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1 Introduction

Recently a basically unique three-dimensional maximally (N = 8) superconformal theory

was constructed by Bagger and Lambert, and by Gustavsson (BLG) [1–4]. It is the purpose

of this paper to develop the corresponding (N = 8) conformal supergravity theory and

couple it to the BLG theory.

The BLG theory, containing a Chern-Simons gauge field coupled to matter fields, was

originally proposed to describe multiple M2-branes. An interesting aspect of the fact that

the BLG theory is a Chern-Simons theory [5] is its potential importance also in the context

of condensed matter applications. The multiple M2-brane interpretation has, however,

met with a number of problems related to the algebraic structure of the theory. The

BLG construction is based on a four-index structure constant for a three-algebra with a

Euclidean metric. This three-algebra is known [6, 7] to have basically only one realization,

A4, related to the ordinary Lie algebra so(4). This seems to be limiting the role of the

BLG theory to stacks of two M2-branes [8–10].

It may be of some interest to couple the BLG theory to supergravity. In fact, in the

context of AdS5/CFT4, similar couplings of a superconformal field theory to its supergrav-

ity counterpart have been considered in the past, see, e.g., [11]1 and references therein. A

coupling to supergravity also provides a framework for curved M2 branes and may perhaps

be used in a way similar to how quantum properties of the string are usually defined. (This

may be more natural in the context of the ABJM N = 6 theory [10] which can describe

one as well as many M2 branes.2 This theory can most likely be coupled to conformal

supergravity in the same way as done here for the BLG theory.) The geometric description

1We are grateful to Arkady Tseytlin for discussions on this point.
2For several reasons one may, in fact, suspect that globally there is no distinction between one and

several M2 branes.
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of the superstring coupled to supergravity, generally referred to as the Polyakov string, was

first given in [12] and later used by Polyakov [13] to define the string at the quantum level.

There is, of course, an interesting issue at this stage for such an interpretation to be viable

in the M2 case, related to the fact that BLG/ABJM type theories appear to be in a static

gauge of a would-be covariant theory. We have no comments about this at the moment

and regard this work only as a possible step in this direction.

However, for the coupling to gravity to make sense in this latter context, the coupled

three-dimensional BLG (or ABJM) theory should not pick up any new propagating degrees

of freedom. Thus the supergravity theory needs to be special, in some sense topological

before being coupled to matter. For N = 1 there is such a theory in three dimensions as

shown by Deser and Kay in [14]. It consists of two Chern-Simons type terms, one for the

spin connection and one for its superpartner the Rarita-Schwinger field. Although none of

them are conventional Chern-Simons terms (e.g., the spin connection is constructed from

the dreibein), we will refer to both as Chern-Simons terms. Some issues related to the

physical content of theories of this kind have been addressed in [15, 16]. For instance, the

equation of motion for the dreibein in the pure gravity case restricts the geometry to be

conformally flat [15].

In this paper we construct the N = 8 version of this supergravity theory which interest-

ingly enough turns out to be rather simple; starting from the Deser-Kay N = 1 theory [14]

one just gives the spinors an extra SO(8) spinor index and adds a Chern-Simons term for

the corresponding R-symmetry gauge field. It is then rather straightforward to show that

this theory is invariant under the local symmetries, supersymmetry, special superconfor-

mal, and dilatations. (The Lagrangian of this theory can also be obtained by starting

from the gauged superconformal algebra and subject it to curvature constraints as shown

in [17, 18].) It is then possible to couple this conformal supergravity theory to the BLG the-

ory using familiar methods. In this paper we will perform this coupling up to some higher

order interaction terms between the two sectors. The resulting theory will here sometimes

be referred to as the topologically gauged BLG theory since the global symmetries of the

BLG theory, namely Poincaré, N = 8 supersymmetry and SO(8) R-symmetry, are here

all being gauged by the introduction of gauge fields and the corresponding Chern-Simons

terms. The introduction of levels k can be done separately in the BLG sector [8–10] and

in the supergravity sector [15] raising some interesting questions. This is discussed further

in the last section.

The paper is organized as follows. In section two we construct the N = 8 conformal

(or topological) supergravity by writing down an on-shell Lagrangian containing only three

types of Chern-Simons terms, one for each gauge symmetry. We then explicitly demon-

strate that this supergravity theory has the required N = 8 local symmetries. In section

three we review the BLG theory and present in detail the coupling of it to the N = 8

conformal supergravity given in section two. The last section contains conclusions and

some further comments.
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2 Pure topological N = 8 supergravity in three dimensions

The off-shell field content of three-dimensional N = 8 conformal supergravity is

eµ
α [0], χi

µ

[

−1

2

]

, Bij
µ [−1], bijkl [−1], ρijk

[

−3

2

]

, cijkl [−2], (2.1)

where we have given the conformal dimension in brackets after each field. This set of fields

constitute an off-shell multiplet of N = 8 three-dimensional conformal supergravity [19]

as indicated by the degree of freedom count (which is just as in four dimensions but then

on-shell). The task now is to construct a topological Lagrangian from a set of Chern-

Simons terms. In fact, by checking which scale invariant terms can be constructed from

the above set of fields one concludes that the last three fields will satisfy algebraic field

equations. This means that we can construct the on-shell Lagrangian using only the three

gauge fields of ’spin’ 2, 3/2 and 1, i.e. eµ
α[0], χi

µ[−1
2 ], Bij

µ [−1]. (Note that the i index

used here corresponds in the following to the SO(8) spinor index that is not explicitly

written out for the supersymmetry parameter. The R-symmetry gauge field in the adjoint

of SO(8) may, due to triality, be given a pair of antisymmetric indices in any of the three

eight-dimensional representations.)

