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Abstract In this present work, we have obtained a
singularity-free spherically symmetric stellar model with
anisotropic pressure in the background of Einstein’s gen-
eral theory of relativity. The Einstein’s field equations have
been solved by exploiting Tolman ansatz [Richard C Tolman,
Phys. Rev. 55:364, 1939] in (3+1)-dimensional space-time.
Using observed values of mass and radius of the compact
star PSR J1903+327, we have calculated the numerical val-
ues of all the constants from the boundary conditions. All
the physical characteristics of the proposed model have been
discussed both analytically and graphically. The new exact
solution satisfies all the physical criteria for a realistic com-
pact star. The matter variables are regular and well behaved
throughout the stellar structure. Constraints on model param-
eters have been obtained. All the energy conditions are ver-
ified with the help of graphical representation. The stability
condition of the present model has been described through
different testings.

1 Introduction

Stellar evolution predicts that when the nuclear fuel gets
exhausted, the stars turn into highly dense compact objects
such as white dwarf, neutron star or back hole. Massive stars
undergoing the supernova explosion turn into neutron star
and black hole. For neutron star, the main idea is that the
gravitational collapse is supported by the neutron degener-
acy pressure. The general perception is that for high den-
sities at the core, nucleons have to converted to hyperons
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or either form condensates. Some studies predict that these
nucleons could form Cooper pairs and can be in superfluid
state. Based on the MIT bag model, Witten [1] provides the
existence of strange quark matter, which indicates that the
quarks inside the compact objects might not be in a con-
fined hadronic state. At the high densities and pressures they
could form a larger colorless region with equal part of up,
down and strange quarks. Consequently, the composition of
the core region of compact objects is still an open subject in
relativistic astrophysics.

When densities of compact stars are greater than the
nuclear matter density, it expects the appearance of unequal
principal stresses, called anisotropic effect. This usually
means that the radial pressure component pr is not equal
to the transverse component pt . The presence of anisotropy
was first predicted for self-gravitating objects in Newtonian
regime by Jeans [2]. Later, Lemaitre [3] considered the local
anisotropy effect in the context of general relativity and
showed that the presence of anisotropy can change the upper
limits on the maximum value of the surface gravitational
potential. Ruderman [4] showed that a compact star with mat-
ter density (ρ > 1015g cm−3), where the nuclear interaction
become relativistic in nature, is likely to be anisotropic. Her-
rera [5] presented the evidence on the appearance of local
anisotropy in self gravitating systems in both Newtonian and
general relativistic context. Since then, a lot of investiga-
tions have been carried out in finding new exact solutions
with anisotropy feature.

For half of century, the theory of anisotropic compact stars
in General Relativity has been developed. Bower and liang
[6] provided the generalization of Tolman–Oppenheimer–
Volkov equation in presence of anisotropy. The stability of
a stellar model can be enhanced by a presence of a repul-
sive anisotropic force when � = pt − pr > 0. This fea-
ture leads to more compact stable configurations compare to
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the isotropic case as pointed out by Ivanov [7]. The work
of Ivanov [7] gives general bounds on the redshift for any
anisotropic compact objects. Cosenza et al. [8] developed
a heuristic way for the modeling of stars with anisotropic
fluid distribution. Herrera et al. [9] formulated governing
equations with anisotropic stress for self-gravitating spher-
ically symmetric distributions. Herrera and Barreto [10,11]
described a new way to study stability of polytropic mod-
els by means of Tolman-mass. Errehymy and Daoud [12]
obtained analytical solution using dark-energy (DE), which
is characterized by a equation of state (EoS) of the type
pr = (γ − 1)ρ. Singh et al. [13] presented the anisotropic
stars by taking a modified polytropic equation of state in
the framework of the Korkina-Orlyanskii spacetime. In the
background of the conformal motion and under Karmarkar
condition [14], several researchers studied the model of com-
pact stars in presence of anisotropy which can be found
in refs. [15–23]. The anisotropic compact star models have
also been studied in the context of modified gravity. Zubair
and Abbas [24] explored charged anisotropic compact stars
in f (T ) gravity based on the diagonal form of tetrad field
for static spacetime. Biswas and his collaborators [25] used
metric potentials given by Krori–Barua [26] and established
a new model for highly compact anisotropic strange sys-
tem in the context of f (R, T ) gravity. Zubair et al [27]
obtained anisotropic compact star models in f (T ) gravity
with Tolman–Kuchowicz spacetime. Bhar [28] explored a
charged model of compact star in f (R, T ) gravity admit-
ting chaplygin equation of state. Rej and Bhar [29] obtained
charged strange star in f (R, T ) gravity with linear equation
of state. In the framework of Teleparallel Gravity, Nashed et
al. [30] derived a charged non-vacuum solution for a physi-
cally symmetric tetrad field with two unknown functions of
radial coordinate. Singh et al. [31] explored exact solutions
free from any physical and geometrical singularities, as well
as the existence of compact stellar systems throughout linear
and Starobinsky f (R, T ) gravity theory. More details about
the anisotropic models of compact stars can be found in some
of these Refs. [32–43].

