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Abstract

Gauge theories are ubiquitous in physics. Many intriguing phenomena in con-
densed matter physics owe to the action of the electromagnetic field, which is an
Abelian gauge theory. The numerical treatment of many-body systems is inherently
complex due to the exponentially growing size of the Hilbert space. While in one di-
mension an area law guarantees that numerical methods on classical computers can
deal with strongly correlated systems, in higher dimensions the quantum simula-
tion comes as the panacea for the many-body problem. The present thesis comprises
the elaboration of experimentally feasible methods for the quantum simulation of
dynamical Abelian gauge fields with ultra-cold gases of neutral atoms and the theo-
retical analysis of the related model Hamiltonians. As neutral atoms do not interact
with external vector potentials like charged particles would do, the gauge fields have
to be artificially engineered.

The elements of a gauge theory that need to be replicated on a quantum simu-
lator vary depending on the subject of investigation. The key ingredient at the root
of many condensed matter phenomena, from the quantum Hall effect to supercon-
ductivity and chiral topological insulators, is the Berry phase. Whilst artificial static
gauge fields have been widely explored, much remains to do regarding the realiza-
tion of artificial dynamical gauge fields. In Chapter 3 we present a method based
on the amplitude modulation of a one-dimensional optical lattice, which allows for
an unprecedented degree of control over a wide range of parameters. The method
also comprises the generation of a density-dependent complex phase, fundamental
to the creation of anyonic pseudo-particles. The anyons are amenable of observation
through interferometric measurement, realizable with the same experimental set-up.

With regard to gauge theories, the Berry phase is just the visible tip of the ice-
berg. Below the waterline, there is more to consider in order to comprehensively
reproduce a gauge theory, like the electric and magnetic fields in quantum electro-
dynamics. Moreover, a full account for the inherent symmetry is crucial to investi-
gate phenomena proper of non-Abelian gauge theories in the context of high-energy
physics, such as confinement. For this collection of topics, one can turn to lattice
gauge theories. In Chapter 5, we consider a class of lattice gauge theories particu-
larly suitable for quantum simulation, the Quantum Link Model. The study of the
Abelian U(1) Quantum Link Model on a ladder geometry reveals a highly non-trivial
phase diagram, featuring a symmetry-protected topological phase.

In both Chapters, innovative solutions for the experimental realization of the
model Hamiltonians are designed and proposed. To gain numerical access to the
ground-state properties and the dynamics of the systems investigated we make use
of state-of-the-art numerical methods based on Tensor Networks. The elements of
the numerical analysis carried out throughout this thesis are presented in Chapter 6.

In the last part we offer an outlook on research perspectives related to the topics
discussed in the thesis.
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Chapter 1

Introduction

1.1 Quantum simulation of many-body systems

The many-body problem

The ultimate purpose of physics is to unveil the universal rules governing Nature,
to express them in a mathematical language and to be able to make predictions. The
set of equations to consider in order to characterize a certain physical phenomenon
depends on the length or energy scale at which that phenomenon occurs. While the
equations of classical mechanics fail at describing the fundamental constituents of
matter on the atomic and molecular scale or at a relativistic speed, adopting quan-
tum mechanics on the Euclidean regime is at least redundant. Nonetheless, striking
features of macroscopic many-body systems do find their origins in the quantum
world, preeminent examples being superfluidity and superconductivity.

The description of physical systems involving multiple particles interacting with
one another is an ubiquitous task in physics and takes the name of many-body prob-
lem. In a quantum system with many particles, the solutions to the equations of in-
terest rarely come in elegant closed form expressions. Mostly, they are grounded on
some form of approximation or they are obtained with numerical methods on clas-
sical computers. The difficulty that makes the many-body problem hard to tackle
with numerical methods lies in the exponential scaling of the possible configura-
tions space dimension. For instance, a system with only two relevant local states
such as a gas of N half-integer spin particles spans a full configuration space of size
2N Tt is sufficient that N be larger than fifty to practically become impossible for the
most powerful modern supercomputer to even just store a full representation of the
many-body state; searching its ground state eigenvector or following its evolution
in real time is something inconceivable. That means, an elementary square grid of
spins 1/2 with eight sites per side (2%* configurations) is already a utopia, and yet it
is far away from earning the title of many-body system.

The many-body problem appears in a number of different contexts, ranging from
condensed matter physics, where the processes underlying high-temperature su-
perconductivity still lack a comprehensive description, to the high-energy physics,
where expected phenomena of the fundamental particles are experimentally hard
to access and verify. Quantum computation and quantum simulation are currently
acknowledged as the right strategy to pursue in order to crack and solve any many-
body problem.

Quantum computation and quantum simulation

"Quantum simulation fights fire with fire" [1]. This evocative quote is a catchy rein-
terpretation of the most renowned seminal concept proposed by Feynman [2] in
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1982: if we want the resources required by a computer to simulate a large quantum
system to be of the same order of the system itself, there is no other way for the
computer than to undergo the laws of quantum mechanics.

The realization of a universal digital quantum computer is arguably the light-
house in quantum information and certainly a major long-term goal in the field of
atomic physics. Generally speaking, the quantum computer shall be used to study
both steady properties of a certain physical system (the energy spectrum, the ground
state, etc.) and the dynamics. The hindrance arising from the continuity of time
was early identified by Feynman himself, who proposed the discretization of the
time variable as a problem workaround. Already in 1996 it was proven [3] that the
simulation of the real-time evolution in discrete steps of generic many-body Hamil-
tonians with local interactions is indeed correct and efficient, since the time grows
polynomially and not exponentially with the number of particles. The existence of a
theoretical edge gave hopes and stimulated the experimental efforts seen in the last
decades, however a universal quantum computer able to deliver when it comes to
non-trivial many-body systems does not exist yet.

While the digital quantum computer could be a long way to come, the experi-
mental community also pursued the road of analogue quantum simulation: a target
model Hamiltonian can be directly emulated on a physically different though math-
ematically equivalent quantum system instead of converting it onto a quantum dig-
ital form, and by means of that the ground state properties and the dynamics can be
directly addressed cooling the system to the lowest temperatures or letting it evolve.
Furthermore, analogue quantum simulators are in some cases prone to scalability.
In the last decades analogue quantum simulators have seen a thriving development:
the joint action of constant refinements in controlling and manipulating simulation
platforms and the proposals of novel, simpler experimental techniques, allowed for
the successful implementation and simulation of a number of relevant model Hamil-
tonians.

Quantum simulation platforms: superconductors and ions

On-chip superconducting circuits stand as a preminent quantum hardware plat-
form at the interface between quantum computation and quantum simulation [1].
With those, milestone goals of quantum computation have been achieved: single-
and two-qubit operations, entangled state preparation, protocols for fault tolerance
and quantum error correction have been faithfully realized [4]. Yet the most sound
achievements attained so far have come from the field of quantum simulations,
which is still the branch more amenable to scalability. Designed with lithography
techniques, these nanofabricated systems allow for a large flexibility in the range of
geometries realizable and in the tunability of nearly every parameter involved. A
peculiarity lies in the fact that the simulated particles are in fact circuit excitations,
not necessarily conserved, which makes the superconducting circuits eligible for in-
vestigations in the grand canonical ensemble.

Along with superconducting circuits, trapped ions represent a leading platform
for first-generation quantum computers. The respective advantages and drawbacks
of these two technologies might lead to a complementary use for scaling special-
purpose quantum computers (not yet universal nor fully-programmable) to an in-
teresting number of qubits [5]. Like superconducting circuits, ions too are estab-
lished as a useful platform for analogue simulations. The Jaynes—-Cummings model,
a two-level atom in a bath of resonant photons, is a preminent model straightfor-
wardly realizable with ions, which makes them suitable for faithful simulations of
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the dynamics of cavity QED [6], the quantum-Rabi model [7] and its quantum phase
transition [8] or quantum spin models [9].

1.2 Ultracold gases of neutral atoms

It is safe to say that the experimental platform that has attracted the largest part
of the atomic, molecular and optical (AMO) physics community and which has in-
spired and driven the work of many theorists in the past quarter century is that of
ultracold gases of neutral atoms [10, 11]. Cooling and trapping neutral atomic gases
to quantum degeneracy took a long journey, decades long, to become nowadays a
standard practice in physics laboratories. As intense coherent light beams with a
narrow bandwidth (lasers) became available, people used them to guide the motion
of particles. It is well known that light exerts a radiation pressure on any substance
it scatters with. Ashkin pioneered the field from the early 70s, achieving first the de-
flection of a chosen isotopic species of an atomic beam from a circular orbit using a
laser in resonance with an atomic transition [12]. In 1975, seminal proposals based on
the Doppler effect arose to selectively address and slow down incoming atoms [13,

], which grounded and inspired the work of many in the following years [15].
Ions could be straightforwardly trapped, the traps being deep enough to easily keep
particles even at room temperature. Significant cooling is instead required before
neutral particles can be trapped.

Sub-doppler cooling

Common cooling procedures for neutral atoms begin funnelling a hot gas of some
alkali-atoms species onto a vacuum chamber through a Zeeman slower, where the
gas is slowed down by a counter-propagating laser beam near-resonant to one atomic
transition. The laser is set to account for the re-pumping and the Doppler shifts.
Atoms in an optically excited state return to the ground state in a few nanoseconds
and are ready to absorb again. Each absorption-emission process corresponds to a
deceleration by a recoil momentum unit. Let us consider Sodium atoms interact-
ing through the familiar yellow D-line: the recoil velocity is v = 2.9 cm/s [16],
while a typical atomic beam velocity is about 10° cm/s, which gives the scale of the
number of scattering events needed to bring an atom to a velocity of the order of
Urec. Out of the Zeeman slower, the atoms can be temporarily confined (not stored)
in a spatial region at the intersection of three mutually orthogonal, retro-reflected,
counter-propagating, near-resonant lasers, that provide a viscous damping to the
atoms, again exploiting the principle underlying the Doppler effect. Typically, the
spatial region has a width of a few millimeters. At this stage, Sodium atoms should
have a temperature close to the Doppler temperature Tp = 235uK. To their surprise,
Phillips and his group found out in 1989 that the actual temperature was pleasantly
well below the predicted limit: only 40 uK [17]. First hints of an unpredicted be-
haviour had already appeared in 1987 [15], when the same group observed a large
discrepancy between the 1-D theory and the 3-D experiment on the molasses lifetime
spectrum. Their guesswork was "It remains to consider whether the multiple levels
and sublevels of Na [...] can explain the surprising behavior of optical molasses [15]"
and contained an element of truth. The puzzle was soon solved by Dalibard and
Cohen-Tannoudji [19]. The mechanism of Sysyphus cooling, already described for
two-level atoms in 1985, explains why an atom with various ground and excited
sublevels allows for an additional absorption-emission process that saturates at a
sub-Doppler temperature.
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Evaporative cooling

The production of samples of atoms with sub-millikelvin temperatures made it pos-
sible to trap neutral atoms. Evaporative cooling, the adiabatic opening of the trap
and expulsion of the most energetic particles, is the last step to take in order to fur-
ther decrease the temperature. Initially, a severe loss mechanism known as Majorana
flopping hindered the realization of an abundant quantum degenerate gas. Spend-
ing a lot of time in the centre of the trap, where the magnetic field is null, the particles
may undergo a spin flip and by that free themselves from the trap. A modification
of the magnetic potential in the central region that lifted the minimum potential to a
finite magnetic field fixed the problem.

Magnetic and optical traps share an analogous operating principle, based on con-
servative dipole interaction; both are used for confinement in a continuous geome-
try. In magnetic traps, the magnetic dipole moment y of the atoms couples with an
externally produced field B as Umag = —p - B; when Umag > 0 (Umag < 0) the atoms
are attracted towards the minimum (maximum) of the external field and are called
low (high) field seekers. Typical depths of magnetic traps are on the order of 100
mK, which makes them excellent for evaporative cooling purposes.

Optical traps rely on the electric dipole interaction between induced atomic dipole
moment and the intensity gradient of the far-detuned light field. Red (blue) detuned
traps make the atoms high (low) field seekers. Focused Gaussian laser beams in red
detuning (far below an atomic resonance frequency) represent the simplest way to
create a dipole trap providing three-dimensional confinement. Typical depths of op-
tical traps are in the range below 1 mK [20], hence they are much weaker than their
magnetic counterpart but deep enough to trap atoms previously cooled in optical
molasses and bring them to quantum degeneracy [21]. The relatively shallow trap
requires to ensure that the gravitational force does not exceed the confining dipole
force. Focused-beam traps are therefore mostly aligned along the horizontal axis.
However, the Majorana flopping problem is eliminated and moreover external mag-
netic fields can be used at will for various purposes.

The development of evaporative cooling led to the realization and observation
of the first degenerate Bose-Einstein condensate, in 1995 [22, 23]. With BECs at dis-
posal, experimentalists got the chance to explore phenomena proper of coherent
gases, such as solitons [24] and vortices in Abrikosov arrays [25, 26], as well as to
use the BEC as a laboratory for the investigation on generic coherent phenomena
like Kibble-Zurek mechanism [27] and supersolid properties [28].

1.3 Neutral atoms in optical lattices

A major branch of research in neutral cold gases regards atomic lattices. A milestone
experiment, the observation of a Mott to superfluid phase transition of a BEC on a 3-
D lattice [29], came only a few years after the first BEC to breach the barriers between
AMO and condensed matter physics, demonstrating that long-envisaged quantum
phase transitions could be experimentally realized and observed in a pristine and
largely controllable environment. That was a significant breakthrough which un-
tapped the florid and thriving stream of quantum simulation experiments seen in
the last two decades.
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Lattices of ultracold gases

Let us briefly recall how cold gases can be arranged onto a discrete spatial geom-
etry. Neutral atoms are trapped in optical lattices after the usual cooling step in a
continuous trap. A one-dimensional standing wave field is realized with counter-
propagating optical lasers, which imposes on the atoms gas a lattice structure by
means of the dipole force. When an electromagnetic field is close to resonance with
an atom transition frequency, the light field induces on the atom an oscillating elec-
tric dipole, which in turn interacts again through a dipole-dipole force with the laser.
This makes the atom see a potential proportional to the intensity of the laser beam.
For sufficiently deep lattice potentials Vj, with respect to the recoil energy E... (about
Vo 2 5Erec [30]), the physics of the gas is well captured by the tight-binding approx-
imation. The particles basically sit on the lattice potential minima with a finite prob-
ability of tunnelling proportional by the kinetic energy and dependent on the finite
overlap between the wavefunctions on two neighboring sites. Furthermore, a single
band approximation is valid as long as the particles interaction remains small with
respect to the separation between the two lowest energy bands.

The degrees of control offered by optical lattice traps are numerous. For instance,
light crystals permit to explore a broad variety of higher dimensional lattices by sim-
ply overlapping more optical standing waves, along the wished directions. This is
a major advantage compared to solids, where the self-imposed binding structure of
atoms determines the lattice geometry. The tunnelling rate, or kinetic energy, can be
reduced by increasing the lattice depth instead of lowering the temperature, which
is a challenging task at the quantum degeneracy regimes. The caveat is to not make
the ratio between kinetic energy and temperature too small otherwise the system be-
comes essentially classical [31]. Historically, as for gases in continuous traps, atomic
lattices were first realized in labs with bosonic particles since fermions are harder
to bring to degeneracy with evaporative cooling as they lack s-wave scattering [32].
Nowadays, atomic lattices are realized with a variety of bosonic and fermionic iso-
topes.

Tight-binding approximation

Atoms in an optical dipole trap with red-detuned light are subject to a force pointing
towards the regions with higher beam intensity. Therefore, atoms in a red-detuned
standing-wave optical lattice experience a sinusoidal external potential of the form

Vext(x) = Vg sin?(kopx).

with kop, being the wave number and Vj the potential depth, proportional to the laser
intensity. In absence of interactions, the atoms obey the free Schrodinger equation
with an external potential

2
Eyp(x) = _;;naalep(x) + W sinz(kOLx)gb(x). (1.1)

The Bloch theorem prescribes stationary periodic solutions of the form
qn = ”qn(x)eiqx, (1.2)

where 14,(x) is a periodic function, g is the quasi-momentum (a good quantum
number but not the momentum) and the index n denotes the Bloch band. These
solutions are de-localized. The Bloch bands describe the dispersion relation, the gap
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between the bands being larger as the trapping potential increases. For sufficiently
deep lattices (Vo 2 5Erec [30]), the tight-binding approximation becomes valid and a
particle wave-function is rather localized on a site than spread across the lattice. In
this regime, the Wannier functions are a preferable set of eigensolutions. They form
a complete set of orthogonal functions strongly localized at a given site x = jd,

" 1 i
W (x) = ﬁ;e Uiy, (x), (1.3)

where d is the lattice parameter. In the limit of very deep lattice, the Wannier func-
tions tend to the eigenstates of the harmonic oscillator. The wells are faithfully ap-
proximated by a harmonic potential, Vj sin?(kopx) = Vok3; x2, whose effective fre-
quency @ depends on the recoil energy and on the amplitude Vj:

M2 3 thZ
= Vokz,  —  (h@)* =4V, Zn?L

—  h@ = 2v/5Exec, (1.4)

where s = \/Vj/ Erec. The recoil frequency reads

2 2
h
o W = 27T %0@ ~ 2 2.22%0, (1.5)

212 2 32
_ Wky,  wg h
rec —

2m  m 2c2

where vy is expressed in THz units and the mass in a.m.u.

To put some numbers, let us consider the 8Rb isotope of Rubidium, with mass
of 86.91 u [16], used in the experiment by Greiner et al. [29]. The optical lattice lasers
operated at wavelength A = 852 nm, to wy = 27 - 351.9 THz, corresponding to a
recoil frequency

Wree = 3.163 kHz. (1.6)

Although the lasers are far detuned from all atomic resonances, it is safe to pick as a
scale the recoil energy at the D; line, centered at A = 795 nm, wy = 27 - 377.1 THz,
for which wree = 3.633 kHz [16]. Typical lasers reach a max intensity of 1 mK [20]:
this corresponds to about 20 MHz, s ~ 1000, thousands of recoil energy units. The
superfluid to Mott-insulator transition (see in Section 1.3) occurs at a depth of about
s = 13 recoil energy units, whence

@ = 22.805 kHz, (1.7)

which gives the energy scale of lowest band gap. Lightest atoms have higher recoil
energy, yet the tight-binding regime is attainable: for instance, the composite boson
’Li has wrec = 63.164 kHz, thus a 1 mK trap is about s = 300 recoil energy units
deep.

In second quantization, the continuous kinetic energy operator is mapped to a
discrete hopping operator coupling nearest-neighbouring sites, the overlap between
next-nearest neighbours being negligible. The hopping amplitude reads

f=— / drw ¥ (r) [—#vuv o(r) | W) (1.8)
j 2m & ‘ ! '

where j 4 & are the nearest neighbours of the site j. The kinetic energy term reads

A = —t Y (@Llai + c;-*cyﬂ) . (1.9)
i
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The on-site interaction energy depends on the particle statistics: for Bose gases it

reads U
Hine = > Y ai(Ai —1), (1.10)

while for Fermi gases on-site interactions are only non-zero in the presence of more
than one component, due to the Pauli exclusion principle:

Hine = U Y iy fiyy. (1.11)
i
The coefficient U accounts for the on-site s-wave contact interaction:
©0) o |*
U:g/dr‘wf ()] - (1.12)

In tight-binding approximation, the hopping rate decreases exponentially with the
lattice depth,

J 4 3.4 05
= —=s""% 113
Erec \/E ( )
while U increases with a power law that depends on the dimensionality D of the
lattice:

u ~ sP/%; (1.14)
Erec
For instance, at the Mott-insulator phase transition (s = 13) for ¥Rb the energy

scales are | ~ 0.01E. ~ 36 Hz and U ~ 6.85E. ~ 25 kHz.

The nearest-neighbours hopping term, the on-site and inter-site interaction terms
are the basic ingredients of a vast class of models, the Hubbard-type Hamiltonians,
which are extensively investigated:

. ot o ata _(a) A(b
Hiiubbard = —J ) (ﬂ?ﬂﬂi + ﬂjﬂm) + UZf(nf“),nf M. (1.15)
; :

Analogously to the Ising and Heisenberg models for spin systems, these models suc-
ceed in faithfully capturing a wealth of physics of complex many-body real systems,
despite their elementariness.

The Bose-Hubbard model

Let us now describe the above-mentioned experiment by Greiner et al. [29], fore-
runner of quantum simulations with atomic lattices. The Bose-Hubbard model is
defined as follows:

A ~on 7 T u oY 5
HBH = —]Z <bibj+1 + b;rbi-i-l) + E Zni(ni - 1) (116)
i i

At zero temperature thermal fluctuations are suppressed. Quantum fluctuations,
due to the Heisenberg principle, drive the phase transitions. A prominent exam-
ple is the Mott-insulator to superfluid phase transition The superfluid state occurs
in Bose-Einstein condensates, which exhibit long-range phase coherence. When the
on-site atom-atom repulsive interaction U becomes larger than |, the fluctuations in
the atom number per site is reduced. Accordingly, the fluctuations in the phase in-
crease and coherence is lost. The interplay between the two competing Hamiltonian
terms is inherent in quantum phase transitions and fundamentally distinct from the
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FIGURE 1.1: From a to h: single interference peak from a coherent
superfluid state, degrading coherence giving rise to interference pat-
terns, incoherent localized Mott insulating state. Imaging in time of
flight, 15 ms after release from the trap. Figure from Greiner et al. [29].

competition between inner energy and entropy, which drives classical phase transi-
tions.

Owing to a different scaling (see Egs. (1.13) and (1.14)), the ratio U/] can be
controlled by varying the lattice depth. To probe the phase of the gas, the trapping
potential is suddenly turned off and the gas wavefunctions are let free to evolve and
interfere. The momentum distribution of a Bose gas in a lattice is the convolution
of the Fourier-transformed Wannier function and the quasi-momentum distribution.
The hallmark of the superfluid phase is the sharp central interference peak in Fig. 1.1.
As one increases the lattice depth, the Wannier function becomes narrower so that
the envelope function broadens and hence one sees peaks appear, due to the periodic
array of phase-coherent matter-wave sources. When the system starts to localize, the
quasi-momentum distribution broadens too, the coherence between different sites
decreases and the peaks get thicker and thicker until, in the Mott regime, the mo-
mentum distribution blurs. This and the existence of an energy gap where clearly
identified and shown by Greiner et al. [29] and represent the smoking gun of the
transition to a Mott insulating phase.

The Fermi-Hubbard model
The Fermi-Hubbard model is defined as

An=-7 Y ¥ (c?ﬁcy,(, + é},gcq,a) +UY gy, (1.17)
i

<ij>o=1

where < i,j > are nearest-neighbouring sites. With a single spin component ¢
the system lacks on-site interaction, since the Pauli exclusion principle forbids two
fermions of the same spin to co-exist in the same lattice site. In local density approx-
imation, the Hamiltonian models well a Fermi gas a in a real deep optical lattice.
To also account for the inhomogeneous lattice depth, which is higher in the centre
where the beam is focused and decreases outwards, one can introduce a chemical po-
tential term ) ; €;71;. We consider hereafter a balanced two-components Fermi gas: for
each particle with spin down there is another one with spin up. A fundamental as-
sumption in the Fermi-Hubbard model is that thermal and quantum fluctuations are
not sufficient to cause excitations above the lowest Bloch band. As a consequence,
the gas behaves as a band insulator at unit filling. The single-band Hubbard model
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FIGURE 1.2: Phase diagram of the Fermi-Hubbard model, at half
filling, for a three-dimensional cubic lattice. The dashed lines indi-
cate the smooth crossovers between the correlated Fermi liquid (CFL)
phase and the normal fluid or paramagnetic phases. Solid lines are
second order phase transitions. Figure from Tarruell [33].

ceases to be correct when the scattering length approaches the size of the Wannier
function.

The ground-state phases at half filling are recapitulated in Figure 1.2 and can be
analysed in terms of charge and spin sectors. In the charge sector, three regimes can
be identified:

* the Mott insulator, with a vanishing compressibility. Large repulsive interac-
tion U > t and low temperature make it unfavourable for the particles to hop
and form an itinerant metallic state;

¢ the correlated Fermi liquid, at finite temperature, for weak repulsive or attrac-
tive interactions. It has a metallic character, with density fluctuations;

¢ the pairing regime for attractive interactions and low temperature, character-
ized by itinerant stable bosonic pairs.

These phases are separated by smooth crossovers. In the deep Mott phase, whilst
the charge distribution is classical, a large entropy remains in the spin degree of free-
dom. In the limit of strong interactions the Fermi-Hubbard model can be mapped to
an isotropic antiferromagntic Heisenberg model, characterized by the onset of Néel
staggered magnetization:
2

H® = 4ta§fl-+1, (1.18)
where §§Z) = S(chen —cfieip), §f_) = ¢jjcir and §Z.(+) = cjici. In intermediate
regions, the competition of interactions, Pauli principle and tunnelling drives the
phases of the spin sector, separated by second-order phase transitions: the solid red
and blue lines in Figure 1.2. For repulsive interactions, the transition separates the
disordered paramagnetic phase from the anti-ferromagnetic phase. In the limit of
weak repulsive interaction 0 < U/t < 1, mean field theory arguments suggest a
spin density wave as the ground state [33]. Through Hartree-Fock decoupling, one
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FIGURE 1.3: The tunnelling of an ultra cold gases on a 1-D lattice is

dynamically suppressed by strong longitudinal driving of the optical

trap: the bare tunnelling matrix element | becomes a renormalized,
smaller Jo. Figure from Lignier et al. [41].

obtains the Hamiltonian

H~ _IZZ <6z-+1,(76i,(7 + ézT,aCAiH,U) + %N(l + ”g) - Uzns Z(_l)l(ﬁn - ﬁu)}
i i

(1.19)
here, N is the number of particles and n; = (—1)’ (fi;; — f;| ) is an order parameter:
for n; = 0 the spin components at every site on average balanced, for n; = 1 there is
a maximally staggered magnetization. The ground state is thus a spin density wave,
namely a very small modulation or long wavelength. For attractive interactions,
the transition is from a normal to superfluid phase, this last characterized by the
crossover from Bose-Einstein condensate to the BCS regime.

Analytical solutions of the Fermi-Hubbard model are known solely in one di-
mension, where the ground state can be obtained by Bethe ansatz. Exotic FH model
in 1-D can be solved numerically with tensor network methods. In higher dimen-
sions, numerical simulations are hindered by the well-known sign problem [34] or
unfavourable computational resources scaling with increasing lattice size [35]. One
of the motivations to investigate the Fermi-Hubbard model lies in the belief that
the Fermi-Hubbard model might capture the fundamental ingredients of the high-
temperature superconductivity [36-38], unexplained within the frame of the BCS
theory.

Tunnelling coherent control

Independent coherent control on J, U and on additional terms appearing in extended
Hubbard-type models is crucial to explore the various phases of the Hamiltonian
investigated. Tuning the on-site interaction U is a standard and well-known practice,
based on the use of Feshbach resonances. Coherent control of the tunnelling has been
the subject of fruitful investigations. Tunnelling control was first proposed with
far-infrared strong photon dressing on semiconductors super-lattices [39]. By the
same token, coherent control of | on cold gases in lattices was proposed [40], which
allowed a group of experimentalists in Pisa to reversibly induce the superfluid to
Mott-insulator phase transition [41, 42].

To realize collective tunnelling control with photon dressing, one can add a pe-
riodic perturbation to the optical lattice, either by mechanical vibration or by vary-
ing the frequency. In the first case, the laser mirrors are mounted on piezoelectric
actuators that sinuisoidally shake the lattice in the longitudinal direction. A sys-
tem globally accelerated by a homogeneous force experiences a linear potential; the
sinusoidal acceleration of the lattice echoes in a linear tilting with amplitude and
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FIGURE 1.4: Amplitude modulation spectroscopy on a 1-D optical

lattice. (a) Schematic of the tunnelling channels connecting to a deep

Mott state - all but the hopping between two empty wells in the last

panel, added by way of example. (b) Odd-number occupation prob-

ability vs modulation frequency, dropping when doublon-hole pairs
are resonantly created. Figure from Ma et al. [43].

direction modulation, see Figure 1.3:
A = -]y (Bibf.1 +he) + Keos(wt) i, (1.20)
i i

Periodically shaking the lattice induces inhibition, suppression and eventually change
of sign of the tunnelling amplitude, steered by the zeroth-order Bessel function of the
driving strength. The driving frequency is not bound to any energy scale, as long
as it does not cause undesired interferences, such as inter-band excitations. The ef-
fective tunnelling J.¢ is measured by letting the BEC freely expand in the lattice. A
negative [ flips the energy band upside down, favouring the occupation of states
with larger quasi-momentum. This can be evidenced by looking at the interference
peaks in time-of-flight, shifted by half a Brilluoin zone.

Amplitude modulation

A more selective control of the tunnelling rate can be obtained by modulating the
lattice amplitude. On a tilted lattice, with linear bias E, the bare hopping couples
two neighbouring wells off-resonantly with probability P ~ 4 (]/ A)Z. The energy
gap A depends on the on-site interaction and on the two wells occupation number.
An amplitude modulation of intensity J] with frequency w = E provides photons
with the required energy for an atom to resonantly be transferred between the two
wells, with an effective Rabi frequency given by 6]/2. Figure 1.4(a) displays the
states reachable from the deep Mott configuration at unit filling of a Bose gas; the
last board depicts the case of a single particle in two empty wells. The validity of the
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FIGURE 1.5: A superlattice in its ground states hosts particles on the

s-band of the deep sites, step 1. A quench swaps the sites, step 2,

bringing the s- and p-bands of the B and A sublattices to energetic
degeneracy. Figure from Wirth et al. [44].

method was demonstrated by Ma et al. [43]. As shown in Figure 1.4(b), they swept
the frequency spectrum and revealed the resonances by in situ fluorescence imaging,
sensitive to the parity of site occupation.

