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Abstract We examine the geometrical differences between
the black hole (BH) and naked singularity (NS) or super-
spinar via Lense-Thirring (LT) precession in spinning
modified-gravity (MOG). For BH case, we show that the LT
precession frequency (€27 7) along the pole is proportional to
the angular-momentum (J) parameter or spin parameter (a)
and is inversely proportional to the cubic value of radial dis-
tance parameter, and also governed by Eq. (1). Along the
equatorial plane it is governed by Eq. (2). While for super-
spinar, we show that the LT precession frequency is inversely
proportional to the cubic value of the spin parameter and it
decreases with distance by MOG parameter as derived in
Eq. (3) at the pole and in the limit a >> r (where a is spin
parameter). For @ # 7 and in the superspinar limit, the spin

frequency varies as Q7 m and by Eq. (38).

1 Introduction

The fundamental difference between a black hole (BH) and a
naked singularity (NS)! is that the former has a horizon struc-
ture while the latter doesn’t have any horizon structure. Once
more a BH is of two types: non-extremal black hole (NXBH)
and extremal black hole (XBH). A NXBH is identified by
non-zero surface gravity (k # 0) while XBH is identified by
zero surface gravity (¢ = 0). For NS the surface gravity is
undefined because it has no horizon. So, how one can dif-
ferentiate between these three compact objects? This is an
intriguing topic of research both in astrophysics and in gen-
eral relativity. Therefore, in this Letter we want to find out
that the distinction between these three compact objects by
using LT precession frequency [1-4].

! When no event horizons are formed during gravitational collapse then
it is called as NS or superspinar [29]. It is unstable compact object.
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For spinning Kerr BH in general relativity, the LT pre-
cession frequency varies as spin parameter and is inversely
proportional to the cubic value of radial distance both along
the polar axis and the equatorial plane. While for Kerr NS or
superspinar, the LT frequency varies as radial distance and
inversely proportional to the cubic value of the spin parameter
along the pole. This is the fundamental difference between
BH and superspinar in the general relativity. Now we will
examine what happens this situation in case of other alterna-
tive gravity theory i.e. Kerr-MOG gravity?

Consequently we have considered a spinning compact
object such as Kerr-MOG BH in MOG theory [9-11]. It is
described by mass parameter (M), spin parameter (a) and a
deformation parameter or MOG parameter («). In contrast to
Kerr BH, which is described only by the mass parameter and
the spin parameter. The MOG theory was proposed by Mof-
fat [10]. It was sometimes reffered to as scalar-tensor-vector
gravity (STVG) theory. The main concept in MOG theory
is that the BH charge parameter is proportional to the mass
parameteri.e. Q = /aGyM [9]. Where o = Gag” should
be measured deviation of MOG from GR. The MOG theory
proves several interesting features like superradiance [13],
the quasinormal modes and the ring down of BH merg-
ers [12]. Apart from that MOG theory obeys an action prin-
ciple formulation, and the weak equivalence principle. The
details of MOG theory and action formulation could be found
in the following works [9, 11-13]. So, we have not discussed
it in detail here.

The metric for static spherically-symmetric BH in MOG
theory can be obtained by substituting @ = JaGyM in
the usual Reissner—Nordstrom BH solution. Similarly, one
can derive the Kerr-MOG BH by putting this condition in
Kerr—Newman BH.

In [5], we have derived in detail the generalized spin pre-
cession frequency of a test gyroscope around the Kerr-MOG
BH. Using this frequency expression, we differentiated the
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behavior of three compact objects i.e. NXBH, XBH, and NS.
Here, we focus on particularly LT frequency by taking the
limit i.e. angular velocity 2 = 0 in generalized spin fre-
quency expression.

For Kerr BH [6] (see also [7,8]), it was demonstrated that a
clear distinction between these compact objects. In fact they
have found that the LT frequency varies as Q77 & a and
Qrr « r% While for Kerr-NS (or superspinar) and also in
the limit ¢ >> r2 and in the region 6 # 7 the LT frequency
varies as Q77 o« r and Q7 a% In the present work,
we would like to examine this scenario in the MOG theory
specifically for Kerr-MOG BH.