Inspired by the work of Deser and Kay [14], van Nieuwenhuizen [17], and Lindström

and Roček [18], we start from a Lagrangian of the form3

L =
1

2
ǫµνρTrα

(

ω̃µ∂νω̃ρ +
2

3
ω̃µω̃νω̃ρ

)

− ǫµνρTri

(

Bµ∂νBρ +
2

3
BµBνBρ

)

−ie−1ǫαµνǫβρσ(D̃µχ̄νγβγαD̃ρχσ), (2.2)

where ω̃ is the spin connection and the traces in the first and second terms are over the

vector representation of the Lorentz group SO(1, 2) and the R-symmetry group SO(8),

represented by indices α and i, respectively. Note that the coefficient in front of the R-

symmetry Chern-Simons term may seem non-standard but as we will see below the N = 8

supersymmetry properties depends crucially on the value of this coefficient.

We will frequently use the standard notation [14]

fµ =
1

2
ǫµνρD̃νχρ, (2.3)

which makes the Rarita-Schwinger term read

− 4if̄µγβγαf ν(eµ
αeν

βe−1), (2.4)

where we have spelt out explicitly all dependence of the dreibein that needs to be varied

when checking supersymmetry.

The standard procedure to obtain local supersymmetry is to start by adding Rarita-

Schwinger terms to the dreibein-compatible ω in order to obtain a supercovariant version

of it. That is

ω̃µαβ = ωµαβ + Kµαβ , (2.5)

3The Lagrangian used here was in fact given in [18] based on a generalization of the superconformal

algebra method of [17]. We will, however, base our discussion entirely on methods related to those of Deser

and Kay in [14].
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where

ωµαβ =
1

2
(Ωµαβ − Ωαβµ + Ωβµα), (2.6)

with

Ωµν
α = ∂µeν

α − ∂νeµ
α, (2.7)

and

Kµαβ = − i

2
(χ̄µγβχα − χ̄µγαχβ − χ̄αγµχβ). (2.8)

This combination of spin connection and contorsion is supercovariant, i.e., derivatives on

the supersymmetry parameter cancel out if ω̃µαβ is varied under the ordinary transforma-

tions of the dreibein and Rarita-Schwinger field:

δeµ
α = iǭγαχµ, δχµ = D̃µǫ. (2.9)

The covariant derivative appearing in the Lagrangian and in the variation of the Rarita-

Schwinger field takes the following form acting on a spinor

D̃µǫ = ∂µǫ +
1

4
ω̃µαβγαβǫ +

1

4
BµijΓ

ijǫ, (2.10)

that is, both the Lorentz SO(1, 2) and the R-symmetry SO(8) groups are gauged. Note that

the spinors in the gravity sector, i.e., the susy parameter and the Rarita-Schwinger field,

are of the same SO(8) chirality while the spinor in the BLG theory is of opposite chirality.

Our goal now is to show that the above Lagrangian is N = 8 supersymmetric (up to a

total divergence) under the above transformations of the dreibein and the Rarita-Schwinger

field together with a transformation of the SO(8) R-symmetry gauge field Bµij that will

be determined in the course of the calculation. This superconformal N = 8 supergravity

theory will then be coupled to the BLG theory in the next section.

We will derive the variation of the Lagrangian following closely the steps in the N = 1

case given by Deser and Kay in [14]. There is, however, good reason to be somewhat more

explicit than in that paper since we do it for N = 8 and will need to spell out in detail

where the two calculations differ. Our derivation will make use of a Fierz basis (see the

appendix) which will turn out to simplify the calculations quite a bit.

Introducing the dual SO(8) R-symmetry and curvature fields (see [14])

G∗µ
ij =

1

2
ǫµνρGνρij , R̃∗µ

αβ =
1

2
ǫµνρR̃νραβ (2.11)

and similarly for ω̃, as well as the double and triple duals

R̃∗∗µ,α =
1

2
ǫαβγR̃∗µ

βγ , R̃∗∗∗
µ =

1

2
ǫµναR̃∗∗ν,α, (2.12)

where in the last expression only the contorsion part of the Riemann tensor contributes.

