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High-dimensional quantum
key distribution implemented
with biphotons
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We present a high-dimensional measurement device-independent (MDI) quantum key distribution
(QKD) protocol employing biphotons to encode information. We exploit the biphotons as qutrits to
improve the tolerance to error rate. Qutrits have a larger quantum system; hence they carry more
bits of classical information and have improved robustness against eavesdropping compared to
qubits. Notably, our proposed protocol is independent of measurement devices, thus eliminating

the possibility of side-channel attacks. Also, we employ the finite key analysis approach to study

the performance of our proposed protocol under realistic conditions where finite resources are used.
Furthermore, we simulated the secret key rate for the proposed protocol in terms of the transmission
distance for different fixed amounts of signals. The results prove that this protocol achieves a
considerable secret key rate for a moderate transmission distance of 90 km by using 10 signals.
Moreover, the expected secret key rate was simulated to examine our protocol’s performance at
various intrinsic error rate values, Q = (0.3%, 0.6%, 1%) caused by misalignment and instability due to
the optical system. These results show that reasonable key rates are achieved with a minimum data
size of about 10'“ signals which are realizable with the current technology. Thus, implementing MDI-
QKD using finite resources while allowing intrinsic errors due to the optical system makes a giant step
forward toward realizing practical QKD implementations.

Quantum key distribution (QKD) is a procedure for establishing symmetric cryptographic keys between legiti-
mate participants by distributing quantum states’. In principle, QKD provides information-theoretic security,
guaranteed by quantum mechanical laws?. Notably, QKD has developed from mere theoretical security proofs to
commercial applications over the past two decades. However, practical QKD has yet to attain its full deployment
owing to security lapses in the theoretical security proofs that arise from certain assumptions about the sources
or devices belonging to Alice and Bob®. For example, QKD protocols depend on trusted device scenarios, i.e.,
it is assumed that no information is leaked from the transmitters or the senders, which is very challenging to
guarantee in practice. This creates a gap between theory and experimental implementations, opens loopholes,
and leads to various possible attacks on the QKD systems*. Moreover, during implementations, QKD protocols
depend on trusted device scenarios, and this assumption allows the protocols to achieve effective rates. Unfor-
tunately, this provides an opportunity for harmful attacks, such as the side-channel attacks®. As a result, besides
the enormous theoretical and experimental quantum cryptography progress, some work remains before fully
deploying QKD in commercial applications. Hence, the device-independent (DI) QKD provides an improved
security degree compared to conventional QKD schemes by lessening the number of assumptions required
concerning the physical devices used®.

The security of the DI-QKD depends on the violation of Bell inequalities’. However, the DI-QKD needs
the loophole-free Bell experiments, making it impossible to realize using existing technologies. Recent dem-
onstrations of various attacks highlight this on practical QKD systems’. As a result, the measurement device-
independent (MDI) QKD provides an improved practical solution intrinsically insensitive to entire attacks
caused by side channels. These attacks target a measurement device and remove the detection-associated secu-
rity loopholes®’. Furthermore, the participating parties are connected by an untrusted relay for an MDI-QKD,
leading to a considerable gain in transmission distances compared to the traditional QKD schemes. Thus, this
makes these set-ups ideally suitable for quantum networks. Moreover, some experimental demonstrations using
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MDI-QKD have been conducted in Refs.!*!'. However, the practical MDI-QKD still experiences relatively low
key rates compared to the conventional BB84 protocol due to the requirement of Bell-state measurements. Apart
from these advances, adopting QKD widely has been a challenge, and it has been demonstrated that large-scale
deployment will likely require chip-based devices for improved performance, miniaturization, and enhanced
functionality'*'®. Most significantly, these integrated photonic chips offer numerous benefits such as low cost,
low power consumption, and well-established batch fabrication techniques®.

To encode information in a QKD protocol, the parties must choose a certain degree of freedom, for instance,
polarization or phase properties of single-photon as quantum states?. This means one classical bit of informa-
tion is encoded onto each quantum state, resulting in limited secret key rates?'. As a result, high dimensional
encoding presents a promising solution to address the limitation of low secret key rates in QKD?2. High dimen-
sional quantum systems allow the communicating parties in QKD to encode information beyond one bit per
signal®. The secret key rate, which may be limited by inevitable factors such as losses in the channel, and source
and detector flaws, can be significantly improved by high-dimensional encoding where each photon can encode
up to log,d > 1bits. This allows a considerable amount of information to be sent in a given transmission of the
signal in the channel. Notably, previous studies indicate that the resistance to noise of the protocols increases
when one increases the dimension, both for one-way**-*® and two-way post-processing?. Furthermore, com-
pared to qubit operations, high dimensional quantum states are robust against noise due to the background and
hacking attacks®*.

