem 14 [1] For any of the smooth generic families of functions Fc,s (or the
induced general mappings fc) giving rise to a caustic of codimension up to 3,
and for s, any non-caustic point in the n-image region, the following holds for the
image magnifications Mi ≡M(xi;s):

n

∑
i=1

Mi = 0,

where n = 2 for a fold, n = 3 for a cusp, n = 4 for a swallowtail, elliptic umbilic,
or hyperbolic umbilic.

The proofs of Theorems 13 and 14 in [1], including the subsequent shorter
proof in [2], are algebraic in nature and the method will be highlighted in
Sect. 10.3.

After [1] appeared, an alternative proof was given by MCW 2009 [88] that
introduced new Lefschetz fixed point technology in gravitational lensing, clarify-
ing and improving an earlier approach [87]. The next section gives an overview of
the method in [88].

9.4 A lefschetz fixed point approach to Theorems 13 and 14

We first review some needed basics from Lefschetz fixed point theory and then
outline how it can be used to prove the aforementioned theorems.

9.4.1 Holomorphic lefschetz fixed point theory

If f : M → M is a smooth map on a compact manifold M, then its fixed points
are fix( f ) = {x ∈M : f (x) = x}, that is, the intersection of the graph {(x, f (x))} ∈
M×M with the diagonal {(x,x)}∈M×M. Fixed point theory, then, connects local
properties of the fixed points, called fixed point indices, with global properties of
f and M. In the case of a real manifold M, this is called the Lefschetz number
L( f ), which is a homotopy invariant because f induces a map on the space of
closed forms and hence on the cohomology classes of M. For complex M and
holomorphic f , the relationship between the analogous holomorphic Lefschetz
number Lhol( f ) and the local fixed point indices is called holomorphic Lefschetz
fixed point formula. The Lefschetz fixed point formulas are well-defined provided
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that the intersections are transversal, and can be regarded as special cases of the
Atiyah–Bott Theorem [10; 11].

To illustrate this concept, we now discuss polynomial maps on the Riemann
sphere Ĉ = CP1 = C∪{∞} as an instructive example. Here, the holomorphic Lef-
schetz fixed point formula is also known as the Rational Fixed Point Theorem,
which has important applications in complex dynamics (see, for example, the dis-
cussion by Milnor [52]):

Theorem 15 (Rational fixed point Theorem) Let f : Ĉ → Ĉ be a rational map
which is not the identity. Then:

1 = ∑
z∈fix( f )

1

1− d f
dz

.

Here, the holomorphic Lefschetz number for complex projective space is Lhol( f )=
1. To see why this is true, recall that a rational map on the Riemann sphere can
always be extended to a holomorphic map; then we can choose local holomorphic
coordinates so that z = 0 for some fixed point and write f (z) = d f

dz (0)z+O
(
z2
)

by
holomorphicity. Hence,

1(
1− d f

dz

)
(0)

=
1

2πi

∮
C

dz
z− f (z)

,

where C is a loop enclosing only the fixed point at the origin. We may take f to be
bounded so that

1
z− f (z)

− 1
z

=
f (z)

z(z− f (z))
≈ f (∞)

z2 → 0 as z→ ∞. (13)

Using these results, if we now extend the loop C to C∞ of infinite radius enclosing
all fixed points of f , then

∑
z∈fix( f )

1

1− d f
dz

=
1

2πi

∮
C∞

dz
z− f (z)

=
1

2πi

∮
C∞

dz
z

= 1

as required, since the integral of (13) vanishes [52].
For a general complex manifold M with dimension d, the holomorphic Lef-

schetz formula is (see Griffiths and Harris [37], for instance)

Lhol( f ) = ∑
z∈fix( f )

1
det[Id −D f ]

, (14)

where Id is the d-dimensional identity matrix and D f is the matrix of first deriva-
tives with respect to local holomorphic coordinates. Again, the transversality con-
dition can be expressed as the requirement that the fixed point indices be well-
defined, that is, det[Id −D f ] 6= 0.
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Table 1 Components of the complex maps fc(z1,z2) for generic singularities up to codimension
three, their degrees and the numbers n of real solutions in the maximal caustic domains at finite
positions