In the present work, we derive the following results:

(i) We show that for NXBH the LT precession frequency
along the pole is directly proportional to the spin param-
eter (a), and is inversely proportional to the cubic value
of radial distance parameter, and

o Gy M
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(i) Along the equatorial plane, the LT precession frequency
is directly proportional to the spin parameter, and is
inversely proportional to the cubic value of radial dis-
tance, and
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(iii)) For XBH, we determine the LT frequency is proportional
to the angular-momentum (J) parameter i.e. Qr7

2 . . .
M and is inversely proportional to the cubic value

14a
1

of radial parameter i.e. Qp7 3
(iv) While for superspinar, the Q7 along the pole and in
the region a >> r should be

_1
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2 The region a >> r is a typical nature of Kerr naked singularities [7].
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(v) For 6 # % and in the superspinar limit, we find

Qrr 4

a —

a3 cos* 6
and Eq. (38). Interestingly, the LT precession frequency
is inversely proportional to the both a* and cos* § factor
in the superspinar limit.

There are several discussions regarding the Kerr NS such
as stability issue, thermodynamic properties, effect of grav-
itational self-force (GSF), effect of conservative self-force
and the implications of Polish doughnut model etc. They
could be found in the following Refs. [19-27]. So, the NS is
an interesting topic of research in recent times both from the
theoretical and observational point of view.

In the next section, we will study the spin precession fre-
quency in Kerr BH in MOG theory and show that the struc-
tural variation of three compact objects: NXBH, XBH and
NS. In Sect. 3, we have given the conclusions.

2 Spin precession frequency in Kerr-MOG BH

To distinguish NXBH, XBH and NS in Kerr-MOG BH, we
have to write the LT spin precession expression in terms of
Boyer-Lindquist coordinates [5] (see also [14—18]) as

Q —A/8rr AP + /800 }—é
LT =

©)
2/—8 8gu
where
A= gu 81,0 — 8top 811,0 (6)
F = 8t &tp,r — 819 Q1,1 (7

and g is the determinant of the metric tensor. This is the exact
LT precession frequency of a test gyro due to rotation of any
stationary and axisymmetric spacetime.

The most interesting feature of Eq. (5) is that it should
be applicable for any stationary axisymmetric BH spacetime
which is valid for both outside and inside the ergosphere.
Here, we are particularly interested in the limit 2 = 0. The
case of 2 # 0 is discussed and analyzed in the work [5].

Our next task is to write the metric explicitly for KMOG
BH as described in Ref. [9]

ds? = — 2 [dt —a sin29d¢]2
- 2
0
22 2
sin“ 6 2 dr
+— [(r2+a2)d¢>—adt] +0° [—+d02]
o A

®)

where

0> =r*+a’cos’ 0
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Fig. 1 The figure describes the a=0
variation of r+ with a for Kerr
BH and Kerr-MOG BH. Left
figure for Kerr BH. Right figure
for Kerr-MOG BH. The 1.5
presence of the MOG parameter
is deformed the shape of the
horizon radii
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Fig. 2 The figure indicates the
variation of r;* () with a for
Kerr BH and Kerr-MOG BH
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I
—
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A=r>=2Gy(1+a)Mr +a* + Gya(l +a)M>.  (9)

where Gy is Newton’s gravitational constant and M is BH
mass. We should mention that in the metric ¢ = 1.3 The above
metric is an axially-symmetric and stationary spacetime. The
ADM mass and angular momentum are computed in [28]

3 We have used the geometrical units i. e. ¢ = 1. The signature of the
metric becomes (—, +, +, +).
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as M = (14+a)M and J = aGyM.* We consider here
the ADM mass throughout the paper for our convenience.
Substituting these values in Eq. (9) then A becomes

A=r>—2GyMr+a*+ GyM? (10)

o
1+«
4 One could determine the relation between the BH mass and ADM

_ M
mass as M = o
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Fig. 3 The figure indicates the
variation of rei (6) with a for

a=0,
Kerr BH and Kerr-MOG BH
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The above metric describes a BH with double horizon

G2 M?
= GyM+,| N a2,
r4 NM + It a
G2 M2
r_=GyM— | =N _ g2 (1)
1+«

where r is called as event horizon and r_ is called as Cauchy
horizon.

Note thatr > r_. Differences between the horizon struc-
ture in the presence of MOG parameter and without MOG
parameter could be seen visually in the Fig. 1.