Qudits have been proven to be robust against quantum cloning compared to their qubit counterparts. Thus,
they are an excellent illustration of the effectiveness of high-dimensional quantum systems since they lead to
higher error thresholds making it challenging for the eavesdropper to intercept a high-dimensional QKD scheme.
Owing to this, the merits of several degrees of freedom have been examined for high dimensional QKD, which
includes position-momentum?, orbital angular momentum?®>°-** and time energy**-*' and MDI-QKDs employ-
ing high-dimensional quantum states**~*%. Another approach to realizing high dimensional encoding is using
biphotons corresponding to a pair of indistinguishable photons with qutrit (i.e., a three-level quantum system)
representation. Biphotons or pairs of entangled photons form a two-photon light and constitute one of the most
critical states of light in recent quantum information and quantum optics***®. The generation, manipulation, and
detection procedures for single-mode biphoton beams with linear optics have been demonstrated in Refs.*’~%.

We propose an MDI-QKD protocol that encodes information on qutrit states by exploiting the polariza-
tion state of single-mode biphoton field. Using biphotons as qutrits enhances the attainable secret key rate
and security due to improved information capacity per photon and the high noise tolerance*. To examine the
practicality of the proposed protocol, we investigate the finite-key bounds against the general attacks based on
entropic uncertainty relations. Moreover, this security analysis pertains to the implementation using the decoy
states. This enables the proposed protocol to be secure against Photon-Number-Splitting (PNS) attacks'. For
the finite-key study, the statistical fluctuations are catered by leveraging the large deviation theory, particularly
the multiplicative Chernoff bound™®. This bound provides the tightest bounds on estimated parameters for the
high-loss regime. More recently, a similar work on three-dimensional MDI-QKD was proposed by Jo et al.>.
Their proposed protocol exploits the time bin entangled qutrit states to encode information and employs a
tripartite qutrit discrimination setup. The setup relies on a tritter and non-destructive photon number measure-
ments to filter the states for Bell state measurements. Conversely, our proposed MDI-QKD protocol utilizes the
Mach Zehnder interferometer to generate biphoton states and the Brown Twiss schemes to achieve Bell state
measurements. While the scheme in Ref.*! is more efficient in terms of fewer resources used in Charlie’s measure-
ment site; it involves non-destructive measurements, which may open up a possibility of side-channel attacks.
Another noticeable difference is that our work considers finite key analysis and studies the performance of the
qutrit MDI-QKD under realistic conditions by determining the key rate as a function of transmission distance.
The work in Ref.*! only provides tolerable error bounds that allow one to distill a secure key. Therefore, apart
from this introduction, the following section describes the proposed protocol, while the next section provides
the security proof based on the entropic uncertainty principle. After that, we simulate the performance of our
protocol to demonstrate its feasibility and conclude this paper.

Protocol definition
Biphotons. The pure polarization state for a single-mode biphoton field is expressed according to the
following**:

[®) = c112,0) + c21,1) + ¢3]0,2), (1)

where ¢; = |c;|e®i are complex amplitudes. The notation |#y, ,) represents a state that consists of n photons in
the horizontal (h) mode as well as n photons in the vertical (v) polarization mode. Therefore, from Eq. (1), we
can observe that a biphoton has a three-level quantum system (qutrit) representation, hence its use for ternary
quantum information encoding. To realize the QKD protocol, one needs at least two mutually unbiased bases
(MUB) from available d + 1 MUBs. The two orthonormal bases .#1 = |¢);, wherei € {0, 1,2} and .#, = |®);,
where j € {0,1,2} for a 3-dimensional Hilbert space 3 are considered mutually unbiased when all pairs of
basis vectors|¢); and | ®); satisfies

1
(il j)|* = 3 (2)

For biphotons, the standard basis is expressed in terms of the orthonormal states |o) = |2,0),|8) = |0,2) and
ly) = |1, 1). The states |2, 0) and |0, 2) represent type-I phase matching, while |1, 1) corresponds to type II phase
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Figure 1. Mach-Zehnder interferometer set up used by Alice and Bob for biphoton state preparation. The laser
beam is pumped towards a non-symmetric beam-splitter that transmits 2/3 and reflects 1/3 of the beam through
the long and short arms. The (41/2); represents the halve wave plates for manipulating the amplitude, ¢; of the
states. The phase shifters (PS. 1 and PS. 2) introduce relative phases between the states. The DM denotes the
dichroic mirror, which transmits two biphotons created using type I non-linear crystals from the long arm of the
interferometer and reflect the pump from the short arm towards the type II non-linear crystal for the creation of
state|1, 1).

