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Abstract. The standard model of cosmology describes relatively in a satisfactory way, the major stages of the
evolution of the observable universe, over time. Despite its success, it presents some problems that constitute
a puzzle nowadays. Among them, we cite the horizon problem, which is the purpose of this paper to study and
present the different solutions that are available in the literature.

The inflationary model, originally introduced by A. Guth in 1981, was designed to solve the horizon, flatness
and entropy problems. Since then, we are faced now with more than 200 inflationary models. However, space
missions, for to test the validity of some cosmological models (Planck 2013, 2015...) show that the universe
follows the simplest proposed inflationary theories.

In this work, we will study some models proposed as a solution to the horizon problem.

1. Introduction
The standard model of cosmology (ACDM), also known as the concordance model, is the
mathematical support of the big bang cosmological model. It is relatively successful in describing
the evolution of the observable universe, but it has shortcomings such as: horizon problem, flatness,
entropy of the universe, origin of the homogeneity of the universe at large scales. Inflationary model
was proposed by A. Guth (1981) [1] to cure these shortcomings, especially the horizon and flatness
problems.

But still the horizon problem a field of interest for cosmologists. This paper is organized as
follows: in section two we review briefly the standard model of cosmology. In section three we
present the different types of horizon. We will show how the horizon problem arises in section four.
Next we will show different solutions of the horizon problem. Then, in section six we estimate the
particle and event horizons for CMB from the surface of last scattering. Finally we conclude.

2. The standard model of cosmology
The relativistic cosmology is based essentially in these three ingredients [2]:
e The cosmological principle which states the homogeneity and isotropy of the universe. This
leads to adopt the Friedman-Robertson-Walker metric:
2
ds® = c*dt? —a(t){1 dr
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where a (t) is the scale factor, measuring how the universe is expanding, ¢ is the proper time

measured by an observer at rest in co-moving coordinates, that is (r,&,(o) =constant , in

other words, coordinates that remain fixed with the expansion of the universe and & is the
spatial curvature, taking on values k =0, +1, -1 (after rescaling) which correspond to a flat
universe, a closed universe and an open universe respectively.

e  Weyl postulate according to which the universe should considered as a perfect fluid,
e The general relativity is assumed to be the correct theory of gravity on cosmological scales.

We suppose also that the perfect fluid, with energy density p(t) and pressure p(t) that is filling
the universe is made of different constituentsi, each having an energy density p, (t) and pressure
D; (t) . These constituents are: matter (ordinary and dark), radiation and dark energy.

The equations describing the evolution of the universe are the Friedman equation

2
/ 871G Ak
H2: g = — 4+ ——— 2
(aj 3 r 3 4 @)
and

a AxG A
—=—(p+3p)+— 3
; 3 (p+3p) 3 3)

where H = a/ais the Hubble parameter and A is the cosmological constant.
By combining between these two equations, we find
p=-3H(p+p) ©
which translates the energy conservation of the universe. Note that a dot placed in a variable means
derivative of this variable with respect to time.

To describe the evolution of the universe entirely from the big bang to now, we need to set an
equation of state relating the pressure to the energy density of the universe:

p=wp ()
with @ a proportionality constant, such that
0 for relativistic matter
w=<1/3 for radiation (6)

—1 for cosmological constant

It is also possible to consider other constituents such as quintessence, a certain hypothetical
form of dark energy with —1< w<—1/3, proposed to explain the acceleration of the universe [2].

According to recent cosmological data, the universe is flat [3], so we put £ =0 in the Friedman
equation (2). The scale factor evolves differently from a dominated era to another. The table 1
below shows its evolution for different dominated era.

Table 1. Scale factor for different dominated era.

Density p, Scale factor a(t)
Radiation domination a™ 2
Matter domination a> t*
Dark energy domination Act /8 G e’
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Astronomers define the red shift z of an object as the ratio between the detected wavelength to
the emitted wavelength:

+z=2% — gz, ) a(1,,) (7)
1%

em

For one constituent i of the universe, we can show that the energy density p, reads in terms of
the red shift as:

p,=po(1+2)" (8)
We define the critical density:
3¢’
e ®
and the dimensionless density parameter:
Q= pﬁ (10)
For the component i, it reads:
Q= g— (11)
Substituting (8), (9) and (10) in (11) we get:
,(1+2) )
Q, =Q"°H°H2—(z) (12)

Adding all the Q, leads to the following Hubble parameter:

) 1/2
H(Z)ZHO [ZEI-O(I_FZ)MHWJ

i=1

(13)

3. Types of Horizons
The proper distance is defined as the distance between two simultaneous events at proper time t
measured by a fundamental or an inertial observer [2].

d,= a(t)Idr (1—kr2 )71/2 :ca(t)]ldt' I:a(t')]fl (14)

R is the radial co-moving coordinate of the measured point. We have to mention, here, that it is
the physical distance defined as R(t) = a(t) r. t,is the time of emission of the photon, whereas ¢,
is the time of detection, at present.