Singularity f 1, f 2 deg( f 1) ,deg( f 2) n
Fold z1,z2

2 1, 2 2
Cusp z1,z1z2 + z3

2 1, 3 3
Swallowtail z1z2 + cz2

1 + z4
1,z2 4, 1 4

Elliptic umbilic 3z2
2−3z2

1−2cz1,6z1z2−2cz2 2, 2 4
Hyperbolic umbilic −3z2

1− cz2,−3z2
2− cz1 2, 2 4

Elliptic umbilic (lensing map) z2
1− z2

2,−2z1z2 +4cz2 2, 2 4
Hyperbolic umbilic (lensing map) z2

1 +2cz2,z2
2 +2cz1 2, 2 4

Here

c denotes a control parameter. The lower section lists the corresponding properties of the
quantitative elliptic and hyperbolic umbilics for a lensing map

9.4.2 Application to Theorems 13 and 14

We now outline the Lefschetz fixed point proof of Theorem 14. In the present
approach, all real solutions fc(x1,x2) = (s1,s2) are treated as the real fixed points
of a suitable complex map. So, firstly, we need to find a complexification that
allows the application of the holomorphic Lefschetz fixed point formula. The
standard complexification (x1,x2) 7→ x1 + ix2 does not yield holomorphic maps,
but this problem can be circumvented, at the expense of the dimension, by treat-
ing (x1,x2)≡ (z1,z2) as independent complex variables on C2. The corresponding

complex generic maps (f=(f1, f 2):2→2
are shown in Table 1, and the maximum num-

ber of solutions of f 1(z1,z2)=s1, f 2(z1,z2)=s2 , possibly complex, is deg( f 1)deg( f 2)
by

Bézout’s Theorem. Now, since Table 1 shows that this is always equal to the max-
imum number n of real and finite solutions, we see that our complex formalism
gives the usual real solutions in the maximal caustic domain, as required. Next,
one can define the map f = ( f1, f2) = (z1− f 1+y1,z2− f 2+y2)

on 2 such that its fixed
points are in fact those solutions. Hence, by construction, f is holomorphic and
has no fixed points at infinity. Notice also that, at these fixed points,

1
det[I2−D f ]

=
1

det[Jac fc]
= M. (15)

Although this looks rather suggestive, we cannot apply the holomorphic Lefschetz
fixed point formula directly to f , since 2 is not compact. However, one can rewrite
f in homogeneous coordinates (Z0,Z1,Z2), where z1 = Z1/Z0 and z2 = Z2/Z0
for Z0 6= 0, and consider the a map F = (F0 : F1 : F2) on P2, which is of course
compact, where

F0 = Zm
0 ,

F1 = Z1Zm−1
0 −Zm−deg( f 1 )

0 f 1(Z0,Z1,Z2)+y1Zm
0 ,

F2 = Z2Zm−1
0 −Zm−deg( f 2 )

0 f 2(Z0,Z1,Z2)+y2Zm
0 ,

and m = max(deg( f 1),deg( f 2))≥2
. Thinking of P2 =2 ∪P1, with 2 : Z0 = 1,P1 : Z0 =

0, we recover F |2 = f . Also, F is holomorphic since f has no fixed points at
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infinity. Finally, the holomorphic Lefschetz fixed point formula (14) applies to F
and to F |P1 , where Lhol = 1 as shown in Sect. 9.4.1. Hence, using (15), we obtain
1 = ∑

n
i=1 Mi +1. This shows that the universal magnification invariant is zero for

the generic cases in Theorem 14, which can now be interpreted as a difference of
two Lefschetz numbers.

For the quantitative case a similar argument yields a proof of Theorem 13;
the lower section of Table 1 shows that the properties of the quantitative elliptic
and hyperbolic umbilics for lensing maps allow a construction as discussed in
Sect. 9.4.2, in exactly the same way as for the corresponding generic maps.

Remarks This method is also an application and slight extension of an example
studied by Atiyah and Bott [11] in their original paper on the eponymous theorem.
It is interesting to note that the technical transversality condition mentioned in
Sect. 9.4.1 simply becomes |µ| < ∞, the usual condition for regular images in
the lensing context. Note also that this approach, where all images are treated as
fixed points, is different from one studied by AOP and Wicklin [71], which sought
fixed points of the lensing map, that is, lensed images that remain at their unlensed
positions.

