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Abstract: The notion of invariance under the Lorentz transformation is fundamental to special
relativity and its continuation beyond the speed of light. Theories and solutions with this character-
istic are stronger and more powerful than conventional theories or conventional solutions because
the Lorentz-invariant approach automatically embodies the conventional approach. We propose a
Lorentz-invariant extension of Newton’s second law, which includes both special relativistic me-
chanics and Schrodinger’s quantum wave theory. Here, we determine new general expressions for
energy-momentum, which are Lorentz-invariant. We also examine the Lorentz-invariant power-law

energy—-momentum expressions, which include Einstein’s energy relation as a particular case.

Keywords: special relativity; relativistic mechanics; energy—momentum relations; unified physical
theories

1. Introduction

In this paper, we determine the general solutions to the Lorentz-invariant theory
proposed in [1] that are also Lorentz-invariant. The formal solutions to partial differential
equations by means of one-parameter groups of transformations that leave the equation
invariants have been well established (see [2,3]). However, all solutions to any theories
remaining invariant under a one-parameter group of transformations are not necessarily
all invariant. A familiar example is the one-dimensional heat equation, %—(? = %27(?, for
temperature for ® = O(x,t). This equation remains unchanged by the stretching trans-
formations x* = ¢x, t* = ¢*t and @* = ¢"€@, where € denotes the one-parameter group
and m denotes an arbitrary constant. This one-parameter stretching group shows that
there are similar solutions to the partial differential equation with the functional form
O(x,t) = t"/2d(x/t1/?) for a function, ®, and the partial differential equation may be
reduced to a second-order ordinary differential equation. It does not imply that every solu-
tion to the heat equation has this structure, and there are solutions that are not similar. A
corresponding situation applies to the Lorentz-invariant theory proposed in [1,4,5], which
admits solutions and embodies consequences that are not fully Lorentz-invariant. Here,
we determine the general one-dimensional family of energy—-momentum solutions that are
Lorentz-invariant.

The requirement that the governing equations be invariant under a Lorentz trans-
formation of coordinates for any well-formed physical model has become an important
guiding principle that should apply to any properly formulated physical theory, and the
notion of Lorentz invariance has emerged as an indispensable tool. Invariance under the
Lorentz group of transformations, in particular, and more generally under other symmetry
groups, has proved to be significant in determining both the fundamental chemical struc-
ture and physical theory (see Refs. [6,7] for work on the chemical structure and Refs. [8,9]
for work on physical theory). Various notions of Lorentz invariance have been widely
invoked throughout theoretical physics, including high-precision testing and violations of
Lorentz invariance from both terrestrial and astrophysical experiments [10-12]; quantum
gravity, quantum entanglement, and Lorentz invariance [13-15]; Lorentz-invariant theo-
ries of gravity and general relativity [16,17]; well-formed numerical and computational
methods [18]; and many others. The theory formulated in [1,4,5] is invariant under both
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the Lorentz group of coordinate transformations and the associated energy-momentum
relations. For the one spatial dimension, these are specified in (6)—(9)).

Although Lorentz invariance and its consequences are well established in special rela-
tivity (see [19-22]), it seems to have gone unnoticed that—for special relativistic motions—
this can be exploited to determine certain general solutions involving arbitrary functions.
For example, the requirement that the velocity equations dx/dt = u(x,t) be Lorentz-
invariant implies that the velocity field u(x, t) satisfies certain first-order partial differ-
ential equations, which admit general solutions involving arbitrary functions. In three
papers [23-25], for one, two, and three dimensions, the authors examined each of the three
distinct geometries to determine Lorentz-invariant velocity fields for certain special rela-
tivistic motions. In [23], for a single Cartesian spatial dimension x, the requirement that the
velocity equation dx/dt = u(x,t) remains invariant under a Lorentz transformation implies
that the velocity u(x, t) satisfies the first-order partial differential equation, as follows:

Ju x ou _(1;)2’

o +

ox 2ot M

and a general solution to the velocity, u(x, t), involving a single arbitrary function ¢(J) is
given by the following:

u(x,t) _ [(et+ xX)p(8))> -1
c [(ct+x)p(8)]2+17

@

where § = [(ct)? — x?]1/2,

For a single spatial dimension, x, the general Lorentz-invariant solutions to the energy
e(x,t) = mc?> and momentum p(x,t) = mu of the forms e = F(x,t) and p = G(x, t) satisfy
the first-order coupled partial differential equations, as follows:

de  x de dp  xdp e

I T L 2P =

ox T2 P T tauT @ )
where m(x, t) denotes the mass and u(x, t) = dx/dt denotes the velocity. These equations
are cited in [23] but are not solved. Here, we present their general solutions in terms of two
arbitrary functions, namely the following;:

e(x,t) = D(0)x + ¥ (d)ct, cp(x,t) = P(d)ct + ¥ (d)x, 4)