Now-a-days it is a concern of famed interest to obtain the
models of early mentioned small sized heavily dense stellar
objects to advocate the regime of strictly coupled gravita-
tional fields, since long time, general relativity (GR) theory
is a handy tool to understand the behavior of these heav-
ily compact objects. With considerable observationally and
experimentally subsidized support, Will [44] explained its
gravitational consequences and interactions in four dimen-
sional metric-space in admissible manners. Compact stars are
normally understood as spherically symmetric and isotropic
highly-dense objects. However anisotropy favors the hetero-
geneous pressure conditions and generalizes the isotropic
conditions. In this study we use the Tolman spacetime [45] as
spherically symmetry to explore the anisotropy of the heav-

enly objects named as compact stars. Several authors men-
tioned in the refs. [46–50] used this spacetime to investi-
gate the structures of compact stars in their research articles.
Tolman–Kuchowiz spacetime [45,51] have already been
used by the authors [52–55] to discuss the anisotropic man-
ners of fluid in compact star formation.

In this work, we have investigated the physical stabil-
ity and viability of anisotropic model of compact stars in
the background of the Tolman spacetime. We use the phys-
ical requirements for acceptability of the model to imply
constraints on the maximum allowed compactness and red-
shift. We further use pulsars observational data of total mass
and radius to test the model validity under a certain bound-
ary conditions. We have considered the following compact
stars whose observational mass and radius are given in the
bracket: Vela X -1 [mass=(1.77±0.08)M�; radius=9.56+0.08

−0.08

km] [56], radius= 8.301+0.2
−0.2 km [Mass=(1.04 ± 0.09)M�;

radius= 8.301+0.02
−0.2 km] [56], 4U 1608 − 52 [mass=(1.74 ±

0.14)M�; radius= 9.528+0.15
−0.15 km] [57], PSR J1614 − 2230

[mass=(1.97 ± 0.04)M�; radius= 9.69+0.2
−0.2 km] [58], EXO

1785 − 248 [mass= (1.3 ± 0.2)M�; radius=8.849+0.4
−0.4] [59]

and from our present work, we have successfully estimated
their masses and radii.

The outline of our paper is as follows: In Sect. 2 we
have described the basic field equations and their solu-
tions. We picked the Tolman ansatz for one metric coeffi-
cient W = 1 + ar2 + br4 and calculated the relation of
other components by employing the role of anisotropy fac-
tor. Some basic physical properties of the model are also
discussed including the density, pressure, energy conditions
and mass-radius relation. Section 3 deals with the exterior
spacetime and smooth matching conditions. We have calcu-
lated unknown constants using the matching conditions and
results are given in Table 1. The relationship between the mat-
ter density and pressure have been discussed in Sect. 4. It is
worthwhile to mention that we here obtain the nonlinear EoS
which contains the attributes of modified Chaplygin gas. The
next section gives an idea about the stability and equilibrium
condition of our model under different forces. Here, we probe
the viability of our results under the Harrison–Zeldovich–
Novikov stability criterion, causality condition and cracking,
realistic adiabatic index and TOV equation. The final Sect. 6
briefly summarizes this manuscript and highlights the major
conclusions drawn.

2 Interior spacetime

2.1 Basic field equations

To describe the interior of a compact star model, let us
assume that the matter within the star is anisotropic in nature
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and therefore, the corresponding energy-momentum tensor
is given as,

Tμ
ν = (ρc2 + pt ) ξμξν − pt g

μ
ν + (pr − pt ) ζμζν, (1)

with ξ iξ j = −ζ iζ j = 1 and ξ iζ j = 0. Here the vector ζ i is
the space-like vector and ξi is the fluid 4-velocity and which
is orthogonal to ζ i , ρ is the matter density, pt and pr are
respectively the transverse and radial pressure components
of the fluid and these two pressures act orthogonally to each
other.

In (3+1)-dimension, in Schwarzschild coordinates xμ =
(t, r, θ, φ), a static and spherically symmetry spacetime is
described by the line element,

ds2 = −V 2dt2 + W 2dr2 + r2(dθ2 + sin2 θdφ2), (2)

where the metrics V and W are functions of the radial coor-
dinate ‘r’ and do not depend on the time ‘t’ i.e., they are
static. The asymptotic flatness implies limr→∞ V (r) =
0 = limr→∞ W (r) and the regularity at the center imposes
the condition V (0) = constant and W (0) = 1 [60].

