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Chapter 1. Introduction

1.1 Setting the stage: the measurement
problem and the photodetector

Upon measurement a quantum system collapses onto one of the eigenstates of
the measurement operator. The measurement outcome is then given by the
eigenvalue corresponding to this eigenstate.
This is one of the postulates of the Copenhagen interpretation of quantum
mechanics. It divides the world into two realms – the microscopic realm of
quantum systems governed by quantum mechanics and the macroscopic realm
of classical systems (measurement apparatuses) governed by classical mechanics.

Quantum mechanics and classical mechanics contain intrinsically different views
of the world around us. Classical mechanics is deterministic: in principle, if
we know the positions and momenta of all particles in the universe, we can
– with certainty – determine the state of the universe at any other time by
Newton’s laws. Contrarily, from our classical point of view, quantum mechanics
is probabilistic: a quantum system can only be described in terms of a quantum
state, from which we can theoretically determine averages, standard deviations
etc. of physical properties. Practically, we can only determine these variables
using a large set of identically-prepared quantum systems, as “follows” from the
measurement postulate stated above. Moreover, for a single system we cannot
even measure all its properties as dictated by Heisenberg’s uncertainty relation.
Yet, within the realm of quantum mechanics, a quantum system is perfectly
deterministic. Its time-evolution is described by Schrödinger’s equation, imply-
ing that we can, in principle, determine the quantum state of the universe at
any time, if only we had access to its quantum state at a certain time and the
Hamiltonian of the universe.

Single-photon 
     source

Photodetector

Beam splitter a

b

A

B

Figure 1.1: Illustration of the quantum measurement problem. If a superposition of
0 and 1 photon is created using a single-photon source and a beam splitter, photo-
detectors A and B placed in the beam splitter’s output arms a and b will either “click”
or “not-click”, whereas they should attain a superposition of clicking and not-clicking
according to Schrödinger’s equation that describes the unitary evolution of quantum
states.

Let us illustrate this by an example. Consider the set-up depicted in figure
1.1. A single photon, the archetype of a quantum system, is emitted by a
single-photon source. The photon encounters a beam splitter, which “splits”
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1.2. Interpretations of quantum state collapse

the single photon into a superposition of 0 and 1 photon in each of the outputs
of the beam splitter. In this case, the photon state after the beam splitter can
be deterministically described by the state vector

|ψ〉 = α |1〉a |0〉b + β |0〉a |1〉b , (1.1)

where |α|2 and |β|2 are the probabilities of finding the corresponding states
upon measurement.
If this state is absorbed by the photodetectors connected to the outputs of
the beam splitter, one of the detectors “clicks” to indicate it has detected the
photon. That is, once one of the detectors has clicked, the state can be described
by

|ψ〉d = |1〉A |0〉B ∨ |ψ〉d = |0〉A |1〉B . (1.2)

Hence, only one of the detectors, A or B, clicks, which is in contradiction
with the deterministic quantum evolution of the system that implies that the
detectors should be in a superposition of clicking and not-clicking. The latter
behaviour, however, is never observed in experiments and it is precisely this
observation that leads to the formulation of the measurement postulate, which
is also known as the measurement problem.

The mystery of state collapse has been a much-debated issue since the con-
ceivement of quantum mechanics in the 1920s. Some of the view points on
this issue will be presented in section 1.2. However, with the advancement of
technology, we envision that the time has come to address this matter in an
experimental setting. One may wonder whether it is really the measurement
apparatus that induces state collapse. To this end we will consider undressing
the photodetector to a quantum device, a parametric amplifier, in section 1.3.
An overview of the remainder of this thesis is presented in section 1.4.

1.2 Interpretations of quantum state collapse

Ever since the formulation of quantum mechanics, interpretations of the theory
have been put forward. These interpretations often include a view on the
process of quantum state collapse. In this section we will shortly discuss the
phenomenology of some common views, including remarks about problems
raised by the interpretations. For an extended review and literature overview,
see [1].

1.2.1 The Copenhagen interpretation

The first interpretation of quantum theory was developed in the years 1925 to
1927 in Copenhagen and is therefore known as the Copenhagen interpretation [2].
It says that a measurement apparatus collapses a quantum state irreducibly
and probabilistically to an eigenstate of the observed quantity. Moreover, after
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Chapter 1. Introduction

a measurement, a state can be described in classical terms.
Although the Copenhagen interpretation does not provide an explanation for
state collapse, it does introduce the notion of a measurement apparatus (without
defining what it is) and that there is a clear distinction between the quantum
realm and the classical realm.

1.2.2 Bohmian Mechanics

As a solution to the measurement problem, Bohm proposed an extension of
quantum mechanics by a guiding equation [3, 4]. This equation determines the
real position and momentum of a corpuscle, which is guided by the quantum
wave function and is the source of this wave at the same instance. Then,
within the example given in previous section, when the single-photon quantum
state encounters the beam splitter and splits, the corpuscle, which makes a
detector click, is situated only in one of the branches of the superposition. This
would explain why only one of the detectors clicks and the other does not-click.
Moreover, one of the detectors will click deterministically as the path followed
by the corpuscle only depends on its initial conditions.
This approach to quantum state collapse has its merits as it removes the
uncertainty from the quantum measurement. As a matter of fact, experiments
have been conducted that have been claimed to support this interpretation [5, 6].
However, we find three objections. First, the corpuscle cannot be related to
the particle it describes, since it has no properties except for a position and
velocity [7–9]. This makes the theory unfalsifiable as, in absence of any corpuscle
properties, there is no means of verifying the existence of such a corpuscle.
Furthermore, we doubt that such a corpuscle can exist, because to all known
particles at least an energy can be associated. Thirdly, we note that this
interpretation merely replaces the problem by a different problem, because
in order to predict the measurement outcomes, the corpuscles must have the
right initial conditions. This implies that the measurement problem is replaced
one-to-one by the quantum source problem.

1.2.3 Many-worlds interpretation

The many-worlds interpretation of quantum mechanics is due to Everett [10].
This interpretation postulates that also during and after the process of measure-
ment the unitary evolution described by the Schrödinger equation determines
the evolution of a quantum state. However, after measurement, the measure-
ment outcomes live in different orthogonal “branches” of the universe, such that
they will never interact again. If a measurement can attain two experimental
outcomes, such as a detector clicking or not-clicking, this can be seen as the
single photon encountering a beam splitter: in the many world interpretation
the beam splitter plays the role of a measurement and the two output channels
of the beam splitter can be thought of as the different branches of the universe.
This interpretation might have difficulties with falsification, if one considers the
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1.2. Interpretations of quantum state collapse

branching of universe as the fundamental aspect of the interpretation. Since
the branches of the universe are orthogonal, we cannot detect the existence of
a branched-off universe. That is to say, in analogy to the single photon and
beam splitter, we cannot perform a measurement that acts as a second beam
splitter which overlaps the two created universe branches again. However, this
difficulty is erased if the unitary evolution described by Schrödinger’s equation
is considered as the core aspect of the theory. In that case the many-worlds
interpretation would be falsified by either Bohmian mechanics (discussed above)
or spontaneous collapse theories (discussed below), as these two interpretations
require an extra ingredient to quantum evolution apart from the Schrödinger
equation.

1.2.4 Environmental decoherence

Environmental decoherence describes the loss of quantum interference by inter-
actions with the environment [11–13]. Consider the state matrix of the pure
state described in equation (1.1) given by

ρ̂p = |ψ〉 〈ψ| =
[
|α|2 αβ∗

α∗β |β|2
]
. (1.3)

Due to coupling with the environment the off-diagonal terms in the state matrix
exponentially tend to 0, leaving the mixed state ρ̂m = diag(|α|2, |β|2). Such
processes have been observed in an experimental setting [14, 15].
The diagonal matrix ρ̂m is indistinguishable from a classical mixture and there-
fore it has been argued that it describes a collapsed state. However, strictly this
is not the case: environmental decoherence only accounts for the destruction of
quantum interference effects. It does not destroy the superposition of classical
alternatives, as we will argue now.
Consider a set of marbles, let them be red and blue. If we draw a classical
marble blindly (which is either red or blue) there is some probability of finding
either colour. However, we know – since they are classical marbles – that the
marble possessed that colour already before looking at it. However, in the
case of quantum marbles, which are in a superposition of red and blue, the
marble will decohere in our hand (the environment) before looking. Assuming
the decoherence process lasts long enough to reduce the quantum marble’s
initial pure state ρ̂p to a final mixed state ρ̂m, the state matrices of the classical
and quantum marbles are the same before looking. However, although the
classical and decohered state matrix are identical, for the quantum marble the
colour is not necessarily determined before looking. In other words, although
decoherence destroys the quantum mechanical interference phenomena of the
system, it does not destroy the superposition of classical alternatives. This
implies that environmental decoherence cannot account for the measurement
problem.
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Chapter 1. Introduction

1.2.5 Spontaneous collapse

As a last interpretation, we will discuss the idea of spontaneous collapse. Spon-
taneous collapse theories consider the option that the Schrödinger equation is
incomplete and extend the evolution of a quantum state by a phenomenological
collapse rate. The main idea is that every particle has an intrinsic collapse
rate, which increases with particle mass. As such, the collapse rate of a single
nucleon is small, such that it will behave according to the Schrödinger equation
within the time frame of an experiment. Macroscopic particles, however, have
such large collapse rates that the signatures of quantum mechanics are never
observed in an experiment, because the quantum behaviour is too short-lived.
In this view, the measurement problem can be thought of as a quantum system
(with a small collapse rate) coupling to a measurement apparatus (with a large
collapse rate). Thus the quantum system collapses due to the collapse rate that
increases upon coupling.
The main disadvantage of this approach is that it is only phenomenological.
There have been hypotheses developed as to what determines the collapse rate,
mainly in the direction of trace dynamics [16] and gravity [17–19]. Proposals
for the collapse rate (per nucleon) are orders of magnitude apart – the theory
of Continuous Spontaneous Localisation (CSL) sets it at 10−17 Hz [20], whereas
Adler estimates the collapse rate per nucleon at 10−8±2 Hz [21]. It is an area of
active research to set bounds to the collapse rate [22–24].

1.3 Undressing the photodetector: the
parametric amplifier

The interpretations presented in previous section are distinctly dissimilar in
their view of quantum state collapse. However, they all agree that large systems
appear to be classical, whereas microscopic systems behave quantum mechani-
cally. From this notion an important question arises

What is large?

This question is currently approached by performing experiments on larger and
larger physical systems to verify whether these systems behave according to
quantum mechanics (see [25] for a review). At the moment of writing, systems
of the size of small viruses have shown quantum mechanical behaviour [26] and
an experiment testing the quantum behaviour of micrometre sized mirrors is
being prepared [27].
Yet, in view of measurement apparatuses the question What is large? can be
reformulated as

What is a measurement apparatus?
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1.3. Undressing the photodetector: the parametric amplifier

To illustrate, consider once more the experiment described in section 1.1. Now,
suppose the photodetector is a photomultiplier tube (PMT), see figure 1.2. In
PMTs an incoming photon causes a (primary) electron to emit from a cathode
by the photoelectric effect. This electron is accelerated towards a dynode by
an electric field. Due to the impact of the electron on the dynode, several
(secondary) electrons are emitted. These, in turn, are accelerated towards a
second dynode in which the process of electron multiplication is repeated. In
the end, this results in a measurable current pulse of electrons arriving at the
anode of the device.
Suppose now that a superposition of 0 and 1 photon, as described by equation
(1.1) enters the PMT. Based on the postulate that measurements are responsible
for quantum state collapse, one may wonder where during the amplification
process within the PMT the state collapse happens, if it happens within the
PMT at all. That is, at what point between the emission of the primary electron
and the current pulse leaving the PMT the detector “decides” to click or not-
click. Equivalently, one may wonder how many electrons are in superposition of
remaining in and being emitted by a dynode when state collapse happens.

Figure 1.2: Schematic overview of a photomultiplier tube (PMT). An incoming photon
causes emission of an electron in the photocathode. This primary electron is accel-
erated by an electric field towards a dynode, where it causes the emission of several
secondary electrons. This process is repeated to yield a measurable current pulse at the
PMT’s anode. A scintilator in front of the PMT may be used to decrease the effective
energy of the incoming photon. Figure taken from [28].

In this thesis we investigate an experiment addressing these questions. In
principle, we could take the experimental set-up depicted in figure 1.1 and try
to interfere the outputs of the two photodetectors. However, photodetectors are
devices which are hard to describe within a quantum mechanical framework due
to coupling to the environment and interfering their outputs is not at all trivial.
However, the main characteristic of the photodetector – producing a click in the
form of a detectable current by means of amplification when a photon enters
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Chapter 1. Introduction

the device – can be mimicked by means of an electronic amplifier.
A certain class of electronic amplifiers, the so-called parametric amplifiers, is
especially suited for this experiment. They produce gain due to non-linear
wave mixing resulting from the variation of an amplifier parameter while the
signal-to-be-amplified traverses the device. A parametric amplifier is tuneable
in gain, can be quantum limited in noise figure and, most importantly, it can
be described in quantum mechanical terms. Within an interferometer set-up
we can interfere the outputs of two of such amplifiers which are entangled by
feeding the interferometer with single photons. Building the whole set-up by use
of superconducting devices, one can hope to achieve a sufficiently small coupling
to the environment and add mass to the problem simultaneously. The latter
occurs via the interaction of the electromagnetic waves transmitting through
the set-up which are caused by the massive Cooper pairs in the superconducting
transmission lines. By increasing the gain of the amplifiers, more and more
Cooper pairs will partake in the quantum mechanical superposition, which
can be seen as analogous to the increase in emitted electrons from the PMT
dynodes.

1.4 Overview of the thesis

In this thesis we will take the first steps towards such an experiment. Chapter
2 presents a minimum background in microwave engineering as a basis for the
rest of the thesis.
In chapter 3, a mesoscopic theory is developed that describes the process of non-
linear wave mixing and the resulting gain in a transmission line embedded with
Josephson junctions. Such a theory will be necessary to model the parametric
amplifiers within a quantum mechanical framework correctly for the final
experiment.
In chapter 4, we will present a prediction on the interference visibility that
can be expected from an interferometer that has a parametric amplifier added
to each of the interferometer arms. In this chapter we will also discuss the
influence of losses in the interferometer on this visibility. This allows to estimate
how small the coupling to the environment must be in order for the proposed
experiment to work. Furthermore, we will argue how the interference visibility
might change in case the quantum state collapses within the interferometer.
In the final chapter of this thesis, chapter 5, we present our findings on our
attempts to develop a low-loss travelling-wave parametric amplifier. We present
the design, fabrication procedure and findings from a transmitting device. The
latter is used to validate the theory presented in chapter 3.
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Chapter 2. Elements of microwave technology

2.1 Introduction

This thesis concerns the field of microwaves. Within the electromagnetic
(EM) spectrum, microwaves are those waves for which the wavelength λ is
approximately equal to the size of components used for transmission. Indeed,
as microwaves have a frequency of 3 to 300 GHz [1], their typical wavelength
is approximately λ = c/f = 10 cm to 1 mm, where c is the speed of light.
Therefore, circuit analysis in terms of lumped elements fails as the phase of the
voltage and current over the element cannot be approximated as constant. On
the other hand, the methods of geometrical optics fail, which assume that the
wavelength is much shorter than the size of a component. This implies that
microwave circuits must be described in terms of distributed elements.
In this chapter we cover the basics of microwave technology relevant for this
thesis. We review microwave transmission lines, microwave reflections, the
coplanar waveguide (CPW) and microwave CPW resonators.

2.2 Microwave transmission line theory

In microwave engineering, transmission lines are generally modelled as distributed-
element circuits as depicted in figure 2.1. In this figure L, R, C and G are
the inductance, resistance, capacitance and conductance of the line per unit
length. L and R arise due to the self-inductance and finite conductivity of the
line, whereas C and G are due to the proximity of the centre conductor and the
ground that might induce dielectric losses. Here, we follow [1].

LDz RDz

GDzCDz

Dz

V(z+Dz,t)V(z,t)

I(z,t) I(z+Dz,t)

Figure 2.1: Lumped-element circuit representation of an incremental length of a mi-
crowave transmission line.

Applying Kirchhoff’s law for voltage, V , to the circuit in figure 2.1 we find

V (z, t)−R∆zI (z, t)− L∆z
dI (z, t)

dt
− V (z + ∆z, t) = 0. (2.1)

where I (z, t) is the current in the line.
Similarly, Kirchhoff’s law for current gives

I (z, t)−G∆zV (z + ∆z, t)−C∆zdV (z + ∆z, t)

dt
− I (z + ∆z, t) = 0. (2.2)
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Taking the limit ∆z → 0 yields the so-called telegrapher’s equations

dV (z, t)

dz
= −RI (z, t)− LdI (z, t)

dt
, (2.3)

dI (z, t)

dz
= −GV (z, t)− C dV (z, t)

dt
(2.4)

In case the propagating modes have an exp (−iωt)-dependence on time, where
ω is the angular frequency, equations (2.3) and (2.4) simplify to

dV (z)

dz
= − (R− iωL) I (z) , (2.5)

dI (z)

dz
= − (G − iωC)V (z) (2.6)

from which the wave equations for voltage and current are easily derived as

d2V (z)

dz2
= γ2V (z) , (2.7)

d2I (z)

dz2
= γ2I (z) . (2.8)

Here, γ ≡ ((R− iωL) (G − iωC))1/2
is the wave’s propagation constant. The

wave number of the mode is given by k = Im (γ) and is related to the wavelength
as λ = 2π/k. The mode’s phase velocity is vph = ω/k and its damping coefficient
is given by r = −Re (γ).
Solving equations (2.7) and (2.8) yields

V = V +
0 eγz + V −0 e−γz, (2.9)

I = I+
0 e

γz + I−0 e
−γz, , (2.10)

where the amplitudes V +,−
0 and I+,−

0 are determined by the boundary values
of the transmission line. When inserting equation (2.9) into equation (2.5), we
find

I =
γ

R− iωL
(
V +

0 eγz − V −0 e−γz
)
. (2.11)

Comparing this result to equation (2.10) we are led, by Ohm’s law, to the
concept of a characteristic impedance. This quantity is conceptually the same
as the index of refraction in optical systems. From the comparison, we find

Zc ≡
√
R− iωL
G − iωC

(2.12)

allowing us to rewrite equations (2.10) and (2.11) as

I =
V +

0

Zc
eγz − V −0

Zc
e−γz. (2.13)

In particular, if we have a lossless transmission line, R and G equal 0. This
implies Zc =

√
L/C and k = ω

√
LC. The phase velocity equals vph = 1/

√
LC.

13



Chapter 2. Elements of microwave technology

2.3 Microwave reflection

Although generally one wants to avoid reflections in the system, in practise
every component or transmission line will reflect some power. In the following,
we will discuss two cases in which we can use these reflections to characterise a
set-up.

2.3.1 Non-impedance matched, dispersion-less
transmission lines

As mentioned, in microwave technology the characteristic impedance plays the
role of the optical index of refraction. This implies that a sudden change in
characteristic impedance will, analogously, cause partial wave reflection in the
transmission line. In case a dispersionless transmission line is not impedance-
matched to its environment, we can determine its characteristics from these
reflections.
Suppose we have a change in characteristic impedance as sketched in figure 2.2.
Then, if a wave traverses the line from region 1 to region 2, the transmission
and reflection coefficients are given by [1]

τ~1→~2 =
2Zc,2

Zc,1 + Zc,2
, (2.14)

ρ~1→ ~1 =
Zc,2 − Zc,1

Zc,1 + Zc,2
(2.15)

where the arrows over the regions indicate the direction of the incoming and
outgoing wave.

Now consider the full network in figure 2.2. It consists of two leads with
characteristic impedance Zc,1, the characteristic impedance of the environment.
In between the leads is a transmission line of unknown impedance Zc,2 with a
length l. Due to reflections on the Zc,1, Zc,2-boundaries this network will behave
as a Fabry-Pérot interferometer showing typical peaks and troughs (wiggles) in
its transmission as function of frequency.

Zc,1 Zc,2

l

	τ1			2

	ρ1			1 	ρ2			 2	

Zc,1

	τ2			 1

	ρ2				2 	ρ1			 1

Figure 2.2: An arbitrary transmission line with characteristic impedance Zc,2 is coupled
to an environment with impedance Zc,1. From the wiggles in the transmission spectrum
we can infer the inductance and capacitance per unit length of the transmission line.

In case losses are small (ωL � R and ωC � G) the inductance and capacitance
per unit length, L2 and C2 respectively, can be estimated using three parameters
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2.3. Microwave reflection

from the transmission spectrum. First one needs the period of the wiggles
(the free spectral range), fw, which is linked to the phase velocity of the wave
propagating in the transmission line as

l

λ
=

l

vph,2
fw =

1

2
→ vph,2 = 2lfw. (2.16)

Secondly the difference in transmission between the wiggle peaks and troughs
is required

∆τ ≡
|T |max

|T |min

= 10∆T[dB(m)]/20. (2.17)

Here, ∆T[dB(m)] is the difference between the minimum and maximum of the
wiggles in the frequency spectrum expressed in dB(m). Finally one needs the
loss-coefficient r, which can be estimated from the spectrum as

r =
−IL

20l log10 e
≈ −∆Tp–b

20l 10 log e
(2.18)

with IL the insertion loss in dB, which is approximately equal to the difference
in transmission between a transmission peak of the device and a by-pass line,
∆Tp–b. In fact, since the loss diminishes the amplitude of the wiggles, this
approximation yields a slight overestimation of r, hence it is beneficial to estimate
the loss and wiggle amplitude at a frequency (range), in which the losses are
small. All these values can be obtained from the transmission spectrum.

The transmission spectrum of the Fabry-Pérot interferometer is well-known to
be

T =
τ~1~2τ~2~3e(ik−r)l

1− ρ~2 ~2ρ ~2~2e2(ik−r)l , (2.19)

omitting the arrows from equations (2.14) and (2.15). Taking the absolute value
of this equation one arrives at

|T |2 =

∣∣τ~1~2∣∣2 ∣∣τ~2~3∣∣2 e−2rl

1 +
∣∣ρ~2 ~2

∣∣2 ∣∣ρ ~2~2

∣∣2 e−4rl − 2ρ~2 ~2ρ ~2~2e
−2rl cos (2kl)

. (2.20)

Neglecting the R- and G-contributions to the characteristic impedance (equa-
tion (2.12)), τ~n~m ∈ R and ρ = ±ρ~2 ~2 = ±ρ ~2~2 ∈ R, where the ±-signs arise as we
do not know whether Zc,1 > Zc,2 or Zc,1 < Zc,2 one finds from equation (2.20)

∆τ ≡
|T |max

|T |min

=
1 + ρ2e−2rl

1− ρ2e−2rl
. (2.21)

Solving for ρ yields

ρ = erl
√

∆τ − 1

∆τ + 1
. (2.22)
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Finally, from equation (2.15)

ρ = ±Zc,2 − Zc,1

Zc,1 + Zc,2
(2.23)

and one can solve for the unknown impedance as

Zc,2 =
∓1− ρ
ρ∓ 1

Zc,1. (2.24)

To obtain L2 and C2 one can apply

Zc,2 =

√
L2

C2
, vph,2 =

1√
L2C2

(2.25)

which holds for lossless networks. Whence

L2 =
Zc,2

vph,2
, C2 =

1

Zc,2vph,2
, (2.26)

or, taking the results from equations (2.16), (2.22) and (2.24) together

L2 =
−Zc,1

2lfw

erl
√

(∆τ − 1) / (∆τ + 1)± 1

erl
√

(∆τ − 1) / (∆τ + 1)∓ 1
(2.27)

C2 =
−1

2Zc,1lfw

erl
√

(∆τ − 1) / (∆τ + 1)∓ 1

erl
√

(∆τ − 1) / (∆τ + 1)± 1
(2.28)

It should be noted that this calculation always yields two separate values for
L2 and C2, corresponding to the high-impedance and low-impedance solution
to the problem. If the line is really mismatched, it is possible to rule out one of
the solutions on physical grounds. However, if the line impedance is close to
the impedance of the environment, this is no longer possible.

As an example, consider the (theoretical) case in which we put a 80 Ω-line with
a length of 10 cm in a 50 Ω-environment. Within the line the phase velocity
equals 1× 108 m/s and the line has a frequency-dependent loss coefficient
r = 0.2f/[GHz]m−1. If we were given such a line and only know its length, we
can use the theory presented in this section to estimate the line parameters
using a measured frequency spectrum. The frequency spectrum as obtained
from equation (2.19) is depicted in figure 2.3. From this figure, we estimate
fw ≈ 500 MHz and ∆T[dB] = 0.790 dB and IL ≈ 0.86 dB at f = 4.5 GHz (the
first transmission peak). This yields, using equations (2.18), (2.17), (2.27)
and (2.28), r = 0.99 m−1 (input 0.90 m−1), L2 = 0.808 or 0.309µH/m and
correspondingly C2 = 124 or 232 pF/m. From the obtained Ls and Cs we
estimate Zc,2 = 80.8 or 30.9 Ω and vph = 1× 108 m/s.
From our initial input we know that we would have to choose the first solution,
which is indeed close to Zc,2 = 80 Ω. However, in practice we should make a
decision based on the design of our device as this will constrain L and C.
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4 4.5 5 5.5 6 6.5 7 7.5 8
-2.5

-2

-1.5

-1

-0.5

0

0.5

Figure 2.3: Theoretical frequency spectrum of a 10 cm-long, 80 Ω-transmission line. To
obtain estimations of the necessarry parameters for estimating the line characteristics of
this transmission line, we can make a linear fit of the spectrum and subtract it from the
data.

2.3.2 Reflection planes

Each connection in a microwave set-up reflects some power creating reflection
planes. If one is interested from what part of the set-up reflections arise the
following method can be used. First the transmission needs to be measured as
a function of frequency. Although this spectrum might seem flat, each pair of
reflection planes will, as in the last section, create a Fabry-Pérot cavity. From the
specifications of the different components, we know the characteristic impedance
(usually 50 Ω) and the phase velocity (usually 2c/3, where c is the speed of
light). In order to find the periodicity of the Fabry-Pérot interference pattern,
one takes the Fourier transform of the appropriately windowed spectrum. This
yields fw as in last section, from which we can easily obtain the line length
between the reflection planes as

lculp =
vph

2fw
(2.29)

where “culp” refers to the culprits of the reflection.
Due to the scalloping loss of the window function and the loss in the transmission
line(s) connecting the culprits, the wiggle amplitude resulting from the Fourier
transform does not correspond to the actual wiggle amplitude. Therefore, this
method does not provide a means to estimate the reflection coefficients of
the reflection planes. Moreover, care should be taken that the calibration of
the measurement apparatus is off during the measurement, as this will yield
spurious results. An example is depicted in figure 2.4, where we have placed a
NbTiN-transmission line of 15 cm in between two 1.5 m-long VNA cables using
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VNA

1 2

1.5m
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reflection
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(a)
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(b)

Figure 2.4: Reflection planes in a 50 Ω-set-up. (a) A 15 cm-long NbTiN-transmission
line was put in between two 1.5 m-long Vector Network Analyser (VNA) cables. (b)
Although the frequency spectrum is flat (light red/blue, axes top/right), we still find
reflections from the line transitions in the Fourier transform of the spectrum (red/blue,
axes bottom/left). The calibration of the VNA produces spurious reflections (red).

female-female adapters. In the Fourier transform resulting from the frequency
spectrum we can discern a peak at 15 cm, 1.5 m and 1.65 m corresponding to
the line lengths in the set-up.