Populating the p-band states

Up to now, we have restricted our considerations to a single band. The outweighing
amplitude of the lowest gap compared to the energy scale of quantum fluctuations,
on-site interactions or the frequency of external modulations guarantees the exclu-
sive occupation of the lowest s-orbital in optical lattices. In bare Hubbard models,
higher orbitals population is unwelcome and has generally only marginal effects.
However, one can look at the hybridization with excited states, primarily p-orbitals,
as a route towards extended models.

Orbital effects play a fundamental role in metal oxides. In several instances,
novel quantum phases emerge due to the coupling of the orbital degree of free-
dom to the charge, spin, or lattice degrees of freedom. In the context of cold gases,
multi-orbital physics can lead to unconventional superfluid states, Haldane phases,
graphene-like physics and models with no prior analogues in solid state electronic
materials [45]. Several groups have now achieved selectively loading and manip-
ulating ultracold atoms in p-bands. In hexagonal lattices, the graphene-like band-
structure features s- and p-bands separated by a gap of the order of the tunnelling
energy [46], hence the hybridization is spontaneous.

In square lattices, the formation of a superfluid state in resonant s- and p-bands
of a bipartite lattice was achieved by the group of Hemmerich [44]. A Bose gas was
loaded on the lowest band of the deepest sublattice A, the hopping being negligi-
ble due to the high energy gap between those and the intermediate sublattice B,
as in Figure 1.5. From this Mott state, a rapid (faster than the hopping time scale)
ramping of the lattice beam intensity swaps the sublattices, so that B is deeper and
the energy of its p-band equals that of the A sites s-band. Note that, the solutions
of the isotropic harmonic oscillator in 3-D are the spherical harmonics, stretched
or compressed in case of anisotropic frequencies: irrespective of that and indepen-
dently from energy degeneracies, the tunnelling along the x-direction is most likely
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between py-band states (same for y, z), owing to a larger overlap of the wavefunc-
tions. The quench eventually scrambles the system and populates up to the fourth
Brillouin zone. However, in an intermediate time interval of about 20 ms, a cross-
dimensional coherence is observed, marked by a momentum spectrum featuring
condensation at the corners of the Brillouin zone, characteristic of the concave p-
band.
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Chapter 2

Berry-like dynamical gauge fields

Gauge fields are ubiquitous in physics. In condensed matter physics, gauge fields
lie at the roots of a number of fundamental or emergent physical phenomena. The
signature of gauge fields in non-relativistic physics is often identifiable in a non-
trivial complex phase, inherent or acquired by the wave-function. A complex phase
is picked up during the evolution of a charged particle encircling a region of space
permeated by a magnetic field, the Aharonov-Bohm effect, or after the exchange
of two identical particles in lower dimensions, the anyonic statistics. In particular,
complex phases embedded in the anyonic quasi-particles of a many-body system
determine non-trivial macroscopic behaviours, such as the plateaus in the conduc-
tivity of the fractional quantum Hall effect. A unifying mathematical framework
that encompasses these and other phenomena in classical and quantum physics is
built upon the notions of Berry curvature, connection and complex phase.

In this chapter, we give a brief introduction to the Berry theory. We discuss the
panoply of physical phenomena related to the Berry phase and recently investigated
with experiments in cold gases, in one- and two-dimensional atomic lattices. Con-
currently, we discuss the experimental techniques engineered to enforce an artificial
gauge field. Then, we move to the anyonic statistics and the significance of anyon
quasi-particle in emergent phenomena on strongly coupled many-body systems. We
present the state-of-the-art experimental methods to quantum simulate a dynamical
gauge field, focusing on the work done so far on 1-D anyons.

2.1 The Berry phase

The notion of Berry phase is present in many branches of physics. Introduced in
1984, it encompasses and generalizes a number of phenomena whose explanation
requires the presence of a non-gaugeable complex phase. To outline the topic, we
follow the review by Xiao, Chang and Niu [47]. Consider a Hamiltonian that de-
pends on time through a set of parameters R,

H=H(R), R=R(t), 2.1)

and suppose to follow the time evolution of an initial eigenstate through a closed
path C in the parameter space P(R). At each instant we can define a set of eigen-
states of H(R):

H(R) |[n(R)) = ex(R) |n(R)) . (2.2)

In the absence of degeneracy and if the energy manifold ¢,(R) is well isolated by
a gap along the entire path, the quantum adiabatic theorem tells that the eigenstate
will surely come back to itself at the end of a closed path. Each state |1#(R)) is obvi-
ously defined up to a complex phase. We can assume that the instantaneous global
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phase is smooth and single valued along the path C. The global phase can be ex-
pressed as the sum of a dynamical and a geometric phase. The geometrical phase is
defined as the integral of the Berry connection Ageom(R) over a path C,

Y geom = /C dR - Ageom(R), (2.3)

where the Berry connection is defined as

Ageom(R) = i <n(R) 83{

n(R)> | (2.4)

Using the Green’s theorem, 7geom is equal to the integral of the curl of the connection
over the relative surface %,

')’geom = /st : Qgeom(R)/ (25)

where Qgeom = VR X Ageom(R) is named the Berry curvature. The geometric phase
was long deemed unimportant as, on an open path, it can be cancelled out by a
gauge transformation:

n(R)) — 4™ [n(R)),

Ageom(R) = Ageom(R) — % (R). 2.6)

Since the gauge adds to the geometric phase a term ¢(R(0)) — &(R(T)), exclusively
dependent on the initial and final points of the path, it is always possible to find one
gauge transformation that offsets ygeom. However, Berry showed that this changes
in a closed path: since the gauge needs to be single valued, {(R(0)) — ¢(R(T)) can
only take values multiples of 277, hence the geometric phase can not be gauged out.
Furthermore, it only depends on the geometric aspect of the closed circuit, the ex-
plicit time path being thus irrelevant.

Note that the geometric phase acquired by the evolving state has a gauge struc-
ture, as it is invariant under a local transformation of the connection, as in Eq. (2.6).
The local transformation can be recognized as the same gauge transformation on the
vector potential that leaves the classical electrodynamics Lagrangian invariant. The
analogy with electromagnetism extends to the Berry curvature that takes the form of
a magnetic field in parameter space. In fact, the Berry phase is readily recognized as
a generalization of the Aharonov-Bohm phase, acquired by a charged particle mov-
ing along a circuit in real (and parameter) space that encloses a region with a finite
external magnetic field. To summarize, the following schematic equivalence links
the Berry formalism to the electromagnetic potential:

Berry phase <+ Aharonov — Bohm phase
Berry connection <+ Vector potential
Berry curvature <> Magnetic field

In order to study Berry-related physics in ultracold gases it is necessary to gener-
ate an artificial Berry phase: we will see later in this Chapter how the goal can be
achieved.
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2.2 Artificial gauge fields in cold gases

Finding stratagems to generate artificial gauge fields in quantum simulators with
cold gases has attracted major interest. In this section, we describe the main solu-
tions conceived and the milestone experiments in which those were adopted.

2.2.1 Raman-assisted tunnelling

Minimal coupling The coupling between a generic electric charge distribution and
an electromagnetic field can be expressed in terms of a multi-pole series. The first-
order, isotropic term is known as minimal-coupling,

[ = (p—cA)?

) 2.7
oy TP (2.7)

and it is exact for a point-like charged particle. The minimal coupling suggests that
the electromagnetic potential enters the Hamiltonian acting on the momentum; we
will discuss in this Chapter how constant and dynamical gauge fields cause drift
and reshaping of the momentum distribution.

The Peierls phase In the presence of a lattice, the electromagnetic field enters the
Hamiltonian as a phase factor on the hopping term,

] — ]e—iefp dr~A(r), (2.8)

where the P is the hopping path, generally limited to two nearest-neighbouring
sites. In this context, the complex phase is also known as Peierls phase.

Engineering complex phases

Raman-assisted tunnelling is one of the methods available to realize controlled phase-
dependent tunnelling [48, 49]. This technique requires the inhibition of the bare
tunnelling with a strong linear potential offset A, realized by accelerating the 1-D
optical lattice along the longitudinal direction or by applying an inhomogeneous
external electric or magnetic field. The linear tilt suppresses the Hamiltonian trans-
lation symmetry, so that the Wannier functions W, (x) of Equation (1.3) are not a
proper description of the localized states. The Hamiltonian can be instead diagonal-
ized in the basis of the Wannier-Stark states,

¥0(0) = Lo <2A]> Wi (), 2.9)

where ], are Bessel functions. When the energy gap between neighbouring sites
is large compared to the band width (while still being small compared to the first

2
band gap), the tunnelling probability vanishes as [ ~ 4 (%) . Likewise the Bessel

functions with m # n become negligible, so that ¥, (x) is faithfully and conveniently
described by the sole nearest contributions,

(1) 2 W) + 5 Wi (x) = Wi (). 10)
Tunnelling is restored with two far-detuned Raman beams of Rabi frequency (), Fig-

ure 2.1. The lasers have a frequency shift éw = w; — w; and the transfer rate is
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FIGURE 2.1: Raman-assisted tunnelling in a tilted lattice with energy
bias between neighbouring sites A, quasi-resonant two-photons offset
6w ~ A and Rabi frequency Q). Figure from Miyake et al. [50].

maximized at resonance with the linear gap, 6w = A. The atom also experiences an
impulse 0k = k; — k. The effective tunnelling amplitude is given by

Jest = = / dr ¥ (r) 25T ¥, (r) (2.11)

We consider now a 2-D lattice, tilted along the x-direction. Let us assume that the im-
pulse is finite also in the y-direction, although the Raman-assisted tunnelling occurs
along x. Then

Q . .
Jas =5 [ A2 () @5 W (x) [ dy Wi(y) @ Wa(y) 212

:% /dx {Wn(x)Wn+1(x) +£ (W2, (x) — W2(x)] } eidkxx/dy W2(y) &0k,

The first term of the integral over the variable x is null due to the orthogonality of
the Wannier functions. Typically, the energy offset A is on the order of the kHz,
way below the optical lattice frequency; correspondingly, the impulse wavelength
Ay is large compared to the lattice parameter a. Thus, the phase kX g practically
constant ~ €% gyer the integration range of the Wannier function W, (x), and
likewise along the y-direction. The effective hopping amplitude then reads

Jett 2% (eiékx(n—i-l)a _ ei&kxna> ei&kyna

Q ok ~ i
:ifj sin < 2X“> gkt 3)a pidkyna

_1(0) i®n

gt € e

iyn (2.13)

where @, = dky a. According to Equation (2.8), the vector potential amplitude A
relates to the complex phase as

A=¢/a=bkyn. (2.14)

As one can see in Figure 2.2, a particle taking a minimal closed path of one plaquette
picks up no phase along y and two phases —dk,n and dk, (n + 1) along x. Note that:

¢ without a momentum kick ék, the Raman-assisted hopping J.¢ is null;
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FIGURE 2.2: Schematic of the experimental arrangement to gener-
ate uniform magnetic fields. The bare hopping amplitude | drives
the dynamics along y. An energy gradient along x inhibits the tun-
nelling, which is restored with amplitude K by a pair of far-detuned
laser beams: note that at least one beam must carry momentum along
y in order to induce a y-dependent phase. The equivalent number of
flux quanta per unit cell is & = ¢,,/27t. Figure from Miyake et al. [50].

* without a momentum kick Jk, the overall phase picked up on a closed path is
null.

Other schemes exist to add a complex phase to the hopping, primarily lattice shak-
ing. The one just introduced is particularly favourable as it requires only far-off-
resonant lasers and a single internal state. Previous analogous proposals explored
coupling of different hyperfine states, requiring near-resonant light that causes heat-

ing.

Harper-Hofstadter model In the continuum, the eigenstates of a charged particle
in a strong magnetic field are the highly-degenerate Landau levels. On periodic po-
tentials, the energy spectrum is defined by the Bloch bands. Electron gases on a 2-D
lattice exposed to strong magnetic fields see the interplay between the two charac-
teristics length scales, the lattice constant and the magnetic length Iz = \/i1/eB. This
is called the Harper-Hofstadter model. This gives rise to a complex energy spectrum
known as Hofstadter’s butterfly. A confirmation of such phenomenology on solid
state samples would require extremely large magnetic fields of several thousands
Tesla.

In 2013, the Harper-Hofstadter model was successfully reproduced with cold
gases [50, 51]. There, Raman-assisted hopping along the x direction of a 2-D lattice
imprinted a y-dependent complex phase. The Peierls phase accumulated as particle
hops around a close loop corresponds to the geometric Berry phase picked up by a
charged particle encircling a (effective) magnetic field.

Chiral Meissner currents Another landmark experiment was the simulation of the
Meissner to vortex phase transition, fingerprints of type-II superconductors exposed
to magnetic fields [52]. The experiment involved a Bose gas loaded on ladder traps,
the simplest 2-D geometry hosting orbital magnetic fields. A super-lattice in the x-
direction, as in Figure 2.3, decouples the wells separated by the larger energy bias,
while the smaller tilting is functional to the laser assisted tunnelling. The chiral
Meissner currents can be identified by observing the average current on either leg of
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EW)

FIGURE 2.3: The experimental setup of Atala et al. [52] corresponds

to the one in Figure 2.2, with an additional strong energy offset ev-

ery two sites along the x-direction to decouple the two-dimensional
lattice onto an array of ladders.

one ladder. Technically, the magnetic flux is kept fixed and the transition is induced
by changing K and thus the rung-to-leg coupling ratio K/J. The global current is
observed to increase in response to small but growing K/ ], until a critical flux is
reached beyond which the system adapts fractionalizing into local, regularly dis-
tributed, vortices.

Synthetic dimensions and edge properties

The works on rotating BECs, the Meissner to vortex phase transition, the Hofstadter
butterfly and the Harper Hamiltonian all addressed bulk properties of the systems.
Edge states with their topological character represent an appealing frontier of re-
search. Besides the fundamental interest on the intriguing properties of 2-D topo-
logical materials, the robustness of edge states against perturbations makes them
desirable for quantum computation aims. Basic quantum Hall physics has been re-
cently investigated using synthetic gauge fields in synthetic dimensions [53].

A group at LENS realized that on a 1-D optical lattice loaded with a gas of Yt
fermions, which effectively behaves as a 2-D lattice when a constant magnetic field
Zeeman lifts the degeneracy of the sub-levels of the hyperfine manifold [54]. The
internal nuclear spin degree of freedom becomes the synthetic y-direction; the vir-
tual dimension is topped by the manifold degeneracy and can be controlled by the
Zeeman splitting. Analogously to the Raman-assisted tunnelling in real space coor-
dinates, the hyperfine states are coupled via two-photon Raman transitions includ-
ing a complex phase. Setting the synthetic coordinate to two states defines a ladder
geometry, leading back to the Meissner-vortex phase transition. Three or more syn-
thetic legs can host chiral edge states, a macroscopic evidence of micro cyclotron
orbits induced by strong magnetic fields. The chiral edge states are indicated by
a clear asymmetric momentum distribution on the synthetic direction, detected via
time-of-flight imaging. Note that, in the limit of blurred or non-existing border, one



2.2. Artificial gauge fields in cold gases 21

can only observe the Hofstadter butterfly spectrum, which is a bulk property, but
not the chiral currents. Indeed, the key point in using the synthetic dimension is to
enforce a robust edge on the y-direction, which is not the case when y is a real-space
coordinate.

A similar work was carried out at NIST [55], using a bosonic ¥ Rb gas, obtaining
equivalent results. Note that, despite the quantum Hall effect does involve fermions
(the electrons), the key feature is the Lorentz force and not the statistics: since the
gauge field is artificial and ultimately determined by the momentum kick in the
Raman-assisted tunnelling, whether the atomic species is bosonic or fermionic be-
comes irrelevant.

2.2.2 Periodically driven optical lattices

We mentioned in the previous section a few examples of laser-assisted controlled
tunnelling. Let us see now a different class of methods, based on Floquet theory.

Theory of periodic Hamiltonians

The time evolution of a quantum state is governed by the Schrodinger equation. If
the Hamiltonian is time independent, the time-evolution operator reads

U(t) = exp <—;1Ht> : (2.15)

This is in general not true if the Hamiltonian has a time-dependent component.
In that case, a formal solution is provided in interaction (or Dirac) picture by the
Dyson’s series, which is amenable of approximate solutions in perturbation theory:

U(t, o) = exp (—;l /t] H(t)dt) (2.16)

fo

t ¢r=1)
:]1+...+(—i)”/0 dt’.../o AV (). Vi(ED) 4 (2.17)

If the time-dependent Hamiltonian satisfies FH(t) = H(t + T), there exists methods
to tackle the problem more thoroughly than with perturbative approaches, taking
advantage of the periodicity property. It can be shown [56] that the time evolution
operator is equivalent to

i

lfI(tl, to) = lflp(tl)exp < h

(t1 — foﬂ%) TE(to). (2.18)

The unitary operator Ur(t) is assumed to be periodic, Ur(t) = Ur(t + T), and to de-
scribe the micromotion. Hr is a time-independent effective Hamiltonian. The set of
eigenvectors of the effective Hamiltonian are the Floquet modes and the eigenvalues
are called quasi-energies:

HF i) = en|dn) . (2.19)

The Floquet states are defined as

() = e e/ MTp(t) |dy), (2.20)
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which are eigenstates of the evolution operator over one time period T:
[n(t+T)) = UE+T,8) [hu () = e (D)) (2.21)

Ultimately, H(tl, to) operates a dual time evolution: the linear phase evolution over
large time scales is determined by the quasi-energies ¢, of the initial coherent su-
perposition of Floquet modes; within a time period T, the dynamics is driven by the
micromotion operator.

One can easily verify that any unitary transformation can gauge the micromotion
operator and the effective Hamiltonian to equivalent pairs of Ur(t) and Hr. This
degree of freedom is most evident if one takes the Floquet Hamiltonian, a particular
case of the effective Hamiltonian, defined as:

Uty + T, tg) = exp <—;1TH£]> : (2.22)

The multivalued solutions of the logarithm suggests that the effective Hamiltonian
is not uniquely defined. For instance, considering the Fourier decomposition of the
time-periodic Hamiltonian,

N N e A ~ 1 /T . A A
H(t) =H(t+T)= ) ¢"'Hy  Hu=x / dte "R (H) = AT, (2.23)
0

m=—0o0

a valid transformation of the micromotion operator and the effective Hamiltonian is
given by

Up(t) = Up(t) exp (imwt |iiy) {il,]), Ay = Hr + mhew |iy) (ily], (2.24)
which leaves the spectrum and the Floquet modes unaltered, except for a shift mficw:
Eam = €n + mhw. (2.25)
One can see this by writing the Schrodinger equation in the Floquet basis:
[H(t) —ihoy] |u,(t)) = € |un(t)); (2.26)
if |u, (t)) is a solution, then
|t (1)) = €™ [ (1)) (2.27)

is a valid state too, associated to the quasi-energy &,,.

A prerequisite of any Floquet analysis is the definition of the effective Hamilto-
nian and the micro-motion operator, be it an exact expression or a faithful approx-
imation. For a time period T much shorter than any time scale of the system, or
equivalently for fiw large compared to the matrix elements of the Hamiltonian, a
systematic approximation is given by the Floquet expansion [56]:

A A A A,Hd ,
A =f, AP =YL e, (2.28)
m#£0
~(3) [H*m’ [HOI Hm]] [H—m// [Hm/—m/ Hm]]
= 2.2
F n§0 2(mhw)? m,;):,m 3mm’ (hw)? (2.29)
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From this, one can build an alternative expansion, known as Floquet-Magnus ex-
pansion:

. . . . . A,H_,, + ™ [H, H,
aw — @ _ 7@ _ [ (1) G(U(to)] - - [Ho, Hin]
m##0

(2.30)

Hopping amplitude coherent control with lattice shaking

If the periodic time-dependent part of the Hamiltonian consists of a single-frequency
sinusoidal modulation, the framework simplifies. Let us consider the driven Bose-
Hubbard Hamiltonian describing the driven system introduced in Section 1.3:

Agy = —J Y (Eiiaj e h.c.) + Y Vi + Hos. (2.31)
i i

Here, Hos accounts for on-site terms such as interactions % Y. i(fA; — 1) and trap-
ping potentials }; y;71;. An homogeneous inertial force F(t) = —mi(t) = —ma(t) is
associated to a time-dependent linear potential of the kind V;(t) = —iF(t). In this
classical picture, we can define the potential as

Vi = a;(t)ny, (2.32)

where a;(t) = iKcos(wt) = ia(t) and, apart from dimensional factors, a(t) is an
acceleration with harmonic driving.

In analogy with the transformation mapping between Schrédinger and Dirac
picture, we can gauge out the time-dependent chemical potential with the unitary
transformation,

U(t) = exp <—inj(t)ﬁj> , (2.33)
j
acting on the state and on the operators as
' (1) =T () [p(n),  A'(H) =0 (ABOUE) —ind" (H[B:U(1)),
and where the time-dependence resides on the velocity v(f):

ilt) = % /0 L)t = iKSir;l(c:"t) = io(t). (2.34)

Recall the (anti-)commutation rules for indistinguishable particles:
a;a; = *a;a;,

the Bose/Fermi statistics is associated to the sign +/-. The commutation relation
between the particle density and the annihilation operator reads

PN A At A At A\ A ~ At PUN Py ~
uin]- = uiaj Ll]' = (51] + Elj ai)a]' = 51]611 + aj (j:ajai) = (H] + 51']')61]',
which, in turn, gives

aeti" = et atetifi = e%i(Mi=0i)pt, (2.35)
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Note that Hog depends only on the particle density and therefore commutes with u,
and so the time derivative of the unitary transformation, cancels with the driving
term:
—inlM (1) [0 U ()] = — Y ai(t)fs. (2.36)
1

The hopping term acquires a complex phase in the interaction picture,
Uthb}, U = UthUe o Wp} | = ek Wkpe=toentpt | — fe—to®pt

We see that the broken translational invariance in real space is necessary for the
time-dependent phase in the hopping to not be null. The gauged Hamiltonian reads

Hpy () = —JZ (Ez‘efiv(t)g;rﬂ + h-C-) + %Zﬁi(ﬁi —1). (2.37)

Since w is larger than U and ], the periodic rapid oscillations of the Peierls phase
can be integrated out to a constant value. The averaging of fast periodic modula-
tions to obtain an effective time-independent system is an ubiquitously adopted tool,
from NMR probes in solid state physics to atom-light interactions or Raman-dressed
states. By this, we define an effective time-independent Floquet Hamiltonian H;:

. 1 (T
H{;H:f /0 dt g (t). (2.38)

The integral of the time-dependent part corresponds to the definition of the Oth-
order Bessel function:

= ixsin6 £ _ 1/T —iK sin(wt)
Jo (x) /ﬂe de, Jo <hw> =7/, e 'h dt. (2.39)

T on

This defines the effective hopping amplitude Jo = [ Jo (7;) of the Floquet Hamil-
tonian driven by K; the effect was first experimentally verified by the group of Ari-
mondo in Pisa [41]:

) . u
Afyy = —Jer ) <bibf+1 1 h.c.) + 5 Yo~ 1). (2.40)

Heating in Floquet engineering

Many experimental results confirmed that the time evolution of a periodically driven
system largely coincides with that portrayed by the corresponding effective time-
independent Hamiltonian HF, plus the micromotion. However, the periodic driving
obviously violates energy conservation. In the long time scale, this leads to heat-
ing in the form of undesirable excitations, such as higher bands or large collective
intraband states, as in Figure 2.4. This is related to the nature of the spectrum of
the effective Hamiltonian which is determined modulo a quantum of energy fiw,
Eq. (2.25), analogously to the Bloch dispersion relation. The absorption of one or
multiple phonons couples different spectrum sectors, leading to the hybridization
between Floquet modes with quasi-energies shifted by mfiw, corresponding to or in
the proximity of high-energy excited states of the bare system.

The absorption of a phonon occurs along the tunnelling. The Hamiltonian off-
diagonal matrix terms are thus arranged in different sectors, associated to the n
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Lowest-band tight-binding description
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FIGURE 2.4: Possible high-energy resonant excitations causing heat-

ing: multiple photon absorption may lead to interband excitations

(left), collective intraband excitations may be resonant with the driv-
ing frequency. Figure from Eckardt [56].

phonons exchanged. As shown in Eq. (2.27), the bath of m phonons enters the Flo-
quet state as a complex phase dressing. Thus, the photon absorption ultimately
reduces to adding a further complex phase in the hopping term. The integral over
one period defines the n-th order Bessel function:

K 1 /T K. .
T <hw> = f/0 exp <_1hw sin(wt) —|—1nw> dt. (2.41)
In general, the high-frequency approximation holds as long as the heating time is
large compared to the lifetime of the experiment. In particular, for lattice systems
with a bound local state space as Fermi-Hubbard or spin systems, the heating time
increases exponentially with the driving frequency [56].

Generating static complex phases

In order to induce a non-trivial phase 6, the periodic amplitude modulation a;(t)
introduce above needs to break both a global reflection symmetry a;(—t — 7) =
a;(t — 7) and a shift antisymmetry a;(t — T/2) = —a;(t) [57]. An interval T, be-
tween two consecutive sine pulses, as in Figure 2.5, makes up a valid modulation of
the homogeneous force meeting the time-reversal symmetry breaking requirements,

[ Ksin(wqt) forO<t< Ty = puy
(1) = wp 2.42
%(t) {0 for Ty <t<T, 242)
corresponding, see Eq. (2.34), to the velocity
| co+ % [cos(wit) —1] for0<t< Ty = i}—’f,
i(t) == — 24
v](t) { co forT;y <t<T (243)

As in Eq. (2.38), integrating the Hamiltonian over a time period T yields an effec-
tive hopping amplitude Jogs = | <e_iv(t) >T , provided with a non gaugeable complex
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FIGURE 2.5: Periodic driving of a 1-D lattice generating a complex
phase. (a) Time-periodic movement of the lattice in real space. (b)
Resulting periodic inertial force of zero mean. (c) Effective complex
tunnelling elements. (d) Effective single-particle dispersion relation.
A complex phase induces a shift of 6 /d. Figure from Struck et al. [57].

phase 6:

T

T .k LK .
]eff :% |:/ 1 elm COS(LU1t)eIWeICOdt + elCodt:| (244)
0

T
T K i Tl i
S [leo (fzw> Hf} e = |Jeale". (2.45)

The Peierls phase can be read out from the quasi-momentum distribution, revealed
in the time of flight. The phase is deduced from the observed shifts of the interfer-
ence patterns.

Modulated interactions

The modulation of the magnetic field in a Feshbach resonance [56—60] results in
a time-dependent on-site interaction that makes it possible to engineer a class of
correlated-hopping models. Consider the modulated Fermi-Hubbard Hamiltonian

Am=-] Y ¥ (cy,ga}, ut h.c.) F U Y iy, (2.46)
i

<ij>o=1,

where U(t) = Uy + Uj cos(wt). Adopting the Floquet formalism, the system can
be described by an effective one-band model Hamiltonian with density-dependent
tunnelling rates:

ﬂeff = —] Z Z (CAilgé},U + hC) j(] [K(TZZ‘,(-T — TZ]',(y)] + U() ZﬁiTﬁii’ (247)
i

<ij>o=14

where the usual Oth-order Bessel function presents here a density dependence. Anal-
ogous modulation of the interaction on a Bose gas leads to a rich physics featuring
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pair superfluid phases, also to defect-free Mott states and holon and doublon super-
fluids [61].

For sole lattice shaking or sole modulating interactions, hops are mirror symmet-
ric since J is even. As shown by Greschner et al. [62], a double modulation combin-
ing lattice shaking and modulated interactions allows to engineer a much broader
class of models with correlated hopping and to investigate otherwise unreachable
regimes, such as insulating 1-D phases with both parity and string order. Fine-
tuning the modulation frequencies and amplitudes in atomic lattices with bosons
grants precise control of selected hopping processes that break the mirror symme-
try Ja,1)e20) 7 J(1,1)e(0,2) and allows to tune the relative amplitudes of low-density
hopping elements J(1 1) (2,0)/ J(0,1)¢(1,0)- The same scheme applied to fermions leads
to a much richer phase diagram than the one of the bare Fermi-Hubbard model.

Honeycomb Haldane model

Coherent control on the tunnelling allows to explore Landau-like quantum phase
transitions in Hubbard-type models. Quantum phase transitions may also have a
topological character, which is associated to symmetry breaking but does not come
with a variation of any local order parameter. Topological phases have a character-
istic Chern number instead, encoded in the band structure. The Chern number of
the n-th band is calculated integrating the Berry curvature of that band over the first

Brillouin zone .
=—— [ 0M(K)dk. 2.4
Co=—5- | Q"0 (2.48)

The Haldane Hamiltonian on a honeycomb is a paradigmatic model, expected to
have topologically distinct phases of matter, exhibiting non-zero Hall conductance.
Differently from quantum-Hall-like physics, no external factor drives the phase tran-
sition, rather it appears as an intrinsic property of the band structure associated to
broken time-reversal and inversion symmetry. The topological phase transition dis-
tinguishes between a trivial band insulator (when a symmetry breaks and a gap
opens) and a Chern insulator, occurring when both symmetries are broken. In cold
gases, the model was realized by Jotzu and coworkers [63], by shaking an atomic
lattice of “°K. A honeycomb lattice is designed by tweaking a square lattice. A sinu-
soidal modulation of the trap along the x and y directions, with a relative phase ¢,
sets the honeycomb in linear (¢ = 0), circular (¢ = 7/2) or elliptic oscillation. By
means of Floquet analysis, one can verify that the time-dependent Hamiltonian is
well described by an effective Haldane model

A= Y 1) (de+ne)+ ¥ 67 (dfg+he) +am Y dla,  (249)

<i,j>nmn <i,/>nnn i€cA

where < i,j > nn (< i,j > nnn) stands for (next-) nearest-neighbouring sites. The
modulation has thus two effects: it splits the honeycomb onto two sublattices A and
B, which breaks the inversion symmetry, and generates real t(!) and complex t(?)
tunnelling amplitudes, that break the time-reversal symmetry.