matching, and one can obtain these biphoton fields through spontaneous parametric down-conversion (SPDC).
The other three MUBs are realized from the superposition of the basis vectors as follows

6) = \/%aa) +18)+ 7)) 3)
1) = \%(Ia) +0lf) + Py @
1¥) = %(m +0?IB) + wly), ®)
&) = %(|a> +18) + wly)) ©
1B) = %(IM + 0l + Iy @
17) = %(wm +18)+ Iy, ®)
and
&) = %(Ia) +18) + o?Iy)) ©)
1B) = %(Iw +o?IB) + Iy)) (10)
17) = \%(wﬂa) +18) + 7)), an

where @ = exp(i27r/2). In our scenario, to realize high dimensional encoding with biphotons, we propose an
MDI-QKD protocol exploiting two Fourier transformed bases, .#1 = {|&), |8), |y)}and 4> = {|&), |B), |¥)}.

Preparation of states. Alice (Bob) starts by randomly preparing qutrit states from two mutually unbiased
bases .#/1 = {|&), |B),y)} and .45 = {|a),|B), |7)}. The biphoton states {|&), |@)}, {|£), |8)} and {|y),|y)} are
assigned bit values 0, 1 and 2, (the value 2 is converted to binary digit during sifting to obtain two bits per signal)
respectively. The states are prepared using a Mach-Zehnder interferometer consisting of 3 arms and appropriate
non-linear crystals in each arm. This is illustrated in Fig. 1.

The laser beam is pumped onto a non-symmetric beamsplitter that transmits two-thirds of the beam through
the interferometer’s long arm and reflects the other beam via the short arm. The beam in the long arm is pumped
towards the type I non-linear crystals for generating states |2, 0) and |0, 2) resulting in a superposition
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State leil lez| les| 1 [} 3
%) 1 1 1 0 0 0
3 3 3
g 1 1 1 o _190°
1B) e - e 0 120 120
5 1 1 1 _ o o
V) % = e 0 120 120
&) R L £ 120° 0 0
3 3 3
a2 1 1 1 o
1B) % e 7 0 120 0
> 1 1 1 o
17) 5 - N 0 0 120

Table 1. The parameter settings for biphoton states from two mutually unbiased bases used in our QKD
scheme. The complex amplitudes |c;| are realized through the use of half-wave plates. The ¢; are realized by use
of phase shifters.

Figure 2. The generic measurement set up for our proposed MDI-QKD. Alice and Bob start by preparing the
biphoton states from two mutually unbiased bases and send them through the unsecured channel to Charlie.
Charlie allows the states to interfere in the symmetric beam-splitter (BS) upon receiving the states. The photons
are directed towards the tritter and eventually detected in the Brown Twiss scheme (mode sorter).

|®) = ¢12,0) + €¢3]0,2), (12)

with /431 representing the relative phase between the states realized through phase shifters. The half-wave plate
is used for manipulating the amplitudes of these states. A cut-off flitter is employed to remove the pump. After
passing through the filter, the states arrive at the piezoelectric translator, where the phase shift, ¢, is introduced
between the superposition of states defined in Eq. (12) and the state|1, 1). The reflected beam traveling through
the short arm is guided towards the half-wave plate to control the amplitude corresponding to the state |1, 1).
The pump is reflected at the dichroic mirror towards the type II non-linear crystals to create the state|1, 1). The
type I biphotons from the long arm of the interferometer is transmitted via the dichroic mirror. Thus, at the
interferometer’s output, we have the superposition of three basic states in Eq. (1), which are then propagated
through the insecure channel to the measurement site. Different states from two mutually unbiased bases are
produced by adjusting the phase shifters and halve wave plates according to Table 1.