The Einstein field equations for our present anisotropic
model of compact star using the energy momentum tensor
(1) are described by,

Gμ
ν = Rμ

ν − 1

2
gμ
ν R = 8πG

c4 Tμ
ν , (3)

Here Gμ
ν is the Einstein tensor, G and c are respectively the

universal gravitational constant and speed of the light.
Using (3) and assuming G = 1 = c, the Einstein field

equations can be expressed as the following system of ordi-
nary differential equations:

κρ = 1

r2

(
1 − 1

W 2

)
+ 2W ′

W 3r
, (4)

κpr = 1

W 2

(
1

r2 + 2V ′

Vr

)
− 1

r2 , (5)

κpt = V ′′

VW 2 − V ′W ′

VW 3 + 1

W 3rV
(V ′W − W ′V ), (6)

where κ = 8π and ‘prime’ denotes ‘r’ derivative.
The mass function, m(r), within the radius ‘r ’ is intro-

duced by,

1

W 2 = 1 − 2m(r)

r
, (7)

Using (7), from (4) to (6) one can get,

m(r) = 4π

∫ r

0
ω2ρ(ω)dω, (8)

2V ′

V
= κrpr + 2m

r2

1 − 2m
r

, (9)

dpr
dr

= −(ρ + pr )
V ′

V
+ 2

r
(pt − pr ), (10)

Combining (9) and (10), one can finally obtain :

dpr
dr

= −ρ + pr
2

(
κrpr + 2m

r2

)
(
1 − 2m

r

) + 2

r
(pt − pr ). (11)

The Eq. (11) is called the Tolman–Oppenheimer– Volkoff
(TOV) equation of a hydrostatic equilibrium for the
anisotropic stellar configuration.

Our goal is to generate an exact solution by solving the
field equations which does not suffer from any kind of sin-
gularities. The following metric provides a singularity free
model which will be described in the next sections. To solve
the above set of Eqs. (4)–(6), instead of solving the equations.
for any prescribed equation of state, we are rather interested
in solving Eqs. (4)–(6) with the help of the following ansatz

W 2 = 1 + ar2 + br4, (12)

The choice (12) was proposed in [45], where ‘a, b’ are con-
stants of having units length−2 and length−4 respectively
and can be obtained from the boundary conditions which has
been discussed in details in Sect. 3. The above metric poten-
tial was used earlier by several researchers in the background
of General relativity as well as in modified gravity. Jasim et
al. [52] studied a singularity-free model for the spherically
symmetric anisotropic strange stars under Einstein’s general
theory of relativity in presence of the cosmological constant

 which depends on radial co-ordinate r . Biswas et al. [61]
used this metric potential along with the MIT Bag model
equation of state to obtain strange star model. Bhar et al.
[62] successfully obtained a new relativistic compact stellar
model by using the above ansatz in General relativity. Pat-
wardhan and Vaidya [63], Mehra [64] also used this ansatz
earlier. Singh et al. [65] also used the same metric poten-
tial to obtained the compact star model in embedding class
I spacetime. On the other hand, we now discuss about the
use of this metric potential in the context of modified grav-
ity. This metric potential was used earlier by Bhar et al. [54]
to model compact object in Einstein–Gauss–Bonnet grav-
ity and Javed et al. [66] used this metric potential to model
anisotropic spheres in f (R,G) modified gravity, Biswas et
al. [67] obtained an anisotropic strange star with f (R, T )

gravity, Majid and Sharif [68] obtained quark stars in mas-
sive Brans–Dicke gravity, Naz and Shamir [69] found the
stellar model in f (G) gravity, Farasat Shamir and Fayyaz
[70] obtained the model of charged compact star in f (R)

gravity, Rej et al. [71] studied the charged compact star in the
context of f (R, T ) gravity. Since one can obtain the results
in the background of GR as a limiting case of the result in
different modified theories of gravity, one can conclude that
all the obtained results in modified gravity are also consis-
tent in the background of GR. One can note that this metric
potential successfully produces the model of compact star
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which is singularity free and satisfies all the requirements
to be physically acceptable. Therefore, inspired by all the
previous works done mentioned earlier in GR as well as in
modified gravity, we choose the metric potential in Eq. (12)
in our present paper.

Using Eqs. (5)–(6) and the definition of anisotropy � =
pt − pr , we obtain the following expression

κ� = 1

W 2

(
V ′′

V
− V ′

Vr

)
− W ′

W 3

(
V ′

V
− 1

r

)

− 1

W 2r2 + 1

r2 , (13)

By making following transformation 1
W 2 = T , equation (13)

becomes

κ� − 1

r2 = T

(
V ′′

V
− V ′

Vr
− 1

r2

)
+ T ′

2

(
V ′

V
+ 1

r

)
. (14)

The above equation (14) can also be written as,

V ′′

V
+ P(r)

V ′

V
+ Q(r) = 0 (15)

where

P(r) = T ′

2T
− 1

r
, Q(r) = T ′

2Tr
− 1

r2 − χ

T
, χ = κ� − 1

r2 .

