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Abstract

In this work we consider different aspects of primordial perturbations gener-
ated during inflation. In the first part we discuss the production of curvature
perturbations. The standard single-field inflation model predicts almost scale-
invariant adiabatic perturbations which obey Gaussian statistics. This predic-
tion is in very good agreement with the present observational data. However
the measure of the level of non-Gaussianity is not precise yet and a devia-
tion from Gaussianity is allowed. The curvaton scenario, a model of inflation
with two scalar fields, may produce a higher level of non-Gaussianity of the
perturbations than the single-field model. In this thesis we discuss the super-
curvaton scenario, a curvaton model which naturally appears in the context
of the simplest model of chaotic inflation in supergravity. We compute the
non-linearity parameter fy; and show that the level of non-Gaussianity can
be in the observationally interesting range from O(10) to O(100).

In the second part we discuss the generation of large-scale magnetic fields from
the amplification of quantum fluctuations during inflation. We consider a very
broad class of models that can break the conformal invariance of electromag-
netism and therefore give rise to long-wave magnetic fields. We study the effect
of the back reaction of the generated field on the background and show that
they can be very important. Assuming that the back reaction does not spoil
inflation and requiring that inflation lasts at least 75 e-folds, we find a rather
strong restriction on the amplitude of the primordial fields which could be gen-
erated on inflation. Namely, this amplitude cannot exceed 10732 G on Mpc
scales today. This magnetic field is too small to explain the field observed in
the Universe and it is too weak also to be amplified to the observable values

by the galactic dynamo mechanism.
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Chapter 1
Introduction

According to our current understanding of the Universe, all cosmological struc-
tures that we see today in the sky, like galaxies, clusters of galaxies and all the
web of the large-scale structure, and the observed temperature anisotropies in
the Cosmic Microwave Background (CMB), have a quantum origin.

The mechanism responsible for these processes is called cosmological inflation,
an epoch of accelerated expansion of the Universe that took place 1073 seconds
after the Big Bang. Inflation predicts the observable Universe to be spatially
flat, homogeneous and isotropic on large angular scales, and the primordial in-
homogeneity to be almost scale-invariant and to obey Gaussian statistics. In the
inflationary picture, primordial density perturbations are created from quantum
fluctuations, which were stretched on super-horizon scales during inflation and
then grew into the structures we see today via gravitational instability.

Perturbations at the surface of last scattering are observable as temperature
anisotropies in the CMB. They were detected for the first time by the Cosmic
Background Explorer (COBE), a satellite for full sky measurements launched
by NASA in 1989. Several experiments followed COBE, balloon-borne exper-
iments as BOOMERanG, MAXIMA and QMAP, ground-based experiments as
Saskatoon and ACT, and space experiments as Planck and WMAP. The CMB
experiments support the predictions for homogeneity and isotropy of the Uni-
verse, and for the quasi-scale-invariance of the primordial fluctuations in the flat
Universe [68]. The Gaussianity of the primordial perturbations still needs to be

verified. In fact the 7-year WMAP analysis yields the level of non-Gaussianity,
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which is encoded in the non-linearity parameter fy;, in a quite large range,
—10 < fhogal < 741

In the simplest inflationary scenario, inflation is driven by a scalar field, called
the inflaton. This scalar field is responsible for both inflation and the production
of density perturbations. The density perturbations are due to the fluctuations
of the inflaton when it slowly rolls down its potential and are created about 60 e-
folds before the end of inflation. At the end of the inflationary stage, the inflaton
field starts to oscillate around the minimum of its potential and decays into other
particles, thereby reheating the Universe. Single-field inflation predicts Gaussian
density perturbations with an almost scale-invariant spectrum [74, 93]. In fact
both the power, ny — 1, of the scalar power spectrum, Ps; ~ k™!, and the non-
linearity parameter fy; are proportional to the so-called slow-roll parameters,>
1 and €, and these parameters need to be very small, ¢,7 < 1, in order to have
inflation. This prediction is in very good agreement with the present observational
data. However the measure of the level of non-Gaussianity is not precise yet and
a deviation from Gaussianity is still allowed [68]. Therefore other inflationary
models, which differ from the standard paradigm and allow a higher level of
non-Gaussianity of the perturbations, may also fit the data.

The precision of the observations improves every year, so in the near future
we will be able to distinguish among the myriad different inflationary scenarios.
Non-Gaussianity has the potential and the challenge to be a discriminating mea-
sure. A simple deviation from the standard scenario is represented by a model
of inflation with two scalar fields, the curvaton scenario [81, 84]. In this model
inflation is driven by the inflaton field, while the curvature perturbations are pro-
duced from an initial isocurvature fluctuation associated with the fluctuations of
a second scalar field, the curvaton. It is assumed that the perturbations given
by the inflaton field are negligible. Therefore this scenario liberates the inflaton
field from the responsibility of generating the density perturbations and there-

fore it avoids the conditions on the slow-roll parameters to affect the level of

I This result is valid for the “local” shape of the primordial bispectrum. See Section 2.6

2fnr ~ O(e,n) refers to the level of non-Gaussianity which is generated during the infla-
tionary stage and it does not take into account the enhancement of non-Gaussianity due to the
gravitational dynamics after inflation. If one takes into account the late-time evolution of the
cosmological perturbations, the level of non-Gaussianity is ~ O(1). See Section 2.8.



non-Gaussianity. Other scenarios where it is possible to produce a large non-
Gaussianity are hybrid and multi-brid models [3, 9, 10, 42, 59, 99] and certain
modulated and tachyonic (p)re-heating scenarios [36, 40, 60, 129].

Even though inflation successfully solves the main puzzles of the early Uni-
verse, we lack a derivation of an inflationary theory from first principles. As
proposed by many authors, a good scenario to implement inflation is supergravity
[66, 128]. In the first part of this thesis we study how to realize the curvaton sce-
nario in supergravity in the context of chaotic inflation. This procedure gives rise
to what we called a supercurvaton scenario. We study the level of non-Gaussianity
generated in this model and show that the non-linearity parameter fy; may take
values in the observationally interesting range. Moreover we demonstrate that
if inflation is long enough, the average value of the curvaton contribution to the
amplitude of metric perturbations and the averaged value of the parameter fyg,
do not depend on the initial conditions of the curvaton field. Thus, while the
curvaton models are more complicated than the single-field inflationary models,
they make the resulting scenario much more flexible, which may be important for

a proper interpretation of the coming observational data.

Another main riddle of the Universe is the presence of magnetic fields in all
celestial objects: planets, stars, galaxies and clusters of galaxies carry fields which
are large and extensive [17, 43, 71]. They have an intensity of micro Gauss and
are correlated on scales of the order of the galaxy or cluster size. Remarkably,
magnetic fields seem to pervade the entire Universe and be present also in the
intergalactic medium. Recent data from Fermi and HESS have been used to put a
lower bound on the strength of the intergalactic field: B 2 107'* G [31, 100, 116].

The origin of these fields is unknown. An elaborate magnetohydrodynamical
process, called dynamo mechanism, has been proposed to amplify very weak seed
fields into the fields observed today in the galaxies. It is based on the conversion
of the kinetic energy of an electrically conducting fluid into magnetic field energy.
Today, the efficiency of such a mechanism has been brought into question both by
improved theoretical work and new observations of magnetic fields in high redshift
galaxies. For instance, the fact that high z galaxies have fields comparable to the

one of the Milky Way is incompatible with the necessary number of turns in order
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for the dynamo mechanism to operate. Second, most galaxies and clusters have
fields of a few micro Gauss and this is not compatible with the different number
of rotations and the parameters involved in every galaxy. In addition, magnetic
fields seem to increase with redshift. Furthermore, even if the dynamo mechanism
was effective, a seed field is required to initiate the process and the origin of this
seed field is still missing. Magnetic fields in clusters of galaxies have strength and
coherence size comparable to, and in some cases larger than, galactic fields. In
the standard cold dark matter scenario for structure formation, clusters form for
aggregation of galaxies. It is now believed that magnetic fields in the intercluster
medium cannot form from ejection of the galactic field, thus it seems that we can
exclude a common astrophysical origin for both fields [51].

All these facts seem to point in the direction of a cosmological origin of the
observed magnetic fields. Cosmological magnetic fields may arise during phase
transitions, for example the electroweak [2, 16, 28, 29, 39, 49, 58, 120] or the
Quantum-Chromo-Dynamics (QCD) [5, 21, 106] phase transition. Another pro-
posal for the generation of primordial magnetic fields comes from cosmic strings
[6, 121, 127]. These mechanisms are proposed either to directly give rise to the
magnetic field observed today or to provide the seed field which will be ampli-
fied by the dynamo. However, also the seed fields must satisfy two requirements
related to their coherence length and amplitude: the coherence size should not
drop below 10 Kpc, otherwise it will destabilize the dynamo, and the minimum
required strength should vary between 1072 and 10722 G. The main problem
related to these constraints is that magnetic fields generated between inflation
and recombination have too small coherence length because of causality, which
constrains the field inside the size of the horizon at the time of magnetogenesis.

A prime candidate for the generation of magnetic fields which can solve the
scale problem is inflation, since it creates superhorizon-sized correlations [119].
The idea is that inflation can amplify quantum vacuum fluctuations and thus
generate long-wavelength magnetic fields. It is known that in the Friedmann-
Lemaitre-Robertson-Walker (FLRW) Universe the conformal vacuum is preserved
if the theory is conformally invariant [102]. Classical electrodynamics is confor-
mally invariant, so that photons should not be produced in cosmological back-

ground. Thus the conformal invariance of the electromagnetism must be broken



to produce long-wave magnetic fields via excitation of the vacuum fluctuations.
Many mechanisms provide the breaking of the conformal invariance of the elec-
tromagnetic field [7, 32, 33, 48, 73, 89, 107, 118, 119]. However, if the fields
produced during inflation are too strong, they might have a back reaction on the
background and thus spoil inflation. In the second part of this thesis the issue of
the back reaction of the magnetic field on the background is studied extensively.
We show that this back reaction is very important and leads to rather strong
bounds on the maximal value of the strength of primordial magnetic fields which
seems not enough to explain the observed fields as a result of the amplification

of these primordial seeds by dynamo mechanism.

The thesis is organized as follows. In Chapter 2 we review the essential facts
about inflation and the linear theory of perturbations. First we discuss the basics
about the FLRW cosmology and inflation, focussing on the simplest inflation-
ary model with one scalar field. After reviewing the quantization of a massive
free scalar field in unperturbed de Sitter spacetime, we present the basic facts
from the theory of cosmological perturbations. Then we very briefly describe the
main effect for the generation of CMB anisotropies and explain the idea behind
the emergence of non-Gaussianity in the CMB. Finally we show that single-field
models of inflation generate negligible non-Gaussianity and we describe how in
these models non-Gaussianity is enhanced by the gravitational dynamics after
inflation.

In Chapter 3 we introduce inflationary models with two scalar fields. In the
first part we give a basic description of the curvaton scenario, explaining the gen-
eration of curvature perturbations and calculating the level of non-Gaussianity.
In the second part we present the supercurvaton scenario, following our paper
[26]. First we describe how to realize chaotic inflation in supergravity. Then we
investigate how to implement the curvaton scenario in supergravity in the con-
text of chaotic inflation. Lastly we study the consequences of the supercurvaton
scenario, in particular we compute the non-linearity parameter fy; which arises
in this class of theories and we find that it can take values in the observationally
interesting range from O(10) to O(100).

In Chapter 4 we present a brief review of large-scale magnetic fields. We de-
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scribe the observational methods used to measure them. Then we summarize the
observations of their typical strength and coherence size in galaxies, clusters of
galaxies and the bounds on the intergalactic magnetic fields. We briefly describe
the effects of a magnetic field on the CMB and the constraints on the field am-
plitude set by Big Bang nucleosynthesis. Finally we discuss several proposals for
the generation of the observed magnetic fields in the early Universe.

Chapter 5 deals with the production of magnetic fields during inflation. In
the first part we explain why inflation is a good candidate for magnetogenesis
and how the generation of large-scale magnetic proceeds. We show that the
requirement is the breaking of the conformal invariance of electromagnetism and
we review several models proposed in the literature that realize this condition.
In the second part, which is based on our paper [27], we consider a very general
class of models where the conformal invariance is broken and study the problem
of the back reaction of the generated magnetic field on the background. We
finally provide the limits on the field strength arising from the requirement that

the generated magnetic field does not spoil the dynamics of the background.