2.3 Anyons

Anyons are quasi-particles obeying a fractional statistics, intermediate between the
Bose-Einstein and the Fermi-Dirac. The existence of anyons was originally postu-
lated in two-dimensional systems, where the deep connection to peculiar 2-D and
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FIGURE 2.6: Paths of the relative coordinate r of two identical parti-
cles, as they move around in a three-dimensional space and at fixed
distance |r| = rp. A) a path which does not involve an exchange, B)
a path with an exchange, C) a path with two consecutive exchanges,
equivalent to A). Figure from Canright et al. [69].

topological phenomena was readily recognized [64-66]. Later, Haldane and Wu [67,
] proposed the concept of fractional exclusion statistics, that generalizes the notion
of anyons without specific reference to the spatial dimension.

Fractional statistics The easiest way to discuss the notion of complex phases and
statistics under exchange of particles is by making use of Feynamn’s path integrals
formalism [69]. The probability amplitude A to evolve a quantum system between
two space-time points is equal to the sum over all the possible paths A = } s e,
weighted by the action S = [ dtL£. When we consider the evolution in time of two
identical particles that move from and return to two points (q, 72), the possible paths
can be divided in two classes: direct and exchange. To show the topological distinc-
tion between the two classes of paths, we can parametrize the configuration space
of the relative coordinates of the two particles r = r; — r, on the surface of a sphere:
an exchange path corresponds to a string stretching between two antipodes, while a
direct path corresponds to a closed string (see Figure 2.6). Whether or not the parti-
cles have been exchanged, the probability density of the wave function can not vary:
however, the two distinct classes of paths can be defined up to a relative phase ¢.
Two exchanges correspond to an open string closing on itself, which is topologically
equivalent to a direct path: this requires the wave-function to be single valued under
double exchange and constrains ¢ to be [0, 77|, which identifies bosons and fermions.

In two dimensions, the topology changes. The relative coordinates configura-
tion space can be represented on a circle: any direct path is topologically equivalent
and can be shrunk to a point, while the two exchanges paths reaching the antipodes
moving counter- or clockwise are topologically distinct. Two exchange paths are no
longer topologically equivalent to a direct one since the string looping around the
circle can no longer be mapped to the point-like string of a direct path. Hence, no
constraint on the complex phase can be set. Mathematically, the braid group [69] of-
fers a more solid and finer classifications of anyons in 2-D than the complex phase at-
tribute: it distinguishes between counter- and clockwise exchanges and keeps track
of this properties across all particles swaps.

Fractional quantum Hall effect Anyons have been the subject of intense studies,
as connections were found to lower-dimensional physical phenomena, in particular
the fractional quantum Hall effect. Whilst the integer quantum Hall effect can be
described simply in terms of non-interacting fermions occupying the lowest Landau
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levels, it is crucial to include the interaction between particles and magnetic flux
in order to explain the fractional quantum Hall effect (FQHE). A theory that suc-
cessfully predicts the Hall resistivity plateaus in the FQHE is based on composite
fermions, defined as fermions with an even number of vortices or flux quanta at-
tached. The composite fermions have anyonic fractional statistics and correspond to
the true quasi-particle excitations of the system. The strongly coupled ensemble of
fermions and flux quanta can be described as a gas of anyons: this quasi-particle gas
turns out to be weakly interacting, so that the key physical features of the FQHE can
be obtained in mean field approximation.

In the last decades, there has been an enormous progress in our theoretical un-
derstanding of the FQHE, crucially in intertwine with both Abelian and non-Abelian
anyonic quasi-particles. Nevertheless, while theoretically settled, an unambiguous
detection of the anyonic character of excitations, e.g. by interferometric measure-
ments [70], is still an open challenge and the object of active research [71, 72]. Even-
tually it would be interesting to realize and investigate anyons in two-dimensional
quantum simulators, for the purpose of interrogating regimes and phases otherwise
inaccessible in solid state systems. The challenge is all but trivial and realizing arti-
ficial fractional statistics in 2-D will require to come up with some brilliant technical
artifice.

2.3.1 Abelian Anyons in 1-D lattices

Anyons emerged as a new two-dimensional category of particles, originally defined
in terms of the braiding group. Haldane [67] gave a general definition of fractional
exchange statistics, which extends to 1-D and is considered as a generalization of
the Pauli exclusion principle. The definition proposed by Haldane requires that the
single-particle Hilbert space dimension be extensive. In general, the particle has the
character of an excitations in condensed matter, i.e. it can only exist in the interior
of a region of condensed matter and not in the vacuum outside with an arbitrarily
large momentum. With regard to 2-D, the FES coincides with the previous definition
in terms of the braiding group, although the two are not equivalent. In 1-D this can
be thought of as a long-tail-dressed particle, formalized by a Jordan-Wigner trans-
formation. The FES disentangled anyons from their role in the FQHE, strictly related
to dimensionality and to the presence of an external magnetic flux.

A wealth of intriguing properties associated to the fractional exchange statistics
emerges in one-dimensional geometries, which stimulated large interest on the sub-
ject in the last decades [73-80]. The exotic properties of 1-D abelian anyon models
include asymmetric momentum distributions [81-86], particle dynamics [87-89], en-
tanglement properties [90-92] and statistically induced Mott insulator to superfluid
quantum phase transitions [93-96]. Moreover, in one dimension, the quantum sim-
ulation of fractional statistics seems to be viable and is encouraged by the existence
of solid numerical methods with which it is possible to cross-check and assess the
experimental results.

The realization of artificial quasi-particles with anyonic character require a non-
constant, density-dependent gauge, which effectively realizes a first degree of back-
action of the atoms distribution on the gauge field. We have seen in previous sections
how a constant artificial Berry phase can be realized in 1-D and 2-D atomic lattice,
which led to the simulation of the Harper model. In what follows, we will present
in summary the state of the art of density-dependent gauge fields in cold gases.
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FIGURE 2.7: The fractional Jordan-Wigner transformation, Eq. (2.52),
defines anyons in one dimension as hard-core bosons dressed with a
tail of density-dependent complex phases (the coloured stripes).

The Jordan-Wigner transformation

The commutation rules defining the two classical statistics in lattice geometries are

aja) + Fxiga; = S, (2.50a)
ﬁkﬁj + -/r]',kﬁjﬁk =0, (2.50b)
with Fj = 1 for fermions, Fj; = —1 for bosons. Remind that, assuming the single

band approximation, the site indices uniquely identify one state. In 1-D, it implies
that spinless fermions can not undergo a spatial position exchange, owing to the
Pauli principle, while bosons can penetrate through.

We now introduce the (currently) common definition of anyons in 1-D lattices [93],
trying to offer a justification a posteriori of that. We address the attention of the in-
terested reader to the following pieces of literature, for further reading: [78, 79]. The
anyons statistics in 1-D is defined as

e 120, >k,
Fp=+{ 1, j=k (2.51)
e, <k,

The different sign of the phase is obvious if one looks at (2.50b). The phase swap
suggests that for j = k the phase is 0, hence Fj; = +1. Therefore, the so-defined
1-D pseudo-anyons behave locally as (and actually are extensive dressed-states of)
either fermions or bosons, which set the overall sign in front of Fik (irrelevant to the
anyon character for j # k).

In order to define operators satisfying the fractional statistics commutation rela-
tions, we need them to be able to distinguish between two inverted orders of action.
In other words, the operator 4; needs to know the state (in particular, the particle
density) of the site k where 4; acted upon, and vice-versa for the commuted pair.
One way to obtain this, in 1-D, is to define non-local operators made of a local
creation/destruction operator acting on site j and a product of density-dependent
phases related to the tail of sites i < j, as depicted in Figure 2.7. The tail is arbitrar-
ily placed on one side of site j. As said, the actual particle can be either a boson or
fermion, the type of the species being reflected in the sign of F;;: when the induced
phase ¢ is set back to 0, F; x must regain the sign of the underlying gas species.

Let us consider a gas of single-species bosons, so that the local occupation num-
ber is not trivial. In what follows, we fix j < k. We define anyonic operators 4;, 4;
through a Jordan-Wigner transformation,

aj = bjexp (—i¢ Zﬁk> , 4l =blexp <i¢ Zﬁk> : (2.52)
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FIGURE 2.8: Raman-assisted hopping inducing a density-dependent

complex phase. a) Interacting bosons allow to resolve states with dif-

ferent occupation number. Figure from Keilmann et al. [93]. b) Two

non degenerate hyperfine states realize a more flexible doubly occu-

pancy. A frequency offset in the channel L;4 between w; — w4 and

the energy gap A — U 4p reflects in an effective on-site interaction U.
Figure from Greschner et al. [98].

Note that the exponential operator commutes with the creation/annihilation opera-
tor, as the tail does not include site j. The sign of the phase is arbitrary. We can verify
that the density operators are invariant

ﬁ] = ﬁ;ﬁ] = E; exp (1(]) Zﬁk> exp (—i(]) Zﬁk> B] = B;E], (253)

k<j k<j

and, reminding Eq. (2.35), that the fractional exclusion statistics is satisfied:

djix = bjexp (—ic])Zﬁi) by exp <—i¢ 2@) = eaya;. (2.54)

i<j i<k

Methods exist to generalize the Jordan-Wigner transformation to two dimensions [97],
but the subject goes beyond the scope of this work.

In practical scenarios, the realization of non-local operators as those in Eq. (2.52)
is in fact not feasible, but neither is it necessary. Crucially, the anyon-Hubbard is a
local Hamiltonian featuring nearest-neighbours hopping elements

ﬁ;‘rﬁjﬂ = B;'re_i(pﬁf@jﬂ,

therefore the key is to realize hopping terms with a phase shift dependent on the
occupation of the left-hand site. We will see a few major instances in the following
paragraphs.

Raman-assisted density-dependent hopping

In a seminal proposal, Keilmann et al. [93] suggested a Raman-assisted hopping
scheme analogous to that discussed in Sec. 2.2.1 to create pseudo-anyons with bosons.
Four lasers couple singly and doubly occupied sites to a virtual state, see Fig. 2.8(a).
The excited state could be the minimum of a blue-detuned lattice, spatially localized
between the left and right wells of the original lattice [99]; alternatively, one can use
a different hyperfine virtual state. The latest option has the advantage that the ex-
ternal driving fields are in the radio-frequency regime, which favours the resolution
of the typical energy scales U and A, of the order of the kHz; in the first case we
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are in the optical lattice (THz) frequency regime, which would demand a rather nar-
row linewidth (see Sec. 1.3). The local Hilbert space is truncated, for simplicity, to
a max of two particles per site, although higher local occupations are possible. The
density-dependent hopping is achieved by selectively inducing a phase shift on the
hopping of a particle onto an already occupied site, on the left-hand side

The density distribution in momentum space for bosons is peaked at the centre
of the Brillouin zone. As the statistical phase increases, the peak shifts and is increas-
ingly smeared out, until it is completely spread in the pseudo-fermions limit ¢ = 7.
The density-dependent picked phase is local and uncorrelated. As it grows, it in-
duces destructive interference and yields localization in real-space coordinates. This
property is proper of spinless Fermi gases and of the Mott phase of Bose gases, phe-
nomenologically equivalent to the pseudo-fermions regime. The Mott and super-
fluid phases of the Bose-Hubbard model present characteristic peaked lobes. Sim-
ulations with DMRG show that the Mott region expands with increasing statistical
angle ¢. Adding a harmonic potential should render a wedding-cake-like real-space
density distribution at integer filling; remarkably, in the pseudo-fermions limit there
are Mott plateaus at fractional filling.

Hard-core two-body constraint A precondition to realize a non trivial anyon gas
hopping is to have multiple particles per site. A clear energy gap between singly
and doubly occupied states is crucial to resolve those state and target them sepa-
rately. Interacting bosons fulfil both requirements but are limited to have repulsive
interactions, to avoid three-body collisions that lead to particle losses.

An analogous scheme (Fig. 2.8(b), [98]) considering two hyperfine states of one
single species per site (no matter if bosons or fermions) permits instead to enforce
a two-body hard-core constraint. In the first proposal the target state is uniquely
determined by the occupation number: lasers 1 or 4 in Fig. 2.8(a) do not induce
hopping if the destination site is empty. In the scheme of Fig. 2.8(b), unwanted
driven hopping can occur but are avoided by properly tuning the interactions within
the hyperfine states to be larger than the width of the Raman resonances. The anyon-
Hubbard model presents a boson-like interaction U associated to the off-resonant
frequencies of the Raman lasers coupling an empty with a doubly occupied site. The
frequency detuning can be regulated at will, allowing to explore effective attractive
couplings, which is not possible with the previous scheme. A rich phase diagram
emerges in the region of negative U, including a pair superfluid, a dimerized gapped
phase and an exotic partially paired phase.

Density-dependent gauge with lattice shaking

As noted by Strater et al. [100], Floquet-type methodologies to selectively control the
hopping amplitude and to create an artificial constant phase (see Secs. 1.3 and 2.2.2)
have already been successfully employed in experiments; this constitutes a solid ba-
sis and indicates that artificial occupation-dependent gauge fields may be generated
with time-periodic forcing as well. The shaking protocol follows the scheme illus-
trated in Sec. 2.2.2, breaking the time-reversal symmetry with a driving term

in;AF(t), F(t) ~ Asin(wt) 4+ Bsin(2wt)

but crucially abandons the far off-resonant principle in favour of frequencies in reso-
nance with the hopping gaps. In fact, the tilting is set equal to the on-site interaction
U (a single-species bosonic gas is considered), so that for a particle hopping uphill
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onto an empty site the gap is A while it is twice as much when hopping onto a singly
occupied site, A + U. In the latter hopping event, the atom absorbs a 2w phonon,
receiving thus a different momentum kick and related phase. The tunnelling param-
eter reads

] T
Jest(n) = & /O dtexp (iwtn — iv(t)) (2.55)

where the Floquet sector element iwtn provides the occupation-dependency. As
mentioned in the previous subsection, a resonant driving suppresses the hindrance
of the tilting but a little frequency off-resonance detuning is reflected in an effective
on-site coupling U’, resulting in an anyon-Hubbard model with effective Bose-like
on-site interaction:

He = —] ) (E}E;Hei"’ﬁf + h.c.) FUY (A —1). (2.56)
p p

2.3.2 Experimental realization of density-dependent gauge fields

The efforts towards the experimental realization of density-dependent gauge fields
in optical lattices has just recently begun to show promising results. Gorg and
coworkers [101] engineered a non-constant Peierls phase using fermions in a Hub-
bard dimer. A balanced mixture of two internal states, labelled as |1) and |/), is
initially loaded in a tilted lattice with A = 660 Hz. The on-site repulsive interac-
tion Uy, | is tuned using a magnetic Feshbach resonance to a magnitude of about 6
kHz. The time-reversal symmetry is broken by driving the optical lattice simulta-
neously at two frequencies, w = 2.75 kHz and 2w. The splitting of a dimer |0, 1)
sitting on the lower site of a double well onto the singlet state |1,1) — |1, ) occurs
according to the principle of single or multiple photons resonant absorption given
that niiw = Uy, £ A, as discussed in Sec. 1.3. Since w > A, the single-particle hop-
ping is driven by off-resonant shaking process. The hopping amplitude is complex
and differs between dimer and single-particle tunnel coupling. Differently from [57],
Sec. 2.2.2, the Peierls phase is not deduced from quasi-momentum interference pat-
terns in time of flight but from Ramsey fringes generated by applying an RF pulse
that convert the | ) atoms to an ancillary |—) spin state. Another recent experiment
demonstrated density-dependent gauge fields induced by coherent shaking in 2-D
quantum gases [102]. We will not commented in details here the rather different
methodology utilised, based on the synchronous interaction strength modulation
and lattice shaking, which allowed the experiment to equivalently achieve the goal
of a density-dependent gauge field.
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Chapter 3

Dynamical gauge fields with
three-color modulation

In Chapter 1 we discussed how the Fermi-Hubbard model is simulated with neutral
cold gases trapped in optical lattices and we presented the main experimental tech-
niques that can be used to create static and dynamical gauge fields, mainly relying
on Floquet engineering or Raman transitions. In the present chapter we introduce a
method for the quantum simulation of the one-dimensional Fermi-Hubbard Hamil-
tonian based on the multi-color modulation of the depth of a tilted optical lattice.
Our proposal allows to achieve a separate flexible control of correlated hopping, ef-
fective on-site interactions without need of Feshbach resonances, nearest-neighbours
interactions and above all a density-dependent gauge field heralding the creation of
anyonic quasi-particles.

3.1 Multi-color modulation of a 1-D optical lattice

3.1.1 The model

We consider two-components fermions in an optical lattice, or likewise two species
of spinless fermions: we distinguish the two components with the index ¢ = 1, |.
The optical lattice is identical for both components and its depth is modulated in
time:

V() = Vo +6V ().

As shown by Ma et al. [43], lattice-depth modulations may be employed to realize
different occupation-dependent assisted hopping. We assume the modulation am-
plitude to be small compared to the lattice depth, 6V < Vj, and the optical lattice to
be deep enough for the gas to be faithfully described in tight-binding approximation.
The hopping rate is thus

4
L2 front

where E,. is the recoil energy associated to the laser that creates the optical lattice
and

£ = Vo + 5V(t)

s(t) E. = s + Js(t)
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(i)

FIGURE 3.1: Sketch of the three-color modulation experimental
scheme and the relevant tunnelling processes.

is the time-dependent lattice depth in recoil energy units. Since s < sy, it is valid
to approximate the time-dependent hopping to first order:

e V50 (=3 +4,/5)
Vs

T(t) ~ \;‘Eezﬁsg/‘* _ 5s(t)

= Jo+6J(t).

Thus, the lattice modulation maps linearly onto a modulation of the hopping rate as

I (y5-3) =0,

Jo S0
the tight binding approximation regime being valid for Vy 2 5E, [30]. We choose
two-component fermions for simplicity, but similar ideas may be applied to bosons,
and multi-component fermions. We assume the lattice to be strongly tilted (see Fig-
ure 3.1): the tilting can be realized in gravity or by means of linearly space depen-
dent magnetic fields. The energy shift A between neighbouring sites is larger than
any other energy scale in the Hubbard model and yet much smaller than the lattice

depth. The system is described by a Fermi-Hubbard-type Hamiltonian:

At =—1HY [@j ol + h.c.} +UY iy + A Y ity
i i,0

1,0
= ](t)Hhop + uI:Iin’r + AI:Itilt/ (31)

where ¢;; is the annihilation operator of a fermion with spin ¢ at site i, U charac-
terizes the on-site interactions and A the tilting. Four different hopping events are
possible:

* (i) a single atom, alone at a given site, hops to an empty site, leading to an
energy shift AE; = £A;

e (ii) an atom with spin ¢, initially alone at a given site, tunnels to the site on the
right side already occupied by a single atom with & # ¢, resulting in a shift
AEr=A+U;

e (iii) the same event as (ii) but the hopping is to the left. In this case AE;;; =
u-—nA;
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* (iv) an atom of component ¢ sharing a site with a & atom, tunnels into the
site at its right already occupied by a single atom with & leading to AE;y = A
(i.e. (iv) and (i) are resonant)

We assume J(t) < A, |A £ U|, so that the direct hopping is negligible: under these
conditions the dynamics of the system is frozen. The amplitude modulation at fre-
quency ws can be equivalently regarded as the act of populating the system with
quanta of energy fiw;. Therefore, it appears intuitive and plausible that, if the mod-
ulation frequency is tuned to match the energy difference AE associated to a hopping
process, the particle may absorb the phonon-like resonant quantum of energy and
tunnel [43]. The dynamics is thus restored in an assisted and controlled way.

The key point of our proposal is to address the three hopping energy deltas sep-
arately but simultaneously, using a three-color modulation of the laser intensity:

SV(t)= ) 6Vicos(wit+ ). (3.2)
k=123

The frequencies w1 » 3 match the three hopping energies AE; » 3 and V4, ¢ are the as-
sociated modulation amplitude and dephasing. As mentioned above, the amplitude
modulation translates in an equivalent modulation of the hopping rates:

§](t) = Y. OJxcos(wkt + ). (3.3)

k=1,2,3

Crucially, processes (i), (ii) and (iii) are characterized by energy shifts typically sep-
arated by several kHz (see 3.1.2); hence, the different hopping events may be indi-
vidually laser-assisted without these modulations affecting one another (at least for
the time span in which the linear regime remains valid). Note that the amplitude
0Js and dephase J¢s of each component of the modulation may be independently
controlled.

3.1.2 The effective Hamiltonian

The Hamiltonian consists of a time-independent, exactly solvable (diagonal) part
Hy, and a time-dependent, smaller, coupling term Hi:

Hy = AHge + UHine,  Hj = —J(t) Hhop- (3.4)

The relevant physics of the Hamiltonian just introduces is adequately described by
an effective, time-independent Hamiltonian that we derive and comment upon here-
after. To do that, we switch from the Schrodinger to the Dirac interaction picture,
where the quantum state is exclusively evolved by the coupling part of the Hamilto-
nian, and subsequently use the rotating wave approximation to get rid of micromo-
tion terms:

Hpir = O"HsO. (3.5)

We invite the reader less familiar with this techniques to study the simpler, analo-
gous case of the rotating wave approximation applied to the quantum Rabi-model [
For an alternative derivation based on Magnus expansion, see Appendix A The uni-
tary operator O mapping the two representations is the time evolution operator of
the diagonal part Hy,

O = exp (—itH)).
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By using the commutation rule (2.35), one can explicitly derive the Dirac form of the
interacting part of the Hamiltonian:

Ap = —J(£)é" FygpeitHo (3.6)

_ _](t)EeitZj[Aj(ﬁjﬁﬁN)JrUﬁﬁﬁﬂ] (5k,aézt+1,a+h~c-) ot L[ A (A ) + Uiy |
k,o

As the only relevant terms in the Dirac representation are those that do not commute
with the unitary operator O, H reduces to

HIZ—](t)Z 1—[ eit(Ajﬁj/JjLUﬁjﬂﬁm)CAklaézH/a H e—it(Ajﬁj,U-&-Uﬁjrt,ﬁjl,—,)

ko jEkk+1 jAkk+1

— Z lt{A (W1t )+ (D) g 1,0 |+ U (L Ak 0 ) ik g+ g 1,0y 1,0]

ko
e HA[(k+1)- (1+ﬁk+1,v)+kﬁk,a]+U[(1+ﬁk+1,a)ﬁk+1,ﬁ+ﬁk,vﬁk,&}}CZ_H ”
_ a (AU (g i p)] AT
= —](t) ch,ae 1 ( (nk+1,¢7 nk,u)]ck+1 - (37)
k,o

One can easily verify that the Hamiltonian in Dirac picture has the following form:

I:II(t) :](t)zéi, e*it[A+U(ﬁi+1,ﬁﬁu)] z++1
i
By ey ettt —nlar L HC (3.8)

i

Note that the complex phase associated to the tunnelling of the 7 component de-
pends on the density imbalance between the two neighboring sites of the other
component |, and vice versa. This constitutes already a main achievement of the
proposed scheme, heralding an interesting form of dynamical, density-dependent
gauge field. The three-color modulation introduces a number of oscillating terms.
By using the substitution cos(x) = (¢* + ¢~¥) /2, one obtains

Jp;
2

0J3

](>_]0+5h< (s it 4 T2 () 4+ 22(..) (3.9)

and therefore
A —it[A+U(R g~
t) =Jo E e 1t[ +U(fir1,) ”l,i)]c‘:_l ‘

5]1 ch’ e_it[A+u(ﬁi+l,i_ﬁi,¢)iwl]ii¢l 6;:_1,‘

02 va i .
_|_7] Zci"e AU (R, — i) ) Ewr | +igy L_H
1

0 i Ty i

+§ Y oo MATU G mh2eltitgt | 45t He, (3.10)
1

where the acronym s.s. refers to the set of terms with the spin components swapped
and H.c. indicates the Hermitian conjugate of all the previous terms. Recalling that

the particles are fermions, the density imbalance #;, — 71,11, can take the values
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[0, £1], which sets A + U(1;41,) — 71; ) equal to one of the three energy deltas intro-
duced above AEj 1,111. Now the rotating wave approximation can be applied, which
simplifies F;. Reminding that |A — U|, U > Jo, all the terms are averaged out except
for those (quasi-) resonant with the modulation frequency wy.

As anticipated, we set the three modulation frequencies at resonance or close to
resonance with the hopping energy barriers,

w = A, wy =A+U-1U, w3 =—-A+U-1U, (3.11)

and consider below the particular case with 6,3 = Bd]1, ¢1 = 0, ¢o3 = ¢. By ne-
glecting the fast-oscillating terms and undoing the unitary transformation, we obtain
the effective time-independent Hamiltonian:
Ao e Ny s pria, oAt ~
off = 775 CioF H”z+1,¢‘r - nz,f‘rH Cirte T UHint, (3.12)
1,0

where F[0] = 1 and F[1] = Be'. The detuning U results in an effective on-site
interaction, which allows to control the interactions even in those systems where
Feshbach resonances are not available: this is particularly the case of alkaline-earth
fermions in the lowest 'Sy state [104]. Since three-color modulation may also be used
with multi-component fermions, this opens a novel way of controlling the properties
of SU(N) fermions [104].

Effective nearest neighbour interaction Although for J(f) < A,|A £ U| direct

hopping is energetically forbidden, virtual hopping - second order processes in which
a particle tunnels to its neighbouring site and back - may induce effective interac-

tions between nearest-neighboring sites (for the derivation, see Appendix A) of the

form

& _ 2](% 0 p2 2]3 2 p0
HNN_(.; [A+upfpf “a-uih
L]

2
+ ]KO ((1 —n;)P} — P/ (1 - n]-)> (3.13)
2UJF 11010, pliolt  ctoe oot
+ W(Pi P]- + P, P] - S; Sj =S Sj )|,
where Sf = éZTéif yand §; = CAZ ¢€i,T are spin operators, #; = ;| + f1;4, and we

introduce the projector of zero, one and two particles per site
1
P = (1—n5)hy, P'=P% 4P (3.14)

The peculiar nearest-neighbours interactions depend on J3 /A and J3 /(U £ A), whereas
the effective hopping is given by ¢];, hence they may be separately controlled. For
sufficiently small Jy < A, |U + A| we may neglect HAnn. However, as shown below,
Fnn opens additional interesting possibilities.
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FIGURE 3.2: Time-evolution of the average double occupancy (P?).
Dashed (solid) curves represent the effective (full) model. a) The
two models show a good match, robust across different values of the
phase ¢; for higher repulsive on-site interaction, U /6] = 3, the prob-
ability to find two particles on the same site is reduced. b) The tilt-
ing enters the effective model as a nearest-neighbour interaction term.
Larger A favours configurations with less doubly occupied sites (see
Figure 3.5 for ground-state phases).

A feasible model ready for the lab The rotating-wave approximation require-
ments necessary for the three-color modulation are readily achievable experimen-
tally. As an example, let us consider the Ytterbium isotope 73Yb, with scatter-
ing length agp = 199.4ap, a lattice with spacing d = 380nm [54, 105] and depth
so = 6.9, tilted in gravity. By virtue of the tight confinement, the on-site interac-
tion may be quantified in harmonic approximation. In this case, one has a hopping
rate Jo/h = 100Hz, and U = 23]y, A = 16]o, |A — U| = 7]y, well within the RWA
requirements. For 6]/ Jo = 0.2, the typical effective-tunnelling time is T = 1/6] ~ 8
ms.

3.2 Non-equilibrium dynamics

We employ numerical simulations to examine the properties of the time-dependent
Hamiltonian of Eq. (3.1) and the effective description given in Eq. (3.12), including
the second order corrections of Eq. (3.14). Figure 3.2 depicts our results for the dy-
namics of the averaged probability of double occupancy, (P?) = 1 Y;(P?).

In Figure 3.2(a), we present the evolution of a small system of 6 particles dis-
tributed on 6 sites, simulated with exact diagonalization methods. We initially set
0V = 0 and prepare a Mott-insulator (MI) state at U >> Jp, assuming an initial
temperature T = Jj and hence negligible initial double occupancy (P?) ~ 0. At
time t = 0 we abruptly turn on the modulation §](t), with A/Jo = 40, U/Jo = 20,
0J1/Jo = 0.2and B = 1 (where B = 6J>3/5]1) and let the system evolve. The results

show a very good agreement between the effective model H.¢ + Ann, and the full
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model of Eq. (3.1). Non-equilibrium experiments should be able to reveal both the
occupation-dependent gauge, and the suppression of (P?) resulting from the repul-
sive effective on-site interactions U.

Similar agreement between the dynamics of the full and the effective model is
obtained in the thermodynamic limit, see Figure 3.2 (b), employing infinite time
evolving block decimation (iTEBD) simulations [106], which are possible using the
translational invariant formulation of Eq. (3.8). The analysis of ground-state proper-
ties requires a quasi-adiabatic ramping of V. Starting again from an initial MI state
(lattice filling factor p = 1) with 6V = 0, we studied the quasi-adiabatic preparation
of different MI ground states of our effective Hamiltonian with second order correc-
tions. While linearly increasing V() from zero to its final value in the time-interval
0 <t < tramp = 40/ Jo, we monitored (P%). We consider U/Jy = 5, 6]1/]Jo = 0.1,
U/éji = 2, p = 1. For computational simplicity we restrict the initially prepared
state to x = 40 matrix-states, limiting its entanglement. Again Heg + Hnn repro-
duces very well the dynamics of the full model (3.1). In fact, after the ramp, (P?)(t)
(the dashed line concealed in the micromotion) oscillates around the expected value
for the ground state of the effective model (horizontal lines), the oscillations due to
the heating induced by the quasi-adiabatic character of the finite ramping time.

3.3 Phases of the effective Hamiltonian

At this point we focus on the ground-state physics of Hg, at first assuming that
Jo < A, |A £ U|, and hence that the inter-site interaction iy may be neglected, re-
covering it when it occurs to analyze how it affects the phase diagram. For g # 1 (in-
phase and out-of-phase modulations have different amplitudes, as § = 6>3/0]J1),
A realizes a broad class of Hubbard models with correlated hopping extensively
studied in the context of cuprate superconductors [107-111], and recently revisited
for ultra-cold gases with modulated interactions [60, 62]. For ¢ # 0, the occupation-
dependent gauge gives rise to a particularly intriguing physics.