3.1. Event horizon
It is the hyper-surface boundary between the future events that will be observable by A, and those
that will never be seen by A. So event horizon can be expressed as [2]:

H, =lim(~d, ) (15)

t—>o©

3.1.1. Event horizon at the present time.
At infinitely time, the red shift is zero. So the event horizon now can be expressed as:
0 -1/2
H, = [ dx (Q,0(1+x) +0,,) (16)

Note that we have neglected the parameter of density of radiation , as its value is small compared to
that of matter and dark energy.
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3.1.2. Event horizon at arbitrary time.
At arbitrary time, we can show that the expression of the event horizon is:

H Ly de| (@ (1+x) (1+z) +Q o

.= x| 1Q,, (1+x) (1+z) + )} 17
H,(z) L [( (1) (1+2) A a7

where we corrected the upper limit of integration in the formula given in reference [4].

3.2. Particle horizon
If we assume that the universe has finite age and because of the limited value of the light velocity,
any observer A can define two regions in 3D (t=to), for some fixed value of time. The one contains
co-moving points already seen by A, the other is its complement. Particle horizon takes into
account only the past events with respect to A. The horizon particle is defined [4]

H,=limd, ()= cifdt' [a(e)]" (18)

So, in this sense, particle horizon at present is the proper distance a photon of light emitted
initially at £ =0 travelled until now ¢,.

3.2.1. Particle horizon at the present time.
By using the fact that light is infinitely red shifted initially at #=0, following reference [4], we
obtain the expression of the particle horizon at the current proper time:

H () :Hiozdx [(Qmo (1+x) +Q,, )}m (19)

where the subscript 0 means the values of the Hubble and density parameters as measured at
current time.

3.2.2. Particle horizon at arbitrary time.
At arbitrary time, we can show that the expression of the particle horizon is:

H,(2) = [ [(@u (14 2) (152 +0,,)| (20)

Note that we corrected a mistake that appeared in reference [4] regarding the lower limit of
integration.

3.3. The co-moving horizon and the Hubble radius

It is important to differentiate between the co-moving horizon and the Hubble radius. We define
a Hubble sphere as a spherical region in the universe delimiting two regions, in such a way, objects
outside this sphere are receding at a speed greater than the speed of light ¢ . Thus the Hubble
radius is defined as

R, =cH™ 21)

The Hubble radius has no physical meaning except that it is used as a useful length scale. It is
often confused, by mistake, with the size of the universe, though this later is larger.

We define the co-moving Hubble radius [5]:

rw—Huhble = (aH)_l (22)

4. The Horizon problem
The universe displays a pronounced degree of large-scale homogeneity. CMB is the observational
evidence. Measurements show that it has a thermal blackbody spectrum with a temperature highly
homogeneous.

T=(27 £10°)K (23)



Fourth Algerian Conference on Astronomy and Astrophysics, 2017 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 1269 (2019) 012017  doi:10.1088/1742-6596/1269/1/012017

The photons we see today are those emitted from the surface of last scattering (380 000 years).
At that time the particle horizon was small enough that if we could see it today at the spherical surface
of last scattering, its diameter will subtend an angle of 1°. So, how did different opposite regions in
the universe get into causal contact?

For some cosmologists, in Friedman-Robertson-Walker metric the horizon problem doesn’t occur
because, by assumption, we postulated a homogeneous and isotropic universe [2].

5. Solutions to the Horizon problem
To solve the problem of horizon, several ideas emerged in the literature. The well known is the
solution involving inflationary scenario in the early universe.

5.1. Inflationary models
It was A. Guth who, first, used the concept of inflation [1]. According to him, from 10% s to 10" s,
the universe underwent an accelerated expansion during which the scale factor increased by 10°°.
The solution to the horizon problem is found by bringing the initially disconnected regions into a
region where they are causally in contact.

5.1.1. Mechanism of inflation.
The universe was in causal contact during the decoupling and the Hubble radius was about 1°. To
solve the problem, the horizon should be greater than the size of the universe.