Chapter 2
Inflation and perturbation theory

One of the most relevant ideas in cosmology is cosmological inflation, a period of
quasi-exponential expansion in the very early Universe. A model of inflationary
type was first proposed by Starobinsky [114] in 1979. This was the first model
predicting gravitational waves in the Universe in a quasi-de Sitter stage. In
1981 Mukhanov and Chibisov [97] proposed the first mechanism of production of
adiabatic perturbations of the metric, which are responsible for the origin of all
cosmological structures that are now visible, like galaxies, clusters of galaxies and
the whole web of large-scale structure. According to this mechanism, the large-
scale structure originated from tiny density fluctuations, which were stretched to
cosmological scales during inflation and then grew into the structures we see today
via gravitational instability. In 1981 - 1982 Guth [52], Linde [75], Albrecht and
Steinhardt [4] implemented the inflationary scenario in particle physics in order
to solve the flatness, the horizon and the monopole problems of the standard
Big-Bang cosmology.

In this chapter we review the basic arguments behind the theory of inflation.
Sections 2.1 and 2.2 are devoted to the basic equations describing the dynamics of
the Friedmann Universe and inflation. In Section 2.3 we describe the idea of the
emergence of quantum fluctuations during inflation and in Section 2.4 we present
some details about linear perturbation theory. In Section 2.5 we explain how
curvature perturbations give rise to the anisotropies in the CMB and in Section
2.6 we sketch the idea behind the non-Gaussianity in the CMB. In Section 2.7

we briefly compute the level of non-Gaussianity in single-field models of inflation
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and in Section 2.8 we describe how non-Gaussianity is enhanced due to non-linear

effects after inflation.

2.1 Cosmic evolution

The standard cosmology is based on the assumption that the Universe is homo-

geneous and isotropic on large scales and it is described by the FLRW metric

dr?

1 —kr?

ds* = dt* — a*(t) + r2(d0® + sin® 0d¢?) | = g, dr"da”, (2.1)
where a(t) is the scale factor, which characterizes the relative size of spacelike
hypersurfaces 3 at different times, k is the curvature parameter, g,, is the metric
of spacetime and x* = (t,, 0, ¢) are the coordinates of events. k = 1 for positively
curved Y, k = 0 for flat > and £ = —1 for negatively curved . The evolution of
the Universe depends on the single function a(t), whose form is dictated by the

matter content of the Universe through the Einstein field equations
1
G =Ry — §ng, = 87GT ). (2.2)

Here R, is the Ricci tensor and R is the Ricci scalar

Ry =10, —T0 , +T5.I0, -5, R=g"R,., (2.3)
where
w97
Pas = 75 [9aws + 9ova = Jass] (2.4)
are the Christoffel symbols and commas denote partial derivatives (---) , = 88(;;).

T, is the energy-momentum tensor and G is the Newton’s constant.

On large scales matter can be approximated by a perfect fluid with energy-
momentum tensor
T = g"Tay = (p + p)ut'u, — pdl, (2.5)

where p and p are the proper energy density and pressure in the fluid rest frame
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and u* is the four-velocity of the fluid. The equation of state p = p(p) depends on
the properties of matter and must be specified. In many cosmological interesting
cases p = wp, where w is constant.

The evolution of the scale factor a(t) follows from the Einstein field equations.

The (0,0) component of the Einstein equation gives

H? = <9>2 _ Gk (2.6)

a 3 a?’

Differentiating this equation with respect to time and using the energy conserva-
tion equation p + 3H(p + p) = 0 we find
4G

H+ H? = a:—T(p+3p). (2.7)

(2.6) and (2.7) are the Friedmann equations. The Friedmann equations together
with the equation of state p = p(p) form a complete system of equations that
determines the unknown functions a(t) and p(t). The solutions, and therefore
the future of the Universe, depend on the geometry and also on the equation of

state.

2.2 Inflation

In order to have an accelerated stage of expansion, the scale factor must satisfy
the condition @ > 0. In this section we will follow [93]. If the strong energy
dominance condition, p + 3p > 0, is satisfied, then from Equation (2.7) we see
that @ < 0 and gravity decelerates the expansion. Therefore for an accelerated
expansion the strong energy dominance condition must be violated. This is the
case, for example, of a positive cosmological constant, for which py = —p, and
pa + 3pa = —2pp. In this case the solution of the Einstein’s equations is a de
Sitter Universe and for ¢ 3> H) ', the expansion is exponential, a o< exp(Ht).
However a cosmological constant does not describe a successful inflation because
it does not possess a smooth graceful exit. In fact, in order to have a graceful

exit from inflation, we must allow the Hubble parameter to vary in time.
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The simplest model for a successful inflation is implemented by a scalar field
¢, called inflaton, and described by the action

5= [dev=g| 3R+ ja 0000 Vi) 23)

where 877G = 1. This is the sum of the Einstein-Hilbert action and the action of
the scalar field with canonical kinetic term. The equation of motion of the scalar
field is

¢+3Hd+Vy=0. (2.9)

This equation is equivalent to the equation for a harmonic oscillator with a friction
term proportional to the Hubble parameter H. We know that a large friction
term decreases the initial velocities and causes a slow-roll regime in which the
acceleration can be neglected with respect to the friction term. For a general
potential H vV, therefore for large values of V, we can neglect qb compared to
3H¢. Assuming ¢? < V, the equation of motion (2.9) becomes

3H + V4 =0, (2.10)
and the Friedmann Equation (2.6) for the scalar field becomes

Vi9)

H ~ ,
3

(2.11)

where 87G' = 1 and k = 0. The assumptions we made, ¢> < [V| and |¢| <

3H¢ ~ |V4|, can be rephrased into two conditions on the scalar potential:

Vo Vios
9 1 %P
@ s
These are the so-called slow-roll conditions. For a power-law potential V(¢) =
A¢™ /n, both conditions are satisfied for |¢| > 1. In this case the resulting scale

< 1. (2.12)

factor is

(60 = avesp (562 = (1) ). 213

The class of inflationary models with the simple potential V(¢) = A" /n, is

10
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V($)

/@
: 0

Figure 2.1: Classical evolution of a scalar field ¢ with potential V(¢).

called chaotic inflation [76]. After the end of inflation the scalar field begins to
oscillate and a deceleration phase starts. A simple model is sketched in figure
2.1, where in the phase (a) the inflaton field ¢ rolls down on V(¢) slowly driving
the exponential expansion. In the phase (b) the scalar field oscillates rapidly,
ending inflation. During the oscillating phase, the inflaton field decays producing

particles and radiation in a process called reheating.

Through the years many inflationary models have been proposed. Single-
field models differ by the type of potential or by the underlying particle physics
theory. There are mainly three broad classes of scenarios: “small field”, “large
field” and “hybrid” models. An alternative to the single-field inflationary models
is represented by models of inflation with several scalar fields. Among the multi-
field models the simplest proposal is the curvaton scenario, a model of inflation

with two scalar fields, which we will discuss in the next chapter.

11
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2.3 Quantum fluctuations in de Sitter spacetime

The inflationary scenario predicts the emergence of quantum vacuum fluctua-
tions in the early Universe. Associated to these quantum fluctuations there are
primordial energy density perturbations which are the origin of the large-scale
structure. Our current understanding is that during the matter era primordial
density inhomogeneities were amplified by gravitational instability and grew into
the structures we observe today.

The basic idea behind quantum fluctuations generation is described by the sec-
ond quantization of a massive free scalar field in unperturbed de Sitter spacetime.
We describe the quantization procedure following [18, 69, 94].

In a de Sitter Universe the scale factor evolves as a(t) = age!’’, where H is the

time-independent Hubble parameter. Defining the conformal time

[o¢] dt/
n= —/t o) = —exp (—Ht), (2.14)

we can rewrite the metric (2.1) (k= 0) as

1

2 _
ds” = H2772

[dn? — dr? — r*(d6? + sin® 0d¢?)], (2.15)

where —oo < <0 and 0 < r < o0.
Let us consider the case of a massive scalar field ¢(x,n). We can write the

field using the creation, &L, and annihilation, ag, operators, with commutation
relation [af, ax] = 63 (k — k'):

o) = [ et [wntne= +algime =] (210

The canonical commutation relation between ¢ and the conjugate momentum
Ty = a*(n)¢":

[b(@1, 1), 7o (@2, m)] = () [D(@1, 1), & (22, m)] = 6P (@1 —@2),  (2.17)

gives a normalization condition on ¢k(n), a®(ex¢’s — ¥i¢’x) = i. The prime

" denotes the derivative with respect to the conformal time, " = 9/dn. The

12
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normalization condition motivates the introduction of an auxiliary field x, = ayy,
which satisfies a new normalization condition xxX's — Xix'x = ¢. The new mode

functions satisfy the Klein-Gordon equation

X () + [k 4+ mi(m)]xe(n) = 0, (2.18)
where m?(n) is a time-dependent effective mass
) = (m — 2H2)a() = mia?(o) = —. (2.19)
The solution for the Equation (2.18) is
Xe(n) = /=0 [CLHD (—kn) + CoHP (—kn)] , (2.20)

where Cy and C, are integration constants and v* = 9/4 — m2/H2 HY(2) is a
Hankel function of the first kind and H.” () = [H o (x)} " The particular linear
combination used to define the modes determines the choice of the vacuum. In
order to fix the integration constants C'; and C5, we define a vacuum state in the
remote past 7 — —oo. In the remote past, when k|n| > 1, the modes do not feel

the curvature and we can fix the initial conditions by requiring

2 . |
Xi(1) = —00) — [ — (Cre™™1 4 Cye™) . (2.21)

The second term has negative frequency, so that Co = 0. The first term with
Cy = /7/2 gives xx(n) = (2k)~Y/2e~"*n. Therefore we find that the functions

—T

Xi(n) = S —HD (~kn) (2.22)

3

have the required asymptotic behaviour. Thus the solution for g(n) is

VTN
2a() H}Y (—kn), (2.23)
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and the one for ¢(x,n) becomes

,/—_ Bk - ~
o) = YT [ s [ ()= 4 1P (ke =] (220

27) 3/2

The annihilation operator G annihilates the vacuum, ag|0;,) = 0. We calcu-

late the amplitude of ground-state fluctuations in this vacuum:

(Ol )0t )0 = [ L et (2.25)
. -n 2 (1)
_8m2(n)/0 K2dk | HO (~kn)[*

Therefore the spectrum of quantum fluctuations at a given comoving wavelength
2wk~ is
]{3

2
53)(k)5ﬁ‘90k(77)| (—kn)* |HV (—kn)|". (2.26)

S

These results are valid on all scales. However during inflation —kn = k/(aH)
becomes very small and the mode leaves the Hubble-horizon H~!. Therefore
we focus on the behaviour of the fluctuation spectrum of ¢ on super-horizon
scales. We obtain the spectrum of the ¢ fluctuations on super-horizon scales

from Equation (2.26) using the asymptotic form of the Hankel function

HO(z < 1) ~ —z’F;”) (g) - (2.27)

The spectrum is

55 (k) ~ (Z)Q 223 [%} 2 (a%)g_% : (2.28)

where v? = 9/4 — m?/H?. In the special case v = 3/2, the spectrum is scale
invariant, independent of k, 03(k) = H?/(27)?. If we assume that m*/H?* < 1,
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2.3. Quantum fluctuations in de Sitter spacetime

then v = 3/2 — m?/(3H?) + O(m*/H*) and we obtain

H 2 k 2m?2/(3H?)
2 ~Y —_— —_—
r= (1) (2" 229

d1In 63 2m2
¢
dink ~— 3H? (2.30)

In the case of a finite mass, the spectrum would be slightly “blue”. However, since

and the spectral index

m? < H?, the spectrum is almost scale-invariant. The assumption m? < H? de-
termines a long-lasting inflation and makes the scalar field ¢ not to roll down the

potential too quickly.

In realistic models of inflation the Hubble parameter H changes slightly in
time and decreases towards the end of inflation. Let us now investigate how this
influences the amplitude of the large-scale fluctuations. The massive scalar field
acquires a negative effective mass-squared Am? < 0 as it is shown in [98]:

Hd*(¢'/H) N d*V dH 2

2
mdn) = 5 D = (T o) ) - 5 = et - 5 (23

Using the first-order slow-roll approximation, in the case of a quadratic potential
V() = m?¢?/2, we have dH/dt ~ —(dV/d$)*/(6V) = —m?/3, thus m?; =
m? 4+ Am? ~ —2m? < 0 and the spectrum is “red” with spectral index

dIn 535 B 2m§ff N 4m?

dmk 32 = 3@ (2:32)

Any power-law potential V(¢) = Ag¢" with A positive gives a negative m?;
through m% = —(1 + n/2)nA¢" 2. For a generic scalar field with arbitrary
potential we have

, d*V dH dH d*¢/dt

_ Y L g g% a3y
R R R YT

(2.33)
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2. INFLATION AND PERTURBATION THEORY

and the spectral index is

dingg — dH/dt  d*¢/dt?
dink — H? H(dg/dt)’

(2.34)

2.4 Linear perturbation theory

In the previous section we have seen the generation of scalar field fluctuations in
an unperturbed de Sitter spacetime (no perturbations in the metric). However
scalar field fluctuations perturb the energy-momentum tensor producing metric
perturbations. In this section we study linear perturbation theory in inflation,
which includes perturbations of the metric and of a scalar field. We follow the
treatment of [93].