2.4 Coplanar waveguides

As a basic structure for the travelling-wave parametric amplifier (TWPA)
discussed in chapter 5, we will use a superconducting coplanar waveguide
(CPW), which is schematically depicted in figure 2.5. These transmission
lines support quasi-transverse electromagnetic (TEM) modes. Their relevant
characteristics are discussed in, among others, [2] and references therein, which
we will review shortly.

Assuming the CPW has a low loss, the impedance is well-described by Zc =√
L/C. In ordinary CPWs, the inductance has a geometric and a kinetic

contribution summing to the total inductance. The geometric inductance is
given by

Lg =
µ0

4

E (w̃)

E (w̃′)
, (2.30)

where µ0 is the permeability of free space and E is the elliptic function of the first
kind with arguments w̃ = wc/ (wc + 2wg) and w̃′ =

√
1− w̃2. wc is the width
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substrate

ground

centre conductor

wg wc wg

d

Figure 2.5: Schematic representation of a coplanar waveguide. The CPW consists of a
centre conductor in between two conducting ground planes on an isolating substrate. It
supports quasi-TEM modes of EM-radiation.

of the CPWs centre conductor and wg is the width of the gaps, see figure 2.5.
This holds as long as the material around the CPW has a relative permeability
µr ≈ 1. The kinetic contribution, due to the inertia of the Cooper pairs carrying
the modes through the transmission line, is found from multiplying the sheet
inductance

LS = µ0λ coth

(
d

λm

)
(2.31)

with a geometric factor g with unit m−1. Here, d is the thickness of the
material. λm =

√
~σ/πµ0∆sc(0) is the magnetic penetration depth, where σ

is the material’s normal state sheet resistivity and ∆sc(0) = 1.76kBTc is the
superconducting gap energy, assuming T � Tc. The geometric factor contains
two terms, one due to the contribution of the centre conductor and the other
due to the contribution of the ground planes to the kinetic inductance. These
contributions are given by

gc =
1

4wcw̃′2E2(w̃)

(
π + ln

(
4πwc

d

)
− w̃ ln

(
1 + w̃

1− w̃

))
, (2.32)

gg =
w̃

4wcw̃′2E2(w̃)

(
π + ln

(
4π (wc + 2wg)

d

)
− 1

w̃
ln

(
1 + w̃

1− w̃

))
, (2.33)

yielding a kinetic inductance of

Lk = (gc + gg)LS (2.34)

which is accurate to within 10% for d < 0.05wc and w̃ < 0.8. This yields a total
inductance of L = Lg + Lk.

The capacitance of the CPW is given by

Cg = 4ε0εeff
E (w̃′)

E (w̃)
(2.35)

where ε0 is the vacuum permittivity and εeff is the effective relative permittivity
of the CPW given by the average relative permittivity of the material below
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Figure 2.6: Sonnet-implementation for calculating the resonator coupling. The re-
sonator (in green) is coupled to a feedline (in purple) between ports 1 and 2. In order
to calculate the coupling strength we need the magnitude of the scattering parameter
S13 at the resonator’s frequency.

and on top of the conducting material. In case one of these is vacuum, εeff =
(1 + εr) /2, where εr is the relative permittivity of the substrate.

For a CPW that has a centre conductor width of 12µm, gaps of 5µm, made
out of 200 nm-thick NbTiN (Tc = 15.1 K, σ = 1.06µΩm) on a silicon substrate
(εr = 11.45 ) at mK-temperatures, L = 470 nH/m and C = 177 pF/m indeed
yielding Zc ≈ 50 Ω.

2.5 Microwave resonators (CPW)

To obtain a high-gain, large-bandwidth TWPA, some form of dispersion engi-
neering is necessary in order to reach the phase-matching condition. Therefore,
as a last section of this chapter, we will review CPW microwave resonators that
can be used for this purpose. Here we follow [2, 3] and references therein.

CPW resonators come in two types. Either both ends are open or closed,
in which case we have a λ/2-resonator or one of the ends is closed yielding
a λ/4-resonator. The advantage of the latter is that they are shorter than
λ/2-resonators The resonant frequencies of such resonators are given by

f0
r,n =

m

nlr
√
LrCr

. (2.36)

Here, n determines the resonator type, n = 2 for a λ/2-resonator and n = 4
for a λ/4-resonator. m is the order of the resonance. For λ/2-resonators,
m ∈ {1, 2, 3, 4, ...} and for λ/4-resonators m ∈ {1, 3, 5, 7, ...}.
Upon coupling a resonator to a transmission line the resonator is loaded and as
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a result the resonance frequency shifts. This shift is given by

δfr,n = −
√

2

πQc
f0

r,n (2.37)

such that the resonance frequency of a loaded resonator is f lr,n = f0
r,n+ δfr,n. In

equation (2.37), Qc is the coupling quality factor, which depends mainly on the
magnitude of the coupling capacitance and the frequency. It can be determined
as

Qc =
2πn

m |S13|2
(2.38)

where S13 is the scattering parameter from port 3 to port 1 at f = f0
r,n, see

figure 2.6. It can be obtained from Sonnet-simulations.

The width of the resonance, ∆f lr , is determined by the loaded quality factor,
which can be calculated from

1

Ql
=

∆f lr
f lr

=
1

Qc
+

1

Qi
. (2.39)

Here, Qi is the internal quality factor of the resonator, which can be calculated
as Qi = k/2r.
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Chapter 3

A mesoscopic Hamiltonian
for Josephson
travelling-wave parametric
amplifiers

We present a theory describing parametric amplification in a Joseph-
son junction embedded transmission line. We will focus on the
process of four-wave mixing under the assumption of an undepleted
pump. However, the approach taken is quite general, such that a dif-
ferent parametric process or the process under different assumptions
is easily derived. First the classical theory of the coupled-mode equa-
tions as presented by O’Brien et al. [Phys. Rev. Lett. 113 : 157001]
is shortly reviewed. Then a derivation of the full quantum theory is
given using mesoscopic quantisation techniques in terms of discrete
mode operators. This results in a Hamiltonian that describes the
process of parametric amplification. We show that the coupled-mode
equations can be derived from this Hamiltonian in the classical limit
and elaborate on the validity of the theory.

This chapter has been submitted for publication.
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3.1 Introduction

Parametric amplification arises as a result of non-linear optics. In case a
non-linear medium is traversed by a (weak) signal and a strong pump, a wave-
mixing interaction causes the signal to be amplified. The main advantage
of such amplifiers is their low added noise. In comparison: a conventional
low-noise microwave amplifier has a noise temperature Tn of several Kelvins,
which translates into kBTn/~ω ≈ 10 photons of added noise for Tn = 2 K at a
frequency of ω/2π = 4 GHz [1–3]. This number can be reduced to 1/2 or even
0 in a parametric amplifier, depending on its configuration [4]. This makes
parametric amplifiers ideal to amplify signals that are on single-photon level.
In the past decade, many microwave parametric amplifiers have been developed
to read out quantum bits in quantum information experiments (see e.g. [5] for a
review). In most of the designs [6–10] the amplifier is embedded in a resonator to
increase the interaction time of pump and signal, thus to increase the amplifier’s
gain. Due to such a design these amplifiers, however, are inherently limited
in their bandwidth, giving rise to scalability issues now that the number of
quantum bits in a single experiment increases. For this reason travelling-wave
parametric amplifiers (TWPAs) have been developed [11–16]. As these are not
based on resonance, they do not suffer from the intrinsic bandwidth limitation.
However, to achieve a large gain the amplifiers need to be long.
Currently, two sources of non-linearity have been considered for TWPAs. Firstly,
one can base the amplifier design on the intrinsic non-linear kinetic inductance
of superconductors [11, 14–16]. Secondly, one can embed Josephson junctions in
the transmission line, which have a non-linear inductance [12, 13]. Both versions
of the TWPA have been described theoretically using classical coupled-mode
equations [11, 12, 17, 18]. However, a Hamiltonian-description is necessary
to describe the TWPA as a quantum device, which is needed for a recently
proposed experiment testing the limits of quantum mechanics by entangling two
TWPAs within a single-photon interferometer [19]. Some authors consider such
a description impossible due to difficulties of quantum mechanics in describing
dispersion [20] (and references therein) – an important characteristic in TWPAs.
However, in case of a TWPA based on Josephson junctions such a description
appears to be possible. The Josephson TWPA has already been described using
a Hamiltonian based on continuous mode operators [21]. This description was
used to calculate average gain and squeezing effects. In this work we use discrete
mode operators for our analysis and use the resulting Hamiltonian to calculate
photon number distributions, apart from gain effects.

We will first put the concept of parametric amplification on solid ground by
introducing the necessary terminology. Then, a review is given of O’Brien et
al. [18] where the coupled-mode equations were derived, which can be used for
predicting the classical response of a Josephson TWPA in case the non-linearity
in the transmission line is weak. In section 3.4 we proceed in deriving the
Hamiltonian of the Josephson junction embedded transmission line in the limit
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of a weak non-linearity, which we apply to the specific case of a non-degenerate
parametric amplifier with undepleted degenerate pump in section 3.5. In this
section we will also discuss other implementations of the Hamiltonian shortly.
Then we will derive the classical coupled-mode equations once more, but now
from the quantum Hamiltonian. Thus we show that the classical and quantum
theories converge in the classical limit. The chapter is concluded by a discussion
of the validity of the theories in terms of the strength of the non-linearity, i.e.
to which value of the non-linearity it can be considered weak, in section 3.8.

3.2 Terminology

For parametric amplifiers a specific terminology is used that can be confusing
at times. Here an overview of the terminology is presented and it is discussed
under which circumstances the terms play a role. These circumstances are fully
determined by the Hamiltonian that describes the process.
Basically, parametric amplifiers work by the principle of wave mixing. This
mixing process occurs due to a non-linear response of the device to a trans-
mitting electromagnetic field and causes energy transfer between the different
transmitting modes. Suppose that the non-linearity occurs as a result of a
non-linear polarisation of the material,

P =
(
χ(1)

e + χ(2)
e E + χ(3)

e E2 + . . .
)

E, (3.1)

then the Hamiltonian contains a term

HEP ∝ E ·P = χ(1)
e E2 + χ(2)

e E3 + χ(3)
e E4 + . . . . (3.2)

In case the material has a strong χ
(2)
e -contribution, the E3-term in the Hamilto-

nian leads to a three-wave mixing process (3WM) and consequently to a mixing
term in the Hamiltonian of the form

Ĥ3WM = ~χâpâ
†
s â
†
i ei(−∆Ωt+∆φ) + H.c.. (3.3)

This Hamiltonian enables a photon in the pump mode (p) to be scattered into a
photon in the signal mode (s) that is to be amplified and some rest energy, which
is generally referred to as the idler mode (i). As the Hamiltonian conserves
energy, ωi = ωp − ωs. Here, ∆Ω is a phase mismatching term resulting from
dispersion and modulation in the device, to be discussed in section 3.3 (equation
(3.16)) and section 3.6 (equations (3.79) and (3.81)). ∆φ = φp − φs − φi is the
phase difference between the pump, signal and idler that enter the device.

Contrarily, if the material has a dominant χ
(3)
e -contribution, the Hamiltonian

contains a term

Ĥ4WM = ~χâpâp’â
†
s â
†
i ei(−∆Ωt+∆φ) + H.c. (3.4)

and a four-wave mixing (4WM) process takes place, where ∆φ = φp+φp’−φs−φi.
In this case two pump photons are scattered into a signal and an idler photon
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and ωi = ωp +ωp’−ωs. In case âp 6= âp’ the pump is said to be non-degenerate,
whereas it is degenerate if âp = âp’.
Generally, the pump(s) in equations (3.3) and (3.4) are treated as classical
modes, which are undepleted. This implies that the corresponding operators are
replaced by a constant amplitude and can be absorbed in the coupling constant.
This results in a contribution to the Hamiltonian that is identical for 3WM and
4WM

Ĥ3/4WM = ~χ̃â†s â
†
i ei(−∆Ωt+∆φ) + H.c. (3.5)

in which χ̃ = χ |Ap| for 3WM and χ̃ = χ |Ap| |Ap’| for 4WM respectively.

Apart from a distinction in 3WM- and 4WM-devices, parametric amplifiers can
be phase-preserving and phase-sensitive. Phase-preserving amplification occurs
if the signal and idler are in two distinct modes (âs 6= âi as in equations (3.3)
and (3.4)). For this reason such amplifiers are also referred to as non-degenerate.
The amplification is independent of ∆φ and a minimum of half a photon of
noise per unit bandwidth is added to the signal [4]. The process is illustrated
in figure 3.1.
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(a) (b)

Figure 3.1: Effect of non-degenerate (or phase-preserving) amplification with an un-
depleted, degenerate pump on (a) a coherent state (α = 1) and (b) a single photon
number state in the I,Q-quadrature plane. The lower half plane depicts (half of the)
Wigner function of the unamplified state using contours, whereas the upper half plane
shows the Wigner function of the state after amplification with filled contours. The
increased width of the latter indicates the increase of noise in the amplified state. The
Wigner functions are calculated using Qutip [22].

If signal and idler are in non-distinct modes (âs = âi in equations (3.3) and (3.4)),
however, the amplifier is said to be degenerate and works in a phase-sensitive
mode. The latter term results from a critical dependence of the amplification
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process on ∆φ, which causes one quadrature of the signal to be amplified,
whereas the other is de-amplified, see figure 3.2. This implies that for input
signal states with an explicit phase, such as coherent states, the amplifier’s
power gain depends on the phase difference between signal and pump. The gain
is maximised for ∆φ = π/2, whereas for ∆φ = 3π/2 the gain is less than unity,
thus attenuating the signal. For input states that do not have such an explicit
phase, e.g. number states and thermal states, the amplifier power gain is phase
independent. In this process, amplification is possible without adding noise to
the signal [4].
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Figure 3.2: Effect of degenerate (or phase-sensitive) amplification with an undepleted
pump on (a) a coherent state (α = 1) and (b) a single photon number state in the
I,Q-quadrature plane. In the lower half plane (half of the) the Wigner functions of
the unamplified states are depicted using contours. The upper half plane depicts the
Wigner functions of the amplified states for ∆φ = π/2 with filled contours, whereas the
long symmetry axis of the Wigner functions for some different ∆φs are indictated by
dashed lines. One quadrature is amplified, whereas the other is de-amplified, such that
the added noise is 0. If the input state is a coherent state, the power gain varies with
∆φ. The Wigner functions are calculated using Qutip [22].

In both 3WM- and 4WM-devices the amplification process is most efficient if
the phase mismatch ∆Ω = 0, as is illustrated in figure 3.3. A non-zero ∆Ω
arises from dispersion and modulation effects, which are therefore beneficial to
be cancelled.
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Figure 3.3: Effect of phase mismatch on the phase-preserving amplification of a coher-
ent state for an undepleted pump. Depicted are the full-width-half-maximum and the
maximum of the Wigner function of the initial state χ̃∆t = 0 and the final states
χ̃∆t = 1.5 with various amounts of phase mismatch ∆Ω (∆t = 1) in the I,Q-
quadrature plane. The legend refers to the maximum of the Wigner functions. Increas-
ing the phase mismatch reduces the power gain of the amplifier. The Wigner functions
are calculated using Qutip [22].

3.3 The non-degenerate parametric amplifier
with undepleted degenerate pump –
classical theory

The classical theory for Josephson junction embedded transmission lines is
worked out in detail in [17, 18]. In [17] such a line, as schematically depicted in
figure 3.4, is considered and as a result a non-linear wave equation

Cg
∂2Φ

∂t2
− a2

LJ,0

∂2Φ

∂z2
− CJa

2 ∂4Φ

∂z2∂t2
= − a4

2I2
cL

3
J,0

∂2Φ

∂z2

(
∂Φ

∂z

)2

(3.6)

is derived that describes the evolution of the flux Φ = Φ(z, t) through the
line. Here Cg is the capacitance to ground, a the length of a unit cell of the
transmission line, LJ,0 is the Josephson inductance of the junctions at 0-flux,
CJ is the capacitance of the Josephson junction and Ic its critical current. LJ,0

and Ic are related by LJ,0 = ϕ0/Ic with ϕ0 = ~/2e the reduced magnetic flux
quantum, see section 3.4.4. In deriving this equation it is assumed that a� λ,
the wavelength of the propagating modes, and that the non-linearity provided
by the Josephson junctions is weak, such that only the first order non-linear
term (right hand side of equation (3.6)) resulting from the presence of the
Josephson junction needs to be taken into account.

Starting from this equation, [18] derives the coupled-mode equations. This is
a set of coupled non-linear differential equations that describe the evolution
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Figure 3.4: Schematic overview of a Josephson junction embedded transmission line.
The junctions are modelled as a parallel LC-circuit with a non-linear inductor LJ.

of the considered modes of the flux through the parametric amplifier. For the
non-degenerate 4WM parametric amplifier with degenerate pump it is assumed
that only three modes of the field play a role. These are generally referred to as
the pump, the signal and the idler. The pump is the mode that delivers the
energy for the amplification of the small amplitude signal. As a result of energy
conservation, an idler mode is created which also has a small amplitude.
[18] suggests a trial solution for equation (3.6) in the form of

Φ =
∑

n=p,s,i

Re
{
An (z) ei(knz−ωnt)

}
=

1

2

∑
n

An (z) ei(knz−ωnt) + c.c. (3.7)

which describes a superposition of waves that may have varying amplitudes An
while propagating through the line.
Furthermore, the slowly varying amplitude approximation is invoked, i.e., it
is assumed that

∣∣d2An/dz
2
∣∣� |kndAn/dz|, and that the change in amplitude

within a wavelength of transmission line is small, |dAn/dz| � |knAn|, such
that the first order derivatives at the right hand side of equation (3.6) can
be neglected. Furthermore, terms of order |As|2 and |Ai|2 are neglected, as
these are assumed to be small. Then, the amplitudes of the various modes are
described by the following differential equations, upon substituting the trial
solution into equation (3.6),

∂Ap

∂z
= iΞp |Ap|2Ap + 2iXpA

∗
pAsAie

i∆kz (3.8)

∂As(i)

∂z
= iΞs(i) |Ap|2As(i) + iXs(i)A

2
pA
∗
i(s)e

i∆kz (3.9)

where ∆k = 2kp − ks − ki and1

kn =
ωn
√
LJ,0Cg

a
√

1− LJ,0CJω2
n

. (3.10)

1Note that this is just the familiar form of kn, kn = ωn

√
LC/a, where L 7→

L/
(
1− LC//Lω2

)
as a result of the impedance ZJ = ZLJ

//ZCJ
.
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The coupling constants Ξn and Xn follow to be

Ξn =
a4k2

pk
3
n (2− δpn)

16CgI2
cL

3
J,0ω

2
n

(3.11)

Xn =
a4k2

pkski (kn − εn∆k)

16CgI2
cL

3
J,0ω

2
n

(3.12)

with εp = 1 and εs,i = −1. As can be noted, the Ξns modulate the wave number
of the modes in case the pump amplitude is large. Ξp is therefore referred to
as the self-modulation of the pump, while Ξs,i are the cross-modulation terms
between the pump and the signal or idler.
Under the undepleted-pump approximation and assuming As,i � Ap, we can
drop the interaction term in equation (3.8) and treat |Ap|2 as a constant. As a
result, the equation can be solved analytically as

Ap = |Ap,0| ei(Ξp|Ap,0|2z+φp). (3.13)

Since we describe 4WM, which is phase preserving, we can assume φp = 0 with
no loss of generality.

Substituting this result into equation (3.9), it can be rewritten as

∂As(i)

∂z
= iΞs(i) |Ap,0|2As(i) + iXs(i) |Ap,0|2A∗i(s)e

i(∆k+2Ξp|Ap,0|2)z (3.14)

Furthermore, switching to a co-rotating frame such thatAs(i) 7→ As(i)e
iΞs(i|Ap,0|2z,

we can cast the equation in the form

∂As(i)

∂z
= iXs(i) |Ap,0|2A∗i(s)e

i(∆k+∆Ξ|Ap,0|2)z (3.15)

where ∆Ξ = 2Ξp − Ξs − Ξi. This set of coupled differential equations can be
solved analytically as [23]

As(i) =

[
A(s,i),0

(
cosh gzz −

i∆K

2gz
sinh gzz

)
+

+
iXs(i) |Ap,0|2

gz
A∗i(s),0 sinh gzz

]
ei∆Kz/2

(3.16)

with ∆K =
(
∆k + ∆Ξ|Ap,0|2

)
, which is related to ∆Ω in equation (3.4)

through kn + Ξn|Ap,0|2 7→ (kn + Ξn)ωn|Ap,0|2/kn, see section 3.7. gz =√
XsX∗i |Ap,0|4 − (∆K/2)

2
from which the power gain of the signal for a TWPA
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of length lT can be determined as

Gs ≡
∣∣∣∣ As

As,0

∣∣∣∣2 =

=

∣∣∣∣ cosh gzlT −
i∆K

2gz
sinh gzlT

∣∣∣∣2 +
|Ai,0|2

|As,0|2

∣∣∣∣∣Xs |Ap,0|2

gz
sinh gzlT

∣∣∣∣∣
2

−

−

(
iAs,0Ai,0

(
cosh gzlT −

i∆K

2gz
sinh gzlT

)
X∗s |Ap,0|2

g∗z |As,0|2
sinh g∗z lT + c.c.

)
.

(3.17)

3.3.1 Effect of phase matching

As noted in section 3.2, the amplification process is most efficient if ∆Ω = 0. As
will become clear from the quantum mechanical treatment of the problem in due
course, ∆Ω corresponds to ∆K in equation (3.16). However, due to dispersion
(equation (3.10)) and cross modulation (equation (3.11)) this term cannot be 0
in a transmission line embedded with Josephson junctions. In order to bring it
closer to 0, we need dispersion engineering. In [18], dispersion engineering is

Cc

Cr

Lr

Cg

CJ

LJ,0,Ic

a

Figure 3.5: Unit cell of a Josephson junction embedded transmission line with a re-
sonator for achieving phase matching between the pump, signal and idler mode in a
TWPA.

achieved by embedding resonators in each unit cell in figure 3.4, as depicted
in figure 3.5. If the pump tone is chosen at a frequency close to the resonance
frequency of the resonators, the result is that every resonator gives the tone
a small phase kick (without diminishing the tone’s amplitude too much) and
∆K ≈ 0 may be accomplished. The phase kick required per resonator depends
on the density of resonators. [18] puts a resonator in every unit cell, such that
the phase kick per resonator only needs to be very small. This implies that
only a little of the pump amplitude will be reflected. Contrarily, [12] puts a
resonator after 17 unit cells each containing three Josephson junctions, such
that the required amount of phase shift per resonator is larger, resulting in a
larger reflected pump amplitude accordingly.
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In case every unit cell contains a resonator, taking its effect on the theory into
account is straightforward: we replace the capacitance Cg by an impedance

ZCeff,n = ZCg,n//Zr,n =
1

iωnCg
+

1− Lr (Cr + Cc)ω2
n

iωnCc (1− LrCrω2
n)

(3.18)

in which Lr and Cr are the inductance and capacitance of the resonator with
a resonance at ωr = 1/

√
LrCr. Cc is the coupling capacitance between the

resonator and the transmission line. Subsequently, we substitute 1/iωnZCeff,n

for Cg in the coupling constants Ξn and Xn in equations (3.11) and (3.12), such
that

ΞPM
n =

ia4k2
pk

3
nωnZCeff,n

16I2
cL

3
J,0ω

2
n

(2− δpn) (3.19)

XPM
n =

ia4k2
pkskiωnZCeff,n

16I2
cL

3
J,0ω

2
n

(kn − εn∆k) . (3.20)
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Figure 3.6: Predicted power gain as function of signal frequency without and with
phase matching with parameters taken from [18]. The pump frequency and current are
5.97 GHz and 0.5Ic and the initial idler current is 0. The transmission line parameters
are LJ,0 = 100 pH (Ic = 3.29µA), CJ = 329 fF and Cg = 39 fF and the resonator
parameters Cc = 10 fF, Lr = 100 pH and Cr = 7.036 pF. The calculations have been
performed taking into account 2000 unit cells of 10µm length. The dip in the plot for
a TWPA with phase matching actually contains two dips on closer inspection. They
result from the signal and idler being on resonance with the phase matching resonators
respectively.

The effect of phase matching on the performance of the TWPA is depicted
in figure 3.6. The red dash-dotted curve results from equation (3.17) without
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3.4. Quantum theory of parametric amplification (4WM)

phase matching with LJ,0 = 100 pH (Ic = 3.29µA), CJ = 329 fF and Cg = 39 fF
with 2000 unit cells of 10µm. The blue continuous curve results from adding
resonators to the unit cells and evaluating equation (3.17). For the resonators
Cc = 10 fF, Lr = 100 pH and Cr = 7.036 pF. In both calculations the pump
current, which is linked to the mode amplitude via the characteristic impedance
of the TWPA as Ip = −Ap,0ωp/Zc, is set to 0.5Ic at ωp = 2π × 5.97 GHz. The
initial idler current is set to 0.

In the case that one only adds resonators at specific points in the structure,
these can be taken into account by evaluating the amplifier in parts. The
resonators divide the structure in sections. Within each section, the evolution
of the mode amplitudes follows equation (3.16) with the coupling constants as
given by equations (3.11) and (3.12). Then, between two sections, one evaluates
the transmission coefficient due to the presence of the resonator, updates the
mode amplitudes accordingly and uses those amplitudes as input for the next
section.

3.4 Quantum theory of parametric
amplification (4WM)

In this section we derive the quantum Hamiltonian for the TWPA. In quantum
theory the evolution of the state vector, |ψ〉, describing the system is determined
by the Schrödinger equation,

i~
∂ |ψ〉
∂t

= Ĥ |ψ〉 . (3.21)

where ~ is the reduced Planck constant h/2π. Hence, in order to understand the
quantum behaviour of a parametric amplifier, we need to derive its Hamiltonian.
In this section the Hamiltonian for a 4WM parametric amplifier, where the
non-linearity is provided by Josephson junctions, is derived within Fock space
for discrete modes. Although this may sound quite limiting, it should be noted
that the same method can be easily applied to 3WM devices or devices with
another source of the non-linearity.
We derive the Hamiltonian in three steps. After covering the concept of energy
in transmission lines, a concept which the rest of the derivation relies on, first a
dispersionless LC-transmission line is quantised. As a second step, dispersion
is added to this transmission line by adding an additional capacitance parallel
to the inductance. As a final step the inductance is replaced by a Josephson
junction.

