. symmetry 27

Article

Observable Properties of Thin
Accretion Disk in the y Spacetime

Bobur Turimov and Bobomurat Ahmedov

Special Issue

Noether and Space-Time Symmetries in Physics—Volume |l

Edited by
Prof. Dr. Ugur Camci, Prof. Dr. Ashfaque H. Bokhari and Prof. Dr. Bobomurat Ahmedov



https://www.mdpi.com/journal/symmetry
https://www.scopus.com/sourceid/21100201542
https://www.mdpi.com/journal/symmetry/stats
https://www.mdpi.com/journal/symmetry/special_issues/3905ZD1P16
https://www.mdpi.com
https://doi.org/10.3390/sym15101858

symmetry

Article

Observable Properties of Thin Accretion Disk in the

v Spacetime

Bobur Turimov 123

check for
updates

Citation: Turimov, B.; Ahmedov, B.
Observable Properties of Thin
Accretion Disk in the 7y Spacetime.
Symmetry 2023, 15, 1858. https://
doi.org/10.3390/sym15101858

Academic Editors: Sergey Vernov

and Sergei D. Odintsov

Received: 26 August 2023
Revised: 27 September 2023
Accepted: 28 September 2023
Published: 3 October 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

and Bobomurat Ahmedov

3,4,5,%

1 School of Applied Mathematics, New Uzbekistan University, Mustaqillik Avenue 54, Tashkent 100007,
Uzbekistan; bturimov@astrin.uz

2 School of Engineering, Central Asian University, Milliy Bog St. 264, Tashkent 111221, Uzbekistan

3 Ulugh Beg Astronomical Institute, Astronomy St. 33, Tashkent 100052, Uzbekistan

4 Institute of Fundamental and Applied Research, National Research University TITAME, Kori Niyoziy 39,
Tashkent 100000, Uzbekistan

5 Institute of Theoretical Physics, National University of Uzbekistan, Tashkent 100174, Uzbekistan

*  Correspondence: ahmedov@astrin.uz

Abstract: We study matter accretion in a static, axially symmetric and vacuum geometry describing
the exterior gravitational field of a black hole mimicker called the 7y metric. We evaluate the thermal
and optical properties of thin accretion disks, including the emission rate, luminosity and shadow,
in the gamma spacetime. Also, we explore the radial accretion of polytropic matter fields onto the
central source and evaluate the thermal and optical properties of the infalling gas, such as temperature
and luminosity. The results are discussed in the context of evaluating the possibility that the true
nature of astrophysical black hole candidates may not be a black hole but some exotic compact object

possessing a non-vanishing mass quadrupole moment.

Keywords: vy spacetime; thin accretion disk; radially falling matter

1. Introduction

This paper explores the application of Noether’s theorem and spacetime symmetries
in the field of relativistic astrophysics, particularly focusing on the dynamics of accretion
disks around compact objects. Noether’s theorem, a fundamental principle in modern
physics, relates symmetries to conservation laws, providing insights into the fundamental
nature of astrophysical systems. Spacetime symmetries, in turn, involve transformations
that leave the underlying spacetime structure invariant, enabling a deeper understanding
of the behavior of accretion disks in various astrophysical contexts which are observed
around objects such as black holes, neutron stars etc. and play an important role in energy
transfer, matter accretion, and electromagnetic X-ray radiation emission. Understanding
their dynamics requires a comprehensive theoretical framework that incorporates both
Noether’s theorem and spacetime symmetries.

The study of accretion disks benefits from analyzing various symmetries present
in the spacetime geometry that correspond to the conserved quantities, such as angular
momentum, energy, the Carter constant and mass accretion rate. Spacetime symmetries
involve coordinate transformations that preserve the geometric structure of spacetime.
These symmetries lead to the discovery of conserved quantities, such as and the energy—
angular momentum relation. The interplay between spacetime symmetries and accretion
disk dynamics is thoroughly discussed.

Understanding the symmetries and conservation laws associated with accretion disks
has practical implications for astrophysical observations. By analyzing observational data,
one can infer the properties of accretion disks and the objects they surround.

The recent observation of the shadow of the supermassive black hole (SMBH) candi-
date in the galaxy M87 [1] has been followed by renewed interest in probing the nature
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of extreme gravitational compact objects (see, for example, [2—4]). This can be done by
devising ways to obtain information regarding the object’s mass and spin from observa-
tions while imposing constraints on the possible values of additional parameters related
to black hole mimickers, such as, for example, NUT charges (see, for example, [5]) or
mass quadrupole moments (see, for example, [6]). Such observations may include the
orbital motion of stars in the vicinity of an SMBH candidate, the spectra of accretion disks
surrounding the compact object and the object’s ‘shadow’, such as that observed for the
SMBH candidate in M87. For example, the mass of the SMBH candidate at the center
of the Milky Way galaxy can be measured through the Newtonian motion of S2 stars as
observed in infrared (IR) wavelengths [7,8]. Similarly, the inner edge of the shadow of the
SMBH candidate in M87 provides information about the angular momentum of the central
object [9]. Other parameters of gravitational compact objects can be estimated through
detailed analysis of the thermal spectrum of accretion disks and fluorescent iron lines in low
mass X-ray binaries (LMXBs) [10,11]. An overlap of different observations and different
methods may, in principle, allow to constrain the values of additional parameters and
determine the nature of the geometry surrounding the compact object.