It should be noted that when o = 0, one gets the horizon
radii of Kerr BH. The NXBH, XBH and NS solutions do

exist in the following range
a2
——— < NXBH (12)
GyM? 1+«
a’ 1
= XBH (13)
GyM?  1+ua
2
1
> NS (14)
GyM?  1+a
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Note that the MOG parameter or deformation parameter (o)
is always positive definite. If we invert the above inequality
then one gets the restriction on «. We have tabulated the val-
ues of spin parameter for various values of MOG parameter.

a NXBH XBH NS

o= a=0.5 a=1 a=2
_ _ [ _

a=1 a=04 a—\lfz—O.7 a=0.9
a=2 a=03 a:ﬁ:0.57 a=0.7
a=3 a=02 a=1=05 a=038
_ _ _ 1 _ _

oa=4 a=02 a—%g—O.44 a=0.6
a=35 a=02 a_$:0‘4 a=0.5
a=06 a=02 a W:0'37 a=04
a= a=02 a=4%=033 a=05
a=10 a=02 a=--=03 a=05

The outer ergosphere is situated at

2 2

G
r=rl) =G1v/\/l—i-\/1N+—Ot—azcos2 0. (15)
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and the inner ergosphere is situated at

G M2
1+

r=r, () =GyM — \/ —a?cos? 6. (16)
and they should satisfy the following inequality r, (0) <
r— <ry < rj(0). It may be noted that r,” and r,” coincide
with 74 and r_ at the pole. The radii of ergo-region becomes

imaginary for all values of 6: i.e. > cos™! [\/llﬁ (é)]

J]lﬁ ( )] the radii of ergo-region

becomes real and where a,, = G; -

The structural differences of the outer and inner ergo-
sphere in the presence of MOG parameter and without MOG
parameter could be seen from Figs. 2 and 3. From these fig-
ures one can easily observed that the size of the ergo-sphere
increases when one goes to the equator starting from pole. It
becomes maximum at the equator.

In the extremal limit, the outer horizon and inner horizon
coincide at r4 = r— = GyM. Thus the outer and inner
ergosphere radius reduces to

Intherange# < cos™! [

0
+0) =G M<1 s )
e @ =M e

where
x(r) =ally
a
Mo = 2GNMr — G?VM2
w(r) = aGyM@r? — a*cos? §) — 1 _T_QG%,MZar

o(r) = p>(p* — Ty)

The magnitude of this vector is computed to be

VA x2(r) cos?6 + p2(r) sin?6
Qrr(r,0) = (22)
o(r)
After substituting the values of A, u(r), x(r), o(r) and p,
we get the LT precession frequency for NXBH is

J
S2LT = _ST(rvavesa) (23)
r

where
Y(r,a,0,a) =

and

2 24 (2 )\G2 M2
4[1—<L> Gg,M] |:1—2G’V,M+a <H°;2) x :|cos20+sin29[l——”2°r°2329—

1+o

YT =
3 2 2 pAq2
2 (o2 a*cos? 6 + ( ) GyM
0?2 G /\/l
L R I (24)
r2 r r2
o sin 6 Now we will compute the precession frequency along the
re 0) =Gy M <1 N V1+a ) ' an pole and equatorial plane for NXBH separately.

On axis and on equatorial plane, these values are

r(0)]g=0 = GyM = r4, (on axis) (18)

1
”ei(e)h):g =Gy M <1 + «/1+—06> = r+la=0
(equatorial plane). (19)

In the limit ¢ = 0,

rF@lg—y =26y M. r; @)lg—z =0. (20)

This surface is outer to the event horizon or outer horizon
and it coincides with the outer horizon at the poles 8 = 0
and 0 = .
Now using the formula (5), one obtains the LT frequency
vector for the metric (8)
x(r) /A cosO 7 + pu(r) sin 6

Qrr = o , 2D

Case I: At the pole (6 = 0), the LT precession frequency
is

(25)

It indicates that the LT precession frequency along the pole
is directly proportional to the angular-momentum parame-
ter, and is inversely proportional to the cubic value of radial
distance and

o Gy M
Q -
LTO([ <1+a> 2 }

2 2 2
Gum @+ (%) Gim
+ 2

x|1-=2 (26)

r r
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Fig. 4 The structural variation of 7 versus r for 8 = 0 in KMOG
with variation of MOG parameter and spin parameter. The first figure
describes the variation of ;7 with r for NXBH, XBH and NS without

Case II: Atthe equatorial plane (¢ = 7), the LT precession
frequency is

_J o Gy M
Q”_ﬁ[l_<1+a> r }

_2GNrM n <1er“)rf?VM2

x |1 27)

Analogously, at the equatorial plane the LT precession
frequency is directly proportional to the angular-momentum
parameter, and is inversely proportional to the cubic value of
radial distance and