10 Universal local magnification relations: generic caustics
beyond codimension 3

10.1 The infinite family of A, D, E caustics

In Arnold’s classification of stable simple Lagrangian map-germs of n-dimensional
Lagrangian submanifolds by their generating family Fc,s [6] (also, see Arnold et al.
[8, p. 330–331]), he found a deep connection between his classification and the
Coxeter–Dynkin diagrams of the simple Lie algebras of types An (n≥ 2),Dn (n≥
4),
E6,E7,E8. This classification is shown in Table 2 [3] and is known as the A, D, E
classification of caustic singularities.

The generic caustic singularities up to codimension 5 are given as follows in
the Arnold A,D,E notation, where the numbers nD in parentheses indicate the
codimension:

1. (1D) A2 is a fold.
2. (2D) A3 is a cusp.
3. (3D) A4 is a swallowtail, D−

4 an elliptic umbilic, and D+
4 a hyperbolic umbilic.

4. (4D) A5 is a butterfly, D5 a parabolic umbilic.
5. (5D) A6 is a wigwam, D−

6 a 2nd elliptic umbilic, D+
6 a 2nd hyperbolic

umbilic, E6 symbolic umbilic.

Remark Up to codimension 5, all Lagrangian maps can be approximated by sta-
ble Lagrangian map-germs [6]. However, for codimension 6 or higher, this is no
longer the case; unstable mappings form an open dense set [6; 8].
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Table 2 The A, D, E classification of caustic singularities

Class Fc,s(x1,x2)
fc(x1,x2)

An ±xn+1
1 ± x2

2 + cn−1xn−1
1 + · · ·+ c3x3

1 + s2x2
1− s1x1± s2x2

(n≥ 2)
(
±(n+1)xn

1 +(n−1)cn−1xn−2
1 + · · ·+3c3x2

1∓4x2x1,∓2x2
)

Dn x2
1x2± xn−1

2 + cn−2xn−2
2 + · · ·+ c2x2

2− s2x2− s1x1
(n≥ 4)

(
2x1x2 , x2

1± (n−1)xn−2
2 +(n−2)cn−2xn−3

2 + · · ·+2c2x2
)

E6 x3
1± x4

2 + c3x1x2
2 + c2x2

2 + c1x1x2− s2x2− s1x1(
3x2

1 + c3x2
2 + c1x2,±4x3

2 +2c3x1x2 +2c2x2 + c1x1
)

E7 x3
1 + x1x3

2 + c4x4
2 + c3x3

2 + c2x2
2 + c1x1x2− s2x2− s1x1(

3x2
1 + x3

2 + c1x2,3x1x2
2 +4c4x3

2 +3c3x2
2 +2c2x2 + c1x1

)
E8 x3

1 + x5
2 + c5x1x3

2 + c4x1x2
2 + c3x3

2 + c2x2
2 + c1x1x2− s2x2− s1x1(

3x2
1 + c5x3

2 + c4x2
2 + c1x2,5x4

2 +3c5x1x2
2 +2c4x1x2 +3c3x2

2 +2c2x2 + c1x1
)

The

left column indicates the A,D,E type of the Coxeter–Dynkin diagram or generic caustic. The
right column lists the associated universal local forms of the smooth (n− 1)-parameter family
of general functions Fc,s, along with their (n−3)-parameter family of induced general maps fc
between planes—see the two-component expressions (. . . , . . .). The given classification is due
to Arnold [6]. Credits: Table from [3]

10.2 Universal magnification relations for the family of A, D, E caustics

In 2009, Aazami and AOP [3] proved a univeral local magnification relation theo-
rem for generic general mappings between planes exhibiting any caustic singular-
ity appearing in Arnold’s A,D,E family:

Theorem 16 [3] For any of the generic smooth (n−1)-parameter family of gen-
eral functions Fc,s (or induced general mappings fc) in the A, D, E classification,
and for any non-caustic point s in the indicated region, the following results hold
for the magnification Mi ≡M(xi;s):
1. An (n≥ 2) obeys the magnification relation in the n-image region: ∑

n
i=1 Mi =

0,
2. Dn (n≥ 4) obeys the magnification relation in the n-image region: ∑

n
i=1 Mi =

0,
3. E6 obeys the magnification relation in the six-image region: ∑

6
i=1 Mi = 0,

4. E7 obeys the magnification relation in the seven-image region: ∑
7
i=1 Mi = 0,

5. E8 obeys the magnification relation in the eight-image region: ∑
8
i=1 Mi = 0.

Remark Theorem 16 does not follow directly from the Euler-Jacobi formula, the
multi-dimensional residue integral approach [20], or the Lefschetz fixed point the-
ory method [88], because some of the singularities have fixed points at infinity.