Equation (15) is a second order ordinary differential equa-
tion (ODE) in V . An algorithm was presented by Herrera
et al. [32] that shows that all static spherically symmetric
anisotropic solutions of Einstein’s field equations may be
generated from Eq. (15) by two generating functions � and
V . If one can obtain the metric potential V , the other physical
variables may be expressed in terms of the functions χ and
V .

2.2 Solution of field equations and pressure anisotropy

From Eq. (15), it is clear that once we assume the anisotropic
factor �, we can easily solve the second order ODE and
consequently obtained the expression for V . The anisotropy
� should be chosen in such manner that

• it should vanish at the center of the star,
• it does not suffer from any kind of singularities,
• � is positive inside the stellar interior and finally
• the field equation can be integrated easily with this choice

of �.

To obtain the model of compact star, Dey et al. [72], Maharaj
et al. [73] choose a physically reasonable choice of � to
find the exact solutions for the Einstein–Maxwell equations.
Murad and Fatema [74] obtained relativistic anisotropic
charged fluid spheres by solving the Einstein–Maxwell field
equations with a preferred form of one of the metric poten-
tials, and suitable forms of electric charge distribution and

pressure anisotropy functions as,

V 2 = BN (1 + Cr2)N ,

� = δCr2(1 − 2aCr2)(1 + Cr2)1−N

×(
1 + (1 + N )Cr2) N−1

N+1 ,

2q2

Cr4 = K (Cr2)n+1(1 + Cr2)1−N (1 + mCr2)p

×(
1 + (1 + N )Cr2) N−1

N+1 ,

where K , δ ≥ 0, n is a nonnegative integer, and m, p, a are
any real numbers.

For our present model, we assume the anisotropic factor
as,

� =
[
(a + br2)2 − b

]
r2

κ(1 + ar2 + br4)2 . (16)

One can choose the anisotropic factor in such a way that these
allow us to integrate Eq. (15) and satisfies the physically
acceptable conditions mentioned earlier. Thus this choice
may be physically reasonable and useful in the study of the
gravitational behavior of anisotropic stellar objects. By look-
ing at the expression of (16) and we can easily found that
�(0) = 0. The above choice of � produces a non-negative
anisotropic factor inside the stellar interior which will be
discussed in the coming section.

Using Eqs. (12) and (16) in (15), we get the following
second order ODE in V as,

V ′′ = V ′ 1 + 2ar2 + 3br4

r(1 + ar2 + br4)
, (17)

In Eq. (17), we have a second order differential equation for
V which on solving provides the expression of the metric
coefficient for V as,

V 2 =
[
D + C

16b
3
2

×
(

2
√
b(a + 2br2)� − (a2 − 4b)

× log
{
a + 2br2 + 2

√
b�

})]2

. (18)

In the expression of V 2 mentioned above C, D are constants
of integration, which can be obtained from the boundary con-
ditions.

With the help of (18), the matter variable, radial and trans-
verse pressure for the new solution are obtained as,

κρ = 3a + (a2 + 5b)r2 + 2abr4 + b2r6

(1 + ar2 + br4)2 , (19)

κpr = 32b3/2C

�
[
2
√
b
(
8bD + aC� + 2bCr2�

) − �
]

−a + br2

�2 , (20)
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κpt = 32b3/2C

�
[
2
√
b
(
8bD + aC� + 2bCr2�

) − �
]

−a + 2br2

�4 . (21)

where, �, � are functions of r and its expression is given as,

� =
√

1+ar2+br4, �=(a2−4b)C log
[
a+2br2+2

√
b�

]
.

2.3 Physical attributes of the present model

2.3.1 Regularity of the metric coefficients

To avoid the singularity, the metric potentials should take
finite and positive values at the center. Now V |r=0 =
2
√
b(aC+8bD)+(4b−a2)C log a+2

√
b

16b3/2 > 0 and W |r=0 = 1.
We have drawn the profiles of the metric co-efficients
for the compact star against r in Fig. 1. Now, (V 2)′ =
C(r+ar3+br5)

(
2
√
b(8bD+aC�+2bCr2�)−�

)
8b3/2�

, and (W 2)′ =
2r(a + 2br2). We also note that (V 2)′ and (W 2)′ both van-
ishes at the center of the star.

2.3.2 Nature of the density and pressure

The central pressure (pc) and central density (ρc) should be
nonzero and positive valued inside the stellar interior, on
the other hand pr should vanish at the boundary of the star
r = rb. The central pressures and the density can be written
as

κpc = 32b3/2C

2
√
b(aC + 8bD) − (a2 − 4b)C log[a + 2

√
b] − a,

(22)

κρc = 3a, (23)

Again from the Zeldovich’s condition [75] pc/ρc < 1 gives
the following inequality:

a − 8b3/2C

2
√
b(aC + 8bD) − (a2 − 4b)C log(a + 2

√
b)

> 0,

(24)

Equation (23) gives, a > 0 where as, (22) and (24) together
implies,

4b − a2

8ab
+ E <

D

C
<

16b − a2

8ab
+ E, (25)

where,

E = a2 − 4b

16b
3
2

log(a + 2
√
b).