3.4.1 Energy in transmission lines

Typically, non-dissipative transmission lines are quantised as electromagnetic
circuits using currents (I), fluxes (Φ), voltages (V ) and charges (Q) as quantum
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fields [24]. These give rise to a Hamiltonian via the inductors and capacitors
that characterise the line. The energy stored in these elements is given by

U (t) =

∫ t

t0

P dt′ =

∫ t

t0

V I dt′ (3.22)

– the energy is given by the time-integrated power, P , through the element,
which equals the product of voltage and current. Now the only task is to
calculate the voltage over and current through the element, integrate and sum
over all the elements in the circuit. Specifically, for inductors

U =


∫ I(t)
I(t0)

LI dI ′ =
1

2
LI2∫ Φ(t)

Φ(t0)

1

L
Φ dΦ′ =

1

2L
Φ2

(3.23)

using the current-voltage relation for inductors V = L∂I/∂t in the first line and
Faraday’s induction law V = ∂Φ/∂t along with Φ = LI in the second. Note
that it is implicitly assumed that the current and flux are 0 at t = t0. This
proves to be a critical assumption of utmost importance as will be shown in
section 3.4.3. For the energy stored in capacitors, the same form of the energy
arises if we interchange current with voltage, flux with charge and inductance
with capacitance in equation (3.23).

3.4.2 Quantisation of a non-dispersive transmission line

Consider once more the transmission line in figure 3.4. For the moment we
neglect the non-linearity of the Josephon junction and the Josephson capacitance
CJ, in which case the line is just an ordinary LC-transmission line without
dispersion, as depicted in figure 3.7.
As suggested by the previous section, we postulate the following mesoscopic

Cg

LJ

a

Figure 3.7: Unit cell of a dispersionless LC-transmission line.

Hamiltonian for an electromagnetic (EM) field transmitting through the trans-
mission line

Ĥ =

∫
lq

1

2
LJ ÎLJ

2 +
1

2
Cg V̂Cg

2 dz. (3.24)
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Here, LJ = LJ/a is the inductance per unit length and Cg = Cg/a the capaci-

tance per unit length. ÎLJ
is the current through the inductor LJ and V̂Cg

is
the voltage over the capacitor Cg. lq is the quantisation length [25].
As in the classical theory, we assume sinusoidal waves passing through the line.
In this case

V̂Cg =
∑
n

V̂Cg, n =
∑
n

√
~ωn
2Cglq

(
âne

i(knz−ωnt) + H.c.
)
, (3.25)

as suggested by [24], adapted for discrete mode operators [25]. For waves
travelling in positive z-direction, the wave number kn is positive and will
be labelled by a positive n. Waves travelling in negative z-direction have a
negative wave number and will therefore be labelled by a negative n. In general,
k−n = −kn. For frequencies we have ω−n = ωn. The characteristic impedance
of this line is given by Zc =

√
LJ/Cg and the phase velocity of the travelling

waves equals vph = ωn/ |kn| = 1/
√
LJCg.

From this voltage we determine the current through the inductor by the tele-
grapher’s equations. Specifically

∂Vn
∂z

= −L∂In
∂t

. (3.26)

Thus,

ÎLJ =
∑
n

ÎLJ, n =
∑
n

sgn(n)

√
~ωn

2LJlq

(
âne

i(knz−ωnt) + H.c.
)
. (3.27)

Substituting relations (3.27) and (3.25) into equation (3.24) and using that

∫
lq

ei(∆knm)z dz =


lq sinc (∆knmlq/2) if − lq/2 ≤ z ≤ lq/2

(symmetric bounds)

−i
(
ei∆knmlq − 1

)
/∆knm if 0 ≤ z ≤ lq

(asymmetric bounds)

≈ lqδ∆knm
(3.28)

with ∆knm ≡ ±kn ± km. Here, the plus (minus) sign should be chosen if
the wave number is associated to an annihilation (creation) operator. The
approximation holds if ∆knmlq � 1, for which

δ∆knm =

{
1 if ∆knmlq = 0

0 else,
(3.29)

such that we arrive at

Ĥ0 =
∑
n

1

2
~ωn

(
â†nân + ânâ

†
n

)
=
∑
n

~ωn
(
â†nân +

1

2

)
, (3.30)
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taking into account the commutation relation
[
ân, â

†
m

]
= δ̂nm (See [25] for

details).

3.4.3 The influence of the Josephson capacitance:
quantisation of a dispersive transmission line

So far we have been neglecting the influence of the parallel capacitor CJ in the
transmission line under consideration. Taking this capacitance into account
leads to alterations to the theory presented so far, because we now have a
capacitor CJ parallel to the inductor LJ, as shown in figure 3.8. For frequencies

Cg

CJ

LJ

a

Figure 3.8: Unit cell of an LC-transmission line in which dispersion is added due to
the capacitor CJ parallel to the inductor LJ.

ωn < 1/
√
LJCJ this can be taken into account by a frequency-dependent

inductance,

Leff =
LJ

1− LJCJω2
n

≡ LJΛn, (3.31)

and as a result, first

Zc,n =

√
LJΛn
Cg

, vph,n =
1√
LJΛnCg

=
ωn
|kn|

, (3.32)

implying dispersion is added to the problem, since the phase velocity is now
frequency dependent. Secondly, we have to add an additional capacitive energy
to the Hamiltonian.

For didactic reasons we now give two derivations of the Hamiltonian in which
we take the parallel capacitor into account. In equations (3.33) to (3.36) we
present an erroneous approach, after which the correct manner is presented.

Intuitively, the energy contribution of CJ can be added to the Hamiltonian in
the same way as the energy stored in Cg. That is,

Ĥ =

∫
l

1

2
LJ ÎLJ

2 +
1

2
CJ∆ V̂CJ

2 +
1

2
Cg V̂Cg

2 dz. (3.33)
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Realising that ∆V̂CJ = ∆V̂LJ = ∆V̂Leff
, it can be calculated by the current-

voltage relationship for inductors. The current through Leff equals the current
in equation (3.27) with LJ 7→ Leff. Thus,

∆V̂Leff
=
∑
n

∆V̂Leff, n = L
∑
n

Λn
∂ÎLeff, n

∂t

=
∑
n

kna

√
~ωn
2Cglq

(
−iânei(knz−ωnt) + H.c.

)
.

(3.34)

Using the same relationship, we can calculate ÎLJ
as

ÎLJ
=

1

LJ

∫
∆V̂LJ

dt =
∑
n

kn
LJωn

√
~ωn
2Cglq

(
âne

i(knz−ωnt) + H.c.
)

(3.35)

and we can use the methods of the last section to find (Wrong!)

Ĥ0 =
∑
n

1

2
~ωn

(
â†nân +

1

2

)
(Λn + (Λn − 1) + 1) =

∑
n

~ωnΛn

(
â†nân +

1

2

)
.

(3.36)

This is an odd result: in the transmission line fed by a mode oscillating at
a frequency ωn the mode seems to oscillate at ωnΛn. Indeed, the result is
simply wrong by the exact reason pointed out in section 3.4.1. The voltage
in equation (3.25) is “cosine-like”, whereas ∆V̂CJ

is “sine-like”2. This implies
that the energy cannot be 0 in all elements at the same time, as we assumed
in equation (3.23). Although the sine-like operator ∆V̂CJ is unsuitable to be
used for the purpose of the derivation of the Hamiltonian, it should be noted
that ∆V̂CJ

is a “valid” operator in itself and thus it is suitable for calculating
expectation values from some quantum state |ψ〉.

To solve this problem, consider once more the energy stored in CJ,

UCJ
=

∫ t

t0

VCJ
ICJ

dt′ =
1

2
CJV

2
CJ

(3.37)

However, we can also cast this energy in terms of the flux, given by Faraday’s
induction law as

Φ =

∫
V dt. (3.38)

2In the sense that the expectation value of the operator on a coherent state |α〉 with α ∈ R
scales as either a cosine or a sine.
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Since the flux is the time-integrated voltage, it will be cosine-like, whenever the
voltage is sine-like and vice versa. From the definition

UCJ =

∫ t

t0

VCJICJ dt′ =

∫ t

t0

CJ
dΦCJ

dt′
d2ΦCJ

dt′2
dt′ = −ω2CJΦ2

CJ
, (3.39)

using the current-voltage relation for capacitors I = C∂V/∂t and that ∂2Φ/∂t2 =
−ω2Φ. This suggests that a more fruitful approach is to start out with

Ĥ =
1

2a2

∫
lq

1

LJ
∆Φ̂LJ

2 + CJa2∆Φ̂CJ

∂2∆Φ̂CJ

∂t2
+

1

Cg
Q̂Cg

2 dz. (3.40)

In the above equation we switched to flux and charge variables in all terms for
aesthetic reasons. For the first and third term we might use the current and
voltage variable just as well. The fluxes can be computed from either equation
(3.34) or (3.35), and it follows

∆Φ̂LJ = ∆Φ̂CJ = ∆Φ̂Leff
=
∑
n

kna

ωn

√
~ωn
2Cglq

(
âne

i(knz−ωnt) + H.c.
)
. (3.41)

Substituting, the Hamiltonian (3.40) yields

Ĥ0 =
∑
n

~ωn
(
â†nân +

1

2

)
(3.42)

as expected.

This result can be generalised for any lossless, linear transmission line. From
equation (3.40) we can infer that we can describe the same problem with just
two terms in the Hamiltonian. Rewriting equation (3.40) we find

Ĥ =
1

2a

∫
lq

(
1

LJ
∆Φ̂LJ

+ CJ
∂∆V̂CJ

∂t

)
∆Φ̂CJ

+ Cg V̂Cg

2 dz =

=
1

2a

∫
lq

ÎLeff
∆Φ̂Leff

+ Cg V̂Cg

2 dz

(3.43)

as ILeff
= ILJ

+ ICJ
. The same argument holds if Cg is replaced by a frequency-

dependent effective capacitance Ceff, such that we may write

Ĥ =
1

2a

∫
lq

ÎLeff
∆Φ̂Leff

+ V̂Ceff
Q̂Ceff

dz (3.44)

for any lossless linear transmission line. This yields equation (3.42) after
substitution of the quantum fields.
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3.4.4 Adding the non-linearity: quantisation of a non-
linear transmission line

As a last step we replace the inductor LJ, which we considered as an inductor
with a fixed value up to this point, by a Josephson junction. The unit cell for
such a transmission line is depicted in figure 3.9.

Cg

CJ

LJ,0,Ic

a

Figure 3.9: Unit cell of a Josephson junction embedded transmission line in which the
Josephson junction is modelled as a non-linear inductor, LJ, with a parallel capacitor
CJ.

The current through a Josephson junction is

IJ = Ic sin

(
∆ΦJ

ϕ0

)
(3.45)

with ϕ0 = ~/2e the reduced magnetic flux quantum, Φ0/2π, and e the elementary
charge. From the current, we can calculate the Josephson energy in the usual
fashion

UJ =

∫ t

t0

V I dt′ =

∫ t

t0

d∆ΦJ

dt′
Ic sin

(
∆ΦJ

ϕ0

)
dt′ = Icϕ0

(
1− cos

(
∆ΦJ

ϕ0

))
.

(3.46)

Substituting this energy for the inductive energy in equation (3.40) yields

Ĥ =
1

2a2

∫
lq

2aIcϕ0

(
1− cos

(
∆Φ̂J

ϕ0

))
+ CJa2∆Φ̂J

∂2∆Φ̂J

∂t2
+

1

Cg
Q̂Cg

2 dz

=
1

2a2

∫
lq

(
1

LJ,0
∆Φ̂J −

1

12LJ,0ϕ2
0

∆Φ̂J
3 +O

(
∆Φ̂J

5
)

+

+ CJa2 ∂
2∆Φ̂J

∂t2

)
∆Φ̂J +

1

Cg
Q̂Cg

2 dz.

(3.47)
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in which we have Taylor-expanded the cosine-term and defined the Josephson
inductance as LJ,0 = ϕ0/Ic. From this equation it is clear immediately that
the generalised Hamiltonian of equation (3.44) does not capture the non-linear
behaviour.

To address the non-linearity of the transmission line we also calculate the non-
linear flux operator derived from equation (3.41). The dependence of LJ and
thus Λn in the non-linear flux operator on ∆ΦJ is found from the Josephson
current and the flux ∆ΦJ = LJIJ,

LJ(∆ΦJ) =
ϕ0

Ic

∆ΦJ/ϕ0

sin (∆ΦJ/ϕ0)
≡ LJ,0

∆ΦJ/ϕ0

sin (∆ΦJ/ϕ0)
(3.48)

Furthermore, as in the classical theory, we give an explicit time and spatial
dependence to the creation and annihilation operators, ân

(†) 7→ ân
(†)(z, t), in

the voltage operator of equation (3.25). Invoking the slowly varying amplitude
approximation, the time and spatial dependence of these operators is neglected
in deriving the other field operators. Hence, from equation (3.41), we find for
the non-linear Josephson junction flux operator

∆Φ̂J =
∑
n

a

√√√√~ωn
2lq

LJ,0∆Φ̂J/ϕ0

sin
(

∆Φ̂J/ϕ0

)
− ω2

nLJCJ∆Φ̂J/ϕ0

(
âne

i(knz−ωnt) + H.c.
)

=
∑
n

√√√√ 1

1− Λn
∑
m,l ∆Φ̂J,m∆Φ̂J,l/6ϕ2

0 +O
(

∆Φ̂J
4
)∆Φ̂J,n

(0)

(3.49)

with ∆Φ̂J,n
(0) given by equation (3.41). In the second line of this equation, we

have written explicitly that ∆Φ̂J
2 =

∑
n,m ∆Φ̂J,n∆Φ̂J,m. This recurrent relation

can be solved iteratively resulting in

∆Φ̂J =
∑
n

1 +
Λn
12

(
∆Φ̂J

(0)

ϕ0

)2

+O

(∆Φ̂J
(0)

ϕ0

)4
∆Φ̂J,n

(0) (3.50)

Substitution of this expression in the Hamiltonian of equation (3.47) yields the
Hamiltonian for a 4WM parametric amplifier where the non-linearity is due to
Josephson junctions. Up to first non-linear order (or fourth order in ∆Φ̂J) we
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find

ĤTWPA =
∑
n

~ωn
(
â†nân +

1

2

)
+

+
∑

n,m,l,k

−i~2e−i∆ωnmlkt

96LJ,0I2
c l

2
q∆knmlk

(
ei∆knmlklq − 1

)
·

·

[ (
1− 4LJ,0ΛnCJω

2
k

){
ˆ̃a + H.c.

}
n·m·l·k

+

+ 4LJ,0ΛnCJ

(
2
{
ω
(
−iˆ̃a + H.c.

)}
n·m

{
ˆ̃a + H.c.

}
l·k

+

+
{

ˆ̃a + H.c.
}
n·m

{
ω
(
−iˆ̃a + H.c.

)}
l·k

)]
,

(3.51)

where ˆ̃an ≡ sgn (n)
√

Λnωnân and we have chosen the asymmetric integral
bounds of equation (3.28). The subscript n ·m · l · k below the braces indicates
multiplication, e.g. {Λω}n·m = ΛnωnΛmωm. ∆knmlk ≡ ±kn ± km ± kl ± kk for
the different terms resulting from expansion of the brackets. A plus (minus)
sign refers to a corresponding annihilation (creation) operator, e.g. the term

ânâ
†
mâ
†
l âk corresponds to ∆knmlk = kn − km − kl + kk. Similarly, ∆ωnmkl ≡

±ωn ± ωm ± ωl ± ωk.

This is the main result of this chapter. This Hamiltonian describes the full
quantum behaviour of Josephson TWPAs up to first non-linear order. However,
we will point out two remaining issues and how they may be dealt with. Firstly,
this Hamiltonian does not conserve energy a priori. For energy conservation
∆ωnmlk must equal 0, which does not follow necessarily from the equation. At
this point we can demand energy conservation by considering only interactions
between modes for which ∆ωnmlk = 0. However, one could also reason that
∆ωnmlk 6= 0 adds to the phase mismatching term ∆Ω in equation (3.4), which
at small magnitudes (compared to ωn) already greatly reduces the gain of the
amplifier. From this argument it follows that ∆ωnmlk ≈ 0. If the latter is
the case, and ∆ωnmlk is not strictly 0 this might lead to line broadening of
the modes. For now we will assume strict energy conservation and demand
∆ωnmlk = 0.

A second problem in the expression above is the explicit dependence of the
mixing term on the quantisation length. This dependence arises both as a
consequence of the dispersion in the line as well as an intrinsic dependence of
the mixing term that scales as l−2

q . Due to dispersion, ∆knmlk and ∆ωnmlk
cannot equal 0 simultaneously, which introduces an lq-dependence if we demand
∆ωnmlk = 0 for the interacting modes.
Partly, the two contributions to the quantisation length dependence of the
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mixing term cancel each other as

−i
(
ei∆knmlklq − 1

)
∆knmlk

= lq

(
1− i

2
∆knmlklq +O

(
(∆knmlklq)

2
))

. (3.52)

The intrinsic dependence of the mixing term on lq can be further resolved by
introducing a classical pump – see section 3.5. To deal with the remaining
lq-dependence due to dispersion, we can assume that the dispersion effects are
small enough such that ∆knmlk ≈ 0, while ∆ωnmlk = 0. We will make this
assumption in the following sections. The problem is also resolved considering
a transmission line of length lq for quantisation, of which just a part contains
Josephson junctions and using continuous mode quantisation [21].

3.5 Implementations

Using equation (3.51) one can analyse the different implementations of an
amplifier. In this section, we will study the non-degenerate amplifier with
degenerate pump in detail, the same amplifier implementation that was studied
classically in section (3.3). Treating the pump as a classical mode, we will solve
the problem of the explicit appearance of the quantisation length in the mixing
coupling constants in section 3.5.1. The section ends with a short discussion of
other implementations of 4WM amplifiers in section 3.5.2.

3.5.1 The non-degenerate parametric amplifier with un-
depleted degenerate classical pump – quantum the-
ory

As noted in section 3.3, for the non-degenerate parametric amplifier with
degenerate pump, it is assumed that only three modes, the pump, signal and
idler, play a role. Then, from equation (3.51) we can determine the interaction
Hamiltonian of the amplifier as

Ĥint =
∑

n,m=p,s,i

~ξnm
(
â†nânâ

†
mâm +

cm
2
â†nân +

cn
2
â†mâm

)
+

+ ~
(
χâpâpâ

†
s â
†
i + H.c.

)
+

+
∑

n,m=p,s,i

cncm~ξnm
2 (2− δnm)

−
cncm~ ξnm|Λ=0 (8− 2δnm)

3
·

·
(
ωn
ωm

(Λm − 1) +
ωm
ωn

(Λn − 1)

)
,

(3.53)

taking into account the commutation relations explicitly as cn ≡
[
ân, â

†
n

]
= 1̂.

The first two lines in this equation determine the dynamics of the amplifier,
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whereas the last two lines represent the added zero-point energy. The coupling
constants are found to be

ξnm =
~ΛnωnΛmωm

16I2
cLJ,0lq

(2− δnm) (1 + Λξnm) (3.54)

χ =
~Λpωp

√
ΛsωsΛiωi

8I2
cLJ,0lq

(
1 + Λχ

)
(3.55)

where

Λξnm ≡
2

3

(
Λn
Λm

+
Λm
Λn
− 2

)
(3.56)

Λχ ≡
LJ,0CJ

6

(
ωpωs

(
− 2Λp + 5Λs − 3Λi

)
+ ωpωi

(
− 2Λp − 3Λs + 5Λi

)
+

+ ωsωi

(
4Λp − 2Λs − 2Λi

))
(3.57)

and ξnm|Λ=0 implies that ξnm should be used without the contribution of Λξnm .

In equation (3.53), the ξn=m-term represents the self modulation and the
ξn 6=m-terms represent the cross modulation. The term in the equation with
coupling constant χ is where the magic happens. This term represents the real
amplification process in which two pump photons are scattered into a signal
and an idler photon.

For a parametric amplifier to work effectively, the device must be driven into
its non-linear regime, which is generally achieved by applying a pump current
close to the critical current of the device in addition to the much weaker signal
current. In this case we can approximate the Hamiltonian to second order in
âs,i

(†). Moreover, as ~ξnn � ~ωn, we can neglect the terms resulting from the
commutation relations as well. Hence, to a good approximation,

ĤTWPA ≈
∑

n=p,s,i

~ωnâ†nân +
∑

n=p,s,i

~ξpnâ†pâpâ
†
nân + ~

(
χâpâpâ

†
s â
†
i + H.c.

)
,

(3.58)

where we have neglected the constant zero-point energy, which does not influence
the dynamics of the amplifier, and we introduced

ξpn =
~ΛpωpΛnωn
16I2

cLJ,0lq
(4− 3δpn)

(
1 + Λξpn

)
. (3.59)

Here, the factor 4− 3δnm (instead of 2− δnm) arises from converting the double
sum into a single sum. Notably, the coupling constants corresponding to the
self- and cross-modulation differ by a numerical factor of 4. In [21] this factor
was found to be 2. However, as discussed below, both this work and [21] find
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identical operator equations of motion. In equation (3.58), χ is still given by
equation (3.55).

Furthermore, we can make the approximation that the pump can be treated as a
classical mode and we can replace the corresponding operators with amplitudes.
In accordance to the classical treatment of the problem in section 3.3, we will
choose the flux, Φ̂Cg

=
∫
V̂Cg

dt, for the amplitude. Upon comparing this
expression with its classical analogue (cf. [25]), equation (3.7), we find

âp 7→ −i
√
ωpCglq

2~
Ap. (3.60)

Then, for the signal and idler mode, which are still treated quantum mechanically,
we find the classical-pump Hamiltonian

ĤTWPA
(CP) ≈

∑
n=s,i

~
(
ωn + ξ′n |Ap|2

)
â†nân − ~

(
χ′A2

pâ
†
s â
†
i + H.c.

)
(3.61)

with

ξ′n =
Λpω

2
pΛnωn

32I2
cLJ,0Zc,pvph,p

(4− 3δpn)
(
1 + Λξpn

)
=

=
k2

pΛnωn

32I2
cL2

J,0

(4− 3δpn)
(
1 + Λξpn

) (3.62)

χ′ =
Λpω

2
p

√
ΛsωsΛiωi

16I2
cLJ,0Zc,pvph,p

(1 + Λχ) =

=
k2

p

√
ΛsωsΛiωi

16I2
cL2

J,0

(1 + Λχ) .

(3.63)

Although ξ′p does not appear in the classical-pump Hamiltonian, it is still defined
here for future reference.

Generalising these equations to the case in which resonators are added for
dispersion engineering is straightforward. Due to our results in section 3.4.3
this is as easy as making the substitution Cg 7→ 1/iωnZCeff

(implicit in Zc,n,
vph,n, kn and Λn) as discussed in section 3.3.1.

To calculate the gain predicted by a parametric amplifier from the quantum
theory, we calculate the Heisenberg equations of motion of the operators. By
substituting equation (3.58) as the Hamiltonian and approximating the pump
as a classical mode, this yields

∂Ap

∂t
= −i

(
ωp + 2ξ′p|Ap|2 + cpξpp

)
Ap + 2iχ′∗A∗pâsâi (3.64)

∂âs(i)

∂t
= −i

(
ωs(i) + ξ′s(i)|Ap|2

)
âs(i) + iχ′A2

pâ
†
i(s), (3.65)
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where again we showed the effect of the commutation relations explicitly. How-
ever, again we can neglect ξpp, since ξpp � ξ′p|Ap|2. Under the undepleted
pump approximation we can neglect the last term in equation (3.64) as well
and solve for the pump amplitude directly, as in the classical case. Hence, in
the co-rotating frame introduced in section 3.3,

∂âs(i)

∂t
= iχ′ |Ap,0|2 â†i(s)e

−i∆Ωt. (3.66)

Thus we find, similar to the classical theory

âs(i) =

[
âs(i),0

(
cosh gtt+

i∆Ω

2gt
sinh gtt

)
+

+
iχ′ |Ap,0|2

gt
â†i(s),0 sinh gtt

]
e−i∆Ωt/2 (3.67)

with

∆Ω = 2
(
ωp + 2ξ′p |Ap,0|2

)
−
(
ωs + ξ′s |Ap,0|2

)
−
(
ωi + ξ′i |Ap,0|2

)
=

=
(
4ξ′p − ξ′s − ξ′i

)
|Ap,0|2

(3.68)

gt =

√
|χ′|2 |Ap,0|4 − (∆Ω/2)

2
. (3.69)

Then, if the state spends a time tT in the TWPA,

Gs,q ≡
〈
â†s âs

〉〈
â†s,0âs,0

〉 =

=

∣∣∣∣ cosh gttT+
i∆Ω

2gt
sinh gttT

∣∣∣∣ 2

+

〈
â†i,0âi,0

〉
+1〈

â†s,0âs,0

〉 ∣∣∣∣∣χ′ |Ap,0|2

gt
sinh gttT

∣∣∣∣∣
2

−

−

i 〈âs,0âi,0〉〈
â†s,0âs,0

〉(cosh gttT+
i∆Ω

2gt
sinh gttT

)
χ′∗|Ap,0|2

g∗t
sinh g∗t tT+c.c.


(3.70)

in which the term on the second line yields 0 in case the signal or the idler is
initially in a number state.

One can also calculate the photon number distribution in the output of a
parametric amplifier from the theory in the limit of a classical undepleted pump.
To this end we calculate the evolution of the state vector from equation (3.21)
in the interaction picture,

|ψI (t)〉 = e−i ĤTWPA
(CP,rot)t/~ |ψI (0)〉 (3.71)
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where

ĤTWPA
(CP,rot) = −~

(
χ′ |Ap|2 â†s â

†
i e−i∆Ωt + H.c.

)
(3.72)

is the classical pump Hamiltonian rewritten in the co-rotating frame. Assuming
∆Ω = 0 and χ′ ∈ Re, we can rewrite the propagator in equation (3.71) using an
ordering theorem [26]

e−i ĤTWPA
(CP,rot)t/~|∆Ω=0 = ei tanh(κ)â†s â

†
i e− ln(cosh(κ))(1+â†s âs+â

†
i âi)ei tanh(κ)âsâi

(3.73)

where the amplification κ ≡ χ′ |Ap|2 t.
For a single-photon input state |1〉s |0〉i, we calculate the output state as

|ψI (t)〉 =

∞∑
n=0

(i tanh (κ))
n

cosh2 (κ)

√
n+ 1 |n+ 1〉s |n〉i (3.74)

from which we easily compute that the probability of finding N signal photons
in the output state equals

Pr (ns = N) = |〈N |ψI (t)〉|2 =
tanh (κ)

2(N−1)

cosh4 (κ)
N. (3.75)

For a coherent state |α〉s |0〉i we find

|ψI (t)〉 = e−|α|
2/2

∞∑
n,m=0

(i tanh (κ))
m

(cosh (κ))
1+n

αn√
n!

√(
n+m

n

)
|n+m〉s |m〉i (3.76)

and

Pr (ns = N) = e−|α|
2
N∑
n=0

(tanh (κ))
2(N−n)

(cosh (κ))
2(1+n)

|α|2n

n!

(
N

n

)
. (3.77)

These probabilities are visualised in figure 3.10, in which can be observed how
the photon number distribution spreads out as a function of the TWPA gain.

