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Abstract We propose a minimal model that can explain
the electroweak scale, neutrino masses, Dark Matter (DM),
and successful inflation all at once based on the multicritical-
point principle (MPP). The model has two singlet scalar fields
that realize an analogue of the Coleman–Weinberg mecha-
nism, in addition to the Standard Model with heavy Majo-
rana right-handed neutrinos. By assuming a Z2 symmetry,
one of the scalars becomes a DM candidate whose prop-
erty is almost the same as the minimal Higgs-portal scalar
DM. In this model, the MPP can naturally realize a saddle
point in the Higgs potential at high energy scales. By the
renormalization-group analysis, we study the critical Higgs
inflation with non-minimal coupling ξ |H |2R that utilizes the
saddle point of the Higgs potential. We find that it is pos-
sible to realize successful inflation even for ξ = 25 and
that the heaviest right-handed neutrino is predicted to have
a mass around 1014 GeV to meet the current cosmological
observations. Such a small value of ξ can be realized by the
Higgs-portal coupling λSH � 0.32 and the vacuum expec-
tation value of the additional neutral scalar 〈φ〉 � 2.7 TeV,
which correspond to the dark matter mass 2.0 TeV, its spin-
independent cross section 1.8 × 10−9 pb, and the mass of
additional neutral scalar 190 GeV.

1 Introduction

The observed Higgs mass supports the assumption that the
Standard Model (SM) is not much altered up to the Planck
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scale. More precisely, the critical value of the top-quark pole
mass is about mpole

t,critical � 171.4 GeV [1] for the theoretical
border between stability and instability (or metastability) of
the effective Higgs potential for the observed Higgs mass
�125 GeV; see also Refs. [2–4].1 This critical value of the
top pole mass is consistent at the 1.4σ level with the latest
combination of the experimental results mpole

t = 172.4±0.7
GeV [5]. Surprisingly, the degenerate minimum of the Higgs
potential at the critical top mass coincides with the Planck
scale, and such a behavior of the potential has a lot of impli-
cations to high energy physics and cosmology. This inter-
esting behavior of the Higgs potential can be understood by
the multicritical-point principle (MPP) [6–16] (see also Refs.
[17,18]) that “coupling constants that are relevant at low ener-
gies are tuned to a multicritical point around which the vac-
uum structure drastically changes when they are varied.” We
note that existence of a saddle-point around the Planck scale,
rather than a degenerate vacua, is another possible form of
multicriticality. This fact is used in the critical Higgs inflation
[1,19–22] explained below.

Besides such interesting behavior of the Higgs potential,
there are many mysteries and problems in particle physics
and cosmology. For example, we have not yet understood
the origin of electroweak (EW) scale v = 246 GeV, which is
hugely small compared to the Planck or string scale 1018 GeV
at which people believe that there must exist an unified theory
which includes quantum gravity. Further, the Majorana-mass
scale for the right-handed neutrinos is unknown in the SM
with the seesaw mechanism [23–27]. Moreover, the recent
observations in cosmology, including that of the cosmic
microwave background (CMB), have established the exis-
tence of (cold) dark matter (DM). It motivates us to consider

1 With the current central valuemH = 125.1±0.1 GeV [5], the critical
top mass becomes mpole

t,critical � 171.2 GeV [4].

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09735-z&domain=pdf
mailto:yhamada@fas.harvard.edu
mailto:hkawai@gauge.scphys.kyoto-u.ac.jp
mailto:kawana@snu.ac.kr
mailto:odakin@phys.sci.osaka-u.ac.jp
mailto:yagyu@het.phys.sci.osaka-u.ac.jp


  962 Page 2 of 18 Eur. Phys. J. C           (2021) 81:962 

a new particle whose interactions with the SM particles are
relatively weak.

In addition, the CMB fluctuations may also provide hints
for further new physics since they are seeded at high energy
scales during inflation. Current observation is consistent with
single-field inflation models, among which the Higgs infla-
tion provides one of the best fits [28–31]. In particular, the
critical Higgs inflation is inspired by the possible existence
of the saddle point around the Planck scale in the MPP, which
helps to flatten the Higgs potential and allows rather small
value of the non-minimal coupling ξ = O(10) in ξ |H |2R.
(The not-so-large coupling is favorable from unitarity [32–
36].)

In this paper, we consider the most economical model that
can simultaneously explain all the above issues: the critical
Higgs inflation, neutrino masses, EW scale, and DM.2 The
model consists of two additional real singlet scalar fields
and the SM with the right-handed neutrinos. As a result,
we manage to predict the parameters in a well determined
narrow region by taking into account the constraints from
the DM relic abundance, its direct detection experiments, the
CMB fluctuations, and the latest LHC data, while keeping
the perturbativity up to the Planck scale. We find that the
Higgs-portal coupling and the vacuum expectation value of
the additional neutral scalar are fixed to be λSH � 0.32 and
〈φ〉 � 2.7 TeV, resulting in the dark matter mass 2.0 TeV, its
spin-independent cross section 1.8 × 10−9 pb, and the mass
of additional neutral scalar 190 GeV.

The motive behind this model is as follows. If mpole
t >

mpole
t,critical, the instability of the Higgs potential requires addi-

tional positive contributions to the renormalization group
(RG) of the Higgs quartic coupling λH . The simplest pos-
sibility is to introduce a real scalar field S that couples to the
SM Higgs doublet H via a quartic interaction λSH |H |2S2.
(This is nothing but the Higgs-portal DM model [38–41].)
However, such an extension could yield too large a tensor-
to-scalar ratio of the CMB in the (critical) Higgs inflation,
because of the raised Higgs potential at high scales; see e.g.
[22,42]. We can resolve this issue by introducing additional
superheavy fermions that lowers the Higgs potential at higher
scales, while keeping the above mentioned positive contribu-
tion from the scalar at lower scales. Therefore, it is reasonable
to assume a high-scale seesaw in which right-handed neutri-
nos have large Majorana masses MR and large Yukawa cou-
plings yν . In fact, it is possible to maintain the saddle point
of the Higgs potential at high energy scales in the existence
of new scalar field(s) when MR ∼ 1014 GeV [22]. This is
also one of the interesting predictions of the MPP.

2 Quite recently, a similar scenario to simultaneously explain these
problems has been studied in Ref. [37] in the context of the classi-
cal scale invariance, in which a fermionic DM candidate is considered.
In our scenario, we consider the MPP and a scalar DM candidate.

So far, the MPP has not explained the origin of the EW
scale. In fact, we may do so as follows. It is known that
the Coleman–Weinberg (CW) mechanism [43] can naturally
explain the hierarchy between the EW and Planck scales
through the dimensional transmutation. Important assump-
tion behind the CW mechanism is that the renormalized
mass-squared parameter vanishes at the origin of the scalar
field space. This assumption is called the classical scale
invariance (CSI) [44–56].3 On the other hand, such CSI-type
potentials can be naturally understood as one of the possible
multicriticities in MPP without referring to scale invariance
[61,62].4 From this MPP point of view, the simplest real-
ization of the dimensional transmutation is achieved by only
two real singlet scalar fields, one of which is S mentioned
above [61,62].