2.4.1 Classification of the perturbations

The metric of a flat FLRW Universe with small perturbations can be written as
ds* = (Gap + 0gap)dada’, (2.35)

where [0ga3| < gag- The spatially flat, homogeneous and isotropic background
spacetime possesses a number of symmetries and these symmetries allow the
metric perturbations dg,s to be categorized into three different types: scalar,
vector and tensor perturbations. At a given moment of time the background is
invariant with respect to the group of spatial rotations and translations. The dggq

component behaves as a scalar under these rotations and hence
8g00 = 2a°®p, (2.36)

where ®p is a 3-scalar. The spacetime components dgg; can be decomposed
into the sum of the spatial gradient of some scalar B and a vector S; with zero

divergence

0goi = CLQ(B,i + Si), (2.37)
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2.4. Linear perturbation theory

where B; = 0B/dxz". The components dg;;, which behave as a tensor under

3-rotations, can be written as the sum of irreducible pieces:
5gij = CL2<2\I/P(SZ‘J' -+ 2E,ij -+ Fi,j —+ .Fjﬁ' -+ hij); (238)

where Wp and E are scalar functions, F © =0 and h;; is traceless and transverse,
namely h; =0, h; = 0.

Scalar perturbations are characterized by the four scalar functions ®p, Vp, B
and E. They are caused by energy density inhomogeneities. They exhibit grav-
itational instability and may lead to the formation of structure in the Universe.
Vector perturbations are described by the two vectors S; and F; and are related
to the rotational motion of the fluid. As in Newtonian theory, they decay very
quickly and are not very interesting from the point of view of cosmology. Tensor
perturbations h;; describe gravitational waves, which are the degrees of freedom
of the gravitational field itself. In the linear approximation the gravitational
waves do not induce any perturbations in the perfect fluid.

Using conformal time, the metric for scalar perturbations takes the form
ds* = a® [(1 +2®p)dn” + 2B da’dny — (1 — 2Up)d;; — 2E ;) da'da’] . (2.39)
For vector perturbations
ds* = a® [dn® + 2S;dz'dn — (6,5 — Fyj — F;) da'da’] (2.40)
and for tensor perturbations
ds* = a® [dn® — (6;5 — hyj) da'da’] . (2.41)

Scalar perturbations change under a change of coordinates. Under the gauge

transformation
¥ — 3% =%+ &%, (2.42)

and decomposing the spatial component as £ = & + ¢, the scalar metric per-
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2. INFLATION AND PERTURBATION THEORY

turbations transform as

—_

dp — Op = &p — —(al), (2.43)

Q

/
Up— Up=Tp+ ¢

a
B—B=B+(-¢,
E—E=E+¢

By choosing £° and ¢ appropriately we can make any two of the four functions
®p, Up, B and E vanish. The simplest gauge-invariant linear combinations of
these functions are

1 /

=0p—-la(B-E), WU=Up+ %(B _B). (2.44)

2.4.2 Evolution of the perturbations

In order to obtain the equations for the perturbations we need to linearize the

Einstein equations

1
G = Ry = 5R8, = 87GT,,, (2.45)

for small inhomogeneities about a FLRW Universe. The Einstein tensor for the

background metric is

— 3H — 1 ,

Go=2t @ —o, G = (21 +H)3), (2.46)
where H = d’/a. In order to satisfy the background Einstein equations, the
energy-momentum tensor for matter, TZ , must have the following symmetry
properties:

0 _—————
T, =0, T;xd. (2.47)

2

In the presence of small perturbations the Einstein tensor can be written as
G = @g + 0G5 + -+, where 0Gj are terms which are linear in the metric

perturbations. The energy-momentum tensor can be split in the same way and
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2.4. Linear perturbation theory

the linearized Einstein equations are

6Gy = 87GoT . (2.48)

2.4.3 Perturbations of a slowly-rolling scalar field

Let us consider the Universe filled by a scalar field ¢ with potential V' (¢). A small
perturbation in the scalar field ¢ = ¢o(n) +d¢(x, n) induces metric perturbations
and the metric takes the form (2.39). The homogeneous component satisfies the

Klein-Gordon equation
0+ 2Hoy + a*Vy = 0. (2.49)

To linear order in the metric and the field perturbations, it becomes
60" +2H — A(Sp— ¢y (B—E'))+aV ys0— (30 + D) +2a*V 4P = 0. (2.50)

This equation is valid in any coordinate system. We can rewrite it in terms of the
gauge-invariant variables ® and ¥ from Equation (2.44) and the gauge-invariant

scalar field perturbation

00 =66 — ¢p(B— E'). (2.51)

The resulting equation is
06 +2HOG — Nop + a®V ey — do(3V + @) + 2a°V & = 0. (2.52)

In order to find the three unknown variables 0¢, ® and U, this equation must be
supplemented by the Einstein equations. The energy-momentum tensor for the

scalar field is
Tg =90 ,05 — (g75¢’7¢75 - V(¢))5§7 (2.53)

and hence its (0,7) component is

<70 1, L, / L ==
0T; = —d'000; — —¢ o(B—E') ;= —=(¢/400),. (2.54)

a
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2. INFLATION AND PERTURBATION THEORY

The (0,7) component of the Einstein equations Eg = 87TG5_Tg is
(V' + HV); = drGa?oT ;. (2.55)
Therefore for a scalar field, this equation becomes
U+ H® = 4rGgpdp. (2.56)
The non-diagonal spatial component of the Einstein equations

1 )
U+ HQU + @) + 2H + H*)P + §A(q> — )| 8 (2.57)

1 =i
— 5(@ — \Ij),zj = —47TGCL2(STj,
where W; = —5_p5;'», reduces to

(@—W)y=0  (i#)) (2.58)

The only solution consistent with W and ® being perturbations is ¥ = &.

Now we determine the behaviour of the long-wavelength perturbations using
the slow-roll approximation. To do so, first we rewrite Equations (2.52) and (2.56)

in terms of physical time:

0p 4+ 3HOD — A6p + Vs — dgo® + 2V 4 = 0, (2.59)
O+ HO = d1¢ydo, (2.60)

where we have set 6¢ = d¢ and we have used ® = ¥, and where G = 1. The
spatial derivative term Ad¢ can be neglected for long-wavelength perturbations.
Since we are considering the slow-roll approximation, we next omit terms pro-
portional to 5q5 and ® and after finding the solution of the simplified equations

one can check that the omitted terms are actually negligible. The new equations
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2.4. Linear perturbation theory

become

BHSG + V506 + 2V4® =~ 0, (2.61)
H® ~ 4m¢d . (2.62)

Introducing the new variable y = d¢/V,;, we obtain

3Hy + 20 ~ 0, (2.63)
H® ~ 47Vy. (2.64)
During inflation 3H? ~ 87V, therefore

d(yV)
dt

=0, (2.65)

which gives y = A/V, where A is a constant of integration. The final result is

V

QISO ¢ 1 ¢ ’
oy = ana 20V Ly (Yoo .
B AT AT 5%\ 77 (2.67)

The integration constant is fixed by requiring that at the moment of horizon

crossing, d¢y has the minimal vacuum amplitude and one finds that

~1/2
A~k (1) | (2.68)
ak Ve k~Ha

At the end of inflation (¢ ~ ty), the slow-roll conditions are not valid anymore and

V4/V becomes of order unity. Therefore the amplitude of the metric fluctuations

3/2
ok, ts) ~ ARk ~ (Hl) ~ (V ) . (2.69)
V,aﬁ k~aH V«b k~aH

Using H ~ /V/3 and V, = —=3H ¢ one can show that this result is consistent

becomes
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2. INFLATION AND PERTURBATION THEORY

with the spectrum A? in [69], Equation (2.43)

(2.70)

H2
i-ste[ ]

2mg/

The relation between the variables ® and ¢ will be explained in the following.

In the case of a power-law potential V' = A¢"/n we have
O (K, t5) ~ ARG apr) "2~ A2 (In gy H) D, (2.71)

where Ay, ~ a(t;)k~" is the physical wavelength. In the specific case V = m?¢?*/2

the amplitude of the metric fluctuations is
(5(1) ~ mln (Athk) (272)

Perturbations present at the end of inflation do not change during reheating.
Therefore the shape of the spectrum is predicted: it has logarithmic deviations
from a flat spectrum with the amplitude growing slightly towards larger scales.
The prediction of a slightly red-tilted spectrum is in agreement with the cur-
rent observational data. In fact CMB experiments [68] show that a red-tilted
primordial power spectrum is preferred. The 7-year WMAP data combined with
the latest distance measurements from the Baryon Acoustic Oscillations (BAO)
in the distribution of galaxies [110] and the Hubble constant (H,) measurement
[111] exclude a scale-invariant spectrum at 99.5% confidence level, if they ignore

tensor modes (gravitational waves). The spectral index ns defined as

_ dlnég5
 dlnk

(2.73)

ne — 1

is found to be ny = 0.968 £ 0.012 at 68% confidence level.
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2.4. Linear perturbation theory

2.4.4 Gauge-invariant variables

We have seen that the value of ¢, (2.51), and W, (2.44) are independent of a
gauge choice. Using a proper combination of these gauge-invariant variables, one

can build a new gauge-invariant variable

v=a (5_¢ + ¢—6\P) . (2.74)
H

Let us note that, as we have seen before, in the case of a Universe filled with a
single scalar field the non-diagonal spatial component of the Einstein Equations
(2.57) gives ¥ = ®. The new gauge-invariant variable v plays an important role.
In fact Mukhanov, Feldman and Brandenberger [98] showed that v obeys the
same Klein-Gordon equation as the variable y; that we defined in Section 2.3
about quantization of quantum vacuum fluctuations during inflation, see Equa-
tion (2.18). Therefore the argument on the quantization of quantum fluctuations
during inflation applies to v as well.

Another gauge-invariant variable was proposed by Bardeen, Steinhardt and

Turner [§]
Hv

H__

(= P v y 0. (2.75)

The variable ( is important in the perturbation analysis because it is gauge-

invariant and also because it is conserved on super-horizon scales throughout the
cosmic evolution. Here again W = & in the case of a single scalar field.

The variable ® gives the closest analogy to the Newtonian potential. The

general relativistic cosmological perturbation theory gives the relation between (

and ® for adiabatic perturbations [93],

2R+

C31+w

®, (2.76)

where w is the equation of state parameter. On super-horizon scales during the
radiation era (w = 1/3) we have ® = 2¢ and during the matter era (w = 0) we
have & = g( .

23



2. INFLATION AND PERTURBATION THEORY

2.5 Generation of CMB anisotropy

Temperature fluctuations in the CMB arise due to five distinct physical effects:
our peculiar velocity with respect to the cosmic rest frame, fluctuations in the
gravitational potential on the surface of last scattering, fluctuations intrinsic to
the radiation field itself on the surface of last scattering, the peculiar velocity
of the surface of last scattering and the damping of anisotropies if the Universe
should be re-ionized after decoupling. The second effect, known as Sachs- Wolfe
effect, is the dominant contribution to the anisotropies on large angular scales,
0 > 1°. Let us therefore consider this effect.

The Sachs-Wolfe effect predicts that the CMB that resides in a potential well
initially has an adiabatic temperature fluctuation of AT/T = [2/3(1 + w)|®,
and at the decoupling epoch, when it is climbing up the potential, it receives an
additional fluctuation —®. The total CMB fluctuation that we observe today is

therefore
AT 2 14+ 3w o — 14+ 3w

- _5+3w

P_—Pp=—_—_—""""
T  3(l+w) 3+ 3w

. (2.77)

In the case of isocurvature perturbations the initial temperature fluctuations are
given by —® for both radiation and matter era, therefore the total amount of
CMB perturbations is given by AT/T = —® — & = —2.

At the decoupling epoch, the Universe has already entered the matter era
with w = 0 and AT/T = —%<I> = —%{ and, using (2.70), the spectrum of the
Sachs-Wolfe effect is

k) = 5 0200) = |

e r, (2.78)

107

where H is the Hubble parameter during inflation [19]. We can obtain the angular
power spectrum C} by projecting the 3-dimensional CMB fluctuation spectrum
62 (k) on the sky,

> dk .
CSW _ 4n / 0% ()72 (0 — o) (2.79)

'[9 —n)/2T[l+ (n—1)/2]
I[(n+3)/2]T[+ (5 —n)/2]’

_ SW
=5
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2.6. Non-Gaussian fluctuations

where 7y and 74 are the present day and the decoupling time, and n = 1 +
[dIn§%(k)/dIn k] = n, is the spectral index defined in (2.73).

2.6 Non-Gaussian fluctuations

While quantum fluctuations are Gaussian, non-linearity in inflation produces
weakly non-Gaussian fluctuations, which result in non-Gaussianity in the CMB.
In the following we present the idea behind it reviewing [69].