3.5.2 Other implementations

Although it is most trivial to use the TWPA based on Josephson junctions as a
non-degenerate amplifier with degenerate pump, there are other implementation
schemes, which will be discussed shortly in this section. As in the last section
we assume that only the pump(s) is (are) a source of amplification.

� Non-degenerate pump, signal and idler: Instead of feeding the TWPA with
a single pump tone, we can apply two pump tones at different frequencies.
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Figure 3.10: Photon number distribution in the output state of a TWPA for (a) a
single-photon state and (b) a coherent state α = 1 as a function of amplification
κ = χ′ |Ap|2 t (left axis) or, equivalently, gain G (right axis), assuming ∆Ω = 0. The
colourbar, which is cut off at Pr < 10−6, indicates the probability of finding N photons
in the output state. The average number of photons in the output state is indicated in
red.
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In this case we will find, in first order, three (primary) idler tones, one of
which will arise as a result of mixing with the two different pump tones
ωi = ωp1 + ωp2 − ωs, which has been considered theoretically in [18]. Two
other idler tones result from each pump working in a degenerate regime,
for which ωi(1,2) = 2ωp(1,2)−ωs. However, in turn, each of these idler tones
will be the source of (secondary) idler tones at yet different frequencies,
such that we end up with a whole spectrum of idlers. A manner to prevent
this from happening is to engineer stop bands into the transmission line,
such that only specific modes will transmit. However, the generation of
many idler tones complicates the analysis for such devices. Still, in general
it can be said that such a device will work in the phase-preserving regime.

� Non-degenerate pump, signal only: In case we apply two pump tones at
different frequencies, we can engineer a quasi phase-sensitive amplifier,
if the signal frequency is chosen at 2ωs = ωp1 + ωp2. It will work only
in a quasi phase-sensitive regime, because each pump will also cause a
primary idler tone to arise from a phase-preserving interaction with the
signal. In turn this gives again rise to a whole set of secondary idler tones.
If the transmission line is engineered such, that the primary idlers at
ωi(1/2) = 2ωp(1/2) − ωs fall into stop bands, the device will work as a real
phase-sensitive device.

� Pump, signal and idler with DC current: If we put the TWPA in between
two bias-Ts we can add a DC current to the device. In this manner
we can use the device as quasi 3WM, as has been demonstrated in [14].
Adding the current, we should insert ΦJ 7→ ΦJ +ΦDC into the Hamiltonian
in equation (3.47) which yields, among others, a term proportional to
Φ̂J,0

3ΦDC. Continuing the analysis, this yields a term proportional to

ΦDC

(
âpâ
†
s â
†
i + H.c.

)
in the Hamiltonian, which is a 3WM-term. Of course

the full Hamiltonian will contain 4WM-terms, since the pump acts as
a separate source as well. However, choosing the amplitude of the DC
current large with respect to the amplitude of the pump tone, the latter
terms can be made small. This implementation of the amplifier is phase-
preserving in general, however, it can be used as a phase-sensitive device
as well by choosing ωp = 2ωs.

3.6 Paramp terminology – revisited

This chapter started out with an introduction on TWPA terminology. After our
extensive excursion into 4WM paramp theory, we have reached the point that
we can understand the Hamiltonian in equation (3.4) fully. The only difference
between that Hamiltonian and our result in equation (3.58) is that the former
uses a co-rotating frame, whereas the latter does not. If we cast equation (3.58)
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in a co-rotating frame, we can identify

χ|eq.(3.4) = χ|eq.(3.55) (3.78)

∆Ω|eq.(3.4) = (4ξpp − ξps − ξpi) â
†
pâp (3.79)

or, in case we absorb a classical pump into the coupling constants

χ̃|eq.(3.5) = − χ′|eq.(3.63) |Ap|2 (3.80)

∆Ω|eq.(3.5) =
(
4ξ′p − ξ′s − ξ′i

)
|Ap|2 . (3.81)

3.7 Marrying the quantum and classical
theories

Although the classical theory of the non-linear wave equation and the quantum
evolution described by Schrödinger’s equation seem to be a world apart, in fact
the two descriptions can be mapped onto one another. This will be done in this
section.
The marriage between the two theories runs via the Heisenberg equations
of motion of the operators and the connection between the classical mode
amplitudes on the one hand and creation and annihilation operators on the
other. Starting from the Heisenberg equations of motion with a classical
undepleted pump and neglecting small terms (cf. equations (3.64) and (3.65))

∂Ap

∂t
= −i

(
ωp + 2ξ′p|Ap|2

)
Ap (3.82)

∂âs(i)

∂t
= −i

(
ωs(i) + ξ′s(i)|Ap|2

)
âs(i) + iχ′A2

pâ
†
i(s). (3.83)

As the classical coupled-mode equations are defined in space, whereas the
Heisenberg equations of motion are equations in time, the first step is to change
coordinates from time to space, yielding the spatial Heisenberg equations of
motion. From equation (3.25) we can infer that −ωn∂t = kn∂z by taking both
the derivative to time and to space. Therefore,

∂Ap

∂z
= i

(
kp + 2

kpξ
′
p

ωp
|Ap|2

)
Ap (3.84)

∂âs(i)

∂z
= i

(
ks(i) +

ks(i)ξ
′
s(i)

ωs(i)
|Ap|2

)
âs(i) − i

ks(i)χ
′

ωs(i)
A2

pâ
†
i(s). (3.85)

As a last step we change the operators back into the classical amplitudes of
the modes by virtue of equation (3.60). By substitution, we arrive at the
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classicalised spatial Heisenberg equations of motion

∂Ap

∂z
= i
(
kp + Ξq

p|Ap|2
)
Ap (3.86)

∂As(i)

∂z
= i
(
ks(i) + Ξq

s(i)|Ap|2
)
As(i) + iXq

s(i)A
2
pA
∗
i(s), (3.87)

where

Ξq
n =

knξ
′
n

ωn
(2− δpn) =

a4k2
pk

3
n (2− δpn)

16CgI2
cL

3
J,0ω

2
n

(
1 + Λξpn

)
(3.88)

Xq
s(i) =

ks(i)χ
′

ωs(i)

√
ωi(s)

ωs(i)
=

a4k2
pkski

16CgI2
cL

3
J,0ω

2
s(i)

(1 + Λχ) . (3.89)

This set of equations is identical to equations (3.8) and (3.9) after mapping
An 7→ Aneiknz and removing small terms up to some details: Ξq

n contains a
factor

(
1 + Λξpn

)
which Ξn does not. Additionally, the factor (1 −∆k/ks(i))

in Xs(i) has been replaced by (1 + Λχ) in Xq
s(i). The factor with Xn, however,

cannot arise from the quantum theory, since it would need to arise from a
coupling constant χ in the Hamiltonian which is somehow different for the
signal and idler mode. Such a difference is not permitted by the quantum theory.
However, if we would not have neglected the contribution to χ, χ′ and thus Xq

n

due to dispersion, those coupling constants would have been multiplied, up to
first order in ∆k, by (1− i∆klq/2), see equation (3.52). This term resembles
the factor (1−∆k/ks(i)) from the classical theory, although it depends on the
unphysical quantisation length. Still, the prediction of gain of both the classical
coupled-mode equations and the classicalised spatial Heisenberg equations of
motion agree well. As can be observed in figure 3.11, in case we do not add
dispersion engineering there is hardly a difference in predicted gain, whereas
only the maximum gain differs in both approaches in case we add dispersion
engineering. This is solely due to the factor ∆k/ks(i) in Xs(i).

3.8 Validity

In the presented theory we made several assumptions. Firstly, we only took
the first non-linear contribution of the Josephson energy into account and,
secondly, it was assumed that the pump can be treated as a classical mode
which is undepleted. In this section, the implications of these assumptions will
be presented.

The theory presented above is derived from a first-order Taylor expansion of the
Josephson energy. This implies that at a certain magnitude of the flux through
the junction the theory becomes invalid as higher order terms need to be taken
into account. To estimate this flux, we inspect once more the Josephson energy,
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Figure 3.11: Comparison of the predicted power gain from the coupled-mode equations
derived from the classical non-linear wave equation and the classicalised spatial Heisen-
berg equations of motion from the quantum theory. The comparison is made for the
case with and without phase matching using the same parameters as in figure 3.6. The
difference in gain with phase matching is due to the ∆k/k-term present in the classical
coupled-mode equation coupling constant Xn, but absent in the classicalised spatial
Heisenberg equation of motion coupling constant Xq

n.

UJ = Icϕ0

(
1− cos

(
∆ΦJ

ϕ0

))
= Icϕ0

∞∑
n=1

(−1)
n−1

(2n)!

(
∆ΦJ

ϕ0

)2n

. (3.90)

Thus, we find that the second-order (n = 3) non-linear effects are approximately
4!(∆ΦJ,p/ϕ0)2/6! smaller than the lowest-order non-linear terms. Hence, if
we require that the contribution to the energy of the second-order terms is
less than 5% of the energy contribution of the first-order terms, we find that
our theory breaks down at ∆ΦJ,p/ϕ0 ≈ 1.2 (or Ip/Ic ≈ 0.78). The dominant
second-order amplification term causes two secondary idler modes to appear
at ω(i’),{i”} = 4ωp − ω(s),{i} implying the general form of the Hamiltonian
in equations (3.4) and (3.61) becomes invalid. Moreover, the second-order
terms cause additional modulation effects. It is only in the third-order non-
linear terms that (â†s â

†
i )2-contributions start to play a role. Furthermore,

additional secondary idlers are generated and the modulation effects are fur-
ther increased. The former terms have an energy contribution approximately
4!(∆ΦJ,p/ϕ0)2/8! ≈ 6×10−4 smaller than the first-order non-linear terms at the
critical flux (∆ΦJ,p/ϕ0 = π/2), whereas the latter have an energy contribution
of approximately 4!(∆ΦJ,p/ϕ0)4/8! ≈ 4 × 10−3 at the critical flux. Therefore
these terms can be neglected for all practical purposes.
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The undepleted pump approximation breaks down, if the flux of signal and idler
photons in the amplifier becomes close to the flux of pump photons. Typically,
this happens when Is,0 ≥ Ip,0/10 [14, 18], in which the case the full coupled-
mode equations of equations (3.8) and (3.9) need to be considered to calculate
the output amplitudes. Alternatively, for the quantum case the full Hamiltonian
of equation (3.53) is to be considered to evaluate the evolution of the quantum
state.

3.9 Conclusions

After an introduction to the relevant terminology and the classical theory of
the coupled-mode equations of Josephson travelling-wave parametric amplifiers,
we derived the mesoscopic quantum Hamiltonian up to first non-linear order
describing the process using discrete mode operators. We found that such a
description is possible, even when taking into account dispersion effects in the
transmission line and showed that the classical coupled-mode equations can be
derived from this Hamiltonian.
In the derivation, however, there are a few remaining issues. Firstly, it was
found that in the non-linear terms of the Hamiltonian, energy and momentum
conservation could not be fulfilled simultaneously. Furthermore, the non physical
quantisation length is inherent to the theory. The latter can be solved solely
under the approximation of a classical undepleted pump. However, the matter
can also be resolved in case one derives the Hamiltonian using continuous modes
and a transmission line, of which only a part contains the non-linearity. For the
concurrent conservation of energy and momentum, we have not been able to
find a satisfactory solution.
We found that our Hamiltonian, and therefore the coupled-mode equations, are
valid to pump currents up to approximately 0.78Ic. For larger pump currents
more non-linear orders have to be taken into account, for which the same recipe
can be followed as shown in this chapter. The same recipe can also be followed
to derive the Hamiltonian for TWPAs that have another source of non-linear
behaviour, such as kinetic inductance.
To make the theories more applicable to experimental realisations of TWPAs,
we suggest that the theories can be expanded by taking into account losses as
well as reflections within the device and reflections at the boundaries of the
device at which it is coupled to its environment.
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Chapter 4

An experimental proposal
to study spontaneous
collapse of the wave
function using two
travelling-wave parametric
amplifiers

According to one of the postulates of the Copenhagen interpretation
of quantum mechanics, a measurement causes a wave function to
collapse into an eigenstate of the measurement apparatus. To study
whether such collapses occur spontaneously in an electronic amplifier,
we propose an experiment consisting of a microwave interferometer
that has a parametric amplifier added to each of its arms. Feeding
the interferometer with single photons, we entangle the output of
the amplifiers. We calculate the interference visibility as given by
standard quantum mechanics as a function of gain, insertion loss
and temperature and find a magnitude of 1/3 in the limit of large
gain without taking into account losses. This number reduces to 0.26
in case the insertion loss of the amplifiers is 2.2 dB at a temperature
of 50 mK. We argue, based on Born’s rule that if the process of
spontaneous collapse exists, we will measure a reduced visibility
compared to the prediction from standard quantum mechanics once
this collapse process sets in.

This chapter, authored by T.H.A. van der Reep, L. Rademaker, X.G.A. Le
Large, R. Guis and T.H. Oosterkamp, has been submitted for publication.

57



Chapter 4. An experimental proposal to study spontaneous . . .

4.1 Introduction

In the standard Copenhagen interpretation, a ‘measurement’ amounts to a
collapse of the wave function onto one of the eigenstates of the relevant observable.
There is, however, no consensus on a microscopic mechanism of such collapse, as
it clearly violates the unitary nature of quantum mechanics itself, see e.g. [1] for
a review. What all suggested theories of measurement have in common, is the
observation that large objects are seldom seen in superposition, and that this
near-impossibility of large superpositions causes the collapse of a small object
(such as an electron, atom or photon) when coupled to a large measurement
apparatus.

In other words, measurement can be seen as a process of amplification. Consider
for example a photon hitting a single-photon detector. A chain of events is set
in motion that would lead to an audible click or signal that can be processed by
a classical observer. The tiny amount of information contained in that single
photon is amplified to human proportions. The question now becomes: at what
point of the amplification process did we ‘measure’ the photon?

In this chapter we propose an experiment to quantify the amount of amplification
required for a wavefunction collapse. The traditional way of testing whether a
superposition has collapsed or not is with an interferometer. The ingredients
of our experiment are therefore a single-photon source, used as input to an
interferometer, with tuneable amplifiers inside the interferometer. If collapse
occurs, the visibility of the interference pattern diminishes.

In this chapter we will not argue for one or the other possible mechanisms of the
collapse process. The variety of possible ideas is wide, see e.g. [1] for a review.
Instead, our proposed experiment only relies on Born’s rule. Hence, regardless
of one’s favourite mechanism, our experiment will provide experimental bounds
on the possible size of a quantum object.

In this chapter we present a feasibility study to use such an interferometer to
detect quantum collapse. We focus on an implementation of the interferometer
using GHz-parametric amplifiers. Such amplifiers have the advantage that their
quantum behaviour is well-understood and that they are able to provide large
gain [2, 3]. We will cover the conventional quantum optics theory describing the
visibility of the interference pattern in terms of quantum mechanical operators.
Although this is a straightforward calculation it has not been performed explicitly
to our knowledge. We show that the visibility remains measurable as the gain
of the amplifiers in the interferometer is increased. Then we will discuss how
low the dissipation and temperature of the parametric amplifier must be, such
that they do not reduce the visibility to values so close to zero it becomes
unmeasurable.

Based on Born’s rule, we argue that wave function collapse within a parametric
amplifier will alter the interference visibility calculated using the conventional
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quantum optics. Therefore, we envision that this experiment may provide a
pathway to discern the transition from the quantum to the classical realm,
thereby opening the possibility of detecting the collapse of the wave function in
a system that can in principle be modelled accurately on a microscopic scale.

In section 4.2 we calculate the Hamiltonian of the interferometer in the lossless
case in the time domain. In section 4.3 we introduce a measure for the visibility
of our interferometer and we discuss the theoretical predictions for this visibility
as a function of the gain of the amplifiers. In section 4.4 we discuss the effect of
losses followed by our ideas on observing spontaneous collapse in section 4.5. In
the final section we conclude by elaborating on the realisation of the experiment
and estimating the feasibility of the experiment with parametric amplifiers with
a gain of 40 dB – a gain commonly used to read out quantum bits in quantum
computation experiments. Some of the detailed calculations are deferred to the
supplementary information.

① ②

④ ③

Single-GHz-
photon source

TWPA
  κ

Δθ

TWPA
  κ

⑤ ⑥

⑦⑧

Detector A

Detector B

Figure 4.1: Schematic overview of a balanced microwave amplifier set-up. Using a
90◦-hybrid (beam splitter), single photons are brought in a superposition, which is
then amplified using two identical TWPAs, characterised by an amplification κ. Before
entering the TWPAs, the excitation in the upper arm is phase shifted by ∆θ, which
is assumed to account for all phase differences within the set-up. Using a second 90◦-
hybrid, we can study the output radiation from arms 6 and 7 using detectors A and
B.

4.2 Model – lossless case

We consider the Mach-Zehnder type interferometer depicted in figure 4.1. The
interferometer is fed by a single-photon source (signal) in input 1 and a travelling-
wave parametric amplifier (TWPA) is added to each of its arms. Although other
realisations of the experiment are conceivable, we argue in the supplementary
material why we view this version as optimal (see appendices A and B). The
signal enters a hybrid (the microwave analogue to a beam splitter), thereby
creating a superposition of 0 and 1 photon in each of the arms. The excitation
in the upper arm of the interferometer can be phase shifted, where we assume
that the phase shift accounts for an intended phase shift as well as all unwanted
phase shifts due to fabrication imperfections and the non-linear phase shift from
the TWPA. After the TWPA, in which the actual amplification takes place, the
excitations from the two arms are brought together using another hybrid and
we can study the output radiation with detectors A and B.
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In this section we ignore losses, the effect of which we will discuss in section
4.4. We disregard reflections in the set-up as well as a mismatch in amplifier
gain. Throughout the chapter we use TWPAs working by a four-wave mixing
(4WM) process in a mode which is phase preserving (i.e. the amplification is
independent of the pump phase) and non-degenerate (i.e. the pump and the
signal are at different frequencies ωp and ωs, respectively). We assume the
pump to be degenerate (one signal photon is created by destroying two pump
photons and by energy conservation this gives rise to an idler at frequency
ωi = 2ωp − ωs). We also assume that the pump is undepleted (we neglect the
decrease of pump photons in the amplification process). Finally, we assume
that the pump, signal and idler are phase-matched (2Kp = Ks +Ki, where Kn

is the wave number including self- and cross-modulation due to the non-linear
wave mixing). Under these assumptions [2]

ĤTWPA = −~χ
(
â†s â
†
i + H.c.

)
. (4.1)

Here ~ is the reduced Planck constant h/2π and χ is the non-linear coupling
derived from the third-order susceptibility of the transmission line, which takes
into account the pump intensity. â†n is the creation operator of mode n. Using
the Heisenberg equations of motion, one can solve for the evolution of the
annihilation operators analytically. This yields [2]

âs(i) (t) = âs(i)(0) coshκ+ iâ†i(s)(0) sinhκ, (4.2)

where κ ≡ χ∆tTWPA is the amplification if the state spends a time ∆tTWPA

in the TWPA. Thus, we can determine the average number of photons in the
signal (idler) mode as function of the amplification of the amplifier as

〈n̂s(i)〉out
= 〈n̂s(i)〉in cosh2 κ+

(
〈n̂i(s)〉in + 1

)
sinh2 κ (4.3)

provided that the signal and/or idler are initially in a number state. 〈n̂〉out(in) is

the average number of photons leaving (entering) the TWPA. From this relation
we define the amplifier gain as Gs = 〈n̂s〉out / 〈n̂s〉in.
Even though under these assumptions the calculation can be done analytically
(see Appendix C) we present the numerical implementation here, because to
such an implementation losses can be added straightforwardly at a later stage.

To numerically obtain the output state we use QuTiP [4]. We first split the
Hilbert space of the interferometer into the upper arm and the lower arm. Each
of the arm subspaces is additionally divided into a signal and idler subspace.
Hence, our numerical Hilbert space has dimension N4, where N − 1 is the
maximum amount of signal and idler photons taken into account in each of the
arms. In this framework the input state is

|ψ〉 = |1〉up,s |0〉up,i |0〉low,s |0〉low,i , (4.4)

where the labels ‘up’ and ‘low’ refer to the upper and lower arm of the inter-
ferometer respectively. We evolve this state by the time evolution operator,
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generated by the Hamiltonian Ĥ of the system. The first hybrid is described by
the Hamiltonian

Ĥh1 = − ~π
4∆th1

∑
n=s,i

â†up,nâlow,n + H.c.

 . (4.5)

where ∆th1 is the time spent in the hybrid. Note that state evolution with the
above Hamiltonian for a time ∆th1 corresponds to the transformation operator
for an ordinary 90◦-hybrid,

Ûh1 = eiĤh1∆th1/~ = ei
π
4 (

∑
n=s,i â

†
up,nâlow,n+H.c.). (4.6)

By the same reasoning, the Hamiltonian of the phase shifter can be written as

Ĥps =
~∆θ

∆tps

∑
n=s,i

â†up,nâup,n + H.c.

 , (4.7)

where ∆θ is the applied phase shift. In our numerical calculations we use

ĤTWPA
(up/low) = −

~κ(up/low)

∆tTWPA

(
â†(up/low),sâ

†
(up/low),i + H.c.

)
(4.8)

for the TWPAs. After the TWPAs, the excitations from the two arms are
brought together using a second hybrid to create interference, which is measured
with detectors A and B. The second hybrid is described by a Hamiltonian Ĥh2

similar to equation (4.5).

To summarise, the proposed theoretical model of the experiment in the absence
of losses is as follows. We start with an initial single signal photon in the upper
arm, described by equation (4.4). We evolve this state for a time ∆th1 with
Hamiltonian Ĥh1, followed by Ĥps for a time ∆tps, then for a time ∆tTWPA

with ĤTWPA of equation (4.8) and finally for a time ∆th2 with Hamiltonian
Ĥh2. Finally, we will measure the photon densities in detector A and B, which
leads to a given visibility of the interference pattern. For the loss-less case the
values of the various ∆ts can be chosen arbitrarily.

4.3 Interference visibility

From the state resulting from our calculations we get the probability distribution
of number states in the detectors A and B, P (〈n〉A,s = i, 〈n〉A,i = j, 〈n〉B,s =
k, 〈n〉B,i= l), from which we can calculate the photon number statistics and
correlations by performing a partial trace (see appendix D). From the photon
number statistics we can compute the visibility of the interference pattern.
Although microwave photon counters have been developed in an experimental
setting [5–7], we can also envision the measurement of the output radiation
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using spectrum analysers. Such instruments measure the output power of the
interferometer as a function of time and one can determine the number of
photons arriving in the detectors as

n =
1

~ω

∫ t2

t1

P (t) dt′. (4.9)

Measuring the average photon number at detectors A and B, we can define the
interference visibility as (appendix E)

Vs(i) ≡
〈nB,s(A,i)〉 − 〈nA,s(B,i)〉
〈nB,s(A,i)〉+ 〈nA,s(B,i)〉

∣∣∣∣
∆θ=0

. (4.10)

In case the amplifiers have an identical gain, the visibility can also be calculated
using a smaller Hilbert space by the following observation: a single TWPA fed
with a |1〉s |0〉i-input state yields the average number of signal (idler) photons
in detector B (A) as calculated with equation (4.3). Contrarily, feeding this
TWPA with a |0〉s |0〉i-state gives the average number of signal (idler) photons
in detector A (B) (see appendix F). This provides a reduced Hilbert space that
scales as 2N2 for calculating the average visibility. Moreover, this observation
implies that the visibility can be computed directly by substitution of equation
(4.3) into equation (4.10).
The result is shown in figure 4.2 (in red) and has been verified using our
analytical results from Appendix C up to κ = 0.8 and our numerical results
up to κ = 1.7. It shows that the signal interference visibility drops from 1
to 1/3 with increasing gain due to multiphoton interference, in accordance
with [8]. The idler visibility, which can be measured as an additional check
on the theoretical predictions made in this chapter and for verification of the
interferometer losses (section 4.4), is found to be constant at 1/3 for κ > 0. For
κ = 0 the idler visibility is undefined.

4.4 The effect of losses

To take into account the effect of losses (dissipation/insertion loss) we use the
Lindblad formalism, which provides the expression for the time evolution of the
density matrix, ρ̂ [9],

dρ̂

dt
= − i

~
[Ĥ, ρ̂] +

N2−1∑
n=1

(
Ĵnρ̂Ĵ

†
n −

1

2

{
ρ̂, Ĵ†nĴn

})
(4.11)

where { , } denotes the anticommutator and Ĵn are the jump operators. These
operators describe transitions that the system may undergo due to interactions
with the surrounding thermal bath. Losses can be described by the jump
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Figure 4.2: Expected visibility of the interference pattern of the interferometer as a
function of amplification κ for signal and idler using the reduced Hilbert space (see
text). The gain in dB on the upper axis is only indicative and does not take into ac-
count the losses in the amplifiers (G = 10 log10 〈ns〉out / 〈ns〉in = coshκ + 2 sinhκ).
Without loss (red) the visibility tends to 1/3 for large gain. The visibility in case losses
are added to the system is plotted in grey for various amounts of loss in the TWPAs at
(a) T = 50 mK (nth = 8.3× 10−3 ) varying Γ∆tTWPA (Γ = 100 MHz, loss ≈ 4Γ∆t [dB])
and (b) Γ∆tTWPA = 0.50 (Γ = 100 MHz) varying T . For each of the hybrids and the
phase shifter the loss is set to Γ∆t = 0.1 and we have set ωs,i = 2π × 5 GHz. The re-
duced Hilbert space calculations are presented in continous lines, whereas an analytical
fit and extrapolation according to equation (4.15) is dashed. We find that even TWPA
losses as high as 6 dB do not reduce the visibility to 0.
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operators Ĵout and Ĵin. Ĵout describes a photon leaving the system and entering
the bath,

Ĵout,n =
√

Γ (1 + nth)ân, (4.12)

where Γ is the loss rate and nth = 1/(exp(~ω/kBT )−1) is the thermal occupation
number of photons in the bath. Ĵin describes a photon entering the system
from the bath,

Ĵin,n =
√

Γnthâ
†
n. (4.13)

Here we again see the advantage of using a description in the time domain and
putting ∆t in the component Hamiltonians, equations (4.5), (4.7) and (4.8) in
section 4.2. The total (specified) loss is mainly determined by the product Γ∆t
relating to the (insertion) loss as

IL = −10 log10

(
(1− nth/ 〈nin〉) e−Γ∆t + nth/ 〈nin〉

)
≈ 4Γ∆t.

(4.14)

The approximation holds for nth small. This allows us to define a constant loss
rate for the whole set-up, while adjusting ∆t for each component to match the
actual loss. Since the photon state in the interferometer is now described by a
density matrix, the amount of memory for these calculations scales as N8.

