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In the last four years many papers [1, 2]
have been published regarding the existence
or nonexistence of a particle related to the
enhancement of the amn —nw (( =0, T = 0)
cross section at zero kinetic energy (near the
elastic threshold), observed in the Abashian —
Booth — Crowe experiment (ABC particle).

Three months ago, Dr. Atkinson [8] showed
that there is a strong indication that an anti-
bound state will occur in the ({ =0, T = 0)
partial wave of the mu scattering, just under the

A complete bootstrap calculation would
yield all the resonance masses and coupling con-
stants (scattering lengths). For such a bootstrap
calculation one must take properly into account
the left hand cut produced by the crossed reac-
tion *, but in the present work we shall use
experimental values for 7 = 0 scattering length
restricting ourselves to the Chew pole appro-
ximation for the left hand cut. By the N/D
method

elastic threshold (s = 4) *. The effect of such ° N (s") s’—4
an antibound state for the mm cross section D(S):D(4)—S—4 S ’ S ds (1)
could be similiar to that produced by a. stable nun T (s"—4) (s"—s)
bound state. Nevertheless such a «particle»
would not be detectable experimentaly, the e get in the pole approximation [N (s) =
antibound state being a pole on the second 1 | 0
Riemann sheet of the amplitude. = 5y 0 So=0]
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In order to estimate the position of the anti-
bound state, Atkinson approximated the
behaviour of the partial wave amplitude bet-
ween s = 0 and s = 4 by a constant. By ana-
lytical continuation [4] a pole is found on the
real axis of the second Riemann sheet, close
to the elastic threshold.

This possible interpretation of the ABC-
«particle» is very attractive. A less crude esti-
mation becomes however necessary in, order
to compute more accurately the position of this
second Riemann sheet pole. It is the purpose
of the present paper to perform a bootstrap
calculation of the mass of this antibound
state.

* In the following we shall use natural units
with the mass of the meson equal to one. As usual,
s = (py + po)2=4(v+1), L= (py + p3)? =
= —2v(l —cos0), wu=(pg+p)2=—2v( -+
-+ cos 0); v=|p|2.
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where D (4) and s, are two independent para-
meters. D (4) is determined by the value of the
amplitude in point number 1 (see fig.):

1
ab (sp+4)

X (a%-scattering length for T =0).

D4)= X

(3)
If an antibound state exists, its position m? is
completely determined by s,. Indeed, the form

of the amplitude on its second Riemann sheet
for 0 <<s<<4 is [4]:

Af ()

4—3
1—2 |/ 5 A3 (s)

* This problem will be discussed in the last part
of this paper. A more detailed version of the present
work will appear in Revue Roumaine de Physique.

A (s) =

(4)



having a pole at s = m?® where m (antibound
state mass) is given by [3]:

1 2 ’
5V =AW, 0<mr <4 (4)

Now, to obtain a «feed-back» equation for

m, we equate the value of A= (s) from equa-
tion (2) at s = 0, to that obtained by integra-

tion of AI=y (s, £) on the line conecting points

Ty Ty =Ty +72
Pole aproximating,
/ %’Iey‘t hand cut
¢
/
// /
s Y /)%

4 / ‘\
/ ,/’/(// / / \\ Secéd FRiemann
4{ // >\ g\/ sheet pole of A7(5)
/Y / /[ e N/ s t-0)
7

7 —

Tyt Ty ——Tp* T3 Ty # Ty —=T5+ Wy

No. 2 and 3 (the solid line in fig. 1). This enab-
les us to take advantage of the fact that on the
solid line A=) (s, ) can be written as a dis-
persion integral over the imaginary part of the
forward (backward) amplitude of the crossed
processes. Although the pole approximation is
a somewhat rough approach, having requested
for A§ (s) to have correct values at s = 0 and
s = 4 it is expected that (2) would be a good
approximation in the interval 0 < m?* < 4.
We feel this procedure «more stable» then
that which uses [2] the symmetry relations of
the derivatives of A in a single point (s = 4/3,
t = 4/3). The estimation of the error in the
position of the antibound pole (see later) con-
firms this statement.
Hence at s = 0 we have
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where u = 2 (1 -+ cos 07). The sign of 7 =1
coefficient implies that the forward scatte-
ring of the third channel was defined along

s = 0. Therefore Im A" (v, s = 0) = 2 (2[4 1)

1
Im A} (). Only S and P waves were retai-
ned, higher waves tending rapidly to zero near
the elastic threshold. In fact, even the P wave
(T = 1) contribution to the right hand side
of (5) is rather small *.

