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Abstract We propose a minimal model that can explain
the electroweak scale, neutrino masses, Dark Matter (DM),
and successful inflation all at once based on the multicritical-
point principle (MPP). The model has two singlet scalar fields
that realize an analogue of the Coleman—Weinberg mecha-
nism, in addition to the Standard Model with heavy Majo-
rana right-handed neutrinos. By assuming a Z, symmetry,
one of the scalars becomes a DM candidate whose prop-
erty is almost the same as the minimal Higgs-portal scalar
DM. In this model, the MPP can naturally realize a saddle
point in the Higgs potential at high energy scales. By the
renormalization-group analysis, we study the critical Higgs
inflation with non-minimal coupling & | H |* R that utilizes the
saddle point of the Higgs potential. We find that it is pos-
sible to realize successful inflation even for & = 25 and
that the heaviest right-handed neutrino is predicted to have
a mass around 10'* GeV to meet the current cosmological
observations. Such a small value of & can be realized by the
Higgs-portal coupling Asy ~ 0.32 and the vacuum expec-
tation value of the additional neutral scalar (¢) ~ 2.7 TeV,
which correspond to the dark matter mass 2.0 TeV, its spin-
independent cross section 1.8 x 10~?pb, and the mass of
additional neutral scalar 190 GeV.

1 Introduction

The observed Higgs mass supports the assumption that the
Standard Model (SM) is not much altered up to the Planck
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scale. More precisely, the critical value of the top-quark pole
mass is about mff;lﬁtica] ~ 171.4 GeV [1] for the theoretical
border between stability and instability (or metastability) of
the effective Higgs potential for the observed Higgs mass
~125GeV; see also Refs. [2—4].! This critical value of the
top pole mass is consistent at the 1.4 0 level with the latest
combination of the experimental results 7} o = 1724407
GeV [5]. Surprisingly, the degenerate minimum of the Higgs
potential at the critical top mass coincides with the Planck
scale, and such a behavior of the potential has a lot of impli-
cations to high energy physics and cosmology. This inter-
esting behavior of the Higgs potential can be understood by
the multicritical-point principle (MPP) [6—16] (see also Refs.
[17,18]) that “coupling constants that are relevant at low ener-
gies are tuned to a multicritical point around which the vac-
uum structure drastically changes when they are varied.” We
note that existence of a saddle-point around the Planck scale,
rather than a degenerate vacua, is another possible form of
multicriticality. This fact is used in the critical Higgs inflation
[1,19-22] explained below.

Besides such interesting behavior of the Higgs potential,
there are many mysteries and problems in particle physics
and cosmology. For example, we have not yet understood
the origin of electroweak (EW) scale v = 246 GeV, which is
hugely small compared to the Planck or string scale 10'® GeV
at which people believe that there must exist an unified theory
which includes quantum gravity. Further, the Majorana-mass
scale for the right-handed neutrinos is unknown in the SM
with the seesaw mechanism [23-27]. Moreover, the recent
observations in cosmology, including that of the cosmic
microwave background (CMB), have established the exis-
tence of (cold) dark matter (DM). It motivates us to consider

I With the current central value m y = 125.14+0.1GeV [5], the critical

top mass becomes mff)clreitical ~ 171.2GeV [4].
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a new particle whose interactions with the SM particles are
relatively weak.

In addition, the CMB fluctuations may also provide hints
for further new physics since they are seeded at high energy
scales during inflation. Current observation is consistent with
single-field inflation models, among which the Higgs infla-
tion provides one of the best fits [28-31]. In particular, the
critical Higgs inflation is inspired by the possible existence
of the saddle point around the Planck scale in the MPP, which
helps to flatten the Higgs potential and allows rather small
value of the non-minimal coupling & = O(10) in &|H|*R.
(The not-so-large coupling is favorable from unitarity [32—
36].)

In this paper, we consider the most economical model that
can simultaneously explain all the above issues: the critical
Higgs inflation, neutrino masses, EW scale, and DM.2 The
model consists of two additional real singlet scalar fields
and the SM with the right-handed neutrinos. As a result,
we manage to predict the parameters in a well determined
narrow region by taking into account the constraints from
the DM relic abundance, its direct detection experiments, the
CMB fluctuations, and the latest LHC data, while keeping
the perturbativity up to the Planck scale. We find that the
Higgs-portal coupling and the vacuum expectation value of
the additional neutral scalar are fixed to be Asy =~ 0.32 and
(¢) ~ 2.7TeV, resulting in the dark matter mass 2.0 TeV, its
spin-independent cross section 1.8 x 10~ pb, and the mass
of additional neutral scalar 190 GeV. 1

pole -

The motive behind this model is as follows. If m;

mlegtical, the instability of the Higgs potential requires addi-

tional positive contributions to the renormalization group
(RG) of the Higgs quartic coupling Ag. The simplest pos-
sibility is to introduce a real scalar field S that couples to the
SM Higgs doublet H via a quartic interaction Agy|H|>S?.
(This is nothing but the Higgs-portal DM model [38-41].)
However, such an extension could yield too large a tensor-
to-scalar ratio of the CMB in the (critical) Higgs inflation,
because of the raised Higgs potential at high scales; see e.g.
[22,42]. We can resolve this issue by introducing additional
superheavy fermions that lowers the Higgs potential at higher
scales, while keeping the above mentioned positive contribu-
tion from the scalar at lower scales. Therefore, it is reasonable
to assume a high-scale seesaw in which right-handed neutri-
nos have large Majorana masses Mg and large Yukawa cou-
plings y,. In fact, it is possible to maintain the saddle point
of the Higgs potential at high energy scales in the existence
of new scalar field(s) when Mg ~ 10'* GeV [22]. This is
also one of the interesting predictions of the MPP.

2 Quite recently, a similar scenario to simultaneously explain these
problems has been studied in Ref. [37] in the context of the classi-
cal scale invariance, in which a fermionic DM candidate is considered.
In our scenario, we consider the MPP and a scalar DM candidate.