Although we will focus on a specific model proposed in
[61,62] (namely only the CP 2-2 among various multicritical
points in the parameter space) in the following, the analysis
of Higgs inflation does not much depend on the details of the
model because only the scalar coupling λSH and the neutrino
Yukawa yν play important roles to determine the behaviours
of the Higgs potential at high energy scales. In this sense, the
same analysis is easily applicable to similar extensions of the
SM.

The organization of the paper is as follows. In Sect. 2, we
briefly explain the minimal model of dimensional transmuta-
tion [61,62] extended with right-handed neutrinos and study
the RG. In Sect. 3, we study the saddle point of the Higgs
potential at high scales. In Sect. 4, we discuss the critical
Higgs inflation. In Sect. 5, we show the method and results
for our numerical prediction for the inflationary observables.
Summary and discussion are given in Sect. 6. In Appendix
A, we list the two-loop renormalization group equations
(RGEs). In Appendix B, we summarize basic results for a
general single-field slow-roll inflation. In Appendix C, we
summarize basic results for the ordinary (non-critical) Higgs
inflation. In Appendix D, we show analytic results of expan-
sion around the saddle point.

2 Model

In this section, we introduce the minimal model for the EW
scale, neutrino masses, DM and the critical Higgs inflation.
The model is based on [61,62] whose scalar sector contains
two additional real singlet scalars S and φ. We also take
into account heavy Majorana right-handed neutrinos νiR with

3 In Refs. [57,58], the bare Higgs mass too is required to vanish; see
also Ref. [59,60] for the discussion on bare mass in the SM.
4 Throughout this paper, we call a potential that has vanishing first and
second derivatives at the origin in the field space, V ′|φ=0 = V ′′|φ=0 =
0, the CSI-type potential.
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Fig. 1 Typical examples of the effective potential resulting from the MPP

three generations. In order to make S a DM candidate, we
impose the Z2 symmetry S → −S, with all the other fields
being invariant.

Here we briefly review the consequence of the MPP, focus-
ing on what kind of effective potentials the MPP can result in.
Before proceeding, we first note that the effective potential
exists independently of the renormalization scale, up to the
renormalization of the field, for a given set of bare parame-
ters. (In other words, the renormalization scale dependence
should only arise due to truncation at some loop level.) In
Fig. 1, we list examples of the possible effective potentials
resulting from the MPP: In panel A, we show the first kind of
tuning Vφ=φours

= Vφ=φanother
given in the original version of

the MPP [6–8]. In panel B, we show another one-parameter
tuning V ′ = V ′′ = 0, which provides an explanation for
the CSI-type potential V ′∣∣

φ=0 = V ′′∣∣
φ=0 = 0. This is also

the key assumption for the Coleman–Weinberg mechanism.
From this point of view, the CSI-type potential is just one of
the possible critical points, in the theory space, in the MPP.
In panel C, we show the potential (called CP 2-2) that is a
consequence of two-parameter tuning to realize two saddle
points V ′|SP1 = V ′′|SP1 = 0 and V ′|SP2 = V ′′|SP2 = 0. We
stress that all the above potentials are achieved in the context
of the MPP irrespectively of any kind of scale invariance.
Therefore, it does not matter whether other fields such as the
right-handed neutrinos have mass parameters in the action or
not.

Among the various critical points analyzed so far, we take
the CP 2-2 defined in Ref. [62] that has two saddle points in
the effective potential, because the widest parameter region
is allowed by the constraints considered. The renormalized
Lagrangian is

L = LSM − 1

2
(∂μφ)2 − 1

2
(∂μS)2

− λH (H†H)2 − λφ

4! φ4 − λφS

4
φ2S2 − λS

4! S
4

+ λφH

2
φ2(H†H) − λSH

2
S2(H†H) − μφ

3! φ3

+ 1

2

3
∑

i=1

νRiγ
μi∂μνRi − 1

2

3
∑

i=1

MRiνRi cνRi

−
3

∑

i, j=1

(

yνi j Li H
cνRj + yφ

i j

2
φ νRi cνRj + h.c

)

, (1)

whereLSM is the SM Lagrangian without the Higgs potential
and without the right-handed neutrinos, and Hc ≡ iσ2H∗.
Note that all the couplings in the Lagrangian are defined by
the zero-momentum subtraction scheme. These couplings are
the same as those in the effective potential. It is precisely these
couplings that are restricted by the MPP. Here, among several
realizations of the MPP, we choose a class of simple solutions
that satisfy the vanishing of all the terms with dimensionful
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couplings except for φ3, namely, φ, φ2, S2, H†H , φH†H ,
and φS2. In Eq. (1), we have omitted these terms from the
beginning. Note that the renormalized mass of S around the
origin h = φ = S = 0 is set to zero by the MPP, while it
obtains the finite mass around the true vacuum as we will see
in Eq. (9).

For simplicity, we will make the following three assump-
tions. First, we take λS to be zero at the EW scale since
it is irrelevant for our discussion.5 Second, we assume that
the Majorana Yukawa couplings yφ

i j are not large and do not

affect the other RG runnings.6 Third, we assume that Majo-
rana masses are all degenerate each other, MR1 = MR2 =
MR3 = MR , and neglect the mixing in the neutrino Dirac
Yukawa couplings, i.e., yνi j = yνiδi j . At the leading order
of M−1

R , the neutrino mass matrix becomes

(mν)i j = v2

2MR
δi j y

2
νi . (2)

We call the number of “heavier active neutrinos” nν , namely
the degeneracy of the largest yνi : in the case of normal and
inverted hierarchies, we have nν = 1 and 2, respectively,
and when all the neutrino masses are degenerate, we have
nν = 3. Throughout this paper, we will use mν = 0.05 eV
[5] as the heaviest mass of active neutrinos.7 The relation
between MR and the largest yν is then determined to be yν �
0.41

√

MR/1014 GeV.
Here, we briefly review how the CW mechanism realizes

the EW symmetry breaking in our model with the MPP. The
effective potential for the φ–H system can be expressed at
one-loop level as

Veff = λH (H†H)2 + λφH

2
φ2(H†H) + μφ

3! φ3 + λφ

4! φ4

+ M4
φ(φ)

64π2

[

ln
M2

φ(φ)

μ2 − 1

2

]

+ λ2
φSφ

4

256π2

×
[

ln
λφSφ

2

2μ2 − 1

2

]

+ �V1−loop(h, μ), (3)

where M2
φ(φ) = μφφ + λφφ2, and the renormalization

scheme applied in [61] is used. The �V1−loop term is the
1-loop potential for h given in Eq. (13). In this expression,