The curvature perturbation produces small anisotropies AT/T" in the CMB.

In linear perturbation theory the relation between ® and AT /T is linear,

— ~gr® 2.80
T gr?, ( )

where gr is the radiation transfer function. We have seen in the previous section
that for temperature fluctuations on super-horizon scales at the decoupling epoch,
gr = —1/3 for adiabatic fluctuations and gr = —2 for isocurvature fluctuations.
According to the general relativistic perturbation theory there is a non-linear
relation between AT/T and &:
AT

— ~ (gr® + f2®?), (2.81)

where fp ~ O(1) is the higher second order correction arising from the second-
order perturbation theory [105]. So even if ® is Gaussian, AT /T is weakly non-
Gaussian.

We should also note that non-linearity in inflation makes ® non-Gaussian. By
expanding the fluctuation dynamics in inflation up to second order, we find a

non-linear relation between ® and the inflaton fluctuations d¢,
® ~ Mptge(66 + Mp' f5460%). (2.82)

Salopek and Bond [112] showed that this relation is a solution for curvature
perturbations on super-horizon scales. The solution gives go ~ O(10) and fs5, ~

O(1071) for a class of slowly-rolling single-field inflationary models.
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2. INFLATION AND PERTURBATION THEORY

Quantum fluctuations produce Gaussian d¢. However, non-trivial interaction
terms in the equation of motion of the inflaton field, or a non-linear coupling be-
tween long-wavelength classical fluctuations and short-wavelength quantum fluc-

tuations (in the context of chaotic inflation), can make d¢ weakly non-Gaussian:
3¢ ~ gsse + Mp' fee®), (2.83)

where € are initially produced quantum fluctuations, gs4 ~ 1 and f ~ O(1071).

The above contributions result in a non-linear relation between AT/T" and @,

AT

e~ [ + (fo + 95 fso + 90 955 f)P3] , (2.84)

where ®1, = gag5¢Mp 'e ~ 10Mp '€ is an auxiliary Gaussian curvature perturba-
tion. We can define a non-linear coupling parameter fy, = fo+9g' fss+9g" ggd)l fe,
where the first term is O(1) and it is dominant compared to the other two terms,
which are O(1072), non-linearity in slow-roll. Using fy; we can rewrite (2.84)

and (2.80) as
O(x) = (@) + fnr, [OF (x) — (DF(2))] (2.85)
where the angular brackets denote the statistical ensemble average. fnr is a di-

mensionless parameter and, as it is defined in (2.85), it is used to characterize

the local form of Gaussianity.

We can define a generalized fy parameter in the following way:

B@(kla k27 k3)

[Py (k1) P (ka) + Po (ko) Po(k3) + Po(kz)Po(k1)]’ (2.86)

fNL(kh k27 k3) = 9

where Pg(k) and Bg(ky, ks, k3) are respectively the power spectrum and the bis-

pectrum and they are defined in the Fourier space as

<(I)k:1q)k2> = (27T)3Pq>(k31)53(k1 + kg), (287)
(Ppe, Py Piey) = (27)° B (kn, ko, k3)0° (kv + kea). (2.88)

The delta function in Equation (2.88) enforces that the three Fourier modes of
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2.7. Non-Gaussianity in single-field inflation

the bispectrum form a closed triangle. Different inflationary models predict max-
imal non-Gaussianity for different triangle configurations. Physically motivated
models for producing non-Gaussian perturbations often produce signals that peak
at special triangle configurations. Three important special cases are: the squeezed
triangle (ki =~ kg > k3), this is the dominant mode of models with multiple light
fields during inflation, the curvaton scenario, inhomogeneous reheating and New
Ekpyrotic models. The equilateral triangle (ki = ks = k3), this is relevant for
models with higher-derivative interactions and non-trivial speeds of sound. The
folded triangle (k1 = 2ky = 2k3), this shape arises in models with non-standard

initial states.

2.7 Non-Gaussianity in single-field inflation

Creminelli and Zaldarriaga [23], generalizing an observation by Maldacena [86]
imposed a consistency relation on the 3-point correlation function of single-field
inflation. They demonstrated that the non-linearity parameter fy is propor-
tional to 1 — ng, where ng is the spectral index of scalar perturbations, and
thus fyp for single-field models is very small. Now we review the argument of
Creminelli and Zaldarriaga [23] as it is treated in [45].

We want to calculate the 3-point correlation function (g, Ca,Crs)' in the limit
ks < ki, ky. We have that

(Coer Ches Cies) = ((Cer iz ) ey Cis ) (2.89)

where we define (---)¢,  to be the expectation value of --- given that (x, has
a particular value. We compute (C,Cr,)¢,, after the ki, k; modes have left the
horizon so that the mode k3 will have crossed the horizon in the distant past.
Thus (g, will be part of an essentially classical background ¢? which affects the
scalar field through the metric. Considering only modes far outside the horizon,

the metric is
ds® = dt? — a*(£)e*” @) da?, (2.90)

'In this case the variable ¢ is a gauge dependent variable and it is different from the one
used in 2.4.4. At linear level it corresponds to the intrinsic curvature perturbation W.
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where

B — d3k ik-x
() = /k e —(%)3@6 : (2.91)

The background perturbation ¢ is small, so it makes sense to expand the corre-

lation function in a power series about ¢(? and keep only the first term:

J
()o@, Az) = (Xo(Ax) + / R 50| (@ de) |+, 202
k
(=0
where € = (x1 + @2)/2 and Ax = a3 — ;. For k; small enough, we can
perform a change of coordinates x — &' = e¢"®z to put (2.90) in the form

of the unperturbed FLRW metric. In these new coordinates, the background is

unperturbed so
(s (@, Am) & (ol — @) = (ol @ Aw), (2.93)

Therefore

4]

KA ¢ d[(¢%)o(Ax)
5l |

(27)3  dlnAx

(o (x, Am) =

(2.94)

Substituting this into (2.92), moving to Fourier space and correlating with (g,
we find

(Crer CreaCies) = ((Ca Coa ) ¢, Cles) (2.95)
2
- (k)P rT | 10 () 290
m P I(S™ ey) Pley) L P (Rs)]
= —(27)360 (ZZ: kZ)P(k‘g)kg ks (2.97)
= (2m)*6® (> ki) P (k1) P(ks)(1 — ng), (2.98)
where k, = (k1 — k2)/2 ~ k; and we have used the fact that ng —1 = %ﬁ(k)]

This yields the result of [23].
We have seen in (2.86) that fy; parametrizes the part of the bispectrum that
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2.8. Enhancement of non-Gaussianity after inflation

has the form

(Cher Crea Cies) = Z’f fNL [Pe (k1) Pe (ko) 4 Pe(ke) Pe(ks) + Pe(ks) (k1))

(2.99)
Since we measure that Pq(k) ~ k=3 [68], we can see that the bispectrum has a
“squeezed” shape, namely it peaks at the squeezed limit, and its squeezed form
is

(Gor Gk = (2009 (S K)o Pelhn) P (k). (2.100)

Confronting the results (2.98) and (2.100) we obtain that for any single-field
inflation model

152(1 — ng). (2.101)

Since 1 — ng = 0.037 [68], every single model should produce a level of non-

fne =

Gaussianity fyr ~ 0.02 during inflation.

2.8 Enhancement of non-Gaussianity after infla-

tion

From the study of the late-time evolution of the cosmological perturbations it
was found that a large non-linearity is generated by the gravitational dynamics
from the original inflationary quantum fluctuations. This leads to a significant
enhancement of the tiny intrinsic non-Gaussianity produced during inflation in
single-field slow-roll models. We review a general discussion of this argument as
given in [70].

As we have seen previously, we can expand AT in spherical harmonics
= Z ale}m(’ﬁ’)? (2102)
lm

where 1 denotes the direction of observation. Given the form of the gravitational
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2. INFLATION AND PERTURBATION THEORY

potential ®, one can calculate the harmonic coefficients

3
G = Ar(—i)' / (;ZW’;(I)Pr(k)ng(k)Y};“n(k), (2.103)
where g7; is the radiation transfer function and the index “Pr” stands for pri-
mordial, by which we mean ®p, = %C . So far, we have assumed that one can
use the formula (2.103) to convert the primordial curvature perturbation to the
temperature anisotropy. However this equation is valid only for linear theory.
Since any non-linear effect can produce non-Gaussianity, one has to study the
consequence of various non-linear effects.

The origin of the linear radiation transfer function is the linearized Boltzmann

equation

OAD
o + ikpAY + opneaAV) = SO (k. n), (2.104)
Ui

where 7 is the conformal time, p = k - n, A = 4ATO (k, u,n)/T] is the
perturbation in the photon energy density, and S is the linear source function,
which depends on the metric perturbations and on the density, velocity, pressure
and stress perturbations of matter and radiation and the photon polarization.
The second-order Boltzmann equation is written in a similar way,

OA®2)

o + ikpA® + opneaA® = SO (k, n, 1), (2.105)

n

where A® = 8[AT® (k, 7, n)/T) + 12]ATV (k, 7, 1) /T)?, and S is the second-
order source function. Note that at second order the perturbations depend on the

directions of k and n independently. In this case the second-order a;, is given
by [101]

o _4m o [ Ak / K / k5P (K + K’ — k)®p) (k" 21
_ A - 106
im = g (=) /(2%)3 (2m)3 ( Jer (K) ( )

XZFV (K K" k)Y (),

Ion! - . . . . .
where F}'™ is the second-order radiation transfer function and its form is deter-

mined by the second-order source function S® in the Boltzmann equation.
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2.8. Enhancement of non-Gaussianity after inflation

1 @) (2

The shape of the second order bispectrum, (a; ;. a;,,. a;.".

), is given by the
second-order radiation transfer function. If the latter vanishes in the squeezed
limit, i.e. F™ (k' k" k) — 0 for k — 0, then the CMB bispectrum would not
peak at the squeezed limit configuration, and thus the resulting fi5% would be
small.

The second-order source function is quite complicated, but it can be decom-
posed into two parts: (a) the terms given by the products of the first-order pertur-
bations, such as [®™]? and (b) the terms given by the “intrinsically second-order
terms”, such as ®®. This decomposition depends on the gauge choice, so which
terms belong to (a) or (b) depends on the gauge. A convenient gauge-choice
seems the Newtonian gauge (B = E = 0 in (2.39)), chosen by Pitrou, Uzan
and Bernardeau [103, 104] and Bartolo, Matarrese and Riotto [14, 15], where the
products of the first-order terms only give |fi%| < 1. The intrinsically second
order terms are sourced by products of the first-order perturbations and therefore
they are created by the late-time evolution of cosmological perturbations, while
the terms in (a) are set by the initial conditions. In [104], the authors showed

that the terms in (b) give fi5% ~ 5 for the Planck data (I,,ee = 2000).
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Chapter 3
The curvaton scenario

As we have seen in the previous chapter, quantum fluctuations of the inflaton field
in the simplest inflationary models produce perturbations which are adiabatic,
Gaussian and with a slightly red tilted power spectrum. This prediction seems
in very good agreement with the observational data. The 7-year WMAP data
combined with the latest distance measurements from the Baryon Acoustic Oscil-
lations (BAO) in the distribution of galaxies [110] and the Hubble constant (H)
measurement [111] find ny, = 0.968+0.012 at 68% confidence level [68], confirming
the prediction of single-field inflation for the scalar power spectrum. However,
there is not yet a very precise measurement of the level of non-Gaussianity of
the curvature perturbations. The 7-year WMAP analysis yields the non-linearity
parameter fyg, for the local form in the following range: —10 < fi%¢ < 74. The
prediction for non-Gaussianity of single-field inflation models is in this range.
However, other inflationary models which deviate from the standard paradigm
and predict a higher level of non-Gaussianity might also fit the data. Since the
precision of the observations improves every year, in the near future we will be
able to discriminate among the various inflationary models by studying the degree
of non-Gaussianity of the perturbations.

A higher level of non-Gaussianity is obtained in inflationary models such as
two-field [13, 83, 84, 87], hybrid and multi-brid [3, 9, 10, 42, 59, 99] inflation and
in certain modulated and tachyonic (p)re-heating scenarios [36, 40, 60, 129].

In this chapter we study the simplest of these models, which is a model of in-

flation with two scalar fields, called the curvaton scenario. In Section 3.1 we give
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3. THE CURVATON SCENARIO

a basic description of this model describing the generation of curvature perturba-
tions and calculating the level of non-Gaussianity. In Section 3.2 we investigate
how to implement the curvaton scenario in supergravity in the context of chaotic
inflation and we compute the level of non-Gaussianity which arises in this class

of models.

3.1 Two-field inflation

It is possible to produce non-Gaussian adiabatic perturbations in models contain-
ing several scalar fields. The simplest case is a model with two scalar fields, the
inflaton and the curvaton. In such a model the power spectrum of perturbations
can be non-flat and it can be non-Gaussian. This possibility was first proposed
in [81] and then it was significantly developed in [30, 80, 83-85, 91, 92] and many
other works.