where ®(5) and ¥ () denote arbitrary functions of § = [(ct)? — x2]!/2. The results given
here for (3) involve two arbitrary functions and are inclusive of those obtained in [23]
for the partial differential Equation (1) involving only a single arbitrary function. With
u/c = pc/e, the velocity from (4) agrees with the general solution (2), with the following

identification: . 14 x(6) 1/2 5 [6¢(8)]? — 1
‘P()(l—x(5)> o A= eETT

where x(6) = ®(6) /¥ (). Generally, with u/c = pc/e, (3) constitutes necessary conditions
for the validity of Equation (1), but not sufficient. In other words, if Equation (3) are
satisfied, then with u/c = pc/e, (1) is satisfied. However, if (1) is satisfied, then generally,
(3) will not hold.

Formally, we may extend the general solution (4) by the implicit relations, as follows:

e(x,t) = D(5,A,0)x +¥(,A,0)ct, cp(x, t) =D(6,A,0)ct+¥(5,A,0)x, (5)

where ®(9, A, {) and ¥ (4, A, {) denote two arbitrary functions of the three variables (9, A, {);
A = [e® — (cp)?]Y/?; and  is a further Lorentz-invariant defined by (12) below. These details
are relegated to Appendix A.
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In the following section, for a single space dimension x, we state the two basic sets
of space-time Lorentz transformations and energy-momentum Lorentz transformations,
which underpin this work. Following that, we use the infinitesimal versions of these Lorentz
transformations to derive first-order partial differential equations for Lorentz-invariant
quantities and we solve the partial differential equations using Lagrange’s characteristic
method to deduce general solutions to the Lorentz-invariant quantities. In the subsequent
section, we connect the coupled partial differential equation (3) for particle energy, e, and
particle momentum, p, with the Lorentz-invariant theory proposed in [1] and Equation (21).
Together, these relations constitute four equations to determine the four partial deriva-
tives, de/dx, de/dt, dp/dx, and dp/dt; moreover, the two compatibility conditions (see
Equation (25)) confirm that the full Equation (21) are only invariant if the two applied
forces, f(x,t) and cg(x,t), are both invariant. In the penultimate section of the paper, as
an illustrative example, we examine the Lorentz-invariant power-law energy—-momentum
relations originally proposed in [26].

2. Lorentz Transformations

With reference to Figure 1, capital letters refer to the fixed (X, T) reference frame and
lowercase letters refer to the moving (x, t) reference frame. In the notation of Figure 1, if v
denotes the constant relative frame velocity, then the Lorentz transformations (0 < v < ¢)
are given by the following:

X —oT T —vX/c?

Ao T - /e ©

with the following inverse transformation:

x + vt t+ vx/c?
X=e————=m, T=——7——=7, 7
T/ | - @/ 7
and the identity transformations x = X and t = T are characterised by v = 0. Various
derivations of (6) and (7) can be found in texts, such as the work by Feynmann et al. [27]
and Landau and Lifshitz [28]. Other derivations of Lorentz transformations are given by
Lee and Kalotas [29] and Levy-Leblond [30].

AT A ¢

U u

—_— EE—

X X

Figure 1. Two inertial frames moving along the x-axis with relative velocity, v.

For 0 < v < ¢ the standard Lorentz-invariant energy—-momentum relations (see [1],
page 40) are given by the following;:

E — Pov P —Ev/c?
e = — 5/ p = 7775/ (8)
[1—(0/c)2]1/2 [1— (v/c)2]l/2
with inverse relations given by the following:
2
E_ e+ pv P p+ev/c ©)
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Together, these equations are referred to as the Lorentz-invariant energy-momentum
relations, and we obtain the following;:

(‘)

r‘}

t+x = (il T+X), ct UZTX
C+x_<1+v/c) (C + C_x—( ) (cT - X),

(10)

('3

e+ pc= (%jﬂ%i) (E+Pc), e—pc= ( 0)1/2 (E — Pc).

From these relations, the Lorentz invariants (ct)? — x2 = (cT)?> — X? and €?> — (pc)? =
E? — (Pc)? are apparent, and we have the following:

ct+x\  [(1-v/c\[cT+X e+pc\ (1-v/c\[(E+Pc 1
ct—x) \14+v/c)\cT=-X)’ e—pc) \1+v/c)\E—Pc)’ (11)

from which, a further Lorentz-invariant is also apparent:

gz<e—|—pc)<ct‘—x>:(E+Pc>(cT—X) (12)
e—pc) \ct+x E—Pc)\cT+X)’

Finally, in this section, we remark that for those problems involving both partial
differential equations and boundary or initial conditions, the invariance of the equation
and associated conditions under a one-parameter Lie group of transformations usually
produces a simplified problem (see [31]). Thus, any solutions to (3) will produce solutions
to the special relativistic problem, provided the accompanying conditions are also invariant
under the Lorentz transformation. For one spatial dimension, x, this means that any
associated boundaries or initial data must involve the three invariants 6 = [(ct)? — x2]1/2,
A = [e? — (cp)?]'/? or the above invariant (12); therefore, the accompanying data must
have the following general form:

H{[(ct)z — 2212 ()2, (HPC) (Ct—x>} — constant,

e—pc ct+x

for some function H(4, A, ).