@ Springer

So far, the MPP has not explained the origin of the EW
scale. In fact, we may do so as follows. It is known that
the Coleman—Weinberg (CW) mechanism [43] can naturally
explain the hierarchy between the EW and Planck scales
through the dimensional transmutation. Important assump-
tion behind the CW mechanism is that the renormalized
mass-squared parameter vanishes at the origin of the scalar
field space. This assumption is called the classical scale
invariance (CSI) [44—-56].3 On the other hand, such CSI-type
potentials can be naturally understood as one of the possible
multicriticities in MPP without referring to scale invariance
[61,62].* From this MPP point of view, the simplest real-
ization of the dimensional transmutation is achieved by only
two real singlet scalar fields, one of which is S mentioned
above [61,62].

Although we will focus on a specific model proposed in
[61,62] (namely only the CP 2-2 among various multicritical
points in the parameter space) in the following, the analysis
of Higgs inflation does not much depend on the details of the
model because only the scalar coupling A gy and the neutrino
Yukawa y, play important roles to determine the behaviours
of the Higgs potential at high energy scales. In this sense, the
same analysis is easily applicable to similar extensions of the
SM.

The organization of the paper is as follows. In Sect. 2, we
briefly explain the minimal model of dimensional transmuta-
tion [61,62] extended with right-handed neutrinos and study
the RG. In Sect. 3, we study the saddle point of the Higgs
potential at high scales. In Sect. 4, we discuss the critical
Higgs inflation. In Sect. 5, we show the method and results
for our numerical prediction for the inflationary observables.
Summary and discussion are given in Sect. 6. In Appendix
A, we list the two-loop renormalization group equations
(RGEs). In Appendix B, we summarize basic results for a
general single-field slow-roll inflation. In Appendix C, we
summarize basic results for the ordinary (non-critical) Higgs
inflation. In Appendix D, we show analytic results of expan-
sion around the saddle point.

2 Model

In this section, we introduce the minimal model for the EW
scale, neutrino masses, DM and the critical Higgs inflation.
The model is based on [61,62] whose scalar sector contains
two additional real singlet scalars S and ¢. We also take
into account heavy Majorana right-handed neutrinos ”ﬁe with

3 In Refs. [57,58], the bare Higgs mass too is required to vanish; see
also Ref. [59,60] for the discussion on bare mass in the SM.

4 Throughout this paper, we call a potential that has vanishing first and
second derivatives at the origin in the field space, V'|p—0 = V" |g=0 =
0, the CSI-type potential.
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Fig. 1 Typical examples of the effective potential resulting from the MPP

three generations. In order to make S a DM candidate, we
impose the Z, symmetry S — —S, with all the other fields
being invariant.

Here we briefly review the consequence of the MPP, focus-
ing on what kind of effective potentials the MPP can result in.
Before proceeding, we first note that the effective potential
exists independently of the renormalization scale, up to the
renormalization of the field, for a given set of bare parame-
ters. (In other words, the renormalization scale dependence
should only arise due to truncation at some loop level.) In
Fig. 1, we list examples of the possible effective potentials
resulting from the MPP: In panel A, we show the first kind of
tuning V=V e given in the original version of
the MPP [6-8]. In panel B, we show another one-parameter
tuning V' = V” = 0, which provides an explanation for
the CSI-type potential V’ 4=0 = %44 =0 = 0. This is also
the key assumption for the Coleman—Weinberg mechanism.
From this point of view, the CSI-type potential is just one of
the possible critical points, in the theory space, in the MPP.
In panel C, we show the potential (called CP 2-2) that is a
consequence of two-parameter tuning to realize two saddle
points V'|sp; = V"|sp1 = 0 and V'|spy = V"|sp2 = 0. We
stress that all the above potentials are achieved in the context
of the MPP irrespectively of any kind of scale invariance.
Therefore, it does not matter whether other fields such as the
right-handed neutrinos have mass parameters in the action or
not.

Among the various critical points analyzed so far, we take
the CP 2-2 defined in Ref. [62] that has two saddle points in
the effective potential, because the widest parameter region
is allowed by the constraints considered. The renormalized
Lagrangian is

1 1
L= Lsv— E(amz - E@LS)2

A ApS As
—AH(HTH)2—4—‘1’¢4—%¢2SZ—?S4

A . A
+ 2R )~ S ) - Bl

+

3
1 , 1 _
3 VRi v, vRi — 3 E 1 MRivRi€VRi
=

i=1

3 ¢
. v
- Z (yvijLiHcVRj + %(}5 VRi“VR; +h.c> , (D
ij=1

where Lgy is the SM Lagrangian without the Higgs potential
and without the right-handed neutrinos, and H¢ = iop H*.
Note that all the couplings in the Lagrangian are defined by
the zero-momentum subtraction scheme. These couplings are
the same as those in the effective potential. It is precisely these
couplings that are restricted by the MPP. Here, among several
realizations of the MPP, we choose a class of simple solutions
that satisfy the vanishing of all the terms with dimensionful

@ Springer



962 Page 4 of 18

Eur. Phys. J. C (2021) 81:962

couplings except for ¢3, namely, ¢, ¢>, S%, H'H, pH H,
and ¢S2. In Eq. (1), we have omitted these terms from the
beginning. Note that the renormalized mass of S around the
origin h = ¢ = § = 0 is set to zero by the MPP, while it
obtains the finite mass around the true vacuum as we will see
in Eq. (9).