In this paper, we shall consider accretion onto a specific class of static black hole
mimickers and focus the attention on three main features, namely (i) the spectrum of the
accretion disk, (ii) the shadow of the disk and (iii) radial accretion. An accretion disk is a
complex structure formed by diffuse matter being in orbital motion in the close environment
of a massive central compact object, where gravitational and frictional forces compress
and raise the temperature of the orbiting matter, producing the thermal emission of highly
energetic electromagnetic radiation. The frequency range of the produced electromagnetic
radiation strongly depends on the total mass of a central gravitational object. The accretion
rate may be sub-Eddington with extremely high opacity, forming a thin accretion disk,
which is geometrically thin in the vertical direction and has a disk-like shape for the orbiting.
Radiation pressure in the disk may be neglected and therefore the orbiting gas descends
towards the central object following very tight spirals, resembling almost free Keplerian
circular orbits. Thin disks are relatively luminous and generate thermal electromagnetic
black body radiation. Following the pioneering paper by Shakura and Sunyaev [12] on thin
accretion disks, the key properties of thin disks were elaborated by numerous authors (see
for example [13,14]).

A general relativistic treatment is necessary for the description of the inner part of
the accretion disk when the central gravitational object is a black hole. This was first
developed by Novikov, Page and Thorne [15-17]. Simulated optical images of the accretion
disk around the black hole were first elaborated by Luminet [18] and showed that an
intrinsically symmetric black hole produces asymmetric images. This is due to the fact that
the Doppler beaming of the emission by the particles required for centrifugal equilibrium
in the strong gravitational field regime near the black hole produces a strong Doppler
redshift on the receding side of the disk and a strong blueshift on the approaching side.
Also, due to light bending, the disk appears distorted and is nowhere hidden by the black
hole. Simulations, with fully relativistic models for the accretion disk, of the imaging of
various massive candidates for the central gravitational compact object at the core of M87
were recently developed by Mizuno et al. [19] with the aim of constraining the possible
existence of exotic compact objects.

In the present article, we consider matter accretion onto the Zipoy—Voorhees space-
time [20,21], also known as 7y metric [22] or g metric [23-30], which is a static and axially
symmetric solution of the field equations in vacuum describing the gravitational field of a
deformed compact object. This spacetime belongs to Weyl’s class of static vacuum solu-
tions [31-33] and, due to its simplicity and its straightforward relation to the Schwarzschild
solution, has been widely investigated in the past. The structure of the solution was ex-
plored in [34]. Interior solutions for the exterior metric were discussed in [35-37]. Several
studies of the observable properties of the ¢y metric can be found in the recent literature,
including its optical appearance [38], the properties of thin accretion disks [22,39], shad-
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ows and light bending [40,41], geodesics motion [42,43], spinning particle motion [44],
harmonic oscillations of test particles [45] and neutrino lensing [46,47]. Particle motion in
the <y spacetime in the presence of a scalar field was discussed in Ref. [48], while the motion
of charged particles in the presence of a magnetic field was studied in [49,50]. The collision
of massive particles in the vicinity of the singularity was studied in [51]. Its connection to
other spacetimes such as wormholes was discussed in [52,53]. In this article, we build upon
the previous results and investigate the luminosity and shadow of thin accretion disks in
the 7y metric while developing, for the first time, a model of perfect fluid radial accretion
based on [54].

The article is organized as follows. In Section 2, we review the general formalism to
study geodesics in the 7 spacetime. In Section 3, we consider the thermal properties of
thin accretion disks in the 7y metric following the Novikov-Thorne model [15] for black
holes. In particular, we simulate the thermal spectrum of the disk and the optical image of
the shadow. In Section 4, we study the thermal properties of matter radially falling onto
the naked singularity in the -metric and elaborate on its contribution to the luminosity
of the source. Finally, the last Section 5 summarizes the main results and their potential
implications for astrophysical black hole candidates.

2. Geodesics in the y-Metric

In spherical coordinates x* = (t,7,6,¢), the  spacetime is given by the line ele-
ment [20,21]

V=7 [ dy2
ds” = — frd(ct)? + ifyz,l (df + r2d92) + 11 sin’ 0dg? , M)
with
. 2M, . 2M,  MZsin?@
flr)y=1- o h(r,0) =1— o 2 )

The line element depends on two parameters, namely M, and v, restoring the units
G and c, being the gravitational constant and the speed of light. In the first, we see that
M. = GM/c? represents the total gravitational mass of the compact object, which is exactly
the mass monopole. The second v is the deformation parameter, which determines the
departure of the geometry from spherical symmetry and is related to the mass quadrupole
My = (1—9*)M3/(37?). The geometry reduces to the Schwarzschild metric with a horizon
of r. = 2M, for v = 1. Therefore, the 7y metric possesses a naked singularity located at r.
for every value of v # 1. Usually, the mass parameter is taken as m = M,/ due to the
fact that the function f(r) assumes the more common form f(r) = 1 —2m/r. However,
the total mass as measured by far away observers, i.e., the mass monopole, is given by
M, = m, and therefore it is useful and interesting to recast the line element using the
gravitational mass M. in the place of m as done in Equation (1).