10.3 On the proof of Theorem 16

The proof of Theorem 16 given in [3] employed the Euler trace formula, which
was shown by Aazami and AOP [2] to be a corollary of a more general result they
established about polynomials:

Theorem 17 [2] Let ϕ(x) = anxn + · · ·+a1x +a0 ∈ C[x] be any polynomial with
distinct roots xi, and let h(x) ∈ R be any rational function, where R is the subring
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of rational functions that are defined at the roots of ϕ(x). Let

h∗(x) = cn−1xn−1 + · · ·+ c1x+ c0

be the unique polynomial representative of the coset h(x) ∈ R/(ϕ(x)) and let

r(x) = bn−1xn−1 + · · ·+b1x+b0

be the unique polynomial representative of the coset ϕ ′(x)h(x) ∈ R/(ϕ(x)). Then
the coefficients of r(x) are given in terms of the coefficients of h∗(x) and ϕ(x) by
the following recursive relation:

bn−i = cn−1bn−i,n−1 + · · ·+ c1bn−i,1 + c0bn−i,0 i = 1, . . . ,n ,
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with{
bn−i,0 = (n− (i−1))an−(i−1) , i = 1, . . . ,n,
bn−i,k =− an−i

an
bn−1,k−1 +bn−(i+1),k−1, i = 1, . . . ,n, k = 1, . . . ,n−1,

where b−1,k−1 ≡ 0.

Corollary 3 (Euler trace formula) Assume the hypotheses and notation of Theo-
rem 17. For any rational function h(x) ∈ R, the following holds:

n

∑
i=1

h(xi) =
bn−1

an
·

See [20] for a residue calculus approach to the Euler trace formula.
One can now show that the total signed magnification satisfies:

∑
i

Mi =
bn−1

an
· (16)

For all of the caustic singularities appearing in the infinite family of An (n≥ 2),
Dn (n≥ 4),E6,E7,E8 singularities, the coefficient bn−1 was shown to be zero, and
Theorem 16 was thereby proved. We will illustrate the method of proof here in the
case of the hyperbolic umbilic. See [2; 3] for a detailed treatment.

The induced map fc corresponding to the hyperbolic umbilic is given by:

fc(x1,x2) =
(
−3x2

1− cx2,−3x2
2− cx1

)
.

Let s = (s1,s2) be a target point lying in the four-image region. The four lensed
images of s are obtained by solving for the equation(

−3x2
1− cx2,−3x2

2− cx1
)

= (s1,s2). (17)

To use the Euler trace formula in the form (16), we begin by eliminating x2 to
obtain a polynomial in the variable x1:

ϕ(x1)≡−3s2
1− c2s2− c3x1−18s1x2

1−27x4
1.

The magnification of a lensed image of s under fc is M(x1,x2)= 1/
(
−c2 +36x1x2

)
.

To convert this into a rational function in the single variable x1, we substitute for
x2 via (17) to obtain:

M(x1,x2(x1)) =
c

−c3−36s1x1−108x3
1
≡M(x1).

A direct calculation now yields:

ϕ
′(x1)M(x1) = c.

Thus the unique polynomial representative in the coset ϕ ′(x1)M(x1) is the poly-
nomial r(x1) ≡ c (in the notation of Theorem 17, M(x1) ≡ h(x1)). Since bn−1 =
b3 = 0, (16) tells us immediately that

M1 +M2 +M3 +M4 = 0.
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11 Final remarks

In this review article, we have summarized image counting results and some recent
work on magnification relations as generic properties of gravitational lensing, and
we shall now outline possible directions for future research in this field.

The mathematical theory of stochastic lensing is still in its early stages, and an
extension from results on image multiplicity to statistical magnification relations
would be desirable. But also in the non-stochastic realm, the magnification rela-
tions are less well understood than the image counting theorems. It is hoped that
future work will establish how the generic magnification relations for codimension
greater than three translate to the quantitative lensing case. Similarly, it would be
interesting to see if and how the Lefschetz method can be extended beyond the
case discussed here. Finally, it should be noted again that these results apply only
to the weak deflection limit. Therefore, it is an open problem whether magnifica-
tion relations also occur in the limit of strong deflections, or in a fully relativistic
spacetime setting.
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