@ Springer

MOG parameter. The rest of the figure describes the variation of Q77
with r for NXBH, XBH and NS with MOG parameter. Using these plots
one can easily distinguish these three compact objects

o Gy M
o 1- (7))

GyM (1) 32

x|1-2 3 (28)
r r
For XBH, the LT frequency is derived to be
Y 0,0) G M?
QrLr = N (29)

r3 V1t
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where
2 2 Aq2 2
/4[1 (v45) ST (1 - 23) conp+sinte |1 - Gifage — (qa) ot |
Y(r,0,a)
3
2 Aq2 2 2 g2
1+GNM cos?6 )’ 1_2GNM+GNM cos?0 +a (30)
l+a r? r r2 4+«
Finally for NS and in the regime a >> r, the LT frequency
is computed to be
2
\/[az + (ﬁ) GIZ\,Mz] [ZGNMr - (1+a> G? Mz] cos2 6 + [GN Ma?cos?6 + ( ) G M? ] sin? 6
Qrr =
2
a?cos? 0 [az cos? 6 + (1+a) G /\/lz]
(33)
and along the pole
Similarly, we compute the precession frequency along the
pole and equatorial plane separately. 26y M [r _ (T) ]
Case I: Along the pole (8 = 0), the LT precession fre- Qrr = (34)
uency is G M2
q y \/1 + (1+a Na2
N Gy M? a \ GyM
= Txa \i3 l+a) 2r This immediately implies that
3
GAM21\ ? Gy M\ ™! 1
1+ 1— 3) Q@ — 35
X<+1+ar2> < . ) €1y LT & —3 (35)
Case II: Along the equatorial plane (§ = %), the LT preces-  and
sion frequency is
G M? G G2 2172
Qrr = vM i 11— v Gy M Qrr «|r— (L v M 1+ . N
JT+a \r3 14+« r 1+o 2 1+ a?
-1
2 Aq2 (36)
G (%) 63 M
| oM | AT - (32)
r r For 6 # % and in the superspinar limit, we find the exact
LT frequency
GaM |1 = (%) 95M] o \ M
Qrr = 1 -
Lr a3 cos* 0 +<1+oz> 2cos20
G2 M2 tan 6\ 2 2 {r + (Lte) Leos }2
G
><41+(°‘>N2 +<an><a>G§VM2 z ovM | 37)
1+« a a 1+« (r_(L>GNM>
14« 2

In each case we observe that the LT precession frequency
is directly proportional to the J/:/lT and is inversely propor-
tional to the cubic value of radial distance parameter.
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that means

o GNM o Gy M?
Qrr «< |r— 1 —
Lr |:r <1+a) 2 ] +<1+a> a?cos? 6

-1

(l+a) a?cos? 6 }2

o szv/\/lz tan @\ >
x (4114 +
1+o a? a 1

S
o Gy M
) GI M2 ~ (38)

= ey
F=\1+a) 72

and

Qrr (39)

o ——
a3 cos* o
These are the fundamental differences between the NXBH,

XBH and NS via computation of LT frequency. Also this is

the main result of our work. Now we have to see their struc-

tural differences based on the graphical plot (Fig. 4).

3 Discussion

We studied the geometrical differences between NXBH and
superspinar of Kerr BH in MOG theory in terms of preces-
sion of the spin of a test gyroscope due to the frame-dragging
effect by the central rotating body. We found that there is
indeed an crucial difference between these compact objects in
the behavior of gyro spin precession frequency. For NXBH,
we have found that the LT precession frequency varies as
Qrr o a and Qrr o -5. While for XBH, the LT pre-

. . M2 1
cession frequency varies as Q77 Wi and Q7 3.

Note that the behavior of LT gyro precession of NXBH is

qualitatively same as XBH. For NS, it varies as Q7 « 6%

1
andQLToc[r—<ﬁ>%] |:1+<%>%i| Zin
the regime & = 0 and @ >> r limit. For 6 # 7, we
have found Eq. (38) and Q7 « m. Using these spe-
cific criterion one can differentiate these compact objects.
In summary, for a compact object like BH, the LT fre-
quency varies as Qp7r & a and Qp7 & r% While for

superspinar, the LT frequency varies as Q7 a% and
1

G2 M2 -2
Qrr I:r_(l—;-La) GNzM] [1+(ﬁ) 1\;2 :| along
the pole. In the 6 # 5 limit, the spin frequency is governed
by Eq. (38) and also Q17 o« ———— It is unlikely that Kerr
BH in Einstein’s general relativity where the precession fre-
quency varies as only radial distance parameter.
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