For simplicity, we will make the following three assump-
tions. First, we take Ag to be zero at the EW scale since
it is irrelevant for our discussion.’ Second, we assume that
the Majorana Yukawa couplings ylfﬁ. are not large and do not
affect the other RG runnings.® Third, we assume that Majo-
rana masses are all degenerate each other, Mg = Mgy =
Mpg3 = Mg, and neglect the mixing in the neutrino Dirac
Yukawa couplings, i.e., yy;j = yuid;j. At the leading order

of M 1;1, the neutrino mass matrix becomes
: 2
(mu)ij = M&j}’w‘- (2)

We call the number of “heavier active neutrinos” n,,, namely
the degeneracy of the largest y,;: in the case of normal and
inverted hierarchies, we have n, = 1 and 2, respectively,
and when all the neutrino masses are degenerate, we have
n, = 3. Throughout this paper, we will use m, = 0.05 eV
[5] as the heaviest mass of active neutrinos.” The relation
between My and the largest y,, is then determined to be y, =~
0.41y/Mpg/104 GeV.

Here, we briefly review how the CW mechanism realizes
the EW symmetry breaking in our model with the MPP. The
effective potential for the ¢p—H system can be expressed at
one-loop level as

¢(HH)+ ¢>3+ ¢>
Mq%(qs) 1] S¢4

Verr = 2 (HTH)? +
M4
pC) [m

6472 w2 2| 25672

Apsp? 1
x[ln e — 3|+ aVicwnth . 3

where Mq%((l)) = up@ + )L¢¢2, and the renormalization
scheme applied in [61] is used. The AV]_jo0p term is the
1-loop potential for i given in Eq. (13). In this expression,

> This choice makes the perturbativity bound loosest, while keeping
the stability of the effective potential.

© If one wants, one can forbid it by a Z), symmetry ¢ — —¢ that is
softly broken by the ¢ term.

7" The current upper limit of the sum of the neutrino masses is given by
the Planck and baryon acoustic oscillation measurements as Y m, <
0.12eV (95% CL) [63], which corresponds to m, ~ 0.04 eV in the
degenerate case. Although it is ruled out, we also show the n,, = 3 case
in this paper to illustrate the n, dependence.

@ Springer

we assume that the H-loop contribution to the ¢* term as well
as the field dependent masses of ¢ and S coming from H are
negligibly small, which can be realized by taking Apy g << Ags
and Asg HTH « A¢s¢2. This potential can be rewritten at
the scale i = 4 where A4 vanishes as

ApH
H
29[ et 1

In _
S G [0 3]
2

X¢S¢2 — 1i| — )ﬂ¢4

as®* N
25672 2u2 2] am

2
Veff = )\,H <HTH - ¢2> + A‘/1—100[)(}17 I’L*)

“

In the following, we also assume that the Méqbz term is much
smaller than the )Lé S¢4 term.® Requiring the existence of the

two saddle points at ¢ = 0 and ¢ = @gaddie (CP2-2),9 e 18
determined to be

2 871215) H
1% Ad) ——¢ with ¢ = —l 2 —ye PG
¢ = 167 5 Psaddle> saddle 2 y .

&)

The vacuum expectation value (VEV) of ¢, (¢), is then deter-
mined as

(@) = "V (—epsaaate), (©6)

where W is the Lambert W function. Using Eqs. (5) and (6),
we obtain the relation between . and {(¢) as

242
8w k¢H:|

7
/\ngs M

Ags -
=2 (@)exp [—W(e h-
Now, it is clear that by looking at the first line of Eq. (4) the
EW symmetry breaking is triggered by (¢):

v )\-¢H
— |LZeH 8
@~ \ 2hm ®

where v ~~ 246 GeV. At the minimum, the squared masses
of ¢ and S are given by

8 Note also that other scalar couplings such as ¢|H|* and ¢S2, which
are set to zero by the MPP, are induced at the one-loop level as well.
However, in the present analysis, the mixing between H and ¢ is small,
and since we are interested in (S) = 0, these effects are small.

9 Note that this saddle point is nothing to do with the saddle point of
the Higgs potential discussed in the next section.
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where we have neglected the mixing between 4 and ¢. From
the above discussion, the six parameters A, Ay, Aps, s, ApH.,
and A gy in the potential are reduced by fixing the two param-
eters, v and the Higgs mass 125.1 GeV, and by taking A g to be
zero at the EW scale as aforementioned. The resultant three
parameters are

ms, Asu, (@), (10)

where 44 has been replaced by the scale . at which Ay
vanishes, and further converted to (¢) by Eq. (7).
The thermal relic abundance of S is satisfied when [62]

2
A3y +hgs = <@> , mp = 1590 4+40 GeV. (11)

Mth

This relation provides a contour of (¢) inthe m g vs A sy plane
as shown in Fig. 2: the red, magenta, green, and blue curves
correspond to (@) = 2.5 TeV, 3 TeV, 4 TeV, and 10 TeV,
respectively. We also show the other constraints on the model
parameters in the figure: The purple, orange, cyan, and yellow
shaded regions are excluded by the updated XENONI1T result
[64],'° the LHC results, DM relic abundance, and pertura-
bativity bound, respectively [62]. We note that these bounds
are insensitive to Mg.!!

In the following analyses of the critical Higgs inflation,
we choose the parameters on the dotted line in Fig. 2 that
is close to the perturbativity bound, to reduce the computa-
tional time.'> On the dotted line, there remains only single
parameter in the scalar sector, and we choose it to be Asy.
Therefore, there are two parameters Agy and My in total.
We choose these parameters in such a way that the Higgs
potential has a (near) saddle-point at high scale region.'?

10" For the region with the DM mass larger than 1 TeV, we extrapolate the
upper limit on the spin independent cross section for DM and nucleon
scatterings.

11 Mg might possibly affect the perturbativity bound via the RGE of
As and Agy, but its effect is only through the small A 5 coupling and is
negligible.

12 When we vary m s from the dotted line for a fixed A5y, the coupling
Ags changes via Eq. (9), but the running of A and Ay do not depend
on Ags at the one-loop level (see Eq. (56)), and hence the high-scale
Higgs potential is not altered drastically. Note also that, even though the
dotted line is close to the perturbativity bound, A sy (Which contributes
to running of A and Ay at one-loop) remains perturbative unlike A g, and
hence the effective Higgs potential is reliably computed.