5 This choice makes the perturbativity bound loosest, while keeping
the stability of the effective potential.
6 If one wants, one can forbid it by a Z ′

2 symmetry φ → −φ that is
softly broken by the φ3 term.
7 The current upper limit of the sum of the neutrino masses is given by
the Planck and baryon acoustic oscillation measurements as

∑
mν <

0.12 eV (95% CL) [63], which corresponds to mν ∼ 0.04 eV in the
degenerate case. Although it is ruled out, we also show the nν = 3 case
in this paper to illustrate the nν dependence.

we assume that the H -loop contribution to the φ4 term as well
as the field dependent masses of φ and S coming from H are
negligibly small, which can be realized by taking λφH 
 λφS

and λSH H†H 
 λφSφ
2. This potential can be rewritten at

the scale μ = μ∗ where λφ vanishes as

Veff = λH

(

H†H − λφH

λH
φ2

)2

+ �V1−loop(h, μ∗)

+ μφ

3! φ3 + μ2
φφ2

64π2

[

ln
μφφ

μ2∗
− 1

2

]

+ λ2
φSφ

4

256π2

[

ln
λφSφ

2

2μ2∗
− 1

2

]

− λ2
φH

λH
φ4, (4)

In the following, we also assume that the μ2
φφ2 term is much

smaller than the λ2
φSφ

4 term.8 Requiring the existence of the

two saddle points at φ = 0 and φ = φsaddle (CP2-2),9 μφ is
determined to be

μφ = λ2
φS

16π2 φsaddle, with φsaddle = −1

e

√

2

λφS
μ∗e

8π2λ2
φH

λH λ2
φS .

(5)

The vacuum expectation value (VEV) of φ, 〈φ〉, is then deter-
mined as

〈φ〉 = eW (1/e)(−eφsaddle), (6)

where W is the Lambert W function. Using Eqs. (5) and (6),
we obtain the relation between μ∗ and 〈φ〉 as

μ∗ =
√

λφS

2
〈φ〉 exp

[

−W (e−1) − 8π2λ2
φH

λHλ2
φS

]

. (7)

Now, it is clear that by looking at the first line of Eq. (4) the
EW symmetry breaking is triggered by 〈φ〉:

v

〈φ〉 =
√

λφH

2λH
, (8)

where v � 246 GeV. At the minimum, the squared masses
of φ and S are given by

8 Note also that other scalar couplings such as φ|H |2 and φS2, which
are set to zero by the MPP, are induced at the one-loop level as well.
However, in the present analysis, the mixing between H and φ is small,
and since we are interested in 〈S〉 = 0, these effects are small.
9 Note that this saddle point is nothing to do with the saddle point of
the Higgs potential discussed in the next section.
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m2
φ ∼ −λφH

2
v2 + 1 + W (e−1)

32π2 λ2
φS〈φ〉2 ,

m2
S = λSH

2
v2 + λφS

2
〈φ〉2 , (9)

where we have neglected the mixing between h and φ. From
the above discussion, the six parameters λ, λφ , λφS , λS , λφH ,
and λSH in the potential are reduced by fixing the two param-
eters, v and the Higgs mass 125.1 GeV, and by taking λS to be
zero at the EW scale as aforementioned. The resultant three
parameters are

mS, λSH , 〈φ〉, (10)

where λφ has been replaced by the scale μ∗ at which λφ

vanishes, and further converted to 〈φ〉 by Eq. (7).
The thermal relic abundance of S is satisfied when [62]

4λ2
SH + λ2

φS =
(
mS

mth

)2

, mth = 1590 ± 40 GeV. (11)

This relation provides a contour of 〈φ〉 in themS vs λSH plane
as shown in Fig. 2: the red, magenta, green, and blue curves
correspond to 〈φ〉 = 2.5 TeV, 3 TeV, 4 TeV, and 10 TeV,
respectively. We also show the other constraints on the model
parameters in the figure: The purple, orange, cyan, and yellow
shaded regions are excluded by the updated XENON1T result
[64],10 the LHC results, DM relic abundance, and pertura-
bativity bound, respectively [62]. We note that these bounds
are insensitive to MR .11

In the following analyses of the critical Higgs inflation,
we choose the parameters on the dotted line in Fig. 2 that
is close to the perturbativity bound, to reduce the computa-
tional time.12 On the dotted line, there remains only single
parameter in the scalar sector, and we choose it to be λSH .
Therefore, there are two parameters λSH and MR in total.
We choose these parameters in such a way that the Higgs
potential has a (near) saddle-point at high scale region.13

10 For the region with the DM mass larger than 1 TeV, we extrapolate the
upper limit on the spin independent cross section for DM and nucleon
scatterings.
11 MR might possibly affect the perturbativity bound via the RGE of
λS and λSH , but its effect is only through the small λH coupling and is
negligible.
12 When we vary mS from the dotted line for a fixed λSH , the coupling
λφS changes via Eq. (9), but the running of λ and λH do not depend
on λφS at the one-loop level (see Eq. (56)), and hence the high-scale
Higgs potential is not altered drastically. Note also that, even though the
dotted line is close to the perturbativity bound, λSH (which contributes
to running of λ and λH at one-loop) remains perturbative unlike λS , and
hence the effective Higgs potential is reliably computed.
13 Without the right-handed neutrinos, the high-scale potential value
tends to become too large to accommodate the observed value of the
tensor-to-scalar ratio; see also Ref. [22].

Fig. 2 The solid curves correspond to Eq. (11) for 〈φ〉 = 2.5 TeV (red),
3 TeV (magenta), 4 TeV (green), and 10 TeV (blue), with each width
corresponding to the error of mth = 1590 ± 40 GeV. Shaded regions
are respectively excluded by the XENON1T experiment (purple), the
LHC data (orange), DM abundance (cyan), and the perturbativity bound
(yellow). Regarding the perturbativity bound, the absence of Landau
pole up to μ = 1017 GeV is imposed

3 Saddle point of Higgs potential

Now that the TeV-scale couplings are obtained, we extrapo-
late them towards high scales. In this section, we analyze the
effective Higgs potential for large field values, and look for
its saddle point in order to realize the critical Higgs inflation.