In fact, one can show that

R̃∗∗∗
µ = ie2χ̄νγµf ν. (2.13)

From the fact that the affine connection and spin connection are related by

Γρ
µν = ωµ

α
βeν

βeα
ρ + eα

ρ∂µeν
α, (2.14)

– 4 –



J
H
E
P
0
3
(
2
0
0
9
)
0
7
4

and that the variation of the affine connection is

δΓρ
µν =

1

2
gρσ(Dµδgνσ + Dνδgµσ − Dσδgµν), (2.15)

we find directly that

δω̃∗α
µ = −2i

(

ǭγµfα − 1

2
eµ

αǭγνf ν

)

. (2.16)

Combining this result with the fact that the commutator of two supercovariant deriva-

tives, acting on a spinor, is

[D̃µ, D̃ν ] =
1

4
R̃µναβγαβ +

1

4
GµνijΓ

ij, (2.17)

we find that the symmetric part of R∗∗µ,α cancels in the supersymmetry variation of the

dreibein and gravitino Chern-Simons terms. Performing also the variation of the Chern-

Simons term for the SO(8) gauge field we find that also G∗µ
ij cancels provided we choose

the variation of Bµij to be

δBij
µ = − i

2
e−1ǭΓijγνγµf ν. (2.18)

Inserting these variations into δL gives

δL = δL1 + δL2 + δL3 + δL4,

δL1 = 4ǭ(γαγβfα)f̄µγβχµ,

δL2 = 8f̄µ(γαγβfα)

(

ǭγβχµ − 1

2
eµ

β ǭγνχν

)

,

δL3 = 4(f̄αγβγα)γγχµǫβµν

(

ǭγνf
γ − 1

2
eν

γ ǭγρfρ

)

,

δL4 = −1

2
(f̄αγβγα)Γijχµǫµβγ ǭΓij(γδγγf δ). (2.19)

In order to show that the variation of the Lagrangian vanishes some of the terms in

the above expression must be rearranged by Fierz transformations. As we will see later

it will turn out to be convenient to review the N = 1 case before turning to the more

complicated case of N = 8. To proceed in a systematic manner we have chosen to pick

a basis of N = 1 expressions consisting of (f̄ . . . f)(ǭ . . . .χ) where the dots correspond to

either a charge conjugation matrix or such a matrix times a three dimensional gamma

matrix (recall that all the spinors are Majorana). An independent set of such expressions

is defined in the appendix.

By applying the Fierz transformations to δL1 and δL3 above and expressing all terms

so obtained in the Fierz basis one can show, after some N = 1 Fierz calculations, that they

exactly cancel δL2. This is the result of Deser and Kay [14].

It now becomes rather easy to establish that also for N = 8 the variation will vanish

when δL4 is included and use is made of the full N = 8 Fierz identity for SO(8) spinors of

– 5 –



J
H
E
P
0
3
(
2
0
0
9
)
0
7
4

the same chirality, i.e.,

ĀBC̄D = − 1

16

(

ĀDC̄B + ĀγαDC̄γαB

−1

2
ĀΓijDC̄ΓijB − 1

2
ĀγαΓijDC̄γαΓijB

+
1

48
ĀΓijklDC̄ΓijklB +

1

48
ĀγαΓijklDC̄γαΓijklB

)

. (2.20)

The argument is as follows. From the N = 1 case, for instance by using the basis given

in the appendix and the N = 1 Fierz identity

ĀBC̄D = −1

2
(ĀDC̄B + ĀγαDC̄γαB), (2.21)

we conclude that after Fierzing δL1 + δL3 = −δL2. This means that in the N = 8 case

we have instead that δL1 + δL3 = −1
8δL2 and we are missing 7

8δL2 which must come from

Fierzing δL4.

That this in fact is exactly what happens is most easily seen by Fierzing δL4 keeping

the factors γαγβfα intact and collecting the Γij in the same factor. The result of the

Fierzing is

(f̄αγβγα)γµǫνβδ(γγγδf
γ)ǭγµχν = 4f̄µ(γαγβfα)

(

ǭγβχµ − 1

2
eµ

β ǭγσχσ

)

, (2.22)

where the right hand side has been derived by writing γνβδ instead of ǫνβδ and then

multiplying in the explicit γµ into it.

Turning finally to the Fierz terms containing Γij and Γijkl, the latter terms can be

seen to cancel directly using the same Fierz relations as for the terms without any Γ’s. The

cancelation of the Γij does however require a separate calculation using the second basis

set in the appendix. This cancelation has also been verified proving that the theory has

N = 8 local supersymmetry.

We have also explicitly verified that the theory constructed here is locally scale in-

variant (denoted by an index ∆) and possesses N = 8 superconformal (shift) symmetry

(denoted by S) with the following transformation rules (where φ is the local scale parameter

and η the local shift parameter)

δ∆eµ
α = −φ(x)eµ

α,

δ∆χµ = −1

2
φ(x)χµ,

δ∆Bij
µ = 0, (2.23)

and

δSeµ
α = 0,

δSχµ = γµη,

δSBij
µ =

i

2
η̄Γijχµ. (2.24)
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Verifying invariance under the latter transformations requires Fierz transformations similar

to those used above to demonstrate N = 8 supersymmetry. The calculations performed

here may be facilitated by the use of the Mathematica package GAMMA [20].

3 The N = 8 gauged BLG theory

In this section we first review the (ungauged) superconformal matter sector, i.e., the or-

dinary BLG theory, to which we then would like to couple the superconformal gravity

derived in the previous section. The resulting “gauged” BLG theory is derived in the

second subsection up to some higher order interaction terms between the two sectors.