In this scenario the adiabatic density perturbations are produced after in-
flation from purely isocurvature curvaton perturbations. The curvaton field is
subdominant during inflation and therefore its perturbations are of isocurvature
type. The curvature perturbation becomes relevant when the energy density of
the curvaton field becomes a significant fraction of the total energy density. This
happens when the Hubble parameter drops below the curvaton mass and the cur-
vaton field starts to oscillate around the minimum of its potential, behaving like
non-relativistic matter. Afterwards the curvaton decays into thermalized radia-
tion generating an adiabatic perturbation. It is also possible that some residual
isocurvature perturbations survive after the curvaton decay. For example in the
case where the curvaton, when subdominant, decays into a component of Cold
Dark Matter (CDM) which does not thermalize with the existing radiation. We

now analyze the generation of curvaton perturbations following [83] and [12].

3.1.1 The curvaton field perturbation

During inflation the curvaton field o is supposed to be an almost free scalar field
with effective mass m2 = |V,,| < H? and it is supposed to give a negligible

contribution to the energy density. It is assumed that the curvaton field does
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3.1. Two-field inflation

not have any significant coupling with other fields or that the effect of any cou-
pling can be integrated out to give a possibly time-dependent potential V. The

unperturbed curvaton field satisfies the equation of motion
c+3Ho+V,=0. (3.1)

If we expand the curvaton field as o(t, ) = o(t)+do (¢, x), then the perturbation
satisfies the equation
06 +3Hé0 + V,,00 =0, (3.2)

where we made the first-order approximation 6(V,(t,x)) ~ V,,(t)0o(t, ). The
fluctuations do on super-horizon scales are Gaussian with an almost scale-invariant

power spectrum: o
P 4—7:2, (3.3)
where * denotes the epoch of horizon exit k = aH. After the end of inflation, the
inflaton energy density is converted into radiation and the curvaton field remains
approximately constant until H? ~ m2. When the Hubble parameter falls below
the curvaton mass, the curvaton starts to oscillate around the minimum of its

potential. Even if the potential is not quadratic, after a few Hubble times, we

1

imZo? and the energy density will be

can make the approximation V ~
po(t,@) ~ m2o’(t, ). (3.4)

From Equations (3.1) and (3.2) we see that for a quadratic potential the ratio
do /o does not evolve. The perturbation in p, depends on the curvaton field
perturbation through both a linear and a quadratic term. Assuming, for the

moment, that the linear term dominates, the resulting relative energy density

b0 _y (5_”) (35)

Po o

perturbation is

3.1.2 The curvature perturbation

Perturbations in the energy density of the curvaton field produce a primordial

density perturbation well after the end of inflation. The primordial adiabatic

35



3. THE CURVATON SCENARIO

density perturbation is associated with a perturbation in the spatial curvature ¥
and it is characterized by the gauge-invariant variable (, which was introduced
in the previous chapter, Equation (2.75).

When the Hubble parameter falls below the curvaton mass, the curvaton field
starts to oscillate. At this moment, the energy density is dominated by radiation
(7), which is the result of the decay of the inflaton field. During the curvaton

. . -3 —4
oscillations, p, o a™° and p, o< a™".

Therefore the curvaton component of
the energy density p, increases with respect to the radiation component p, and
the perturbations in the curvaton field are then converted into the curvature
perturbation.

To analyze the generation of the curvature perturbation it is convenient to

consider the curvature perturbations (; associated with each individual energy

G=-V—H (5pi> : (3.6)

In particular, on unperturbed hypersurfaces ¥ = 0 (spatially flat gauge), , is

density component:

~ 1ops

(= 30 (3.7)

and thus the total curvature perturbation can be written as the weighted sum

C=01=1G+ [, (3-8)

where f defines the relative contribution of the curvaton field to the total curva-

ture perturbation and it is given by

3P0
=l 3.9
d 4py + 3po (3.9

In the following we assume the approximation of sudden decay of the curvaton

field. Under this assumption, the radiation and the curvaton field satisfy separate
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conservation equations

py = —4Hpy, (3.10)
Po = —3Hpy,, (3.11)

and each (; is constant on super-horizon scales until the curvaton decay. Thus

from Equation (3.8) it follows that the evolution of { on these scales is given by

=[G =¢)=HI1- ) —6). (3.12)

The curvaton scenario corresponds to the case where the curvature perturbation
in the radiation produced at the end of inflation is negligible, ¢, ~ 0. In the sud-
den decay approximation, ¢, and ¢, both remain constant up until the curvaton
decays. Well after the decay of the curvaton, during the matter and radiation

eras, the curvature perturbation stays constant on super-horizon scales at a value
which is fixed by

C ~ fdec<o; (313)

where fge. is f at the decay time. Going beyond the sudden decay approximation,

we can introduce a parameter r defined in the following way:

¢ =1, (3.14)
= g%, (3.15)

where ( is evaluated after the curvaton decay and (, is evaluated before the
curvaton decay. In the case where the curvaton completely dominates the energy
density before it decays, » = 1. In this limit the sudden decay approximation
becomes exact. In the case where the curvaton does not dominate, numerical

studies performed in [88] show that

Po
ras . 3.16
<,0tot>dec ( )

The prediction of the curvaton model for the spectrum of the curvature per-
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turbation is 5

6 = 5750/ (3.17)
The COBE measurements of the CMB anisotropy require 6;(COBE) = 4.8 x107°.
Therefore, if the curvaton dominates the energy density before it decays (r = 1),
this implies that

0s0/0 = 7.2 x 107°. (3.18)

3.1.3 Non-Gaussianity of the curvature perturbation

From Equation (3.4) and (3.15) we can see that the curvature perturbation de-
pends on the curvaton field perturbations through both a linear and a quadratic
term. The linear term gives a Gaussian contribution to the curvature perturba-
tion, but if the quadratic term in the energy perturbation is not negligible, then
the curvature perturbation will have a non-Gaussian component.

The level of non-Gaussianity is encoded in the non-linearity parameter fxy.
As we have seen previously, a phenomenological way of parametrizing the level of
non-Gaussianity is to expand the fully nonlinear primordial Bardeen gravitational

potential ® in powers of the linear gravitational potential @,
S =0p + fy 2. (3.19)

We have seen that the relation between ® and ¢ during the matter era on super-

horizon scales is ® = %C , thus

0ps
o =" (3.20)
9 Po
Equation (3.4) gives
dpo ) do)?
0ps _ g9 | ? . (3.21)
Po o o

Therefore, using Equations (3.19), (3.20) and (3.21), we obtain the prediction of

the curvaton scenario for the level of non-Gaussianity:

bt

Ine = e (3.22)

We should note that in order to make this estimate we assumed first-order cosmo-
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logical perturbation theory. The validity of the estimate (3.22) requires that the
curvaton contributes only a small fraction of the energy density before it decays.
If the curvaton dominates the energy density before its decay, the non-Gaussianity
calculated at linear order is lost in the noise of the unknown second-order correc-
tions to cosmological perturbation theory.

We have seen that the curvaton scenario can be consistent with the observa-
tions. In fact the density fluctuations generated in such a scenario are almost
scale-invariant and the level of non-Gaussianity can be quite significant. In or-
der to generate large non-Gaussianity with the curvaton, it is necessary that the
energy density of the curvaton at the time of its decay is much smaller than that
of the dominant component of the Universe (which is expected to be from the

inflaton).

3.2 The curvaton scenario and supergravity

The success of the inflationary paradigm in solving the main puzzles of the early
Universe is outstanding. Nontheless we still do not have a derivation from first
principles of a theory of inflation. In fact we lack a natural way of identifying the
fields involved with fundamental fields in particle physics.

Supersymmetry is widely discussed as the most interesting candidate for the
physics beyond the standard model. It may solve the hierarchy problem, namely
the discrepancy between the experimentally anticipated order of magnitude for
the Higgs boson mass and its theoretical expectation. It also allows for the
unification of the weak interaction, the strong interaction and electromagnetism,
in the sense that the values of the three coupling constants agree at a certain
energy scale only in a supersymmetric version of the standard model.

In the previous chapter we have seen that in the simplest inflationary model
inflation is due to the potential energy of a scalar field. Such a potential must
be relatively flat in order to guarantee a long duration of inflation and a small
deviation from scale invariance of primordial density fluctuations. However, the
flatness of the scalar potential can be easily destroyed by radiative corrections.
This problem can be solved by supersymmetry. When combined with gravity,

supersymmetry must be a local symmetry. Such a supersymmetric version of
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3. THE CURVATON SCENARIO

gravity is called supergravity, and its action is uniquely specified by the choice
of two functions, the Kahler potential IC and the superpotential W. For review
see [125]. Therefore it is very natural to consider inflation in the context of

supergravity.

3.2.1 Chaotic inflation in supergravity

Among various inflationary models, chaotic inflation [76] seems very attractive
since it is very simple and it does not suffer from any initial condition problem.
However for many years, it seemed very difficult to realize chaotic inflation in
supergravity. This issue was solved by Kawasaki, Yamaguchi and Yanagida in
[66]. In the following we review their argument.

The main problem to overcome in order to realize simultaneously supergravity
and chaotic inflation is the fact that the minimal supergravity potential has an
exponential factor, exp (¢} ¢; /M%), which prevents any scalar field ¢; from having
values larger than Mp ~ 10 GeV. However in chaotic inflation, the inflaton field
¢ must have a value larger than Mp in order to cause inflation.

In [66] the problem was solved assuming that the form of the Kéhler potential
is determined by a symmetry. With this symmetry the inflaton field is allowed to
have values larger than Mp and hence it can cause inflation. The authors assumed
that the Kéhler potential IC(®, ®*) is invariant under the shift symmetry of ®,

® — O +iCMp, (3.23)

where C' is a dimensionless parameter. Therefore the Kahler potential will be a
function of & + ¢*, (P, P*) = (P + &*). The imaginary part of the field ¢
is canceled out in the Kahler potential and therefore it is allowed to have values
larger than Mp. For this reason we can identify the imaginary part of ® with
the inflaton field ¢. However, as long as the shift symmetry is exact, the inflaton
field never has a potential and it never causes inflation. Thus it is necessary to

introduce a small breaking term for ® in the superpotential

W =mSo, (3.24)
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where S(z,0) is a new superfield. The potential is given by

V=€r 0K _lD W Dg-W* — 3|W|? (3.25)
— [\ 9vad el e ’ '
where oW OK(® + )
+ *
DeW = 9% + 75 w, (3.26)

here ® is the scalar component of the superfield ® and we set Mp = 1. We should

notice that this model possesses U(1)gr symmetry under which

S(0) — e~%S(he'), (3.27)
() — d(0e). (3.28)

We consider that the small parameter m is originated from small breaking of the
shift symmetry in a more fundamental theory and as long as m < O(1), the
corrections from the breaking term (3.24) to the Kéhler potential are negligibly
small. Then we assume that the Kahler potential has the shift symmetry (3.23)
and the U(1)g x Z5 symmetry neglecting the breaking effects,

K(®,®*, S, 5%) = K[(® + )2, 557 (3.29)
In the following analysis we take
K= %(@ +®*)? + SS* + ... (3.30)
The Lagrangian density is now given by
L(®,S) =0,00"®" +0,50"S™ —V(2,9), (3.31)
with potential
V(®,8) =m®e" [|OP(1+[S]") + |SIP{1 — [ + (@ + @*)*(1 + |®]*)}], (3.32)

where we have neglected higher order terms in the Kahler potential and .S denotes
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the scalar component of the superfield S. After decomposing the complex scalar
field ® as ® = (n +i¢)/v/2, the Lagrangian density takes the form

L(0,6.8) = S0udn + 30,600 + 0,50°8" ~V(,6,5),  (3.3)

with
V(1,6,5) = m* exp (o + |SP) (3.34)
<o e st ispfi-Jor+ ) v (14307 400) ).

Because of the presence of the factor e*, we have that |5, |S| < O(1). ¢ can take
values much larger than O(1) since eX does not contain ¢. For |n]|,|S] < O(1),

the potential becomes
1
V(1,6,5) = 5m6(1+ o) + w57 (339)

The initial value of ¢; is determined so that V(¢;) ~ sm?¢? ~ 1, thus we have
¢; ~m~1 > 1. For such a large value of ¢ the effective mass of n becomes much
larger than m, so n is quickly stabilized at n = 0. The field S has a light mass
and slowly rolls down to S = 0. The potential (3.35) becomes

Vin6) = sm*s + m?lS[ (3.36)

Since ¢ > 1 and |S| < 1, the field ¢ dominates the potential and chaotic inflation
takes place.

Therefore we see that chaotic inflation naturally takes place if we assume that
the Kéhler potential is invariant under a shift symmetry of the inflaton field and

introduce a small breaking term of this shift symmetry.