3. Partial Differential Equations Arising from Lorentz Invariance

In this section, we make use of the infinitesimal versions of (6) and (8), thus, x =
X—oT, t ~T—vX/c% e~ E— Pv, and p~P-— Ev/c? to generate partial differential
equations for Lorentz-invariant quantities. For example, consider a function that remains in-
variant under one of these transformations, such as F(x,t) = F(X, T) or G(e, p) = G(E, P).
By expanding using Taylor’s series, collecting first-order terms in v, and then reverting to
lowercase variables, we can deduce the following first-order partial differential equations:

oF xoF oG e dG
g‘l‘cfza—o, p§+672$70,

and Lagrange’s characteristic method gives the general solutions F(x,t) = ®([(ct)? —
x?]Y/2) and G(e, p) = ¥([e? — (pc)?]/?), where @ and ¥ denote arbitrary functions of the
indicated arguments.

Similarly, for Lorentz-invariant energy—-momentum solutions to the forms e = F(x, t)
and p = G(x,t), we suppose these relations remain invariant under both Lorentz trans-
formations (6) and (8), and we may use the same procedure to deduce the two coupled
partial differential equations (3). Upon introducing variables p = e+ pc and ¢ = ¢ — pc,
these uncouple to give the following:

0 X% _p o 90, xd0_ ¢
s T @w T ¢ T < (13
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which are both readily solved using Lagrange’s characteristic method. We introduce a
characteristic parameter, s, such that we have the following;:

dx dt «x do _p do o
&0 BT @ s & (9

From the first two, we obtain § = [(ct)2 — xz]l/ 2 — constant, and from the third and fourth,
using ct = (x2 + 6%)1/2, we have the following:

dp _ p 0 do o o

AT @A & d T @i

For these integrations, J can be regarded as a constant, so both may be integrated with the
substitution x = J sinh 0, thus, we have the following:

dp dx do dx
0 (.X2+(52)1/2 4 o (.X2+(52)1/2 4

and upon using sinh ! (z) = log(z + (2% + 1)!/2), we obtain the following:

1/2 1/2
ct+x ct—x
p:C1(Ct—x) ’ O:CZ(Ct—i-x) ’ (15)

where C; and C; denote arbitrary constants. Thus, the general solutions to the coupled
partial differential equations (13) are determined from the following:

ct+x 1/2 ot —x\ /2
p=ctpe=10)(52) 7, e—epe—i0(553) . o

where I and | denote arbitrary functions of 6 = [(ct)? — x2]1/2.
Specifically, the general Lorentz-invariant energy—momentum solutions to the forms
e = F(x,t) and p = G(x, t) are given explicitly by the following:

e(x, 1) = 1{100)(£22)2 1 J(0) ()2},

ep(xt) = 3{100)(82) " - 1) (%52)'?),

(17)

where I and ] denote arbitrary functions of § = [(ct)? — x2]'/2. From these equations, the
particle velocity u = u(x, t) is given by the following;:

@(ctwﬂc) -1

u(x,t) _ cp(x,t) _ JO \et-x (18)
5 4
© D (ER) 1

2

upon noting that & = [(ct)? — x?]1/2, this expression is entirely in accord with the general

solution (2).
We observe that these general solutions can be alternatively expressed as follows:

e(x,t) = 55 {[1(8) + J(8)]ct + [1(8) — J(8)]x},
cp(x,t) = 25 {[1(8) = J(&)]et + [1(6) + 10)]x},

so that in terms of redefined arbitrary functions ®(J) and ¥(J), we obtain (4), and these re-
lations provide the precise structures of the general solutions to (5) for energy-momentum.
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The particle velocity u = u(x, t) is given by the following:

u(x,t)  cp(x,t)  I(0)(ct+x) —J(6)(ct —x)  x4ctx()
c  elxt)  I0)(ct+x)+]J0)(ct—x) ct+xx(d)

where x(6) denotes the single arbitrary function of 4, which is defined by x(6) = [I(J) —
J(O)]/11(6) +J(8)] = ®(J) /¥ (). Upon noting that u = dx/dt, we observe that the particle
paths may be obtained by integrating the following:

s 1 , 1, x+ctx(6)\ | _ cd
E_5<t xu)_é{Ct xc(ct+xx(5)>}_ct+x)((5)' (19

so, from (19) with x = ((ct)? — 6%)1/2, we need to perform the following integration:

ds _ co
dt  ct+ ((ct)2 —82)1/2x(5)"

Upon making the substitution ct =  cosh ¢, this equation is as follows:

_cosh ¢dé + 6 sinh ¢pd¢p
~ cosh¢ + x(6)sinh¢

which formally integrates trivially to give ¢ = [ x(6)dé/é + constant, and the particle
paths may be formally obtained from ct = dcosh( [ x(6)dé/5 + C), where 6 = [(ct)? —
x2]1/2, x(5) is related to the previously introduced arbitrary functions ® and ¥ by x(J) =
®(4) /Y () and C denotes an arbitrary constant.