3.1 Review of the ungauged N = 8 superconformal BLG

The BLG theory contains three different fields; the two propagating ones Xi
a and Ψa,

which are three-dimensional scalars and spinors, respectively, and the auxiliary gauge field

Ãµ
a
b. Here the indices a, b, . . . are connected to the three-algebra and some n-dimensional

basis T a, while the i, j, k, . . . indices are SO(8) vector indices. The spinors transform under

a spinor representation of SO(8) but the corresponding index is not written out explicitly.

Indices µ, ν, . . . are vector indices on the flat M2-brane world volume.

Using these fields one can write down N = 8 supersymmetry transformation rules

and covariant field equations. This is possible without introducing a metric on the three-

algebra. In such a situation the position of the indices on the structure constants is fixed

as fabc
d. The corresponding fundamental identity needed for supersymmetry and gauge

invariance then reads [1–4],

fabc
gf

efg
d = 3f ef [a

gf
bc]g

d , (3.1)

which can be written in the following alternative but equivalent form [21],

f [abc
gf

e]fg
d = 0 . (3.2)

The construction of a Lagrangian requires the introduction of a metric on the three-

algebra. As discussed above, if one wants to describe more general Lie algebras than so(4),

this metric must be degenerate [21] or non-degenerate but indefinite [22–24]. Finally, to

construct an action one also needs to introduce the basic gauge field Aµab
4 which is related

to the previously defined gauge field and structure constants as follows:

Ãµ
a
b = Aµcdf

cda
b . (3.3)

The BLG Lagrangian is [3]

L = −1

2
(DµXia)(DµXi

a) +
i

2
Ψ̄aγµDµΨa −

i

4
Ψ̄bΓijX

i
cX

j
dΨaf

abcd

−V +
1

2
εµνλ

(

fabcdAµab∂νAλcd +
2

3
f cda

gf
efgbAµabAνcdAλef

)

, (3.4)

4However, already gauge invariance of the field equations requires the introduction of this gauge field [21].
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where the potential is given by

V =
1

12
fabcdf efg

dX
i
aX

j
bX

k
cX

i
eX

j
fXk

g . (3.5)

Note that in terms of Ã the Chern-Simons term becomes

LCS =
1

2
εµνλ

(

Aµab∂νÃλ
ab +

2

3
Aµ

a
bÃν

b
cÃλ

c
a

)

(3.6)

The BLG transformation rules for (global) N = 8 supersymmetry are

δXa
i = iǫΓiΨ

a,

δΨa = D̄µXi
aγ

µΓiǫ +
1

6
Xi

bX
j
c Xk

d Γijkǫf bcd
a,

δÃµ
a
b = iǭγµΓiXi

cΨdf
cda

b. (3.7)

3.2 Coupling N = 8 conformal supergravity to BLG matter

We now turn to the construction of the gauged BLG Lagrangian. The coupling of the

BLG theory to the N = 8 conformal supergravity theory discussed in the previous section

follows from standard techniques. As a first step in its derivation we restrict ourselves

to terms in the Lagrangian that give rise to (cov.der.)2 or (cov.der.)3 terms when varied

under supersymmetry and show that all such terms cancel in δL. Including also some other

terms, like those that complete the supercurrent, we will use the following Lagrangian as

our starting point

L = Lconf.sugra + Lcov
BLG + Lsupercurrent, (3.8)

where Lconf.sugra was given in section two,

Lcov
BLG = e

(

−1

2
gµνD̃µXiaD̃νXia +

i

2
Ψ̄aγαeα

µD̃µΨa + LY ukawa − V

)

+ LCS(A), (3.9)

and

Lsupercurrent = Aieχ̄µΓiγνγµΨa

(

D̃νX
ia − Â

i

2
χ̄νΓ

iΨa

)

+B̂ieχ̄µγµΓijkΨa(X
i
bX

j
c Xk

d )fabcd + Ĉeχ̄µΓijklχµ(Xi
aX

j
b Xk

c X l
d)f

abcd,

(3.10)

and then add terms as they become necessary for proving supersymmetry to the order in

covariant derivatives at which we are working. Here the derivatives are covariant under

all local symmetries of the theory. Note that the hatted parameters Â, B̂ and Ĉ in the

supercurrent are not determined by the (D̃µ)2 calculation. In fact, at the end of this

subsection we will determine also these coefficients by demanding cancelation of terms

that contain fewer derivatives but are of power four or higher in X. The whole Lagrangian

is then known up to some fermion terms without derivatives that might be needed in

– 8 –
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addition to the ones already present in the covariant derivatives. The final step of proving

cancelation also of the one- and non-derivative terms in δL is fairly elaborate and will be

presented elsewhere.

The new terms that arise in the computation are the following

A′iǫµνρχ̄µΓijχν(X
i
aD̃ρX

j
a) + A′′if̄µΓiγµΨaX

i
a, (3.11)

together with

− e

16
X2R̃ + A′′′ i

4
X2f̄µχµ, (3.12)

where the curvature term5 is well-known to have exactly the coefficient − 1
16 in three

dimensions so that when added to the scalar kinetic term one obtains a locally scale in-

variant expression.