3.3.1 Metal-insulator phase diagram

We comment hereafter on Figure 3.3, which shows the ground-state phase diagram
of Eq. (3.19) as a function of B and the chemical potential y, in the limit of hard-
core bosons ¢ = 71/2, with balanced population of the two components and for
U = 0. The result is obtained by means of density matrix renormalization group
(DMRG) [112] simulations, in finite-size open-boundary systems of up to 80 sites,
keeping up to 600 Schmidt states. The Hamiltonian in Eq. (3.12) is symmetric under
particle-hole exchange, and hence the region 1 > 0 (p > 1) is mirror symmetric to
that depicted for u < 0 (o < 1) in Figure 3.3(a).

We refer henceforth only to the range y < 0. The case B = 0 deserves particu-
lar attention. In this limit, the hopping processes (ii) and (iii) are not activated and
doubly-occupied sites (doublons) and empty ones (holons) become mutually im-
penetrable. The ground state is a metal without doublons (holons, for u > 0), that
tends to a lattice half-filling p = 1/2 for 4 — 0 (quarter-filling of the energy band
for each component). If existing, two doublons confine a localized metallic region
within their sites, due to the doublon-holon mutual impenetrability; this results in
a non-conducting metal with a vanishing Drude weight (Kohn-metal) [105] for lat-
tice fillings within p = 1/2 and p = 3/2: all these states lie in the point of infinite
compressibility u = 0.
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FIGURE 3.3: (a) Phase diagram of H.4 as a function of u/6J1 and B for
¢ = /2 and U = 0. The dash-dotted lines mark the commensurate-
incommensurate metal-MC transition. The dashed (blue) lines denote
the opening of Ag that marks the MC-SS and MI-BOW transitions.
Shaded regions depict the vacuum. (b) Equation of state p = p(y) for
B =0,05,1, and 1.5 for the parameters of Figure (a). (c) Momentum
distribution n, (k) of Eq. (3.19) as a function of the for p = 0.5 and
¢ = /2 (L =60).

For 0 < B < 1, in the absence of occupation-dependent gauge [62], the system
undergoes a smooth phase transition from a metal (M) with dominant spin-density
wave (SDW) correlations, (—1)/(ng_n;_), with nj_ = nj; —n;, to a triplet super-
conductor. On the contrary, for ¢ = 71/2, the metallic phase undergoes for § < 1.4
a commensurate-incommensurate phase transition, marked by a kink in the p(p)
curve, Figure 3.3(b), to a peculiar gapless multi-component (MC) phase. We evalu-
ate the central charge of different phases from the conformal expression of the von-
Neumann entropy,

Son(1) = gln [i sin (7;1)] +, (3.15)
for a subsystem of length / in a systems of L sites, with 7y a constant [113, 114]. The
MC phase presents a central charge c ~ 3; in contrast, the metallic phase has ¢ = 2.
The MC phase smoothly connects to the Kohn-metal for g — 0.

For B 2 14 and p # 1, a spin gap Ag opens and the kink in u(p) disappears,
marking the transition to a phase with dominant singlet-superconducting (SS) cor-
relations, (Qf_Q;_), with Q;_ = ¢j,1,¢j4 — €j41,4¢;,. Finally, at p = 1 we find a MI
with dominant SDW correlations, and a totally gapped phase with bond-ordering
wave (BOW) order Op(j) = ¥, Tr(j) — To(j + 1), with T,(j) = 5},aéj+1,¢7 +H.c..

3.3.2 Multi-component phase

The multi-component phase, which occurs even for = 1 and U = 0, is a direct
consequence of the occupation-dependent gauge. The nature of this phase is best
understood for ¢ = 71/2 and B = 1. In that case, the two-particle problem, with a 1
particle and a | one, presents for any U an exact bound eigenstate,

|P) = cos6|D) +1isin6|S), (3.16)

a )
Ep=7 —\ 7 +201% (3.17)

with eigenenergy
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FIGURE 3.4: Momentum distribution n(k) of one component as a
function of the Peierls phase. We used DMRG with L = 80, fill-
ing p = 0.6, I = 0and 6] = 04. The inset shows the centre of
the momentum distribution as a function of ¢ for different fillings
p = 0.6 (dashed line) and p = 0.2 (dotted line). We included nearest-
neighbours interactions, with | =1, A = 10, U = 20.

where
_U—-Ep
tand = ﬂ5h ,
D) =) (=1Y| 1, 1), (3.18)

j
1S) =Y (—=1)(I Dl Dja — [ Ll Dje1)/ V2.

]

The existence of this bound state even for U > 0 results from the occupation-dependent
gauge (see Appendix B). For sufficiently large U > 0, the eigenenergy Ep is larger
than Er (the Fermi energy of the metal) and the metallic phase is stable. For de-
creasing U, the system enters the regime where Ep < 2Ef and part of the Fermi
sea forms pairs that quasi-condense in |P), until the new Fermi energy E; = Ep/2.
The MC phase results from the coexistence of a partially depleted Fermi sea and
bound pairs. When E/. reaches the bottom of the lattice band, the Fermi sea is fully
depleted marking the onset of the SS phase. The MC phase has a characteristic mo-
mentum distribution of both components, 1, (k), and it can be thus easily revealed
in time-of-flight measurements. The momentum distribution as a function of (/6]
is conveniently analyzed in the simple case § = 1, for which the hopping processes
share the same hopping rate 6], /2:

A 01« & AT S S ~
Hegr = 5 Zc;rﬂlaelqﬁ‘”fﬂﬂf ”W‘c]-,g + UHint. (3.19)
jo

Figure 3.3(c) shows our results for 7i,(k), at ¢ = /2. For large-enough U, the
metallic phase presents a slab-like Fermi sea. In the MC phase, the slab shrinks due
to partial pairing. The latter results in a blurred contribution to n,(k),

% [1 — V/25in(26) sin(k/2) — sin? 6 cos(Zk)] , (3.20)
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FIGURE 3.5: Phase diagram of Hyg + Any for p =1,U = 5],
0] = 01Jp, p =1, and ¢ = 0. The MI-DW transition is given by
Ks =1 (extrapolated from DMRG calculations of up to L = 160 sites.
The coloring codes (P?) are obtained from iTEBD calculations (for 200
states results are consistent with our DMRG data of 160 sites).

as expected for |P) pairs (see Appendix B). The MC-SS transition is marked by the
vanishing Fermi sea. Lastly, we show in Figure 3.4 how the MC phase enters the sys-
tem as the Peierls phase increases, presenting numerical results on the momentum
distribution. We set p = 0.6, O=0and J1 = 0.4; up to a threshold Peierls phase,
we observe a metallic phase with drifted momentum distribution, and beyond it
the momentum distribution splits into a blurred lower branch corresponding to the
bound pairs, and a more definite upper branch, the metallic component. The centre
of the momentum distribution kayg, in the inset, has a maximum in the drift which
is more pronounced and occurs at larger phases when the lattice filling is smaller.

3.3.3 Intersite interactions

The nearest-neighbor interaction HAnn becomes relevant for large-enough Jo/A and
Jo/|A £ U|. Combining effective on-site and nearest-neighbours interactions con-
stitutes an additional interesting control possibility resulting from the three-color
modulation.

Figure 3.5 depicts for § = 1, ¢ = 0 and p = 1 the phase diagram as a function
of U/6], and Jo/A (which controls the strength of the nearest-neighbours terms).
For Jo/A — 0 the standard two-component 1-D Fermi-Hubbard model is recov-
ered [115]: for any U > 0 there is a Mott-insulator (SDW) phase with a finite charge
excitation gap A, > 0 and spin gap null As = 0; in contrast, for U < 0, a spin gap
As > 0 opens, while A, = 0. For sufficiently large Jo/A the system is driven into a
fully gapped density-wave (DW) phase, characterized by a non-vanishing DW or-
der parameter Opw = Y;(— 1)/(non;). For a dominant inter-site interactions, the first
term of Eq. (3.14) favors the crystalline phase with - neglecting quantum fluctuations

- an energy S
- 4au
EDW ~ U - m. (3.21)
In this region, the condition Epy = 0 gives a rough estimate of the DW phase bound-
ary, which also marks the transition between the DW and the PS phase (dotted up-
per line). For I > 0 we observe two different MI phases with a suppressed doublon

number: the above mentioned MI phase with antiferromagnetically ordered spin,
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FIGURE 3.6: Average doublon density (P?), order parameters Opyy,

Op = Op(L/2) and Luttinger-liquid parameter Ks (cut of Figure(3.5)

at UU/5] = 1): DMRG simulations with L = 180 sites, small filled

downwards- and upwards-pointing triangles depict results for L =
80 and L = 120 sites).

that means dominant SDW correlations and a vanishing spin gap As = 0, and a re-
gion of phase separation of ferromagnetic domains (PS). The interplay between the
two phases can be understood best from an expansion in the limit of strong interac-
tion U > 6]. In this limit, one can project out the doubly occupied sites and obtain
an effective spin-1/2 model with superexchange interaction He ~ JegS - S, with

2U 5J? 1 1
Jett = 53 — ( ——— T =7 ) : (3.22)
of—Uu 4 \U+ i Ut mam

At1/A ~ 5] /V4UU, . changes sign and this marks the transition from the SDW
phase (Jeif > 0) to the PS region (Jeif < 0), as shown in Figure (3.5) with a lower
dashed line. In our DMRG and iTEBD calculations we could clearly characterize the
first order transition to the PS-region by a marked drop of the doublon density, as
illustrated by the color distribution in the figure. The MI-DW transition is associated
to the opening of the spin gap As, characterized by the Luttinger-liquid parameter
in the spin sector Ks = 1 ("+" symbols in Figure 3.5). We extract K from the long
wavelength behavior of the static spin structure factor [116]:

1 s
Su (k) = 1 ZeIU (i _m;_). (3.23)
L]

Since Hn breaks the spatial reflection symmetry, we do not observe a separate BOW
phase, as it is the case for Hubbard models with standard density-density nearest-
neighbours interactions [117], but a non-vanishing BOW order Op in the DW phase,
due to the preferred creation of excitations in a particular spatial direction.

Several physical quantities and order parameters have been considered and nu-
merically calculated in order to mark the phases and the phase transitions described
so far. Figure 3.6 presents a plot of them on a vertical cut of the phase diagram of
Figure(3.5): we fix U/6]; = 1 and vary A across the MI to DW phase transition.
As already evident from the color scale in Figure 3.5, the average double occupancy
(P?) increases rather smoothly from a finite value at zero nearest-neighbours inter-
action to the maximum (P?) = 0.5 in the deep density-wave phase limit, already at
Jo/A = 0.12. In the same range, the DW order parameter ranges from zero in the MI
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FIGURE 3.7: Comparison between the effective Hamiltonian of
Eq. (3.19), black dashed line, angi the anyon-Hubbard model of
Eq. (3.25), red continuous line; U =0and ¢ = w/2and = 1.

state to its maximum value on a narrower interval, which allows us to mark more
precisely the MI-DW transition. Conversely, the Luttinger-parameter clearly char-
acterizes the opening of a spin gap As and the simultaneous suppression of SDW
correlations around the region Jo/A ~ 0.6, Jo/A =~ 0.8. The BOW-order is instead
completely enclosed in the dominating DW curve, which does not allow to distin-
guish uniquely the BOW phase.

3.4 Two-component anyon-Hubbard model

At low lattice filling p, for which the processes in (iv) in Sec. 3.1.1 may be neglected,
a Jordan-Wigner-like transformation [93],

fio = e 20 hasicle =0, (3.24)
maps (3.19) into a two-component anyon-Hubbard model (2AHM):

A ) -
Hoanm = —% Z(f;afjﬂlg +H.c.) + UHpy;. (3.25)

]

The operators f;, and ]Ta characterize anyon-like hardcore particles, that fulfil a
fractional exchange statistics:

_fj,(Tf]j/a’ + ’F']',kf]j,lf’f‘j,[f = 5j,k5(7,0'/1
fj,tffk,a’ + ]:j,kfk,zr’fj,a =0. (3.26)

The complex-parameter . ; determines the statistics of the system:

e 12, >k,
Fip=9 L j=k (3.27)
e, <k,

where the condition F; ; = 1 sets the hard-core behaviour of the particles. For ¢ =0
one recovers the standard two-component Fermi-Hubbard model, while ¢ = /2
corresponds to the two-component hard-core Bose-Hubbard model.

In Figure 3.7 we present a comparison between the phase diagram of the effective
Hamiltonian of Eq.(3.19), with B = 1, and the anyon-Hubbard model of Eq. (3.25),
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FIGURE 3.8: Lattice shaking schee with a magnetic field gradient for
the realization of the hardcore anyon-Hubbard model. Microwave
fields Q) couple the boundaries of the system.

for U = 0 and ¢ = 71/2. Both models provide identical results at low densities. Not
unexpectedly they diverge when the density grows (o 2 0.3). As for the effective
model, the anyon model shows as well a (narrower) MC phase. At larger densities
close to p = 1, Model (3.25) presents an intermediate SS phase absent in the effective
Hamiltonian (3.19). Specific cases of the have been studied in the context of exactly
solvable models [118, 119]. In contrast, the non-integrable FES discussed here does
strongly modify the spectrum of the 2AHM compared to the Fermi-Hubbard model.

3.5 Anyons interferometry

In the following, we will introduce a method that may be employed to reveal the
anyonic exchange statistics of the 2AHM model.

3.5.1 Scheme for an effective periodic anyon model

We consider a spin dependent tilting of the optical lattice, realized in a magnetic
field gradient, such as in Figure 3.8. Again, we may identify four hopping processes
and three corresponding frequencies.

* (i) a single atom, alone at a given site, hops to an empty site leading to an
energy shift AE; = £A;

e (ii) an atom with spin 1 (| ), initially alone at a given site, tunnels to its right
(left) onto a site already occupied by a single atom with opposite spin | (1),
resulting in a shift AE;; = A+ U;

e (iii) the same event as (ii) but the hopping is to the left (right): AE;;; = U — A;
* (iv) energy-degenerate doublon hopping: AE;y = A

Hence, now the same three color-modulation scheme allows to realize opposite phases
for the hopping of 1 and | particles of the anyon-Hubbard model:

Hesgi? = Z é;gei(_l)%(m_niﬂ)€i+1,§ +H.c.. (328)
i=0---L,
=0,1

Interestingly, the phase ¢, contrary to model (3.12), has no effect on the spectrum and
can be gauged out in an open boundary conditions system by a simple redefinition
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FIGURE 3.9: Scheme of the experimental protocol for interferometry
with 2AHM. a) Interferometer scheme for the anyon model in PBC.
b) Balanced-spin doublon expansion on a empty lattice, in OBC.

of the fermion operators. This, however, depends on the boundary conditions and
is no longer possible if we couple the two components by means of a resonant laser
or microwave field. If we assume the particles to be trapped in a steep box-shaped
trap, such that the boundaries of the systems are well defined, we may couple the
boundaries [120] through spin-flip terms:

HSD 4 (63/160,0 + ¢ 1eno+ H.c.) . (3.29)

For low densities we may now interpret the system as an anyon model with
single-component particles in 2L sites and with periodic boundary conditions. Most
importantly, two effective single-component particles pick up a phase ¢ when ex-
changing their position, i.e. by travelling once around the ring. In the low density
limit, i.e. if we again neglect process (iv), we obtain a model, now spin-less, of hard-
core anyons on a synthetic ring:

I‘AIZAHM = Z IX?DCH_l + Dczao + H.c.. (3.30)
i=0---2L

The anyons «; obey the hardcore constraint (a])?> = 0, and the fractional exchange
relation,

(X]'OC]-E + e_i24’ sign(j—k) (X;(-DC]' = Ojk (3.31a)
wjag + e 29 Sign(f’k)akaj =0 (3.31b)

It is important to note that, without further interactions, Model (3.30) is inte-
grable. For open boundary conditions a Jordan-Wigner transformation maps it to
the case of free fermions and the spectrum, as well as those properties that depend
on the density, are unaffected by the phase ¢ (see e.g. Ref. [83] and references therein
for a detailed discussion on the Jordan-Wigner transformation in open boundary
conditions and periodic boundary conditions). The quasi-momentum distribution
and the single particle density matrix certainly exhibit a strong dependence on the
statistics. However, an experiment will only measure the fermionic momentum dis-
tribution (since only local hoppings in the model are affected). This changes, how-
ever, for periodic boundary conditions. Certainly, the model is still integrable, but a
mapping to free fermions leads to a density-dependent boundary term:

Hapv = ) ¢i¢l + e 2osi<rficf oo + Hee, (3.32)
j
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FIGURE 3.10: Time evolution of the local density for (a) and (b)

fermions (¢ = 0, (c) and (d) anyons (¢ = 71/2) and (e) and (f) hard-

core bosons (¢ = 71/2). Panels (a), (c) and (e) show the 1 component

(sites 0 to 5) while panels (b), (d) and (f) show the | component (sites
6 to 11).

We will show in the following how this effective boundary term will affect the real
space density during the time evolution after a quantum quench.

3.5.2 Dynamical probing of the exchange statistics

The experimental setup described above, allows for the engineering of 1-D anyons
with an arbitrary statistical angle 0 < ¢ < /2. In the following, we propose an
interferometer scheme that reveals the anyonic character by means of an expansion
experiment in a small lattice system. The general idea is sketched in Figure 3.9 (a).
Initially, a spin polarized cloud of two or more particles is prepared in the centre of
the lattice. For concreteness we first consider exactly two (spin 1) particles tightly
confined to the two adjacent central sites. After that, we discuss the case of a larger
cloud with fixed average particle number.

Two particle interference

In Figure 3.10 we show the evolution of the density of two particles for different
statistical angles ¢ = 0, 77/4 and /2. The upper panels of Figure 3.10 show the
evolution of the density of the spin-1 component 7y and in the lower panels the
spin-| component n;. Although the particle expansion is diffusive and we cannot
monitor the position of single particles, one may observe the emergence of an inter-
ference pattern at the centre of the system after particles have in average traveled
once through the whole lattice at T ~ JL.

Figure 3.11 depicts in detail the time evolution of the central density for both
components for ¢ = 0 (effective fermions) and ¢ = 7/2 (effective hardcore bosons).
For 7/] 2 L/2 the curves noticeably depend on the statistical angle. In particu-
lar close to the classical point of return T ~ JL the density n9(L/2) shows a strong
dependence on the statistical angle. The inset of Figure 3.11 (a) depicts this central
spin 1 density ng for /] = L + 1, where we observe a distinct peak for fermions
and a local minimum for the bosonic case (dashed line in Figure 3.11). Figure 3.11
also compares the evolution of the full three-color modulation Model (3.1) and the
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FIGURE 3.11: Time evolution of the central density for the two spin
components: a) spin 1, b) spin |. Dashed lines show the effective
hard-core anyon model for fermions, the solid line for bosons. Dotted
lines depict a comparison with the full three color modulation model
with A/Jyp = 40, U/Jp = 20 (length L = 12 sites, two particles, §] =
0.5Jp). The inset of (a) shows the density no(x = L/2) fort/] =L+1
of the effective model (solid line) and the full three-color modulation
simulation (symbols) as a function of the statistical angle ¢.

effective periodic boundary conditions anyon-Hubbard model (3.30). Due to higher
order terms the two corresponding curves separate during the time evolution, how-
ever, for the given parameters the time evolution of model (3.1) recovers very well
the hardcore anyon model over the full range of 7/] < 2L shown in Figure 3.11.

While Model (3.30) is integrable as discussed above, for the real time evolution
of the interacting two component three-color modulated Fermi-Hubbard model we
employ exact diagonalization techniques in combination with a higher order Runge-
Kutta method.

Fixed average particle density

Experiments with single site resolution [121-124] may allow for the controlled ini-
tial preparation of a two particle state and the subsequent observation of the time
evolution of the (possibly spin-resolved) density [125] corresponding to Figure 3.11.
In the following, we relax these conditions and analyze the possibility of an inter-
ferometrical measurement with a larger cloud with fixed average density. Initially
we assume a fully polarized sample with all the particles prepared in a tight trap
and ensemble-average over several realizations of the setting with fluctuating total
particle densities with average density nayg; for concreteness we choose an ensemble
with p(n) ~ e~ (1’
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FIGURE 3.12: Spin polarization as a function of the statistical angle ¢
for various average fillings 71avg.

A measurement of the total spin-polarization,

An =) (ng(x) —mi(x)), (333)

X

may be used as a indicator of the anyonic exchange statistics. As the particles travel
to the other half of the chain, they start to interfere and differences in the average
populations of the two components may be measured. After long enough waiting
time this difference may be quite pronounced. In Figure 3.12 we show the ensemble
averaged value of An after a fixed time 7/] = 2L as a function of the statistical angle
¢ for different values of n1,yg. The curves are not a monotonous function of the phase
¢ and depend on 7,y¢, however exhibit a strong dependence on the statistics of the
particles.

3.5.3 Dynamical probing of pairing

We now return to the two-anyon-Hubbard model (3.25). We discuss how an ex-
pansion experiment may reveal the unconventional pairing properties of the two-
anyon-Hubbard model in the (pseudo) boson limit. For the case of a pseudo-anyon
Hubbard model (single component, soft-core anyons) similar ideas have been dis-
cussed in Ref. [89].

Bound pairs in the two-anyon-Hubbard model

Contrary to the hardcore anyon-Hubbard model, the phase diagram of model (3.25)
depends strongly on the statistical angle ¢. Indeed, as a function of ¢ and the filling,
a plethora of ground-state phases may be found. This includes the emergence of
the PP phase and a paired singlet-superconducting-phase even for vanishing inter-
actions U = 0.

Both PP and SS phases can be understood from the unconventional emergence of
paired states in the spectrum of the model. Following our analysis and similar cal-
culations for the soft-core anyon-Hubbard model [96], one observes that for a finite
¢ > 0 bound states may form in the two-particle spectrum even for vanishing on-
site interactions U = 0. For the two-anyon-Hubbard model with vanishing on-site
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E(K)/J

FIGURE 3.13: Unconventional bound states in the two-particle spec-
trum of Model (3.25), with vanishing on-site interactions I = 0 as
a function of the total momentum K of two particles. Dashed lines
depict the two-particle scattering continuum. Solid lines show the
bound states for ¢/t = [0.1,0.2, ...,0.5] (top to bottom).

interaction term U = 0, we find two-body bound states with a dispersion relation

cos(K) cos(2¢) +1

E = +2v21 v/cos(K)(2cos(2¢) —1) +1

(3.34)

Here K is the total momentum of the two-particle solution and /2 < K < 37/3.
For ¢ > /3 the bound state spectrum Ex has a local minimum at 7. Due to a
quasi-condensation of bound pairs in this point PP and SS phases can form as the
fractional statistics also induces an effective interaction between the anyons. Several
examples of the two-particle spectrum are shown in Figure 3.13.

Expansion dynamics

The formation of unconventional bound states resulting from the anyonic exchange
statistics may be revealed by the characteristic expansion of a cloud of particles (now
with balanced spin and open boundary conditions) into an empty lattice, as in Fig-
ure 3.9 (b). We consider the particles initially with opposite spin on two adjacent
sites in the centre of an empty lattice.

In Figure 3.14-1 we show the time evolution of the real space density n9(x) +
n1(x), and in Figure 3.14-II the spin ng(x) — n1(x) for several values of ¢. All exam-
ples show a light-cone like ballistic expansion of the density with constant velocity
independent of the statistical angle ¢, corresponding to single unbound particles
moving into the empty lattice. Contrary to the case of soft-core anyons [59], the light
cone is symmetric for all ¢.

As soon as bound states can be found in the two-particle spectrum for a finite
¢ > 0 we observe a second light cone, most evident in Figure 3.14-1 (b). As this
feature is absent in the spin-density picture (see Figure 3.14-I) we conclude that it
corresponds to bound pairs of particles. The pairs exhibit a larger effective mass
due to the flatness of the bound state band (see Figure 3.13) and hence the second
inner light cone is much steeper. Interestingly, for our choice of the initial state, the
expansion of the bound-state fraction almost stops for ¢ = 71/2, as one can see in
Figure 3.13 (c).
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FIGURE 3.14: I - Expansion dynamics of the total density ng + 17 (x)
of the 2AHM with (a) ¢ = 0, (b) ¢ = 0.4t and (c) ¢ = 71/2 initially
prepared as a fully localized state of two particles on the two adjacent
central sites of a L = 60 long chain, I = 0. Panel (d) depicts the
calculated expansion rate v/ J as a function of the statistical angle ¢.
II - Expansion dynamics of the spin density |19 — n1|(x) of the 2AHM.

To further quantify this expansion dynamics we monitor the evolution of the
average expansion of the cloud,

Aj(T) = \/ (i = L/2)2)(7), (3.35)

which after some initial time becomes of the form Aj(7) ~ 7. This expansion rate
7 is shown in Figure 3.14-1 (d) and depends monotonously on the statistical angle ¢.
As expected, for free fermions (¢ = 0, U = 0) we find ¢y = \/2. For finite statistical
angles the expansion rate is reduced due to the enhanced tendency to form bound
pairs.

3.6 Conclusions

In this Chapter, we have proposed a versatile experimental scheme for analogue
quantum simulations using Fermi gases on a one-dimensional optical lattice, which
allows for a flexible separate manipulation of

¢ (a) correlated hopping, controlled by the modulation amplitudes 6V
* (b) occupation-dependent gauge fields, given by the phase shift

* (c) effective on-site interactions needless of Feshbach resonance, provided by
the detuning U

* (d) NN interactions, that depend on J0/A and JO/|AU|

The method is experimentally straightforward and allows for the engineering of a
very broad class of lattice models, including Hubbard Hamiltonians with correlated
hopping and extended models. Moreover, it permits to create a two-particles anyon-
Hubbard model whose spectrum exhibits a non-trivial dependence on the statistical
phase. Expansion experiments employed for the two-component anyon-Hubbard
model may reveal properties of the unconventional quantum phases of the model. In
particular, a clear tendency of forming bound pairs may be observed in the pseudo-
boson limit, revealing the underlying mechanism of the formation of the PP phase.
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For a spin-dependent tilting the same scheme realizes a model in which for open
boundary conditions the effect of the phase may be gauged out and, hence, has
no influence on the dynamics or statics of the model if one focuses on observables
such as local densities. The situation changes drastically if one allows for Raman-
assisted spin-flips at the system boundaries. This scenario may be mapped to a
single-component hardcore anyon model in a synthetic ring. We have shown how
fractional quantum statistics may be monitored by means of a simple interferometer
scheme. The density of a cloud of expanding particles and the total spin polarization
may be used to clearly reveal the exchange statistics.
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Chapter 4

Quantum simulation of Abelian
Quantum Link Models

Lattice gauge theories play a central role in physics, ranging from the high-energy
context to models for solid state and condensed matter physics. In the realm of
quantum field theories, lattice gauge theories (LGTs) are the main tool we dispose
of to investigate phenomena in the strong-coupling regime yet inaccessible in high-
energy experiments. Quantum link models are a particular class of LGTs, that has
been the subject of rising interest in recent years. The quantum link model (QLM)
has three crucial features that differentiates it from Wilson’s original formulation of
LGTs and makes it appealing for numerical analysis and from a quantum simulation
perspective:

¢ whilst usually LGTs are formulated in the Lagrangian language, QLMs have a
Hamiltonian form;

¢ the gauge field that drives the interactions among the particles lives on a finite,
discrete Hilbert space;

e despite the simplification, the QLM crucially maintains all the symmetry prop-
erties of the inherent gauge theory.

In this Chapter we will introduce the Abelian Quantum Link Model associated to
compact quantum electrodynamics, focussing on the case with spin S = 1 on the
links. We will present the main findings of the abundant research carried out in re-
cent years regarding the Quantum Link Model and its implementation on analogue
quantum simulators.

4.1 Quantum field theories

The standard model Our best understanding of how elementary particles and
three of the fundamental forces intertwine to each other is enclosed in the Standard
Model. The Standard Model is a gauge invariant quantum field theory based on
the symmetry group SU(3) x SU(2) x U(1), where the SU(3) colour group accounts
for the strong force and the SU(2) x U(1) for the electroweak force. Non-Abelian
relativistic fields are best described in terms of Yang-Mills theories, which are inter-
acting, classical, massless, local gauge theories [126, 127]:

Fundamental particles are not all massless. In the electroweak force, the Higgs
mechanism explains how massive gauge bosons are generated through the addi-
tion of a field to the relative Yang-Mills theory and a spontaneous symmetry break-
ing process. The same mechanism does not help explaining the mass gap in the
strong force. Quantum Chromo Dynamics (QCD), the SU(3) Yang-Mills theory of
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the strong force, has the asymptotic freedom property, assessing free-field ultravio-
let asymptotic behaviour [128, 129]. Roughly, this tells us that at short distances
the effective coupling between quarks decreases and the quantum field displays a
classical behaviour. Conversely, by the same token, as one considers smaller and
smaller momentum scales, the effective coupling should become larger and larger,
which would explain why isolated quarks are not observed. This property is called
confinement; the fact that Yang-Mills theories support confinement is yet to prove
(also, it is a Millennium Prize Problem). Other crucial questions concern establish-
ing whether Yang-Mills theories account for and justify the mass gap and the chiral
symmetry breaking.

The asymptotic freedom implies that the large momentum limit is a perturba-
tive regime. In a perturbative regime it is possible to define the QCD Lagrangian,
there exists techniques to quantize the otherwise classical Yang-Mills theory and the
Lagrangian can be fruitfully analysed, with techniques proper of the perturbation
theory. On the other hand, if the small momenta regime is strongly coupled, no per-
turbative approach can ultimately yield thorough answers. In fact, in the continuum,
a dimensional regularization and renormalization applied to the QCD Lagrangian is
not even defined at a non-perturbative level [130].