4. Lorentz-Invariant Extension of Newton’s Second Law

In special relativistic mechanics with one spatial dimension x, Newton’s second law
posits that the applied force f equals the total time rate of change of momentum. This

is expressed as f = % (m‘é—’;) for a particle of mass m. Accordingly, on face value, space

x and time ¢ play fundamentally different roles. In other words, in conventional special
relativistic mechanics, Newton's second law states that the applied force is equal to the rate
of change of momentum, expressed as f = dp/dt. Using the differential formula (22), the
total time differential operator, d/dt, under a Lorentz transformation transforms according
to the following;:

- =5 tUuss =0 +tUs%

i 9 2 _(1—(v/c)2)1/2<8 a)
at ot "ox  (1—Uov/c2) \9T ' ~ox)’

and is, therefore, not Lorentz-invariant. Further, under a Lorentz transformation mo-
mentum, p alone is not Lorentz-invariant but satisfies the coupled Lorentz-invariant
energy—-momentum relations (8) and (9). In order to develop a Lorentz-invariant ver-
sion of Newton’s second law and a mechanical model in which space and time enjoy
identical roles, the author of [1,4,5] proposed three-dimensional vectorial equations (20), so
that the right-hand sides of equations, such as (21), are automatically invariant under the
Lorentz transformation.

We first provide a synopsis of the Lorentz-invariant theory proposed in [1,4,5]. This
model assumes that all quantities are position (x) and time (t)-dependent, with the momen-
tum vector p = mu and particle energy e = mc?, where m = mgy(1 — (u/c)?)~1/? denotes
the relativistic mass, my denotes the constant rest mass, and u denotes the magnitude of
the particle velocity. The following three-dimensional extension of Newton’s second law is
proposed, such that the force, f, and energy-mass production, g, are given by the following:

op 1 de
f=—-+ Ve, 8= 23

=, +V-p, (20)
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and all space and time derivatives in (20) are partial. The right-hand sides are invariants
under the Lorentz transformation, and if the forces (f, g) are generated from a potential
V(x, t), such that we have the following:

5 aV
f=-VYV, gc = Y
then there exists a conservation of energy principle ¢ + & + V = constant. If the potential
V(x, t) satisfies the classical wave equation, then the left-hand side of (20) is also invariant
under the Lorentz transformation, so that in this circumstance, the full Equation (20) is
invariant under the Lorentz transformation. Thus, if (f, gc) are generated as external forces
from a scalar potential V (x, t), then the mechanical system is conservative in the sense that
a conservation of energy principle applies e + & + V = constant, which we interpret as
Particle Energy + Wave Energy + Potential Energy = constant.

The proposed model [1,4,5] aims to include both Newtonian mechanics and quantum
mechanics in the form of Schrédinger’s quantum wave theory in a single theory, and
there are many situations for which Equation (20) coincides with conventional Newtonian
mechanics. The model encompasses Newtonian mechanics with ¢ = 0, and Schrodinger’s
quantum wave theory with f = 0. It is a mechanical theory for which space and time are
on equal footing but it is only invariant under the Lorentz transformations. It, therefore,
shares some of the features of general relativity, such as the field determination that may
emerge from the solution to the problem itself. The general theory of relativity is precisely
what the name suggests, which is a general approach to mechanics that is invariant under
arbitrary coordinate transformations. Accordingly, there is a complexity, such that it is
sometimes difficult to judge what is or is not included in the theory.

For a single space dimension, x, the Lorentz-invariant equations for energy—-momentum
e = F(x,t) and p = G(x, t) respectively, are as follows:

dp . de 10e dp
_ 9y, % T 21
U T O R F T @D
where f(x, t) and cg(x, t) denote the applied external forces in the space and time directions,
respectively. From the Lorentz transformations (6), we may deduce the differential formulae
as follows:

o 1 9 0 @ _ 1 9 0 ’
= Gk ety = G tak) @

which, together with the Lorentz transformation (8), we may show that (21) remains
invariant; in other words, we have the following:

_dp de JP OE _1lode odp 10E OP

f=aiTox~arTax: 8~ Zaitax Zar tax

Accordingly, the left-hand sides of (21) are automatically invariant under the combined
Lorentz transformations (6) and (8). However, the full equations are invariant only if the
applied forces are such that f(x,t) = f(X, T) and g(x, t) = g(X, T), which we have noted
implies that f(x,t) and g(x, t) satisfy the partial differential equations, as follows:

Of L xof _o %8 xR (23)

and, therefore, we have general solutions f(x,t) = f([(ct)? — x2]1/2) = f(8) and g(x,t) =
g([(ct)? — x*]V/2) = ¢(J), where § = [(ct)> — x?]1/2 and f and g now denote arbitrary
functions of 4. This expected outcome is also obtained alternatively, as follows.
Assuming the Lorentz-invariant theory [1], and for prescribed applied external forces
f(x,t) and cg(x,t), we may view the four equations (3) and (21) as determining equations
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for the four partial derivatives de/0x, de/dt, dp/9dx, and dp/dt, which upon solving yields
the following:

de _ {(ex+c?tp)—Ax} de _ 2 {At—(et+xp)}
ax 52 4 Jat 52 ’

dp _ {(px+tet)—Bx} ap _ {c?Bt—(ex+c2tp)}
ox 52 ’ ot — 52 ’

where § = [(ct)? — 22|12, A(x,t) = xf(x,t) + 2tg(x,t) and B(x,t) = tf(x,t) + xg(x,t).
Now, when performing the various partial differentiations and using Equation (24) in the
final evaluation of the two compatibility equations, we have the following:

9 (9 _ 9 (oe 9 (dp\ _ 9 (9p (25)
ot\ox/) ox\ot)’ ot\ox/) ox\ot)
we may confirm that these two compatibility relations together with (24) ultimately yield
the following two equations:

(24)

04, x4 _p 9B x0B A
dx  c% ot ’ dx  c2dt %

which have general solutions as given by (17). It is clear that these general solutions are
entirely consistent with the definitions of A and B, namely, A = xf + c*tgand B = tf + xg,
and the general solutions (17) and those of Equation (23), namely f = f(J) and g = g(9);
here, both f and g now denote arbitrary functions. Thus, the two compatibility conditions
(25) together with the four relations (24) are formally equivalent to the invariance of the
applied external forces f and g (namely f(x,t) = f(X,T) and g(x,t) = g(X, T)) under the
Lorentz transformation (6). Further, the functions f(6) and g(6) are related to the arbitrary
functions ®(J) and ¥ () appearing in (4) through the following relations:

dd(6)

£(6) =20(6) + 62,

cg(6) =2¥(9) + 5%&5). (26)
In the following section, we examine how the Lorentz-invariant power-law energies first
obtained in [26] fit into the general formulation.

Finally, in this section, as an example, one of the major physical characteristics of the
theory [1] is the possibility of sustaining motion in the absence of any applied forces since
the particle energy alone can act as an applied potential generating the motion. For the
general solution (4), it is apparent that such a possibility arises if the arbitrary functions
®(5) and ¥(4) are chosen, such that f = ¢ = 0, namely ®(5) = C; /% and ¥(6) = C»/62,
where C; and C, denote arbitrary constants; then, we have the following;:

o Ci1x + Coct o Cict + Cox
e(x,t) = (ct)2 —x2’ ep(xt) = (ct)2 —x2”’

which can be alternatively expressed in terms of singularities at £c; thus, we have the following:

_1(G+G) 1(G-G)

1 (C] + Cz) 1 (C1 — Cz)
1) = I -
e(x,1) 2 ct—x 2 ct+x

7 /t -
cp(x) 2 ct—x 2 ct+x

7

and the velocity distribution is u(x, t) = c(Cyct + Cpx)/(Cyx + Cact).

5. Power-Law Lorentz-Invariant Energy-Momentum Relations

In this section, we examine the Lorentz-invariant power-law energy—-momentum
relations (28) stated below and originally derived in [26] (see also [1] (page 49)). We note
that Einstein’s energy expression, ¢> — (pc)? = €3, where ¢y denotes the constant rest
energy, follows the conventional notion for the accrual of particle energy, e, defined as the
accumulated work done due to an applied force f arising from de = fdx, and f = dp/dt
gives de = udp or de/dp = u, as may be confirmed by a straightforward differentiation
of e2 — (pc)? = eZ; thus, de/dp = c*p/e = u. For the power-law energy expressions (28)
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given below, the equation de = fdx no longer applies, and de/dp # u. This means that the
accrual of particle energy takes place through mechanisms that are additional to the applied
external force. In other areas of applied mathematics, the use of power-law expressions as
approximations for fitting experimental data has been extremely effective.