Recalling the way the transformation rules for the gauge fields Aµ and Bµ are obtained

we infer that both δAab
µ and δBij

µ will pick up new terms in the process of constructing

the coupled theory. This is natural in view of the fact that we work on-shell and that

such terms are expected to arise when auxiliary fields are eliminated. We start from the

following basic transformation rules without such terms

δeµ
α = iǭgγ

αχµ,

δχµ = D̃µǫg,

δBij
µ = − i

2
ǭgΓ

ijγνγµf ν ,

δXa
i = iǫmΓiΨ

a,

δΨa = (D̃µXi
a − iÂχ̄µΓiΨa)γ

µΓiǫm +
1

6
Xi

bX
j
c Xk

d Γijkǫmf bcd
a,

δÃµ
a
b = iǭmγµΓiXi

cΨdf
cda

b, (3.13)

where ǫg and ǫm are the supersymmetry parameters in the gravity and matter (BLG)

sector, respectively. We are here using different supersymmetry parameters in the two

sectors since, as we will see below, it will be necessary to rescale the supersymmetry

parameters relative each other for the Lagrangian to be invariant.

As just mentioned, both δÃab
µ and δBij

µ will pick up a number of new terms as we pro-

ceed with the calculation. By inspecting the possible terms we conclude directly that these

additional pieces will not contain any derivatives D̃µ. Some of these are (with multiplicative

constants and supersymmetry parameters to be determined)

δAab
µ |new = A1χ̄µΓijǫXi

aX
j
b , (3.14)

and

δBij
µ |new = B1Ψ̄

aγµΓ[iǫXj]
a + B2χ̄µΓk[iǫXj]

a Xk
a + B3Ψ̄aΓ

kΓijγµǫXk
a . (3.15)

5In the original version of this paper the curvature term was induced from a shift in the spin connection

by −

1

16
ǫµαβX2. This is correct to order (cov.der)2 but is in general not compatible with BLG as the flat

limit of the gauged theory.
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We may find still others as we go through the proof of supersymmetry at the (D̃µ)2 level.

It is important to note in this context that these new terms will not feed back into the

proof of supersymmetry at the order which we are working here, namely (D̃µ)2. The proof

that the lower order terms in δL also cancel will, however, be affected.

The first step is to vary Lconf.sugra +Lcov
BLG and keep only the (D̄µ)2 terms that are not

directly canceled, along with all (D̄µ)3, in the pure supergravity case. That is, we here use

the fact that the supergravity sector is invariant by itself as proved in the previous section.

This means that we can drop the torsion part which is not a derivative term. When this

is done it is possible to integrate by parts without problems. We find

δLconf.sugra|D2 + δLcov
BLG|D2 = −1

2
δ(egµν )DµXi

aDνXi
a − eDµXi

aDµδXi
a

+ieΨ̄aγµDµδΨa + eδBµij |grav(X
i
aD

µXj
a)

+
1

2
ǫµνρδAab

µ |BLG+newF̃ ab
νρ + ǫµνρδBij

µ |newGij
νρ, (3.16)

where the fourth term on the right hand side contributes to (Dµ)2 only if we insert the

original supergravity variation of δBij
µ as indicated. From now on we will not include the

last two terms proportional to the field strengths F̃ ab
µν and Gij

µν explicitly in our expressions.

When the variations of the potentials need to be corrected we just have to recall their form

from the above expression.

Computing the above variation gives

δLconf.sugra|D2 + δLcov
BLG|D2 = −ieDµXi

aDνXi
a

(

χ̄µγνǫg −
1

2
gµν χ̄ργ

ρǫg

)

+
i

2
ǫµνρΨ̄aγρΓ

iǫmGµνijX
j
a + ieΨ̄aγµγνΓiDµǫm(DνXi

a)

+
i

2
f̄ νγµγνΓ

ijǫg(X
i
aD

µXj
a), (3.17)

where we find the first new contribution to the variation of δBij
µ . Choosing B1 = − i

2 and

ǫ = ǫm will then remove the Gµν term from this expression.

To eliminate some of the other terms we now add the first part of the supercurrent

Lsupercurrent|D2 = Aieχ̄µΓiγνγµΨaD̃νX
ia (the other terms do not contribute to (Dµ)2 when

varied under supersymmetry). (Dµ)2 terms come from the variations δχµ and δΨa which

leave three terms (containing Γij, Γi and no Γi’s) two of which cancel the first and third

terms on the right hand side above provided Aǫg =ǫm and 2Aǫm =ǫg. Thus we conclude that

ǫm := ǫ, ǫg = ±
√

2ǫ, A = ± 1√
2
, (3.18)

where the sign of A will be chosen later.

The remaining terms are then

δL|D2 = −Aiǫµνρχ̄µΓijǫm(DνX
i
aDρX

j
a) +

i

2
f̄ νγµγνΓ

ijǫg(X
i
aD

µXj
a). (3.19)

We now add to L the term

A′iǫµνρχ̄µΓijχν(X
i
aD̃ρX

j
a), (3.20)
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since when χµ is varied and the resulting expression integrated by parts the term above

proportional to A is canceled if we choose A′ = −1
4 . We also find new contributions to the

variations of δÃab
µ and δBij

µ corresponding to A1 = 2iA′, ǫ = ǫg and B2 = iA′, ǫ = ǫg.