Confinement and strong coupling regime The concept of confinement refers to
the absence of color charged asymptotic particle states [131]. For the sake of simpli-
fication, the strong force pushes inwards (confines) the quarks composing a hadron,
analogously to the classical elastic force exerted from a spring on two massive bod-
ies. By reason of that, color charged particles such as quarks and gluons can not be
isolated from their hadronic cluster and therefore are not directly observable. The
strong interaction linear potential does not rise indefinitely. The theory predicts that
the potential flattens out due to a process known as string breaking. Two quarks in a
hadron are connected by a string of potential energy, which increases as the quarks
are pulled apart. At sufficiently high energies, the generation of two quarks out of
the vacuum becomes energetically favourable, since they combine to form a new
hadron (hadronization) and relax the string excitation onto two shorter strings.
Elucidations on the exact dynamics of string breaking and all problems involv-
ing real-time evolution as well as the physics at high baryon density are highly desir-
able [132]. Likewise, it is still to assess whether the hadronic spectrum is complete or
whether states built by self-coupled gluons exist and if QCD accounts for the sponta-
neous breakdown of the chiral symmetry [133]. The answers to these questions do or
may reside in the strong-coupling regime, intractable with perturbative approaches.

Wilson’s lattice gauge theory The only non-perturbative formulation of QCD so
far known is the lattice gauge theory, first worked out by Wilson in 1974 [134]. Whilst
Wilson introduced LGTs in the Lagrangian formulation, which is the canonical form
in the continuum for it is the argument of the Action, Kogut and Susskind elaborated
in 1975 a LGTs in a Hamiltonian formalism [135]:

2
HQCD = Z,Uiﬁi + Z]u (Il]:uiquiJru + ¢;+uui+u¢i) + % Z(leu + Rizu)
i iu

iu
1

Py YT (U + ). 4.1)
O
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For the notation adopted in this thesis about the LGT Hamiltonian operators, see
Sec. 4.2. In LGTs, the coefficient of the gauge plaquette term in the Lagrangian is the
inverse square of the coupling constant g, whereas in the continuum formulation it
is quadratic in g [136]. This makes the expansion in the non-perturbative strong-
coupling regime the natural one in LGTs. Because of the discrete spatial geometry,
LGTs are particularly suitable for numerical methods a la Monte Carlo [137], which
has led to significant and remarkable results [135]. However, due to the notorious
sign problem affecting Monte Carlo algorithms, some problems remain intractable,
such as the deep interior of neutron stars which may contain color superconducting
quark matter [132].

Simulation of quantum field theories Owing to the Hamiltonian formulation,
LGTs with a truncated gauge Hilbert space can be investigated with tensor network
methods, which do not suffer the restrictions given by the sign problem. Also, the
Hamiltonian language is the natural one in the context of atomic and optical physics.
Although in principle the roadmap towards the analogue quantum simulation of
non-Abelian lattice gauge theories is outlined, in practice it is a hard and long way
to walk. Guidelines offered by leading researchers in this field suggest to put off the
purse of the continuum limit and consider the more realistic and still extremely inter-
esting strong coupling lattice dynamics per se [132]. Moreover, a quantum simulator
may well start off with truncated LGTs and focus on phenomena of a qualitative na-
ture, such as the presence or absence of specific phases: confinement is a preeminent
example.

Non-Abelian gauge theories such as SU(3) QCD are particularly hard to tackle,
because of the presence of self-interactions of the gauge bosons. However, phenom-
ena like confinement, string breaking and chiral symmetry breaking are present also
in Abelian compact gauge theories [138]. The U(1) gauge group acquires compact-
ness when regularized on lattice [131], and consequentially so does QED too. In fact,
compact Quantum Electro-Dynamics (cQED) is often studied as a model system for
these physical phenomena [139] and it is a good starting point on the road towards
the analogue quantum simulation of QFTs.

4.2 The Kogut-Susskind Hamiltonian

In this Section, we introduce the Abelian U(1) Quantum Link Model (QLM) [140],
a Hamiltonian formulation of lattice gauge theories well-suited for quantum simu-
lations with ultracold gases and for numerical analysis with Tensor Network algo-
rithms. Owing to the focus of this work, we can start out directly from the Hamil-
tonian formulation of Quantum Electrodynamics on a lattice, as proposed by Kogut
and Susskind [135]. The reader can refer to Wilson's original article [134] or to this
volume of the Lecture Notes in Physics [141] for a detailed account of how a La-
grangian in the continuum is regularized on a lattice.

Fermionic field operators What are the ingredients for a Hamiltonian gauge the-
ory of interacting matter in discrete coordinates? We need particle creation and an-
nihilation operators §] and ¢;, obeying canonical anti-commutation relations

{14} = a5, {58} = {9} =0, (42)
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Link
@ Antiparticle
O Particle

FIGURE 4.1: Graphical representation of the (2+1)-d cQED Quantum

Link Model. The mass field is bipartite in particles and antiparticles.

On the edges between two particles lie the links, hosting a truncated
representation of the U(1) group.

acting on the vertices of a d-dimensional spatial lattice labelled by the multidimen-
sional index i € Z%, as in Figure 4.1. The particles have staggered mass y; and can
hop within nearest-neighbouring sites,

Hmass - Zl/llq}jlﬁl + 2]11 <¢;¢i+u + h-C-> ’
i iu

where u is a unit vector in the u € {1,...,d} direction.

The reason for the staggered matter field lies in the fermion doubling phenomenon,
posed by the Nielsen-Ninomiya no-go theorem [142]. The doubling problem is the
emergence of 27 fermion species from a d-dimensional lattice regularization under
the assumptions of hermiticity, locality and translational invariance. Under these
assumptions, the doubling problem can not be solved without breaking the chiral
symmetry for vanishing fermion mass. One solution, presented by Wilson, requires
to explicit breaking of the chiral symmetry by adding a proper term to the action.
Another solution, introduced by Kaplan, considers domain wall fermions. We opt
for the staggered fermions approach, which violates one Nielsen-Ninomiya require-
ment: the translational invariance. Via a process known as spin diagonalization,
first suggested by Susskind [143], the "ghost" fermionic degrees of freedom are re-
duced and partly reinterpreted as fermion flavors [132]. In this sense, one can define
m; = mi and J, = Ju and interpret i and u as spin sign-factors; i represents a stag-
gered chemical potential, u a fixed Z(2) background gauge field with a 77-flux on
each plaquette. The spin-like interpretation brings the Quantum Link Model closer
to more familiar and already implemented spin and Hubbard models.

Gauge field operators Let us now come to the effect of a background electromag-
netic field on the staggered fermions propagation. The U(1) group operators are the
parallel transporters of the gauge theory (also known as connections in the context of
differential geometry or comparators [144]). The electromagnetic gauge field is a con-
tinuum vector potential; in its lattice version, the vector must stretch at least over
two neighbouring sites. Therefore, we consider as a gauge field its integral in the
continuum over the region between two vertices, named link. The parallel trans-
porter reads

Ui, = exp (ie/ drA(r)) = exp (i) (4.3)
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and acts on the iu-link Hilbert space - see Figure 4.1. Notably, the parallel trans-
porters remains invariant under the gauge transformation A’(r) = A(r) — da, since
they transform as

U [A' ()] = Villiu[A ()] Vi

via V; € U(1) transformations. Conjugate momenta operators can be defined from
the group parameter ¢;,,. The differential representation of the conjugate momentum
is

R 0
E‘ = —i A~ s 4.4
iu i3 o (4.4)
and the canonical commutation relation reads
[(ﬁiur Eiu] =1. (45)
Then, as (f)iu is the generator of infinitesimal rotations, it follows that
[Ei, Uy | = 63610 U, [Eiur LAI;;} = —80u U, (4.6)

which identifies E;,, as the electric field operator. The dynamic part of the gauge field
is a term proportional to the square of the conjugate momentum, whose coefficient
can be determined by taking the continuum limit [138]:

2

A e A

Hoee = 5 Y E. (4.7)
iu

This term is identifiable as the classical electric field energy, or electric stiffness [145].

The Gauss’law Insofar, the scalar potential ® has not appeared. In the Lagrangian
formulation, used in Feynman’s path integral quantization, ® plays the role of a La-
grange multiplier enforcing the Gauss’ law. In the Hamiltonian formulation, Gauss’
law can not be implemented as an operator identity, meaning that nothing constrains
the divergence of the electric field to be null in the absence of charges [132].

Let us see how the Gauss’ law enters lattice cQED. The operator ¢ is a spinor of
the U(1) group G. Under the action of a group transformation V € G,

P — Vﬂ/}ir l/A’f — EBIVJI Uy — ViaiuViJru/ (4.8)
the gauge symmetry of the Hamiltonian is maintained. Due to the gauge symmetry,
the Hamiltonian has to commute with the generators G; of the local Lie group. The
eigenvalues, or charges, of G; define gauge invariant sectors of the Hilbert space. The
local gauge transformation generator [135] is the sum of the particle density on a
vertex and the divergence of the electric fields on the links attached to that vertex:

Gi = Ay — ViEy, = 5 — Z sign(u)Ejy. (4.9)

uex

A general local gauge transformation is thus represented by the operator

Vi = exp (iew; Gi). (4.10)
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However, while the Hamiltonian commutes with G; for any i, hence it is gauge in-
variant, most of the states do not. We can identify the kernel of G;,

Gi wj>phys = O’ (411)

as the subset of physical states, while its orthogonal complement includes the un-
physical states, that must not be populated in an analogue quantum simulator.

Lattice QED Hamiltonians

Now we can build a gauge field self-interaction term. An operator changing the
conjugate momentum E;, must involve at least two links of one vertex, in order to
compensate the variation and keep the gauge-invariance on the site. Thus, the min-
imal configuration maintaining the state in the same gauge-invariant charge sector
leads to plaquette raising and lowering operators, acting on unit squares of the lat-
tice,

l:ID = aiu ai+u,v ai-r-i—u-l—v,—u Ui-r—l—v,—v (4'12)

as in Fig. 4.1. This term represents the magnetic field energy. Obviously, in 1-D there
are no plaquettes nor magnetic field. Analogously to the electric field energy, the
coefficient can be derived by taking the continuum limit:

A

1w
Apiag = — 3.2 § (0 + 1) (4.13)

This Hamiltonian term is also known as plaquette or ring-exchange operator, and we
return to it in Sec. 4.2.1. Notice that, leaq and Hy,. are the "potential" and "kinetic"
energies of the Kogut-Susskind model (KS), both of which can be diagonalized re-
spectively in the "position" and in the "conjugate momentum" basis [146]. In conclu-
sion, the Kogut-Susskind Hamiltonian for compact QED takes the following form:

. FEA 2 A 1 . .
As = Y pitti + Y Ju (Ui +hc) + %ZE?M -z L (0 +0h) . @14
i iu iu O

Notice that the Kogut-Susskind Hamiltonian is formally identical for both cQED and
QCD lattice gauge theories, as one can see comparing with Eq. (4.1); the Hamiltonian
formulation presented by the authors in [135] was indeed generic. We can establish
a connection between the coupling parameter g in QCD and e and thus define weak-
and strong-coupling regimes also in lattice QED. Although in lower spatial dimen-
sions cQED is confining at any coupling, hence in principle dynamical phenomena
such as string-breaking always occur, it is important to mind the coupling regime at
which we set the analogue simulator. This is because, in order to obtain results that
be congruous with QCD, the system should be in the strong-coupling regime, which
is the limit in which these phenomena are expected in QCD: hence, small coefficient
in front of leaq and large coefficient for He e

In what follows, we will also refer to the model Hamiltonian of Eq. (4.14) trun-
cated KS (tKS); in that case, we refer to the Quantum Link Model representation of
the Kogut-Susskind Hamiltonian, which has a finite (truncated) gauge field Hilbert
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space. The Hamiltonian (4.14) in 1-D is also known as the Schwinger model:
2 AT v s
Asenw = Y piiti + Y Ju (gui (i Pieu + h.c.) + & LB, (4.15)
i iu iu

The pure gauge Hamiltonian, without particles, is an interesting subject on its own,
since such family of lattice gauge theories are believed to have a non-trivial phase
structure:

5 o 1 A
Hgauge = % ZEIZM - ng Z (UD + Ué) . (4.16)
iu O

Compact QED has magnetic monopoles interacting with photons and these excita-
tions are responsible for the confinement of electric charge [147]. In (3+1)-dimensions,
the compact QED pure gauge theory is conjectured to have a Coulomb phase at
weak coupling ¢ [148] and to be confining at strong coupling, while the two regions
are separated by a first order phase transition [131, 132]. In (2+1)-dimensions, the
electromagnetic potential between point charges scales as In(r) ~!instead of r~1; be-
cause of associated non-perturbative effects, the confinement property is found at
all lattice couplings [138, 149]. In particular, the confinement mechanism in (2+1)-
dimensional cQED is more related to the confinement of quarks in QCD as both
of them are topological effects. Confinement at any coupling strength is also the
case for (1+1)-dimensions, in which the model is exactly solvable and has no de-
pendence on the coupling constant g [138]. This was shown in the continuum by
Schwinger (for the massless case), and by Banks, Susskind and Kogut in the lat-
tice compact case (see [138] and references therein); numerically, this was confirmed
more recently through simulations with Tensor Networks [150-153]. Therefore, a
first objective could be the observation of electric flux tubes stretching between two
confined charges and their dynamics, in both one- and two-dimensions.

421 Truncated Kogut-Susskind Hamiltonian

The limitation faced by the Kogut-Susskind Hamiltonian regarding quantum simu-
lation resides in the gauge field. Since the U(1) group space is a continuous mani-
fold, in both Wilson and Kogut-Susskind LGTs the local link Hilbert space is infinite-
dimensional. This poses a severe challenge towards quantum simulation, since only
a discrete and finite number dg¢ of atomic states is available to encode quantum in-
formation.

Quantum Link Model and Schwinger-Weyl QED

Two approaches are possible to reconcile the manifolds mismatch. The one ap-
proach, proper of the Quantum Link Model, is nailed on a minimal coupling pre-
scription preserving the U(1) invariance of local transformations [140]. This means,
in QLMs one demands the commutation relations in Eq. (4.6) between E;, and Cljv
or th) to be satisfied [148]. In finite dimensions, this comes at the cost of sacrificing

the unitarity of the parallel transporter Us,:
[, Uf,] # 0. 4.17)

Although the absence of a unitary gauge operator impacts on the structure of the
hopping term, it does not compromise the gauge invariance of the Hamiltonian,
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for which the commutation relations in Eq. (4.6) are the necessary and sufficient
condition.

The other approach is based on the discrete Schwinger-Weyl group [154], in
which the unitarity of the operator Uy, is guaranteed by the cyclic permutation prop-
erty:

Qi |pn) = [1) (4.18)

The conjugate operator Ei possesses the cyclic property too in the gauge operator
eigenbasis. The sets of operators

{aiku}lﬁkﬁni {Ei{u}lﬁkgn/ (4.19)

are unitary representations of the group Z,. Like the QLM, a discrete LGT based
on a Z, gauge is relevant for its relation to the problem of confinement in QCD, it
presents qualitative indications on phenomena like the electric flux string breaking
and for large dg; it tends asymptotically to the continuous theory. We will not adopt
the Schwinger-Weyl theory in our work.

Quantum Rotor Model and Spin-Gauge Hamiltonian

There exist different ways to realize in a lab a finite-dimensional parallel transporter
Ul;, and a conjugate momentum Ej,, satisfying Eq. (4.6).

One way involves Bose-Einstein condensates in the limit On/Ny < 1 of small
fluctuations over the mean number of atoms. In this limit it is valid the approxima-
tion to the quantum rotor model [155], under which the particle number operator
can be expressed as the sum of a scalar and the fluctuation operator:

N = Ny + dn. (4.20)

Associating the gauge vector with the BEC phase, ¢;, := 0 and the electric field with
the particle fluctuation, one can identify the phase-number relation of the conden-

sates, [N , 9] = i, with the commutation rule of Eq. (4.5). The thermodynamic limit
(1)

allows for the expansion of the creation and annihilation operators Eiu , that gives:

Hiu = Biu ~ 4/ Noeiqsi”, Eiu = SN. (421)

Because of the quantum rotor approximation, this method is suitable for the strong-
coupling limit and slight deviations from that, but precludes the access to the weak-
coupling regime. This first track was explored in early publications on the subject
and was the hinge of a few experimental proposals [156, 157].
Another option is to represent the gauge operators with a SU(2) group algebra,
supported by the set of quantum angular momentum (or spin) operators:
Uy, := tfu + it‘;”u =L af =1

1w’ 1uU 1724

B = L5, (4.22)

There are two drawbacks in using the SU(2) algebra. First, as mentioned above,
while the local invariance is protected by the commutation relations (4.6), the unitary
structure of the parallel transporter is lost

[0y, U] = 2E;, # 0. (4.23)

1u
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Second, the parallel transporters are represented by the raising and lowering ladder
operators, accompanied by inhomogeneous state-dependent coefficients,

LEfLm) =10+ 1) —m(m=1) [L,m£1), (4.24)

which should be identical instead: % [m) = |m + 1). Owing to this, the encoding
through angular momenta does not exactly generate a QLM of the Kogut-Susskind
model; rather, it realizes a model which has the same truncated Hilbert space dimen-
sion dgf, an equidistant spectrum of the electric field operator but an inhomogeneous
parallel transporter operator. However, as remarked in [148], in the limit [ > 1, the
spectrum of the parallel transporter tends to be equally spaced in the range |m| < I
and the commutation relation (4.17) tends to 0, thus regaining the Kogut-Susskind
Hamiltonian. On a side note, though asymptotically unitary, U;, in QLMs remains
distinct from the unitary operator of the Schwinger-Weyl Z,, theory, characterized
by the cyclic property of Eq. (4.18).

This second route based on the SU(2) algebra has taken hold in the community,
where it is generally preferred over the quantum rotor model scheme and is at the
root of a number of experimental proposals [158-161]. Most of these proposals, es-
pecially those focusing on the large-d,¢ limit, do not actually consider fundamental
angular momentum atomic states, since that does not offer a large enough Hilbert
space. Concretely, to accomplish the SU(2) representation, one rather turns to a
Schwinger boson representation, which is virtually capped only by the number of
atoms that the experimentalists can load on a lattice link. The Schwinger bosons
allow for an exact map between the creation and annihilation operators of a two-
species (2 and b) Bose gas and the set of angular momentum operators:

L, = a'b, LE, = = (ha — 1), I == (g, +1y). (4.25)

These mapped operators correctly reproduce the ladder operator coefficients and
thus suffer from the same associated issues. Note that, in the limit [ > 1, corre-
sponding to Ny > 1, the Schwinger bosons tend to form a BEC. Thus, one can
approximate

No 1 AP ~t if
flg & \Eeﬁ, mlﬁ? i} bt ~ Pl Piru, (4.26)
and regain the approximation to the quantum rotor model, Eq. (4.21).

Let us consider now the massless, pure gauge Hamiltonian Hgyyge of Eq. (4.16),
which represents a simpler starting point than the Kogut-Susskind model. In the
gauge model the masses are pinpointed and their distribution is reflected on the
charges of the Gauss’ law. Imaging to introduce two particles apart from one an-
other, one can observe confinement in the form of tube fluxes connecting these
charges. Due to the inhomogeneity of the coefficients in Eq. (4.24), the pare-gauge
Hamiltonian Hgauge is distinct from its truncated QLM counterpart, which takes the
name of spin-gauge model. The two models are exactly reconciled at dg¢=2 (total spin
S=Y) which is of interest on itself for its relevance in the context of condensed matter
physics (see the next Section 4.2.1). Because the electric field in this limit can only
take two values, such models are unable to manifest the presence of electric flux
tubes but rather of different type of oriented strings. For the flux tubes, one has to
upgrade at least to spin-1, which is an approximation of the pure gauge model with
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FIGURE 4.2: Columnar, plaquette and staggered order. In (d), results

with different numerical methods and lattice sizes show competing

scenarios, (d)1 being the latest and most accurate clue available. Fig-
ure from Banerjee ef al. [162].

accuracy to first order (see Supplemental Material of [158]).

Spin-%2 QLM in condensed matter physics

The QLM belongs to the class of lattice models with a gauge symmetry. The notion
of lattice gauge theories extends and finds application beyond the context of high-
energy physics. Solid state materials naturally have discrete spatial coordinates and
their properties may depend on inherent symmetry transformations. Abelian U(1)
lattice gauge theories are used to describe different condensed matter systems. The
intrinsic Z, lattice gauge theory of Kitaev’s toric code is relevant in quantum infor-
mation theory.

The minimal dimension of the link space in QLMs is dg=2, with total spin S=V..
This model may seem unnatural from a particle physics perspective, as it maxi-
mally constrains the gauge field Hilbert space and does not allow for a null electric
tield. However, in (1+1)-d it resembles the Schwinger model with non-zero vac-
uum angle [163]. In (2+1)-d, the model has been proposed as an effective theory for
the pseudogap phase of high-temperature superconductors [139], for its analogy to
spin %2 frustrated magnets [145]. When S=%, the plaquette term (4.13) reduces to
the so-called ring-exchange operator Ugg, which inverts the chirality of flippable pla-
quettes (those in which all spins are aligned either clock- or counterclock-wise) and
annihilates the others,

Ugg := Uy + U (4.27)

The ring-exchange operator applied twice is known as Rokhsar-Kivelson (RK) term
and represents a density operator for flippable plaquettes [164]:

Ugk = (U5 + Uh)~ (4.28)
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Square Ice and Quantum Dimer models The massless (2+1)-d U(1) QLM com-
posed of a ring-exchange and the Rokhsar-Kivelson term,

N “ n n n 2
Arc = T {LIDJrUé—/\(UD%—UE) } (4.29)
Od

has been investigated in the context of quantum spin liquids, where it is known as
the Square Ice model (SIM).

The first terms act on flippable plaquettes [r inverting their chirality and anni-
hilating the non-flippable ones. The other term is a chemical potential, which deter-
mines the amount of flippable plaquettes Ur as a function of the parameter A. For
large A < 0, the presence of U is favoured. The spins take a Neél-like order: neigh-
bouring spins tend to counter-align in on order to maximize the number of adjacent
plaquettes with opposite vorticity. For large A > 0, columns of aligned spins are
favoured which minimizes the RK chemical potential: in the limit of all spins aligned
in one direction, on each axis, no flippable plaquette exists. The charges in the square
ice model are fixed but can span the set {0,+1,+2}, whereas in cQED QLM the
charges are dynamical but the physical states can only have charges {0, £1}. The
two regions are separated by a Resonating Valence Bond Solid phase [165], which
spans from a critical (negative) A and runs up to the RK-point Agx = 1.

The Quantum Dimer Model (QDM) on a frustrated pyrochlore lattice [162, 166—

| results from the 2 QLM by setting a staggered charge pattern 1 [132]. For
A > 1, the dimers are arranged in a staggered configuration. For A < 1, the QDM
has a confining phase. A columnar valence bond solid phase spans the whole region
of negative A. The details of the central region are unclear. It has been long dis-
cusses whether in the region 0 < A < 1 the phase shares characteristics of both the
columnar and the plaquette phases - see Fig. 4.2 - or rather there is a clear boundary
between the two. A recently devised, efficient Monte Carlo algorithm for the QDM
has instead showed the predominance of a columnar phase all the way until the RK-
point [162]. In any case, the two phases in the large A limit are similar in the SIM
and the QDM. We will see in the next Chapter how they relate to the cCQED QLM.

All these arguments make the spin-/2 cCQED Quantum Link Model fascinating
and important. The investigation of this model is particularly relevant since it re-
turns transferable theoretical knowledge as well as technical and general know-how
concerning the analogue quantum simulation of such a class of model Hamiltonians.
A direct experimental realization could be relevant to many areas of both condensed-
matter and high-energy physics.

4.3 QLMs numerical analysis and quantum simulation

The past decade has seen a thrive of research on Abelian and non-Abelian QLMs,
with the prospect of quantum simulation.

Numerical analyses anticipated the experimental realizations by studying the
ground state properties and real time dynamics of lower-dimensional QLMs. From
this point of view, one can roughly categorize the literature under two main areas
based on the dimension of the Hilbert space on the gauge field. At dg ~ O(1),
MPS algorithms are suitable; using those, it was shown that, in (1+1)-d, QLMs with
small dgt converge quickly to the KS model, yielding thorough results regarding the
ground state properties and a good qualitative picture of the dynamics. Arguably,
in order to properly capture the real-time dynamics, it is necessary to explore the
opposite limit, dgf — oo. For Hilbert space dimensions at which MPS algorithms
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inevitably fail, Functional Integrals represents a viable and fruitful alternative. Both
methods are capable of solving the Kogut-Susskind Hamiltonian.

Various methods have been proposed to realize lattice gauge theories using ul-
tracold gases, most of which are hinged on a few basic technical solutions. The
simulation of plaquette terms in 2-D systems constitutes a crucial challenge. The
difficulties towards the realization of a plaquette coupling, involving four distinct
links and comprising the burden of the gauge-invariance character, makes of this a
whole major topic on itself which we do not deal with in this work. We will rather
focus and report on advances concerning the Schwinger model and 2-D systems not
involving magnetic fields.

4.3.1 Experimental proposals

In order to implement the Schwinger model of Eq. (4.15) in cold gases, one mainly
needs to achieve three goals:

¢ enforce the Gauss’ law, either as a low-energy effective constraint or as a fun-
damental symmetry of the atomic and optical interactions;

* be equipped with a set of operators satisfying the commutation relations in
Eq. (4.6) between U;, and E;,;

* engineer a conjugate mass-gauge field dynamic term 9 Ui, i .

Generally, this is accomplished having at disposal particle creation and annihilation
operators; there are different ways do that, either in the QLMs or in the context of
Z\ gauges, both potentially connecting to the continuous limit U(1) for large dg¢. We
recap them in this Section.

Gauge invariance in the low-energy sector

A seminal proposal by Zohar et al. [158] envisaged the realization of a spin-gauge
Hamiltonian using interacting single atoms with three internal levels, which play
the role of the angular momentum multiplet. The work is a generalization of another
method [169], in which a spin-1 model was encoded in the occupation number of a
Bose gas. The Hamiltonian consists of a main term H that sets the largest energy
scale in the system and two smaller ones Hr and Hg. Hg enforces the Gauss’ law
in its ground sector: non-gauge invariant states do not belong in the kernel of Hg
and have very large energy, so they are not populated over the time scale of the
experiment. The other terms realize the spin-gauge Hamiltonian to different orders
of perturbation. The generalization to spin larger than one is also discussed, which
requires some technical modifications. The group calculated the ground-state energy
on a single elementary plaquette with two opposite charges, for which the exact
result as a function of the coupling ¢ is known. The main numerical result shows
the rapid convergence of the spin-gauge and the tKS model for ¢ < 1 to the exact
solution, with fairly small dgf.

A follow-up proposal by the same group extends the previous work to include
dynamical Dirac fermions [159]. The scheme involves two fermionic species with
different hyperfine levels, arranged to serve for specific angular momentum trans-
fer; the gauge operators are realized with a SU(2) Schwinger algebra. The Gauss’
law constraint is again implemented by a Hamiltonian term with the highest energy
scale. The coupled hopping requires a fine-tuning of Feshbach resonances in order
to eliminate unwanted quadratic contributions.
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FIGURE 4.3: Spin-1 cQED QLM. Left side: sketch of the optical super-
lattices for one fermionic and two bosonic species. Bosons are bound
to hop between two neighbouring sites. A fermion hopping to the left
picks up the energy offset 2U from a boson, which simultaneously
tunnels to the right. Right side: a correlated hopping between the
fermions and the Schwinger bosons. Figure from Banerjee ef al. [163].

Banerjee and collaborators [163] presented an implementation of the 1-D cQED
QLM with an analogous scheme: gauge invariance imposed with a Gauss term in
low-energy sector and SU(2) Schwinger algebra. Their focus was rather on the limit
dgs ~ O(1), with spin-Y2 and spin-1. A two-species Bose gas is arranged on a stack
of staggered super-lattices that presents isolated double wells, as in Figure 4.3; each
pair is associated to one gauge link and each lattice host different species. The gauge-
invariance can be easily enforced on the initial state, by starting out with a deep
Mott pure state. The super-lattice energy offset prevents direct hopping. The gauge-
invariant dynamics is driven by energy conservation and determined by second-
order virtual hopping process, analogously to the super-exchange interactions [170].
The locality of the combined hopping processes, restrained by the wave-functions
overlap, prevents unwanted processes to occur and break the gauge symmetry. The
construction works in principle also in higher dimensions, although it lacks the ring-
exchange, the magnetic term - or, as one may argue, the model describes the strong-
coupling limit in which the amplitude of the magnetic term vanishes.

In general, these schemes are tortuous and ill-fated by the undesirable low-energy
gauge invariance, which requires to devise the model Hamiltonian as a higher-order
perturbation and may entail very weak effective interactions and eventual loss of
invariance.

Gauss law as a fundamental constraint

A conceptually more solid method, again by Zohar and co-workers [157], introduced
an element of novelty regarding the enforcement of the Gauss” law. Two species of
bosons a and b with different hyperfine angular momenta, separated by démp, are
loaded on the links. The bosons realize a SU(2) algebra as described in Eq. (4.25);
the number of bosons per link is conserved, since the deep lattice for the Bose gases
tightens the Wannier functions and prevents overlaps between neighbouring links,
as illustrated in Figure 4.4 (a). Two bipartite super-lattices with a large offset host the
mass field. Each super-lattice traps one of the two fermionic species, ¢ and 4, which
have different hyperfine states Zeeman-tuned to match dmyr. The super-lattices are
such that the deep minima of ¢ correspond to the shallow minima of d, which en-
ergetically forbids uncorrelated hopping processes over the time scales of the ex-
periment. Assuming that the initial state obeys the Gauss’ law, spin-changing col-
lisions protect the U(1) symmetry by driving the hopping through gauge-invariant
channels: a fermion ¢ tunnels to a neighbouring site and changes hyperfine state
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FIGURE 4.4: Gauge invariance enforced by angular momentum con-
servation. Starting with a symmetric state and taking advantage of
angular momentum conservation, the dynamics is selectively driven
to explore exclusively gauge-invariant states. Description in the text,
Panel (a) from Zohar et al. [138], Panel (b) from Kasper et al. [161].

to d while the angular momentum is conserved as a boson a switches to b. There-
fore, the angular momentum conservation plays the role of a gauge-invariance con-
straint, given by the fundamental atomic rules. Furthermore, the parallel transporter
emerges naturally with an inverse dependence on the total angular momentum /,

N L*
Uy = ——n (4.30)

VIIL+1),,

which normalizes the coefficients of the ladder operator and reconciles with the
Kogut-Susskind Hamiltonian in the limit of large I:

L* _f,_m(m*1)
z(z+1)iu|l’m>_ LTIy

|I,m=£1) 2 |I,m=+1) (4.31)

Analogous proposals are based on the principle of gauge-invariant spin-collisions.
The recent one by Kasper et al. [160, 161], illustrated in Figure 4.4 (b), differs in the
addition of the energy conservation constraint on the allowed hopping processes.
If in [157] the tunnelling of a fermion without spin-exchange was prevented by the
super-lattice energy offset, here the quantum of energy is provided by a boson that,
changing hyperfine state, hops to a Zeeman-tuned level with lower energy.