The y metric is a member of Weyl’s class of static and asymptotically flat vacuum
solutions of the field equations that possess axial symmetry, and it is related to other
interesting spacetimes besides Schwarzschild through the values of the two parameters. In
Ref. [42], it was shown how the line element reduces to the Levi—-Civita metric for m — oo,
while for a large value of v, i.e., for v — oo, the metric reduces to the Curzon solution [55],
which is the limit of an extremely oblate source. This is immediately visible with the line
element given in the form of Equation (1) as

ds? = — eT2M 1 (ct)? 4 M1 sin? 0dg? 4 @M /T MESREOIE (2 4y 2467) - (3)
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To study accretion in the 7y metric, we must consider the motion of massive and
massless particles in the exterior geometry. The geodesic equation is given by

BATE A =0, it =e, (4)

where x* = dx*/dA is the four-velocity of the test particle, depending on the affine
parametrization A, Iy, are the Christoffel symbols symmetric to the lower index, and
€ = 0,—1 determines whether the particle is massless (¢ = 0) or massive (¢ = —1),
respectively.

It is important to emphasize that in this geometry, it is impossible to separate the
variables in the equation of motion, in general [56]. However, for simplicity, one can
consider photon motion in the equatorial plane 6 = 71/2, which is also the relevant case
for astrophysical situations since accretion disks are expected to settle on the equatorial
plane of the central object. Also, since the line element is static and axially symmetric, we
always have two conserved quantities associated with time translations, namely the energy
of particle £, and rotations about the symmetry axis, namely the component of the angular
momentum of the particle along the axis £. These two constant of motion are related to
Killing vector ¢ and formulated as & = d; and L = dy. We first focus on the motion of
massless particles (i.e., photons) in the 7y spacetime. From a standard textbook algebraic
calculation, one can find that the orbit of the photon in the y-metric is determined by the
following equation:

r-1 M\ /4 oy 2r-1
[frz (1_’w> (614))1 g T =uo. ©

where b is the impact parameter of the photon defined as b = £/, with £ being its angular
momentum and £ its energy as measured from infinity. The function U(r) describes the ef-
fective potential for massless particles. The radius of the photon capture surface 7, and the
critical value of the impact parameter b, are found from the conditions U'(r) = U(r) =0,
which give

1

Toh = M. (2 + 7) , (6)
12y +1\7

ber = M, 4—72(27_1) : @)

It is evident from the outset that the parameter oy must be at least one half, specifically
¥ > 1/2, to ensure the existence of a photon capture radius. Nonetheless, in certain
references, such as [38,57,58], the lower values of y < 1/2 were discussed, which does not
have physical meaning. As expected, for the case when v = 1, b,y = 3v/3M, reproduces
the critical impact parameter in the Schwarzschild case. For v — 1/2, we have b, — 4M,,
while the asymptotic behavior of the critical impact parameter for ¢y — oo is given by
by — 2eM, (where e ~ 2.7 is the Euler number).

From the critical impact parameter, one can immediately calculate the capture cross
section of photons, i.e., the area of the shadow, as ¢ = 7b?%. The top panel in Figure 1
shows the dependence of the capture cross section ¢ on the parameter . As one can
see, the minimum value of the capture cross section is ¢ = 16tM? ~ 50M?2, which is
obtained for v = 1/2, while the maximum value is obtained asymptotically as y — oo and
is o = 47re? M2 ~ 90M?2. The bottom panel of Figure 1 shows the capture cross section of
photons in the equatorial plane {x, y}. The inner ring represents o for v = 1/2, while the
outer ring is o for y — co. This shows the interesting, though somewhat obvious, feature
that even as v tends to infinity, the size of the shadow of the object will remain finite as
long as the total mass of the object remains finite.
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Figure 1. (Left panel) Capture cross section of photon by the 7 object at the equatorial plane.
(Right panel) Captured cross section of the photon by the - object at the equatorial plane in the
(x-y) plane. The outer ring represents the maximal capture cross section, while the inner ring is the
minimal capture cross section of the photon.

Now, we focus on the motion of massive particles. As mentioned, the symmetry of
the line element (1) implies the conservation of energy and angular momentum of the test
particles. To describe particles on accretion disks, we restrict our attention to circular orbits
in the equatorial plane so that the particle’s four-velocity is x* = (£,0,0,¢). The explicit
expressions for the specific energy &, specific angular momentum £, and angular velocity
Q) of the test particles at a radius r as measured by a distant observer can be obtained from

" — 8
\/ =8t — %8¢
QO
=800 ©)
—git — V2gyyp
o= _ [ 8w (10)
dt Spp.r

Our aim is to study the stability of circular motion and find the location of the
marginally stable orbit, also known as the innermost stable circular orbit (ISCO), around
the source. The radius of the marginally stable orbit is responsible for the stationary point
of the specific energy and specific angular momentum of test particles, which can be found
from the conditions d€ /dr = dL/dr = 0. In the < spacetime, this takes the form [49,50]

re=M, (3414 5—%,. (11)
% v

The two radii coincide at r4 =r_ = M, (3 + \@) for v = 1/+/5; for v < 1/+/5, there
are no marginally stable circular orbits, and stable circular orbits are allowed at every
distance from the singularity r,. Notice that, in general, for v > 1/ \/5, there are two
radii for marginally stable orbits. The physically relevant one for the description of the
inner edge of an accretion disk is the outer radius v = rps, which has maximum value
rmaX = (3 +1/10) M, at ¥ = \/2/5. Finally, the asymptotic behavior of the marginally
stable orbit is found as rms — (3 + \/g)M* for v — oo. See Figure 2 for details.