Measurement. Charlie allows the biphotons from Alice and Bob to interfere in a symmetric beam-splitter
upon receiving the states. As a result, the Hong Ou Mandel effect occurs (see Fig. 2). The beam-splitter action
can be described as follows.Let us assume Alice’s biphoton state at the input arm of the beam-splitter is denoted
by [)1, then its transformation can be described as

1 _
ajly) — ﬁuwb + 1¥)a). (13)

Similarly if Bob'’s state at the input arm is |1ﬁ)2 then the action of the beam-splitter is described as
1
V2

where a] denotes the creation operator and |X) is the reflected state. The overall beam-splitter transformations
are described as

()3 — [¥)a), (14)

ajli)s —

Scientific Reports |

(2023) 13:1229 | https://doi.org/10.1038/s41598-023-28382-w nature portfolio



www.nature.com/scientificreports/

—

. _ 1 — .
W) 2> 509+ 0 ® Z=()s — 1))

= %(wm% — )3l + [)al )3 — [9)alvh)a) (15)
= L w4 ey
5
where
Wy = %(Wm% — [ P)alvhe) (16)
and
1 - — ,
W) = — ()5 — [W)s 1)), (17)

V2

The subscripts 1, 2, and 3, 4 denote a beam-splitter’s input and output ports, respectively. According to the Hong
Ou Mandel interference, identical photons will leave the beam-splitter from a similar output port, and distin-
guishable photons from both input ports of the beam-splitter will exit in both output ports. Let Alice and Bob
choose a similar biphoton states |4 ) and |&p), respectively. Therefore, based on the Hong Ou Mandel interference,
the state | ™) in Eq. (17) will disappear, and the resultant state is

1 _ _
W) = ﬁ(|0,5A)3|éB>3 — lap)alda)e). (18)

Therefore, identical biphotons will always appear in the same output arm of BS (3rd arm or 4th arm). Oth-
erwise, if Alice and Bob prepare opposite biphotons, both | ™) and | ¥ ™) will exist, and there is a non-zero
probability that the biphotons will exit at both output arms of the BS. The photons that exit the beam-splitter
are transmitted toward the three input-output ports beam-splitter (tritter). The photons are directed toward
the two non-polarizing beam-splitters to separate them into three channels from each output of the symmetric
beam-splitter connected to each input of the two tritters (see Fig. 3). The probability of photons exiting through
any of the output ports of the tritter is governed by the unitary matrix

1 1 1 1
y =— 11 eiln/S ei471/3 . 19
V3 \ | gin/3 isn3 (19)

In a case where each input of the tritter is injected with biphoton state, the resultant output state after the evolu-
tion induced by % is given by

u 2 1
[1,1,1) — \ﬁ|3,0,0) - —|1,1,1), (20)
3 V3

where|1, 1, 1) corresponds to one biphoton state in each input or output of the tritter, and |3, 0, 0) represents three
biphoton states exiting through one output port and no photons in the other two output ports. The output ports
of each tritter are linked with three biphoton mode sorters. At the output of each tritter, the biphoton states from
Alice and Bob, are directed towards the Brown Twiss schemes which are tuned to measure the standard basis
biphoton modes|«),|8) and |y ). Each Brown Twiss scheme made up of polarization filters in the arms. The filters
comprise a pair of phase-plates and a polarization analyzer used to realize the polarization states of single-
photons creating the biphoton. Each Brown Twiss scheme is tuned to detect a certain polarization state of
biphoton by setting wave plates (1/4 plate, /2 plate) to angle positions that realize desired polarization and
setting polarization analyser to allow the desired polarization to pass through. Different angle settings for wave
plates are shown in Table 2. When a Brown Twiss scheme is tuned to the settings for detection of specific polari-
zation states, the orthogonal biphoton states cannot result in coincidence detection. For instance, in the Brown
Twiss scheme used to detect|3) biphoton mode, there are two detectors for the horizontal polarization contribu-
tions from Alice and Bob’s biphoton states which are labelled as D4 and Dyp. Furthermore, there are two
detectors for measuring the vertical polarization contributions of biphoton states from Alice and Bob labelled
as Dy and Dyp as shown in Fig. 3. Similarly, appropriate parameters are set in the filters of both arms of the
Brown Twiss scheme for detecting other states to allow coincidence detection. Note that states prepared by Alice
and Bob are a superposition of the three basic states |«), |8) and |y ). Therefore, a successful Bell state measure-
ment in the Brown Twiss scheme corresponds to the observation of precisely 12 detectors being triggered; for
instance, DH1a, DH1B> DH24 and Diop (associated with o), biphoton mode), Dy3a, Du3g, Dvaa and Dy4p
(associated with | 8) biphoton mode) and Dy 54, Dysp, Dyea and Dyep (associated with |y )1 biphoton mode).
These measurement results can be simplified in terms of Bell measurements as % (Da; Dg; Dy, + Doy DgyDyy)