3.2.2 Supercurvaton

In this section we will follow our paper [26]. One of the main reasons to introduce
the curvaton scenario was to obtain a realistic mechanism of generation of non-

Gaussian adiabatic perturbations of metric. Since that time, many interesting
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curvaton models were proposed. However, it would be nice to have a curvaton
model which would be as simple as the basic chaotic inflation scenario with the
potential m?¢?/2 [76]. It would be good also to find a natural implementation of
this scenario in the context of supergravity.

As we have seen in Section 3.2.1, it is possible to implement chaotic inflation
in supergravity. The authors of [66] proposed a very simple model describing two
fields, S and ®, with the superpotential

W =mSo, (3.37)
and Kahler potential
1
K=258"— 5(@ — ®*)?, (3.38)

Note that the Kéahler potential does not depend on the phase of the field S and
on the real part of the field ®. Therefore it will be convenient for us to represent
the fields S and ® as S = 0¢??/v/2 and ® = (¢ +ix)/v2. The field ¢ plays the
role of the inflaton field, with the quadratic potential, as in the simplest version
of the chaotic inflation scenario [76]:

2

V(¢) =3H* = m?ch, (3.39)

where H is the Hubble constant during inflation. Near the inflationary trajectory
with S = 0, the mass squared of the imaginary part of the field ® is mi =
6H? +m?2. Thus during inflation mi > 6H?, and therefore the imaginary part of
the field @ is stabilized at Im ® = 0. No perturbations of this field are generated.

Both components of the field S’ may remain light during inflation, and therefore
inflationary perturbations of these fields can be generated [25]. Since the potential
does not depend on the field 6, we will ignore fluctuations of this field in our study
of the curvaton perturbations. The potential of the fields ¢, o at y =0 is

V(p,0) = %2602/2 »* + o+ (%202(02 —-2)|. (3.40)
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For 0 <« 1 one has

m22 m20.2 m2 20.4
V(o) =" Ty f@* | (3.41)

The effective mass squared of the field o at ¢ < 1 is given by

mi =V,, =m?+ Zm2¢202 =m?+ 2H2a2, (3.42)
where V,, means second partial derivative of V' with respect to o. One can
easily see that m? = m? for ¢o < 1. During inflation m? < H?, and therefore
inflationary perturbations of the field o can be generated. At ¢o 2 1, the effective
mass squared of the field o is dominated by the term 3m?¢*c* = SH?0? >
m?. For ¢ < 1 one still has m? < H?, so the perturbations of the field o
are generated in this regime as well. However, at ¢ 2 1 the potential becomes
exponentially steep, and m? > H?. Therefore inflationary fluctuations of this
field are generated only for ¢ < 1. This is a very important advantage of the
curvaton scenario in supergravity: the steepness of the curvaton potential at
o 2 1 protects us from extremely large perturbations of the curvaton field which
otherwise could be produced during eternal inflation in this scenario [77, 80].

If one does not take into account the curvaton fluctuations in this scenario
and studies only the usual inflaton fluctuations [8, 53, 56, 95, 96, 115], then the
COBE normalization requires m ~ 6 x 107% in the system of units Mp = 1 [76,
78, 79, 93]. Thus, the mass of the inflaton field must be somewhat smaller than
6 x 1076 if we want to add the curvaton fluctuations to the inflaton fluctuations.

Recently the supergravity model described above was substantially generalized

in [63, 64]. The generalized scenario describes a theory with a superpotential
W =Sf(®), (3.43)

where f(®) is an arbitrary real holomorphic function. The Kéhler potential in

this class of models may take several different functional forms, e.g.

_ 1 _
IC:SS—§(<I>—<I>)2

- E(55)2. (3.44)
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In this theory, the inflaton potential is given by
V(6) = *(6/V2) (3.45)
and the mass of the field o is
my = al® + (f'(¢/V?2))*. (3.46)

In this class of models, one can implement chaotic inflation in supergravity, with
an arbitrary shape of the inflaton potential V(¢). In all of these models one has
H? = f?(¢/\/2)/3. The term (f'(¢/v/2))? is equal to 3H?e, where € < 1 is the
slow roll parameter. For a > 1 one has m2 > H?2. In this case no curvaton
perturbations are produced, so all standard predictions of the single-field inflaton
scenario remain intact.

On the other hand, in models with @ < 1 one has m? < H? during infla-
tion, which means that quantum fluctuations of the field o are generated during
inflation [63, 64].

Thus we have a broad class of models of chaotic inflation where the curvaton
scenario can be realized. One can further generalize this scenario by adding terms
~ S? to the superpotential, and by using other versions of the Kéahler potential,
as long as the Kéhler potential has certain properties described in [63, 64]. The
requirements which are necessary for the existence of the light curvaton fields
in this class of models can be formulated in an invariant way in terms of the
curvature of the Kéhler geometry. In particular, the parameter « is related to
the curvature of the Kéhler manifold [64]. The field o itself has an interesting
interpretation from the point of view of supergravity: it is the scalar component
o of the goldstino multiplet. Because of the generality and simplicity of this
scenario and because of its supergravity origin, one may call it the supercurvaton
scenario.

Here we will concentrate on the simplest model (3.37), (3.38), but with an
additional term —<(S5)? in the Kéhler potential, as in Equation (3.44). In this

model the curvaton mass squared along the inflationary trajectory with o = 0 is
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given by
m2 =m?+ aH?, (3.47)

o —

and in a more general case 0 < o < 1 the effective mass squared of the field o is

9 3
m2 =m? + aH?* + 5]—]202 =m?+ %m2¢2 + 1m2¢202. (3.48)

3.2.2.1 Curvaton perturbations and non-Gaussianity

During inflation, the curvaton perturbations are produced. An average amplitude
H

of perturbations produced during each Hubble time H~! is given by do = 5
Then these fluctuations are stretched, overlap with each other, and eventually
produce a classical curvaton field o which looks relatively homogeneous in the
observable part of the Universe, but may take different values in other parts of
the Universe [80]. The amplitude of the perturbations of density of the curvaton
field with a quadratic potential is given by 0p,/p, ~ 260 /0. However, the total
energy density of matter at the moment when the curvaton field decays may be
greater than the energy of the classical field o. This may happen, for example, if
the decay of the inflaton field during reheating produces many curvaton particles

[80]. Therefore the relative perturbation of density will be given by

0ps  2rdéc

—_—Y

p o

, (3.49)

where r = p,/p at the time of the curvaton decay. According to [83], these

perturbations will match the COBE normalization of the spectrum for

5
r22 7T x 1070, (3.50)
o

As we have seen in the previous section, these perturbations are non-Gaussian,

with the amplitude of local non-Gaussianity given by [83]

L = 4% (3.51)

Our goal will be to find a typical value of ¢ in some of the simplest supergrav-

ity models described above, calculate do, find the value of r required to satisfy
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Equation (3.50), and finally determine fy1,. The most complicated part of this

program is finding a typical value of o.

3.2.2.2 Stochastic approach

We will begin our study with an investigation of the behavior of the distribution of
the fluctuations of the curvaton field o with a simple quadratic potential m2o? /2.
This approach will allow us to describe the case when m2 = m? + aH?, but not
the more general situation when m? depends on ¢ as in (3.48), which will be
discussed separately later.

During inflation, the long-wavelength distribution of this field generated at the
early stages of inflation behaves as a nearly homogeneous classical field, which

satisfies the equation

3Ho +V, =0, (3.52)
or, equivalently,
do? 2V, o
=— . 3.53
dt 3H (3:53)

However, each time interval H ! new fluctuations of the scalar field are generated,

with an average amplitude squared

6% = 1

= (3.54)

The wavelength of these fluctuations is rapidly stretched by inflation. This effect

increases the average value of the square of the classical field ¢ in a process similar

to Brownian motion. As a result, the square of the field o at any given point with

inflationary fluctuations taken into account changes, in average, with the speed

which differs from the predictions of the classical equation of motion by %:
do? 2V, o  H?

d ~ 3H ant (3.55)

Using 3H ng = —Vj, one can rewrite this equation as

do? 2V, o V2

do v,  12x%V, (3:56)
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Its solution with the initial condition o(¢;) = 0 for m2 = m? + aH? is given by

- é
! VQ((? exp —2/ m%,_ do | do, (3.57)
¢

1272

o* ()

S~— | ~—

V(o V'(9)

where ¢; is the initial value of the inflaton field.

If inflation continued for much longer time than 60 e-foldings, as we will assume
here, the main contribution to ¢ is given by perturbations produced at the very
early stages of inflation. Such fluctuations look almost absolutely homogeneous
on the scale of the observable part of our Universe, so our calculations give us a
typical value of the classical field ¢ inside the observable part of our Universe.
However, in different parts of the Universe, the field o may be significantly smaller
or greater than its “typical” value calculated above. As a result, the amplitude
of the curvaton perturbations is not a constant, but it varies in space [80]. The
same is true for the degree of non-Gaussianity fnr, see Section 3.2.2.8.

Therefore, to be precise, one should distinguish between the average amplitude
of the field o calculated above, when the averaging it taken all over the Universe,
and the local value of the field ¢ in each horizon-size part of the Universe. We
will make this distinction in Section 3.2.2.8, where we will make a slight change
of notation and call the value of the curvaton field averaged over the whole Uni-
verse g, reserving the letter o for the average value of the curvaton field in the
horizon-size part of the Universe. However, in the main part of this work we will
not distinguish between ¢ and ¢. This means, in particular, that when we will
calculate fxr (o), our results will in fact describe the value of this parameter for
o = 0, i.e. the value of fyp, for an average value of o, all over the Universe.
In Section 3.2.2.8 we will show, however, that the value of fyp for an average
value of ¢ can be significantly different from the average value of fyi,; the order
of averaging in certain cases can be very important. One should take this effect
into account when making predictions of the non-Gaussianity in each particular
curvaton scenario.

We should note also that in general the curvaton field may not be equal to zero
at the beginning of chaotic inflation, so one may also consider a possibility that

initially (0?)(¢;) was very large. In this respect, the supergravity model which
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we are going to study provides an important simplification: The curvaton field
initially cannot be much larger than O(1) because of the exponential steepness of
the potential at ¢ 2 1. Also, the effective mass term %mQ(bzaQ in the supergrav-
ity potential (3.40) rapidly reduces the initial value of the field o, thus making
quantum fluctuations generated during inflation more important than the initial
value of the classical field 0. We will study these issues in the following, starting
from the simple toy model with m? = m? and ending up with the model with

m2 =m? + 2m?¢* + 3m?¢?0?. As we will see, in all these cases the final result

does not depend on the initial distribution of the curvaton field if inflation lasts

long enough.

3.2.2.3 A toy model with m2 = m?

In this section we will study the distribution of the curvaton field with the mass

2

m

o m? during inflation driven by the massive inflaton field with potential

V = 1m?¢*. In this case Equation (3.57) implies that the classical scalar field o

which is nearly homogeneous on the scale of the horizon has a typical amplitude

_ mo o;
4#\/6'

Meanwhile the amplitude of fluctuations of o generated at that time is

o(9)

(3.58)

(3.59)

During the subsequent evolution of the Universe, ¢ and do both decrease in the
same way, and therefore at the end of inflation the curvaton perturbations have

flat spectrum with the amplitude

oo 2

— = 3.60
by (3.60)
As we mentioned above the amplitude of the perturbations must be normalized
* b0 2
r2% L7 % 1070, (3.61)
g Gi
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and hence
3.5 x 10%

o

This means that the degree of non-Gaussianity depends on the initial value of

5
= — Y . 2
e ir (3 6 )

the inflaton field. Unless this field is very large, fxr, may be extremely large.
However, in the supergravity models which we study in this work the approach

developed above is valid only if inflation was short enough, that is, ¢; < m~'/3

and for large values of ¢; one cannot ignore the supergravity correction to the

mass in Equation (3.42).

3.2.24 mZ =m?+ JH?0?

In the previous section we made a simplifying assumption that the curvaton
mass does not depend on o, which allowed us to use Equation (3.57). However,
as one can see from (3.40), in the supergravity model (3.37), (3.38) the curvaton

mass does depend on ¢ in a rather complicated way. The leading correction to

the curvaton mass squared m? is given by 3m2¢%202 = 2H?20? and it becomes
1 2

dominant for ¢o 2> 1.
To find out how it will change the final result one has to solve Equation (3.56)

for
m2 ¢2 m2 0_2 mQ ¢2 0.4
V = 3.63
sttt (3.63)

which takes in this case the form

/

’y:

SHESS

y2
+ 5 b, (3.64)

_m?_
9672 *

The general solution of this equation can be expressed in terms of Airy func-

where 7 = ¢?, y = 02, and b =

tions,

Ai(z) — ¢Bi(2)
Ai'(z) — ¢Bi'(2)’

y(z) = —(20) (3.65)

where z = 272/3p1/32 and ¢ is a small constant which should be chosen in such a
way that y(z;) = 0.
Suppose first that the initial value of the field ¢ is much higher than m~='/3,

i.e. 2z > 1. One can check that in this case one should take ¢ < 1 to have
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3.2. The curvaton scenario and supergravity

y(x;) = 0. Inflation ends at ¢ ~ 1, when z < 1. In this limit, all functions are
O(1). Therefore the functions Bi(z) drop out from the final expression because of
the small coefficient ¢, Ai(z) ~ Ai(0) = 372/3T1(2/3), Ai'(z) = Ai~Y311(1/3).