A scheme for Z, discrete LGTs [154] has been proposed too: it requires the real-
ization of a ring-shaped optical trap for the gauge fields, which would attain cyclic
permutations of the state in real space.

4.3.2 Numerical studies
QLM with dg¢ > 1, Functional Integral

In 1-D, the Kogut-Susskind Hamiltonian can be studied with Functional Integral
techniques, which allow to investigate the real-time dynamics of pair production
and string-breaking (see [160] and References therein). Kasper et al. [160] used FI
to study the Schwinger model and the corresponding QLM in the regime of large
dgs, which is numerically inaccessible with tensor network methods. The work is
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FIGURE 4.5: 1-D cQED QLM. Left panel: energy density for various
values of x = 1/(ga)?, Crosses show the values for dge=3 (blue) and
dgf=9 (red). Circles show the values for the Z; model. Values ob-
tained for the Schwinger model are shown in gray. Inset: extrapola-
tion for x — co, QLM (blue) and Z; (red). Right panel: penalty energy
at the end of the noisy adiabatic preparation as a function of the noise
strength, for different chain length and dgf. Inset: overlap and rela-
tive error in energy with respect to the noise-free exact ground state.
Figures from Kiihn et al. [151].

a benchmark for quantum simulation experiments, as it estimates the physical pa-
rameters required to capture essential features of strong-field QED and to describe
the cQED phenomenon of pair production in a cold atoms simulator, thus setting
a lower edge on dgf. The pair production can be revealed by observing the time
evolution of the correlations in the mass field; for a chain of length L = 512, whilst
at dgsr = 2500 the two curves considerably deviate, at dgs = 5000 the gap becomes
small.

QLM with dg¢ ~ O(1), Tensor Networks

Using the Jordan-Wigner transformation, the Kogut-Susskind Hamiltonian can be
mapped to a spin Hamiltonian [171]. The transformation associates particle creation
operators to spin operators and the remaining gauge degrees of freedom are elim-
inated by the Gauss’ law. In this form, the model is suitable for investigation with
MPS algorithms. Adopting this approach, Bafiuls et al. [150, 152] determined the
ground state of the KS model and demonstrated the suitability of tensor network
techniques for describing the thermal ground state and evolution of lattice gauge
theories. Knowing the ground state in the KS limit allows to measure the accuracy of
the cQED quantum link model. Kiihn et al. examined the problem, comparing cQED
QLMs (and Z; theories as well) with different gauge space dimensions, from dy¢=3 to
dgr=9. As one can see on the left panel of Figure 4.5, the convergence to the KS limit
is quite rapid (Z; yields accurate results for any d), and in the worst case (dy=3) the
energy density has an error below 1%. This convergence backs and encourages the
research towards experimental realizations with even limited link space dimension,
since it suffices to attain quantitative results concerning the ground state properties
(not the dynamics) of cQED. The adiabatic preparation of a gauge-invariant state
with finite coupling was also simulated, with time dependent MPS methods. The
evolution starts from the ground state at strong coupling, x = 1/(ga)?> = 0 and
brings the system to some finite final coupling xr. To include possible sources of
noise that cause deviation from the gauge invariant manifold, a perturbation of the
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gauge field A (L]} + L; ) is included. Although the drastic violation of the Gauss law
occurs already at small levels of noise, as in the right panel in Figure 4.5, the relative
error in the energy stays below 2%; this means that quite accurate predictions for
some ground-state observables can be attained despite the gauge invariance break-
ing.

Along this line, Rico and collaborators characterized the thermodynamical prop-
erties and phase diagram of the 1-D QLM with MPS methods, focussing on the spin-
2 and the spin-1 links [172]. Interestingly, the model with half-integer link represen-
tation has the same physical properties as the model with integer link representation
in a classical background electric Ej, = 3.

The dynamics of the KS Hamiltonian and of the QLM has also been explored
with tensor networks, with a spotlight on the process of string breaking, which also
arises in QCD. In [163], the evolution of a S=1 QLM short chain initially in a fully-
polarized (E;,) = —1 state was studied with exact diagonalization. For sufficiently
small fermion mass, the string energy is converted into the mass of a dynamically
created charge-anti-charge pair. In this process, the large negative electric flux <Eiu>
of the string quickly relaxes to its vacuum value, illustrating the string breaking
phenomenon. As one would expect by analogy with QCD, the large negative electric
flux initially stored in the string quickly approaches its vacuum value. The non-
equilibrium dynamics induced by a strong uniform electric field on the ground state
was also studied by Buyens and coworkers [173] using TDVP and TEBD methods.
More recently, Pichler et al. highlighted in a similar context the relation between
string-breaking dynamics and the entanglement spreading in the system [153].

4.4 Conclusions

In this Chapter we have presented lattice gauge theories and their formulation with
truncated gauge Hilbert spaces, focussing on QED. We outlined the main results
of the theoretical research done in recent years, concerning the analogue quantum
simulation and the numerical investigation of the model Hamiltonians.

A clear experimental routine, ready-to-go for the labs, has not been attained yet.
On the large dg¢ limit, the perspectives seem at the moment pretty bound to the
employment of Bose gases. The opposite limit is perhaps a more convenient hunt-
ing ground. Numerical analyses with Tensor Network methods showed that the
ground-state properties of the (1+1)-d cQED are well captured even by minimal link
dimensions and that the real-time dynamics shows qualitatively correct behaviours.
The (2+1)-dimensional QLM presents a wealth of intriguing physics. The confine-
ment mechanism is intimately related to the confinement of quarks in QCD as both
of them are topological effects. The spin-2 QLM is peculiar for it shares the same
Hamiltonian with condensed matter systems such as the Square Ice and the Quan-
tum Dimer Model.

A perspective on the numerical studies, from the point of view of Matrix Product
States techniques, tells us that much has been done in (1+1)-d, both concerning the
ground-state properties and the dynamics. These findings constitute a solid ground
for successive developments, first in the direction of (1+1)-d non-Abelian LGTs but
also towards the (2+1)-d Abelian cQED. In (2+1)-d LGTs, the numerical benchmarks
are so far set by Monte Carlo sampling techniques; PEPS algorithms do not suffer
from the sign problem and represent a promising candidate to outperform Monte
Carlo methods, at least on the dynamics if not on variational searches yet. Although
2-D Tensor Network algorithms are not quite yet as full-fledged as DMRG is in one
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dimension, quasi-two-dimensional geometries - ladders or cylinders - are already
well within reach of MPS methods. This is the direction of research that we pursued
and led to the results that we illustrate in the next Chapter.
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Chapter 5

Quantum link model on a ladder
geometry

Motivated by the growing interest seen in recent years on Quantum Link Models,
so far mostly studied in 1-D, we investigated the spin-2 compact QED QLM on the
most elementary extension towards 2-D, i.e. on a ladder geometry. In two dimen-
sions, the QLM with spin-Y2 presents analogies with solid state physics models. After
analysing the two-leg ladder in open boundary conditions, we extended our study
to multi-leg ladder, setting periodic boundary conditions on the long side to enquiry
the system ground-state properties in the thermodynamic limit. In this chapter, we
present our findings.

5.1 Introduction to the model

5.1.1 The Quantum Link Ladder model

We consider a quantum link model with spin-1/2 links on a ladder-type lattice (see
Figures 5.1, 5.3). We call the model Quantum Link Ladder (QLL):

Aou =p Y (=1)"ny,
Lj
—Jx Z (‘FZ]'ngf-j;i+l,jTi+1r]' + H'C->
Ly
~Jy) (‘1’?,1530;1-,1‘1’1;0 + H.c.) : (5.1)

i

Here, ¥;; are staggered fermionic operators at rung i of leg j = 0 (upper) and j =
1 (lower), and ]y (J,) is the hopping along the legs (rungs) [135]. We define the
A (B) sites as those with even (odd) 7 4 j, which have positive (negative) mass y,
such that one may interpret filled A sites as particles and empty B sites as anti-
particles. The gauge field characterizing the bond between nearest-neighbouring
sites, is represented for the Abelian case by a spin-S operator [132]. We assume
the simplest spin configuration on the links, S = 1/2; hence the field is described
by spin-1/2 operators S*. We consider the subset of physical states, namely those
satisfying the Gauss’ law. In terms of numerical computation, imposing the Gauss’
law comes as a blessing, since the projection onto a subspace of the full Hilbert space
considerably reduces the computational costs.
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FIGURE 5.1: Legend of the graphical representation of a rung state.
The masses are in the vacuum configuration (filled Dirac sea); the

Gauss’ law has €pj1e4 = 0 and eppea = 1 on @, the opposite on

. On the links, we denote | (1) and — (+) as spin +%2 (-/2). Orange
arrows indicate the boundary conditions. See also Fig. 6.6.

5.1.2 Analysis of the one-dimensional QLM

In order to highlight the crucial differences between the QLM on a chain and on a
ladder, we first review the best understood case of a 1-D QLM; for a detailed dis-
cussion of the 1-D QLM we invite the reader to follow Ref. [172]. We consider only
states that obey a local gauge symmetry (Gauss’ law),

Gz oz . A
P41 — Si1,i = Ni — €,

with €;c4 = 0 and €;cg = 1. We can define the quantity q; = n; — €; the charge
of the Gauss’ law. In the cQED QLM, the vacuum state has charge q; =. Positive
charges q; = +1 correspond to particles with positive mass; negative charges q; =
—1 represent positve-mass holes in the Dirac sea and is created destroying a particle
in the negative-mass bipartition of the fermionic lattice. Particles-holes are always
created in pairs, thus keeping the total amount of charges unvaried. In the large
mass limit, || > ], we integrate out the particle motion, working for y — —oo in
the manifold in which the A (B) sublattice is fully occupied (empty). In the 1-D QLM,
the ground-state is uniquely determined by the Gauss’ law, being a zero net flux (Z)
phase, in which filled A (empty B) sites are accompanied by outgoing (incoming)
spins,
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where we employ the spin notation introduced in Figure 5.1. For finite yt/ ]y, the Z
phase presents defects:

|+ = |+ 1)
=p=1—=1=)
|=a=1+0<)
[+)a=1—-0-)

The notation introduced here describes the local Hilbert space configurations, ana-
logue to a rishon formulation of the quantum link model [167, 174]. We define the
magnetization for a site i as

St = (=1)"(S71;+ Sii1)s (5.2)

and evaluate the parity order

O% = lim X<, (5.3)
[k=j|—re0
and string order
2 : i 57
05 = |k,1ﬁgoo Sie1n2k<l</ zS]Z,'. (5.4)

Notice that the parity and the string order have a natural definition only in 1-D. On
a finite ladder, there is a finite but large set of strings on which one could calculate
these quantities. We consider the action of these operators on individual legs, with-
out considering those patterns that cross over the rungs. On both of the two legs,
plotting these parameters as a function of J, yield the same curves. The same oc-
curs on the external legs of three- and four-leg ladders, whereas on the bulk legs we
will see different behaviours. The Gauss’ law breaks the Z, chiral symmetry [172],
and hence the defects on top of the Z phase are strictly formed in |-/, +'); ;11 un-
splittable pairs. This selective pair creation induces 0% # 0 and 02 # 0 for any
u [62], precluding a Haldane-like phase which would have O3 = 0 and O% # 0. At
u/ Jx =~ 0.45 there is an Ising-like phase transition into the non-zero flux phase [172].
This phase, which for p — oo is a Néel-like state of |+’) defects, also presents
03, 0% #0.

Figure 5.2 depicts 0% and O% evaluated using infinite time evolving block dec-
imation (iTEBD) simulations [106]. At /], ~ 0.45 a phase transition separates
the Z and the NZ phase. The NZ phase exhibits at any y a finite magnetization
Sp=1Y |(§7;,1)|. In both phases 03, O3 # 0 due to the explicitly broken chiral
symmetry.

5.2 Analysis of the quantum link ladder model

As for the 1-D QLM, in the QLL we are only interested in states that obey Gauss’
law:

i Sictji T Sijijr1 = Sijotij = Mij — €ijy (55)
with €;je4 = 0 and €; jcp = 1. Note that, the orientation of the virtual spins placed
outside the ladder (in orange in Figs. 5.3) remains fixed, resulting in boundary con-
ditions for the possible physical QLL states. We consider below y < 0, but, contrary
to 1-D, the spatial mirror symmetry of the ladder-like lattice results in an identical
ground-state phase diagram for u > 0.
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FIGURE 5.2: Ground-state order parameters for the 1-D QLM as a

function of y/Jx. The results were obtained using iTEBD with 100

states. The solid vertical line marks the phase transition from the
Z (4 < e ~ 0.45]y) to the NZ phase (u > ).

Large mass limit

Albeit in the 1-D quantum link model the Gauss’ law fixes a unique ground-state for
large ||, this is not the case in the quantum ladder model. For concreteness, in the
following we consider the limit 4 — —oo. In this limit, the particles are pinned at
A sites. The complete degeneracy of the space of spin configurations is lifted due to
virtual fluctuations of the particles to adjacent lattice sites. We assume that for all
virtual processes, Gauss’ law is conserved exactly. We introduce a set of local states
of spin configurations on the ladder legs, for A sites:

0)a =+ 1—),
H—>A E‘(— 1 <—>,
|—)a =|—1-).

Note that, due to the Gauss’ law and the boundary conditions, the rung spin is fixed
once the left and right spins are chosen. Similarly only three B states are possible:

|0)g =|— 0 <),

[+)s =[—0 =),

|—)B =[+ 0 ).
Analogously to the so-called rishon formulation of the QLM [167] we redundantly
keep left and right spins, such that left and right spins of adjacent sites have to co-

incide in order to form a physical state. Due to the choice of staggered boundary
conditions on a given rung, the only allowed configurations are

w =0 ) led=|T) =] )
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FIGURE 5.3: Ground state of the QLL for large mass y > [,/ ]y with

(@) Jy/Jx = 0.2 (VA phase) and (b) 1.8 (degenerate VO/AQ phase). The

matter field is in the vacuum configuration: the particles occupy the

bipartition corresponding to a filled Dirac see without charges. V (A)

denote (anti)vortex-like spin configurations. In the SPT phase (not

shown) the local spin expectations vanish and the fermions are evenly
distributed.

and

e =T e =)

For a graphical representation of the spin-like states, see Fig. 5.4 (a). Hereafter we ne-
glect the A and B indices. Obviously not all sequences of rung states | - - - ¢, ¢, - - - )
are possible, as the spin orientations of adjacent states must coincide. The only al-
lowed states are of the form {|--- ¢, ¢,/ - -+ )} withv,v' € {0,+, —} and

ifv=0=1v"=0o0r+,
fv=4+=v=-—,
ifv=—=v=0o0r + .

In addition to this manifold of states one has the two states

|“‘(Pi/47i"‘>

and
).

In the lowest order J2/2|u| and ]5 /2|p| particles virtually tunnel from A sites to the
neighboring B sites and back as indicated in Fig. 5.4 (a). Hence, we find an energy
—2J2/2|u| for each |¢p) and —(J2 + ];)/2|]/t| for all other states. Here we already
see, that a small |, < ], energetically favours the VA state as a ground state, which
corresponds to the trivial state | - - - ¢o, ¢o, ¢o - - - ). The degeneracy between the |$- ),
|p+) and the |¢p), |p—) states is lifted within fourth order due to the ring-exchange
process. As shown in Fig. 5.4 (b), this process goes with J3]7/(4|u|?) and acts on the
rung basis as

|¢+,¢7><_>’¢0,¢0>

If we restrict the description to the manifold of states which is connected through
this ring-exchange process, we result in the following effective spin-1 Hamiltonian,
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FIGURE 5.4: (a) The configurations of the local 4 — —oo basis states

|$0),|¢+),|p—),|¢+) and |p+) on the even rungs. The configurations

of the states on odd rungs are mirror symmetric to the given ones. The

red arrows depict virtual second-order particle hopping processes

along the legs and the rungs. (b) Fourth-order ring-exchange pro-
cesses.

which determines the model up to order ]ﬁ/y /3

Hip = Z{D (RF)*+ K [(RR;,) (RfR:,,) + Hel]}. (5.6)

Here we defined in rung i the spin-1 operators R?E’Z in the basis {|¢o), |¢+)}, with

= (2-J3)/ 21|, and K = IR 41*|u|? results from ring-exchange processes.
For sufficiently large D/K > 0 (corresponding [,/ ], < 1), the phase in which all
rungs are in |¢p) is favored. This recalls the large-D phase of spin-1 systems [175], or
the Mott phase in Hubbard models. This phase corresponds to the vortex-antivortex
(VA) configuration depicted in Figure 5.3(a). On the contrary, for large D/K < 0, a
double-degenerate Néel-like phase | ... ¢+, p—, 4+, ¢— ...) characterized by vortices
separated by a plaquette without vorticity (VO0) is the ground-state (Figure 5.3(b)),
analogously to the density-wave phase found in extended Hubbard models. Cru-
cially, the ring-exchange does not lead to a regular XY spin-exchange in Eq. (5.6),
since due to the Gauss’ law only processes |¢o, ¢0)iit1 <> |¢—, ¢+ )ii+1 are allowed.
As a result, whereas in the proximity of D ~ 0 a Haldane phase is expected for the
spin-1 XY model with single-ion anisotropy [175], we just observe for large y a single
second-order phase transition between the VA and the V0. As for the 1-D QLM we
introduce for each leg the site magnetization

Si]:(_l) (S~1 l]z]+51]z+1])
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FIGURE 5.5: Phase diagram of the QLL as a function of u/J, and

Jy/ ]x obtained with DMRG [112, 176] with up to 80 matrix states. The

mirror symmetry of the ladder results in the same phase diagram for

w > 0and y < 0. For p = 0 a SPT phase is realized. The phase

transition points (indicated by solid circles) are obtained keeping up

to 800 Schmidt states. The inset shows the entanglement gap AA as a
function of /]y for J, = Jx.

Figure 5.5 depicts Q = Sy, + Sgr, where
1 z
S = EZ|<Si,j>|
1
1 Gz
SR = ZZH 0010 |
1

characterizes respectively the leg and the rung spins and L is the number of rungs.
Note that, Q = 1/2 in the defect-free VA phase, whereas Q = 3/2 in the defect-free
VO phase. Hence the VA-V( transition (dashed line) in the large-u limit is character-
ized by an abrupt jump of Q.

Finite mass region

For finite y, Q significantly decreases within the VA phase when approaching the
transition (deep blue region). This decrease is connected to the appearance of defects
in the VA phase

0Y4a=]=0)a [0Vp=|+1-=)p, |£)a, )5 (5.7)
From Si i
O% # 0 for any y and J,/]y. Contrary to 1-D, the ladder geometry permits the
breaking along the leg of defect pairs created on top of the VA phase, and hence

O2% may in principle vanish. However, we observe that O% # 0 for any |u| > 0.
Hence, the VA (and V0) phase evolves adiabatically down to zero mass, undergoing

we evaluate the O3 and 02 along one of the two legs. Gauss’ law induces
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FIGURE 5.6: Cut for u/Jx = 1 of the phase diagram Fig. 5.5 as a
function of ],/ Jx (DMRG simulations with 100 states).

no phase transition. Figure 5.6 depicts the order parameters for a cut through the
phase diagram of Fig. 5.5. We only observe one VA-to-V0 phase transition, marked
by the abrupt growth of the leg magnetization Sy.

Zero mass limit

The situation changes at zero mass where several local order parameters vanish, as
shown in Figure 5.7. Examples are the local particle density imbalance between the
sub-lattices A and B

Ane =Y (=1 (¥ ¥i0 — Y1 ¥inl),

i

and the entanglement gap '
AL =) (1), (5.8)
i

where A; is the ordered sequence of Schmidt eigenvalues. Note that, the fact that
An. # 0in the VA phase implies a spontaneous symmetry breaking of the sub-lattice
inversion symmetry.

For u = 0 the parity order parameter 0% vanishes too, whereas O% remains
finite and only vanishes in the very limit of [u| — oo. This combined behaviour of
(’)123 and (’)g extends in an intermediate region at zero mass, around J,/J, = 1, where
also all local order parameters that characterize the VA and V0 phases vanish, as
shown in Figure 5.8 (a). This marks the onset of a symmetry-protected topological
(SPT) phase. A confirmation of the topological character is provided by the doubly-
degenerate entanglement spectrum in Figure 5.8 (b) [177, 178], occurring exclusively
for p = 0. The inset of Figure 5.5 depicts the entanglement gap AA as a function of

i/ Jx

Combined symmetry operations A solid confirmation of the presence of a SPT
phase can be obtained by identifying the symmetric transformations that protect the
phase and verify numerically whether such rotations leave the state unaltered. As
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order parameter

FIGURE 5.7: Cut through phase diagram Fig. 5.5 of the main text for

Jy = Jx as a function of the mass . The ground state was obtained

using DMRG, with x = 100 states. Only for 4 = 0 a SPT phase is real-

ized and O% vanishes while O2 remains finite. The mirror symmetry
of the ladder results in a symmetry p <+ —pu for the QLL.

in the spin-1 Heisenberg model, the SPT phase is protected by a Z, x Z, symmetry
given by the combined set of two orthogonal rotations [177-179]. We choose two
transformations that leave Hqy, invariant:

* (C) particle-hole inversion at all sites, ¥;; <> ‘I’:fj accompanied by a spin rota-
tion ¢* in all bonds, with ¢*¥* the Pauli matrices;

* (R)Y;; — —Y;for (i,j) € A, and a rotation ¢~ in all bonds.

Topological order parameter We obtain the generalized topological order param-
eter Ot following the procedure of Ref. [179]. We used the DMRG method to obtain
an infinite matrix-product state (iMPS) representation of the ground state of Hgyy, in
canonical form:

[¥)ap = ) _Tappplo). (5.9)
[
With that, we evaluate the eigenvalue #¢ of the generalized transfer matrix
Tgﬂ’}ﬁﬁ’ - Zzzg[ﬂrgﬁ (FZ/‘B/> A‘B’BA‘B/ﬁ/, (510)
o o

where Y€ is the unitary matrix associated to the C-symmetry, and likewise we do
for the R-symmetry. From the corresponding eigenstates we obtain the projective
matrix representation of the symmetries, U and Ur. The generalized topological
order parameter is given by Eq. (5.11). As pointed out in Ref. [179], the iTEBD al-
gorithm provides a ground-state representation composed of a double-tensor unit
block (TA)*(TA)B, where neither of the two tensors (I'A)?® are in the translation-
ally invariant canonical form. In this case, the transfer matrix may be equivalently
constructed using the double-tensor unit cell.
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FIGURE 5.8: (a) Sy, Sg and An, for p = 0. The inset shows O% (blue
dashed line) and (9% (red solid line) for the same parameters. (b)
Largest values of the entanglement spectrum A; for p = 0. In the
SPT phase the spectrum is doubly degenerate. The inset shows the
generalized topological order parameter Or.

From the dominant eigenvalue 77¢ z and eigenvector of the generalized transfer
matrix T¢®, with respect to the symmetries C and R, we obtain the projective matrix
representation of the symmetries, U z. With this, we define

0 if 1 1
o { if [c| < 1or [yr| < 511)

>t (UellUEUY)  if [e| = =] =1,

shown in the inset of Figure 5.8 (b) as a function of J,/J,. When Or = 0 the phase
is non topological, while Or = —1 marks the presence of a topologically non-trivial
SPT phase. Contrary to the large-D phase of spin-1 chains, the VA phase does not
show any Or = +1 topologically trivial phase, due to the mentioned spontaneous
symmetry breaking of the sub-lattice symmetry.

Fidelity susceptibility In order to further characterize the phase transitions, we
analyse by means of DMRG calculations the fidelity susceptibility [180]

rs(U) = Jim —2In !<‘I’o(%)bll‘1)’g(u +oU))| /

(5.12)

with |¥y) being the ground-state wave function. Marked peaks reveal the presence
of two phase transitions for y = 0, and a single one for  # 0. In particular, Fig-
ure 5.9 (b) shows a second-order phase transition for a cut through the phase dia-
gram across the VA and VO regions, hinted by the abrupt growth of the leg magne-
tization Sy, as in Figure 5.6. Figure 5.9 (b) confirm the presence of phase transitions
at both edges of the SPT phase region, as suggested in Figure 5.8 (a) by the abrupt
growth of local order parameters, associated to a spontaneous symmetry breaking.
The scaling of the peak maxxrs(¢) with the system size is consistent with a second-
order Ising-like character for all transitions.

Lastly, note that, in order to facilitate the open boundary DMRG simulations
of the SPT phase we fix the edge spin configurations in a staggered way. This is
analogous to adding an edge magnetic field or an additional spin in the context of
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FIGURE 5.9: Scaling of the fidelity susceptibility xrs/L for the QLL

as a function of ], /]y, for (a) p/Jx = 0 and (b) u/Jx = 1. The results

are obtained from DMRG-simulations keeping up to 800 states. The

inset of (a) shows a linear scaling of the peak of the xrs/L-curve with

the number of rungs L, proving the Ising character of the quantum

phase transitions (from bottom to top) between SPT to VO (1 = 0), VA
to SPT (4 = 0) and VA to VO (i = Jx).

simulations of the Haldane phase in spin-1 chains [181, 182]: in this way we lift the
edge-state degeneracy.

5.3 Experimental realization with cold gases

In this Section, we introduce a simple scheme, which allows for the dynamical re-
alization of the spin-1/2 U(1) quantum link model and in one- and two-dimensional
lattices.

Experimental scheme The scheme is represented in Figure 5.10: we consider a
single-component (spinless) Fermi gas in a s-p lattice formed by deep (C) and shal-
low (A,B) sites similar to that realized in Ref. [44]. The lowest state of all C sites,
which may be considered as fully pinned, remains filled at any time. We assume two
non-degenerate p-orbitals, « = 1,2, in the C sites; the energy splitting A’ between
both orbitals may be achieved using elliptical sites (the third p orbital is assumed
to have a much larger energy and can be neglected). Due to the superlattice mod-
ulation shallow sites A and B have an energy difference A. The Hamiltonian of the
physical model is

H=—tY Y (‘If;@kﬂ,a FED H.c.)
keAB «

+AY me+ ) (2 ExNyy + ulsz,le) (5.13)

keB keC o

where the operator ¥ acts on the shallow sites A or B, the operator ®, acts on the
p-orbitals of the deep sites C and finally n; = "I’I‘I’k and Ny, = QDZ «Prq are the
respective particle density operators. The hopping rate between the A (B) sites and
the p-orbitals is denoted by t, E, is a chemical potential on the deep sites defined as

A+ (—1)%A/

E,=E
o o+ 7

+U,
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FIGURE 5.10: Sketch of the s-p super-lattice scheme proposed for the
realization of a spin-%4 QLM - see text.

U is the interaction energy between particles sitting on one of the p-orbitals and on
the lowest s-orbital of the C sites, Uj; is the interaction between p orbitals, and E is
an energy off-set, which can be neglected without loss of generality.

Mapping to the QLM We assume t ~ |A — A’| < U, A, A’. Within this time inter-
val we can be confident that the gauge invariance is preserved within second-order
processes because of energy conservation, while beyond t contributions from higher-
order corrections significantly populate non-physical states and leads to symmetry
violation. We will probe the robustness of the model against deviations from the
Hilbert subspace of physical states by simulating real time evolutions after a quench.
The system is initially prepared with a single particle in the p orbitals. Due to en-
ergy conservation, we may limit ourselves to the manifold in which at a given C site
either the p-orbital « = 1 or the & = 2 is occupied. We may hence associate the two
orbital occupation configurations to the two spin % link states, attributing

Si=€(Nka— Ni1)/2,

where € = 1 (—1) for C sites at the right (left) of A sites. The system then reduces to
the one dimensional QLM with mass 4 = (A — A’) /2, and ], = t?U1p /U (U + Uyp).

An identical scheme may be applied in the y direction to get a two dimensional
QLM, where a possibly different hopping constant results in J,. The ladder config-
uration can be experimentally realized by decoupling the legs from the rest of the
lattice using sufficiently large energy barriers [52]. We stress that within this setup
the actual ground-state is generally not gauge invariant. However, once prepared
the gauge-invariant manifold cannot be left within second-order processes due to
energy conservation. This allows for the dynamical quasi-adiabatic preparation of
QLM and QLL states, which we illustrate for the particularly relevant case of the
SPT phase of the QLL.

Adiabatic preparation of the SPT phase The defect free VA phase is a product
state that may be prepared by filling all B sites, keeping A sites empty, and filling
the deepest and &« = 1 state of C sites. The preparation of this initial state fixes
the boundary conditions of the QLL. Starting at large y > ]\, non-trivial quan-
tum many-body states may be prepared by a quasi-adiabatic decrease of the mass y.
Note in this sense that neither for the 1-D nor for the ladder case a phase transition
is encountered, and hence y = 0 states may be prepared in a finite time without
crossing a quantum critical point. Note also that, contrary to the small mass case,
due to higher order contributions, the dynamics in the large mass limit cannot be



5.3. Experimental realization with cold gases 85

=z

5}
©
IS
o
©
o
5}
°
o -
0 1 ;
0 5 10 15
t/J,
(b) 1 T T

order parameter

0¢-0-0 -0 -0--0--0--0 -0

FIGURE 5.11: Quasi-adiabatic preparation. The mass is ramped from

p = 100], down to p = O as u ~ (t— tg)'/*. Figures (a) and (b)

show the time evolution of (912,, Oé, and An, for, respectively, a 1-D

QLM with [ytg = 10, and a QLL with J,fg = 2. The results have been

obtained using iTEBD with up to 800 matrix states. Dashed horizon-

tal lines indicate the expected values of the order parameters in the
ground-state with y = 0.

efficiently simulated within the scenario of Eq. (5.13). In Figure 5.11(b) we show for
the case ], = J, that a short ramping sequence (tr ~ J,) is sufficient to prepare
quantum states at y = 0 with properties very similar to the SPT state. Although
due to the finite ramp the expectation values oscillate, these values are close to the
ground-state expectation (dashed lines) showing O3 ~ 0 but O% > 0 as expected for
the SPT phase. In contrast, a similar preparation for the 1-D QLM results as expected
in (9%, (’)é # 0, as in Figure 5.11(a).