The necessary condition is

d ( aH )_1
dt
where (aH )_1 is the co-moving Hubble radius. Relation (19) has an easy interpretation: During

<0 24)

inflation, the Hubble radius as measured in co-moving coordinates decreases.

5.1.2. Condition for inflation.
We should mention, here, that inflation is imposed in the standard model of cosmology only in the
early universe from 10 s to 10*° s. Elsewhere the standard model is not changed. So we should find
a condition for inflation to occur. We define the parameter &= ~-H / H .
The condition for inflation is:
g=-H/H?=—dln H/dN <1 (25)
We define the e-folding

a(e)~ exp| [H(t)dt [=e (26)
The e-folding measures how much inflation needed to solve the horizon problem (and flatness
problem). In reference [1], it is found that the e-folding should be N~60 to solve the horizon
problem. During inflation, the ~ 60H ~' Hubble time elapsed only ~60H ~1~1073*s During this
period, the Hubble volume increased from 10™*m to 107> m. The duration of inflation should be
enough so that the parameter & remains small for large Hubble time. So we need to define another

parameter which takes account of this fact:
& dLne

n=—=—--In«1 27)

Despite the success of the inflationary model of A. Guth to solve the horizon problem, soon it
showed some discrepancies (Problem of formation of bubbles in the early universe, eternal inflation

)

So other inflationary models were proposed by postulating new fields. We have now in the
literature more than 200 models that differ from each other.
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For this reason, one can argue that inflationary concept is not a final solution to the horizon
problem.

5.2. Other solutions

5.2.1. Solution of R, = ct universe without inflation

In series of paper [6], [7], [§8],F. Melia showed that
e The horizon problem emerges only for ACDM model,
e No need of inflation scenario,
¢ Invoking Birkhoff theorem, he argued that the time ¢ involved in the expression of the proper
distance should differ from one observer to another. So, we can write:
R(Z)=a(t)r(t)—)R=dr+af (28)
Melia arrived to the result
R, =cH'=ct (29)
R, being the Hubble radius.
The solution of F. Melia solves the horizon problem naturally. However, his ideas are criticized
in the literature [9].

5.2.2. Solution by P. Magain.

Another idea emerged in the literature by P. Magain [10]. He argued that cosmic time doesn’t flow
uniformly. In reference [10], the author supposes that an observer in an expanding universe will
feel a cosmic time 7z flowing at a variable rate so that the he will always measure a null apparent
curvature. His idea leads to solve the horizon problem without inflation, as regions in the universe
not causally connected will evolve independently for each other and each one will has its own
proper cosmic time. Also the acceleration of the expansion of the universe is explained without
introducing dark energy or dark matter.

6. Cosmological horizons for CMB
Isotropy is exhibited by the Cosmic Microwave Background (CMB) radiation and it can be shown
that isotropy guaranties homogeneity [2]. This radiation was studied by COBE satellite. The CMB
that we observe today comes from the surface of last scattering with a red shift z, =1089.
Hubble constant:
H, =70.1kms™' Mpc™ (30)
Density parameters:

Q, =0278, Q =5x10", Q, =0.722. (31
The proper distance to the mean value of the surface of last scattering is:
8.016 10° "¢’ 3 -2
4, =200 dr @, (14 ) +0,, | =1404235Mpe (32)
‘ 0

The result found, by using maple 2016, is in agreement with that in reference [4].
The present value of the event horizon is, by using relation (17), is:

2998 10°

¢ 70.1
Notice that equation (12) can be used to calculate density parameters at any time ¢ of red shift z

-1 3 3 12
[l 5] Qo (1) (1+1089) +0,, |~ =17.769Mpc (33)

089
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The present value of the event horizon is, by using relation (20):
2.998 10" 10° 3 3 -2
H,(z)= j dx [( o (14 x)’ (1+1089) +QAO)} = 0.0004 Mpc
1089
These Values are dlfferent from that found in reference [4], because of an error estimating the

upper and down limits of integration, there. The value found there is 14577 Mpc for particle horizon
and 4825Mpc. for event horizon.

Both the values of event and particle horizons to the surface of last scattering are smaller than the
proper distance.

7. Conclusion
In this paper, we have studied the horizon problem and presented three different solutions : solution
using inflationary model (A. Guth), a solution without inflation (F. Melia) in the framework of
R_h=ct model, and a solution with proper time flowing non uniformly. We estimated the particle and
event horizons of CMB Radiation at surface of last scattering and found that their values are smaller
than the proper distance from SLS to now.
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