The power-law energy-momentum relations given below are based on the Lorentz-
invariant energy-momentum equation, that is,

de K+u/c
dp_c<1+1<u/c)' @7)

involving the arbitrary constant x, for which the particle and wave velocities arise as two
special cases corresponding, respectively, to the values x = 0 (de/dp = u) and x = too
(de/dp = c®/u). In [1,26], it is shown that (27) admits the following energy—-momentum
expressions:

/2
_ e 1u/c )"
e(”) - (1—(u/0c)2)1/2 (173/5) ’

o (28)
/ 1
CP(”) = (1_6(011(36)3))1/2 (11_5%) ’
where ¢y denotes the rest energy, and the following relation applies:
T4+u/c\" e+cp\”©
2 _ 2_ 2 _ 2
e(w?  (p)? = (st ) = (5L, @)
upon using u/c = cp/e. This equation in turn is as follows:

(e+cp)' (e —cp)' ™ =, (30)

which agrees with Einstein’s relation e? — (cp)? = ¢3 for x = 0.

While Equation (27) is fully Lorentz-invariant under the energy-momentum transfor-
mations (8), for the entire formulation given by (28) and (29) to be invariant, the assumed
constant rest energies ey and Ey must transform according to the following relation:

B 1—U/C x/2

Along with e(—u) # e(u), this means that Expression (28) for ¥ # 0 exhibits both a
directional and frame dependence. A directional dependence has always been inherent in
the combined Planck—de Broglie relations e = £pc (see [26] and [1] (page 52) for further
details). Quite independently, both [32,33] have suggested that the universe may have a
directional dependence in the sense that the properties of the universe may not be isotropic
and a preferred direction may exist. The frame dependence (31) indicates that the universe
may also be inhomogeneous as well as anisotropic.

In [26] and [1] (page 49), the invariance of (27) under the Lorentz transformation (6) is
established using Einstein’s addition of velocities law. We may alternatively demonstrate
this invariance using the variables p = ¢ 4 pc and ¢ = ¢ — pc and the Lorentz transforma-
tions (8). In terms of these new variables, Equation (27) simply becomes as follows:

do _ _1p (32)

T
where A = (1 —x) /(1 + ) and from (10) or (11), the following is clear:

p _e+tpc 1—v/c E 4+ Pc (33)
c e—pc \1+v/c)\E—Pc)’
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and Equation (32) is unchanged by (33) and integrates immediately to give p*c = constant
or ! *g** = constant in agreement with (30).

If in addition to assuming Lorentz-invariant energy e = ¢(x, t) and momentum p =
p(x,t) solutions and the Lorentz-invariant theory [1], we impose the further condition of
the power-law energy—-momentum relation (29), then from (16) we have the following:

e(u? — (ep(u))? = 10)1(6) = (XL ) =1 (422))

so that for ey # 0 and x # 0, we have the following:

16) (et +x\ _ (16)76) )"

1(5)<ct—x> g '
and from Expression (18) for the particle velocity u = u(x,t), there is the immediate
implication that u = u(J). However, from (1), it is clear that the only particle velocity for
which this is possible is the speed of light, namely u = £c. Accordingly, the imposition
of Lorentz-invariant energy—momentum solutions to a Lorentz-invariant theory, together

with the assumption of the power-law energy relations, restricts the particle motion to the
constant speed of light.

6. Summary and Conclusions

Any assumption of spatial invariance means that similarity solutions to partial differen-
tial equations necessarily only apply to isolated single-particle systems that are dominated
either by a much larger particle or by some symmetrically applied external force. However,
they often correspond to the most fundamental problems in the discipline. This is certainly
the case in topics such as heat conduction and fluid mechanics and will be shown to also
be the case for the fundamental problems of mathematical physics. Conventional special
relativistic mechanics is a “space” dominated model, whereas Schrodinger’s quantum
wave theory is a “time” dominated model. Here, the areas of application in mind are those
intermediate situations where both space and time contribute. It is natural to first consider
the problems in one spatial dimension.

The vectorial equations (20) apply to two and three spatial dimensions and exhibit nu-
merous similarity energy-momentum profiles. In particular, for both axially and centrally
symmetric particle motions (see [1] (page 233)), following [24,25], there will be interesting
results for higher dimensional problems (although clearly far more complicated). For multi-
particle systems, the general vectorial equations (20) still apply for each component particle,
provided that the appropriate particle-particle interactions are properly incorporated in
the applied external forces (£, gc) applied to each individual particle.

In this paper, we investigated some of the implications of the assumption of Lorentz
invariance both with regard to mechanical theories and the formal solutions to such theories.
Lorentz-invariant theories or solutions with this characteristic are stronger and more
powerful than conventional Newtonian theories or conventional solutions because the
Lorentz-invariant approach automatically embodies the conventional approach. This is
the case for the Lorentz-invariant power-law energy-momentum relations (28) involving
the arbitrary parameter, x, which are inclusive of Einstein’s energy relations arising from
the special case, x = 0. It is also the case for the Lorentz-invariant extension of Newton'’s
second law proposed in [1], which included special relativistic mechanics and Schrodinger’s
quantum wave theory.