13 Without the right-handed neutrinos, the high-scale potential value

tends to become too large to accommodate the observed value of the
tensor-to-scalar ratio; see also Ref. [22].

‘Eﬂev 4TeV
r Perturbativity

= 2000 <¢>=2.5TeV
S
£ 1500}
1000
500 . ; : ;
0.2 0.4 0.6 0.8 1.0
AsH

Fig. 2 Thesolid curves correspondto Eq. (11) for (¢) = 2.5 TeV (red),
3 TeV (magenta), 4 TeV (green), and 10 TeV (blue), with each width
corresponding to the error of my, = 1590 £ 40 GeV. Shaded regions
are respectively excluded by the XENONIT experiment (purple), the
LHC data (orange), DM abundance (cyan), and the perturbativity bound
(yellow). Regarding the perturbativity bound, the absence of Landau
pole up to 1 = 10'7 GeV is imposed

3 Saddle point of Higgs potential

Now that the TeV-scale couplings are obtained, we extrapo-
late them towards high scales. In this section, we analyze the
effective Higgs potential for large field values, and look for
its saddle point in order to realize the critical Higgs inflation.

3.1 Effective potential

We calculate the one-loop effective Higgs potential improved
by the two-loop RGEs presented in Appendix A. The one-
loop effective potential for large /4 in the MS scheme in the
Landau gauge is

A
V= H:M) h4 + AV, loop(h M), (12)
where
6My, (h) M)\ 5
AVl-loop(]”ly n) = 6472 In /,Lz — 8

3M3 (h) Min)\ 5
+ 6472 |:n ( u? "6

3M}H(h) [ (Mz(h)) 3}
1672 2

u?
3 oMb (h)[ (M2 (h)) 3}
2

~ L
@ Springer
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M (h) MZ(h) 3
v ()]
My (h) Mz 3
¢ ¢ 3

+ |:ln( 2 S a3

in which the effective masses are

2 2
o@h & + 8y yih
M h = —, M h = —h, M h - —,
w(h) > z(h) ) 1 (h) NG
(14)
R 2y h? 2 ASH 5
My (h)y=—11 1 Ve , Mg(h) = —h~°,
N; () < + .1+ Mlze s(h) 2
ApH 2
M2(h) = =2%h 15
p(h) = 2 (15)
and
T T /M
h:=he = hexp dsyy (16)
0

is the Higgs field with field renormalization. See Eq. (64)
in Appendix A for the one-loop result of y;,. We here rep-
resent N; as the mass eigenstates for the heavy Majonara
neutrinos. We neglect the contributions from the leptons and
quarks other than the top quark because their Yukawa cou-
plings are small. We also neglect the loops of the Higgs
and the NG bosons because Ly becomes small at high
scales.

In the following, we match two theories with and with-
out right-handed neutrinos around 4 = Mg, to obtain the
threshold correction. We expand the one-loop correction
from heavy neutrinos by & as

> My (h) | My )\ 3
_Z 272 | " u? 2

e ()

1 [3M}
- -3
3272 2
+ 2 Min,y? (—1+21 (—R>>
"
h4
+7nvy;‘ (1+21n( )) ] (17)

@ Springer

where the coefficient of 4* corresponds to the threshold cor-
rection to Ay below My [65-67]1:

va ﬂ
(M), "

The term containing In(Mg /) leads to the subtractions of
y;‘ term from the beta function. The same analysis can be
also applied to the field renormalization as

3 2
1 2 My.=(h)
—hOh|1— — jIn [ ————
1 1 Mpg
zthh[l—vavln<M>+...]’ (19)

from which we can see that the canonically normalized Higgs
field . in the low-energy theory is given by

1 Mg 1/2
he=h|1- o Snyy2In P —: hZg. (20)

This also leads to the redefinition of the quartic coupling.
By combing both of them, the Higgs quartic coupling below
nw = M R iS15

(R) .
Awy =

hi=anZpt 4+ Al
4n, 2 n nuyf,‘
=ap(1- In (-
”( 162”7 " (MR T
s
—1+2In(-—)). 21
X( * n<MR>> D

One can easily check that contributions from heavy neutrinos
cancel out in the beta function dA/d In .

In Fig. 3, we show the RG runnings of A and A 7, where the
upper left (right) panel corresponds to the normal (inverted)
hierarchy case and the lower panel corresponds to the degen-
erate case. The different colors correspond to the different
values of Agy (M;), and the top pole mass mfmle and My are
fixed at mpole = 172.4 GeV [5] and 4 x 10'* GeV, respec-
tively. As explained above, other parameters, (¢) and m g, are
fixed as functions of Lgy on the dotted line in Fig. 2 by the
thermal relic abundance of § to explain Qpmh? ~ 0.12.

14" The coefficient of 42 in Eq. (17) gives the threshold correction to
the Higgs mass-squared parameter in the low-energy theory. At the CP
2-2, the mass-squared parameter including this correction is tuned to
zero, based on the MPP. See Refs. [61,62] for the detailed discussion.
15 If we want, we may take into account the threshold correction of
2

S too: Akg) = ])Lg—ﬂ”z (% + % In ('"75)) This contribution is minor for
our analysis and we neglect it hereafter.
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Fig. 3 The RG runnings of A and A . Upper left (right) corresponds to the case of normal (inverted) hierarchy and lower panel corresponds to the
degenerate case. Here, the different colors correspond to the different values of Agy (M;)

3.2 Saddle point

In the following, we rewrite the one-loop Higgs effective
potential (12) as

het (B, 14) 4

V= , 22
: 22)
where

AVioop(h, 1)
et (. 1) = [AHW)e“““’ Ha— | @

Note that Aegr(h, ) is independent of the renormalization
point u if we take all order loop corrections into account.
For practical purpose with finite-loop, it better approximates
by choosing u ~ h.