Quench dynamics In Fig. 5.12 we analyse the case of a sudden quench of y for the
1-D QLM and the comparison to the time evolution of the s-p Model (5.13). Inter-
estingly, already the sudden quench situation exhibits a finite O2, O3 > 0. Both the
time evolution of the effective QLM and of Model (5.13) agree accurately (note that
due to numerical limitations we only follow the time evolution of the s-p model for a
shorter time). In order to quantify to which degree of accuracy Model (5.13) realizes
an effective QLM, we study the deviation from Gauss’ law [163]. The parameter

1
An== Y |Nio11+nk+ Ngro — 2| (5.14)

L ke A,B

measures the deviation of the occupation of particles on neighboring sites (A, = 0
for a perfect QLM realization). We furthermore analyse whether the p-orbitals form
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FIGURE 5.12: Emergence of O% after a sudden quench. We compare

the time evolution of (’)g and (’)%J for the effective 1-D QLM and for

Model (5.13) of the main text with A = 4] and U = U;, = 40]. For

the full model only the total average particle number per unit cell is

fixed. The inset shows the deviation of Model (5.13) A, and A}, (see

text). The iTEBD simulations are terminated after a limit of 800 matrix
states is reached.

a spin 3, i.e. if precisely one p-orbital is occupied. To this aim we introduce

1
Ap =1 Y INki+ Nip — 1], (5.15)
keC

which is zero for a perfect QLM realization. For the parameters of Fig. 5.12 both A,
and A, < 1072 (inset of Fig. 5.12). Hence, with the system initialized as a gauge
invariant product state, Gauss” law can be fulfilled for a sufficiently long time evo-
lution that allows for the observation of nontrivial O% and O% correlations.

5.4 Multi-leg ladders

Encouraged by our findings on the two-leg ladder QLM, we extended our investi-
gation to more general two-dimensional lattices. The main motivation of this part of
the work was to understand the fate of the intermediate phase at #; = 0. Four-leg
ladders can host a non-trivial number of coupled plaquettes; this allows to reveal lo-
cal correlations and translation symmetry breaking in the thermodynamic limit, by
imposing periodic boundary conditions (PBC) along the y-direction. PBCs yields a
cylinder geometry that frees the system from potential boundary effects on the long
edges.

The addition of legs requires some care concerning the numerics, given the con-
siderable scaling of the Hilbert space - see Chapter 6 on this regard. The cylinder
geometry has a larger local Hilbert space than its open boundary conditions (OBC)
counterpart; in both cases, we could work out ladders with up to four legs with our
DMRG algorithm. In order to avoid redundancy, we introduce the notation 2LL to
refer to the two-leg ladder, and 3LL and 4LL for the three- and four-leg ladders. The
ladders with three or four legs yielded the same qualitative results, hence we will
focus the discussion hereafter on the largest system.
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FIGURE 5.13: Illustration of the striped columnar and disordered
phases, for a four-leg cylinder with PBCs along the vertical axis, mass
# = 0.8. The color code depicts the vorticity (Qy). (a) Marked Sy
striped columns J, = 2.4],; (b) no columnar pattern along x appears
from (Qr) at [, = 0.2], due to the y translation symmetry; the Sx
striped phase is revealed by (next-)-nearest-neighbouring plaquette
correlations; (c) disordered phase (D). The asymmetry inherent in the
gauge invariant states distribution determines a slight imbalance in
the bipartite mass and gauge fields expectation values.

Large mass limit

A first comment regards the sets of gauge-invariant rung states which, we recall, are
constituted by particles and blue links as in Figure 5.1, whereas the orange links are
fixed. As we commented in Figure 5.5, the 2LL has a mirror symmetry over the mass
y. In the very large and positive mass limit, the mass field is in the vacuum mass
configuration (a filled Dirac sea) made of particles occupying the sites with negative
mass; the total charge of the rung state is the sum of two null charges. Vice-versa, in
the large and negative mass limit the particles are in the anti-vacuum configuration;
the total charge of the rung states is ¢ = —1+1 = 0, again null. The number of
rung states is the same, five, in both limits and participate to the set of symmetries
encountered in the OBC 2LL. In fact, that is the only, peculiar, case in which the two
sets are balanced in number. In all other OBC and PBC (including 2LL PBC) cases,
there always exists an imbalance in the number of spin configurations, with a larger
set associated to the positive mass limit. This asymmetry at large masses, inherent
in the Gauss’ law, is visible in ground-state phase diagrams, which lack the mirror
symmetry evidenced in the 2LL.

Striped phases In order to characterize the phases at large mass, we investigated
the plaquette correlations. Reminding the definition given in Eq. (4.12), we introduce
the ring-exchange operator in the language of a QLM with SU(2) algebra on the links:

ul:l - R+ S:y x+1 ysxyxy+ls;y+l x+1 y+1s;+1yx+1 y+1 (5'16)
where r = (x,y) and we generalized the notation introduced in Eq. (5.1) for the oper-
ators indices. To quantify the imbalance between plaquettes with opposite vorticity,

we define the operator
Qr = (R{Ry =R RY). (5.17)



88 Chapter 5. Quantum link model on a ladder geometry

(b)

T T
Iy /1, =012 +
22 %
1.0
disordered state

FIGURE 5.14: Phase diagrams of the four-leg QLM cylinder. (a)

Finite-size scaling of the fidelity susceptibility at zero mass; (b) von-

Neumann entropy S,y of the central rung density matrix p.; (c) dis-
tribution of the central rung Fock states coefficients v.

Its square Q? quantifies the amount of flippable plaquettes. In the limit y > || of
large positive mass, for J; < ], we observe an ordered phase, favoured by fourth-
order exchange terms, of alternate y-oriented columns of flippable plaquettes along-
side columns of non-flippable plaquettes, as sketched in Figure 5.13(a). The spins
pattern resembles the columnar phase of the Quantum Dimer Model at zero tem-
perature and at large Rokhsar-Kivelson (RK)-coupling A [166]. For ], > ], the sym-
metric behaviour that one would expect in 2-D systems is not perfectly realized,
owing to the cylindrical geometry that breaks the symmetry along the x-direction,
Figure 5.13(b). However, we can reveal the striped phase using two correlation op-

2

: +y> vanish, the correlations be-

erators: while nearest-columns correlations <Q§

tween nearest stripes <Qf Q? +2y> remain indeed finite.

As we mentioned, the system has no mirror symmetry across 4 = 0. Thus, on
the opposite limit u <[]y, it presents a vortex-antivortex checkerboard pattern,
different from the striped phases and reminiscent of the Neél-like order of the Square
Ice model in the limit of large negative A parameter [165].

Zero mass limit

Emerging disordered phase Atlow mass y, particle fluctuations become relevant
and lead to intriguing physics. For y ~ 0 we observe three distinct phases as a
function of J,/Jx. As can be seen in Fig. 5.14 (a), by doing a finite-size scaling of the
four-leg cylinder length one can observe two distinct diverging peaks occurring in
the fidelity susceptibility xrs. We observe a similar behaviour for three- and four-leg
ladders (OBC).

Whereas for 4 = 0%, at J, < Jyand J, > ], the system is in a region that connects
smoothly to the Sx and Sy phases, for J; ~ |, an intermediate gapped phase occurs.
The latter is characterized by vanishing (Qy) and (Q?) but a large expectation value
of the ring-exchange (R;"). A crucial insight on the physics of the intermediate phase
is provided by the analysis of the reduced density matrix for the central rung p,

pe = tr[¥o) (Yol (5.18)

To calculate p., one can consider the Fock states ¢ in the space generated by tensor
products of the eigenbasis of 5f, and ;. The trace of p. runs over all other rungs.
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FIGURE 5.15: Parity and string order operators on an external leg
(a) and on an inner leg (b) for the four-leg ladder, open boundary
conditions.

In Fig. 5.14 (b) we show its diagonal elements vy = (¢x|pc|¢x): an effective local
Hilbert space distribution, sorted by amplitude, for the case of a four-leg cylinder.
The Sx and Sy phases are strongly localized in Fock space, i.e. v, has most weight
for few basis states. The intermediate phase, however, exhibits a drastically differ-
ent, much flatter distribution, where many local Fock states contribute with similar
weight. The disordered character of the intermediate phase is also witnessed by the
entanglement entropy S,y = — tr(p. Inp.), which we depict in Fig. 5.14(b).

The intermediate phase thus closely resembles the Rokhsar-Kivelson point, which
contains an equal superposition of all dynamically connected states. We also show
in Fig. 5.14 (c) the corresponding distribution of v for a classical RK state, which
compares well to the ground state obtained by the DMRG simulation. We obtain
the same p, distribution for the classical RK state using a Metropolis algorithm and
estimate the overlap between the two states to be 0.97. We hence characterize the
intermediate gapped phase as a disordered (D) phase. Note that, due to the differ-
ent Gauss’” law on A and B sites, this phase still exhibits a slight particle imbalance
between A and B sites, as well as finite link-variable expectation values, as shown in
Fig. 5.13 ().

Boundary and bulk legs As a first enquiry on the persistence of the SPT phase
in the 4LL, we looked at the string and parity order operators 02 and 03. On the
boundary legs, Figure 5.15(a), they are consistent with the behaviour observed in
the 2LL (inset of Figure 5.8 (a)), namely a finite (9% accompanies a vanishing 0% in
the central D phase. This relation disappears on the inner legs, as shown in Fig-
ure 5.15(b).

In fact, the string-parity order emerges a consequence of the open boundary con-
ditions and only for the staggered set of spins indicated for the 2LL. Fixing one of
the links reduces the set of available physical states and turns the leg into an effec-
tive 1-D chain coupled to an external bath. The addition of a leg in the bulk does not
affect the external legs, in this sense. The physics of the external leg can be well un-
derstood from a mean-field-like strongly simplified 1-D model, in which the lower
spins - connecting the edge with the bulk - fluctuate with an amplitude J,. Six local
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FIGURE 5.16: Entanglement spectrum of the (a) four- and (b) three-

leg ladders, showing the ten largest Schmidt eigenvalues. The ground

states were obtained with MPS DMRG, L=100, bond dimensions x4 =

100, x3 = 200. The perfect double degeneracy of the 2LL is lifted in
the disordered phase of multi-leg ladders.

states are possible:

0 - 130710
\/i 7

75 £[1)

10.) = = ,
) =|777),
B)=]"17). (5.19)

The Gauss’ law imposes further restrictions on the allowed sequence of these local
states: for instance, 0+ may be followed on its right by 0+ or g (0+ — 0, ), and so
on with all the possible combinations:

0x — Oi,ﬁ,
Oi — Oi,a,
X — ‘B,Oi,
B— a,0L. (5.20)

By construction, Gauss’ law enforces a Neél-like order of « and f states diluted by
an arbitrary number of intermediate 0 or 0 states. The model Hamiltonian at zero
mass, given by

Fip=—J: Y 9iSE 1¢x — Jy L 9iS] + He, (5.21)
X X

exhibits three ground-state phases. For [, < ], the ground state is an infinite chain
whose unit cell reads
@) [B)la)(B) - (5.22)
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whereas for [, > |, the states
R (VY [V ...‘()_>|()_>... (5.23)

have the lowest energy. Interestingly, for ], ~ J, an intermediate phase with Haldane-
like diluted Neél order emerges, that resembles the SPT phase. We may describe this
intermediate phase by a minimal AKLT-like [183] state with a two-fold degenerate
entanglement spectrum and a non-vanishing string order

cos* ¢

03 = (-1,

(5.24)
while the parity order is exponentially suppressed. Although this is a drastically
simplified description, it captures the essential ingredients of a ladder QLMs. In par-
ticular, fixing in a ladder the boundary spins to a staggered configuration enforces
the dilute Neél order on the boundary leg. However, since for L, > 2 the parity
order remains finite in the D phase if measured on the inner legs, Figure 5.15(b),
the phase is not topological. Ultimately, the Haldane physics revealed in the spin-/2
cQED QLM is the hallmark of a peculiar 2-D geometry in specific staggered bound-
ary conditions.

The absence of a SPT phase is confirmed by the entanglement spectrum, which
is no longer strictly two-fold degenerate - see Figure 5.16. Interestingly, however,
we observe a robust gap in the entanglement spectrum of the D phase between a
low-lying manifold and the rest.

5.5 Conclusions

In this Chapter we presented the outcome of a thorough study on the compact QED
Quantum Link Model with spin-/2 on a multi-leg ladder and cylinder.

First, we showed that the two-leg QLM presents an interesting ground-state
phase diagram and we unveiled the presence of a symmetry-protected topological
phase. The SPT was revealed by looking at the non-local spin string and parity order
parameters along the ladder legs. The topological character of the phase was con-
firmed by the doubly-degenerate entanglement spectrum and by testing with MPS
methods the invariance of the state under symmetric transformations. We moved
then to larger ladders, to scrutiny the fate of the intermediate phase at zero mass on
authentic two-dimensional space. We clarified the coexistence of AKLT-like states
on the external legs with the absence of SPT phases in multi-leg ladders.

As mentioned in Chapter 4, the spin-%2 (2+1)-d cQED Quantum Link Model
presents analogies to spin models studied in condensed matter physics, such as the
Quantum Dimer Model and the Square Ice Model. Motivated by these analogies, we
studied the QLM on a semi-infinite cylinder geometry to assess whether elements
of the spin solids subsist in the presence of a dynamical gauge field. Whereas in
the large mass limit we observe Neél-like vortex-antivortex and striped crystalline
phases, for small masses there is a transition from the striped phases into a disor-
dered phase, whose properties reminds those at the Rokhsar-Kivelson point of the
quantum dimer model. As a main result, we have found an emergent disordered
phase for u ~ 0 and ], ~ J,, which closely resembles an RK phase. On finite ladder
systems with staggered boundary spins, this phase exhibits Haldane-like ordering
at the edge legs.
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Chapter 6

Numerical methods

"This new formulation appears extremely powerful and versatile, and we believe
it will become the leading numerical method for 1-D systems, and eventually will
become useful for higher dimensions as well." [176]. Thirty years later, it is safe to
say that Steven White’s prophecy was right.

In this chapter we discuss the numerical methods utilized in this research work.
We used tensor network algorithms based on Matrix Product States to find the ground
state of one-dimensional and ladder-like systems in the thermodynamic limit and to
analyse the real time evolution of finite-size chains.

6.1 Tensor networks

6.1.1 Density Matrix Renormalization Group

It is known that numerical calculations on many-body systems are hindered by the
exponentially growing Hilbert space dimension. A successful line of attack of prob-
lems in one-dimensional systems is the renormalization group (RG) in real space
coordinates. The solution of the Kondo problem obtained by Wilson [184] was the
first remarkable success of RG in the context of quantum chains. Following that
dramatic breakthrough, Hames that the same approach could extend to a variety
of non-trivial quantum lattice problems arose and soon got dashed, after that sev-
eral different applications of the method had little success for anything but impurity
problems.

Steven White [185] examined why the method fails so spectacularly even in sim-
ple models, such as the lattice version of the one-dimensional particle in a box. The
standard real space RG approach consists of clustering a group of sites, the A A block
in Figure 6.1 (a), and diagonalizing the effective Hamiltonian relative to the cluster.
One can then truncate the set of eigenstates, keeping only the m states with the low-
est energies and constructs with those a renormalized Hamiltonian for a new, larger
block A’. Since the cluster Hamiltonian does not include any connection to the sur-
rounding AA blocks, its eigenstates have inappropriate features at the edges of a
block; in fact, that it is equivalent to imposing hard wall boundary conditions, hence
all the eigenstates of the AA block have to vanish at the edges. That implies that
the Hilbert space A’A’ at the following renormalization step will be orthogonal to a
set of states which have finite amplitude in the centre, including the lowest energy
mode with no nodes.

In a follow-up paper [176], White proposed a workaround based on the diagonal-
ization of a large cluster of sites, named superblock, and the subsequent definition of
a chunk of the superblock S as the new, renormalized unit cell A’. Let us assume to
diagonalize the Hamiltonian relative to a four-sites superblock S, depicted as A e 0 A
in Figure 6.1 (b). If we take a bipartition of S and consider the states of the block Ase,
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FIGURE 6.1: Left panel: (a) original Wilson’s approach, real-space

renormalization group of a 1-D system; (b) White’s infinite DMRG,

renormalizing a minimal super-block with one spare site. Right

panel: discrepancy between the ground state of a free particleina 1-D

box with discrete coordinates (16 sites, white squares) and the ground

state obtained through real-space renormalization of two blocks of 8
sites (black squares). Figures from White [176, 185].

which is our new block A’, we are guaranteed that such renormalized states will
span a correct spectrum of boundary conditions (in the centre, between e and e), not
limited by any hard boundary constraint. The projection onto A’ is not uniquely de-
fined. The recipe proposed by White prescribes to compute the superblock density
matrix and to trace out the environment of A’, e.g. the other half of the biparti-
tion. It can be demonstrated that the eigenvectors of the reduced density matrix
with the largest eigenvalues are the optimal states to keep. The routine is flexible
in the size of the superblock and the renormalized block, but the minimal version
designed in Figure 6.1 (b) is the optimal configuration, as the diagonalization of a
superblock Hamiltonian rapidly becomes a hindrance with increasing size. Briefly,
this is the core concept of Density Matrix Renormalization Group (DMRG), arguably
the work-horse for numerical simulation of strongly correlated quantum chains. The
method demonstrated to yield flawless results quite independently from the nature
of the Hamiltonian, even for modest computational resources. The outstanding em-
pirical success of DMRG hinted the presence of a physical origin for such stunning
performances.

In what follows, we introduce the modern understanding of DMRG, based on
arguments from quantum information theory. Comprehensive reviews linking the
classical with the MPS formulation of DMRG can be found in [112, 1. We will
discuss the area law, which gives to DMRG a firm footing, and introduce the notion
of Matrix Product States, upon which a variety of algorithms are based: to mention
a few, (i)DMRG, (i)TEBD in real and imaginary time, TDVP.

6.1.2 Matrix Product States

The quantum state of a spin-% chain of length L can generically be described by a
linear combination of the d’ states (d = 2) of the full Hilbert space:

)= Y. cCop 00,12, 00). 6.1)
01,.-,0L

An alternative, convenient way to keep track of and deal with the coefficients c,,.. o,
is the following. By means of a series of consecutive Singular Value Decomposition
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operations, one can define a matrix A% for each local spin ¢; such that the coefficient
Cay,...,o;, can be reconstructed by multiplying all those matrices,

Cop,s, = ATVAT AT AT, (6.2)

whence the name Matrix Product State (MPS). The A; objects are rank-three tensors,
with one physical leg identified by the index ¢; and two virtual legs. The laborious
procedure to construct the A”! matrices in Eq. (6.2) is well clarified in the review
paper by Schollwock [112]. A beautiful pedagogical example of a matrix product
diagram can be found in [187] I1.B, with a graphical representation of a spin-% chain
with four sites. An exact representation of the quantum state requires central matri-
ces of large (dL/?) size:

(1xd),(dxd?),...,(d"> xd?), (d? < db/2=Y, ..., (d* x d),(d x 1).  (6.3)

A restricted class of matrix product states is defined by setting the matrix dimensions
to a finite integer x < d-/2, named bond dimension. The truncation of the bond di-
mension is necessary to make the numerical algorithms efficient. The ground state
of a certain Hamiltonian in the }-MPS manifold is an approximation of the true
ground state, recovered in the limit of y — d%/2. Algorithms performing ground-
state search by minimizing the effective Hamiltonian on a double-tensor cell (as
DMRG and TEBD) generally do an optimal truncation of the bond dimension by
discarding the smallest Schmidt eigenvalues obtained through Singular Value De-
composition (SVD).

The MPS are fully equivalent to the old-fashioned states obtained in DMRG
through diagonalization of the reduced density matrix. However, the description
of quantum states in terms of the MPS manifold allows to work with a beautiful and
simple formalism that renders clear the properties of tensor networks and essentially
enforces correctness.

Maximally entangled states An alternative way of looking at MPS is through the
concept of maximally entangled valence-bond states [185]. Though more abstract,
this approach has some advantages. For instance, it is suitable for the description
and interpretation of some paradigmatic 1-D models, as the AKLT [183, 189] or the
Majumdar-Ghosh [190]. Also, it eases the generalization of MPS to two-dimensional
systems, where they take the form of Projected Entangled Paired States (PEPS).

To illustrate the notion of maximally entangled states, let us consider a spin-1
quantum chain, with local Hilbert space dimension d, = 3. Then, let us assume
that each local spin is composed of two virtual elements, spin-%4, with local space
dimension x. Let us also assume that each virtual element is coupled to the vir-
tual element of a neighbouring site, to form a maximally entangled superposition of
product states, as in Figure 6.2,

X
piiv1) = Y Iri =k liz1 = k). (6.4)
k=1

One can define an on-site linear map M from the Hilbert space of the virtual parti-
cles to the Hilbert space of the corresponding physical particle. The map M can be
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FIGURE 6.2: Maximally entangled states. The blue circles are spin-

1 states, which can be expressed in the (rotated) basis of the direct

sum of two spin-%2 S* operators. The red circles host x spin-2 virtual

states, bijectively coupled to realize maximally entangled superposi-

tions product states. Rank-three tensors A% map the tensor product
of virtual elements of the same site i onto spin-1 states.

expressed in terms of a rank-3 tensor

dp X
M=) Y Ao (7] (6.5)

o=11r=1

By applying the map M on all the sites of the chain, one obtains

L L1
¥ = [ QM; (@ |<Pi,i+1)>
=1 i~1
—ATAR AT gy, oY, (6.6)

thus verifying the substantial equivalence between the notion of maximally entan-
gled pairs and the previous construction of the MPS ansatz, Eq. (6.2).

Area law for the entanglement entropy A faithful approximate representation of
a ground state can be attained if the low-energy sector of the Hilbert space scales
conveniently with the system size. Naively, one would guess that the entropy of a
region of space possesses an extensive character, meaning that it grows with the size
of the region. Such a behaviour is referred to as a volume scaling and is observed
for instance with thermal states [191]. However, it is not obvious a priori whether
nature fully explores the vast territories of the entire Hilbert space. In fact, an edge in
this sense is set by the fact that interactions always seem to happen locally and only
between a few bodies. Arguments developed in the context of quantum information
theory [192] suggest that there is an exponentially growing lower bound on the time
it takes a pure state to overlap with a random one when exclusively driven by local
interactions. This suggests already that all physical states live on a limited subspace.

Entanglement entropy Entanglement is a key concept in quantum mechanics [193].
The amount of entanglement helps determining whether a quantum computation
can be efficiently simulated on a classical computer [194]. The key question is then:
how much entanglement is present in the ground state of strongly correlated quan-
tum many-body systems? A measure of the entanglement is the entanglement en-
tropy, in the form given by Rényi

Sk(p,2) = T In(tr(s")), (67)
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which is known as the von Neumann entropy in the limit « — 1:

Sun(p) = —tr(pIn(p)). (6.8)

Here, p is the reduced density matrix or, equivalently, the squared Schmidt eigen-
values of a bipartite state [195]. The problem of the entanglement scaling was first
addressed in the context of black-hole entropy [196]. The investigation of the sub-
ject at the interface between quantum field theory and quantum information theory
flourished [114, 197] and gave universal results that extend to condensed matter
physics. Considering the generic case of a quantum spin system on a n-dimensional
infinite lattice and a finite block of radius L, it has been shown that entanglement
entropy does not have a volume law but rather scales as the boundary of the block,
whence the name of area law [113]:

S(or) o< cL" 1, (6.9)

In one dimension, the area law means that the entanglement entropy eventually
saturates to a constant value c.

Gapped Hamiltonians A qualitative argument shows how gapped Hamiltonians
with local interactions in 1-D generally satisfy the area law [192]. It is proven [195]
that all connected correlation functions between two blocks of a gapped system de-
cay exponentially as a function of the distance between the blocks. If the decay is
exponential, tracing out a block of size larger than the correlation length yields a
state that is to a good approximation a tensor product state. Iterating the fragmen-
tation and then applying a disentangling operation on all blocks in parallel leads to
a product state of many parts; in other words, this routines leads to the prepara-
tion of a MPS-like representation of the state, which is faithful up to exponentially
small corrections. Matrix Product States define a manifold which satisfies the area
law by construction, as they enforce an upper bound on the entanglement entropy
corresponding to the maximally entangled states:

X1 1
=—) —In(—-) =1 ) )
S 1221 X n<x> n(x) (6.10)

This guarantees that MPS states are faithful approximations of the ground states of
gapped Hamiltonian. Rigorous analys of this matter go beyond the scope of this
work and can be retrieved in review papers [191, 192]. Violations of the area law in
1-D occur. For critical (gapless) lattice models, the entropy S; diverges logarithmi-
cally [113]. Using conformal field theory arguments, it can be shown that

_c

a:

log(L) +C, (6.11)
where c is the conformal charge, k depends no the boundary conditions (k = 3 in
PBC, k = 6in OBC) and C a non-universal constant. In quenched, out-of-equilibrium
systems the entanglement entropy grows up to linearly in time [199]. In conclu-
sion, considering that the number of relevant states in 1-D systems relates exponen-
tially [200, 201] to the entanglement entropy,

X < exp(S), (6.12)
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we can summarize the computational costs of 1-D tensor network simulations as
follows:

¢ gapped system, OBC: xy = const,
* gapped system, PBC: x = const?,

e critical systems: y o L*.

6.1.3 The DMRG algorithm with MPS

Let us consider a finite-sized chain of length L. We have seen how the state of the
chain can be represented as the contraction of the bond legs of L rank-three tensors
Aj. The Hamiltonian acting on the chain is a large operator with 2L physical legs,
which can be conveniently built through contraction of small blocks named Matrix
Product Operators (MPOs), described in Sec. 6.1.3. The (i)DMRG algorithm per-
forms a variational ground state search on the MPS; the minimization is executed
locally, usually on a single- or double-tensor 7y,r (the opaque tensors in Figure 6.3,
see also Figure 6.5). We will consider hereafter a double-tensor minimization, on

sites j, j+1. The contraction of the other chain tensors defines the tensor 7;&7“;“ ,

which represents the environment of 7'[’ an . The contraction of '7;%“1 with the

MPO Hamiltonian yields the effective Hamiltonian H} g +1}.

He[]ff]+l] <7’[I]+1 ‘H

T ). (6.13)
The energy of the tensor network, graphically illustrated in Figure 6.3, reads
E= <T’H‘\F> = <7:/ar‘ <7;nv‘1:”7;nv>|7:/ar> - <7:7ar|ﬁeff’7:/ar> 7 (614)

where |¥) is the representation of the many-body state in the MPS manifold with
bond dimension x. The effective Hamiltonian is a large matrix, of dimension (dx)?,
whose lowest eigenvector can be found by means of iterative methods a la Lanczos.
In double-tensor DMRG, the updated 7y, is reshaped onto a d x-dimensional matrix;
an SVD with subsequent truncation returns the updated rank-three tensors A and
Ajy1. The algorithms proceeds then by iterating the local minimization on the neigh-
bouring pair of sites. In classical DMRG language this is known as the sweep routine.
The MPS may be initialized to a random list of A tensors in the y-manifold. An
educated guess can be obtained through what is classically known as the warm-up
routine, or infinite DMRG (iDMRG). In iDMRG, an initial double-tensor pure state is
minimized; a copy of the tensors A; and A; is then plugged in reversed order at the
centre of the chain, which is thus two units longer. The iteration is repeated, until a
chain of the desired length is obtained.

Attaining the ground state of finite size chains is crucial for the study of edge
effects on the physics of the bulk and for the investigation on real time evolutions.
In the next paragraph we examine the relations between MPS, iDMRG and the ther-
modynamic limit.

The thermodynamic limit

In studying a model Hamiltonian, one usually investigates the ground-state prop-
erties in the thermodynamic limit. The MPS ground-state in the x-manifold is a
translation invariant uniform MPS (uMPS [202]), represented by an infinite chain of
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FIGURE 6.3: Illustration of a Tensor Network for DMRG. In gray
scale, the variational double-tensor Ty, and its Hermitian conjugate;

the color network is the effective Hamiltonian Hgff] H].

identical tensors Ags. If the Hamiltonian has translational periodicity m, the thermo-
dynamic MPS is built through the repetition of a unit cell of tensors. The notion of
state and Hilbert space in the thermodynamic limit is subtle. Rigorous definitions
exist [203] but we can evade the controversy by interpreting the infinite state as the
uniform bulk of a large but finite MPS. The adjective infinite in the acronym iDMRG
may be misleading. In fact, an iDMRG run with N iterations returns a MPS of a
chain of length L = 2N, which is subsequently improved by a few DMRG sweeps.
The connection between iDMRG and the thermodynamic limit is established by as-
suming that the innermost tensor A, tends to Ags for long enough chains. This claim
is solidly backed by the area law scaling of the entanglement entropy and the expo-
nential decay of connected correlation on gapped systems.

A fundamental limitation of (i) DMRG is rooted in the locality of the variational
update, which inevitably breaks the translation invariance of the tensors, including
A.. Variational methods such as TDVP or VUMPS work on a single tensor A, thus
eluding by definition edge effects and enforcing translation invariance. The con-
cept behind these algorithms is more elegant and adequate to the thermodynamic
limit than it is iDMRG. Also, in numerous test cases, VUMPS demonstrated to dra-
matically outperform iDMRG or iTEBD, reaching convergence orders of magnitude
faster, especially for critical systems [204]. However, (i)DMRG summons on a single
platform the workhorse for finite-size systems and a satisfactory algorithm for the
thermodynamic limit.