which represent a click in detectors on the left-hand side for |),|8) and |y ) modes (i.e.,Dy,; denotes coincidence
detection in detectors of [o) mode) or a click on the right-hand side for |«),|8) and|y) modes detectors. A con-
clusive result is given by click in detectors of the mode sorters on the left-hand side or the right-hand side only.
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Figure 3. Illustration of the measurement set up at Charli€’s site. The incoming biphotons interfere in the
beam-splitter (BS) and exit through either of two output ports towards the two non-symmetric beam-splitter
(NPBS), where they are further split into three channels and directed towards the tritter. The tritter setup shown
in the upper left is a three-input-output port splitter. It comprises three conventional beam-splitters (BS), four-
phase shifters (PS), and a mirror. The output ports of the tritter are linked with three Brown Twiss schemes for
detecting the three basic states|«),|8), and |y). Each Brown Twiss scheme consists of a non-symmetric beam-
splitter (NPBS), wave plates (WP), polarization analyser (A), and detectors (DP;) where P € {H, V} represents
polarization mode and subscript i denotes single photons forming biphotons. The abbreviation c.c corresponds
to coincident counting or detection.

The other Bell state measurements result in inconclusive measurement results, e.g., % (Da; D Dyp + Doy Dy Dy,).
The results are provided in Table 3.
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Table 2. The parameter settings for wave plates in the Brown Twiss schemes.

States sent Charlie’s measurement results

by Alice and

Bob Doy D, Dy, | Doy Dgy Dy | Doy Dy Dy | Doy Dgp Dy | Doy Dgp Dy, | Dag Dy Dy, | Doy Dy Dy | Dag Dy Dy,
|&@) or|a) Conclusive | Conclusive Inconclusive | Inconclusive | Inconclusive | Inconclusive | Inconclusive | Inconclusive
|f) or|B) Conclusive | Conclusive | Inconclusive | Inconclusive | Inconclusive | Inconclusive | Inconclusive | Inconclusive
|¥)or|y) Conclusive | Conclusive Inconclusive | Inconclusive | Inconclusive | Inconclusive | Inconclusive | Inconclusive

Table 3. The possible Bell state measurement results in the Brown Twiss scheme mode sorting.

Sifting. Alice and Bob post select states prepared using the same basis when Charlie reports a conclusive
event and discards the rest of the data. A conclusive event corresponds to a case where there is a coincidence
detection in three Brown Twiss schemes (linked to the same tritter) for three different basis states |«), |8) and
|y ). This occurs when Alice and Bob have prepared the same biphoton state. We define the set #" comprising of
biphoton signals if Alice and Bob selected the key basis .#/1 and Charlie gets a successful measurement. Similarly,
% is a set of post-selected signals from measurement basis .4, which are used for monitoring the presence of an
adversary. The protocol repeats the first steps until the sifting conditions |.#"| > nand |%4 | > m are met for all
N signals prepared by Alice and Bob.

Parameter estimation. The participating parties, Alice and Bob, make use of the random bits obtained
from " to create a raw key consisting of bit strings K4 and Kg. Then, they compute the average error M—l‘ > a;®b;
where a; and b; are Alice and Bob’s bit values.

Error correction. The information reconciliation scheme is performed, which leaks at least leakgc bits of
classical error-correction data. Alice evaluates a bit string (i.e., a hash) measuring length log, (1/&cor) using a
random universal, hash function to K4. Then, Alice transmits the choice of the function, including the hash to
the receiver, Bob. When the hash of Kg does not match the hash of K4, the protocol is aborted.

Privacy amplification. During this step, Alice uses a random universal, hash function for extracting the
length ¢ bits of secret key S4 from K4. Bob exploits a similar hash function for extracting the key Sp of length ¢
from Kp.

Security analysis

We consider the realistic scenarios where participating parties exchange finite signals N and determine the sta-
tistical fluctuations of finite-size key effects. The security analysis follows the proofs provided in Refs.**->¢ based
on a universally composable framework. The protocol creates a pair of key bit strings Sa for Alice and Sg for
Bob. These key bit strings measure length £ and must satisfy the correctness and secrecy requirements so that the
protocol can be considered secure. Based on the composability requirement, the QKD protocol is considered to
be correct when Sp = Sg for any eavesdropping attack. Thus, the ,-correct protocol differs from a correct one
according to the error probability, £cor, Where Pr[Sp # Sp] < &cor. Therefore, the CQ state, ps, g is A-secret when

o1
min ~||ps,r — pu ® pEll1 < A, (21)
PE 2

where pg, f is the classical-quantum (CQ) state, which represents the correlation between Alice’s key bit string
S4 and Eve’s quantum state pg, and py corresponds to the completely mixed state on the key space.