3.1 Effective potential

We calculate the one-loop effective Higgs potential improved
by the two-loop RGEs presented in Appendix A. The one-
loop effective potential for large h in the MS scheme in the
Landau gauge is

V = λH (μ)

4
h̄4 + �V1-loop(h, μ), (12)

where

�V1-loop(h, μ) = 6M4
W (h)

64π2

[

ln

(

M2
W (h)

μ2

)

− 5

6

]

+ 3M4
Z (h)

64π2

[

ln

(

M2
Z (h)

μ2

)

− 5

6

]

− 3M4
t (h)

16π2

[

ln

(
M2

t (h)

μ2

)

− 3

2

]

−
3

∑

i=1

M4
Ni

(h)

32π2

[

ln

(

M2
Ni

(h)

μ2

)

− 3

2

]
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+ M4
S(h)

64π2

[

ln

(

M2
S(h)

μ2

)

− 3

2

]

+ M4
φ(h)

64π2

[

ln

(

M2
φ(h)

μ2

)

− 3

2

]

, (13)

in which the effective masses are

MW (h) = g2h

2
, MZ (h) =

√

g2
2 + g2

Y

2
h, Mt (h) = yth√

2
,

(14)

MNi (h) = MR

2

(

1 +
√

1 + 2y2
νi h

2

M2
R

)

, M2
S(h) = λSH

2
h2,

M2
φ(h) = λφH

2
h2, (15)

and

h := he�(μ) = h exp

(∫ ln μ/Mt

0
ds γH

)

(16)

is the Higgs field with field renormalization. See Eq. (64)
in Appendix A for the one-loop result of γH . We here rep-
resent Ni as the mass eigenstates for the heavy Majonara
neutrinos. We neglect the contributions from the leptons and
quarks other than the top quark because their Yukawa cou-
plings are small. We also neglect the loops of the Higgs
and the NG bosons because λH becomes small at high
scales.

In the following, we match two theories with and with-
out right-handed neutrinos around μ = MR , to obtain the
threshold correction. We expand the one-loop correction
from heavy neutrinos by h as

−
3

∑

i=1

M4
Ni

(h)

32π2

[

ln

(

M2
Ni

(h)

μ2

)

− 3

2

]

= − 1

32π2

[
3M4

R

2

(

−3 + 4 ln

(
MR

μ

))

+ 2h2M2
Rnν y

2
ν

(

−1 + 2 ln

(
MR

μ

))

+ h4

2
nν y

4
ν

(

1 + 2 ln

(
MR

μ

))

+ · · ·
]

, (17)

where the coefficient of h4 corresponds to the threshold cor-
rection to λH below MR [65–67]14:

�λ
(R)
H := − nν y4

ν

16π2

(

1 + 2 ln

(
MR

μ

))

. (18)

The term containing ln(MR/μ) leads to the subtractions of
y4
ν term from the beta function. The same analysis can be

also applied to the field renormalization as

1

2
h�h

[

1 − 2

32π2

3
∑

i=1

yνi ln

(
MNi

2(h)

μ2

)]

� 1

2
h�h

[

1 − 1

8π2 nν y
2
ν ln

(
MR

μ

)

+ · · ·
]

, (19)

from which we can see that the canonically normalized Higgs
field hc in the low-energy theory is given by

hc = h

[

1 − 1

8π2 nν y
2
ν ln

(
MR

μ

)]1/2

=: hZR . (20)

This also leads to the redefinition of the quartic coupling.
By combing both of them, the Higgs quartic coupling below
μ = MR is15

λ := λH Z−4
R + �λ

(R)
H

= λH

(

1 − 4nν

16π2 y
2
ν ln

(
μ

MR

))

+ nν y4
ν

16π2

×
(

−1 + 2 ln

(
μ

MR

))

. (21)

One can easily check that contributions from heavy neutrinos
cancel out in the beta function dλ/d ln μ.

In Fig. 3, we show the RG runnings of λ and λH , where the
upper left (right) panel corresponds to the normal (inverted)
hierarchy case and the lower panel corresponds to the degen-
erate case. The different colors correspond to the different
values of λSH (Mt ), and the top pole mass mpole

t and MR are
fixed at mpole

t = 172.4 GeV [5] and 4 × 1014 GeV, respec-
tively. As explained above, other parameters, 〈φ〉 andmS , are
fixed as functions of λSH on the dotted line in Fig. 2 by the
thermal relic abundance of S to explain 
DMh2 ∼ 0.12.

14 The coefficient of h2 in Eq. (17) gives the threshold correction to
the Higgs mass-squared parameter in the low-energy theory. At the CP
2-2, the mass-squared parameter including this correction is tuned to
zero, based on the MPP. See Refs. [61,62] for the detailed discussion.
15 If we want, we may take into account the threshold correction of

S too: �λ
(S)
H = λ2

SH
16π2

(
1
6 + 1

2 ln
(
mS
μ

))

. This contribution is minor for

our analysis and we neglect it hereafter.
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Fig. 3 The RG runnings of λ and λH . Upper left (right) corresponds to the case of normal (inverted) hierarchy and lower panel corresponds to the
degenerate case. Here, the different colors correspond to the different values of λSH (Mt )

3.2 Saddle point

In the following, we rewrite the one-loop Higgs effective
potential (12) as

V = λeff(h, μ)

4
h4, (22)

where

λeff(h, μ) =
[

λH (μ)e4�(μ) + 4
�V1-loop(h, μ)

h4

]

. (23)

Note that λeff(h, μ) is independent of the renormalization
point μ if we take all order loop corrections into account.
For practical purpose with finite-loop, it better approximates
by choosing μ ∼ h.

In the SM without the right-handed neutrinos, it is known
that λeff(h, h) in general takes a minimum value λmin at
h = hmin (� 1018 GeV); see the blue dashed line in Fig. 3.
Furthermore, by tuning the top mass, we can realize a saddle
point V ′ = V ′′ = 0 at h = hs (� hmin) [1]. (This tuning
may be done within the 1.4σ experimental bound as stressed
in Introduction.) However, this saddle-point itself is not suf-
ficient to achieve a viable saddle-point inflation because the

resultant CMB fluctuations become too large [42,68,69]. By
introducing the non-minimal coupling ξ |H |2R, a success-
ful inflation can be achieved around the (near) saddle-point
even when ξ ∼ 10 [1,19,20]. This is called the critical Higgs
inflation.

In this paper, we pursue the critical Higgs inflation in
our model at the CP 2-2. The detailed analysis will be pre-
sented in the next section. In the remaining of this section,
we look for the saddle point in our model. When we take
into account the right-handed neutrinos, they first lower λH

above MR , and at higher scales, the extra scalar couplings
become large and their contributions raise λH again. As a
result, we may have a minimum for λH at a high scale as can
be seen in Fig 3, e.g. with the orange curve for the normal
and inverted hierarchy cases, and green for the degenerate
case.

In general, the condition to have a saddle point is

V
′ = V

′′ = 0 ⇔ λeff(h, h) + 1

4

dλeff(h, h)

d ln h

= 12λeff(h, h) + 8
dλeff(h, h)

d ln h
+ d2λeff(h, h)

d(ln h)2 = 0.

(24)
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Again, we call the position of saddle-point hs . As said in
the last of Sect. 2, there is only single parameter λSH in the
scalar sector. For each given λSH , we numerically solve for
MR that achieves the saddle-point condition (24), and obtain
its position hs .