For any Lorentz-invariant mechanical theory, not all solutions will be invariant, and
here we have focussed solely on determining Lorentz-invariant solutions to a particular
Lorentz-invariant theory [1]. For Theory [1], and for a single spatial dimension, x, the
governing equations for energy e(x,t) = mc? and momentum p(x,t) = mu are given
by (21), where m(x,t) is mass, u(x,t) = dx/dt is velocity, and f(x,t) and cg(x,t) are the
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applied forces in the space and time directions, respectively. We have shown that the most
general Lorentz-invariant solutions to (3) and (21), of the forms e = F(x,t) and p = G(x, ),
are given by (4), where ®(§) and ¥(J) are arbitrary functions of § = [(ct)?> — x?]1/2,
provided that both f and g are both Lorentz-invariant functions, implying that f = f(J)
and g = g(9), and are related to the arbitrary functions ®(é) and ¥ (J) appearing in (4)
through (26).

With regard to the formal solutions to (3) and (21), it is clear that further incorporation
of the other two Lorentz invariants A = [¢? — (cp)?]'/? and { = [(e + pc)(ct — x)]/[(e —
pe)(ct + x)] will not greatly affect these general solutions; in Appendix A, we show that (4)
can be generalised by (5). This is possible since, ultimately, both A and ¢ must reduce
to functions of ¢ only, namely, A = A(J) and { = {(J), along with the assumption that
the applied forces have the structures f = f(4,A,{) and g = g(4, A, (), and are related to
the functions ®(J, A, () and ¥ (4, A, ) appearing in (5) through Relation (A5), in overall
agreement with (26). In other words, for prescribed applied forces f = f(6,A,{) and
g =g(6,A,0), (5) provides an exact solution to the four equations (3) and (21), provided
that the functions ®(4, A, {) and ¥ (4, A, §) satisfy (A5).

In this paper, we have determined energy—-momentum profiles e = F(x,t) and
p = G(x,t) given by (4) corresponding to the general Lorentz-invariant solutions to
(3) and (21). While these solutions strictly only apply to a single space dimension x, they
are nevertheless general solutions involving two arbitrary functions. As such, they may
be applicable for particle paths well approximated by straight lines or for approximat-
ing particle paths with several straight segments. This approach can be useful in testing
Lorentz invariance violations, such as with atmospheric neutrino experiments [11] or in
testing Lorentz symmetry for photons travelling from the outer universe, revealing the
early cosmic expansion history of the universe [12].
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Appendix A. Extending the General Solutions (4)

In this appendix, we present the formal details establishing that the general solutions
to (3) and (21), namely (4), may be generalised by expressions of the form (5), where
®(5,A,) and ¥ (9, A, {) denote two arbitrary functions of the three Lorentz invariants
(6,A,7), which are defined by the following:

5=[(c)2 =222, A=[P—(cp)?V: (= (th) <Ei;i>

and by making use of (5), we have the following identities:

Y+

2 w2 a2\ 52 _
N= (-, =g,

sincep=e+cp=Y+P)(ct+x)ando =e—cp = (¥ — D) (ct — x).

Clearly, the implicit expression (5) is not as useful as the explicit general Solution
(4). However, their existence provides considerable insight into the formal structures
of solutions and the vast complexities of possible solution behaviours. In the following
calculations, we assume either basic Equations (3) and (21) or Expression (24) for the
four partial derivatives, de/dx, de/dt, dp/dx, and dp/dt. In other words, we make use
of one form of the determining Equations (3) and (21). In the following, we calculate the
partial derivatives, d/9x, and d/9t, based on Expression (5) using the chain rule for partial
differentiation. The final results for Equations (3) and (21) are as follows:
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) 9 JeLe) b4 ol 9
t—§+c%a—§_tq>+§‘¥+(x—§+ct7)<t—x+c%—t)
+(x8 +ot3E) (1 + 3%) + (xR + ) (1 + 3%).
9 Ip _ ¢ oD Y (190 20
B+ 5% =+ 3o+ (153 + 130 ) (12 + 2Y)
20 ¥ (194 A 20 oY\ (192 9
+(t32 +23) (18 + 2%) + (1B + 1) (1 + 3%).
90p | de _ 0P (.90 90 ) 9A 9A 9@ (.. 9L oz
T+ =0 +e¥)+ B (x% +1%8) + B («F +15) "
d d
+20+cZE (13 + 3) + B (18 + 32+ (1E+ 55),
19 4 9P _ 3D (490 20 20 (194 A 9P (9L 9
e+ E=-R(2+38)+ 212 +3%)+ B (E 3 ")

A d
2 19¥ (.95 95 19Y¥ (. 9A 9A 19¥ (.90 o
+20 108 (x 2 1+ 430) + 138 (x20 4420 ) + 19 (3K +1%).
Now, each term vanishes, namely the following:

ta(s x 95  0A xaAitag xagio

TR T T T - T
due to Lorentz invariance and the fact that §, A, and  are invariants. The invariant character

of these results is most easily established using the variables p = e + pc, ¢ = ¢ — pc and the
characteristic equations defined by (14), namely the following;:

t_, W _x  d_p  do_ c
ds ds  ¢2’ ds ¢

. = (A3)