As a result,
(20)2/3 2 T(1/3)

y(r) ~ — 3AT()3) (3.66)

Expressing everything in terms of the original fields ¢ and o, we find

m?3¢  T(1/3)

~ — ~ 0.1 2/3 g, .
o (o) 243 /528 T(2)3) 0.15 m*° ¢ (3.67)
This yields
)
%7 0.4mV3, (3.68)
o

The COBE normalization requires rm'/3 ~ 7 x 107°. Therefore, for m ~ 1077
we have r ~ 0.04 and fx1, ~ 30.

If, on the other hand, the initial value of field ¢ is much smaller than m~/3,
then the final result looses its universality and become sensitive to ¢;. In this case,
one can either use the analytical solution above, with different initial conditions,
or simply use the results of the previous section (one can see that in this case
¢o < 1, and hence the results of Section 3.2.2.3 are valid).

Note that in our calculation of fy;, we used Equation (3.51), which was
obtained in [83] under the assumption that the curvaton potential is purely

quadratic. Meanwhile in our case the curvaton potential contains the quadratic

m22”2 as well as the quartic term m2f62 ”4, see (3.63). This could lead to some

corrections to Equation (3.51) [41, 113]. Fortunately, one can show that during

term

the last 60 e-foldings of inflation in our model the quartic term is vanishingly
small as compared to the quadratic term. That is why one can use the simple

Equation (3.51) for the calculation of fyr..

3.2.25 m2=m?*+aH? a>0

Now we will consider the case when the mass of the curvaton field is given by

2
m2 = aH? +m? = m? (% + 1) , (3.69)
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3. THE CURVATON SCENARIO

where we have ignored the correction 2m?¢?0?, which will be taken into account
in Section 3.2.2.6.

To study this case we consider separately the evolution of perturbations at
a¢?/6 > 1 and a¢?/6 < 1 assuming that during the last 60 e-folds of inflation
the condition a¢?/6 < 1 is satisfied, which means that o < 1/40. Thus during
the last 60 e-folds, m? ~ m?, and hence one can use the results of Section 3.2.2.2.

Substituting m* = aH* = §V in (3.57), we obtain

®i -

) é
a? (9) L /V (9) exp —2a/zd<ﬁ do. (3.70)
@ ¢

T 1272 v

For the case of the power-law potential V' the integral in (3.70) can be calculated

exactly. In particular, for V = im?¢? and a > ¢;> ~ m > ¢* one obtains

2

o2 (¢) = —" <¢2+g). (3.71)

- 1672

Note that this result does not depend on the initial value of the inflaton field. At
the end of the first stage of inflation when a¢?/6 = 1, both terms in the brackets

are equal to each other and the averaged value of o at that time is about

V3m

~ 72
J(¢l) 2 ov ) (3 7 )
while the amplitude of the perturbations of field o is
m
50 (n) ~ (3.73)

T 2myal

The CMB normalization of the amplitude of the perturbations thus requires

oo «Q
— — ~ 1075, .74
r— 7’\/; 7% 10 (3.74)

Note that in this case the amplitude of the curvaton perturbations does not
depend on the inflaton mass m.
Taking o = 10™* we find that r ~ 1072 and hence fy;, ~ 102. Meanwhile for
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3.2. The curvaton scenario and supergravity

a = 1072 we should have r ~ 1073, which gives fx1, ~ 10%.

One may wonder what is the origin of such an incredible sensitivity of the
results to the choice of the parameter a. The answer is that this parameter
makes the mass of the curvaton field much greater than the mass of the inflaton
field at the early stages of inflation. As a result, the distribution of the field o
shrinks fast while the field ¢ rolls down.

In the calculations above we have ignored the supergravity correction to the
curvaton mass squared: 3m2¢*c? = $H?0?. As we will show in the next section
this correction can be ignored only if a > 10~ 'm?? and hence the results of this

section are applicable only in this case.

3.2.2.6 m2 =m?+ aH?+ JH??* a >0

Now we will study the curvaton perturbations in the theory with the general

potential
m262  m20?  m2dot m2202
V= 2¢ + 5 + 1¢6 + (g , (3.75)

which corresponds to the curvaton mass (3.48). For 0? < 1 Equation (3.56)

becomes )

dy 'y  ay y
L _Zy 27 3.76
dzx x+3+4 s ( )

where z = ¢, y = 0%, b = %. In this case, unlike to Equation (3.64), there
is no exact analytical solution. Nevertheless one can investigate the solutions of
this equation using the phase diagram method. If inflation lasts long enough, all
solutions, independently of the initial conditions, converge at a certain attractor
trajectory in the phase space (y,x), or, equivalently in the space (o, ¢), see Fig.
3.1. For large ¢, this attractor trajectory is given in the leading order by the

solution of the algebraic equation:

T

jlz) = -2 @ + %) + 2\/(% — %)2 + ba. (3.78)

~2
Y (1 « B
1 —|—y( + 3> br =0, (3.77)

which is
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0

Figure 3.1: Behavior of the average value of the curvaton field o as a function of
the inflaton field ¢, for various initial conditions. As we see, all trajectories which
start at the early stages of inflation (large field ¢) converge to the same attractor
solution. We follow it until the field ¢ becomes O(1) and inflation ends. At large
¢, this solution is very close to the square root of the function (3.78), which is
shown by the blue dashed line.

The existence of the attractor solution implies that if inflation is long enough,
the final results do not depend on the choice of initial conditions for the curvaton
field. We have also found above that in the limit &« — 0 one should get the
asymptotic solution (3.67), whereas for large v the asymptotic solution is given
by (3.71), (3.72). One may wonder how large should a become for the switch
between these asymptotic regimes?

To answer this question, let us use the variables:
r=zb"1? y=ub’? o =~b'/3, (3.79)
in terms of which Equation (3.76) becomes
e (3.80)

After rewriting Equation (3.76) in this form it becomes clear that the behavior of

the solutions is controlled by a single parameter v = ab~'/3 ~ 10am=2/3. One
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3.2. The curvaton scenario and supergravity

can easily understand that the two asymptotic regimes discussed above corre-
sponds to v < 1 and 7 > 1. One can confirm this conclusion by direct numerical
calculations.

This means that the results obtained in Section 3.2.2.4 are valid for a <
10~*m?/?. Meanwhile in the opposite limit o > 10~'m?/® one should use the
results of Section 3.2.2.5. To give a particular example, let us take m ~ 1075,
In this case one can use the results of Section 3.2.2.4 for o < 107°, whereas for
a > 1075 one should use the results of Section 3.2.2.5.

3.2.2.7 m?2 =m?+ aH?+ gH20'2, a<0

Finally, we will study the case a < 0. At first glance in this model the mass
squared of the curvaton field at large H? and o = 0 is negative, and therefore one
expects a tachyonic instability. However, similar to the model considered in the
previous section, one can show that for || < 107'm?/? the effect related to the
negative mass squared contribution aH? is subdominant and can be ignored. In
this case the results obtained in previous Section 3.2.2.4 are applicable.

For 107'm?3 < |a| < 1, the tachyonic instability leads to spontaneous sym-
metry breaking controlled by the supergravity correction 3H?0? = 3m2¢*c? to
the curvaton mass squared. Indeed, one can show that the minimum of the su-
pergravity potential for the curvaton field, in the regime with |a|,o < 1, can be

found from the following equation:

2lal 4
2
= — + —. 3.81
Therefore at large ¢ and o < 0 the potential has a minimum at
2
o? = M. (3.82)
3

This means that during inflation the field ¢ falls towards this minimum, and its
distribution becomes centered not at o = 0 but at 0 = @ As for the height
of the potential along the trajectory with o = @, for small |a| it remains

approximately given by m?¢?/2.

When the field ¢? becomes smaller than 6/|a/|, the minimum of the potential
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3. THE CURVATON SCENARIO

shifts towards ¢ = 0, and the curvaton mass squared becomes equal to m?.
However, this does not mean that the distribution of the field ¢ instantly follows
the position of the minimum. Since the mass of the field o at that time is much
smaller than H, the field o will move towards ¢ = 0 very slowly, decreasing at the
same rate as the amplitude of perturbations do. As before, we are assuming that
|a| < 1/40, and therefore the curvaton mass squared is given by m? during the
last 60 e-folds of inflation. This leads to the following result for the perturbations:
oo mv'3
—~— (3.83)
o 227l
For m ~ 1077 and a ~ —10~* a proper amplitude of perturbations corresponds
to r &~ 1/3 and, hence, fx, = O(3). However, one can easily increase fyr,
by increasing m and/or decreasing |a|. For example, taking m ~ 1077 and

a ~ —107° gives fyr, ~ 30.

3.2.2.8 Non-Gaussianity and the curvaton web

In the previous sections we have evaluated the average value of the curvaton field
at the last stages of inflation, and calculated the parameter fyi, describing local
non-Gaussianity. However, we should remember that when we were talking about
the classical homogeneous curvaton field o, we had in mind the long-wavelength
perturbations which look homogeneous on the scales corresponding to the present
observable part of the Universe. In reality this classical field in our model is a
random variable with the expectation value ¢ = \/W obtained by summing
up the contributions of all long-wavelength fluctuations (larger than the present
horizon) generated on inflation. All calculations above were performed taking o
to be equal . However, because o is a random Gaussian variable it takes different
values in different parts of the Universe of the size of our horizon [80].

To evaluate the observational implications of this fact, let us try to understand
how the amplitude of perturbations of the metric and the local value of fxi, depend
on the local value of ¢. For simplicity, we will assume that the standard inflaton
perturbations are very small, so that we can ignore them in our investigation.

This can be achieved by considering a model with m < 6 x 107¢. We will also
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3.2. The curvaton scenario and supergravity

assume that the curvaton field density at the moment of the curvaton decay is
much smaller than the total density, i.e. » < 1. In this case, the change of o
does not affect the total density p, but it does affect dp(o), which is proportional

to 0. This means that the amplitude of perturbations of the metric produced by

fluctuations of the curvaton field will be proportional to £:
4] op(a
p p G
Meanwhile the local value of fyp, is inversely proportional to r = %’). For small
o, the value of p(c) is proportional to o2. Therefore
52
fau(o) = fan(o) - pol (3.85)

The probability that the curvaton field will take some value much greater than
0, is exponentially small. However, the probability that o is substantially smaller
than & can be rather large. To estimate this probability we will make a simplifying
assumption. Namely, we assume that all values of the field S = o€ /y/2 with
|S| < & are equally probable, but the probability vanishes for |S| > . The
maximal value of the curvaton field is 3v/2, the probability to find the field o

in the interval do from 0 to 5v/2 is given by 2% and the average value of the

o2
curvaton field is &, as it should be.
Now let us evaluate the average value of the amplitude of density perturba-

tions, averaged over all possible values of o:

<M> _ op(o) U/ﬁgada _2V26p(a) (3.86)

p p o 3 p

Thus, the average amplitude of the curvaton perturbations almost exactly co-
incides with the amplitude of perturbations in the Universe with an average
curvaton field &.

However, the situation with (fxr,) is quite different. Since fxy, is proportional
to 072, its expectation value over the whole Universe acquires a divergent con-

tribution from the parts of the Universe with small ¢. Our calculations are valid
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only for fluctuations produced well before the last 60 e-folds of inflation, with a
combined amplitude o above O(H). Introducing the cut-off at ¢ ~ H ~ 2mdo,
we find

V2

(fau) = fre () / (g)2 U;# ~ fxi () In ( i ) . (3.87)

o V27éo

How significant is the effect discussed above? To give a particular numerical
example, let us consider the case a = 0. In this case, according to Equation
(3.68), one has %2 ~ 0.4m!/3. We found that for m ~ 1077 one has fx1.(5) ~ 30.

In this case Equation (3.87) implies that (fxr.) ~ 5 far(d) ~ 150.

Thus we deal with a significant effect of statistical amplification of non-Gaussianity:
Even though the fraction of the volume of the Universe with fxi(0) > fxi(7) is
relatively small, the values of fyr in those parts of the Universe can be huge, so
the expectation value of fy, can be much greater than the value of this parameter
fnn(0) calculated in the previous sections.