Since we consider signals generated using spontaneous parametric down-conversion (SPDC) sources that
sometimes emit at least one photon pair, our protocol is susceptible to photon number splitting (PNS) attacks.
Therefore, we apply the decoy states technique analysis. With the decoy-state approach, Alice prepares photons
at random by using the three different intensities (u, v, @) with u denoting the signal state intensity, v for decoy
states, and w represents the vacuum states®’. These intensities are generally chosen according to the following
probabilities P, > P, > P, whereby P, P,, and P, represent signal, decoy and vacuum states. Accordingly,
signal states attained with the intensity p are utilized to generate the final secure key. Finally, the decoy-states
acquired based on intensity v are used to bound the knowledge of Eve about the key. Therefore, the key rate of
the &sec + €cor-MDI protocol with biphotons is expressed as
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Figure 4. Illustration of the secret key rate (in logarithmic scale) in terms of the transmission distance (km), for
a fixed amount of signals N = 102, N = 1013, N = 10" and N = 10,

l 2 4
=q|Q;;},, 4 (0g 3 = hse'y ")) —leakpc — log, — — 2logy — |, (22)
Niotal or Esec
withg = N“p £, N, represents the amount of detected signals prepared according to the intensity u. In contrast,

Pi denotes ﬂle probability of measuring in the key basis .#1 and Ny, is the total amount of exchanged signals.
The term Q,; 1 1, represents the gain of biphotons pr LEared by Alice and Bob in the key basis .4 with intensi-
ties (g and’ ,ub, respectlvely Accordingly, the term e v, denotes the upper bound on the error rate emanating
from single-photon components in the non-key basis .#/ and leakgc represents the quantity of information
leaked to Eve in the error correction step which equals to Ny fechs(E,,;.,.«,)- Here f denotes the efficiency
due to error correction and h3(x) is the entropy corresponding to three-dimensional quantum states given by
h3(x) = —xlog2(§) — (1 — x)log, (1 — x). Finally, the correction termslog, (1/&cor) and 2 log, (4 /&sec ) correspond
to the bits of information lost through computation of universal hash function during error correction step and
the privacy amplification. The applicable parameters in Eq. (22) are derived in Appendix A.

Simulation results

We present the analysis of the behavior of the secret key rate in Eq. (22). The simulation results correspond to a
fibre-based QKD scheme where the expected key rate is maximized by using the following experimental values
where fiber loss coeflicient 0.2 dB/km, detector efficiency n = 14.5%, single-photon detector dark count rate
P; = 1.7 x 107, error correction efficiency fzc = 1.22, signal states mean photon number y = 0.6 and optimal
probability p, for the key basis is 0.95 Ref..

Figure 4 depicts the expected secret key rate corresponding to each pulse (i.e., £/N) in terms of the transmis-
sion distance between the participating parties, Alice and Bob, for various amounts of signals N. The simulation
result demonstrates the feasibility of our proposed protocol in the finite-key regime. Notably, we obtain a fairly
reasonable transmission distance of 90 km with realistic 10'® photon signals. For comparison purposes, we
provide the plot for key rate against transmission distance for our proposed biphoton MDI-QKD and the qubit-
based MDI-QKD? in Fig. 5. The results indicate that qubit-based MDI-QKD slightly outperforms our proposed
biphoton QKD in terms of maximum transmission and achievable key rates. However, it is worth highlighting
that the biphoton MDI-QKD provides a higher bit error rate tolerance compared to the qubit-based MDI-QKD.
For example, it has previously been demonstrated in Ref.*>* that biphoton-based QKD protocols can tolerate an
error rate of about 17.7% to distill a secure key. In contrast, the best qubit-based one-way QKD can only tolerate
up to 14.1% in the error rate®. Therefore, we highlight that owing to its ability to tolerate a higher quantum bit
error rate, the biphoton MDI-QKD can still be considered a reliable candidate for key distribution purposes,
particularly over short transmission distances with low losses in the channel. Notably, we remark that the means
to create and detect biphoton optical fields have long been successfully investigated*”%*-%2, Furthermore, using
comparable schemes the experimental results show that the biphoton states can be realized with high fidelity
that ranged from 98.3 % to 99.8%, clearly demonstrating the feasibility of biphoton QKD. Most significantly, the
advent of superconducting nanowire single-photon detectors has demonstrated detection efficiency of about
93%®. Thus, by harnessing these new technologies, the detection inefficiencies contributed by our detection
system, which detectors in our scheme could contribute, can be drastically reduced, resulting in improved key
rates. In Fig. 6, we present the performance expected secret key rate (per pulse) £/N given as a function of the
number of signals N for various values of the intrinsic error rate: Q = (0.3%, 0.6%, 1%) owing to the misalignment
and the optical system’ instability at a distance of 50 km. We show that a minimum data size of about 10'4 signals
(attainable current hardware in practical QKD systems) is required to produce a provably secure secret key.
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Figure 5. Illustration of the secret key rate (in logarithmic scale) in terms of the transmission distance (km)
for our proposed biphoton MDI-QKD and the qubit-based MDI-QKD proposed in Ref.* for a fixed amount of
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Figure 6. The secret key rate (in logarithmic scale) in terms of the number of signals N, for intrinsic
misalignment errors 0.3%, 0.6%, and 1%.