The surface density ρs of the compact star model is
obtained as,

κρs = 3a + (a2 + 5b)r2
b + 2abr4

b + b2r6
b

(1 + ar2
b + br4

b )2
. (26)

We have calculated the numerical values of the central density
and surface density for different compact star in Table 2.

The behavior of the matter density (ρ), radial and trans-
verse pressure pr and pt inside the stellar interior are shown
in Figs. 1 and 2 respectively.

The density and pressure gradient of our present model
are obtained by performing differentiation of the density and
pressure with respect to the radial co-ordinate as,

κρ′ = − 2r

�6

[
5a2 − 5b + a(a2 + 13b)r2

+3b(a2 + 4b)r4 + 3ab2r6 + b3r8
]
, (27)

κp′
r = 2r

[
(a + br2)(a + 2br2)

�4 − b

�2

−16b3/2C(a + 2br2)

�3�
+ 256b3C2

�2

]
, (28)

κp′
t = κp′

r + κ�′,

= κp′
r − 1

�6

[
2r(−a2 + b + a(a2 − 5b)r2

+3(a2 − 2b)br4 + 3ab2r6 + b3r8)

]
. (29)

where,

� = 2
√
b(8bD + aC� + 2bCr2�)

−(a2 − 4b)C log(a + 2br2 + 2
√
b�).

The profiles of density and pressure gradients are shown in
Fig. 3. We check that both the density and pressure gradients
are negative and it verifies the monotonic decreasing nature
of both density and pressures with respect to ‘r’.

The variation of anisotropy (� = pt − pr ) throughout the
star is regular and free of singularity. More importantly, the
anisotropy vanishes at the centre and remain positive inside
the star as required. The anisotropy profile in Fig. 3 shows
that � > 0 is repulsive, allowing the construction of more
compact structures.

2.3.3 Energy conditions

It is well known that for a compact star model, the energy
conditions should be satisfied and in this section we are inter-
ested to study about it. For an anisotropic compact star, all the
energy conditions namely Weak Energy Condition (WEC),
Null Energy Condition (NEC) and Strong Energy Condition
(SEC) are satisfied if and only if the following inequalities
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Fig. 1 (Left) The metric potentials and (right) the matter density ρ are plotted against r inside the stellar interior for the compact star PSR
J1903+327

Fig. 2 The radial pressure pr (left) and transverse pressure pt (right) are plotted against r inside the stellar interior for the compact star PSR
J1903+327

Fig. 3 (Left) The anisotropic factor � and (right) the density and pressure gradients are plotted against r inside the stellar interior for the compact
star PSR J1903+327
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Fig. 4 Energy conditions are plotted against r inside the stellar interior
for the compact star PSR J1903+327

hold simultaneously for every points inside the stellar con-
figuration.

WEC : Tμνα
μαν ≥ 0 ⇒ ρ ≥ 0, ρ + pr ≥ 0, ρ + pt ≥ 0

(30)

NEC : Tμνβ
μβν ≥ 0 ⇒ ρ + pr ≥ 0, ρ + pt ≥ 0 (31)

DEC : Tμνα
μαν ≥ 0 ⇒ ρ ≥ |pr |, ρ ≥ |pt | (32)

SEC : Tμνα
μαν − 1

2
T λ

λ ασ ασ ≥ 0 ⇒ ρ + pr + 2pt ≥ 0.

(33)

Where αμ and βμ are time-like vector and null vector respec-
tively and Tμνα

μ is nonspace-like vector. To check all the
inequality stated above we have drawn the profiles of energy
conditions of (30)–(33) in Fig. 4 in the interior of the compact
star and this figure indicates that all the energy conditions are
well satisfied by our model.

2.3.4 Mass-radius relation and redshift

The mass function of the present model can be obtained from
the formula, m(r) = ∫ r

0 4πρr2dr , which implies,

m(r) = r3

2

a + br2

1 + ar2 + br4 ,

The compactness factor, i.e., the ratio of mass to the radius
of a compact star for our present model is obtained from the
formula, u = m(r)

r , and consequently the surface redshift is
obtained as,

zs = 1√
1 − 2u(rb)

− 1 =
√

1 + ar2
b + br4

b

r3
b

(
a + br2

b

) − 1.