The T =1 wave was calculated from the
known exierimental parameters of the @ meson.
One could write for the o meson amplitude
a Breit — Wigner expression satisfying uni-
tarity

2V imY v
v—|vy |+ 2V v ImV v )
This expression was then corrected to take

properly into account the actual threshold
behaviour 3:

At(v=0)=0, AV (v=0)~0.05. (7)

In this purpose (6) was written in a N/D form
and a CDD pole was added to D just at v = 0,

N . .
(A1 = DT ) in order to fit (7). Hence,
the o meson contribution becomes
Al (v)=— —Vvtl
0
1.65v—7.476-—%)+ iV

(6)

(8)

corresponding to a T = 1 cross section

48mv2

T = (1.65v2—7.476v— 20)2 -3

reaching its maximum at s = 29,26 and having

y— % s;T= 2,325 (I' = 120 MeV).

* For the T = 0, 1, and 2 contribution we found
respectively 0.489, 0.015, 0.802 for a® = 2,6 — and
0.257, 0.015, 0.401 for a® = 1.
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The T = 2 term would give the most im-
portant contribution because of its large iso-
topic spin factor. For A2 we take a 1/D appro-
ximation. Now, owing to the lack of experi-
mental data on the T =2 scattering length a2
in order to determine it, we shall use the well

known relation A° (s, ?) :% A2 (s, ) in the
point s = 2, ¢ = 0, (which is not to far irom

the maximum symmetry point s = % ,
t = -%— where the above relation actually holds).
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Equations (5) and (9) are to be solved together.
The experimental value of the T = 0 scatte-
ring length being not known exactly *, the
equations were solved for a set of values of
a® ranging from 1 to 2.5. The corresponding
results are listed in Table togetger with the
mass m of the T = 0 antibound state (ABC
«particle») given by (4').

Im A3 (a2; s')ds’
S(l’ (S,——'Q) '_0' (9)

the A° = ~§—A2 condition in s=4, t=0,

which is two times farther from the maximum
symmetry point than s = 2, # = 0. The obtai-
ned discrepancies exceed considerably those
produced by neglecting the P-wave term, and
represent therefore an indication for the order
of magnitude of the errors connected with the
hitherto neglected higher waves. The errors
of sy are great, but those affecting the value
of the ABC mass, are insignificant (ranging
from 0.9 to 3.7 MeV), owing to its extreme
neighbourhood to the elastic threshold.

Of course, although the errors of the anti-
bound state mass are probably very low, expres-
sion (2) does not represent a fair approximation
for the scattering amplitude at all possible
values of s. We see two different possibilities
to improve the results, taking properly into
account the left hand cut.

Firstly one can use for the amplitude (and
its cosine derivative) a dispersion relation at
t = 0, where the crossing transformation can
be performed simply. Some trouble would be
produced by unitarity (which relates real and
imaginary parts of the forward amplitude
derivatives) because the cosine power series
around # = 0 would not in general converge
over the whole physical region 0 > ¢ > 4 — s,.
This point can be solved by expanding the
amplitude into power of the function w (s, ?)
which maps the cosine singularities on the
boundary of the unit circle [5, 6].

The second possible way is to use Legendre
expansions only in the s-channel, and w
series in the crossed channels. This later ones
will permitt analytic continuation of the ampli-

ao 1 1.25 1.50 1.75 2 2.95 2.50
a2 0.26 0.32 0.38 0.43 0.47 0.52 0.56
so (sb) 57 (24) 37 (11) 29 (9.5) 24 (8.5) 21 (7.5) 19 (7) 17 (6.5)
mapc (in MeV) | 23042.8 | 24343.7 | 25142.5 | 2574+1.9 | 26141.5 | 264+1.2 | 26640.9

(The errors of m

and the values (sl) were obtainad using condition a2 = 2/ a0 instead of the above listed values of

0

a2. The elastic threshold is 279.16 MeV.)

To estimate the errors, we compared the
above listed a® values to those obtained by using to calculate the left-hand cut of the partial

* A probable value for a® is 1.50.
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tude in the dashed region of fig. 1, in order

waves. If one isolates the marginal square



root singularity of the spectral function, the
conformal mapping series are still convergent
even in the spectral function region [7] and
the analytical continuation is therefore quite
possible. This second approach takes advantage
of the N/D method, which is especially suitab-
le for studying the behaviour of the partial
waves on the second Riemann sheet, where
resonant and antibound states may occur.
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