When using (A3) with A2 = poand { = p(ct — x)/c(ct + x), we have the following:

co \ct+x ctIi) =0
Below, we provide formal proofs. The fact that § = [(ct)? — x?|1/? satisfies this
equation is immediate upon evaluating the two partial derivatives, d6/dx = —x/é and

d5/dt = c*t/5. For A = [e? — (cp)?]'/? and the identity tdA/dx + x/c?dA /3t = 0, we can
either use the partial differential relations (3) or the explicit formulae (24). In the former
event, we have the following;:

OA | x oA _ t{, 9 2 0p x (,0e 2 0p
tﬁJF?zw—z(ea ¢Pox +m(ea Por
__ e de x de CZP ap x P\ _
_E(t$+?§)_f(tﬁ+?ﬁ =0.

In establishing the identity td{/dx + x/ czag /ot = 0, we need the two Lorentz in-
variants ¢ = ex — ¢?pt and 7 = px — et, which are employed throughout [1] and are first
introduced on page 41. In evaluating the partial derivatives d(/dx and d{/0t, we obtain
the following:

% _ _(etpe) 2t (cx)2e(edp/Ox—pie/ox)
ox e—pc ) (ct+x)? ct+x (e—pc)? ’
9 _ (etpe  2cx +(ctfx)w
ot = \e—pc ) (ct+x)? ct+x (e—pc)? ’
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and upon using Expression (24) for the partial derivatives, we obtain the following:

¢ _  [etpc\ 2 2c (ct—x\ (tA2+x(f—gd))

£ = - (82) iy + B (gg) s,

a _ (ﬂ)hix _ 2 (et At —gE))

t = \e—pc) (ct+x)2 &2 \ci+x (e—pe)? ’

and these expressions further simplify, giving the following:

9g _ 2cx (ct—x) (fn—8%) _ 2cxf(fn—gg)
ox

02 \cttx/) (e—pc)2 — 02A2 ’
I 201 (ct—x) (f1—-85) _ _20t0(fn—g?)
ot 52 \ct+x/ (e—pc)? 62A2 ’

from which, evidently, we have the following:

(08 x _ 2ex((fy —g8)  x20G(f —g8) _
dx  c2 ot 52A2 c2 §2A? ’

as required.
We might similarly establish the following identities:

xax+t%‘; =9, xax—l—l‘aA (fC—czgq—Az),
x3E + 155 = =2 (fy — g0).

The first and third are immediately apparent using the given expressions for the partial
derivatives. For the second result, we have the following:

fe—c2gn = (% + ) (ex—2pt) — (% + 23 ) (px —et)

-t o)

upon using Relation (3), from which the desired result follows.
Thus, from (21), (A1), and (A2), we obtain the following expressions for the applied f
and g forces:

— 9P L) ) 20 JA JA 9P é'. C

— oY (.05 | 495 oY (,0A | 40A g | 49
gcfz‘F—}-W(xﬁ—Hm)—i—a—A(xg—}-tg)—kBC( +t5 )

which, upon using the above results, simplifies to yield the following;:
f=20+0%% + 190(fE — Pgn — &%) — 332 (fn — gE),

2
ge =2 +6%F + 13X (f& — gy — a%) — X (f — 30).
Now, when making use of the above-given expressions for the various partial deriva-
tives, either from the vanishing of the three Jacobians, that is,

9(6,4) _a(6,0) _ 9(AQ)

b A Ay
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or the two equations, that is, tdA/dx + x/c*0A /ot = 0 and tdf/0x + x/c*d(/dt = 0, this
implies that, ultimately, both A and ¢ must reduce to functions of ¢ only, namely A = A(J)
and { = {(0) with the following implications:

d A d
fé‘czgﬂ=A<A+5d§) c(fn—g¢) = ffdfg, (A4)

assuming that the applied forces have the structures f = f(J,A,(), and g = g(4, A, (), and
are related to the functions ®(4, A, ) and ¥ (5, A, Q)

0P dA B(Ddg od 0P dA
f=20+05%2 + 69248 1592 % = 2¢+5(a—5+ﬁ%+

Q|

&
SR
SN

N———

=2 + 6492,
a5 (A5)

[u

¥ d ¥ d 9
ge=2¥ +0% +5a‘§d§+5a‘§d§:21¥+5(aj + gtdd 4

QU
S

S

SR
N———

— a¥
=2¥ + o4F

This coincides with (26). Overall, for the given applied forces f = f(4,A,{) and g =
<(8,A,0), along with Relations (A4) and (A5) as two determining equations for the Lorentz
invariants, ¢ and # imply that ¢ and # must be functions of § only, as might be expected for
Lorentz-invariant quantities.
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