To study the effect, we set ωs,i = 2π × 5 GHz for now. The loss rate Γ is
set to 100 MHz for the full set-up. For the hybrids and the phase shifter, we
choose ∆t(h1,ps,h2) = 1 ns (IL ≈ 0.4 dB) and study the effect of losses in the
TWPAs by varying ∆tTWPA and T . We evolve the state under the Hamiltonians
Ĥh1 → Ĥps → ĤTWPA

(up/low) → Ĥh2 as described in section 4.2.
Unfortunately, running the numeric calculation, we were not able to increase
the amplification to κ > 0.6 due to QuTip working with a version of SciPy
supporting only int32 for element indexing. However, again it appears that we
can use the method of the reduced Hilbert space sketched in the last section.
Thus, the problem only scales as 2N4, and we have performed the numeric
calculation up to κ = 1.0.
Applying the reduced Hilbert space approach, we found that the parametric
amplifier’s output in presence of losses can be fitted according to

〈n̂s(i)〉out
= 〈n̂s(i)〉out |κ=0

cosh2 κ+
(
〈n̂i(s)〉out |κ=0

+ 1
)

e−f sinh2 κ (4.15)

where the fitting parameter f depends on Γ, the various ∆ts (if T > 0), nth

and the input state (see Appendix G). 〈n̂s(i)〉out |κ=0

is the number of photons

leaving the amplifier in case no amplification is present,

〈n̂s(i)〉out
|κ=0 =

(
〈n̂s(i)〉in − nth

)
e−Γ∆ttot + nth. (4.16)

This allows us to extrapolate the results to higher gain.
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TWPA
  κ

 ηκ (1-η)κ

Collapse

Figure 4.4: Model of a TWPA in which a quantum state collapse takes place. The
quantum TWPA, characterised by coupling constant κ is split in two parts. One is
characterised by the coupling constant ηκ and the other by (1− η)κ, where η ∈ [0, 1]
determines the position of the collapse. We assume that the state collapse takes place
instantaneously between the two parts of the amplifier.

The results of the calculations with loss are also depicted in figure 4.2 assuming
the full set-up is at a constant temperature. Some plots of the visibility as
function of loss for given κ are depicted in figure 4.11 in appendix F. In figure 4.2
we observe that losses decrease the interference visibility with respect to the
case where losses were neglected. However, even for TWPA losses as high as
6 dB the interference visibility survives. As in the no-loss case the signal and
idler visibility converge asymptotically to the same value.

4.5 Observing spontaneous collapse

Although there is currently no universally agreed-upon model that describes
state collapse, we propose to mathematically investigate the effect of collapse
on the proposed experiment using Born’s rule in the following way.
To model the collapse we split each of the amplifiers in the upper and lower arm
of the interferometer in two parts and we assume that the collapse takes place
instantaneously in between these two parts, see figure 4.4. Thus, the first part
of each amplifier can be characterised by a coupling constant ηκ and the second
by a coupling constant (1− η)κ, where η ∈ [0, 1] sets the collapse position. If
η = 0 the collapse takes place between the first hybrid and the amplifiers, while
for η = 1 the collapse takes place between the amplifiers and the second hybrid.
For 0 < η < 1 the collapse takes place within the amplifiers. For simplicity, we
ignore the fact that a photon is a spatially extended object.
Furthermore, by Born’s rule we have to assume a collapse phenomenology. Re-
gardless of the precise mechanism, such a collapse will destroy the entanglement
between the two interferometer arms and yield a classical state. As for the type
of classical state, we will consider two options: the state collapses onto (1) a
number state, or (2) onto a coherent state. For both these options we will study
the effect on the interference visibility below.

4.5.1 Collapse onto a number state

In case the collapse projects the instantaneous state onto a number state, the
state after projection is given by |ψcoll〉(N,M)= |N+1〉up,s|N〉up,i|M〉low,s|M〉low,i
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or |ψcoll〉(N,M)= |N〉up,s|N〉up,i|M+1〉low,s|M〉low,i, depending on whether the
initial photon went through the upper or lower arm of the interferometer. Hence,
this collapse phenomenology can be thought of as resulting from the collapse
taking place as a consequence of a which-path detection or the consequence
of a spontaneous collapse onto a number state due to some unknown mecha-
nism. The second part of the amplifiers, characterised by the coupling constant
(1− η)κ, evolves |ψcoll〉 to |ψ′coll〉 =

∑
N,M cNM |ψcoll〉 (N,M), where cNM are

the weights determined by (1− η)κ and
∑
N,M |cNM |2 = 1. |ψ′coll〉 is the state

just before the second hybrid.

To determine the effect on the interference visibility of such a collapse, we
calculate 〈n〉X,n = â†X,nâX,n, the number of photons arriving in detector
X ∈ {A,B} in mode n ∈ {s,i}. This equation can be rewritten in terms
of creation and annihilation operators of the upper and lower arm of the
interferometer by the standard hybrid transformation relations â[A]{B},n 7→
({1}[i]âup,n + {i}[1]âlow,n)/

√
2 to find

V coll
n =

i 〈â†up,nâlow,n − âup,nâ
†
low,n〉

〈â†up,nâup,n + â†low,nâlow,n〉
, (4.17)

which equals 0 for any |ψ′coll〉. Hence, we find that a collapse onto a number
state within the interferometer causes a total loss of interference visibility.

4.5.2 Collapse onto a coherent state

If the collapse projects the quantum state onto a coherent state, the state after
collapse is |ψcoll〉 = |αup,s〉 |αup,i〉 |αlow,s〉 |αlow,i〉 with overlap ccoll = 〈ψcoll|ψq〉.
Here |ψq〉 is the instantaneous quantum state at the moment of collapse. This
collapse phenomenology can be thought of as the electrons in the transmission
lines connecting the different parts of the interferometer collapsing into position
states.
In this case, the second part of the parametric amplifiers characterised by
(1− η)κ evolves the amplitudes α in |ψcoll〉 into average amplitudes

ᾱup(low),s(i) = αup(low),s(i) cosh (1− η)κ+ iα∗up(low),i(s) sinh (1− η)κ

(4.18)

by equation (4.2). Then the number of photons arriving in each detector is, for
each individual collapse,

ncoll
A(B),n =

1

2

(
|ᾱup,n|2 + |ᾱlow,n|2∓ 2|ᾱup,n||ᾱlow,n| sin (φlow,n − φup,n))

(4.19)

where φi is the phase of the state ᾱi. Thus, we can obtain the average number
of photons arriving in each detector as an integration over all possible collapsed
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Figure 4.5: Comparison of the interference visibility resulting from a full quantum
calculation without collapse and under the assumption of state collapse to coherent
states within the interferometer assuming no losses. If the state collapses between the
amplifiers and the second hybrid (η = 1), the visibility is 1/3 for the signal and rises to
1/3 with increasing amplification for the idler. In case the collapse takes place halfway
through the amplifiers (η = 0.5), the visibility tends to 0.15 for both signal and idler for
high gain and if the collapse is between the first hybrid and the amplifiers (η = 0), the
visibility goes to 0.2 for signal and idler.

states weighed by their probability. That is

〈ncoll
X,n〉 =

1

π4

∫
ncoll
X,n|ccoll|2 d2αup,sd

2αup,id
2αlow,sd

2αlow,i (4.20)

in which d2αn denotes the integration over the complex amplitude of the
coherent state n. Then, we determine the interference visibility according to
equation (4.10).

In case we assume that the interferometer is lossless, we can perform such a
calculation analytically (see appendix H). The resulting interference visibility is
plotted in figure 4.5 in which we can observe that the interference visibility at
high gain depends on the location of collapse. For η = 1 the signal and idler
visibility equals 1/3. For η = 0.5 both visibilities tend to 0.15 at high gain and
in case η = 0 the visibility tends to 0.2 for both signal and idler.

4.6 Experimental realisation and feasibility

As a single-photon source, we propose to use a qubit capacitively coupled to a
microwave resonator [10]. For the amplifiers we can use TWPAs in which the
non-linearity is provided by Josephson junctions. Currently, TWPAs providing
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20 dB (κ = 2.5) of gain and 2 dB of (insertion) loss that operate at T = 30 mK
have been developed [3].

The amplification process within the TWPAs is driven by a coherent pump
signal. Instead of increasing the gain of the TWPAs by increasing the pump
power, we propose to vary the amplification by varying the pump frequency. In
the latter method the amplification varies due to phase-matching conditions
within the amplifier. The advantage is that in this manner the transmission
and reflection coefficients of the TWPA, which depend on the pump power [11],
can be kept constant while varying the gain in the interferometer. Although
we assumed perfect phase matching in the amplifiers for the results shown in
this chapter, we do not expect a large difference if one changes from a varying
pump-power approach to a varying phase-matching approach.

Our calculations are based on a Taylor expansion up to the third-order suscep-
tibility of a parametric amplifier. Typically, microwave TWPAs work close to
the critical current of the device, such that this assumption might break down
and we need to take into account higher orders as well. For TWPAs based on
Josephson junctions, we can estimate as follows at which current a higher order
Taylor expansion would become necessary.
In the Hamiltonian of a TWPA with Josephson junctions the non-linearity
providing wave mixing arises from the Josephson energy

EJ = Icϕ0

(
1− cos

(
Φ

ϕ0

))
= Icϕ0

∞∑
n=1

(−1)
n−1

(2n)!

(
Φ

ϕ0

)2n

. (4.21)

Here, Ic is the junction’s critical current and ϕ0 is the reduced flux quan-
tum Φ0/2π. Hence, the second-order (n = 3) non-linear effects have a factor
4!(Φp/ϕ0)2/6! smaller contribution than the first-order non-linear effects. This
contribution causes the generation of secondary idlers and additional modula-
tion effects. If we require that this contribution is less than 5% of the energy
contribution of the first-order non-linear terms, we can estimate that the theory
breaks down at Φp/ϕ0 ≈ 1.2 (Ip/Ic ≈ 0.78). It is only in the third-order

non-linearity that terms proportional to (â†s â
†
i )n with n > 1 start to appear,

apart from yet additional secondary idlers and further modulation effects. These
terms have a maximal contribution of approximately 4!(Φp/ϕ0)4/8! ≈ 4× 10−3

smaller than the first-order non-linear term at the critical flux (Φp/ϕ0 = π/2)
and are therefore negligible for practical purposes.

The other assumption that might break down is the assumption of an undepleted
pump. If the signal power becomes too close to the pump power, the pump
becomes depleted. Typically this happens at Ps ≈ Pp/100 [11]. At Ip/Ic = 0.9,
Pp ≈ 1 nW in a 50 Ω-transmission line with Ic = 5µA. In case our qubit photon
source has a T1-time of approximately 100 ns [10], implying the photon has
a duration in that order, the number of 5 GHz-pump photons available for
amplification is in the order of 107. Hence, we expect that pump depletion only
starts to play a significant role in case the amplification becomes about 50 dB.
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In our calculations the only loss-effect that was not taken into account was the
loss of pump photons due to the insertion loss of the TWPA. If the insertion loss
amounts to 3 dB, half of the pump photons entering the device will be dissipated.
To our knowledge, this effect has not been considered in literature. However,
effectively this must lead to a non-linear coupling constant χ (equation (4.1)),
which decreases in magnitude in time. In a more involved calculation this
effect needs to be taken into account for a better prediction of the experimental
outcome of the visibility.
Apart from making χ time-dependent, the loss of pump photons will be the main
reason for an increase of temperature of the amplifiers. A dilution refrigerator
is typically able to reach temperatures of 10 mK with a cooling power of 1µW.
The heat conductivity of the transmission line to the cold plate of the refrigerator
will limit the temperature of the TWPA. Still, we estimate that a dissipation
in the order of 0.5 nW will not heat up the amplifiers above 50 mK. However,
as shown in figure 4.2, even if the amplifiers heat up to temperatures as large
as 200 mK we still expect a visibility that should be easily measurable, if no
collapse would occur.
Finally, a more accurate calculation of the expected interference visibility
would need to take into account reflections within the set-up as well as the
possible difference in gain between both amplifiers and other present decoherence
mechanisms, which we have not considered here.

The results we obtained for the interference visibility with a collapse within
the interferometer are only speculative as the mechanism of state collapse is
currently not understood. In case the state collapses onto a number state, the
resulting interference visibility is 0 for any gain. We anticipate that this number
might increase in case losses are taken into account in the calculation, however,
still we expect that the difference in interference visibility between the cases of
no collapse and collapse within the interferometer should be easily detectable.
Contrarily, if the state collapses onto a coherent state, the visibility depends on
the location of the collapse. This result should be interpreted as follows. Let us
assume that the state collapses at a gain of 20 dB (κ = 2.5). Then, neglecting
losses, the predicted signal interference visibility is approximately 1/3 in case
the state does not collapse, whereas it equals 1/3 in the case the state collapses
between the amplifiers and the second hybrid (η = 1). However, if we increase
the gain further, the expected location of collapse (the location at which the
state is amplified by 20 dB) moves towards the first hybrid (η < 1), which will
become apparent in the measurement result as an initial gradual drop in the
interference visibility followed by an increase, see figure 4.5. Simultaneously,
the idler visibility is expected to show the same behaviour.
It should be noted that the result for a calculation, in which one assumes a state
collapse onto a coherent state between the interferometer and the detectors,
is the same as when the state would collapse between the amplifiers and the
second hybrid of the interferometer. However, even if this would be the case,
one can observe a collapse within the interferometer if the collapse takes place
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within the amplifiers. A second remark to this collapse phenomenology is that
it does not conserve energy. If one considers some state |ψ〉 with an average
photon number n, one finds that a collapse onto a coherent state adds one
noise photon to the state. Such an increase in energy is a property of many
spontaneous collapse models [12–16]. It is due to this added photon and its
amplification in the classical part of the TWPAs that the differences in the
predicted interference visibility with and without state collapse arise.
In case one assumes a collapse onto a coherent state one could calculate the
expected interference visibility in case losses are included numerically by calcu-
lating the overlap between the state evolved until collapse and many (order 106)
randomly chosen coherent states. However, due to the issue with Scipy noted
in section 4.4, we could not perform this calculation for a reasonable number of
photons. Still we expect that, although the difference in visibility between the
situations with and without collapse in the interferometer might be decreased,
this difference is measurable.

Under these considerations, an experiment with two 40 dB amplifiers (κ = 4.7)
at 50 mK, which might be developed if losses are reduced, is feasible.

4.7 Conclusions

We conclude that it should be possible to determine whether or not a 40 dB-
parametric amplifier causes a wave function to collapse. If we insert such an
amplifier into each of the two arms of an interferometer, we can measure the
visibility of the output radiation. Neglecting losses the interference visibility of
both signal and idler tend to 1/3 with increasing gain, in case no collapse takes
place. If the state collapses onto a number state within the interferometer, the
visibility reduces to 0, whereas we found a significant deviation from 1/3 in the
case that the state collapses onto a coherent state. In case the insertion loss
of the amplifiers is 2.2 dB, while the temperature of the devices is 50 mK, we
estimate an interference visibility of 0.26. In case wave function collapse sets in,
we still expect the visibility to decrease measurably.
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Appendices

A Experimental realisation using resonator based
parametric amplifiers

The discussed set-up is not the only conceivable realisation of the experiment.
Instead of using a TWPA, it is also possible to use a resonator-based parametric
amplifier, such as the Josephson parametric amplifier (JPA), if the bandwidth
of the photons is smaller than the bandwidth of the amplifier. TWPAs are
broadband (BW ≈ 5GHz [3]), whereas JPAs are intrinsically limited in their
bandwidth (BW ≈ 10MHz [17]). However, both amplifiers are suitable to
amplify a single photon with a 1 MHz-bandwidth, in case our photon source
would have a T1-time in excess of 1µs.
As we want to minimise losses and reflections in the interferometer arms, using

① ②

④ ③

Single-GHz-
photon source

Detector A

Detector B

JPA

JPA

Figure 4.6: Schematic overview of the implementation of the experiment using JPAs.
In this case it is beneficial to use a Michelson type interferometer to minimise losses.

a TWPA leads to a Mach-Zehnder type interferometer, whereas using a JPA
results in a Michelson type interferometer, see figure 4.6. In case the JPA works
in the non-degenerate regime (ωs 6= ωi), the results of the interference visibility
as presented in this paper are the same.

B Non-degenerate vs. degenerate amplifiers

In the main text we considered the amplifiers to be non-degenerate, i.e. ωs 6= ωi.
In case the amplifiers work in a degenerate regime,

Ĥdeg = −~χ
(
â†s â
†
sei∆φ + H.c.

)
(4.22)

and the amplification will be dependent on the relative phase, ∆φ, between the
signal and the pump, see figure 4.7. In this case we can still measure a visibility
– in fact, ∆φ can be used as a phase shifter in the experiment – as can be
observed in figure 4.8. In this figure, the expected interference visibility in case
the quantum state does not collapse within the interferometer is depicted using
continuous lines. In case we assume that the state collapses into a coherent
state in between the amplifiers and the second hybrid, the resulting visibility
can be calculated using the method outlined in section 4.5 and appendix H.
The result is depicted in figure 4.8 using dashed lines. It is observed that for
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large amplification κ the two results approach each other asymptotically.
The main advantage of using non-degenerate instead of degenerate amplifiers
is that the latter have not been developed. In the microwave regime, para-
metric amplifiers have been developed using Josephson junctions and kinetic
inductance as the source of non-linear wave mixing and the resulting ampli-
fication. Both these sources lead naturally to non-degenerate devices as the
non-linearity scales quadratically with pump current. One can use these as
quasi-degenerate amplifiers by, e.g., biasing the device using a DC-current. This
complicates the set-ups as proposed in figures 4.1 and 4.6, which can be a
source of reflections and decoherence. Moreover, such amplifiers will always
have non-degenerate contributions to their amplification, which complicates the
analysis of the experiment. Thirdly, non-degenerate amplifiers enable one to
study two interference visibilities (of both signal and idler) instead of one. For
these reasons, we consider non-degenerate amplifiers to be more suited for our
proposed experiment.

Figure 4.7: Wigner function of the state entering the hybrid after amplification by
a degenerate amplifier (equation (4.22)). Depicted is the case where the signal and
pump are in phase (∆φ = 0). If ∆φ 6= 0 the Wigner function rotates according to the
dash-dotted lines.

C Analytical model

Without losses and using the assumptions for the TWPAs as presented in
section 4.2, we can obtain an analytical model for the output state. We start
by creating a single signal photon in input channel 1.

|ψ〉1 = â†1s |01s, 01i, 04s, 04s〉 = |11s, 01i, 04s, 04s〉 (4.23)
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Figure 4.8: Interference visibility of the experiment implementing degenerate parame-
tric amplifiers as function of amplification κ = χ∆tdeg and the difference in relative
phase of the two amplifiers, δ∆φ = ∆φup − ∆φlow. δ∆φ can effectively be used as
a phase shifter and we assume the interferometer to be lossless. The continous lines
represent the visibility resulting from a quantum calculation. The dashed lines result
from a calculation in which we assume state collapse into coherent states between the
amplifiers and the second hybrid (η = 1, see section 4.5 and appendix H).

Here, â† is the creation operator working on the vacuum. We then incorporate
the 90

◦
-hybrid by making the transformation

â†1s 7→
1√
2

(
iâ†2s + â†3s

)
. (4.24)

Next, a phase shift ∆θ is applied to the upper arm,

â†2s 7→ â†2se
iθâ†2sâ2s (4.25)

at which the state just before the TWPAs is

|ψ〉2 =
1√
2

(
iei∆θâ

†
2sâ2s â†2s + â†3s

)
|02s, 02i, 03s03s〉 (4.26)

=
1√
2

(
iei∆θ |12s, 02i, 03s03s〉+ |02s, 02i, 13s03s〉

)
. (4.27)

For the TWPAs we use the following Hamiltonian in the interaction picture

ĤTWPA
eff = −~χ

(
â†s â
†
i + H.c.

)
. (4.28)

Evolving the state under this Hamiltonian as |ψ〉3 = e−i ĤTWPA
efft/~, the output
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for a single amplifier in a single arm is (cf. [18])

e−i ĤTWPA
efft/~ |Ns, 0i〉 = (coshκ)

−(1+Ns)
∞∑
n=0

(i tanhκ)
n

n!

(
â†s â
†
i

)n
|Ns, 0i〉 ,

(4.29)

or, in case of a degenerate amplifier

e−iĤdegt/~ |Ns, 0i〉 = (cosh 2κ)
−1/2(1+2Ns)

∞∑
n=0

(
iei∆φ/2 tanh 2κ

)n
n!

(
â†s â
†
i

)n
|Ns〉 ,

(4.30)

where Ns is the number of signal photons initially present and κ ≡ χt. Applying
the former relation to |ψ〉2, we obtain the state after the TWPAs.

|ψ〉3 =
cosh−1 κ cosh−1 κ′√

2

[ (
iei∆θ cosh−1 κ

)
â†5s +

(
cosh−1 κ′

)
â†8s

]
·

·
∞∑

n,m=0

in tanhn κ

n!

im tanhm κ′

m!

(
â†5sâ

†
5i

)n (
â†8sâ

†
8i

)m
|05s, 05i, 08s08s〉 .

(4.31)

where κ and κ′ are the amplification in the upper arm and lower arm respec-
tively. Finally, the state traverses the second hybrid which is modelled by the
transformations

â†5 7→
1√
2

(
iâ†6 + â†7

)
â†8 7→

1√
2

(
â†6 + iâ†7

) (4.32)

for both signal and idler. Thus, we arrive at the output state

|ψ〉4 =
1

2
cosh−1 κ cosh−1 κ′

[(
−ei∆θ

coshκ
+

1

coshκ′

)
â†6s +

(
iei∆θ

coshκ
+

i

coshκ′

)
â†7s

]
·

·
∞∑

n,m=0

in tanhn κ

2nn!

im tanhm κ′

2mm!

(
−â†6sâ

†
6i + i

{
â†6sâ

†
7i + â†7sâ

†
6i

}
+ â†7sâ

†
7i

)n
·

·
(
â†6sâ

†
6i + i

{
â†6sâ

†
7i + â†7sâ

†
6i

}
− â†7sâ

†
7i

)m
|06s, 06i, 07s07s〉 .

(4.33)

This equation reproduces the interference visibilities as presented in figure 4.2
in case losses are neglected.
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D Output of numerical calculations

From our numerical calculations we obtain the probability distribution of
number states, P (〈n〉A,s= i, 〈n〉A,i= j, 〈n〉B,s= k, 〈n〉B,i= l) in detectors A and
B (i, j, k, l ∈ [0, N − 1]). Using partial traces, we can compute the statistics
and correlations for each of the four modes and between pairs of modes. E.g.
the number state probability distribution for signal photons in detector B is
depicted in figure 4.9.
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Figure 4.9: Probability distribution of the interferometer’s output in arm 7 (detector B)
for the signal mode as a function of amplification κ.

E Definition of interference visibility

In the main text the interference visibility is defined as

Vs(i) ≡
〈nB,s(A,i)〉 − 〈nA,s(B,i)〉
〈nB,s(A,i)〉+ 〈nA,s(B,i)〉

∣∣∣∣
∆θ=0

. (4.34)

The rationale behind this definition can be found in figure 4.10. At ∆θ = 0 we
expect the maximum number of signal photons in detector B and the minimum
in detector A. For the idler the opposite is the case.

F Comparison of full and reduced Hilbert space

As mentioned, the Hilbert space of the full interferometer scales as N4 (no
loss) and the number of entries in the density matrix scales as N8 (with loss).
However, if the amplifiers are identical, we can obtain the same results for the
interference visibility if we perform the calculation twice – once with a |1〉s |0〉i-
input state and once with a |0〉s |0〉i-input state. The first yields 〈nB,s (A,i)〉 and
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Figure 4.10: Predicted interference pattern of the interferometer in figure 4.1 (losses
neglected): the average number of signal and idler photons in detectors A and B for
amplification 0.4. At phase shift ∆θ = 0 most of the signal photons are expected in
detector A, whereas most of the idler photons end up in detector B.

the second 〈nA,s (B,i)〉. This implies that the same results can be obtained with
a Hilbert space of 2N2 (no loss) or 2N4 (with loss).
In figure 4.11 the result of the two calculations is compared as a function of
Γ∆tTWPA for κ = 0.1 to 0.4. In this figure, the grey solid data correspond to
Qutip’s master equation solver, whereas the black dashed data are obtained
using the reduced Hilbert space approach. As can be seen, the results overlap
very well, such that we can use the reduced Hilbert space for our calculations.

G Interference visibility with losses

In case transmission losses are taken into account, we can fit the average number
of photons leaving the interferometer with the function

〈ns(i)〉out
= 〈ns(i)〉out

|κ=0 cosh2 κ+
(
〈ni(s)〉out

|κ=0 + 1
)

e−f sinh2 κ

(4.35)

in which f is a fitting parameter depending on Γ, the various ∆ts, nth and the
input state.

〈n〉out |κ=0 = (〈n〉in − nth) e−Γ∆ttot + nth (4.36)

is the number of photons leaving the interferometer in case the amplification κ
equals 0. The result of a particular fit (Γ = 100 MHz, ∆tTWPA = 10 ns – other
∆ts are 1 ns, hence Γ∆ttot = 1.3 –, nth = 8.3× 10−3 ) is presented in figure 4.12.
In figure 4.13 the magnitude of the fitting factor f is plotted as a function of
Γ∆ttot and nth.
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Figure 4.11: Visibility as a a function of losses in the TWPAs for various κ. Γ =
100 MHz, T = 50 mK, ωs,i = 2π × 5 GHz. Γ∆t = 0.1 in the other components of
the set-up. The data in grey (solid) are obtained from QuTip’s master equation solver
using a N8 Hilbert space with N = 5. Overlain (black dashed) are the data obtained
from the reduced Hilbert space (2N4, see text). As can be observed, the overlap is very
good.
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Figure 4.12: Average number of signal and idler photons reaching the detector as a
function of κ (Γ = 100 MHz, ∆tTWPA = 10 ns – other ∆ts are 1 ns, hence Γ∆ttot = 1.3
–, nth = 8.3× 10−3 ). In grey the output from the reduced Hilbert space calculation.
The coloured dashed lines are the result from a fit using equation (4.35). Note that the
curves for signal photons in detector A and idler photons in detector B are overlapping.
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Figure 4.13: Magnitude of the fitting factor f as function of Γ∆ttot and nth for the
case Γ = 100 MHz and ∆th1,ps,h2 = 1 ns. (a) should be used for calculating (A,s), (B,s)
and (B,i), whereas (b) should be used for (A,i). The dots represent the numerical data,
whereas the mesh is a linear interpolation.
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H Interference visibility with collapse onto coherent states

To study the interference visibility in case of state collapse within the inter-
ferometer, we assume that the state collapses onto a coherent state, the most
classical state available in quantum mechanics. Coherent states are expanded
in Fock space as

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (4.37)

in which α ∈ C is the amplitude of the coherent state and |n〉 are the number

states. The mean number of photons in a coherent state equals |α|2. From
equation (4.37) we can easily compute the overlap between a coherent state and
a number state as

〈α|n〉 = e−|α|
2/2 (α∗)n√

n!
. (4.38)

Assuming that the interferometer is lossless and that the collapse takes place
within the interferometer, the squared overlap between the collapsed coherent
state |ψ〉coll = |αup,s〉 |αup,i〉 |αlow,s〉 |αlow,i〉 and the instantaneous quantum
state, given by equation (4.31) with κ 7→ ηκ, is

|ccoll|2 = |〈ψcoll|ψ3〉|2 =

=
e−(|αup,s|2+|αup,i|2+|αlow,s|2+|αlow,i|2)

2 cosh6 ηκ

[
|αup,s|2 + |αlow,s|2 +

+
(
i |αup,s| |αlow,s| ei(φlow,s−φup,s) + c.c.