In the upper left panel in Fig. 4, we show the Higgs poten-
tial in the case of the normal hierarchy where the differently
colored contours correspond to the different values of λSH .
Here, the Higgs field h is normalized by hs . In the upper right
panel, we plot the value of MR as a function of λSH that is
determined by the saddle point condition (24). In the lower
left panel, we show hs as a function of λSH where blue and
red correspond to the normal and inverted hierarchy cases,
respectively, while green to degenerate. One can see that hs
has a strong dependence on λSH , which causes the strong
dependence of the value of the potential around the saddle
point on λSH in the upper left panel.

The above numerical result can be fitted by an analytic
formula as follows. Around the minimum h = hmin giving
the minimal value of λeff, we may always approximate as [1]

λeff(h, h) = λmin + b

2

(

ln
h

hmin

)2

. (25)

Within this approximation, we see that the potential has a
saddle point V ′ = V ′′ = 0 at h = hs when and only when
λmin is tuned to a critical value λmin = λc where

hs = e−1/4hmin, (26)

λc = b

32
. (27)

That is,

λeff(h) = b

32

[

1 + 16

(

ln

(
h

hse1/4

))2
]

. (28)

We fit b and hs from the numerical analysis above. As a
consistency check, we also plot the Higgs potential whose
effective coupling is replaced by the analytical one (28) in
the upper left panel in Fig. 4 by dashed black lines. One
can actually see that the analytical ones well approximate
the effective Higgs potential around the saddle point. In the
next section, we will use Eq. (25) with λmin close to λc, as in
Eq. (50), to study the critical Higgs inflation. In particular, the
minimum value λc is important because it also determines,
along with hs , the value of the potential during the inflation.
Qualitatively, small λc will turn out to be favorable to realize
successful inflation with small ξ � 100.

In the lower right panel in Fig. 4, we show the numerical
calculations of λc as a function of λSH . From this plot, one
can see that λc is a monotonically increasing function of λSH

and its order of magnitude is 10−5 around λSH ∼ 0.3. This

corresponds to b = O(10−4) by Eq. (27). We will see that
the region with small λSH is preferred to realize a successful
inflation for small ξ .16 Therefore, in the inflationary analysis,
we will show the results in the region λSH � 0.3.

4 Critical Higgs inflation

In this section, we study the critical Higgs inflation of our
model at the CP 2-2. We take full advantage of the saddle
point of the Higgs potential. The existence of the saddle point
makes it easy to obtain the sufficient number of e-foldings N
even when ξ � 100; contrary to the conventional case, the
tensor-to-scalar ratio r does not have to be related to N as
r ∼ 1/N 2, and it can be sizable ∼ 0.05. In Sect. 5.1, we will
show our numerical calculations of CMB observables.

Here we comment on the other fields. During the critical
Higgs inflation, the Higgs potential is flat, while other scalar
fields have large masses due to the couplings λφH and λSH

with the large Higgs field, so they do not play a role in the
inflation analysis. As for the renormalization scale, since we
are considering the case where only the Higgs field is large,
we can consider the Higgs field h as a renormalization point
and use the single-scale renormalization group.

4.1 Higgs inflation at classical level

We first review the Higgs inflation with non-minimal cou-
pling ξh2R at the classical level [28,70]. We start with the
Jordan-frame action

Scl = M2
P

2

∫

d4x
√−gJ


2(h)RJ −
∫

d4x
√−gJ

×
[

1

2
(∂h)2 + Vcl(h)

]

, (29)

where we have truncated the potential and Weyl factor at the
quartic and quadratic orders, respectively:

Vcl(h) = λcl

4
h4, 
2(h) = 1 + ξ

h2

M2
P

. (30)

By performing the following redefinition of the metric,

gμν = 
2gJμν, (31)

we obtain

RJ = 
2
[

R + 3� ln 
2 − 3

2
gμν(∂μ ln 
2)(∂ν ln 
2)

]

.

(32)

16 Higgs inflation with ξ = O(104) [28,70] is always possible at the
expense of the small cutoff scale MP/ξ .
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Fig. 4 Upper Left: the one-loop effective Higgs potential in the normal
hierarchy case where the different colors correspond to the different val-
ues ofλSH (Mt ). Here, dashed black curves represent the Higgs potential
whose quartic coupling is replaced by the analytical one (28). Upper
Right: the relation between MR and λSH (Mt ) determined by the saddle

point condition (24). Lower Left: the saddle point hs as a function of
λSH (Mt ), where blue and red correspond to the normal and inverted
hierarchy, while green to degenerate. Lower Left: the minimum value
of λH as a function of λSH (Mt )

Then the Einstein-frame action becomes

Scl =
∫

d4x
√−g

(
1

2
M2

P R − 1

2
2 (∂h)2

−3

4
M2

P(∂μ ln 
2)2 −Ucl(h) + · · ·
)

, (33)

where

Ucl(h) = Vcl(h)


4(h)
(34)

is the potential in the Einstein frame. Since Vcl is quartic, the
following relation holds

Ucl(h) = λcl

4

(
h


(h)

)4

= Vcl

(
h


(h)

)

. (35)

In the h → ∞ limit, we have

h


(h)
→ MP√

ξ
. (36)

Therefore for large h, the Einstein-frame potential Ucl(h)

becomes constant:

Ucl(h) → Vcl

(
MP√

ξ

)

= λclM4
P

4ξ2 . (37)

This flat potential is used in the Higgs inflation.
The relation between the canonically normalized Einstein-

frame field χ and the Jordan-frame field h is given by

dχ

dh
=

√


2 + 6ξ2h2/M2
P


2 . (38)

Under the slow-roll approximation, we obtain

λcl

ξ2 � 6.0 ×
(

50

N

)2

× 10−10 (39)

to fit As = U/(24π2M4
PεV ) to the observed value 2.1×10−9

at the e-folding N ; see Appendix C. We see that the typical
SM value at low energy λcl ∼ 0.1 requires large value of
ξ ∼ 105.