Note that there is another type of circular orbit for test particle particles usually called
the marginally bound orbit (MBO). In this orbit, the energy of the test particle should be
equal to its rest energy i.e.,, £ = 1. The MBO radius ), in the y-metric is found as the
solution to the following equation:
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l—ZM* T qr— M, —2yM, (12)
yr ) yr—Mi— M,

It is impossible to find such a solution in analytical form; however, one can find
the dependence of the MBO radius from the parameter v numerically as can be seen in
Figure 2. Keep in mind that the MBO is always located closer to the compact object than
the marginally stable orbit. In the case when « = 1, the solution of Equation (12) reduces
to rmp = 4M,, which is the known value for the Schwarzschild spacetime, while for the
large value of 7y (i.e., in the limit of the Curzon spacetime), the MBO radius goes to the
asymptotic value of rp, = 3.16 M.

50

Figure 2. The characteristic radii, namely, marginally stable rs, marginally bound r,,;,, photonsphere
Tph and critical impact parameter b, are functions of the 7y parameter. The black points represent
radii in the Schwarzschild spacetime. The horizontal dashed lines are responsible for the asymptotic
of each curve, respectively. The shaved area represents the interior region of the singularity limited

by 7.

Figure 2 illustrates the dependence on - of the characteristic radii, namely, singularity
r+, marginally stable rms, marginally bound rp,,,, photon capture 7, and critical impact
parameter for photons b.r. As one can see, with the exception of the critical impact pa-
rameter, all radii decrease with < for oblate sources, i.e., when ¢ > 1. Also, the radius
of the marginally stable orbit for prolate sources, namely when 7y < 1, grows to the max-
imum value (3 + v/10) M, for v = v/2/5 and then decreases up to asymptotical value
(3 +v/5) M., as shown in Figure 2. In principle, this behavior of the marginally stable orbit
can be explained as follows: test particles follow geodesic trajectories which are determined
by the gravitational and centrifugal forces. In the range 1/2 < v < 1/2/5, the gravitational
force dominates, while in the range /2/5 < y < oo, the centrifugal force prevails. Another
interesting feature of the y-metric is that photonsphere decreases while impact parameters
increase with the increasing of the v parameter. It also indicates the difference of the *y
spacetime from other spherical symmetrical spacetimes. This effect arises due to the specific
properties of the spacetime. It is well known that the gravitational force is mainly described
through the zero-th component of the metric tensor, i.e., g¢. In contrast, the centrifugal
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force is described by gyp, which depends on the y parameter. Therefore, the critical impact
parameter of the photon monotonically increases with the increase in the 7y parameter,
unlike the photosphere, and even it can be greater than the radius of marginal orbit in the
case when < ~ 5. Note that the asymptotics of the critical impact parameter is located at
ber = 2eM,., which can be easily found in Figure 2.

It is also interesting to consider the orbital velocity of the test particles as measured by
a local frame. In Ref. [59], it was shown that the orbital velocity of test particles in the y
metric is given by

_ TM.
v_c%r_M*_vM*. (13)

In the Schwarzschild spacetime, the above expression reduces to v = ¢/ M./ (r —2M.),
while for the Curzon spacetime (i.e., v — o0), it becomes v = ¢y/M../ (r — M..). Figure 3
shows the radial dependence of the orbital velocity for different values of 7y (top panel).
As expected, the orbital velocity of the test particle will become equal to the speed of light
at the photon capture radius. Also, it is easy to check that in the Schwarzschild case, the
orbital velocity of a test particle on the marginally stable orbit s equals half the speed of
light, i.e., vms = ¢/2, while in the Curzon case, it becomes vps = cV/ V5 =2 ~ 0.25¢. The
maximum orbital velocity for a particle at rms iS UVmax = ¢/ /3 ~ 0.58¢, and it is obtained
for v = 1/2. The bottom panel of Figure 3 shows the dependence of the orbital velocity of
test particles at the marginally stable orbit on the parameter +.

20 0.53
15 0.52
0.51
=10
0.50
0.5
0.49
0.0 1 2 3 4 5 6 7 8 05 1 5 10
r/M, Y

Figure 3. (Left panel) Radial dependence of the orbital velocity of a test particle orbiting around
the 7y object at the equatorial plane for the different values of the v parameter. (Right panel) The
orbital velocity of the test particle at the position of the marginally stable orbit s is a function of
the 7y parameter.

3. Accretion onto the y-Metric: Thin Disks

We now consider the thermal properties of thin accretion disks following the frame-
work originally developed for black holes by Novikov-Thorne [15] and extend the treat-
ment to the  spacetime. The Novikov-Thorne accretion disk is a theoretical model of an
accretion disk around a massive black hole. However, this model is based on the principles
of general relativity, and it provides a detailed description of how matter spirals into a
black hole. However, this model can be applied to the exotic object, such as that given
by < spacetime. The Novikov—Thorne model incorporates the effects of general relativity,
which describes the curvature of spacetime around massive objects. In the vicinity of a
black hole and exotic objects, the spacetime is highly curved, leading to phenomena such as
gravitational time dilation and frame dragging. The accretion process around a black hole
or an extremely compact object is possible in the region r > rms, where s is the radius
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of the ISCO of the test particles. This means that the radius of the marginally stable orbit
can be taken as the inner edge of the thin accretion disk 7j, = ms, while the outer edge
Tout can be chosen freely. For our calculation, we fixed it as 7oyt = 30M, >> rin. When
particles falling from rest at infinity accrete onto the central object, they heat up, and their
gravitational energy is converted into radiation and released back into space.