)]
·

·
∑

n,m,l,k

(i)
n+m−l−k

tanhn+m+l+k ηκ

n!m!l!k!
(|αup,s| |αup,i|)n+l ·

· (|αlow,s| |αlow,i|)m+k
ei(n−l)(φup,s+φup,i)+(m−k)(φlow,s+φlow,i)

(4.39)

in case the amplifiers are equal and setting the amplitudes to α = |α| eiφα .
The amplifiers evolve the amplitudes of the collapsed state |ψcoll〉 further into
average amplitudes

ᾱup(low),s(i) = αup(low),s(i) cosh (1− η)κ+ iα∗up(low),i(s) sinh (1− η)κ

(4.40)

and the number of photons arriving in each of the detectors for this particular
collapse equals

ncoll
[A]{B},n =

1

2
|[i]{1}ᾱup,n + [1]{i}ᾱlow,n|2 . (4.41)
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In the last expression we have used the standard hybrid transformation relations

α[A]{B},n =
1√
2

([i]{1}αup,n + [1]{i}αlow,n) (4.42)

as well as that ncoll
A(B),n =

∣∣αA(B),n

∣∣2. Explicitly, using the shorthand notations

cκ′ = cosh (1− η)κ and sκ′ = sinh (1− η)κ,

ncoll
[A]{B},s =

1

2

[(
|αup,s|2 + |αlow,s|2

)
c2
κ′ +

(
|αup,i|2 + |αlow,i|2

)
s2
κ′−

−
(
i |αup,s| |αup,i| ei(φup,s+φup,i)cκ′sκ′ + c.c.

)
+

+ [1]{−1}
(
i |αup,s| |αlow,s| ei(φup,s−φlow,s)c2

κ′ + c.c.
)

+

+ [1]{−1}
(
|αup,s| |αlow,i| ei(φup,s+φlow,i)cκ′sκ′ + c.c.

)
+

+ [−1]{1}
(
|αup,i| |αlow,s| e−i(φup,i+φlow,s)cκ′sκ′ + c.c.

)
+

+ [1]{−1}
(
i |αup,i| |αlow,i| e−i(φup,i−φlow,i)s2

κ′ + c.c.
)
−

−
(
i |αlow,s| |αlow,i| ei(φlow,s+φlow,i)cκ′sκ′ + c.c.

)]
,

(4.43)

ncoll
[A]{B},i =

1

2

[(
|αup,s|2 + |αlow,s|2

)
s2
κ′ +

(
|αup,i|2 + |αlow,i|2

)
c2
κ′−

−
(
i |αup,s| |αup,i| ei(φup,s+φup,i)sκ′cκ′ + c.c.

)
+

+ [1]{−1}
(
i |αup,s| |αlow,s| e−i(φup,s−φlow,s)s2

κ′ + c.c.
)

+

+ [−1]{1}
(
|αup,s| |αlow,i| e−i(φup,s+φlow,i)sκ′cκ′ + c.c.

)
+

+ [1]{−1}
(
|αup,i| |αlow,s| ei(φup,i+φlow,s)sκ′cκ′ + c.c.

)
+

+ [1]{−1}
(
i |αup,i| |αlow,i| ei(φup,i−φlow,i)c2

κ′ + c.c.
)
−

−
(
i |αlow,s| |αlow,i| ei(φlow,s+φlow,i)sκ′cκ′ + c.c.

)]
.

(4.44)

With these ingredients we can obtain the average number of photons arriving
in each of the detectors as

〈ncoll
X,n〉 =

1

π4

∫
ncoll
X,n|ccoll|2 d2αup,sd

2αup,id
2αlow,sd

2αlow,i (4.45)
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as discussed in the main text. Here, d2α = |α|dφαdα and the bounds of the
integrals are [0,∞〉 for integration over the amplitudes and [0, 2π〉 for integration
over the phases.
Due to the complex exponentials in equations (4.39) and (4.43) and the inte-
gration over the full [0, 2π〉 for the phases, it is immediatelly observed that the
integrand of equation (4.45) only contributes to the integral for integrand terms
that are independent of φup(low),s(i). Then, integration over the phases yields a
factor 16π4.
For the calculation of 〈ncoll

B,s 〉 − 〈ncoll
A,s 〉 and 〈ncoll

A,i 〉 − 〈ncoll
B,i 〉 we find that only the

terms scaling as e±i(φup,s−φlow,s) and e±i(φup,i−φlow,i) from equations (4.43) and
(4.44) will contribute to the integral. For the term scaling as ei(φup,s−φlow,s) we
find a contribution to 〈ncoll

B,s 〉 − 〈ncoll
A,s 〉

∆s,1 =
8 cosh2 (1− η)κ

cosh6 ηκ
·

·
∫
e−(|αup,s|2+|αup,i|2+|αlow,s|2+|αlow,i|2)|αup,s|3|αup,i||αlow,s|3|αlow,i|·

·B0 (2 |αup,s| |αup,i| tanh ηκ)B0 (2 |αlow,s| |αlow,i| tanh ηκ) ·
· d |αup,s|d |αup,i|d |αlow,s|d |αlow,i| ,

(4.46)

where we have used the identity
∑∞
n=0 x

2n/(n!)2 = B0(2x), in which Bn(x)
is the modified Bessel function of the first kind. For the contribution from
equation (4.43) scaling as e−i(φup,s−φlow,s) we find the same expression. For the
term in equation (4.43) scaling as ei(φup,i−φlow,i) we find a contribution

∆s,2 =
8 sinh2 (1− η)κ

cosh6 ηκ
·

·
∫
e−(|αup,s|2+|αup,i|2+|αlow,s|2+|αlow,i|2)|αup,s|2|αup,i|2|αlow,s|2|αlow,i|2·

· [B1 (2 |αup,s| |αup,i| tanh ηκ)− |αup,s| |αup,i| tanh ηκ] ·
· [B1 (2 |αlow,s| |αlow,i| tanh ηκ)− |αlow,s| |αlow,i| tanh ηκ] ·

· d |αup,s|d |αup,i|d |αlow,s|d |αlow,i|
(4.47)

to 〈ncoll
B,s 〉−〈ncoll

A,s 〉. Here we have used the identity
∑∞
n=0 x

2n+1/[(n+ 1) (n!)
2
] =

B1(2x)− x. Again, the contribution of the term in equation (4.43) scaling as
e−i(φup,i−φlow,i) yields an equal contrbution, such that

〈ncoll
B,s 〉 − 〈ncoll

A,s 〉 = 2 (∆s,1 + ∆s,2) . (4.48)

For 〈ncoll
A,i 〉 − 〈ncoll

B,i 〉 we find the similar expression

〈ncoll
A,i 〉 − 〈ncoll

B,i 〉 = 2 (∆i,1 + ∆i,2) , (4.49)
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in which ∆i,1(2) follow from equations (4.46) and (4.47) by replacing cosh (1− η)κ
with sinh (1− η)κ and vice versa.

Similarly, we find that for the calculation of 〈ncoll
B,s 〉+ 〈ncoll

A,s 〉 and 〈ncoll
A,i 〉+ 〈ncoll

B,i 〉
only the terms without exponential factor and the terms scaling as e±i(φup,s+φup,i)

and e±i(φlow,s+φlow,i) from equations (4.43) and (4.44) will contribute to the
integral. For the terms without exponential we find a contribution

Σs,1 =
8

cosh6 ηκ
·

·
∫

e−(|αup,s|2+|αup,i|2+|αlow,s|2+|αlow,i|2) |αup,s| |αup,i| |αlow,s| |αlow,i| ·

·
(
|αup,s|2 + |αlow,s|2

) [(
|αup,s|2 + |αlow,s|2

)
cosh2 (1− η)κ+

+
(
|αup,i|2 + |αlow,i|2

)
sinh2 (1− η)κ

]
·

·B0 (2 |αup,s| |αup,i| tanh ηκ)B0 (2 |αlow,s| |αlow,i| tanh ηκ) ·
· d |αup,s|d |αup,i|d |αlow,s|d |αlow,i|

(4.50)

to 〈ncoll
B,s 〉+ 〈ncoll

A,s 〉. Again, the contribution to 〈ncoll
A,i 〉+ 〈ncoll

B,i 〉, Σi,1, is the same

except that cosh (1− η)κ 7→ sinh (1− η)κ. For the term scaling as ei(φup,s+φup,i)

we find a contribution

Σ2 =
8 cosh (1− η)κ sinh (1− η)κ

cosh6 ηκ
·

·
∫

e−(|αup,s|2+|αup,i|2+|αlow,s|2+|αlow,i|2) |αup,s|2 |αup,i|2 |αlow,s| |αlow,i| ·

·
(
|αup,s|2 + |αlow,s|2

)
B0 (2 |αlow,s| |αlow,i| tanh ηκ) ·

· [B1 (2 |αup,s| |αup,i| tanh ηκ)− |αup,s| |αup,i| tanh ηκ] ·
· d |αup,s|d |αup,i|d |αlow,s|d |αlow,i|

(4.51)

to 〈ncoll
B,s 〉+ 〈ncoll

A,s 〉 and 〈ncoll
A,i 〉+ 〈ncoll

B,i 〉. The contribution from the other expo-
nentially scaling terms from equations (4.43) and (4.44) contributing to the
integral yield the same values, whence

〈ncoll
B,s 〉+ 〈ncoll

A,s 〉 = Σs,1 + 4Σ2, (4.52)

〈ncoll
A,i 〉+ 〈ncoll

B,i 〉 = Σi,1 + 4Σ2. (4.53)

Using equations (4.48), (4.52), (4.49) and (4.53) we easily compute the inter-
ference visibilities for signal and idler. We evaluated the integrals in these
equations using Mathematica.
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Chapter 5

Developing a
travelling-wave parametric
amplifier with low insertion
loss

This chapter discusses the attempts to develop a Josephson travelling-
wave parametric amplifier with low insertion loss. We present the
design and fabrication procedure of the device. Then, we study one
device in detail. We find that the presented device is mismatched to
the 50 Ω-environment from which we estimate the device parameters.
Then, we develop a model to study the non-linearity of the device
including losses by measuring the combination of self- and cross-
modulation resulting from exciting the device with a single tone.
Finally, we present our non-linear wave mixing results and find that
our device is able to deliver 10 dB of gain for certain frequency bands.
We discuss improvements to the device and the experimental set-up.
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5.1 Introduction

In recent years many microwave travelling-wave parametric amplifiers (TWPAs)
have been developed [1–6]. These amplifiers are able to amplify a broad band of
microwave signals with a low noise temperature by non-linear wave mixing and
are therefore perfectly suited within multi-qubit read-out experiments, which
typically have output signals on single photon level.
For microwave TWPAs, two sources of the non-linear wave mixing have been
considered and developed, first the intrinsic kinetic inductance of superconduc-
tors [1, 4–6] and secondly the non-linear inductance of Josephson junctions [2, 3].
It was found that these devices were indeed able to amplify signals close to the
standard quantum noise limit of a 1/2 added photon per unit bandwidth [7].
One reason for the developed amplifiers not to reach the quantum noise limit
exactly is the intrinsic insertion loss of the device. For this reason we set out
to develop a TWPA based on Josephson junctions, in which we attempt to
minimise the device losses, which also is a key parameter in the experiment
proposed in chapter 4.

In this chapter we present the design of the device in section 5.2. We propose to
minimise the insertion loss of the device by removing the dielectrics commonly
used to match a TWPA to its 50 Ω-environment and using low air bridges
instead. These air bridges are separated from the transmission line by the
lossless vacuum, instead of a lossy dielectric. In section 5.3 we present the
important elements of fabrication for the devices. We characterise the Josephson
junctions and show that the low air bridges can be fabricated. Finally, in section
5.4 we present one of the devices that was fabricated. From the impedance
mismatch we extract the device parameters, which we use to study its non-
linearity using the theory presented in chapter 3. We also present the results
of the wave-mixing experiments showing that there is signal gain and idler
generation. Necessary improvements of the device and measurement set-up are
discussed where applicable.

5.2 Designing the TWPA

5.2.1 Design considerations

In principle, a TWPA is a simple device. There are three conditions that need
to be fulfilled by a transmission line in order to become an effective amplifier.

1. Non-linearity: the transmission line should be non-linear, i.e. voltage and
current should not be proportional to each other. This provides the wave
mixing and thereby the amplification.

2. In general, the non-linearity should provide more amplification than
the intrinsic loss of the transmission line. For our quantum experiment
described in chapter 4 the losses should be as low as possible.
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3. Impedance matching: In order to avoid unwanted reflections in the set-up,
the transmission line should be impedance matched to its (electrical)
environment. In general, the environment has a characteristic impedance
of 50 Ω.

5.2.2 From coplanar waveguide to TWPA

As the basic structure of our TWPA we will use a coplanar waveguide (CPW)
structure. We fabricate CPWs using 200 nm-thick NbTiN (Tc = 15.1 K, σ =
1.06µΩm) on a 525µm-thick Si substrate. For a CPW that has a centre
conductor width of 12µm and gaps of 5µm at mK-temperatures, we expect
L = 470 nH/m and C = 177 pF/m indeed yielding Zc ≈ 50 Ω.
In our case the non-linearity is provided by Josephson junctions. These can be
thought of as non-linear inductors, where the inductance changes as a function
of the current running through the junction. When a Josephson junction is
embedded in a transmission line, this Josephson inductance is to be added to
the geometrical and kinetic contributions to the line inductance. If we assume
a Josephson inductance of 100 pH, corresponding to a (DC-)critical current of
Ic = ϕ0/LJ,0 = 3.29µA, and a unit cell size of 10µm, this amounts to 10µH/m
for the given parameters, a value 20 times larger than the “normal” CPW
inductance.
As a consequence, to reach the 50 Ω-characteristic impedance, we need to
increase the capacitance of the line. Firstly, we can decrease the gap size of
the CPW. Furthermore, we can add parallel-plate capacitors over the line.
This method has been used previously by [2], which used parallel plates with
a dielectric in between to increase the capacitance of the line. As we want
to minimise the (capacitive) losses, we propose to use air bridges over the
centre conductor rather than a dielectric. Such bridges do not only increase the
capacitance, but also prevent slot modes to arise as it connects the two ground
planes of the CPW [8–11].

5.2.3 Sonnet calculations

In order to design a transmission line embedded with Josephson junctions, we
model it in Sonnet [12]. With this program, one can calculate the characteristics
of planar circuits in a discretised box. The Josephson junctions are modelled as
lumped-element inductors and the air bridges as parallel plate capacitors using
a second layer and a via, as can be observed in figure 5.1. From a simulation,
we get the inductance and capacitance per unit length of the line, while varying
the Josephson inductance, LJ,0, the unit cell size, a, the CPW gap width, wg

and dAB, the air bridge height, as our main design parameters.

First, we run several simulations to optimise the box size, in terms of the number
of unit cells simulated, and the discretisation mesh. A larger box and finer
mesh yield more precise results, but comes at a cost of computation time. It
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LJ,0

b) CPW c) AB d)a)
via

via

via

via

via

AB

CPW
via

Figure 5.1: Overview of the unit cell for Sonnet calculations. (a) The unit cell con-
sists of 3 layers, a Si-substrate on top of which a NbTiN-CPW is positioned. The other
two layers are vacua in between which the air bridge is modelled as a Al-parallel plate
capacitor. The air bridge and CPW are connected using a via. (b) A unit cell of size
a consisting of a CPW, parametrised by its centre conductor width wc and gap width
wg, with embedded Josephson junction. The junction is modelled as a lumped-element
inductor within a junction deposition gap lJ. (c) The air bridge layer of the unit cell.
The height of the air bridge above the CPW is dAB. (d) A 3D-view of a series of 8 unit
cells.

was found that the results converged more or less taking into account 8 unit
cells and using a discretisation mesh of 500× 100 nm2, see figure 5.2.

From the simulations, taking into account technical constraints of fabrication,
we found that LJ,0 ≈ 60 pH (Ic = 5.5µA), a = 20µm, wg = 1.5µm and
dAB = 100 nm (L = 3.021µH/m and C = 1.294 nF/m). These values yield a
characteristic impedance of approximately 48 Ω. However, as the inductance is
current dependent, this number will rise to 50 Ω due to the large pump current
in the regime where the device is used as an amplifier.

5.2.4 Analytical approximation

The Sonnet results can be approximated analytically under the following
considerations. First, as the geometric and kinetic inductance of the CPW are
small compared to the Josephson junction inductance, we assume that they can
be neglected. Secondly, we assume that the capacitance can be approximated
by

Cg = 2ε0εr
E (k′)

E (k)
+
ε0wc (a− lJ)

dABa
, (5.1)

where lJ is the length of the gap in which the Josephson junction is deposited, see
figure 5.1. This approximation assumes that the electric field lines originating
from the lower side of the centre conductor (the side facing the substrate) couple
to the ground plane through the substrate. The electric field lines originating
from the upper side of the centre conductor are assumed to couple to the air
bridge according to a parallel plate capacitor approximation. The approximated
expression for Cg is expected to hold for dAB < wg.

In figure 5.3 the Sonnet results and the results of the analytical approximation
are compared. The errors are defined as error = (A − S)/S, where A is the
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Figure 5.2: Convergence tests of the Sonnet calculations for L and C. For this si-
mulation LJ,0 = 10 pH, a = 30µm, wc = 12µm, wg = 0.2µm, whereas we did not
simulate the air bridge. In the grid convergence test (squares), the grid size is given by
1.0/N × 0.2/Nµm2. For the Ncell convergence test N = Ncell. We find that L and C
have converged well for Ncell = 8. For the grid we take N = 2, which yields an estimate
for L and C within 1% of the converged value and takes a reasonable amount of time
to evaluate.

approximated result and S is the Sonnet result. For a = 30µm, wc = 12µm
and lJ = 1.0µm, while varying the Josephson inductance, the CPW gap width
and the air bridge height. We find that the error in calculating L using Sonnet
or our approximation is independent of wg and decreases with increasing LJ,0

and decreasing dAB. For this dataset the error is found to be less than 20%.
This number decreases by decreasing a, since

errorL = − a

LJ,0/ (Lg + Lk) + a
, (5.2)

setting AL = LJ,0/a and SL = LJ,0/a+Lg +Lk. Using this equation we expect
the maximum error to be less than 14% for a = 20µm.
The error in C is found to be less than 3%. As expected the error decreases
with decreasing wg.

5.3 Elements of fabrication

As discussed in section 5.2.2, we want to develop a TWPA based on Josephson
junctions and use an air bridge to provide the capacitance to match a charac-
teristic impedance of 50 Ω. In this section we will elaborate on the fabrication
of the junctions and bridges.
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Figure 5.3: Comparison of the Sonnet results and the results of our analytical ap-
proximation for a = 30µm, wc = 12µm and lJ = 1.0µm varying the Josephson
inductance, the CPW gap width and the air bridge height. The errors are defined as
error = (A − S)/S, where A is the approximated result and S is the Sonnet result.
Decreasing a, errorL will decrease as compared to the presented results as the geome-
tric and kinetric inductance contributions of the CPW decrease relatively with respect
to the Josephson inductance.
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5.3.1 Josephson junctions

The DiCarlo lab is specialised in fabricating Josephson junctions using a double
angle shadow evaporator and the Dolan bridge technique [13]. Using this
technique, two types of junctions can be produced as a result of the evaporation
shadow cast by the Dolan bridge, see figure 5.4. Due to the shape of the resist
mask for these two junction types, we will refer to these junction types as I-type
and Z-type junctions.

a)

Si
NbTiN
PMGI

PMMA
Al
AlOx

b)
A B

A

B

Figure 5.4: Fabrication principle of Josephson junctions fabricated using the Dolan
bridge technique. (a) and (b) show the patterns of the resist mask to produce (a) I-
type junctions and (b) Z-type junctions, which are named after the respective patterns
that resembles these letters. Al evaporation is from the top and bottom of the figure.
A (view in direction of evaporation) and B (view perpendicular to evaporation direc-
tion) show the cross-section of the the Josephson junction resulting from double angle
shadow evaporation of Al as indicated in (a) and (b). Since the Dolan bridge is only
supported at its ends, the size of the resulting junctions is limited.

Typically, in the DiCarlo lab I- and Z-type junctions are produced with a normal
state resistance, Rn, of 3 to 30 kΩ for creating qubit resonators. From this
magnitude we can calculate the critical current at T � Tc from the IcRn-product
as

Ic ≈
π∆sc(0)

2eRn
, (5.3)

where ∆sc(0) = 1.76kBTc is the superconducting gap energy at T = 0 K, which
depends on the critical temperature Tc of the superconductor (∆sc(0) = 180µeV
for Al with Tc = 1.2 K) and e is the elementary charge, to find Ic = 10 to
100 nA. Comparing these values to the design critical current of 5.5µA, see
section 5.2.3, we see that we must increase the junction size.
As the Dolan bridge is only supported at its ends, we cannot increase the
junction size indefinitely, as the bridge will collapse. This is indeed what we
observed. For this reason we developed the O-type junction using a rectangular
pattern written into the resist, as schematically depicted in figures 5.5 and
5.6. This junction type does not use a bridge, but uses the resist (R-mask)
or the electrodes (E-mask) as evaporation mask during the evaporation. A
scanning electron microscope (SEM) image of these two sorts of junctions is
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depicted in figure 5.7. For the data presented in this section, the lift-off step
during fabrication of the junctions was performed using N -methyl-2-pyrrolidone
(NMP).

a)

b)

c)

d)

e)

f)

g)

h)

Si NbTiN PMGI PMMA Al AlOx

Figure 5.5: Fabrication process of O-type Josephson junctions using the resist as eva-
poration mask (R-mask). (a) In a previous fabrication step, we etch the NbTiN that is
sputtered onto a Si substrate as to accomodate the junction. (b) A bi-layer of PMGI
and PMMA photoresist is spun onto the sample. (c) We pattern the resists using e-
beam lithography. Using a larger dose in the middle of the junction as compared to its
sides, one can create an overhang of PMMA after development of the resists as PMMA
has a larger critical dose than PMGI. This overhang prevents the formation of dog ears
during evaporation of the junction. (d) After performing O2 plasma cleaning and an
HF dip to remove the oxides from the NbTiN pads and the Si substrate, we load the
sample into the shadow evaporator. The first Al junction electrode is evaporated onto
the sample. (e) A small amount of O2 is allowed into the vacuum chamber of the eva-
porator to create an AlOx tunnel barrier in the junction. (f) The O2 is removed and the
second Al junction electrode is evaporated. (g) Again, O2 is allowed into the vacuum
chamber to create an AlOx layer on top of the second electrode. (h) The sample is
taken out of the shadow evaporator and the resists are lifted off. This technique can
produce junctions of any size.

In order to characterise the junctions, we measure the DC IV-curves in a
He3/He4 dilution refrigerator with a base temperature of 50 mK. The four-point
measurement set-up used for this purpose is schematically depicted in figure
5.15. As a current source we use the S4m-(current)module of the IVVI-rack
that was developed at TU Delft [14]. We measure the voltage over the junctions
using a Keithley digital multimeter. The DC lines going into the refrigerator
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Figure 5.6: Instead of using the PMMA resist as an evaporation mask (R-mask), one
can also use the NbTiN electrodes as a mask (E-mask). The junction thus created is
larger and has an “island” on either electrode. Legend as in figure 5.5.

500 nm

(a)

1 μm
Islands

(b)

Figure 5.7: SEM images of a single (a) R-mask and (b) E-mask O-type Josephson
junction. The islands, which are absent in the R-mask junction are clearly visible in the
E-mask junction, as indicated by white arrows.
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are filtered by a Cu-powder low-pass filter and an RC low-pass filter.
The resulting IV-curves for an R-mask O-type junction and an E-mask O-type
junction (not the junctions of figure 5.7) are shown in figure 5.8. The R-mask
junction with a junction size of 0.7× 1.0µm2 has a critical current of 0.86µA
and its gap voltage is 290µV, which is 20% lower than the expected gap voltage
for Al (2∆sc = 360µeV). The junction’s normal state resistance is observed to
be 350 Ω. We ascribe the reduced gap voltage and the shape of the retrapping-
current branch in the IV-curve to self-heating effects [15–17]. The E-mask
junction has a junction size of 1.5× 1.0µm2 Although this is an increase of only
a factor 2 with respect to the R-mask junction area, the normal state resistance
of the junction is 27 Ω, its gap voltage equals 1.5 mV and, correspondingly, it has
a critical current of 63µA. This might be an effect arising due to the proximity
of the NbTiN (2∆sc = 4.5 meV for Tc = 15.0 K). The retrapping current branch
shows two retrapping currents. The first is observed at 56µA and the second at
8.0µA. Currently, we have no explanation for this behaviour, although the Al
islands might play a role. Furthermore, it is striking that the final retrapping
current lies close to the critical current found for an unproximitised Al junction
(∆sc = 180µeV) with a normal state resistance of 27 Ω, which yields Ic = 10µA
by equation (5.3).

Furthermore, we test the uniformity of the junctions. We cooled down an
array of 53 R-mask O-type junctions of size 1.0× 8.0µm2. As shown in figure
5.9a, we find a good uniformity of the junctions: 49 of the junctions switch at
I = 8.1µA with an average gap voltage of 264µV per junction. The other four
junctions switch at 3.1µA (Vg = 305µV), 10.5, 16.2 (Vg = 220µV) and 17.6µA
(Vg = 250µV) respectively. The switching junction at 10.5µA shows a negative
gap voltage of −20µV, for which we have no explanation. The increased critical
current might be explained by figure 5.9b: we observed a few junctions that
showed a discontinuity in the junction’s shape, which was absent in the rest
of the junctions. As the critical current of a junction scales with the junction
area, this would give a reason for the observed critical current increase.