123



  962 Page 10 of 18 Eur. Phys. J. C           (2021) 81:962 

4.2 Higgs inflation including radiative correction

At the quantum level in the flat spacetime, we promote Vcl(h)

to the effective potential

V (h) = Vtree(h, μ) + �Vloop(h, μ), (40)

whereVtree is the tree-level potential including the field renor-
malization and �Vloop is the loop correction; see Eq. (12)
for the 1-loop approximation. In this paper, we employ the
Einstein-frame effective potential on the so-called Prescrip-
tion I,

U (h) = λH (μ)e4�(μ)h4

4
4(h)
+ �Uloop(h, μ) , (41)

where �Uloop is obtained from �Vloop in Eq. (40) by replac-
ing all the effective masses M�(h) with M�(h)



for � = W ,Z ,

t , νi , S, and φ:

�Uloop(h, μ) = �Vloop(h, μ)

∣
∣
∣
M�(h)→ M�(h)




. (42)

See Ref. [71] for the meaning of this prescription as well
as ambiguity due to indeterminacy of non-renormalizable
terms. Because the potential should not depend on μ (if one
takes all order corrections into account), we may replace μ

by μ/
17:

U(h) = λH (
μ



)e4�(
μ



)h4

4
4 + �Vloop

(

h,
μ




)∣
∣
∣
M�(h)→ M�(h)




= λH (
μ



)e4�(
μ



)h4

4
4 + 1


4 �Vloop(h, μ) . (43)

When we truncate the loop correction at the 1-loop order, we
can obtain better approximation by choosing μ to be around
h to minimize the higher loop corrections:

U(h) = 1


4

(

λH
( h




)

4
e

4�
(

h



)

h4 + �V1-loop(h, h)

)

. (44)

This is the expression we employ in the following. When
yνi h is sufficiently larger than MR , all the effective masses
are proportional to h, therefore �V1-loop(h, h) is proportional
to h4 whose coefficient is independent of h (up to higher order
corrections), and hence we obtain

U(h) = V

(
h




)

. (45)

17 In the second line of Eq. (43), we have assumed that the 
 depen-
dence in �Vloop(h, μ/
) disappears by the replacement Mψ(h) →
Mψ(h)/
. At one loop level, we can easily check this from Eq. (13).

Thus, after taking into account the quantum corrections, the
same relation still holds as Eq. (35) on Prescription I, and
again the Einstein-frame potential (45) becomes constant for
ξh2/M2

P � 1:

U (h) =
λeff

(
h


(h)
, h


(h)

)

4

(
h


(h)

)4

→
λeff

(
MP√

ξ
, MP√

ξ

)

4

×
(
MP√

ξ

)4

. (46)

Unless λeff

(
MP√

ξ
, MP√

ξ

)

is particularly small, we still need large

ξ to fit As . In fact in the SM, it is known that λeff(h, h)

becomes small around h ∼ MP, which is an essential ingre-
dient in the critical Higgs inflation.

4.3 Critical Higgs inflation

As can be seen from Eq. (45), when V(h) has a saddle point
at h = hs , U(h) also has a saddle point at h = h̃s , with h̃s
being determined by h̃s


(h̃s)
= hs :

h̃s = hs
1 − c2

s
, (47)

where we have introduced

cs := hs

√
ξ

MP
. (48)

This parameter is the ratio of hs to MP/
√

ξ ; the latter is the
typical value of h above which the conformal factor 
(h)

starts to deviate from unity. One can see that h̃s approaches
infinity as cs ↗ 1, which means that the small region around
the saddle point h = hs is widely stretched, and allows a
sufficient e-folding.

In the critical Higgs inflation, we assume that the high-
scale Higgs potential is close to a one having a saddle point,
namely, λmin in Eq. (25) is close to λc given by Eq. (27):

λmin = (1 + δ) λc, (49)

where we have parametrized the deviation from the saddle-
point criticality by δ. Then the flat-space effective potential
becomes

V(h) = λeff (h, h)

4
h4 = λc

4

[

1 + δ + 16

(

ln

(
h

hse1/4

))2
]

h4.

(50)
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Fig. 5 The Higgs potential in the Einstein frame

Using Eqs. (45) and (48), we see that U approaches the
constant value in the h → ∞ limit

U(h) → λc

4

[

1 + δ + (1 + 4 ln cs)
2
] M4

P

ξ2 , (51)

which determines the value of the potential during the infla-
tion. In this paper, we will focus on cs ≤ 1 and take full
advantage of the saddle point of the Higgs potential.

In Fig. 5, we show the Higgs potential in the Einstein
frame where different colors correspond to different values
of cs . Here, we show the the normal hierarchy case with
λSH (Mt ) = 0.5 for illustration.

One can see that the region around the saddle point h = hs
is more and more stretched as we increase cs toward unity.
Therefore, for a given cs � 1, we may always fit the e-folding
N around h = hs
 by tuning δ.18

5 Prediction on inflationary observables

Here, we analyze the prediction on inflationary observables
as we vary the parameters in the model. So far, we have three
free parameters: λSH , MR , and ξ . Recall that the scalar sector
has only one parameter λSH in our analysis on the red dotted
line in Fig. 2.

On the other hand, we have seen that the Jordan-frame
potential can be parametrized near the saddle-point criticality
by λc, δ, and hs as Eq. (50). Here, these three parameters are
functions of the model parameters λSH and MR .

In order to sweep the parameters near the saddle point, we
use the results of Sect. 3.2: For each λSH , we find the value
of MR that gives the saddle-point criticality, δ = 0, as well as
the corresponding parameters hs and λc. See the upper-right,

18 The tuning ofλmin toλc is favored by the maximum entropy principle
because the more the space is expanded by the inflation, the more the
total entropy emerges [10,14].

lower-left, and lower-right panels in Fig. 4 for MR , hs , and
λc, respectively. For a given λSH , as we slightly change MR

from the critical value, in general all of the parameters λc,
hs , and δ are modified. Here, we neglect the change of λc
and hs , and take into account the effect of non-zero δ.

Now we take into account the non-minimal coupling ξ .
Among three parameters ξ, λSH , δ, the last one is traded with
e-folding N using Eq. (66). The observables ns and r are
functions of ξ and λSH once e-folding N is fixed by δ.

5.1 Results

In Fig. 6, we show the values of ξ , cs , and λSH in the
ns-r plane for N = 60 with the central value mpole

t = 172.4
GeV: The upper left (right) panel corresponds to the normal
(inverted) hierarchy case, and the lower panel to the degen-
erate case. The values of ξ and cs are shown by the solid
and dashed lines, respectively, while λSH by the numbers on
the solid line. The dark (light) blue region is allowed by the
combined analysis of Planck 2018 at the 65% (95%) CL.
From these results, one can see that our model at the CP 2-2
is consistent with the current CMB observations even when
ξ = 25. The smaller the r , the larger the required value of
ξ : If the upper bound becomes r < 0.04 (0.02), we need
ξ � 30 (40).

We see that we typically have λSH ∼ 0.32, which corre-
sponds to the large Majorana mass as

5 × 1013GeV � MR � 2 × 1014GeV (52)

from the upper right panel in Fig. 4.
In Fig. 7, we also show dns/d ln k vs ns , where cs and ξ

are again shown as in Fig. 6. In this case, the observational
error of dns/d ln k is still too large to constrain the inflation
potential.

6 Summary and discussion

Motivated by various fundamental issues in particle physics
and cosmology, we have discussed the minimal model that
can explain EW scale, neutrino masses, DM, and success-
ful inflation at the same time. The model adds right-handed
neutrinos to the two-scalar model in Refs. [61,62], which
has been proposed to explain the origin of EW scale and
DM. These two scalar fields give a minimal setup to real-
ize an analogue of the CW mechanism. Assuming the Z2

symmetry of a scalar, S → −S, it can be a candidate for
DM, similarly to the Higgs-portal scalar DM model. Neu-
trino masses are naturally explained by the seesaw mecha-
nism.