In the SM without the right-handed neutrinos, it is known
that Aegr(h, h) in general takes a minimum value Ap;, at
h = hpin (> 1018 GeV); see the blue dashed line in Fig. 3.
Furthermore, by tuning the top mass, we can realize a saddle
point V.= V” = 0 at h = hy (= hpy) [1]. (This tuning
may be done within the 1.40 experimental bound as stressed
in Introduction.) However, this saddle-point itself is not suf-
ficient to achieve a viable saddle-point inflation because the

resultant CMB fluctuations become too large [42,68,69]. By
introducing the non-minimal coupling &|H|*R, a success-
ful inflation can be achieved around the (near) saddle-point
even when & ~ 10[1,19,20]. This is called the critical Higgs
inflation.

In this paper, we pursue the critical Higgs inflation in
our model at the CP 2-2. The detailed analysis will be pre-
sented in the next section. In the remaining of this section,
we look for the saddle point in our model. When we take
into account the right-handed neutrinos, they first lower Ay
above Mg, and at higher scales, the extra scalar couplings
become large and their contributions raise Ay again. As a
result, we may have a minimum for Az at a high scale as can
be seen in Fig 3, e.g. with the orange curve for the normal
and inverted hierarchy cases, and green for the degenerate
case.

In general, the condition to have a saddle point is

’ /1

, 1dhesr(h, h
VeV =0 o erlhh) 4~ 2t

4 dinh
dhei(h, h)  d*hegi(h, h)

— 122t (h. h) + 8 -
eft (. 1) + 8= d(In h)?

(24)
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Again, we call the position of saddle-point s . As said in
the last of Sect. 2, there is only single parameter Agy in the
scalar sector. For each given A gy, we numerically solve for
Mg that achieves the saddle-point condition (24), and obtain
its position .

In the upper left panel in Fig. 4, we show the Higgs poten-
tial in the case of the normal hierarchy where the differently
colored contours correspond to the different values of Agy.
Here, the Higgs field /4 is normalized by /. In the upper right
panel, we plot the value of My as a function of Agy that is
determined by the saddle point condition (24). In the lower
left panel, we show A, as a function of Agy where blue and
red correspond to the normal and inverted hierarchy cases,
respectively, while green to degenerate. One can see that /i
has a strong dependence on Asy, which causes the strong
dependence of the value of the potential around the saddle
point on Aggy in the upper left panel.

The above numerical result can be fitted by an analytic
formula as follows. Around the minimum 4 = hp;, giving
the minimal value of A.fr, we may always approximate as [1]

b ho\?
Aett(h, h) = Amin + = | In . (25)
2 hmin

Within this approximation, we see that the potential has a
saddle point V' = V” = 0 at h = hy; when and only when
Amin 1S tuned to a critical value A, = A Where

hy = e hugin, (26)

he = b (27)
<73

That is,

b RN %

We fit b and hg from the numerical analysis above. As a
consistency check, we also plot the Higgs potential whose
effective coupling is replaced by the analytical one (28) in
the upper left panel in Fig. 4 by dashed black lines. One
can actually see that the analytical ones well approximate
the effective Higgs potential around the saddle point. In the
next section, we will use Eq. (25) with A, close to A, as in
Eq. (50), to study the critical Higgs inflation. In particular, the
minimum value A, is important because it also determines,
along with ’g, the value of the potential during the inflation.
Qualitatively, small A, will turn out to be favorable to realize
successful inflation with small & < 100.

In the lower right panel in Fig. 4, we show the numerical
calculations of A, as a function of Agg. From this plot, one
can see that A . is a monotonically increasing function of A gy
and its order of magnitude is 107> around A g ~ 0.3. This

@ Springer

corresponds to b = O( 104 by Eq. (27). We will see that
the region with small Agp is preferred to realize a successful
inflation for small £.'° Therefore, in the inflationary analysis,
we will show the results in the region Asy < 0.3.

4 Critical Higgs inflation

In this section, we study the critical Higgs inflation of our
model at the CP 2-2. We take full advantage of the saddle
point of the Higgs potential. The existence of the saddle point
makes it easy to obtain the sufficient number of e-foldings N
even when & < 100; contrary to the conventional case, the
tensor-to-scalar ratio r does not have to be related to N as
r~ 1/N2, and it can be sizable ~ 0.05. In Sect. 5.1, we will
show our numerical calculations of CMB observables.

Here we comment on the other fields. During the critical
Higgs inflation, the Higgs potential is flat, while other scalar
fields have large masses due to the couplings Ayp and Agy
with the large Higgs field, so they do not play a role in the
inflation analysis. As for the renormalization scale, since we
are considering the case where only the Higgs field is large,
we can consider the Higgs field / as a renormalization point
and use the single-scale renormalization group.

4.1 Higgs inflation at classical level

We first review the Higgs inflation with non-minimal cou-
pling £h%R at the classical level [28,70]. We start with the
Jordan-frame action

M2
Sa="F [aevmg@mr, - [ dve
1
x [z(ahﬂ + vd(h)} : (29)
where we have truncated the potential and Weyl factor at the
quartic and quadratic orders, respectively:
2

201 — L
Q) =146 (30)

A
Va(h) = fh“,
P

By performing the following redefinition of the metric,

guv = Qg1 31)

we obtain

R;=Q? [R +30m Q% — %g’w(au In 2%)(3, In 92)} .
(32)

16 Higgs inflation with £ = O(10%) [28,70] is always possible at the
expense of the small cutoff scale Mp/£.
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Fig. 4 Upper Left: the one-loop effective Higgs potential in the normal
hierarchy case where the different colors correspond to the different val-
ues of Ag gy (M;). Here, dashed black curves represent the Higgs potential
whose quartic coupling is replaced by the analytical one (28). Upper
Right: the relation between Mg and A5y (M;) determined by the saddle