Conclusion

We presented a high-dimensional QKD protocol employing biphotons to encode information. The biphotons
were exploited as qutrits to improve the secret key rate. This is because qutrits carry more bits of classical informa-
tion and have improved robustness against eavesdropping compared to qubits. Moreover, the secret key rate for
the MDI-QKD proposed protocol was simulated regarding the transmission distance for different fixed amounts
of signals. These results prove that this protocol achieves a considerable secret key rate for a moderate transmis-
sion distance of 90 km by using 10'° signals. Also, the expected secret key rate was simulated to examine our
protocol’s performance at various intrinsic error rate values, Q = (0.3%, 0.6%, 1%) caused by misalignment and
instability due to the optical system. These results show that reasonable key rates are achieved with a minimum
data size of about 10 signals which are realizable with the current technology. Therefore, the proposed protocol
is crucial for realizing practical QKD implementations.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding
author on reasonable request.

Appendix
A: Estimation of key rate parameters

We evaluate gains and quantum bit error rates by considering the conditional probabilities for the coincidence
detection of n-photon pairs in the Brown Twiss scheme. In terms of the basis state |o), the yield is given by
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Yﬁin = [1 - (1 - YODHlA)(l - UDHlAt)n][l - (1 - YODH13)(1 - nDHu;t)n]
X [1 - (1 - YODHZA)(I — NDioa t)n][l - (1 - YODHZB)(l - UDHZBf)nL
where Y is the background count rate, Dy1a, DH1B, DH24 and Dpop correspond to detectors for measuring

horizontally polarized states in the Brown Twiss scheme. The terms ¢ and 1 represent channel transmittance and
detection efficiencies. The yield for photon pairs that correspond to state|8) is given by

(23)

Yf,n = [1 - (1 - YODH3A)(1 - UDHMf)n][l - (1 - YODH3B)(1 - 77D1~13Bt)n]
X [1 - (1 - YODv4A)(1 — NDyya t)n][l - (1 - YODv4};)(1 - an4Bt)n])

where Dy34, DH3p, Dvsa, and Dyyp correspond to detectors for measuring horizontal and vertical polarized

states, respectively, in the Brown Twiss scheme. Similarly, the detection probability for the n-photon pair cor-
responding to |y ) is

Yr],/)n = [1 - (l - YODvsA)(l - ansAt)n][l - (1 - YODVSB)(I - ansgt)n]

X [1 - (l - YODVGA)(I - ﬂDVGAt)n][l - (1 - YODV6B)(1 - UDVth)n]:

Dys4, Dysp, Dyea, and Dyep correspond to detectors for measuring vertically polarized states in the Brown
Twiss scheme. Therefore, the overall yield is given by

(24)

(25)

Yo = Y3, YP, YY) (26)

mn nnt nn

From these results, the gain for states prepared from key basis comprising of #-photon pairs is given by

QZ-’:M;,-/”I = YnnP(na)P(np), (27)

where P(n,) and P(n,) denotes the probabilities for Alice and Bob’s SPDC sources to emit n,-photon and np,
-photon pairs. This probability is expressed as

ROk

The gain corresponding to single-photon contributions is then given by
4Y 1 halt
Ql’1 nwE o 29
Hath (2 4 pg + up)? 29)
In addition, we have the overall gain expressed as
oo
Quappntty = Z QZ’:ub,,/lil > (30)
n
and the QBER, E,, ,,. «#, is expressed as
o0
Eppapiitt Quapytty = Z en,nQZ’:Mb,v/zl’ (31)
n=0
where the error rate of the n-photon pairs from Alice and Bob, e, , is expressed as
enn = ez,n + eg,n + e%,n' (32)
The error rate for the n-photon pair corresponding to the state o) given by
€n = [€0(Yony14 YoDims + YoDi1a D15 + YoDi15MDima + YoDsza YoDir2s (33)