To test the uniformity of the E-mask junctions, we cooled down an array of 212
junctions with a size of 0.73× 10.0µm2. This array was designed as an array of
R-mask junctions, however, due to a patterning misalignment, the shadow of
one side of the junctions was provided by the NbTiN-electrode, see figure 5.10.
From the IV-curve of the array, one directly observes that the critical current of
the junctions is rather non-uniform. The first junction switches at I = 15.8µA
and the last one at 86.2µA. This can be explained as follows: the E-mask
junction is close to the NbTiN electrode on one side, thus might be proximitised
by this material. Then the non-uniformity of the junctions can be explained
by the non-uniform NbTiN thickness of the sample arising from the initial
sputtering of NbTiN onto the Si substrate [18]. This behaviour makes this
junction type unsuited for use in a TWPA, in which one aims for identical
junctions.
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Figure 5.8: IV-curves of a single (a) R-mask and (b) E-mask O-type Josephson junc-
tion at T ≈ 50 mK. The R-mask junction with a junction size of 0.7 × 1.0µm2 has a
critical current of 0.86µA and a gap voltage of 290µV. The latter value is 20% lower
than the expected 360µV for Al, which is ascribed to from self-heating effects. The
E-mask junction with a size of 1.5× 1.0µm2, however, has Ic = 63µA and Vg = 1.5 mV,
which might be due to the proximity of the NbTiN (2∆sc = 4.54 meV).
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Figure 5.9: (a) IV-curve of an array of 53 R-mask Josephson junctions of size 1.0 ×
8.0µm2. As can be observed, the uniformity of the E-mask junctions is not perfect:
1 junction switches to the normal state at I = 3.1µA, 49 junctions switch at 8.1µA
and the three last junctions switch at 10.5, 16.2 and 17.4µA respectively. (b) SEM
image of one of the junctions from the array. The step in junction length of the R-mask
junction, indicated by white arrows, was only observed in a few junctions, which could
be an explanation for the observed increased switching current of the three junctions.
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Figure 5.10: (a) IV-curve of an array of 212 E-mask junctions with a size of 0.73 ×
10.0µm2 and (b) SEM image of one of the junctions of the array. The uniformity of
the E-mask junctions in terms of critical current is bad, and is attributed to the proxim-
ity effect in combination with a non-uniform thickness of the NbTiN over the sample.
This behaviour makes the E-mask O-type junction unsuited for TWPAs.
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5.3.2 Low air bridges

The second important element in our TWPA design is the low air bridge.
Generally, air bridges are used to connect two sides of the CPW transmission
line together in other to prevent slotline modes, however, they can also be used
as parallel plate capacitors that increase the capacitance per unit length of the
TWPA.

a)

b)

c)

d)

e)

f)

g)

Si NbTiN PMGI PMMA Al AlOxMMA/MAA

Figure 5.11: Fabrication process of a low air bridge. (a) Front view of a CPW trans-
mission line in NbTiN as etched in a previous fabrication step. (b) A layer of PMGI
resist with the intended thickness of the bridge is spun onto the sample. (c) The “feet”
of the air bridge are patterned into the PMGI using e-beam lithography and the resist is
developed. Since the air bridge is low, we do not need a resist reflow step to smoothen
the edges of the resist. (d) A double layer of MMA/MAA and PMMA is spun onto the
sample. The MMA/MAA-layer serves to prevent dog ears from forming on the edges
of the bridge. (e) In a second e-beam step, the double resist layer is patterned and de-
veloped afterwards. (f) After O2 plasma cleaning and an HF dip, Al is evaporated onto
the sample, creating the air bridge. (g) The resists are lifted off. Due to air contact an
AlOx layer will form around the air bridge.

The general fabrication procedure for low air bridges is depicted in figure 5.11
and figure 5.12 shows a resulting air bridge. The holes on the sides of the bridge
are created for the purpose of easier resist removal from underneath the air
bridge in the final fabrication step.

There are three issues with the air bridge depicted in figure 5.12. First, the
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Figure 5.12: SEM images of an Al low air bridge over a CPW embedded with Joseph-
son junctions. (a) shows the transition from an ordinary CPW transmission line to the
junction embedded transmission line covered by a low air bridge. In (b) a detail of this
transition is depicted.

design of the air bridge makes it impossible to inspect the Josephson junctions
after air bridge deposition (“closed” air bridge). To this end we place a resist
removal hole directly over the junctions (“open” air bridge), see figure 5.13a.
The second issue arises upon inspection of the junctions after air bridge deposi-
tion. We observed that in some fabrication rounds the junctions are damaged,
as can be seen in figure 5.13b. This damage occurs during the process of making
air bridges. Unfortunately, we have not been able to resolve this issue.
Thirdly, upon measurement of successful devices it was found that the air bridge,
although the resist underneath was at design thickness, provides a capacitance
largely in excess of the design value, see section 5.4.3. This could be the result
of the air bridge collapsing onto the CPW, in which case only the AlOx layer
prevents the line from shorting. To overcome this problem, we have tried to
develop NbTiN air bridges. As NbTiN is a stiffer material than Al, a collapse
would be less likely. Moreover, since no natural oxide layer forms on NbTiN,
the intrinsic losses within a device with NbTiN air bridges might be less than
for a device with Al air bridges. Although the fabrication process of NbTiN air
bridges worked, the junctions were dissolved along with the resist in the final
lift off step, as can be seen in figure 5.13c.

5.4 TWPA813

In this section we highlight one of the successful TWPA devices: TWPA813.
We produced this device in the 8th fabrication round on the 1st chip of that
round. On that chip it was the 3rd device, hence the name. The device contains
689 Josephson junctions, while for the final device we project to need ∼2000
junctions in order to obtain a gain of 20 dB in a 4 GHz-bandwidth. Here we
will describe the design and fabrication of the device and the experimental
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Figure 5.13: SEM images of the fabri-
cation issues of the low air bridges. (a)
Placing the resist removal hole directly
over the Josephson junctions allows to
image the junctions after air bridge deposi-
tion. (b) In some of the fabrication rounds
the junctions appeared to be damaged on
the sides after air bridge deposition. (c)
Residue of a junction after deposition of a
NbTiN air bridge over the junction. Before
this image was made, the air bridge was
removed by force using a pair of tweazers.

results obtained from this device. We present single-tone measurements at low
and high power. The former allows to estimate the line parameters, whereas
from the latter we can study the non-linear behaviour of the device. Finally we
will present double-tone measurements results with which one can study idler
generation and estimate the gain of the device.

5.4.1 Design and fabrication

Since shadow evaporation of Josephson junctions occurs in a preferred direction,
we choose the design methodology of [2] as a basis for our TWPAs. Such
TWPAs are divided into sections of non-linear transmission line, which are
connected using a linear CPW. TWPA813 contains 689 Josephson junctions,
divided over 13 sections with 53 junction unit cells, as depicted in figure 5.14.
Each junction unit cell is 20µm long and consists of an interrupted NbTiN
CPW with a central conductor width of 12µm and a gap width of 1.5µm. After
etching the NbTiN we find that the gap width has become 1.2µm, which might
be due to an e-beam proximity effect. The interruption gap was designed to be
1.5µm long and was also found to be 1.2µm in length due to the same effect.
The sections are connected by a linear piece of CPW with wc = 12µm and
wg = 5µm. These connections have a length of 566µm and are build up as
follows: a 5µm-long straight section followed by a curved section with a radius
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of 100µm. Then follows a larger straight section of length 241.8µm, that leaves
room for future phase-matching resonators, after which the connection connects
to the following section by another curved section and a 5µm-straight section.
2× 2µm2-holes are etched into the NbTiN ground plane with a lattice spacing
of 3µm. This “holey ground” ends 16µm away from either side of the centre
of the CPW central conductor and serves as a vortex pinning lattice to reduce
vortex dissipation [19–22].

4 μm 20 μm

500 μm
a)

b) c) d)

Figure 5.14: Overview of TWPA813. (a) CAD drawing of the device with 13 TWPA
sections each consisting of 53 unit cells. The TWPA sections are connected by a CPW
with a length of 566µm. Insets from left to right: (b) a Josephson junction of the
device before air bridge deposition, (c) the beginning of a TWPA section from the
finished device and (d) a device on PCB. The entire chip measures 7× 2 mm2.

The number of unit cells per section, NCS and the length of the CPW connections,
lconn are chosen under the constraint that the sum of the section length and
the connection length amounts to half a wavelength at the design frequency of
the TWPA. That is

lconn = λconn

(
1

2
− NCSa

λC

)
, (5.4)

where λconn ≈ 16 mm and λcell ≈ 2.3 mm are the instantaneous wavelengths in
the CPW connection and the unit cells respectively, as given by

λn =
2π

ωd

√
LnCn

. (5.5)

and using the design values from sections 5.2. For this device we choose a design
frequency of ωd/2π = 7 GHz.
The advantage of this constraint is that if phase matching λ/4-resonators (at
ωr = ωd ≈ ωp) are added to the design, a stop band is created around ω = 3ωd.
Thus, third harmonic generation corresponding to a Hamiltonian mixing term
â†3pâpâpâp, where â†3p is the creation operator for a photon at ω = 3ωp (see
chapter 3), is suppressed [2].
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Chapter 5. Developing a travelling-wave parametric . . .

The Josephson junctions are deposited in the CPW interruption gaps as de-
scribed in section 5.3.1. The R-mask junctions have an area of 0.76× 5.0µm2,
from which we estimate a critical current of 4.7 or 3.9µA, based on the measure-
ments presented in section 5.3.1 (figures 5.8a and 5.9a) and the linear scaling
between critical current and Josephson junction area.
The air bridges are fabricated as described in section 5.3.2. The thickness of the
PMGI layer that determines the height of the air bridge was measured to be
110 nm using a profilometer. For the lift off procedure during the fabrication of
the junctions, as well as the air bridges, we used Dimethyl sulfoxide (DMSO).

5.4.2 Measurement set-up

The TWPA is cooled down to millikelvin temperatures using a He3/He4 dilution
refrigerator with a base temperature of 10 mK. The measurement set-up is
schematically depicted in figure 5.15. We use three microwave sources and
measure the behaviour of the TWPA using a spectrum analyser. The first
two sources are denoted “pump” and “signal” and can be used to measure
the signal, pump and idler output power individually. The third source is the
tracking generator for the spectrum analyser, which enables one to use it as
a (quasi) network analyser. With the tracking generator one can study the
single-tone non-linear behaviour of the TWPA as well as the signal output
power in presence of a pump tone.
Using 3 dB-power dividers in reverse, the outputs of the three sources can be
connected to one of the three input lines of the refrigerator. The first line (right)
is coupled to the output of the TWPA by the use of a magnetically shielded
circulator. This enables one to characterise the reflection of the device. The
second line (middle) bypasses the TWPA and is coupled into the output line of
the device using a directional coupler. This line characterises the set-up without
the device, thus providing an indication for its insertion loss. The third line
(right) is coupled to the input of the TWPA and can be used to characterise
the device in transmission. The three input lines are attenuated by 20 dB on
the 4 K-plate and the 10 mK-plate of the refrigerator, in order to thermalise the
noise of the input radiation [23]. The output radiation is amplified by 40 dB
using a High Mobility Electron Transistor (HEMT) mounted at the 4 K-plate,
whose reflection is decoupled from the TWPA by the circulator.

The TWPA is mounted on a PCB using Al wire bonds and connected to the
rest of the set-up by non-magnetic SMP connectors, as depicted in figure 5.14d.
The PCB is covered by a metallic lid in order to protect the sample from its
environment and then mounted on the 10 mK-plate of the refrigerator.

5.4.3 Results – single-tone excitation

First, we study the single-tone excitation of the device in transmission and
reflection by the tracking generator. From measurements at low power com-
pared to the critical power of the device, we determine the line characteristics.
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Figure 5.15: Schematic overview of the setup for characterising TWPAs and Josephson
junctions in a He3/He4 dilution refrigerator. The various coldplates with indicated
temperature of the refridgerator are depicted in orange.
For TWPA characterisation (black lines) we use a spectrum analyser with optional
tracking generator. The setup is fed with three microwave sources. One serves as the
input pump tone and the second as an input signal tone. The third source is used as
the tracking generator of the spectrum analyser. The tones of the three sources are
combined at room temperature using splitters. We have three microwave lines entering
the refrigerator, two of which can be used to characterise the TWPA in transmission
(right) and reflection (left). The latter is applied to the TWPA using a circulator. The
third line serves as a through-line which bypasses the TWPA and is coupled into the
output line using a directional coupler for characterising the set-up without TWPA.
This also provides an indication of the TWPA’s loss. The lines are attenuated by 20 dB
at the 4 K-plate and 20 dB at the 10 mK-plate to thermalise the noise of the input
radiation. The output radiation is amplified by a HEMT, which is decoupled from the
TWPA using the circulator.
To characterise Josephson junctions (red lines) we perform a four-point measurement.
We apply a DC current to and measure the voltage over the junction. The lines are
filtered by a Cu-powder filter and an RC filter mounted on the 10 mK-plate.
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Chapter 5. Developing a travelling-wave parametric . . .

Furthermore, we study the one-tone non-linear behaviour of the line by increas-
ing the power. In the analysis we will neglect the influence of the Josephson
capacitance.

Low power – line characteristics

We can determine the line characteristics of the TWPA device by performing
transmission and reflection measurements at low power. Figure 5.16a shows
the output power of the three microwave lines corrected for the input power of
−40 dBm. The power measured by the spectrum analyser shows a discontinuity
of 2.5 dBm at 7 GHz, which is explicitly shown for the bypass measurement. This
step has been removed manually in the transmission and reflection measurements.
From the bypass measurement we estimate the line losses of the full set-up.

ILlines = − (Pout − Pin)− ILatt +GHEMT, (5.6)

where ILatt = 20 + 20 + 3 + 3 dB is the attenuation due to the attenuators
(2× 20 dB) and the power splitters (2× 3 dB) in the line. GHEMT = 37 dB is
the gain of the HEMT amplifier. For the bypass line we measure (Pout − Pin) ≈
−27 dB, hence the line losses are approximately 18 dB.

To obtain the transmission and reflection data for the device specifically, we
subtract the bypass data (in dB) from the latter two, as depicted in figure
5.16b. As described in section 2.3, the observed wiggles indicate an impedance
mismatch between the device and its environment.
We observe two wiggle frequencies in the data. We ascribe the first frequency
of approximately 400 MHz to the impedance mismatch between the device and
the 50 Ω-environment. The second frequency of 100 MHz is also visible in the
bypass data for which reason we regard this wiggle as stemming from reflection
planes of which at least one lies outside the device. Therefore we will disregard
this wiggle frequency in further analysis.

In order to obtain a first estimate of the line characteristics, we ignore the
internal reflections of the device resulting from the impedance mismatch between
the TWPA sections and the 12 CPW connections. Then, we can determine
the line characteristics of the device using the methods described in section 2.3.
In this approximation, the device length equals the length of the 13 TWPA
sections and 12 CPW connections, ld = 20.572 mm. We find ∆T[dB] = 2.8 dB,
ωw = 2π× 408 MHz and IL = 1.0 dB at ω/2π = 7 GHz. However, since the loss
diminishes ∆T[dB] as discussed in section 2.3, we should choose IL = 0.70 dB
in order to reproduce the apparent loss of 1 dB from theory. Secondly, the
insertion loss that we find is an upper bound to the insertion loss of the device
itself, because the bypass line and the transmission line are not equal: the
transmission line is longer and passes through the SMP connectors and the
Cu leads on the PCB before reaching the actual device. For this reason we
will assume IL ≈ 0.35 dB for the device. From these values we calculate
Ld = 1.23 ∨ 7.23µH/m, Cd = 2.89 ∨ 491 pF/m and rd = 1.95 m−1. Then, the
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Figure 5.16: Measurement of the transmission, reflection and bypass line for TWPA813
at low power compared to the critical power of the device. (a) The three frequency
spectra corrected for input power. The discontinuity in output power shown in dashed
lines for the bypass measurement is present in all measurements, but has been ma-
nually removed. (b) Transmission and reflection of the device corrected by the bypass
frequency spectrum to isolate the behaviour of the device.
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phase velocity equals 1.69× 107 m/s and the calculated characteristic impedance
is 20.6 ∨ 121 Ω. The calculated transmission using these parameters is depicted
in figure 5.17a, together with the data.
Under the assumption of ignoring the internal reflections of the device, we can
discern the effective phase velocity in the TWPA sections from the phase velocity
in the CPW connections as follows. For the wiggle frequency the relation

kw,celllsect + kw,connlconn = π (5.7)

must hold. Here, kw,n = ωw/vph,n is the wavenumber of the TWPA section
unit cells and CPW connections respectively and ln is the corresponding total
length of the sections and connections. Solving this relation for the phase
velocity within the TWPA sections, inserting the phase velocity within the
CPW connections of vph,conn = 1.09× 108 m/s from the values as given in
section 5.2.2, we find veff

ph,cell = 1.19× 107 m/s.

In order to determine whether the low- or high-impedance solution is correct for
this device, we calculate the critical current and air bridge height corresponding
to Zc = 20.6∨121 Ω and veff

ph,cell = 1.19× 107 m/s. Ic = ϕ0/Leffa = 9.5∨1.6µA,
where as dAB is obtained from equation 5.1 as 25.6 ∨ 221 nm.
Our estimates of the critical current and air bridge height were 4.3± 0.4µA and
110 nm respectively, see section 5.4.1. Comparing the calculated critical current
and air bridge height to these numbers we cannot determine whether the low-
or high-impedance solution is to be chosen for the TWPA sections. However, in
the next section we will argue that we side with the low-impedance solution,
because of the non-linearity effects at high pump power. We will adopt this
solution for the remainder of this section.

In order to characterise the device further, we analyse the effect of internal
reflections. We assume that the losses are evenly distributed over the device.
Then, we use the transfer matrix method to model the device, modelling the
CPW connections by a characteristic impedance of 51.5 Ω and a phase velocity
equalling 1.09× 107 m/s. Each TWPA unit cell is modelled by a characteristic
impedance of 20.6 Ω and a phase velocity 1.29× 107 m/s. This increase in phase
velocity with respect to the effective phase velocity stated before is necessary to
obtain a reasonable fit of the wiggle frequency. In figure 5.17a we depict the
result of this calculation for the reflection of the device. From comparison of the
calculation and the data, we directly observe that we are missing an ingredient
in our calculation: the model predicts that the maxima in the reflection wiggles
are higher for frequencies below 6 GHz than they are for frequencies above
6 GHz. In the data, however, the precise opposite behaviour is observed.

The behaviour of the reflection wiggles points at a missing ingredient. Such can
be found in the boundaries between the TWPA sections and CPW connections.
In our calculation we modelled these boundaries using the same parameters
as for the sections and connections respectively. However, in presence of the
air bridge over the TWPA section, the field lines of the CPW are expected to

106



5.4. TWPA813

4 4.5 5 5.5 6 6.5 7 7.5 8
-40

-35

-30

-25

-20

-15

-10

-5

0

(a)

4 4.5 5 5.5 6 6.5 7 7.5 8
-40

-35

-30

-25

-20

-15

-10

-5

0

(b)

Figure 5.17: Comparison of theory and measurement of the transmission and reflection
of TWPA 813 using the transfer matrix method. (a) Transmission: assuming no inter-
nal reflections within the device, Zc,d = 20.6 Ω and vph,d = 1.69× 107 m/s. Reflection:
with internal reflections, Zc,d = 20.6 Ω and vph,d = 1.29× 107 m/s. The theory for the
high-impedance solution provides almost identical results. (b) Theoretical transmis-
sion and reflection of the device after application of an additional transfer matrix mo-
delling the boundary of the CPW connections and TWPA sections. Zc,cell = 24 Ω and
vph,cell = 1.31× 107 m/s and for the boundary Zc,b = 3.5 Ω and vph,b = 5.0× 106 m/s.
An almost identical result can be obtained for the high-impedance solution by adjusting
the characteristics of the boundary and TWPA unit cell transfer matrix. For the TWPA
unit cells, only a slight adjustment was to be made, vph,cell = 1.11× 107 m/s.
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couple to the air bridge rather than to the ground planes on the sides. We
expect this to be an issue for the first and last 5µm of each CPW connection,
the CPW boundaries.
In principle, one could calculate the instantaneous characteristic impedance and
phase velocity of the CPW boundary. Then, in order to fit the data, one could
describe the boundary using an infinite amount of transfer matrices connecting
the TWPA section and the rest of the CPW connection smoothly. However, this
would be a tedious approach. Contrarily, we could describe the CPW boundary
using an effective characteristic impedance and phase velocity in order to match
the data. Inserting the necessary transfer matrices, indeed the behaviour of the
wiggles can be matched to the data, as can be seen in figure 5.17b. Here, for
the TWPA section we set Zc,cell = 24 Ω and vph,cell = 1.31× 107 m/s. For the
CPW boundary we set Zeff

c,b = 3.5 Ω and veff
ph,b = 5.0× 106 m/s. For the rest of

the CPW connection we use Zc,conn = 51.5 Ω and vph,conn = 1.09× 108 m/s as
calculated from the values stated in 5.2.2. From the figure it is observed that the
theory describes the measurement well, except for 5 < ω/2π < 6 GHz. However,
it was found that we can easily move the high-reflective feature by adjusting
the parameters slightly. Moreover, 5.5 GHz corresponds to a line length of
approximately 1.2 mm with vph = 1.3× 107 m/s, which is close to the length of
a TWPA section. This allows to interpret the deviation between theory and
experiment as arising from the precise characteristics of each individual section
to which we have no experimental access.

From fitting the theory to the data we can estimate the characteristic impedance
and phase velocity of the sections. For, if the characteristic impedance is chosen
either too small or too large, one cannot reproduce the wiggle amplitudes
predicted by the theory by adjusting the other parameters. The same holds for
the phase velocity and the wiggle frequency. Thus, we can make reasonable
estimates of the characteristic impedance and phase velocity of the sections to
be 23± 2 Ω and 1.31± 0.01× 107 m/s. From these values we deduct a critical
current of 9.5± 1.0µA and an effective air bridge height of 32± 3 nm.
A summary of the results is given in table 5.1.

High power – studying the non-linearity

Increasing the power, we can study the non-linear behaviour of the TWPA
device. This non-linear behaviour results from the Josephson inductance, which
increases with current, and results in modulation effects.

These modulation effects become apparent in the interference wiggles which will
shift if the input power is increased. In a linear system the wiggle frequency is
given by ωw/2π = vph/2l arising from the condition l/λ = 1/2 determining the
frequency between two consecutive maxima in the frequency spectrum. In a
non-linear system, however, the wavelength of the forward-travelling wave is
not necessarily equal to the wavelength of the backward-travelling wave due
to self- and cross-modulation between the forward- and backward-propagating
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Table 5.1: Summary of the device parameters of TWPA813. The device consists of 13
TWPA sections with 12 CPW connections in between.

TWPA813 Device parameters

Parameter name symbol magnitude
Si-substrate
length/width lsub/wsub 7 mm/2 mm
thickness dsub 525µm
relative permittivity εr,sub 11.45
NbTiN-conductor
thickness dNbTiN 200 nm
critical temperature Tc,NbTiN 15.1 K
sheet resistivity at 300 K σNbTiN 1.06µΩm
device length ld 20.572 mm
loss coefficient rd 1.95 m−1

CPW connection
length lconn 566µm
central conductor width wc,conn 12µm
gap width wg,conn 5µm
characteristic impedance Zc,conn 51.5 Ω
phase velocity vph,conn 1.09× 108 m/s
TWPA section
# sections NS 13
# unit cells per section NCS 53
unit cell length a 20µm
central conductor width wc,cell 12µm
gap width wg,cell 1.2µm
junction gap lJ 1.2µm
–fabrication estimate–
critical current Ic 4.3± 0.4µA
air bridge height dAB 110 nm
–wiggle estimate–
characteristic impedance Zc,cell,0 23± 2 Ω
phase velocity vph,cell,0 1.31± 0.01× 107 m/s
inductance (/length) Lcell,0 1.75± 0.16µH/m
capacitance (/length) Ccell 3.35± 0.32 nF/m
Josephson inductance LJ,0 35± 3 pH
critical current Ic 9.5± 1.0µA
air bridge height dAB 32± 3 nm
–no internal

reflections estimate–
characteristic impedance Zeff

c,cell,0 20.6 Ω

phase velocity veff
ph,cell,0 1.19× 107 m/s
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wave. Moreover, due to losses these wavelengths are position dependent. This
implies that the condition needs to be updated to ∆φ+ + ∆φ− = 2π, where
∆φ+(−) is the built-up phase in between the reflection planes in the forward
(backward) direction.
In the previous section it was found that the interference wiggles can be
described only by taking the reflections between the TWPA sections and the
CPW connections into account explicitly. However, we also found that a
reasonable fit can be made for frequencies > 6.2 GHz in case these reflections
are neglected, see figure 5.17a. As the internal reflections complicate the analysis
to a great extent, we will assume them to be absent and work with the no-
internal reflection parameters from table 5.1, except for the critical current,
for which the value estimated including the assumption that there are internal
reflections is appropriate.

Under the assumption that the internal reflections of the device can be neglected,

∆φ+(−) =

∫ l

0

K+(−) (z) dz. (5.8)

The wavenumber K is non-linear and influenced by self-modulation and cross-
modulation with the counter-propagating wave resulting from the reflections in
the device. In chapter 3 we found for the wave number modulation

Ξn |Ap|2 =
a4k2

pk
3
n (2− δpn)

16CgI2
cL

3
J,0ω

2
n

|Ap|2 =
2− δpn

16
kn

∣∣∣∣IpIc
∣∣∣∣2 (5.9)

where the last step follows from the substitutions Ap = −IpZc/ωp and Zc =√
LJ,0/Cg (recall that we are neglecting the Josephson capacitance in this

section). The factor 2 in this equation should be chosen for cross-modulation
effects and a factor of 1 for self-modulation effects. Then, up to first non-linear
order

K{+}[−] =


kcell,0

(
1 +

1

16

(
{1} [2]

∣∣∣∣I+ (z)

Ic

∣∣∣∣2 + {2} [1]

∣∣∣∣I− (z)

Ic

∣∣∣∣2
))

if z in TWPA section

kconn else

(5.10)

taking into account the cross-modulation between the forward- and backward-
propagating waves. Here, kcell,0 = ωw

√
Lcell,0Ccell, the low-current wave number

in the TWPA sections in the device. kconn = ωw

√
LconnCconn.

If the loss is distributed uniformly over the device,

|I+|2 =

∣∣∣∣ τ~0~dIin,0

1− ρ~d ~dρ ~d~de−2rdld

∣∣∣∣2 e−2rdz ≡ |Id|2 e−2rdz (5.11)

|I−|2 =

∣∣∣∣ ρ~d ~dτ~0~dIin,0

1− ρ~d ~dρ ~d~de−2rdld

∣∣∣∣2 e−2rd(2ld−z) =
∣∣ρ~d ~dId

∣∣2 e−2rd(2ld−z), (5.12)
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where τ and ρ are the transmission and reflection coefficients as indicated
between the device and the 50 Ω-environment, which is indicated by a subscript
0. Iin,0 is the forward-propagating current entering the device, as would be
measured in the 50 Ω-environment just before the device, i.e.

Iin,0 =

√
2Pin,0

Zc,0
. (5.13)

Although the transmission and reflection coefficients are affected by the non-
linearity of the device due to their dependence on the device’s characteristic
impedance, the effect will only contribute to higher non-linear orders of the
theory, such that we can treat the coefficient as constant. Then, τ~0~d 7→ τ and
ρ~d ~d = ρ ~d~d 7→ ρ.