Then the Einstein-frame action becomes

1

1
Se = /d4x~/—g (EMlgR - ﬁ(ah)z
—ZM%(BM In Q)2 — Ua(h) + -- ) , (33)
where
_ Val
Ua) = qis (34)

is the potential in the Einstein frame. Since V,; is quartic, the
following relation holds

Ua(hy = 22 (L>4 _ v1<L) 35)
¢ 4 \ Q0 NaQwm )’

In the h — oo limit, we have

h Mp

o Me 36
Q) | JE (30)

‘mt"°'e=1‘72.4Ge‘V

1x 1015 L

; 5x 1014 [

()

9,

x — Normal

= — Inverted
1x 10"}

- Degenerate

5x10"3}|

03 04 05 06 07
AsH(My)

mP**=172.4GeV

0.001f |

v B Normal
. X r
— Inverted
1-><10':' — Degenerate
< 5.x107°¢
1.x 1075}
5.x1078t

0.3 0.4 0.5 0.6 0.7
Ash

point condition (24). Lower Left: the saddle point /; as a function of

Asw (M;), where blue and red correspond to the normal and inverted

hierarchy, while green to degenerate. Lower Left: the minimum value
of Ay as a function of Agy (M;)

Therefore for large h, the Einstein-frame potential U (h)
becomes constant:

Mp> _ haMg a7

Ua(h) — Vcl(ﬁ 452

This flat potential is used in the Higgs inflation.
The relation between the canonically normalized Einstein-
frame field x and the Jordan-frame field 4 is given by

Q2+ 65202/ M3
ax _ . (38)

dh ~ Q2

Under the slow-roll approximation, we obtain

A 502
E—;l ~ 6.0 x (ﬁ) x 10710 (39)

tofit Ay = U/(247T2M1§8v) to the observed value 2.1 x 10~
at the e-folding N; see Appendix C. We see that the typical
SM value at low energy A ~ 0.1 requires large value of
£~ 100.
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4.2 Higgs inflation including radiative correction

At the quantum level in the flat spacetime, we promote V¢ (%)
to the effective potential

V(h) = Viree (1, 1) + AVioop (1, 1), (40)

where Vi is the tree-level potential including the field renor-
malization and AVieep is the loop correction; see Eq. (12)
for the 1-loop approximation. In this paper, we employ the
Einstein-frame effective potential on the so-called Prescrip-
tion I,

A (et Wpt

v ="

+ AUloop(hv "), 41

where AUl is obtained from A Viqop in Eq. (40) by replac-
ing all the effective masses My (h) with M‘”T(h) forv = W.,Z,
t,vi, S, and ¢:

AUloop(hv w) = AVioop (h, w) (42)

My (h) *
My (h)— 2

See Ref. [71] for the meaning of this prescription as well
as ambiguity due to indeterminacy of non-renormalizable
terms. Because the potential should not depend on p (if one
takes all order corrections into account), we may replace w
by u/Q'7:

ru (et @nt p
Uh) = — iof + AVloop(h, 5)‘M\p(h)4>MWT(h)
g (e T@pt
= %T‘FQAV]O@U’Z’ M) - (43)

When we truncate the loop correction at the 1-loop order, we
can obtain better approximation by choosing u to be around
h to minimize the higher loop corrections:

v =4

h
1 (kﬂ(g)e4r(é)h4 + AVitoop(h, h)) @
This is the expression we employ in the following. When
yyih is sufficiently larger than Mg, all the effective masses
are proportional to &, therefore A Vy_jo0p (A, 1) is proportional
to h* whose coefficient is independent of /1 (up to higher order
corrections), and hence we obtain

h
Uh) = V(§> . (45)

17 In the second line of Eq. (43), we have assumed that the  depen-
dence in AVloop(h, n/S2) disappears by the replacement M, (h) —
M, (h)/ 2. At one loop level, we can easily check this from Eq. (13).

@ Springer

Thus, after taking into account the quantum corrections, the
same relation still holds as Eq. (35) on Prescription I, and
again the Einstein-frame potential (45) becomes constant for
En* /M3 > 1:

i — rer(atmoam) (n (%)
"= 4 (Q(h)) 4
y (ﬂf (46)
)

Unless )\.gff(%, %) is particularly small, we still need large

& to fit Ay. In fact in the SM, it is known that Acg(h, h)
becomes small around &2 ~ Mp, which is an essential ingre-
dient in the critical Higgs inflation.

4.3 Critical Higgs inflation

As can be seen from Eq. (45), when V(h) has a sajddle poipt
at h = hy, U(h) also hElS a saddle point at & = hy, with Ay

being determined by # = hy:

hy = — (47)

where we have introduced

e nVE 48)
Mp

This parameter is the ratio of iy to Mp/+/Z; the latter is the
typical value of & above which the conformal factor <2 (k)
starts to deviate from unity. One can see that hy approaches
infinity as ¢y /' 1, which means that the small region around
the saddle point 7 = hy is widely stretched, and allows a
sufficient e-folding.

In the critical Higgs inflation, we assume that the high-
scale Higgs potential is close to a one having a saddle point,
namely, Anin in Eq. (25) is close to A, given by Eq. (27):

Amin = (1 +8) Ac, (49)

where we have parametrized the deviation from the saddle-
point criticality by 8. Then the flat-space effective potential
becomes

heit (h, h Ac Y
V(h) = #h“: T |:1+5+16 (m (m» :|h4.
s

(50)



Eur. Phys. J. C (2021) 81:962

Page 11 of 18 962

m®®=172.4GeV, Normal Hierarchy, Asy(M;)=0.5

— ¢s=0
1075}  — cs=02
— ¢s=0.5
— 1073 s=0.7
‘% 10 — 5=0.9
o,
D 107}
10%F f
0 2 4 6 8 10

hihs

Fig. 5 The Higgs potential in the Einstein frame

Using Egs. (45) and (48), we see that U approaches the
constant value in the 7 — oo limit

U(h)—)k[1+5+(l+4lnc)2]£§ (51)
4 S Ezv

which determines the value of the potential during the infla-
tion. In this paper, we will focus on ¢; < 1 and take full
advantage of the saddle point of the Higgs potential.