Due to a second cancelation, arising for A′ = −1
4 (where from now on we will choose

the signs as A = 1√
2
, ǫg =

√
2ǫ), in the previous step only one term remains at this stage,

namely

− i

2
f̄ νγνγµΓijǫm(Xi

aDµXj
a). (3.21)

Thus also the term

A′′if̄µγµΓiΨaX
i
a (3.22)

is needed, where the variation of both χµ and Ψa will produce (Dµ)2 terms. All Γij terms

are eliminated by choosing A′′ = 1√
2

and B3 = −A′′ i
16 , ǫ = ǫg. This leaves us with the

following variation (recalling that R∗∗ is a double density)

δL|D2 = −A′′ i

4e
R∗∗ǭgΓ

iΨaX
i
a + A′′ i

2
(DµX2)

(

f̄µǫm − 1

e
ǫµνρf̄νγρǫm

)

. (3.23)

Finally, we include the gravity term that is necessary to make the scalar field kinetic

term locally scale invariant (which fixes the coefficient as given), that is,

LR = − e

16
R̃X2. (3.24)

We will also need the associated fermionic term

Lferm = A′′′iX2f̄µχµ. (3.25)

The variation of the Ricci scalar term reads

δLR|D2 =
i

4e
R∗∗Xi

aǭmΓiΨa −
i

8e
χ̄µγνǫgR

∗∗
µνX2 +

i

4
ǫµνρ(DµX2)f̄νγρǫg. (3.26)

Adding this to the last expression above for δL|D2 we see that the first terms in these two

expressions cancel against each other, as do the last terms, provided we use the fact that

ǫg =
√

2ǫm as found above.

Thus, after including also the curvature scalar term we have

δL|D2 = A′′ i

2
(DµX2)f̄µǫm − i

8e
χ̄µγνǫgR

∗∗
µνX2. (3.27)

The final step is then to add the variation of the fermionic term, that is,

δLferm|D2 = A′′′iX2f̄µDµǫg + A′′′iX2χ̄µδfµ, (3.28)

where the last term becomes, up to a Gij
µν field strength term,

A′′′i
1

4e
χ̄µγνǫgR

∗∗
µνX2. (3.29)
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(This can also be expressed in terms of the ordinary Ricci tensor as

− A′′′i
e

4

(

ǭgγµχν − 1

2
gµν ǭgγ

ρχρ

)

RµνX2, (3.30)

where we used the relations

R∗∗
µν = Rµν − 1

2
gµνR, R∗∗ = −1

2
R, (3.31)

between the double dual R∗∗
µν and the ordinary Ricci tensor.)

The Gij
µν term mentioned in the previous paragraph implies the following addition

to δBij
µ :

δBij
µ |new:S =

i

64
X2ǭgΓ

ijχµ, (3.32)

which is just a special superconformal transformation with parameter

η =
1

32
X2ǫg. (3.33)

This indicates that also δχµ will pick up a special superconformal piece:

δχµ|S = γµη =
1

32
X2γµǫg = − 1

16
√

2
X2γµǫ. (3.34)

As we will see below this will, in fact, not happen. However, another contribution to

δBij
µ will arise in the computation just below that will exactly double the above special

superconformal part of this transformation rule.6

Summing up the situation at this point, using what we know about the various con-

stants, we find that

δL|D2 =
√

2A′′′if̄µDµǫX2 +
i

2
√

2
f̄µǫDµX2 − i

4
√

2e
(1 − 2A′′′)χ̄µγνǫR∗∗

µνX2. (3.35)

Thus if we choose A′′′ = 1
4 the first two terms add and the result can be integrated by

parts to give

− i

2
√

2
ǭDµfµX2 =

i

8
√

2e
χ̄µγνǫR∗∗

µνX
2, (3.36)

modulo another Gij
µν term, and hence we see that the (Dµ)2 terms vanish in the variation

of the Lagrangian.

We now turn to the hatted coefficients in the Lagrangian given in the beginning of this

subsection. These can be determined as follows. Consider first Â. This parameter is fixed

by demanding that the variation of Ψa is supercovariant,7 which gives Â = 1√
2
.

6We thank Xiaoyong Chu for pointing out a sign error in the first version of the paper.
7That is, if varied the right hand side of δΨa must not give rise to derivatives on the supersymmetry

parameter.
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Turning to B̂, we see that the variation of the dreibein in the covariantized sixth order

potential term is canceled by choosing B̂ = 1
6
√

2
. The B̂ term also gives rise to a X6 term

containing Γijmn(Xi
bX

j
c Xk

d )fabcd(Xm
e Xn

f Xk
g )faefg which implies antisymmetry in [bcef ].

However, this does not immediately mean that the fundamental identity will set it to zero,

but by imposing [abcf ] on the fundamental identity (3.1) and using its alternative form

given in (3.2), that sets the left hand side to zero, one finds that fab[cdf ef ]ag = 0 which is

what we need.