A familiar result is that if the wavelength of a photon emitted
at the surface of the star is λe, and the wavelength of the same
photon observed at infinity is λo, the gravitational red-shift

z is defined to be the fractional variation of the wavelength
z = λo−λe

λe
, which consequently gives, z = 1

V (r) − 1. The
central value of the gravitational redshift is obtained as,

zc = 1

V (0)
− 1 =

[
D + C

16b
3
2

×
{

2
√
ba − (a2 − 4b)

× log
(
a + 2

√
b
)}]−1

− 1.

3 Exterior spacetime and boundary conditions

In this section we match our interior solution to the exterior
solution smoothly at the boundary r = rb in order to find
the constants a, b, C and D. The exterior spacetime is rep-
resented by Schwarzschild vacuum solution which is given
by,

ds2+ = − f (r)dt2 + [ f (r)]−1dr2 + r2(dθ2 + sin2 θdφ2),

(34)

corresponding to our interior line element that matches
exactly with the interior solution at the boundary of the star
r = rb, where, f (r) = (

1 − 2M
r

)
. For a smooth matching of

the metric potentials across the boundary, i.e., at r = rb,

g+
rr = g−

rr , g+
t t = g−

t t , (35)

and

pr (rb) = 0. (36)

Equation (35) gives,

√
1 − 2M

rb
= D +

C
(

2
√
b(a + 2br2

b )�(rb) − �(rb)
)

16b3/2 ,

(37)(
1 − 2M

rb

)−1

= 1 + ar2
b + br4

b , (38)

and (36) gives,

32b3/2C�(rb) = (a + br2
b )

×
{

2
√
b
(
8bD + aC�(rb) + 2bCr2

b�(rb)
) − �(rb)

}

(39)

Solving the three Eqs. (37)–(39) the constants can be obtained
as,

a = 1

r2
b

[(
1 − 2M

rb

)−1

− 1 − br4
b

]
, (40)

C =

√(
1 − 2M

rb

)
(a + br2

b )

2
√

1 + ar2
b + br4

b

, (41)
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Fig. 5 (Left) The mass function and (right) the gravitational redshift are plotted against r inside the stellar interior for the compact star PSR
J1903+327

D = C

16b3/2(a + br2
b )�(rb)

×
[
−2

√
b(�(rb))

2(a2 + 3abr2
b + 2b(−8 + br4

b )
)

+(a2 − 4b)(a + br2
b )�(rb) log

(
a + 2br2

b + 2
√
b�(rb)

)]
.

(42)

From Eqs. (40)–(42), it is noted that if we fix the value of b,
we obtain the values of a, C and D. The values of a, C and
D for different compact stars are obtained in Table 1.

4 Equation of state

Physical feature in a relativistic stellar model requires an
equation of state relating the radial pressure pr to the energy
density ρ. Solving Eq. (19) in term of r and using Taylor
series expansion, we get the expression

r2 ≈ 1

ρ
+ αρ, (43)

where

α = 3b2(24
√

3a4b4 − 291
√

3a2b5 + 1500
√

3b6 + 2a3β + 9abβ)

β(2a3b3 + 9ab4 + 3
√

3β)
,

(44)

β =
√
b7(8a4 − 97a2b + 500b2) (45)

Using the expression (43) in the Eq. (20), we get the equation
of the form

pr = −
a + b

(
1
ρ

+ αρ
)

J 2 + 16b3C

H(2
√
b(8bD + aCH + I ) − J )

, (46)

where

H =
√

1 + a(
1

ρ
+ αρ) + b(

1

ρ
+ αρ)2, I = 2bCH

(
1

ρ
+ αρ

)
,

J = (a2 − 4b)C × log

(
a + √

bH + 2b

(
1

ρ
+ αρ

))
.

The equation of state (46) is derived from the Einstein field
equations, where we rewrite the pressure in term of density.
It describes a macroscopic physics features of a general rel-
ativistic gravitating compact object. It is interesting to point
out, the nonlinear equation of state (46) contains the modified
Chaplygin equation of state which has been extensively uti-
lize in different studies. For instance, in the case of charged
anisotropic fluid spheres [76–79] and in the framework of
f (T ) gravity theory [80,81]. The Chaplygin modified equa-
tion of state has proven to be adaptable tools to investigate
many open problems at the theoretical level.

The variations of radial and transverse pressure with
respect to the matter density are shown in Fig. 6.