In Fig. 5, we show the Higgs potential in the Einstein
frame where different colors correspond to different values
of ¢;. Here, we show the the normal hierarchy case with
Asg (M;) = 0.5 for illustration.

One can see that the region around the saddle point 7 = hj
is more and more stretched as we increase c¢; toward unity.
Therefore, foragivenc; < 1, we may always fit the e-folding

~

N around & = hy2 by tuning §.!8

5 Prediction on inflationary observables

Here, we analyze the prediction on inflationary observables
as we vary the parameters in the model. So far, we have three
free parameters: Asg, Mg, and £. Recall that the scalar sector
has only one parameter A sy in our analysis on the red dotted
line in Fig. 2.

On the other hand, we have seen that the Jordan-frame
potential can be parametrized near the saddle-point criticality
by Ac, §, and A as Eq. (50). Here, these three parameters are
functions of the model parameters A5y and Mp.

In order to sweep the parameters near the saddle point, we
use the results of Sect. 3.2: For each Agy, we find the value
of Mg that gives the saddle-point criticality, § = 0, as well as
the corresponding parameters 4 and A.. See the upper-right,

18 The tuning of Amin to A, is favored by the maximum entropy principle
because the more the space is expanded by the inflation, the more the
total entropy emerges [10, 14].

lower-left, and lower-right panels in Fig. 4 for Mg, hg, and
Ac, respectively. For a given Agy, as we slightly change Mg
from the critical value, in general all of the parameters A,
hg, and § are modified. Here, we neglect the change of A,
and &, and take into account the effect of non-zero §.

Now we take into account the non-minimal coupling &.
Among three parameters &, Asg, &, the last one is traded with
e-folding N using Eq. (66). The observables ng and r are
functions of & and Agy once e-folding N is fixed by 8.

5.1 Results

In Fig. 6, we show the values of &, ¢, and Agy in the
ng-r plane for N = 60 with the central value mfmle =172.4
GeV: The upper left (right) panel corresponds to the normal
(inverted) hierarchy case, and the lower panel to the degen-
erate case. The values of & and ¢ are shown by the solid
and dashed lines, respectively, while sy by the numbers on
the solid line. The dark (light) blue region is allowed by the
combined analysis of Planck 2018 at the 65% (95%) CL.
From these results, one can see that our model at the CP 2-2
is consistent with the current CMB observations even when
& = 25. The smaller the r, the larger the required value of
&: If the upper bound becomes r < 0.04 (0.02), we need
& 2 30 (40).

We see that we typically have Agy ~ 0.32, which corre-
sponds to the large Majorana mass as

5x 103GeV < Mi <2 x 10MGeV (52)

from the upper right panel in Fig. 4.

In Fig. 7, we also show dng/d Ink vs ng, where ¢; and &
are again shown as in Fig. 6. In this case, the observational
error of dng/d Ink is still too large to constrain the inflation
potential.

6 Summary and discussion

Motivated by various fundamental issues in particle physics
and cosmology, we have discussed the minimal model that
can explain EW scale, neutrino masses, DM, and success-
ful inflation at the same time. The model adds right-handed
neutrinos to the two-scalar model in Refs. [61,62], which
has been proposed to explain the origin of EW scale and
DM. These two scalar fields give a minimal setup to real-
ize an analogue of the CW mechanism. Assuming the Z;
symmetry of a scalar, § — —J, it can be a candidate for
DM, similarly to the Higgs-portal scalar DM model. Neu-
trino masses are naturally explained by the seesaw mecha-
nism.

In this paper, we have analyzed RGEs, calculated the
effective Higgs potential, and studied the critical Higgs infla-
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Fig. 6 Upper Left (Right): r vs ng in the case of the normal (inverted) hierarchy where ¢ (£) is fixed on each solid (dashed) curves and Agy (M;)
is varied. The blue regions correspond to the allowed regions by Planck 2018. Lower: the degenerate case

tion that uses the (near) saddle point of the Higgs potential at
a high scale. The new scalar coupling Asy between the SM
Higgs and DM § can stabilize the Higgs potential even if
the top mass is current center value m; = 172.4 GeV. In our
model, it is possible to maintain the existence of saddle point
by the neutrino Yukawa coupling y,, and the saddle point
condition relates the parameters of the model as is shown in
Fig. 4.

By utilizing the saddle point of the Higgs potential, we
have found that it is possible to realize successful inflation
even for & ~ 25 within the parameter space where all the
necessary requirements are satisfied. As a result, we obtain
Asy =~ 0.32 and (¢p) >~ 2.7 TeV, which correspondingly lead
to the dark matter mass mg ~ 2.0 TeV, its spin-independent
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cross section 1.8 x 102 pb, and the mass of additional neutral
scalar myg ~ 190 GeV.

Finally, we mention testability of our model at collider
experiments and future directions of this scenario. Since the
DM should be as heavy as a TeV range in order to satisfy the
relic abundance and the constraints from the direct searches,
the detection of the extra Higgs can be an important probe
of our model similarly to the Higgs singlet model. On the
benchmark points shown in Fig. 1, the mass of the additional
Higgs boson is predicted to be in the range of 70-200 GeV, so
that it can be produced at future lepton colliders such as the
International Linear Collider (ILC) via the Z boson strahlung
process. Therefore, our model can be tested at the ILC and/or
its energy upgraded version.
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Fig. 7 Upper left (right): ng vs dng/d Ink in the case of the normal (inverted) hierarchy where ¢ (&) is fixed on each solid (dashed) curves. The
blue regions correspond to the allowed regions by Planck 2018. Lower: the degenerate case

Our model can be well tested at the near future DM
detection experiments such as XENONnT. If the whole
region is excluded by them, one of the simplest exten-
sions would be introduction of extra heavy fermions that
are singlet under the SM gauge symmetry but are odd
under Z, such that they lower the quartic scalar cou-
plings in the RGE running to make the perturbativity bound
milder.