The Novikov-Thorne model has been influential in the field of astrophysics and has
been used to interpret observations of black hole X-ray binaries and active galactic nuclei
(AGN). It provides a theoretical framework for understanding how matter accretes onto
black holes and how the release of energy in the form of radiation can be used to study
these extreme cosmic objects. Therefore, in order to model the thin accretion disk, one
needs to make the following assumptions:

(i) Matter in the accretion disk loses energy as it spirals inward toward the central object
due to friction and gravitational forces. This energy loss results in the emission of
radiation, primarily in the form of X-rays and other high-energy photons.

(if) The accretion disk is envisioned as a flattened, rotating structure composed of gas,
dust, and other matter. As matter falls inward, it follows nearly circular orbits within
the disk, gradually losing angular momentum and spiraling closer to the black hole.
The disk is assumed to be geometrically thin and optically thick, which means that the
radial extension Ar = 7oyt — tin of the disk is much larger than its thickness h << Ar.

(iii) According to the Novikov—Thorne model, there is an innermost stable circular orbit
where matter can orbit the black hole or exotic object without rapidly falling in. The
radius of this orbit depends on the black hole’s mass and angular momentum. Inside
the ISCO, matter rapidly plunges into the central object.

(iv) The innermost part of the accretion disk lies very close to the black hole’s event
horizon—the point beyond which nothing can escape the black hole’s gravitational
pull. Radiation emitted by matter near the event horizon is greatly redshifted, making
it difficult to detect.

(v) The motion of gas particles in the disk approximately follows a circular Keplerian
orbit, and therefore it is well described by test particles on circular orbits.

(vi) The torque in the zone near the inner edge of the accretion disk is negligible.

(iv) The mass accretion rate of the thin disk can be considered constant and it should be
less than the Eddington mass rate. More precisely, M =~ (0.03 — 0.5) Mgq4q, where the
Eddington mass rate is defined as

4GMm,,

Mgqq = cor

where M is the mass of the gravitational object, 11, is the proton mass and o7 is the
Thompson cross section of the electron. In units of solar mass, we have Mgqq =~
233 x 10" (M/Mgp)g-s~ 1.

(vii) The model predicts that the radiation emitted by the accretion disk will have a charac-
teristic spectrum. The spectrum is influenced by factors such as the black hole’s mass
and spin, and it includes a distinctive peak in the X-ray part of the electromagnetic
spectrum.

3.1. Temperature Profile of the Disk

To model the spectrum of the light emitted by the accretion disk, we also need to make
an assumption about the spectral profile. The most natural choice, which is also accurate
enough as a first approximation, is of course to assume that the disk emits with the black
body spectrum. According to the Boltzmann law, the energy emission rate is proportional
to the fourth power of the temperature of the disk i.e., F(r) ~ T4(r). So, the effective
temperature of the thin disk is determined as
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T(r)= , (14)

where o3 is the Stefan-Boltzmann constant. The flux of the radiant energy of the disk can
then be expressed as [16,17]

M o
4rt\/=3 (€ —QL)?

where a prime (') denotes the derivative with respect to radial coordinate r and

§ = \/—81t8rr 8¢y is the determinant of the spacetime metric at the equatorial plane. After

some algebraic manipulations, the energy flux emitted by the disk in the y-metric can be
found as

M WML B - 6y (v + )M +2(y + 1) (27 + 1)M2)
87 r3/2(qr — 2M,)3/2\/yr — M, — yM,(yr — M — 2yM.,)

" {\/ (e -3) (-5 -5)+ \/ 43 [ + E@] + =Tl

D) - o ] - A2 ).

where F(¢plk), E(¢|k), and I1(n; ¢|a) are, respectively, the incomplete elliptic integrals of
the first, second and third kinds defined as [60]

F(r)=

/ " arEe—aoc, (15)

VT

F(oplk) = _— 17

(?1k) /0 1— k2sin? 6 ol

E(¢[k) :/(]¢d9\/1—k2sin20, (18)
¢ a6

M(mglk) = | .
0 (1—n2sin?0)v/1— k2sin?0

(19)

with

.1 | M 1 2 2y +1
¢ =sin! (l—i—), k=——, n= .
4 Y r+1 r+1

In the limiting case v = 1, the energy emission rate reduces to that of the Schwarzschild
spacetime as [16,18]

f(r)zgfjéc\f*)?’(l— >_1{1_ﬁ+ﬁlog\/£t%£;1], (20)

while in the classical limit, the energy emission rate reduces to the expression obtained by
Shakura-Sunyaev in the form [12,61]:

3ME (M. 6M,
= - . 21
Fr) 8 M2 ( r ! r @)
From the above, we can determine the energy emission rate and the effective tem-
perature of the thin disk in the 7y spacetime and consider whether they may be used to

distinguish it from the Schwarzschild spacetime. The energy emission rate and the effective
temperature as given by Equations (16) and (14) are shown in Figure 4.