The third, and last, parameter to be determined is Ĉ. This we do by relating the

δχµ variation of this term to the two terms obtained by varying Ψa|DX in the B̂ term and

δΨa|X3 in the supercurrent. We find Ĉ = 0 due to a delicate cancelation.

We end this subsection by summarizing our results: Up to terms8 of order three or

higher in χµ, the Lagrangian reads

Ltop
BLG = =

1

2
ǫµνρTrα

(

ω̃µ∂ν ω̃ρ +
2

3
ω̃µω̃νω̃ρ

)

− ǫµνρTri

(

Bµ∂νBρ +
2

3
BµBνBρ

)

−ie−1ǫαµνǫβρσ(D̃µχ̄νγβγαD̃ρχσ)

+e

(

−1

2
gµνD̃µXiaD̃νXia +

i

2
Ψ̄aγαeα

µD̃µΨa + LY ukawa − V

)

+ LCS(A)

+
1√
2
ieχ̄µΓiγνγµΨa

(

D̃νX
ia − i

2
√

2
χ̄νΓ

iΨa

)

− 1

6
√

2
ieχ̄µγµΓijkΨa(X

i
bX

j
c Xk

d )fabcd

− i

4
ǫµνρχ̄µΓijχν(X

i
aD̃ρX

j
a) +

i√
2
f̄µΓiγµΨaX

i
a

− e

16
X2R̃ +

i

4
X2f̄µχµ , (3.37)

and the transformation rules are

δeµ
α = i

√
2ǭγαχµ ,

δχµ =
√

2D̃µǫ,

δBij
µ = − i√

2e
ǭΓijγνγµf ν − i

2
Ψ̄aγµΓ[iǫXj]

a − i

2
√

2
χ̄µΓk[iǫXj]

a Xk
a − i

16
Ψ̄aΓ

kΓijγµǫXk
a

+
i

16
√

2
ǭΓijχµ,

δXa
i = iǭΓiΨ

a,

δΨa = (D̃µXi
a − i√

2
χ̄µΓiΨa)γ

µΓiǫ +
1

6
Xi

bX
j
c Xk

d Γijkǫf bcd
a,

δÃµ
a
b = iǭγµΓiXi

cΨdf
cda

b −
i√
2
χ̄µΓijǫXi

cX
j
df cda

b. (3.38)

What remains to be checked are the terms in δL that are linear in the covariant

derivative or independent of them. We hope to present this final step of the proof elsewhere.

8It might be that all terms of this kind are already accounted for by the ones built into the covari-

ant derivative in which case the presented Lagrangian is the complete answer. Note that terms like

χ̄µΓijklχµΨ̄aΓijklΨa = 0 due to the chirality properties, and that χ̄µχµΨ̄aΨa is already present in the

supercurrent.
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4 Conclusions and comments

In this paper we have constructed the N = 8 conformal supergravity theory in three

dimensions that seems to be the proper theory to couple to the N = 8 BLG theory

believed to describe two M2 branes at the IR conformal fix-point. The N = 8 conformal

supergravity theory consists on-shell of just three Chern-Simons type terms one for each

of the gauge fields, the spin connection (in second order form), the Rarita-Schwinger and

SO(8) R-symmetry gauge fields. This theory should be possible to couple to matter in

the form of the BLG theory which is a rather lengthy operation to do in full detail. The

construction carried out in this paper, relying on the cancelation in δL of terms containing

two or three covariant derivatives, generates the complete Lagrangian apart from some

fermionic interaction terms.

There are several aspects of the gauged BLG theory that might be of interest. Free

Chern-Simons gauge theories are really topological theories whose symmetries become re-

duced to superconformal ones when coupled to each other (as in the supergravity sector)

or to conformal matter (as in the BLG sector) although the gravity sector is probably

somewhat more intricate. In any case, what seems to be a general feature is that the

various curvatures are heavily restricted, or even determined, by the field equations. For

pure Chern-Simons gravity this is discussed for instance in [15]. A Lagrangian based on a

second order spin connection leads to the equation of motion

D[µWν]ρ = 0, Wµν = Rµν − 1

4
gµνR, (4.1)

which is known to be the condition for conformal flatness in three dimensions. This equation

will be modified by source terms constructed from the other fields appearing in the theory.

Another well-known property of the BLG theory is that it allows for the introduction

of a level k [8, 9, 25] which can be seen by using structure constants of the form

fabcd =
2π

k
ǫabcd. (4.2)

Then reabsorbing one such factor 2π
k

into the gauge field in the BLG theory produces

the level k theory where k is an integer for topological reasons. If this is done in the Van

Raamsdonk version [25] one finds the standard level (k,−k) theory discussed more generally

in [10]. Interestingly enough the coupling to superconformal gravity discussed in this paper

introduces yet another level parameter which is also quantized as explained in [15]. There

seems, however, to be room for only one new such parameter in the N = 8 superconformal

case since the extra Chern-Simons terms are connected by the various local symmetries. It is

perhaps interesting to note in this context that the Chern-Simons term for the R-symmetry

field Bij
µ gets here an unconventional normalization (being twice the standard one).