It would be interesting to analyze all the possible critical-
ities along the line of the current work. Moreover, we can
also come up with a lot of interesting phenomena within this
model such as a possibility of producing primordial Black
Hole by Higgs inflation [72-75], spontaneous leptogenesis
[76-80], (p)reheating dynamics and so on. We would like to
discuss those possibilities in future investigations.

Finally, we comment on possible systematic errors intro-
duced by higher-order corrections. We have used the one-
loop effective potential to discuss the MPP at the TeV-
scale, and two-loop RGE:s to extrapolate from there to high
scales. The higher-order corrections are further suppressed
at approximately Ay /872 < few percent, compared to the
corrections currently considered. The same degree of correc-
tions applies to the potential value o A ;; and the inflationary
predictions derived from it.
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Appendix A Two-Loop RGEs

Here, we summarize the two-loop RGEs. Our calculations
are based on [81-84].
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5 131 5 5, 225
— 2Apy; + ]6gyy,+ 6

15, 5 s
+n <8g2+8gY>yv
1187g%  23¢%
A T
216 4

+ 623 +

= g3yf +36g3y7

3 19
- Zg%g% +9g3g3 + gggg?y}, (62)

d)’v ) 3 3, 9,
— 3 _Z
G = e g )R - ge g

(4]1)4{ (D)t T2y

+ 617 +2T+ z — 12anyl + g7

(1))

e (485y2 . <158nv . _65> y3>

+20g3y7 + 33? - 2%% -~ 2g2 5} (63)
e <Z B+ 36— 3i- uyv> (64

Appendix B Single-field slow-roll inflation

Here we summarize basic results for the single-field slow-roll
inflation.
The slow roll parameters are defined by
M2 U//

M (U
E = — —_— s =
=5 \u =Sy

U/// U/
§3=M§< U)(U)’ (65)

where U is the inflation potential in the Einstein frame and
the prime represents the derivative with respect to x.

The number of e-foldings from a field value yx to the end
of inflation is given by

N—/dtH~ 1 /X* ax_ (66)
a B MP Xend 28‘/ .
The CMB observables are given by
v 16¢ 1 —6ey +2
= r = , ne = — s
s 24772Mg<9v % s v nv
dns 2 2
dh:k = l6eyny — 24ey, — 24y, (67)

within the slow roll approximations, where Ay, r, ng, and
% are the scalar power spectrum amplitude, tensor-to-
scalar power ratio, scalar spectral index, and its running. The

current observational bounds by Planck 2018 are [63,85]

Ay = 21017590 % 1077, (68% CL)
r < 0.056, (95% CL)
ns = 0.9665 + 0.0038,
dng
=0.013 +0.024, (68% CL)  (68)
dInk

at the pivot scale k, = 0.05Mpc™!.
Under the slow-roll approximation, the scalar amplitude
Ay is given by Eq. (67). We note that r and the value of
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poltentlal U is related each other by fixing A; to the observed % [1 e % ¢ \/gXMP } ’ (74)
value:

U~15x10"° [Orﬁ] M (69)

see also Ref. [22].

Appendix C Ordinary Higgs inflation without criticality

For i/lii >> 1 we have simple relations for the slow roll param-
eters ’
4 2 x 3
ey @ —exp| -2y z— | = —,
3 3 Mp 4N?
4 2 x 1 (70)
~——exp|—/z— | =——,
=T3PV 3 M N

and they provide one of the best fits to the CMB observations
for the reasonable values of e-folding N = 50-60 (corre-
sponding to the pivot scale).

Qualitatively, the typical value of £ can be estimated as
follows. Putting the potential (51) with Aegp ~ Ae ~ 107°
into Eq. (69), one can easily check that & is around 30.

Appendix D Expansion around saddle point

For qualitative understanding, it is also helpful to derive the
expansion of V around /. We first expand as

A A
V= S (= ) + fhf(h — hy)?

by
+ 3—?hs(h —h) ..., (71)

where

A = Ael, Ao =3A.8, Az =32h. (72)

As we explain in Sect. 4.2, the Higgs potential in the Einstein
frame also has a saddle point at 4 = h;Q2. We are interested
in the parameter space ¢y ~ 1 < h s> hy ~ %, which
guarantees the large field expansion of x as a function of 4.
As a result, we have

dx oMy NARAWITY A
we [ (%) M

P 3 P
i~ 212 v VE

@ Springer

where ¢ := h/ <. Then, U and its derivatives with respect to
X are

U~ Reps 2 2ot (%)4 (75)
4 4 \VE
U g dU
ax  9x 0p
Mp ,—2x/(/6Mp)
~ ﬁ«/_6—ﬂ/h> (Alh? + Azh§(¢ — hy)

A3hyg
- (¢ — hs)z)

2

a3 Yen?
> VE Se—zx/wEMp)[‘S Il

~ —r2 J—

V6Mp 32 32

1 - 2x 1 1 - 2x 2
x(l—c—=e YoMp | 4 — (1 —c— —e “oMp ,
2 2c2 2

(76)

Mp 13
?U _M,zxwaw L2
dIx* 3ME 32

348 [ 1
+a (1= e3¢ % )4 o

32c 2c2
o~ 2x/(V6Mp)

| -2 \?
x| 1—c—=e VoMp ) —
2 2
36 1 1 -2
{§+C—2(1—C—56 ‘/EMP)}i|, (77)

where we have used Eq. (71). When ¢ ~ 1, the slow roll
parameters are approximately given by

2 2 2
(LY (2) o,

2 U 3 \c
U’ 48
n= M~ —ge—zmeﬂ, (78)

where a = Aj/Ag = 1+ (B5./44)|p=¢,.- Compared to the
conventional case, we have additional suppression factor §
thanks to the saddle potential. Note that, when ¢ < 1, we
can no longer trust Eq. (78).
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