3 M,
’
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Figure 4. Radial dependence of the energy emission rate (left) and effective temperature (right) of
the thin disk for the different values of oy and a given value of the mass accretion rate M = 0.5Mggq.
The case v = 1 corresponds to Schwarzschild, while the Newtonian limit is given in Equation (21).

Another important feature of the accretion disk is related to the radiative efficiency #
of the disk. This is an important quantity that does not depend on the coordinate system,
and it can be expressed as the difference between the specific energies of the particle at
infinity and at the marginally stable orbit, i.e., § = £ — Ems. Since the specific energy of
the particle at infinity is set to one, i.e., £x = 1, then 5 for the accretion disk in the y-metric
takes the form

. 29+ /572 —1(37—1+/572 -1\
YH+VEP2 -1 \B3y+1++52-1)

The dependence of the energy efficiency # on the parameter v is illustrated in Figure 5. The
maximum value of the radiative efficiency in the y spacetime is approximately ~ 7%, and
is obtained for v = 1/2, while the minimum value is around 5.5%, slightly smaller than
the Schwarzschild case, and is obtained asymptotically as y — oo. Notice that the energy
efficiency in the Schwarzschild spacetime is around =~ 5.7%, which suggests that it may be
difficult to distinguish oblate sources from black holes by measuring 7.

(22)

7.0

6.5

n (%)

6.0r

5.57

1 10 100 1000
y

Figure 5. The energy efficiency of the thin disk is a function of the y parameter.
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3.2. Thermal Spectrum and Image of the Disk

Using the expression for the temperature profile on the disk T in Equation (14) and
assuming thermal black body emission from the disk, we can obtain the spectral luminosity
L(v) of the disk as a function of the frequency of the emitted radiation, which takes the
following form:

87Th cos rout (270 y3rdrd
L(v) = 270X / / ( 4’ , (23)
exp o)1

where yx is the inclination angle relative to the symmetry axis, and ri, and 7oyt are the
locations of the inner and outer edges of the disk. The frequency v is measured by a distant
observer, while v, is the frequency of photons emitted from the accretion disk. These two
frequencies are related to each other through the red-shift factor, i.e., § = v, /v, which can
be expressed as

_ _ -7
yr — M, ')/M*( _2M*> ‘ (24)

g = (1+QT’Sln¢SlnX)\/r>/r—M* _ZIYM* L

Figure 6 shows the total spectral luminosity emitted by the thin accretion disk for the
different values of the inclination angle x as well as the deformation parameter 7. Notice
that at x = 77/2 the spectral luminosity is zero because of the cos x factor in Equation (23).
As one can see in each panel of Figure 6, in the low-frequency region (infrared (IR), optical
and ultraviolet (UV) band), there are almost no differences between the spectra of the
different cases; however, for the high-frequency region, in particular, the X-ray band, there
is a measurable difference between each curve. Also, the frequency corresponding to the
maximum depends on the value of 7, suggesting that it could be possible in principle to
test the nature of the geometry via such kinds of observations.

In order to better understand the optical properties of the geometry in the oy metric and
investigate its viability as the description of the exterior of an astrophysical exotic compact
source, it is useful to consider its shadow, simulating the image of the thin accretion as
pictured by a distant observer. It is assumed that the distant observer is static relative to
the coordinates (r, 8, ¢), i.e., observing the compact object from a fixed distance much larger
than the characteristic radii of the spacetime and at a fixed inclination angle, while the
emitters, i.e., the particles on the disk, follow Keplerian orbits. To evaluate the frequency
shift of the photons emitted from the accretion disk and received by the observer, one
can easily use the redshift factor g, which is given in Equation (24). As we mentioned
before, the inner edge of the disk is located as the marginally stable orbit r,s, while the
outer edge is to be chosen arbitrarily. Figures 7-9 show the shadow of the thin disk in
the y-metric for the different values of 7y and different inclination angles. As previously
indicated, it is important to note that the distortion parameter must exceed one half for
meaningful results (y > 1/2). If this condition is not met, the impact parameter of the
photon will yield complex values. Consequently, the cross section of the photon interaction
with a 7 object is well defined only when 7y > 1/2. As one can see from each figure, the
temperature of the disk (as well as energy emission rate) becomes large for small values
of the v parameter, while for the largest value of the 7 parameter, in particular, in Curzon
spacetime (i.e., v — o0), the temperature of the disk will be low.



Symmetry 2023, 15, 1858

12 of 20

10%

_ 10%
Th

E 1034

S 1032
~_
-

1030

\ 1028

105 10 107 108101 105106 107 108 101

1038 1038

’_‘1036 1036
TV)

5 10¥ 10%

Z 10% 10%
~
=~

1030 1030

1028 1028

105 1016 107 10'8 1019 105 10 107 10'8 101
v [Hz] v [Hz]

Figure 6. The spectral luminosity of the thin disk is a function of frequency for the different values of
the -y parameter for the value of accretion rate M = 0.5Mgqq.
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Figure 7. Image of the thin accretion disk surrounding the gravitational object for the different values

of v parameter observed from inclination angle 6, = 17° between distant observer side and normal

to accretion plane.
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Figure 8. Image of the thin accretion disk surrounding the gravitational object for the different values
of v parameter observed from inclination angle 6,5 = 60° between distant observer side and normal
to accretion plane.
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Figure 9. Image of the thin accretion disk surrounding the gravitational object for the different values
of v parameter observed from inclination f,s = 80° between distant observer side and normal to

accretion plane.