This last issue relates also to the question of invariance under parity for the gauged BLG

theory. The pure BLG theory is saved by the fact that in the SU(2) × SU(2) formulation

in [8, 9, 25] the two gauge groups are interchanged by a parity transformation. This option

seems not to be available in the superconformal gravity sector as formulated here.
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Apart from the original N = 8 BLG theory there are a number of other versions of su-

perconformal M2 brane theories with less supersymmetry but able to describe more general

stacks of branes. Following [25], the authors of [10] (see also [26, 27]) used a construction

with fields in the bi-fundamental representation of U(N)×U(N) relevant for stacks with N

branes. So far, however, this ABJM theory exists only with 6 supersymmetries which, how-

ever, may get enhanced to 8 for level k = 1, 2 if monopole operators are introduced [10, 28].

In such a context infinite dimensional algebraic structures will probably play a role. An

example of such a structure, related to generalized Jordan triple products, has recently

been suggested to arise in BLG/ABJM theories [29]. Here we have not made an attempt

to couple the ABJM theory to N = 6 superconformal gravity but it should be possible and

follow the same lines as those used in this paper. Another method that might be useful

in this context is the embedding tensor technique already applied to similar problems, for

instance, in [30].
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A Fierz bases

The Fierz basis used in the proof of supersymmetry in the main text is based on expressions

of the form (ǭ . . . χµ)(f̄ν . . . fρ) where the dots refers to either an antisymmetric three-

dimensional charge conjugation matrix or to a product of it with a three-dimensional

gamma which is symmetric. Thus these expressions have three, four or five free indices

that need to be contracted by deltas or Levi-Civita symbols. There are thus twelve index

structures:

(−) (ǭχµ)(f̄νfρ)ǫ
µνρ = 0,

(−) (ǭχα)(f̄βγαfβ) = 0,

(1) (ǭχα)(f̄αγβfβ),

(2) (ǭγαχα)(f̄βfβ),

(3) (ǭγαχβ)(f̄αfβ),

(4) (ǭγαχα)(f̄µγνfρ)ǫ
µνρ,

(5) (ǭγµχν)(f̄ργ
αfα)ǫµνρ,

(6) (ǭγαχµ)(f̄αγνfρ)ǫ
µνρ,

(7) (ǭγαχµ)(f̄νγαfρ)ǫ
µνρ,

(8) (ǭγµχα)(f̄αγνfρ)ǫ
µνρ,

(9) (ǭγµχα)(f̄νγ
αfρ)ǫ

µνρ,

(−) (ǭγµχν)(f̄αγρfα)ǫµνρ = 0. (A.1)

– 15 –



J
H
E
P
0
3
(
2
0
0
9
)
0
7
4

Of the ten non-zero ones we can easily (by cycling the three indices on the epsilon tensor

together with on of the contracted indices) find three relations involving the expressions

(4) to (9):

2 · (6) = (4) + (9), 2 · (5) = (7) − (9), (4) = 2 · (6) − (7). (A.2)

We will choose as an independent set of expressions (1), (2), (3), (4), (6), and (8), which

means that (9) = 2 · (8) − (4), (7) = 2 · (6) − (4), and (5) = (6) − (8).

We may also relate this basis to expressions that appear frequently in the Lagrangian:

(4̂) := (ǭγαχα)(f̄βγγγβfγ)

(6̂) := (ǭγαχβ)(f̄αγγγβfγ),

(8̂) := (ǭγαχβ)(f̄βγγγαfγ). (A.3)

Expressing these in the basis specified above gives

(4̂) = (4) + (2), (6̂) = (6) + (3), (8̂) = (8) + (3). (A.4)

When the SO(8) Γ-matrices are introduced into the Fierz identity the same basis can

be used by inserting Γ’s into both factors. For Γijkl the basis is exactly the same as the

one above while for Γij some other elements are set to zero by symmetry

(1′) (ǭΓijχµ)(f̄νΓijfρ)ǫ
µνρ,

(2′) (ǭΓijχα)(f̄βγαΓijfβ),

(3′) (ǭΓijχα)(f̄αγβΓijfβ),

(−) (ǭΓijγαχα)(f̄βfβ) = 0,

(4′) (ǭγαΓijχβ)(f̄αΓijfβ),

(−) (ǭγαΓijχα)(f̄µγνΓ
ijfρ)ǫ

µνρ = 0,

(5′) (ǭγµΓijχν)(f̄ργ
αΓijfα)ǫµνρ,

(6′) (ǭγαΓijχµ)(f̄αγνΓ
ijfρ)ǫ

µνρ,

(−) (ǭγαΓijχµ)(f̄νγαΓijfρ)ǫ
µνρ = 0,

(7′) (ǭγµΓijχα)(f̄αγνΓ
ijfρ)ǫ

µνρ,

(−) (ǭγµΓijχα)(f̄νγ
αΓijfρ)ǫ

µνρ = 0,

(8′) (ǭγµΓijχν)(f̄αγρΓijfα)ǫµνρ, (A.5)

and the set of independent basis elements can be chosen as (1′), (2′), (3′), (4′), (5′) and (7′).
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