Substituting equation (5.10) into equation (5.8), we thus find

∆φ{+}[−] = kconn (NS − 1) lconn + kcell,0NSNCSa+

+
kcell,0

32rd

∣∣∣∣IdIc
∣∣∣∣2 ({1} [2]E+ + {2} [1]ρ2e−4rdldE−

)
(5.14)

where, noting that NS (NCSa+ lconn) = ld − lconn,

E+ ≡
(
1− e−2rdNCSa

)NS−1∑
nS=0

e−2rdnS(NCSa+lconn) =

=
(
1− e−2rdNCSa

) e−2rd(ld−NCSa)
(
e2rd(ld−lconn) − 1

)
e2rd(NCSa+lconn) − 1

(5.15)

E− ≡
(
e2rdNCSa − 1

)NS−1∑
nS=0

e2rdnS(NCSa+lconn) =

=
(
e2rdNCSa − 1

) e2rd(ld−lconn)

e2rd(NCSa+lconn) − 1
= e2rdldE+

(5.16)

Inserting equation (5.14) into the wiggle frequency condition, ∆φ+ + ∆φ− = 2π,
the wiggle frequency is found to be

ωw

2π
=

(
2v−1

ph,conn (NS − 1) lconn+

+ v−1
ph,cell,0

(
2NSNCSa+ E+

|Id/Ic|2

32rd

(
3 + 3ρ2e−2rdld

)))−1

(5.17)

up to first non-linear order.
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To test this theory, we measure TWPA813 in transmission and in reflection
while increasing the input power. The results of these measurements are shown
in figures 5.18 and 5.19. The wiggles as observed in figure 5.16 are clearly
moving as the input power is increased. Such a decrease of the wiggle frequency
is expected from the non-linearity of the transmission line, i.e. the Josephson
inductance, which increases with pump power.
From the transmission data we infer that the low-impedance solution found in
previous section is correct. The amplitude of the wiggle present in the switching
power of the device corresponds to the characteristic impedance of the device
at this power. As can be observed in figure 5.18, this wiggle amplitude is
approximately 2 dB, which is less than the 2.8 dB-wiggle amplitude observed for
low-power transmission, see section 5.4.3. This implies that the characteristic
impedance at the switching power has become closer to the 50 Ω-impedance of
the environment. As Zc,cell ∝

√
L, we conclude that the low-impedance solution

is correct.

The position of the transmission maxima in the frequency spectrum is most
easily obtained from the reflection measurement, as a transmission maximum
corresponds to a sharp reflection minimum. In this manner we extract the fre-
quency of the four right-most transmission maxima in figure 5.18, corresponding
to the 16th to the 19th overall transmission maxima. The wiggle frequency is
obtained simply as ωw = ωmax,q/q, where q ∈ {16, 19}.
To compare theory and experiment we plot the expression (ωw,0/ωw − 1) in
figure 5.20. Theoretically, from equation (5.17), this expression is given by

ωw,0

ωw
− 1 =

E+ |Id/Ic|2
(
3 + 3ρ2e−2rdld

)
64rd

(
vph,cell,0v

−1
ph,conn (NS − 1) lconn +NSNCSa

) . (5.18)

where, from equations (5.11) and (5.13),

Id =
τ

1− ρ2e−2rdld

√
2 · 10((Pin,[dBm]−ILline,tot)/10−3)

Zc,0
. (5.19)

Here, ILline,tot is the total insertion loss of the set-up between the microwave
source and the device. From the total line insertion loss, see equation (5.6),
we estimate ILline,tot = 55 ± 1 dB and ILTWPA = 0.35 dB where the error in
ILline,tot takes into account that the different microwave lines entering the
dilution refrigerator may have a slightly different attenuation.

From a comparison of the theory and the experimental data we find that
the critical current of 4.3µA describes the data slightly better than a critical
current of 9.5µA. However, based on these measurements we cannot draw a
firm conclusion on this matter. The main reason for uncertainty is the device
loss. We estimated this loss at 0.35 dB in section 5.4.3, but, in fact, since there
might be small differences in the lines entering the dilution refrigerator and we
have no access to the losses within the PCB, a better estimate would be that
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(a)

(b)

Figure 5.18: Single-tone transmission of TWPA813 as function of frequency and input
power. (a) Data scaled to the input power of the source and the measurement of the
bypass line at −40 dBm input power. The wiggle frequency decreases due to the non-
linear Josephson inductance. This process can be well-discerned in (b) in which we
visualise the moving wiggles by subtracting the transmission output power at −40 dBm
from all data.
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(a)

(b)

Figure 5.19: Single-tone reflection of TWPA813 as function of frequency and input
power. (a) Data scaled to the input power of the source and the measurement of the
bypass line at −40 dBm input power. The wiggle frequency decreases due to the non-
linear Josephson inductance. (b) Visualisation of the moving wiggles by subtracting the
transmission output power at −40 dBm from all data.
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Figure 5.20: Visualisation of the decreasing wiggle frequency in the transmission and
reflection measurements in figures 5.18 and 5.19. We study the four right-most wiggles
from these figures, which correspond to the 16th to 19th transmission maxima of the full
frequency spectrum. The wiggle maxima correspond to the well-defined minima of the
reflection measurement. The theory of equation (5.18) is plotted for both estimates of
the critical current (Ic = 4.3± 0.4 ∨ 9.5± 1.0µA).

the device insertion loss is in between 0 and 1 dB (0 ≤ rd ≤ 5.6 m−1). Since
the loss coefficient is inversely proportional to the factor (ωw,0/ωw − 1) a small
error in rd influences the theoretical result to a great extent: a factor of 2 in rd

shifts the curves in figure 5.20 already by 3 dB. Furthermore, we do not know
whether the loss coefficient is constant over the device, which yields another
source of uncertainty in the theory.

From the observed switching power Psw ≈ −9 dBm we determine the switching
current of the device to be Isw,+ = 2.7± 0.4µA by equation (5.19). This value
equals 64± 14% or 29± 7% of the nominal critical current of 4.3± 0.4µA and
9.5 ± 1.0µA respectively. However, these numbers do only take into account
the forward-propagating current. The switching current including both forward-
and backward-propagating current, which is the total current flowing through
a Josephson junction, is under the circumstances of transmission maxima
maximised at the device port closest to the microwave source and is given by

Isw,tot = Isw,+
(
1 + ρe−2rdld

)
, (5.20)

which amounts to 3.8 ± 0.6µA. Scaling the stated percentages by the same
factor this equals 89 ± 19% or 40 ± 10% of the nominal critical currents of
4.3± 0.4µA or 9.5± 1.0µA. Of course, the obtained percentage cannot exceed
100%, which bounds the first stated value.

The observation that the switching current is not necessarily equal to the nominal
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critical current can have several reasons. First, as found in section 5.3.1, our
Josephson junctions are rather uniform in critical current, although there may
be some outliers. Therefore, it could well be that some of the junctions have a
lower critical current than the nominal critical current. The switching current
of the device is determined by the junction with the lowest critical current and
thus can be lower than the nominal critical current.
However, one can also think of more exotic explanations for this behaviour. One
interaction, which has not been considered up to this point, is third harmonic
generation. This effect appears in the Hamiltonian describing parametric
amplification as â†3ω âω

3, a term which describes the creation of a photon at
ω = 3ωp by annihilation of three photons at a frequency ωp. The numerical
factor in the coupled-mode equations belonging to this interaction equals 1/24,
see chapter 3, which is to be compared to the numerical factor of 1/16 arising
for the self-modulation interaction. Due to the phase mismatch between the
modes at ωp and 3ωp the interaction is suppressed, however, it scales as the
applied current I3

p , instead of I2
p , which would be the scaling for the generation

of signal and idler photons if a signal would be present. Hence, third harmonic
generation might be expected to play a non-negligible role in our measurements.
The energy of the photons that are created due to third harmonic generation is
in the order of 75µeV if ω/2π = 6 GHz. Although this is not quite equal to the
gap energy of the Josephson junctions, which was found to be 290µeV for a
single junction (figure 5.8) and 220µeV for an array of junctions (figure 5.9),
the energy of the photons created by third harmonic generation is a considerable
fraction of this energy. Considering the fact that the third harmonic photons
will mix again and generate photons of even higher frequency (although with a
smaller probability), it is imaginable that these effects decrease the switching
current of TWPAs as compared to the nominal critical current.

It should be noted that these results were obtained using many assumptions
and estimations. Most importantly, we neglected the internal reflections of
the device. The precise effect of this assumption has not been studied. The
critical current of the device could have been obtained by a straightforward IV-
measurement of the device. This measurement has not been performed. Thirdly,
for the losses in the device we assumed a constant loss coefficient and a total
loss of 0.35 dB. These assumptions influence the theoretical outcomes to a great
extent, but were not obtained from direct measurement. A better estimate of
the total device loss can be obtained by using two microwave switches. Placing
the device in one channel between the switches and a bypass line in another,
the uncertainty in input line insertion loss is removed.
However, even in this case one still obtains the device loss plus the losses in
the PCB and connectors. One may disentangle the loss within the sample by
performing a calorimetric experiment using a dual compensated calorimeter [24].
In such a measurement the device should be put on the sample bath of such
a calorimeter, whereas the PCB is connected to the reference bath. The two
baths are thermally weakly coupled via the Al wire bonds between the device
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and the PCB. If this coupling proves to be insufficient the thermal resistivity
between the two baths can be increased by additional thermal links. We believe
that in this way, the total device loss can be extracted reliably.
Using this method one can estimate the loss in the TWPA sections by performing
a second measurement. In this measurement, one puts a device on the sample
bath that only contains the CPW. The difference in extracted loss rates between
these two measurements will be a measure for the average loss coefficient in the
TWPA sections.

An insertion loss of approximately 0.7 dB for 689 Josephson junctions is compa-
rable to Josephson TWPAs described in literature: [2] finds 0.5 dB of insertion
loss for a device with 663 Josephson junctions and [3] reports a loss of 2.5 dB
(at ω = 7 GHz) for a TWPA containing 2037 junctions. This implies that our
approach of increasing the capacitance using low air bridges in this device does
only reduce the device losses if the actual insertion loss of the device would be
significantly less than 0.7 dB.

5.4.4 Results – double-tone excitation

In case we feed the TWPA device with a double-tone excitation, a pump and a
signal, we can study the amplifier properties of TWPA813. Using the set-up
depicted in figure 5.15, we can characterise the device in two manners: in case
we use the pump generator and the signal generator, we can measure the power
in the signal and idler mode using the spectrum analyser, whereas if we use the
pump and tracking generator we can only study the behaviour of the signal
mode resulting from transmission through the sample.
In this section we will only consider the measurements without developing a
theory that describes the measurements. Such a theory would include losses
and reflections for the three different modes of the field (actually six, because of
the reflections). In principle, this can be developed by extending the single-tone
reflection theory presented in last section by cross modulations between the
pump (right-moving and left-moving) on the one hand, and signal and idler
(both right-moving and left-moving) on the other. Furthermore, the different
amplification coupling constants conserving both energy and momentum should
be evaluated for the six modes.

In figure 5.21 we present a typical measurement using the pump and signal
generators. Setting the pump frequency at 6.133 GHz we measure the output
power in the signal and idler mode varying the pump power and signal frequency.
We plot the signal gain, defined as G = Pout,s − Pout,s0 of the device, where
Pout,s0 = Pout,s|Pp=−39 dBm, as well as the measured power in the idler mode.

It can be observed how the gain and idler power increase with pump power, as
expected from the theory. However, the gain is also found to be less than unity
for certain frequency ranges. This can be explained by the two contributions to
the gain measurement. First, we have the direct gain given by the conversion
of pump photons into signal and idler photons. However, due to modulation
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Figure 5.21: Double-tone measurement results using the pump generator (varying
power) and the signal generator (varying frequency). The pump is at a fixed frequency
of 6.133 GHz, indicated by the dashed lines. The signal generator is at a fixed power
of −50 dBm. (a) Measuring with the spectrum analyser at ω = ωs we extract the gain
G = Pout,s−Pout,s0 of the device, where Pout,s0 = Pout,s|Pp=−39 dBm. The gain results from
wiggle gain due to the moving wiggles, as well as non-linear gain due to wave mixing.
(b) Measuring at ω = 2ωp − ωs = ωi we obtain the power generated in the idler mode
due to wave mixing. Measurements for which ωi/2π > 8 GHz are excluded from the
plot because of the bandwidth of the circulator and HEMT amplifier being 4 to 8 GHz.
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effects in the device we also have a contribution due to the moving wiggles, the
wiggle gain. The former gain always contributes in excess of unity, whereas the
latter contribution can be both larger and smaller than unity.

Figure 5.22: Double mode measurement results using the pump (varying power,
ωp/2π = 7 GHz) generator and tracking generator as signal (Ps = −30 dBm). The
signal gain is determined as G = Pout,s − Pout,s|pump off and results from non-linear gain as
well as wiggle gain.

The same behaviour is observed in figure 5.22, which was measured using the
pump generator at 7 GHz with varying power and the tracking generator as
signal at −30 dBm. Interestingly, upon comparison with figure 5.16, we find a
gain minimum around the pump frequency if it falls in a low-power transmission
minimum, whereas a gain maximum is observed around the pump frequency in
case it is chosen in a low-power transmission maximum.

From these measurements we find that TWPA813 can provide 10 dB of gain in
case the pump and signal frequencies are chosen well. The gain heavily depends
on both frequencies, because of the impedance mismatch of the device with
its 50 Ω-environment, which therefore should be improved for a flatter gain
spectrum. The gain can be enlarged by improving the phase matching between
the transmitting modes and increasing the number of Josephson junctions
embedded in the transmission line and increasing the total length of the device
accordingly.

5.5 Conclusions

In this chapter we presented the design, fabrication and measurement procedure
of our developed TWPAs. Our goal was to design a device that was matched
to the 50 Ω-environment of typical microwave set-ups and provides gain at a
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low intrinsic insertion loss. We have developed the O-type Josephson junction
in two types: The R-mask type is defined by the resist, whereas the E-mask
type is defined by the junction electrodes. It was found that R-mask type
junctions have better properties in terms of critical current distribution than
E-mask type junctions. In fact, unless the uniformity is improved, the latter
type is not usable for the development of TWPAs. Secondly, we developed the
low air bridge to increase the capacitance of the TWPA. It was found that Al
can be used for this purpose. We have not been able to succeed in developing
NbTiN air bridges for TWPAs, which would be stiffer and possibly more reliable.
Depositing the NbTiN caused the Josephson junctions to be severely damaged.

We presented one of the successful devices, TWPA813, in detail. From single-
tone measurements at low power we determined the device characteristics. Most
notably, the characteristic impedance was found to be 23± 2 Ω and the phase
velocity was extracted as 1.31± 0.01× 107 m/s. Moreover, modelling the device
using the matrix transfer method it was found that the boundaries between the
TWPA sections and the CPW connections that connect the sections are to be
taken into account explicitly. Comparing the estimated insertion loss of our
device to values reported in literature, we did not find a significant decrease as
projected. However, this estimate was obtained by indirect methods. A direct
measurement should be performed to draw a conclusion on this matter.
We studied the non-linear behaviour of the device and developed a model to
theoretically describe the interference wiggles, that arise as a result of the
impedance mismatch between the device and its environment. This model
depends critically on the loss coefficient of the device to which we have no
experimental access.
Finally we performed double-tone experiments to study the gain behaviour
of the device. The device was able to deliver a maximum of 10 dB of gain,
which results from the combination of direct (non-linear) gain and a shift in
the transmission maxima.

In order to improve the device and measurement analysis, the impedance match-
ing of the device to its 50 Ω-environment needs to be improved. This can be done
by using smaller Josephson junctions (increase inductance) or increasing the air
bridge height (decrease capacitance). It is beneficial to determine the critical
current (distribution) of the device before studying its non-linear behaviour,
e.g. by measuring its IV-curve. Furthermore, using microwave switches a better
estimate of the insertion loss of the device can be obtained. Even better in this
respect would be the use of a dual compensated calorimeter.
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Samenvatting

In de zogenaamde Kopenhaagse interpretatie van de kwantummechanica wordt
een duidelijk onderscheid gemaakt tussen de macroscopische en de microsco-
pische wereld. De eerste is de wereld zoals wij mensen haar kennen en wordt
beschreven door de klassieke mechanica. De tweede is de wereld van elemen-
taire deeltjes, atomen en moleculen of kleine verzamelingen daarvan, en wordt
beschreven met kwantummechanica.
Deze twee beschrijvingen geven een totaal ander beeld van de fysische werke-
lijkheid. Waar de klassieke mechanica deterministisch is en de evolutie van
systemen geheel kan worden beschreven met gebruik van de wetten van New-
ton, wordt – in ieder geval vanuit menselijk oogpunt – de kwantummechanica
geregeerd door kansen. Dat, terwijl de kwantummechanica op zich ook geheel
deterministisch is en de evolutie van systemen volledig kan worden beschreven
door de (unitaire) Schrödingervergelijking.

Het moge duidelijk zijn dat het wringt op het raakvlak tussen de klassieke
mechanica en kwantummechanica: beide theorieën zijn inherent deterministisch,
maar toch lijkt het vanuit menselijk perspectief alsof de kwantummechanica
probabilistisch is. Het raakvlak tussen beide theorieën is het duidelijkst te
illustreren aan de hand van het concept “meting”. Stel, men neme een bron
van individuele fotonen (lichtdeeltjes) en laat de uittredende fotonen op een
fotodetector vallen, zoals weergegeven in figuur 1a. Dan moge het niet ver-
rassend zijn dat de fotodetector een “klikje” geeft, elke keer als er een foton
wordt uitgezonden door de bron en ontvangen door de detector.

Echter, zetten we nu een half-doorlaatbare spiegel in het pad tussen de bron en
de detector, zoals in figuur 1b, dan geraakt het foton in een superpositie die als
volgt beschreven kan worden,

|ψ〉 =
1√
2

(|1〉a |0〉b + |0〉a |1〉b) . (1)

In deze vergelijking zijn a en b de uitgangsarmen van de half-doorlaatbare
spiegel. |1〉a |0〉b geeft weer dat het foton in arm a zit, terwijl arm b geen foton
bevat. Het omgekeerde geldt voor de term |0〉a |1〉b. Tenslotte geeft de factor
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Figuur 1: Schematische weergave van een experiment om het kwantummeetprobleem
toe te lichten. (a) Wanneer een bron van individuele fotonen gericht wordt op een foto-
detector, produceert de detector een “klikje” voor ieder ontvangen foton. (b) Indien
er een half-doorlaatbare spiegel tussen bron en detector wordt geplaatst zou men op
basis van de unitariteit van de Schrödingervergelijking voorspellen dat de detector een
superpositie aanneemt van een “klikje” en een “geen-klikje”. Dit wordt echter nooit
waargenomen.

1/
√

2 in de vergelijking aan dat de kans om het foton te meten in elk van de
armen gelijk is aan 1/2.
De deterministische Schrödingervergelijking zou nu voorspellen dat de detector
– laten we aannemen dat deze 100% efficiënt is, hetgeen betekent dat voor ieder
binnenkomend foton precies één klikje geproduceerd wordt – een superpositie zou
moeten aannemen van een klikje (het foton is gedetecteerd) en een “geen-klikje”
(het foton is niet gedetecteerd). Bij metingen aan kwantumsystemen wordt zo’n
superpositie echter nooit waargenomen. In plaats daarvan zal de detector óf
klikken óf niet-klikken – met andere woorden: de meting aan het systeem laat
de toestand van het systeem instorten naar één van de mogelijke uitkomsten.
Het feit dat dit proces niet door de Schrödingervergelijking beschreven wordt,
wordt het kwantummeetprobleem genoemd.

Er zijn verschillende interpretaties van het kwantummeetprobleem. Hoewel
ze alle totaal verschillend zijn, zijn ze het eens over het volgende: “grote”
systemen gedragen zich klassiek, terwijl “kleine” systemen kwantummechanisch
gedrag kunnen vertonen. Wat de woorden “groot” (macroscopisch) en “klein”
(microscopisch) hier precies betekenen is niet duidelijk, maar men is het erover
eens dat een meetinstrument “groot” is (immers, een meetinstrument zoals de
fotodetector uit de vorige paragraaf zal altijd een enkele meetuitkomst geven).
Echter, hierdoor kan men zich even goed afvragen wat precies een “meting” is.

In dit proefschrift stellen we een experiment voor dat deze vraag misschien kan
beantwoorden. Specifieker, we vragen ons af of een elektronische microgolfver-
sterker een kwantumtoestand zal laten instorten. Immers, in meetinstrumenten
zoals fotodetectoren is dikwijls een versterkingsmechanisme ingebouwd. Het
heeft verschillende voordelen om een elektronische versterker te gebruiken. Ten
eerste, aangezien men vermoedt dat massa sterk bijdraagt aan de “grootte” van
een systeem, wordt door middel van een elektronische versterker direct massa
toegevoegd aan het experiment. Deze massa komt van de elektronen die zich
als stromen door de versterker bewegen. Ten tweede staat het ons vrij om
supergeleiding toe te passen, welke een sterke ontkoppeling van de omgeving
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garanderen in het microgolfregime en bij zeer lage temperaturen – een van
de vereisten voor successvolle kwantumexperimenten. Verder eisen we van de
versterker dat deze weinig ruis genereert en een aanpasbare versterkingsfactor
heeft.
Aan al deze voorwaarden kan worden voldaan door de zogenaamde microgolf
parametrische versterkers. Deze versterkers werken op hetzelfde principe als
waarop schommels werken. Op een schommel beweegt men zijn benen om de
schommel een grotere schommelamplitude te geven. Wat er hier gebeurt is
dat men door het bewegen van zijn benen voortdurend zijn zwaartepunt (de
parameter) wat verplaatst. Door deze verplaatsing raken de beweging van de
benen (grote amplitude) en schommel (kleine amplitude) gekoppeld, waardoor
er bewegingsenergie van de benen naar de schommel gepompt wordt.

Enkele-GHz-
fotonenbron

Par.
verst.

Detector A

Detector B

Par.
verst.

Hybrid

Figuur 2: Schematische weergave van het in dit proefschrift voorgestelde experiment.
Individuele microgolffotonen worden door middel van een hybrid (microgolf-analoog
van een half-doorlaatbare spiegel) in een toestand van superpositie gebracht, zoals
beschreven in vergelijking (1). Deze toestand wordt versterkt door twee parametrische
versterkers. Vervolgens kan, door gebruik te maken van een tweede hybrid, de interfe-
rentie van de uitgangssignalen van beide versterkers bestudeerd worden met behulp van
detectoren A en B.

Het idee is nu om twee van deze parametrische versterkers toe te voegen aan
elk van beide armen van een interferometer, zie figuur 2. Deze interferometer
wordt gevormd door twee half-doorlaatbare spiegels (hybrids genoemd binnen
de microgolftechnologie), waarvan de ingangskanalen van de laatste spiegel
gekoppeld zijn aan de uitgangskanalen van de eerste spiegel. Als we deze
interferometer nu voeden met één enkel microgolffoton ontstaat er achter de
eerste half-doorlaatbare spiegel een superpositie, zoals weergegeven in verge-
lijking (1). Deze kwantumtoestand wordt versterkt door beide versterkers en
middels de tweede half-doorlaatbare spiegel kunnen we de kwantuminterferentie
van de uitgangssignalen van de versterkers in de beide interferometerarmen
bestuderen. De hoop is dat deze interferentie ons zal vertellen of de toestand
zich in de interferometer volgens de wetten van de kwantummechnica heeft
gedragen, of dat er een instorting van de golffunctie heeft plaatsgehad, doordat
de versterkers fungeren als detectoren.

Dit proefschrift beschrijft de eerste stappen naar het voorgestelde experiment.
Na een algemene inleiding, bespreken we in hoofdstuk 2 enkele belangrijke
elementen van de microgolftechologie die van belang zijn voor het verdere proef-
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schrift. In dit licht behandelen we transmissielijnen en microgolfresonatoren.
Verder ontwikkelen we in dit hoofdstuk een theorie om de eigenschappen van een
transmissielijn te bepalen die aangesloten is op een netwerk van transmissielijnen
met een verschillende karakteristieke impedantie. Deze theorie stoelt op micro-
golfreflecties, ontstaan door het verschil in karakteritieke impedantie. Echter,
ook microgolfcomponenten die qua specificatie gelijk zijn in impedantie aan het
netwerk kunnen nog kleine reflecties veroorzaken. In hoofdstuk 2 illustreren
we op basis hiervan hoe de fysieke lengte van deze componenten verkregen kan
worden.
In hoofdstuk 3 wordt de theorie die parametrische versterkers beschrijft bespro-
ken, in het bijzonder die van lopende-golf parametrische versterkers gebaseerd
op Josephson juncties. Deze juncties kunnen beschreven worden als een stroom-
afhankelijke inductie, waardoor stromen bij verschillende frequenties gekoppeld
worden, analoog aan de koppeling die plaatsvindt bij het schommelen. In dit
hoofdstuk wordt in eerste instantie de benodigde terminologie gëıntroduceerd,
waarna de klassieke theorie kort aan bod komt. Dan leiden we een kwantumtheo-
rie af voor de versterkers met speciale aandacht voor de verschillende aannamen
die gedaan worden. Dit resulteert in een Hamiltoniaan op basis waarvan we de
klassieke theorie nogmaals afleiden en we bespreken de verschillen tussen beide
aanpakken. Tenslotte besteden we in dit hoofdstuk aandacht aan de geldigheid
van de theorie.
Het proefschrift wordt vervolgd door berekeningen aan het voorgestelde expe-
riment in hoofdstuk 4. Door middel van analytische en numerieke methoden
bepalen we de verwachte zichtbaarheid van het interferentiepatroon voor het
geval de versterkers zich gedragen volgens de kwantummechanica. We tonen aan
dat deze zichtbaarheid niet verdwijnt als functie van de versterking en ook niet
wanneer er verliezen aan het model worden toegevoegd. Dan bespreken we twee
gevallen waarop het instorten van de kwantumtoestand in de interferometer zich
zou kunnen manifesteren. Hieruit volgt dat we, in het geval dat de toestand
instort naar een exact aantal fotonen (een aantallentoestand), mogen verwachten
dat de interferentiezichtbaarheid verdwijnt. Als we er echter vanuit gaan dat
de toestand instort naar een (klassieke) sinusöıde (een coherente toestand),
dan verdwijnt de interferentiezichtbaarheid niet, maar zal hij zich toch anders
gedragen dan de unitaire kwantummechanica voorspelt. Het hoofdstuk wordt
afgesloten met enkele opmerkingen over de uitvoerbaarheid en uitvoering van
het experiment.
Tenslotte, in hoofdstuk 5, bespreken we onze experimentele voortgang op het
gebied van lopende-golf parametrische versterkers. We gaan in op het ontwerpen
van dergelijke versterkers en op de fabricage ervan. In het bijzonder lichten we
de fabricage van de Josephson juncties toe, waarvoor we twee eigen ontwerpen
introduceren. We tonen aan dat het ene ontwerp geschikter is voor de fabri-
cage van versterkers dan het andere. Ook lichten we de fabricage van “lage”
luchtbruggen toe – het andere noodzakelijke element in ons versterkerontwerp.
Na deze cruciale onderwerpen bespreken we de meetopstelling en de metingen
aan een preparaat. We bepalen de transmissielijnparameters (in het bijzonder
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de kritieke stroom van de juncties en de effectieve hoogte van de luchtbrug-
gen) en meten aan het niet-lineaire gedrag van het preparaat in aanwezigheid
van microgolfreflecties. Tenslotte bepalen we de versterking die het preparaat
verschaft en vinden dat deze kan oplopen tot ongeveer 10 dB.
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