5 Stability and equilibrium condition

It is very important to check the stability of the present model.
Bondi [82] developed an idea for stability analysis of neutral
stars. Herrera et al. [83] proposed a new way for the analysis
of spherical symmetric models by means of cracking (over-
turning), which described the behavior of fluid distribution
just after equilibrium state has been perturbed through den-
sity perturbation and this result was further extended by Gon-
zalez et al. [84] by introducing local density perturbation. In
this section we want to discuss the stability of the present
model via (1) Harrison–Zeldovich–Novikov condition, (2)
causality condition and Herrera’s method of cracking and
(3) relativistic adiabatic index.
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08 5.1 Stability due to Harrison–Zeldovich–Novikov

Harrison et al. [85] and Zeldovich–Novikov [86] proposed
a stability condition for the model of compact star which
depends on the mass and central density and it gives us infor-
mation on the stability of the gaseous stellar configuration in
relation to radial pulsations. They proved that a stellar con-
figuration will be stable if ∂M

∂ρc
> 0, where M = m(ρc). For

our present model,

∂M

∂ρc
= 24πr3

2(3 + 3πρcr2 + 3br4)2 . (47)

It is very clear from the above expression that ∂M
∂ρc

> 0 and
therefore the stability condition is well satisfied.

5.2 Causality condition and cracking

Next we are interested to check the subliminal velocity of
sound for our present model. Since we are dealing with
the anisotropic fluid, the square of the radial and trans-
verse velocity of sound V 2

r and V 2
t respectively should obey

some bounds. According to Le Chatelier’s principle, speed
of sound must be positive i.e., Vr > 0, Vt > 0. At the same
time, for anisotropic compact star model, both the radial and
transverse velocity of sound should be less than 1 which
is known as causality conditions. Combining the above two
inequalities one can obtain, 0 < V 2

r , V 2
t < 1. For our present

model,

Vr =
√
dpr
dρ

=
√

p′
r

ρ′ , Vt =
√
dpt
dρ

=
√

p′
t

ρ′ . (48)

The profile of radial and transverse velocity of sound are
shown in Fig. 7.

5.3 Relativistic Adiabatic index

In this section we want to check the stability of our present
model via relativistic adiabatic index. The adiabatic index �

is the ratio of the two specific heat and its expression can be
obtained from the following formula:

� = ρ + pr
pr

V 2
r , (49)

Now for a newtonian isotropic sphere the stability con-
dition is given by � > 4

3 and for an anisotropic collapsing
stellar configuration, the condition is quite difficult and it
changes to [82]

� >
4

3
+

[
4

3

pti − pri
r |p′

ri |
+ 8πr

3

ρi pri
|p′

ri |
]
max

(50)

here pri , pti and ρi are initial values of radial pressure,
transverse pressure and density respectively. From eqn. (50),
it is clear that for a stable anisotropic configuration, the limit
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Table 2 The numerical values
of the central density (ρc),
surface density (ρs ), central
pressure (pc), compactness
factor and surface redshift of
few well known compact star
candidates

Objects ρc(gm cm−3) ρs(gm cm−3) pc(dyne cm−2) 2M
R Zs

Vela X -1 1.07468 × 1015 5.67945 × 1014 2.05523 × 1036 0.549632 0.490102

LMC X -4 1.18307 × 1015 8.00021 × 1014 0.60604 × 1035 0.382407 0.272474

4U 1608 - 52 1.32963 × 1015 7.42043 × 1014 1.27269 × 1035 0.517819 0.440108

PSR J1614 - 2230 1.57065 × 1015 7.6203 × 1014 2.26264 × 1035 0.599742 0.580629

EXO 1785 - 248 1.22116 × 1015 7.44681 × 1014 0.88889 × 1035 0.458889 0.359430

Fig. 6 The variations of radial and transverse pressure with respect to
density are plotted for the compact star PSR J1903+327

on adiabatic index depends upon the types of anisotropy. In
our present case, we have plotted the profile of � and we
see that it is always greater than 4

3 and hence we get stable
configuration from Fig. 8.

5.4 Equilibrium condition

To check the static stability condition of our model under
three different forces, the generalized Tolman-Oppenheimer-
Volkov (TOV) equation has been considered which is repre-

sented by the equation

−Mg(ρ + pr )

r2

W

V
− dpr

dr
+ 2

r
(pt − pr ) = 0. (51)

The above expression of Mg(r) can be derived from Tolman-
Whittaker mass formula and Einstein’s field equation defined
by

Mg(r) = 4π

∫ r

0
(T t

t − T r
r − T θ

θ − T φ
φ )r2VW, (52)

which further simplifies to,

Mg(r) = r2 V
′

W
, (53)

. Using the expression of equation (53) in (51) we obtain the
modified TOV equation as,

Fg + Fh + Fa = 0 (54)

Where the expression of the three forces are given by,

Fg = −V ′

V
(ρ + pr ), Fh = −dpr

dr
, Fa = 2

r
(pt − pr ).

(55)

Fg , Fh and Fa are known as gravitational, hydro-statics and
anisotropic forces respectively. The profile of the above three

Fig. 7 (Left) The variations of the square of sound velocities (V 2
r , V 2

t ) and (right) the variation of V 2
t − V 2

r against r are shown inside the stellar
interior for the compact star PSR J1903+327
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Fig. 8 (Left) The adiabatic index � and (right) the forces acting on the system are shown against r inside the stellar interior for the compact star
PSR J1903+327

forces for our model of compact star is shown in Fig. 8,
which verifies that present system is in static equilibrium
under these three forces.