Abelian symmetries in MPS

A gauge symmetry in quantum mechanics is described by a group G of transforma-
tions for which the unitary representation U(g) of any group element g§ commutes
with the Hamiltonian. Consequently, there exists an irreducible representation (ir-
rep) of the group labelled by a good quantum number N (also called charge), asso-
ciated to a conserved physical quantity (Noether’s theorem). The U(1) continuous
rotations group is a common case of Abelian global gauge symmetry. For instance,
the conservation of the total number of particles, summed over all sites j of a Hub-
bard chain, is a U(1) symmetry. In this case, the group infinitesimal generator is
N = )_; f1;, the representations take the form

U(g) = &8N = @eish, g €[0,2m), (6.15)

]
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FIGURE 6.4: Local representations W; of a pointwise symmetry group

acting on different MPS tensors. The unitary matrices W5 and W/ are
gauged out when the two tensors contract leg j=3.

the irreps are complex phases ¢'¢V and the Hamiltonian takes a block-diagonal form.
The Hamiltonian blocks act on proper subspaces of the full Hilbert space, also re-
ferred to as sectors [205].

In the presence of a gauge symmetry, the use of an unconstrained algorithm for
the variational ground-state search is perhaps a cheap choice but certainly not an op-
timal one. The symmetry-invariant dynamics does not guarantee the permanence in
the same charge sector as that of the initial state; eventually, it leads to error ac-
cumulation, to the exploration of other charge sectors and ultimately it pushes the
variational search towards the absolute ground state. A simple workaround consists
in imposing fine-tuned chemical potentials; the solution is however inefficient since
the algorithm still works in the grand-canonical full Hilbert space. Hard-coding
charge conservation improves the performances of the algorithm in terms of speed
and memory. The advantage consists in the possibility to reshape the matrices in-
volved in the contractions onto a block-diagonal form; thereby, one stores less matrix
entries and does the matmul of smaller matrix blocks (even in parallel, if conve-
nient).

Imposing charge selection is not trivial, even in the simplest case of Abelian sym-
metries. Following the comprehensive review [205], we outline in the next para-
graph the key concepts regarding pointwise symmetries in Tensor Networks.

Pointwise symmetries

Global Abelian symmetries befitting an implementation on Tensor Networks are
those for which the transformations of the symmetry group act on all the degrees
of freedom of the network as linear operators. Equivalently, the representations of
the group elements of these global symmetries are separable and can be expressed
as the product of local representations W;(g) acting on single sites (points), as in
Equation (6.15):

U(g) = & (g); (6.16)
these are called global pointwise symmetries. The local representations may depend
explicitly on j, as for instance in the case of non-homogeneously translation invariant
systems. To promote a tensor A to be symmetric we associate with each tensor leg
j a local unitary representation W;(g) of the pointwise symmetry group. In U(1)
symmetries, these representations are diagonal matrices of complex phases acting
on the tensor through contraction with their relative tensor leg, as in Figure 6.4. Each
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index [; of the j-th leg is thus equipped with a corresponding irrep of the group,

0

W (q) = el (6.17)
] V4

(0

labelled by the quantum number n j
tation on all the tensor legs,

. The simultaneous action of the local represen-

T(g) := Wi (g) @ W (g) @ Ws(g), (6.18)

is a map from the (d; x dy x d3)-dimensional vector space of the tensor indices to
the unit circle in C:

ni’l) _ngz) (I3)

T(g)Ah,lzlls = eig[— o

A tensor is symmetric if T(g) acts on it as an identity transformation; as a conse-
quence, the only non-zero entries of A belong in the kernel of T(g):

Al (6.19)

A2l

l]
£0,
" (6.20)

A =0.

bz =

0, ¥ sign(j)n ](
a€C, Ysign(j)n ](

The tensor resulting from the contraction of two symmetric networks must be un-
affected by the presence of W; operators on both fronts of the contracted leg. That
means, if W;(g) acts on one leg, W]T (g) must act on the corresponding leg on the
other tensor, so that the compound transformation is the identity operator (see Fig-
ure 6.4). This constraint introduces an orientation on the tensors legs, setting the
sign in front of the affixed arrays of quantum numbers. We describe in the following
two paragraphs how the charges are assigned in the MPO and bond legs. Figure 6.3
shows the gauge we chose for the charges flux.

Matrix Product Operators

Consider the Fermi-Hubbard model of a single species spinless Fermi gas, with a
translation invariant chemical potential:

Hm=-] Y (c ¢+ ¢ c,) —i—yan (6.21)

<i,j>

The associated Matrix Product Operator (MPO) acting on site j reads

i1 Gl
]lj 6j 6] ‘uﬁ]‘+
A O 0 0 —]é\ Ci—1
M; = J / 6.22
] 0 0 0 —J& Jei, (6.22)
0 0 0 1

and it is easy to verify that the ordered matrix product ]_[]-L:1 Mj yields the Hamilto-
nian (6.21) on the top-right entry of the resulting matrix. The Hamiltonian is finally
extracted by multiplying the matrix by a row- and a column-vector, embedded in
the transfer matrices (see Figure 6.4):

—(1p000), 9r=(0 0 01 (6.23)
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FIGURE 6.5: Basic elements of a Tensor Network for (i)DMRG al-
gorithms. a) Hamiltonian MPO; b), ¢) transfer matrices embedding
the Hamiltonian MPO; d), e) left- and right-canonical rank-three MPS
tensors; f) truncated Schmidt eigenvalues spectrum, diagonal matrix;
elements d) e) and f) contracted together give the double-tensor Tyar.

The formalism of complex weighted finite state automata wonderfully finds corre-
spondence in the real of matrix product states, thus providing operational instruc-
tions to easily build the MPO of any Hamiltonian, no matter how baroque; for liter-
ature on the subject, see [186, 187, 206-208].

In broad terms, the architecture of the Hamiltonian MPO is as follows. The top-
left and bottom-right corners host the identity matrix. On the top-right corner is the
sum of the on-site operators. The other operators pair up with their complemen-
taries on the previous or following site, as indicated by the adjacent operators in
blue. The array of charges affixed to the (outgoing) MPO virtual legs - the horizon-
tal legs, in Figure 6.5(a) - reads {0, —1, 41,0} and can be intuitively understood by
looking at the first row of the matrix. The first and last entry do not modify the num-
ber of particles at site j (remind that the generator of the local symmetry is 1), hence
the relative quantum number is 0. The operator ¢; destroys one particle, which is re-
covered on the next site by ¢;, 1; this causes a negative imbalance on the total charge
at site j, marked by a -1. Analogously, the third entry in the charges array is a +1.
Note that the charges array depends on the chosen orientation of the MPO legs, that
we arbitrarily set to flow left to right, as in Figure 6.3. If the flow was reversed, we
would plug a minus sign in front the charges arrays, or equivalently infer the MPO
virtual leg charges by looking at the operators on the MPO last column.

SVD and Isometry

The Singular Value Decomposition is an orthogonal bisection method. In (i)DMRG
it is used to obtain the rank-three tensors A from the double-tensor 7Tyar, usually
after the ground search routine is completed. To do this, 7yar is reshaped onto a
matrix with a virtual and a physical leg per side. The SVD returns three matrices,
usually named U, S and V'. The matrix S is diagonal and contains the set of non-
negative, real valued Schmidt eigenvalues; after discarding the lowest eigenvalues
and consequently truncating the matrices, U and V' become semi-unitary (or isomet-
ric), respectively left- and right-canonical:

uu=1, Vviv=1L (6.24)

We illustrate this property graphically in Figure 6.5 by marking the unitary region
of tensor A with a darker color. In (i)DMRG, a MPS is usually canonized in left- and
right-canonical segments around a central pivot A, as in Figure 6.3.
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The quantum numbers are affixed to the bond legs of A as follows. The external
bond legs in a MPS, corresponding to A; and Arj, have size 1. According to our
arrows orientation gauge, A1 has charge 0 while the quantum number of A must
sum up to N, the irrep of the global symmetry, since it collects the MPS charges flux.
If the system size L is an integer multiple of N, it is convenient to offset the local
symmetry generator,

N
ﬁ] — ﬁ] — fﬂ' (625)

so that the global irrep becomes 0. Assuming to know the charges of the bond legs
of Tyar, the variational tensor can be reshaped onto a block-diagonal matrix in which
each block is associated to a unique charge and can be decomposed individually
through SVD. This allows to assign a charges set to the resulting internal bond leg.
Applying this routine in iDMRG leads to the full knowledge of the charges on the
finite MPS bond legs. Alternatively, one can choose a Fock state as initial MPS for a
DMRG sweep [205]; in this case all bond legs have size 1 and the charges are known.

Transfer matrices We have seen that the MPO transfer matrix embeds the Hamil-
tonian expectation value on the MPS environment; these transfer matrices need to be
built contracting leg after leg. The state transfer matrices (TM) are associated to the
optimal contraction of the MPS norm (in [35], the rules for the efficient contraction of
a Tensor Network). The TMs embed information on the state environment. The left-
most left transfer matrix TF] is an identity matrix. The next element TF] embeds A
and Al. Considering that A; is unitary on the contracted legs, the resulting transfer
matrix is again the identity matrix; the series continues until A. (analogously for the
right transfer matrix). This is a powerful property of Tensor Networks. For instance,
to calculate the expectation value of an operator acting on site k, left to the pivot, one
should in principle contract the entire MPS state. In practice, the contraction of the
left-canonical block yields the identity matrix 1, whence one can close the left bond
legs of Ay on themselves.

6.2 MPSs for the Quantum Link Model

Matrix Product States are able to describe the quantum state of not only 1-D sys-
tems but also cylindrical and ladder geometries, up to a limited number of legs. In
order to achieve this, two main strategies are adopted. The one approach cuts and
stretches the ladder back to a 1-D system, generating virtual Hamiltonians with po-
tentially very long-range interactions associated to the inter-rung couplings. The
other approach consists instead in setting the whole rung as a site of the chain. The
trade-off is between the bond dimension ) and the local Hilbert space dimension
d. In the first approach, the long-range interactions might get filtered out if x is too
small. In the second one, nearest-rungs couplings become nearest-neighbours inter-
actions and intra-rung couplings are absorbed as on-site operators, but the Hilbert
space dimension scales up as ~ d", where n is the number of legs. For the Quantum
Link Model we opted for the second strategy, since the Gauss’ law constraint makes
the local Hilbert space scale much more moderately than d", as one can see on Ta-
ble 6.1. Let us analyse the local Hilbert space of the largest system that we studied, a
ladder with four legs, illustrated in Figure 6.6. We define the local full Hilbert space
as the tensor product of the 4 particles located on a rung and the thirteen links con-
nected to them. Immediately, one notices that each of the links along the ladder legs
(or x-links) are shared by two adjacent rungs. The redundancy costs a higher Hilbert



104

Chapter 6. Numerical methods

[ .

|,

L4 Mma L4 ma
lc3 Ic3

L3 M3 R3 L3 M3 R3
Icz lcz

L2 wm2 R2 L2 M2 R2
lc1 Ic1

L1 M R1 L1 M1 R1

| @ NG

FIGURE 6.6: Two bipartite gauge invariant rung states for the four-
leg QLM; the orange links are fixed in OBC and identical in PBC. The
matter field is in the Dirac vacuum configuration, with mass y > 0:

on the lowest site of the @ rung is an antiparticle. The links along
the legs shared by different rungs must align.

space dimension but is necessary to define gauge-invariant states on a rung. More-
over, the overlap between shared sets of links is successively exploited as a pointwise
global symmetry which enforces the alignment between those sets, besides bringing
the computational advantages discussed in Section 6.1.3. As a consequence, inter-
rung interaction or hopping terms are built in such a way that the on-site operators
on both fronts have to include the same non-trivial operator acting on the links in-
volved in the two-sites coupling. To make an example, let us consider the hopping
of a particle on the lowest matter field from rung @ to rung (B). We define the
annihilation operator Cir, Eq. (6.26a), as the tensor product of an annihilation op-
erator ¢y acting on the matter field M1, a spin flip Sy, from right to left acting on
the gauge field R1 and identity operators on acting the other fields of the rung @
Analogously, we define the operator CI . on the rung , Eq. (6.26b), including the
creation operator ¢} ;; and minding to repeat the spin flip on the gauge field involved
in the hopping process, carried out by the S, operator. Both operators are defined in
the gigantic full Hilbert space and then projected onto the reduced, gauge-invariant
Hilbert space.

Left links Right links

. 4, 3, 4, 4, N

Cir= ®1; &g ®1Ag; @ Apy ®SR1 X Epn (6.26a)
i=1 i=1 i=2 i=2

~
Central links Particles
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Left links Right links
—~ = —~ =
At 4 . 3 . 4 4 A o
Cip= 0l ®le; @lg; @1 @57 @ Cpy (6.26b)
i=2 i=1 i=1 i=2
——
Central links Particles

We have studied both open and periodic boundary conditions on the external links
aligned along the rungs (or y-links), while the external x-links were usually fixed to
an alternate configuration as in Figure 6.6. In the full Hilbert space, we define four
Gauss’ law diagonal operators G;, one for each particle. We set to 0 the eigenvalue
of gauge-invariant state, and to 1 all the others. The sum of these operators G =
Y+ 1 G; allows to identify the set of gauge-invariant rung states as the kernel of G.
At this stage we can opt for open or periodic boundary conditions, by imposing an
additional constraint on the external y-links. In order to have periodic boundary
conditions we simply impose the alignment between the top and the bottom links.
For open boundary conditions we fix the links as in Figure 6.6 (with the top links
flipped for the three-leg ladder); in fact, we explored all the possible combinations of
open boundary conditions, unveiling the intriguing behaviours (first and foremost
the SPT phase) discussed in Chapter 5 only for this links configuration.

Recently, Tschirsich et al. investigated a U(1) Quantum Link Model with fixed
matter fields, also known as Square Ice Model, on a cylindrical geometry [165].
The system Hamiltonian acts on the system links via ring-exchange and Rokhsar-
Kivelson terms. The matter field distribution, which in the Ice Model includes also
the charges {42}, sets the gauge-invariant spin configurations. The strategy adopted
to map the state onto a MPS representation coincides with our choice to group the
links of a rung and encode them onto a single-site gauge-invariant state. The lack
of dynamical matter fields allows to investigate ladders in PBC with a larger num-
ber of legs, up to 10. To find the ground state, the authors used a canonical TEBD
algorithm in imaginary time for systems with up to 6 legs. For larger number of
legs, some tailoring of the algorithm was introduced in order to keep the matrices
size and the computational costs manageable. In particular, the evolution operators,
which are expanded to first order in the time step 7, are efficiently represented in
terms of two three-indexed tensors, thus avoiding the full four-indexed d*-tensor of
standard TEBD.

In this Section we presented how we have dealt with Lattice Gauge Tensor Net-
wors on a down-to-earth fashion and basing our narration on a specific example. For
a rigorous and comprehensive review on the subject, we recommend to the reader
the article by Silvi et al. [209].

TABLE 6.1: Column D shows the dimension of the full Hilbert space

of a n-leg rung, tensor product of n matter fields and ~3n spin-%2

gauge fields: 3n-1in OBC, 3n in PBC (see Figure 6.6). Column d shows

the dimension of the gauge-invariant local Hilbert space, consisting
of all the states satisfying the Gauss’ law.

OBC PBC
Legs d D Legs d D
2 18 128 2 28 256
3 90 2048 3 132 409

4 468 32768 4 712 65536




106 Chapter 6. Numerical methods

LGT Tensor Networks with Python

A basic implementation of DMRG with Python makes use the tensordot routine from
the numpy library to perform tensors contraction. Under the hood, tensordot per-
forms a series of operations analogous to the transposition of the legs order with
the function transpose, the reshaping of the tensors onto a matrix form with reshape
and a matrix-matrix multiplication (matmul) with dot. The matmul operation takes a
large portion of the required computational time, since it is a relatively costly opera-
tion, repeated multiple times within a Lanczos-type iterative matrix diagonalization.
In numpy, linear algebra functions as dot are efficient as they rely on low level im-
plementations with BLAS and LAPACK, properly wrapped in OpenBLAS, MKL or
ATLAS libraries.

In Tensor Networks language, the tensor legs transposition and reshape are more
properly called Links Permutation and Links Fusion [205]. Programming tensor net-
works algorithms that include Abelian symmetries requires the definition of subrou-
tines dedicated to the direct control on each of these operations, which should be op-
timally coded in order to fully take advantage of the symmetry. We limit ourselves to
a few comments on this, without entering into the detail of our implementation with
Python. Our approach consists in storing all and only the entries of the symmetric
sectors of a tensor on a 1-D numpy array, along with another array keeping track of
tensor leg indices of the entries. It is worth reminding that the tensors are extremely
sparse, as the symmetry constrains the system to a single irrep of the global group
while formally the tensor network spans the grand-canonical ensemble. The sym-
metric local sectors are instead dense. The links permutation and fusion reduces to
a series of operations performed on the array of the indices, relying on optimized
numpy functions as divmod, argsort or slicing. Since this mapping become costly as
the bond dimension grows the mapped indices are stored, thus the mapping is only
performed on tensors with a new set of charges: in iDMRG, this normally satu-
rates little after the bond dimension in the centre reaches . No efficient built-in
numpy function was found to load the sectors of the block-diagonal matrices with
the entries of the storage array. An efficient solution consisted in defining dedicate
functions with Cython, the C-Extension for Python.

In conclusion, during the doctorate a code for (i)DMRG and (i)TEBD in MPS lan-
guage was developed from scratch. The satisfactory results obtained on the QLM
confirmed once again the force and versatility of MPS algorithms. Moreover, it
showed that newcomers on the matter can relatively quickly familiarize with such
a powerful and flexible tool and make it to the development of a high-performing
DMRG code using non-orthodox, user-friendly programming languages.
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Conclusions and Outlook

In this Thesis we have reported our theoretical results on density-dependent and
dynamical gauge fields. We studied the ground-state physics and dynamics using
MPS algorithms and interpreted the rich phase diagrams unveiled. Both for density-
dependent gauge fields and quantum link models, we tried to keep a down-to-earth
approach, proposing relatively simple experimental realizations.

Concerning density-dependent gauge fields, we have proposed a versatile exper-
imental scheme based on the multi-color modulation of the depth of an optical lat-
tice, that offers flexible and separate control on a trapped Fermi gas. The method is
experimentally straightforward and allows for the engineering of Hubbard Hamilto-
nians with correlated hopping. One example is the two-component anyon-Hubbard
model, whose spectrum exhibits a non-trivial dependence on the statistical phase.
We have shown how fractional quantum statistics may be monitored by means of a
simple interferometer scheme. The density of a cloud of expanding particles and the
total spin polarization may be used to clearly reveal the exchange statistics. Further
insights on the unconventional quantum phases of the model could also be attained
with expansion experiments. The multi-color modulation permits several further
interesting extensions, including the control of three-body interactions. In combi-
nation with Raman-induced coupling of several spin components, one may study
density dependent magnetic fields. Further interesting experimental possibilities of
our proposal for the realization of periodic boundary conditions could include an
additional phase factor ¢; to the modulations, which would allow one to create a
ring model penetrated by a finite flux. It is important to note that our proposal is
not limited to 1-D lattices, although only for this case the interpretation in terms of
an anyon model is valid. By adding an extended lattice in a second real-space di-
rection one may create a 2-D or cylinder-like system with unconventional correlated
hoppings and fluxes.

In the second part of the Thesis we studied the Quantum Link Model, a lattice
gauge theory particularly suitable for quantum simulations, by virtue of the trun-
cated gauge field Hilbert space. Starting from the rich literature on 1-D compact
QED QLMs, we investigated the spin-2 QLM in ladder-type geometries. The pro-
motion to a quasi 2-D space unveiled a rich ground-state phase diagram, featuring
a symmetry-protected topological phase at zero mass. We revealed and assessed the
presence of such a phase by looking at the entanglement spectrum and by probing
non-local and topological order parameters, which can be conveniently extracted us-
ing Tensor Network methods. The evidence of topological properties is an element
of novelty within systems with mediated interactions. The relation between lattice
quantum field theories and topology is still a vastly unexplored and very intrigu-
ing subject, which has just recently begun to attract interest [210, 211]. Motivated
by the appealing perspectives offered by the (2+1)-d cQED QLM, we extended the
investigation on this model to three and four legs as well, both on ladder and on
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cylinder geometries. We found that the SPT phase is absent in any other system
than the two-leg ladder. However, a Haldane-type physics is solidly present on the
boundary legs of the ladders, a property which has found justification in the spin-
fixing on the edges. We studied the model on the cylinder to explore the effects on
the phase diagram of a semi-infinite geometry, with an emphasis on the relation be-
tween the QLM and solid-state models such as the Quantum Dimer or the Square
Ice models. We observed that, despite the absence of plaquette terms, the quasi-two-
dimensional QLMs are characterized by a highly non-trivial physics. In the large
mass limit, the gauge spins are arranged in aligned or counter-aligned patterns that
remind the columnar phase of the QDM or the Neél phase of the SIM. At vanishing
masses, we found a disordered phase in the region where the two-leg ladder hosts
the SPT phase. The phase, which resembles the RK point of the QDM, presents edge
Haldane-like ordering in ladders. While being limited to a small number of legs, our
observations are robust over two-, three- and four-leg ladders and four-leg cylinders,
strongly hinting that the intermediate disordered phase may survive in more general
2-D lattices, which might inspire further numerical efforts in this direction.

Concerning the experimental realization, we have discussed a simplified dynam-
ical method that permits the (quasi-)adiabatic creation of the states of the quantum-
link models and, in particular, the topological phase in the two-leg ladder. The sim-
ple scheme for the realization of spin-1/2 U(1) QLMs is based on single-component
fermions loaded in an optical lattice with s and p bands. However, instead of higher
orbitals, one could equivalently realize the scheme through hyper-fine or spatial de-
grees of freedom, providing more flexibility for quantum simulation.

Many open questions are still to be answered, which regard the properties of
QLMs and LGTs in two-dimensions. It would be interesting, for instance, to attain
the ground state phase diagram and to understand the fate and the nature of the in-
termediate phase in the thermodynamic limit. Moreover, very recent results, which
have not been discussed in this Thesis, show that whereas striped phases are confin-
ing, the intermediate disordered phase is deconfining (i.e. the string tension between
gauge charges does not grow with the inter-charge distance). This opens exciting
perspectives for the study not only of spin-liquid-like phases in the absence of ex-
plicit plaquette terms, but also the possibility to analyse confinement/deconfinement
transitions.

Major open challenges comprise the engineering of plaquette terms (ring-exchange
and RK) terms, which would be a sound breakthrough in the context of analogue
quantum simulation of dynamical gauge models. However, as our results have
shown, this issue could be sidestepped in the regimes in which QDM-like physics
can be attained through the sole dynamics of the coupled mass-gauge fields in 2-D
QLMs, for which feasible experimental schemes, including the minimalistic method
discussed in this Thesis, have been proposed.
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Appendix A

Derivation of the effective model
via Magnus expansion

For the simplified case of a time periodic Hamiltonian, i.e. assuming that the fre-
quencies wy = A and wy = A + U are integer multiples of w = |A — U| (w1 = mw,
wy = mpw), we may obtain the same effective Hamiltonian of Egs. (3.12) and (3.14)
employing a formal Magnus expansion [63, —214] or Floquet analysis [100]. Fol-
lowing the presentation of Ref. [214] we may express the effective Hamiltonian as a

series in 1/w as Heg = H® + H](\}I)E +0 (ﬁ), ultimately resulting from an integral
over time on period T = 27t/w. The lowest order term

1 /T
HO — — / At H(h) (A1)
T Jo
provides Eq. (3). The first order correction in 1/w may be expressed as [212]

_i rT 1)
1 —— / dty [ " an[H(k), H(t)] (A2)

If the time periodic Hamiltonian is given by a Fourier series H(t) = Hy+ Y, V("eint,

then

11 . .
H = - ; - ([v<">, v — v, Ayl 4 [V, Ho])- (A3)

In our case, the Fourier series is restricted to the following three terms:
0
yEm) — _ Fig % Hyop, (A4)

where Hy,p = )0 é;r 11,Cjc- Equation (2) can be recovered by expanding the expo-
nential term e W"r = 1 + (e*tU — 1)njs. Then

() = (Jo+6](1)) (eif[A*lﬂ VO 4 itAp@) 4 QAT FE) H.c.) (A.5)
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with

(1 t 4 +
v = Zdj,ocj-Hﬁ - dj,odj+1,¢7'
i

Ve =y (d;r,(, - 5j,a> (d;‘rﬂ,a - CAJ'“"’) ’

o

7(3 At t

Ve = ch,adj+1,a —dj,djt1,00
jo

A

where we employ the correlated annihilation operator d;, = n;5¢;,. Neglecting
terms of order Joé] and §]? we may write

2 2 2
g _ I |:V(l) V(l)*} o [V(z) V(z“} 4 Io [V(s) V(z)q +0(6])
ME A—U ’ A ! A+U ’ ’
(A.6)

which after some algebra yields Eq. (4).
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Multi-component phase

Two-particle model

We assume for simplicity B = 1, hence we consider the model described in Eq.(3.19).
We are interested in the two-particle problem, with one 1 particle and one | particle.
Let |D(j)) be a doubly occupied site, and |S(j, j + 1)) a singlet state placed in sites j
and j + [. Then:

AlD(j)) = - % [091S(7,j + 1)) + e #[S( — 1,/))] + TID()),
|G j +1)) = ‘% [€#[D(j +1)) + ¢ *|D(j))]
5]1

156G —1,j+ 1)) +1G,j +2))],
RS j +1)'= - % [15G = 1,7+ 1) +15G+1,j+1)
+[SGj+1 = 1))+ 1SGij+1+1))]

Let us define

TZ M D(1) (B.1)
1
1S(j, k Z KI+i72)|5(1,1 4 f)) (B.2)

1

with k the center-of-mass momentum of the pair, and L the number of sites. Then
Het = T Hett (k), with Hegr(k) = Ho (k) + Hi (k), where:

Hy(k) = U\D( ))(D(k )!— ( YIS R (D (k)| + Hec],
H; (k) Z S(j+1,k)| + H.c], (B.3)
with A(k) = v/26]; cos(k/2 — ¢) and B(k) = 6]; cos(k/2). We may diagonalize Hy:

Hy(k) = Ey. (k)| P(k))(P(k)| + E- (k)| P(k)) (P(K)], (B.4)

where the eigenenergies are

~ ~ 2
E(k) = % + \/@) + AR, (B.5)
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and the corresponding eigenstates are
|P(k)) = cos6(k)|D(k)) + sin0(k)|S(1,k)),
|P(k)) = —sinf(k)|D(k)) 4+ cos8(k)|S(1,k)), (B.6)

with tan6(k) = W. The Hamiltonian Hy characterizes deeply-bound pairs.

We may then split Hy (k) = H¢(k) + H,(k), where

Hu(k) = —B(k) }_[IS(j,k))(S(j+ 1,k)| + H.c] (B.7)

j=2

determines the physics of broken pairs, where the dynamics of the relative coordi-
nate j is given by the hopping rate B(k), and

H.(k) = — B(k) (sin8(k)|P(k)) + cos 8(k)|P(k))) (S(2,k)| + H.c, (B.8)

characterizes the coupling between deeply-bound and unbound pairs. Note that
such a coupling is also given by B(k).
Let us consider ¢ = 7. In that case,

~ ~ N 2
EL(k) = %i \/(él) + 262 sin?(k/2). (B.9)

- N2
The minimal energy is clearly for k = 7, Ep = E_(r1) = ¥ &4/ (%) +26)2. If

existing, bound pairs will quasi-condense in |P) = |P(7)). Crucially, B(r) = 0,
and hence H. = 0. As a result, |P) remains a deeply-bound two-particle eigen-
state, fully decoupled from the unbound pairs, irrespective of the value of U/6];.
On the contrary for ¢ = 0, i.e. without occupation-dependent gauge (occupation-
dependent gauge), the bound pairs are fully connected with the rest and cannot be
formed unless U < 0 dominates. For ¢ in the vicinity of 77/2 the coupling H. may be
considered perturbative, and deeply-bound pairs due to the occupation-dependent
gauge still exist even if ¢ is not exactly 7 /2.

The existence of these pairs that are deeply-bound by the occupation-dependent
gauge rather than by attractive interactions is crucial to understand the nature of the
MC phase. The metallic phase is stable if Ep/2 > Er, with Er the Fermi energy of
the metal. However, for decreasing U > 0, Er < Ep/2, and hence it is energetically
favorable to pair part of the Fermi sea into |P) pairs, until reaching an equilibrium
at a new Fermi energy E; = Ep/2. This partial pairing, and the corresponding
coexistence of a two-component metal and a superconductor explains the MC phase,
and its ¢ = 3 central charge. For E_(71) < —25]; (which occurs at U/5]; ~ —1) the
Fermi sea is completely depleted, and the system enters the fully-paired (SS) phase.

Momentum distribution

The momentum distribution of the T component in the |P) state is

P ik(i—1i At A
n% (k) = Zek(l D(P|et.¢;4|P),
ij
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where
o A 1
(Plef1é4IP) = I (B.10)
N N N . . —sin(20(m)) ;
(Plef 1 48141P) = (P&] 1 1614|P)* = L(ﬁ())em/z, (B.11)
2
At A 4 oA —sin“(6())
(Plef316141P) = (Plef 5 41P) = —22 00D (B.12)
and other correlations are zero. After normalizing:
Py _ L[ . .
ny (k) = = {1 V2sin(26(7r)) sin(k/2)
— sin? 0(rr) cos(2k)} (B.13)

. o 2 . _ u -
with 0(7r) = arctan [)( + VX + 1} , with x = NIk For the | component the ex
pression is identical. This expression is in excellent agreement with the blurred mo-
mentum distribution that is found in our numerics in the MC phase (Figure 3(c)) in

addition to the partially-depleted slab-like Fermi sea.
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