In this paper, we have analyzed RGEs, calculated the
effective Higgs potential, and studied the critical Higgs infla-
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Fig. 6 Upper Left (Right): r vs ns in the case of the normal (inverted) hierarchy where c (ξ) is fixed on each solid (dashed) curves and λSH (Mt )

is varied. The blue regions correspond to the allowed regions by Planck 2018. Lower: the degenerate case

tion that uses the (near) saddle point of the Higgs potential at
a high scale. The new scalar coupling λSH between the SM
Higgs and DM S can stabilize the Higgs potential even if
the top mass is current center value mt = 172.4 GeV. In our
model, it is possible to maintain the existence of saddle point
by the neutrino Yukawa coupling yν , and the saddle point
condition relates the parameters of the model as is shown in
Fig. 4.

By utilizing the saddle point of the Higgs potential, we
have found that it is possible to realize successful inflation
even for ξ ∼ 25 within the parameter space where all the
necessary requirements are satisfied. As a result, we obtain
λSH � 0.32 and 〈φ〉 � 2.7 TeV, which correspondingly lead
to the dark matter mass mS ∼ 2.0 TeV, its spin-independent

cross section 1.8×10−9 pb, and the mass of additional neutral
scalar mH ∼ 190 GeV.

Finally, we mention testability of our model at collider
experiments and future directions of this scenario. Since the
DM should be as heavy as a TeV range in order to satisfy the
relic abundance and the constraints from the direct searches,
the detection of the extra Higgs can be an important probe
of our model similarly to the Higgs singlet model. On the
benchmark points shown in Fig. 1, the mass of the additional
Higgs boson is predicted to be in the range of 70–200 GeV, so
that it can be produced at future lepton colliders such as the
International Linear Collider (ILC) via the Z boson strahlung
process. Therefore, our model can be tested at the ILC and/or
its energy upgraded version.
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Fig. 7 Upper left (right): ns vs dns/d ln k in the case of the normal (inverted) hierarchy where c (ξ) is fixed on each solid (dashed) curves. The
blue regions correspond to the allowed regions by Planck 2018. Lower: the degenerate case

Our model can be well tested at the near future DM
detection experiments such as XENONnT. If the whole
region is excluded by them, one of the simplest exten-
sions would be introduction of extra heavy fermions that
are singlet under the SM gauge symmetry but are odd
under Z2 such that they lower the quartic scalar cou-
plings in the RGE running to make the perturbativity bound
milder.

It would be interesting to analyze all the possible critical-
ities along the line of the current work. Moreover, we can
also come up with a lot of interesting phenomena within this
model such as a possibility of producing primordial Black
Hole by Higgs inflation [72–75], spontaneous leptogenesis
[76–80], (p)reheating dynamics and so on. We would like to
discuss those possibilities in future investigations.

Finally, we comment on possible systematic errors intro-
duced by higher-order corrections. We have used the one-
loop effective potential to discuss the MPP at the TeV-
scale, and two-loop RGEs to extrapolate from there to high
scales. The higher-order corrections are further suppressed
at approximately λSH/8π2 � few percent, compared to the
corrections currently considered. The same degree of correc-
tions applies to the potential value ∝ λH and the inflationary
predictions derived from it.
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Appendix A Two-Loop RGEs

Here, we summarize the two-loop RGEs. Our calculations
are based on [81–84].

dgY
dt

= 1

(4π)2

41

6
g3
Y + g3

Y

(4π)4

19

6

×
(

199

18
g2
Y + 9

2
g2
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3
g2
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6
y2
t − nν

2
y2
ν

)

,

(53)

dg2
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2
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×
(
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2
g2
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6
g2

2 + 12g2
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2
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y2
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, (54)

dg3

dt
= 1

(4π)2 (−7) g3
2 + g3

2

(4π)4

19

6

×
(

11

6
g2
Y + 9

2
g2

2 − 26g2
3 − 2y2

t

)

, (55)

dλH

dt
= 1

16π2

(

24λ2
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2
+ λ2
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− 3λH (g2

Y + 3g2
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2
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dt
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(
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+ λSHλφS

16π2 + λφH

(4π)4

{

− 21λ2
φH

2

− 72λHλφH − 60λ2
H − 6λφλφH − 5

6
λ2

φ

− 1

2
λ2

φS − 4λφSλSH − 1

2
λ2
SH − (

4λφH + 24λH
)

× (3y2
t + nν y

2
ν ) − 9

2
(3y4

t + nν y
4
ν ) + g2

Y

× (

λφH + 24λH
) + 3g2

2

(

λφH + 24λH
)

+ y2
t

(

85g2
Y

12
+ 45g2

2

4
+ 40g2

3

)

+ nν y
2
ν

×
(

5g2
Y

4
+ 15g2

2

4

)

− 145

16
g4

2 + 15

8
g2

2g
2
Y + 557

48
g4
Y

}

+ 1

(4π)4

(

−2λφSλ
2
SH − 2λ2

φSλSH

)

, (59)

dλSH

dt
= λSH

16π2

(

12λH + λS + 4λSH + 6y2
t + 2nν y

2
ν

− 3

2
g2
Y − 9

2
g2

2

)

− λφHλφS

16π2
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+ λSH

(4π)4

{

− 21λ2
SH

2
− 72λHλSH

− 60λ2
H − 6λSλSH − 5

6
λ2
S − 1

2
λ2

φS

− 4λφSλφH − 1

2
λ2

φH

− (4λSH + 24λH ) (3y2
t + nν y

2
ν )

− 9

2
(3y4

t + nν y
4
ν ) + g2

Y (λSH + 24λH )

+ 3g2
2 (λSH + 24λH )

+ y2
t

(

85g2
Y

12
+ 45g2

2

4
+ 40g2

3

)

+ nν y
2
ν

(

5g2
Y

4
+ 15g2

2

4

)

− 145

16
g4

2 + 15

8
g2

2g
2
Y

+ 557

48
g4
Y

}

+ 1

(4π)4

(

−2λ2
φHλφS − 2λφHλ2

φS

)

,

(60)

dλφS

dt
= λφS

16π2

(

λφ + λS + 4λφS
)

− λφHλSH

16π2 + λφS

(4π)4

{

− 9λ2
φS

− 6λφS
(

λφ + λS
) − 5

6

(

λ2
φ + λ2

S

)

− 2
(

λ2
φH + λ2

SH

)

− 16λφHλSH

}

+ λφHλSH

(4π)4

{

− 8
(

3y2
t + nν y

2
ν

)

× +8(g2
Y + 3g2

2) − 8(λSH + λφH )

}

, (61)

dyt
dt

= yt
16π2

(
9

2
y2
t + nν y

2
ν − 17

12
g2
y − 9

4
g2

2 − 8g2
3

)