6 Discussion and concluding remarks

In this paper, we have presented a model of Einstein’s
field equations for a spherically symmetric stellar object
with anisotropic pressures. For this particular motive we
have selected the Tolman-spacetime as interior geometry,
and it has been traditionally matched with the Exterior
Schwarzschild geometry to evaluate unknown parameters
present in the model. For the plotting of the different physical
model parameters we have considered the compact star PSR
J1903 + 0327 with mass 1.66 M� and radius 10.4 km [87].
From the matching conditions we obtain a = 0.00816742,
C = 0.00278563 and D = 0.261086. PSR J1903 + 0327 is
a millisecond pulsar in a highly eccentric binary orbit and it
lies in the categories of stars whose masses have been found
accurately [87]. The pulse period is 2.15 ms, or 465.1 times
per second. These stars are composed of the densest material
exist in this universe. The radii of these stars depend upon
the equation of state (EoS) i.e., how physical variables are
related to each other [88]. Following points summarize our
concluding remarks:

• As, if one analyze the results from left panel of Fig. 1,
it is well clear that both the metric gravitational poten-
tials have positive and regular behavior inside the stellar
interior. The study of compact stars requires the met-
ric gravitational components must behave positively (i.e.
V, W > 0) when graphes against radial coordinate ‘r’.

• Energy progression as shown in the right panel of Fig. 1
promises the real formation of stellar body by having pos-

itive advancement all over the matter distribution along
radial direction and shows smooth decline from inward
to outward direction.

• Congruent to density, the behavior of pressure compo-
nents in left and right panel of the Fig. 2 declares the
realistic formation of compact object as one can assess
that pt > 0 and pr approaches to zero exactly at the
boundary r = R. Both the pressures are positive, con-
tinuous and do not suffer from any kind of singularities
inside the stellar interior.

• Out spread of anisotropic factor (� ≥ 0) Shown in the left
panel of Fig. 3 ensures the existence of repulsive forces
allowing the more compact formation by escaping the
stellar collapsing to point singularity. Right panel in the
Fig. 3 depicts the negative trend (Propagating from zero
to negative from center to boundary) in gradient compo-
nents which strengthen the equilibrium of the system by
counterbalancing the forces inside the stellar body.

• The model analysis shows that the null, weak, dominant
and strong energy conditions are satisfied throughout the
stellar structure as shown in Fig. 4. For the complexity of
the expressions of density and pressures we have taken
the help of graphical representations which ensures about
the well behaved nature of all the energy conditions.

• The mass function and gravitational redshift are plotted in
Fig. 5. The figure shows that mass function is monotonic
increasing function of ‘r’ and regular at the center of the
star. On the other hand the gravitational redshift is mono-
tonic decreasing. The mass and gravitational redshift val-
ues are in agreement with required physical conditions as
one can examine from Fig. 5. For a spherical object, in the
absence of a cosmological constant, Buchdahl [89] has
proposed the upper bound for surface redshift as, zs ≤ 2
which was generalized by Böhmer and Harko [90] for
an anisotropic spherical object in the presence of a cos-
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mological constant 
 as zs ≤ 5. Later this bound was
modified by Ivanov [7] who demonstrated that the most
extreme admissible value could be as high as zs = 5.211.
In our present study we have obtained the surface redshift
for different compact star models presented in Table 2,
which indicates that zs lies in the reasonable bound.

• The variation of radial and transverse pressures with
respect to the density has been pointed in Fig. 6. The fig-
ure indicates that both the pressures obeys a non-linear
equation of state with respect to matter density.

• Sound speeds and Herrera’s cracking conditions are plot-
ted in Fig. 7 versus radial direction, both the sound
speeds are within the stable range of compact star i.e.
0 < V 2

r , V 2
t < 1. Herrera’s cracking condition [83]

V 2
t − V 2

r < 0 is also justified to ensure the potentially
stability of the system.

• As TOV forces are also in good balance to declare the
equilibrium state of the stellar model of our case study
as shown in right panel of Fig. 8. Left panel of Fig. 8
shows the stability of the system of stellar objects under
adiabatic index � > 4

3 .

The model is potentially stable and regular and more
details numerical features of our solution can be found in
Tables 1 and 2. The masses and radii of some pulsars obtained
from our model are roughly equal to the observed stars such
Vela X -1, LMC X -4, 4U 1608 - 52, PSR J1614 - 2230,
EXO 1785 - 248. Through analytical, graphical and numeri-
cal analysis, all the features of the model are well described.
Finally, if we summarize our discussion, we collectively con-
vinced by the calculated results which says that the system
under discussion is physically admissible and viably stable.
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