4. Accretion onto the y Metric: Radial Infall

In this section, we discuss the radiation emitted by radially infalling matter onto
the naked singularity of the v metric. This is another aspect of matter accretion onto
compact objects that may be relevant for observations of astrophysical black hole candidates
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and has not been thoroughly investigated in theoretical models of black hole mimickers.
Following [54], the mass flux and energy momentum tensor of the infalling matter are
given by

J*=pu", Ty = (P+p)uaup+ Pgup, (25)

where p and P are, respectively, the mass density and pressure of the matter, and u* = x* is
its normalized four velocity. According to the Noether theorem, the conservation of mass
flux and energy flux can be expressed as

vﬂé]a:()/ vﬂé gzol (26)

where V, stands for the covariant derivative. For simplicity, we consider radially infalling
matter onto the naked singularity in the equatorial plane (¢ = 71/2) and the four-velocity of
matter reduces to u® = (u,u",0,0). In general, even for a spherically symmetric gravitating
object, the matter in the accretion disk will move in an azimuthal direction. However, for
simplicity in the Bondi accretion model, it is negligible (see, e.g., [54]). By integrating
Equation (26), we obtain

pu’\/—g = const, (P+p)usu’\/—g = const, (27)

and using the normalization of the four-velocity, hereafter simple algebraic manipulations,
we obtain the following expressions:

ui = f7 +u2(£>72_1, h= <1 - 1(\;)2 (28)

where uy = —f7dt/dA and u = u” = dr/dA. Note that in the Schwarzschild spacetime, (i.e.,
v = 1), Equation (28) takes the simple form u% =1—2M.,/r + u? as written in Ref. [54].
Taking into account Equation (28), Equation (27) is rewritten as follows:

Cy = pur’G(r), (29)
P 2
C = (1 + p) (f’Y + qu(r)) , (30)
where
2 2 f 7y -1
G(r) = fr—pt=7, H(r) = (h) ) (31)

Hereafter differentiating Equations (29) and (30) and eliminating dp from the final
expression, one can obtain

d 't +u?H (r) du u?H(r)
V2= In(~G(r)) - 72(1[7 THD) ]dr +— {VZ - fVJrqu(r)} =0, (32

which can be satisfied only if the expressions in both brackets are zero. Now we focus on
finding the critical distance . at which matter can start to fall onto a central object. Of
course, the radial velocity u and function V depend on the critical distance. Hereafter
performing simple algebraic manipulations, the critical radial velocity u. and function V;
can be found as
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v—1
u? = Z\:*f - | ) (33)
r2G(r
TZH(T)drll’l( H(r)) r=rc¢
1
V= 2 d 2G(n) ' G4
7 r2G(r
1+*drln(l'l(r)> r=r¢

The quantities 1. and V. indicate radial velocity and radial function, which are mea-
sured at the position of the critical distance. One can see from Equations (33) and (34)
that in the case when 7 = 1, we obtain u2 = M, /2r, and V? = u2/(1 — 3u?), which is
shown in Ref. [54]. Here, u% must be less than 1/3, which leads to r. > 1.5M,. Since the
left-hand side of Equation (34) is positive, then the right-hand side also should be positive,

which means
frr d r2G(r)
1+ —In
M, dr H(r)

>0. (35)

r=r¢

The above expression represents the dependence of the critical distance that matter
starts to flow onto the central object from the 7 parameter. In the presence of the y
parameter, the critical distance r, will be slightly different. The dependence of the critical
distance at which matter starts to flow onto compact objects from the -y parameter is shown
in Figure 10.

Tc

4 + /8 — 742
s 2 Y (36)

Y

2.0 f

re

1.0/ —

05 06 07 08 09 1.0 1.1
Y

Figure 10. Dependence of the critical distance . from the 7y parameter.

Here we examine the accreting of polytropic gas onto the black hole. To do this, we
consider the polytropic equation of state

P =Ko’ = Kp!*a (37)
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where I' is the Poisson adiabatic index, n is the polytropic index and K is a dimensional
constant. It is important to note that the polytropic equation of state is an approximation
that assumes certain idealized conditions, such as the absence of phase transitions and
chemical reactions. It provides a simplified representation of the behavior of a system
under specific circumstances and is often used as a starting point for more detailed analyses
or simulations.

The speed of sound in the polytropic medium can be determined as ¢ = dP/dp =
/KT p'=1, while the temperature of matter is defined as T = P/p. Then constants in
Equations (29) and (30) can be rewritten as

Cy = T"ur®F(r), (38)
C = (1+(n+1)T)2(f7+u2H(r)), (39)
and
2 (n+1)T
K st (40)

At infinity, the radial velocity should be zero u = 0 and the temperature will take
some non-zero value Ts ~ 104K of the local interstellar medium. We cannot find constant
C;, and the other constant C, can be found

Co~ [1+ (n+1)Tw)?, (41)

and on the other hand, taking into account Equation (40), Equation (39) can be rewritten as

(F7(re) +12H(re))°
(f7(re) + (1 — m)u2H(re))?