+ yt
(4π)4

{

− 12y4
t − 9nν

4
y2
t y

2
ν − 9nν

4
y4
ν

+ 6λ2
H + λ2

φH

4
+ λ2

SH

4

− 12λH y2
t + 131

16
g2
Y y

2
t + 225

16
g2

2 y
2
t + 36g2

3 y
2
t

+ nν

(
15

8
g2

2 + 5

8
g2
Y

)

y2
ν

+ 1187g4
Y

216
− 23g4

2

4
− 108g4

3

− 3

4
g2

2g
2
Y + 9g2

3g
2
2 + 19

9
g2

3g
2
Y

}

, (62)

dyν
dt

= yν
16π2

((

nν + 3

2

)

y2
ν + 3y2

t − 3

4
g2
y − 9

4
g2

2

)

+ yν
(4π)4

{

−
(

9nν

2
− 3

2

)

y4
ν − 27

4
y2
t y

2
ν − 27

4
y4
t

+ 6λ2
H + λ2

φH

4
+ λ2

SH

4
− 12λH y2

ν + g2
Y

×
(

85

24
y2
t +

(
5nν

8
+ 93

16

)

y2
ν

)

+ g2
2

(
45

8
y2
t +

(
15nν

8
+ 135

16

)

y2
ν

)

+ 20g2
3 y

2
t + 35g4

Y

24
− 23g4

2

4
− 9

4
g2

2g
2
Y

}

, (63)

γH = yν
16π2

(
9

4
g2

2 + 3

4
g2
Y − 3y2

t − nν y
2
ν

)

. (64)

Appendix B Single-field slow-roll inflation

Here we summarize basic results for the single-field slow-roll
inflation.

The slow roll parameters are defined by

εV = M2
P

2

(
U ′

U

)2

, ηV = M2
P

2

U ′′

U
,

ζ 2
V = M4

P

(
U ′′′

U

) (
U ′

U

)

, (65)

where U is the inflation potential in the Einstein frame and
the prime represents the derivative with respect to χ .

The number of e-foldings from a field value χ∗ to the end
of inflation is given by

N =
∫

dtH � 1

MP

∫ χ∗

χend

dχ√
2εV

. (66)

The CMB observables are given by

As = U

24π2M4
PεV

, r = 16εV , ns = 1 − 6εV + 2ηV ,

dns
d ln k

= 16εV ηV − 24ε2
V − 2ζ 2

V , (67)

within the slow roll approximations, where As , r , ns , and
dns
d ln k are the scalar power spectrum amplitude, tensor-to-
scalar power ratio, scalar spectral index, and its running. The
current observational bounds by Planck 2018 are [63,85]

As = 2.101+0.031
−0.034 × 10−9, (68% CL)

r < 0.056, (95% CL)

ns = 0.9665 ± 0.0038,

dns
d ln k

= 0.013 ± 0.024, (68% CL) (68)

at the pivot scale k∗ = 0.05 Mpc−1.
Under the slow-roll approximation, the scalar amplitude

As is given by Eq. (67). We note that r and the value of
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potential U is related each other by fixing As to the observed
value:

U ∼ 1.5 × 10−9
[ r

0.05

]

M4
P; (69)

see also Ref. [22].

Appendix C Ordinary Higgs inflation without criticality

For ξh2

M2
P

� 1 we have simple relations for the slow roll param-

eters

εV � 4

3
exp

(

−2

√

2

3

χ

MP

)

� 3

4N 2 ,

ηV � −4

3
exp

(

−
√

2

3

χ

MP

)

= − 1

N
, (70)

and they provide one of the best fits to the CMB observations
for the reasonable values of e-folding N = 50–60 (corre-
sponding to the pivot scale).

Qualitatively, the typical value of ξ can be estimated as
follows. Putting the potential (51) with λeff ∼ λc ∼ 10−6

into Eq. (69), one can easily check that ξ is around 30.

Appendix D Expansion around saddle point

For qualitative understanding, it is also helpful to derive the
expansion of V around hs . We first expand as

V = λc

2
h4
s + λ1h

3
s (h − hs) + λ2

2
h2
s (h − hs)

2

+ λ3

3! hs(h − hs)
3 + . . . , (71)

where

λ1 = λcδ, λ2 = 3λcδ, λ3 = 32λc. (72)

As we explain in Sect. 4.2, the Higgs potential in the Einstein
frame also has a saddle point at h = hs
. We are interested
in the parameter space cs ∼ 1 ⇔ h̃s � hs ∼ MP√

ξ
, which

guarantees the large field expansion of χ as a function of h.
As a result, we have

dh

dχ
∼ h√

6MP
⇔ h ∼ MP√

ξ
exp

(
χ√
6MP

)

, (73)

ϕ ∼ MP√
ξ

⎛

⎜
⎝1 −

(
MP√

ξ

)2

2h2

⎞

⎟
⎠ ⇔ ϕ − hs ∼ MP√

ξ

×
[

1 − c − 1

2
e
− 2χ√

6MP

]

, (74)

where ϕ := h/
. Then, U and its derivatives with respect to
χ are

U ∼ λc

4
h4
s = λ0c4

4

(
MP√

ξ

)4

, (75)

∂U

∂χ
= ∂ϕ

∂χ

∂U

∂ϕ

∼
MP√

ξ
e−2χ/(

√
6MP)

√
6MP

(

λ1h
3
s + λ2h

2
s (ϕ − hs)

+ λ3hs
2

(ϕ − hs)
2
)

∼
λ3

MP√
ξ
h3
s√

6MP
e−2χ/(

√
6MP)

[
δ

32
+ 3δ

32c

×
(

1 − c − 1

2
e
− 2χ√

6MP

)

+ 1

2c2

(

1 − c − 1

2
e
− 2χ√

6MP

)2 ]

,

(76)

∂2U

∂χ2 ∼ −
λ3

MP√
ξ
h3
s

3M2
P

e−2χ/(
√

6MP)

[
δ

32

+ 3δ

32c

(

1 − c − 1

2
e
− 2χ√

6MP

)

+ 1

2c2

×
(

1 − c − 1

2
e
− 2χ√

6MP

)2

− e−2χ/(
√

6MP)

2
{

3δ

32
+ 1

c2

(

1 − c − 1

2
e
− 2χ√

6MP

)} ]

, (77)

where we have used Eq. (71). When c ∼ 1, the slow roll
parameters are approximately given by

ε = M2
P

2

(
U ′

U

)2

∼ 4

3

(
δ

c

)2

e−4χ/(
√

6MP),

η = M2
P
U ′′

U
∼ −4δ

3c
e−2χ/(

√
6MP), (78)

where a = λ1/λ0 = 1 + (βλ/4λ)|φ=φs . Compared to the
conventional case, we have additional suppression factor δ

thanks to the saddle potential. Note that, when c 
 1, we
can no longer trust Eq. (78).
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