+ Y0154 D25 + Y0D1125MD124) + €4 (NDy1a D15 + NDsoa MDp2s) ] + Yzlql,n

The error rates eg and e}, associated with the detection of states| ) and |y ), respectively are analogously obtained as

ef,n = [eO(YODHSA YoDysp + YoDusaMDusp + Y0Du3pMDusa + YoDyys YoDygp (34)
+ YoDyuu1Dyvas + YoDyasIDvas) + €d(MDy30 MDys5 + MDyan MDyap)] + Yf,n

e;’)n = [eo(YoDyss YoDyss + YoDysaIDyss + YoDyssIDysa + YoDyss YoDyes (35)
+ YoDyeaIDves + YoDyesDvea) + €d(MDysaMDysg + NDyea IDyes)] + Y;{n

Finally, the upper bound on the error rate measured in the complimentary basis used to approximate the phase
error rate on the key basis is given by
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2
11U Evgvptts Quavy,.i,€”" — €0 Yo
e, = YL 2

L1V

> (36)

g1 _ PalPsIDIQuu,. 1, = Pal0OP|0) Yol = POal2)PIDI Qs ity = P(HalO)P(115|0) Yo
R P(ial2)P(14512)P(va|1)P(vp]1) — P(1al )P (1251 1)P(va]2)P(vp2) '

(37)

. Sy (D (D"
In above equation P(i|n) = W
Secrecy

Let the system E represent information collected by Eve on Alice and Bob’s bit strings K4 and Kp, respectively, up
to the error correction step. By applying the privacy amplification based on the universal class-two hash function,

we generate a A-secret key of length ¢, and

1 . -
A2+ V26 Hain (KalB), (38)

where H; ;  (Ka| E) represents the smooth min-entropy, which corresponds to the average prob?hgggh.thg.n
adversary guesses K 4 correctly using an optimal strategy through having an access to E. Let v = 1 2 Hin (KalB)
then the secret key length, € is given by

with 7 € {1, v} and n denotes number of photons.B:

. 1
¢ =HE, (K4|E) — 2log, (5) (39)

2

Ecor

During error correction, Alice and Bob reveal bits of information equals to leakgc + log, ( ) to an eavesdrop-

per. Therefore, we have that

s 2
HE (KalE) = HE (K4 |E) — leakc + log, <

min
Ecor

) (40)

where E is Eve’s information prior to error correction step. Since our analysis is based on decoy states, K4 can be
written in terms of K} K'¥' and this represents the bit strings owing to single photons and multi-photons events.
Through using the generalized chain rule for smooth entropies, we have that

1
HE . (KalE) > HOL (KL |KTE) + HS. (K™ |E) — 2log, <$) —1

min min
(41)

— ““min

1
> H (KLIKPE) — 2log, <g) -1,

and here the second inequality is based on the fact that H

2L (KTIE) > 0. Next, we provide bound for
Hisrlwissmm(KiﬂKx E) by using the uncertainty relations for the smooth entropies. To achieve this, we use a
gendankenexperiment where Alice and Bob prepare all their states in the basis .4, even when they choose the
1 basis. In this hypothetical protocol, the bit strings obtained from measurements in the complementary basis,

C4 and Cp of length £ replace the keys K4 and Kp. The smooth min-entropy is expressed as
Hosin (KA IKEE) = 110 — Hi 0 (CalCp)

L1 (42)
=nyill — h(e,‘//z)],
whereny 1, = N, p? Q}L: . t, denotes the sifted raw key size obtained from the single photon occurances.
Finally, we combine afl the terms which represent errors for min-entropies and error probabilities due to
parameter estimation discussed in previous section. Thus, the secrecy is given by

Esec =26 +281 + 8 +v+e1+ e (43)

Here, ¢ and &; represent error probabilities for estimating the single photon events as well as the phase error
rate. The error term is set to a common value € and g5.c = 8¢. The final key length £ is obtained using the results
from Egs. (40) to (42) and invoking the secrecy requirement from Eqs. (43) in (39). Then, the final derived
formula is written as

4

2
€= N,p? Q}l’;#bwﬂl (log, 3 — h3 (e};,lzu)) — leakgc — log, — 2log, —|. (44)
Ecor Esec
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