Cy =~ ) (42)

which allows one to write

o1 [ () +uHE) )
S+ 1| fr(re) + (1 —n)uH(re) ’
The critical temperature T, can be found as
_ L [freg e )
L= n+1 { nuZH(rc) 1 (“44)
The ratio of temperature is
_ 3/2 -1
Te _ [f1(r) +uBH(re) ] () +u2HE) us)
Teo nuZH(rc) fr(re) + (1 —n)uzH(rc) ’

The ratio of the matter density can approximately be found as p/pe = (T/ Too)3. The
dependence of the temperature and density of the falling matter onto compact objects
are illustrated in Figures 11 and 12. As one can see, the effect of the 7y spacetime on non-
relativistic polytropic gas is valuable in comparison with that on the relativistic one at
the small values of the 7y parameter. On the other hand, our analyses demonstrate that
both the temperature and density of relativistic polytropic gas are always greater than
non-relativistic polytropic gas. Hereafter making simple algebraic manipulations, another
constant C; can be found as
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frir) +uzH(re) 17"
Cp = ucr?T! = ucrf[ ’;M%H(;C) < -1 ,

which is useful to estimate the luminosity of polytropic gas. Here, we discuss the luminosity
of the polytropic gas in two cases: relativistic and non-relativistic. The expressions for the
luminosity are given by [54]

3, Moo T \ 2
L(y) < S 7Mpe Ts(47tCy) (105cm*3) (104K) , (46)
where 7, is the concentration of matter at infinity. We already found the temperature at
infinity T, the temperature at a given surface Ts and the constant C;. To see the effects
arising from the 7y metric, the fractional expression of the luminosity of the falling matter in
the 7y spacetime and Schwarzschild spacetime can be expressed as

= (EERD R

0 =3 n=3/2

r.=3
1, ‘ ‘ ‘ ‘ ‘ ‘ q
04 05 06 07 08 09 1.0

Y

Figure 11. Dependence of the fractional temperature T,/ Te from the 7y parameter for the polytropic
gas in two cases: relativistic case (1 = 3/2) and non-relativistic case (n = 3).
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Figure 12. Dependence of the fractional density p./pe from the o parameter for the polytropic gas in
two cases: relativistic case (n = 3/2) and non-relativistic case (n = 3).

Figure 13 draws the dependence of fractional luminosity on the 7y parameter. It is
evident that the 7 spacetime has the potential to alter the luminosity of falling matter.
Specifically, in the region 0.5 < ¢ < 1, the luminosity of both relativistic and non-relativistic
gases in the y spacetime is lower than that in the Schwarzschild spacetime. Conversely,
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when 7 > 1, the luminosity of falling matter exceeds that in the Schwarzschild spacetime.
It is also apparent that non-relativistic polytropic gas is flexible for the 7y parameter in
comparison with the relativistic one.

2

Z 10° :
i=

g

3 100 ]
S n=3/2

o

2 0.1t 1
52 n=3

06 08 10 12 14 16

Y

Figure 13. Dependence of the fractional luminosity £(vy)/ £ from the y parameter for the polytropic
gas in two cases: relativistic case (n = 3/2) and non-relativistic case (1 = 3).

5. Conclusions

We discussed the motion of massive and massless particles around the gravitational
compact object described by the < spacetime. Using standard analytical calculations, the
characteristic radii around the gravitational compact object, namely marginally stable and
marginally bound orbits for massive particles, photonsphere and impact parameter of the
photon, and the position of singularity in the y spacetime are explicitly discussed.

We examined the properties of thin accretion disks surrounding a compact object
described by the < spacetime. Due to the generally chaotic nature of particle motion,
our analysis is focused exclusively on the equatorial plane to ensure integrability. By
employing the Novikov—-Thorne model, we initially determined the energy emission rate
from the disk’s surface. The temperature profile of the accretion disk was obtained using the
standard Stefan-Boltzmann law. Subsequently, we evaluated the total spectral luminosity
of this disk for various observer positions and different values of the 7y parameter. Our
findings reveal that spacetime deformation can potentially affect the high-frequency region
of the emission originating from the thin accretion disk. To further investigate these effects,
we utilized a ray-tracing code to generate an image of the thin accretion disk in the 7
spacetime. By performing this, we were able to test the impact of spacetime deformation
on the disk’s appearance.

Lastly, we investigated the accretion of matter onto an exotic compact object described
by the Zipoy—Voorhees metric, also known as the gamma metric. We discussed how space-
time deformation affects the properties of accretion onto the compact object. Specifically,
we examined the temperature and density of the infalling matter, which were described by
the polytropic equation of state for the 7y object. We determined the ratio of the luminosity
of infalling matter in the 7y metric to that in the Schwarzschild spacetime. However, all
obtained results were compared to those that are valid in the Schwarzschild spacetime.

The exploration of Noether’s theorem and spacetime symmetries in the context of
accretion disks opens up avenues for further research. It opens avenues for future di-
rections, such as extending the analysis to magnetohydrodynamic effects, incorporating
quantum gravity effects, and studying more complex accretion scenarios. We conclude by
summarizing the importance of Noether’s theorem and spacetime symmetries in enhancing
our understanding of accretion disk dynamics in astrophysical environments. By revealing
the underlying conservation laws, these principles provide a powerful tool for deciphering
the complex behavior of matter and energy flow in accretion disks.
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