This effect becomes even stronger in the models where the curvaton field is

real (instead of being a radial part of a complex field). In such models

(fnp) =~ fa (U)/ <§>2 d? ~ fai (0) 2;50. (3.88)

In the particular example discussed above, %2 ~ 0.4m!/? and m ~ 1077, this

would lead to an enormously large amplification effect: (fxr) ~ 102 fyp.(G) ~
3000.

Thus we see that in the curvaton scenario some fraction of the Universe can be
in a state with the curvaton field o significantly smaller than its average value &.
In such parts of the Universe, the locally observed level of non-Gaussianity will
strongly exceed its value fxr, () calculated in the previous sections. This effect
is so significant that the average value of the parameter fyi, can be much greater
than the value fyr, in the part of the Universes with an average value of the field
0. In other words, operations of averaging in this case are not commutative.

For a complete investigation of this effect one should also take into account

the standard inflationary perturbations of metric. The curvaton perturbations
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3.2. The curvaton scenario and supergravity

are important only in the cases where the standard inflaton perturbations are
suppressed. That is why we assumed that m < 6 x 107%. But the standard
inflaton perturbations may dominate in the rare parts of the Universe where
o < . In such cases one should perform a more detailed investigation of non-
Gaussianity of perturbations produced by all sources.

This means that one should be very careful when formulating predictions for
the non-Gaussianity parameter fyr, in the curvaton scenario, because the distri-
bution of possible values of fyr, in the curvaton web can be extremely broad.
Moreover, the existence of the anti-correlation between the amplitude of the per-
turbations of the metric (6'0750))2 and the non-Gaussianity parameter fyp for
r < 1 (see Equations (3.84) and (3.85)) suggests that anthropic considerations
may play a very important role in the evaluation of the probability to live and
make observations in parts of the curvaton web with different values of the non-
Gaussianity parameter fyr, [46, 47, 80-82, 117].

The difference between (fyr) and fxp(d) clearly demonstrates that fy is
not a perfect tool for the description of non-Gaussianity. As shown in [80], the
distribution of the regions of small (large) perturbations of metric and spikes
of non-Gaussianity has an interesting structure, which we called “the curvaton
web”. This structure has a non-perturbative origin.

Indeed, the non-Gaussianity parameter fyi (o) takes its largest values in the
regions of the Universe where the classical curvaton field o is small, see (3.85). In
the theories where the curvaton field is a real, single component field, the regions
of small ¢ correspond to domain walls separating large domains with ¢ > 0 from
large domains with o < 0 [80].

In the theory studied in the present work, the curvaton field o corresponds to
the radial component of a complex field S. In this case, the regions of small o
form strings, reminiscent of the cosmic strings which appear due to spontaneous
symmetry breaking. In our case, however, unlike in the usual cosmic string case,
the curvaton strings appear in the places corresponding to the minimum of en-
ergy of the curvaton field. If one considers more complicated models, where the
curvaton has O(3) symmetry, instead of the domain walls and cosmic strings one
will have localized objects reminiscent of global monopoles. In other words, the

distribution of the peaks of non-Gaussianity in the curvaton scenario has topolog-
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ical origin, which cannot be fully described by the standard tools of perturbation

theory, such as fxr, and gnr.

3.2.2.9 Discussion

We discussed the curvaton scenario, which naturally emerges in the simplest
supergravity realization of the chaotic inflation scenario [63, 64, 66]. The inves-
tigation of this scenario consists of several parts. The main step is to find an
average value of the curvaton field o after a long stage of inflation. One needs
this to calculate the amplitude of perturbations of the density of the curvaton
field. We performed this investigation by analyzing the growth of the curvaton
perturbations during inflation.

To conclude this investigation, one should find the ratio r of the energy of the
curvaton field to the energy density of all other particles and fields at the time of
the curvaton decay. This is a complicated and model-dependent problem, which
requires the study of reheating after inflation, the decay rate of the curvaton
field, and the composition of matter at the time of the curvaton decay. Here we
simply treated r as a free phenomenological parameter, but one should remember
that all of the issues mentioned above should be addressed in a more detailed
investigation.

We analyzed the model with the simplest quadratic inflaton potential and with
the curvaton mass given by aH? 4+ m?. Our investigation demonstrates that if
inflation is long enough, then the average value of the curvaton contribution to
the amplitude of metric perturbations, as well as the averaged value of the non-
Gaussianity parameter fyi,, do not depend on initial conditions for the curvaton
field. The final results depend on the inflaton mass m, and on the parameter
a, which is related to the curvature of the Kéhler manifold [64]. However, the
locally observable parameter fyr, and the amplitude of the curvaton perturbations
may take different values in different parts of the Universe and in certain cases
they may significantly deviate from their averaged values [80]. Moreover, the
average value of the parameter fyr, can be much greater than the value fyr, in
the part of the Universe with an average value of the field o. For a certain choice

of parameters, the value of the non-Gaussianity parameter fyr, can be in the
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observationally interesting range from O(10) to O(100).

The curvaton perturbations in our simple model have a flat spectrum. This
is a consequence of the degeneracy of the masses of the inflaton and curvaton
field at the end of inflation. One can change the spectral index by switching to a
theory with a different inflaton potential. This can be easily realized in the new
class of chaotic inflation models in supergravity, or by splitting the spectrum of
fluctuations of the curvaton field into two branches with different masses [63, 64].
The last possibility can be realized by modifying the Kahler potential, or by
adding a term ~ S to the superpotential.

Another interesting possibility is to take the inflaton mass just a little bit
smaller than m ~ 6 x 107%, to decrease the amplitude of the standard inflaton
perturbations. Then one may compensate for this decrease by adding a small
contribution of the curvaton fluctuations. This will result in a smaller amplitude
of tensor modes and a larger spectral index ng, which would improve the agree-
ment of the predictions of the simplest chaotic inflation models with the WMAP
data. Also, as our calculations demonstrate, for certain values of parameters even
a small contribution of the curvaton perturbations may dramatically increase the
non-Gaussianity of the combined spectrum of perturbations of metric.

Thus, whereas the curvaton models are more complicated than the single-field
inflationary models, they make the resulting scenario much more flexible, which
may be important for a proper interpretation [38] of the coming observational
data.

Our final comment deals with the topological features of the distribution of
perturbations in the curvaton scenario. We point out that in the theory of a
single-component real curvaton field, the regions of the Universe with large non-
Gaussianity form domain walls [80], reminiscent of the exponentially thick cosmic
domain walls. Meanwhile in the theory of a complex curvaton field, which was
studied here, the regions of large non-Gaussianity form exponentially thick cosmic
strings. In more complicated theories, these regions may form separate islands
of large local non-Gaussianity, resembling global monopoles. Since these effects
have a non-perturbative, topological origin, non-Gaussianity in the curvaton sce-
nario cannot be fully described by such tools as the familiar perturbation theory

parameters fy, and gnr..
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Chapter 4

Magnetic fields in the early

Universe

Astronomical observations show that all celestial bodies carry magnetic fields.
From planets to interstellar medium, fields of varying strength and extension
have been measured. A particularly interesting case are galaxies, galaxy clusters
and beyond, the intergalactic medium and the Universe at large. These fields
are of the order of a few micro Gauss and they extend over kiloparsecs or more.
Unfortunately their structure is not always simple. Beside a constant compo-
nent they have a complex structure with varying symmetry, which shows that
processing has taken place since their appearance.

In this chapter we want to review the effects and the production mechanisms
of magnetic fields. In Section 4.1 we describe the observational methods used to
measure galactic and extra-galactic magnetic fields and we summarize the obser-
vations of the typical strength detected in galaxies, clusters of galaxies and the
limits on the intergalactic magnetic fields. In Section 4.4 we describe the effects
of a magnetic field on the CMB and in Section 4.5 we consider the constraints
on the amplitude of magnetic fields set by Big Bang nucleosynthesis. Finally in
Section 4.6 we review several mechanisms for magnetogenesis. In this chapter we
follow [51, 65, 126].
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4.1 Large-scale magnetic fields in the Universe

4.2 Observational methods

There are mainly three methods for the observation of galactic and extra-galactic
magnetic fields: the intensity and the polarization of synchrotron emission from
free relativistic electrons, the Faraday rotation measurements of polarized radi-
ation passing through an ionized plasma and the Zeeman splitting of spectral
lines. The Zeeman splitting is a direct method for detecting the magnetic field,
but it is very difficult to observe and at present there are no confirmed detections
in systems beyond the galaxy. Synchrotron emission and Faraday rotation allow

to measure magnetic fields in very distant objects.

4.2.1 Synchrotron emission

Synchrotron radiation refers to the radiation produced when relativistic electrons
interact with a magnetic field. It is used to study magnetic fields ranging from
pulsars to superclusters. The total synchrotron emission provides the strength
of the magnetic field and the degree of polarization gives informations about the

field’s uniformity and structure.

4.2.2 Faraday rotation

The magnetic field in the intracluster medium in clusters of galaxies can be mea-
sured direclty through the effect of the field on the propagation of the linearly
polarized radiation. When passing through an ionized and magnetized plasma,
linearly polarized radiation experiences Faraday rotation, namely a rotation in

time of the electric field vector.

4.2.3 Zeeman splitting

In vacuum, an atom has several electronic configurations with the same energy,
the electronic energy levels are independent of the direction of the angular mo-

mentum vector. A magnetic field breaks this degeneracy by splitting neighboring
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energy levels. This is the most direct method for observing magnetic fields, but

it is very difficult to detect outside our galaxy.

4.3 Observations of magnetic fields

Magnetic fields in galaxies are determined using several methods. Typical strength
in spiral galaxies are around 10 pG. Radio faint galaxies have weaker fields, 5 uG,
while starburst and merging galaxies have the strongest field, between 50 and 100
1G. The magnetic structure observed can be symmetrical and in some cases there
is no recognizable field structure [22].

Magnetic fields have also been measured in clusters of galaxies, through syn-
chrotron emission of electrons spiralling along the field lines and Faraday rota-
tion measurements of polarized emissions crossing the intracluster medium. The
strength detected within clusters of galaxies is of 1 - 10 uG and varies slightly
with the type of cluster. The field structure is not homogeneous, indicating the
presence of a tangled magnetic field [124].

High resolution Faraday rotation measurements have detected magnetic fields
in high redshift objects, such as very far quasars. A particular example is the
quasar 3C191 at z = 1.945 with a field strength in the range of 0.4 - 4 uG [43].

The intergalactic medium is also permeated with magnetic fields. Recently
limits on intergalactic fields have been found using combined data from Atmo-
spheric Cherenkov Telescopes and Fermi Gamma-Ray Space Telescope based on
the spectra of three blazars, 1 x 1077 G < B < 3 x 107! G [44]. Using data
from HESS and Fermi a lower bound of ~ 107! G was imposed [31, 100, 116].
Measurements of intergalactic magnetic fields are very important because they
may allow to distinguish between a cosmological and an astrophysical origin of
the fields and this may open a new window in the understanding of the physics

of the Early Universe.
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4.4 Effects on the Cosmic Microwave Background

4.4.1 A constant magnetic field

A spatially constant magnetic field affects the geometry of the Universe intro-
ducing a shear. The electromagnetic energy-momentum tensor acts as a source
in the Einstein equations and has the form [51]
af _ 1 ap B 1 Hv
1o = e —F"F) + ZF F.), (4.1)
where F'* is the electromagnetic field tensor. In the presence of a homogeneous
magnetic field directed along the z axis
B2 ,
TOO _ Tll — T22 — _T33 = pp = —, TOZ — 07 (42)
8
the energy-momentum tensor becomes anisotropic with a positive pressure along
the x and y axes and a negative pressure along the z axis. This anisotropic
pressure gives rise to an anisotropic expansion law. Let us consider the most

axially symmetric model with metric
ds® = dt* — a*(t)(da® + dy*) — b*(t)dz?, (4.3)

and define o = a/a, = b/b and 7 = pp/praa, 0 = a — . Assuming r < 1 and

o < 1 the Einstein equations will take the following form

d o oNY—2 4r

— (=) = - (=)—+— 4.4

alm) = G 5+ (44
dr 2r o
— = —(4=+9y—-12 4.5
dt 9fyt< HJr 7 >’ (4.5)

where H = (2a+ ) and p = (1 —~)p. Substituting the asymptotic value o — 6r

into (4.5) during the radiation era one finds

q
rit) = 14 4qIn(t/ty)’ (4.6)
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where ¢ is a constant. Thus the ratio of the magnetic and blackbody radiation
densities is changing logarithmically during the radiation era. We assume that at
the recombination time %,.. the temperature is everywhere T,... At the present

time ty the temperature of relic photons coming from the three directions is

a fo
Tl”vy = Trec_ = Trec exXp (_ / th)a (47)
ao trec
b fo
T, =Tree— = Trec€Xp (—/ ﬂdt). (4.8)
bo tT‘EC
Therefore the temperature anisotropy is
AT  T,—T, 1 [t
== En—- dInt. 4.
= /t odIn (4.9)

This means that a magnetic field, which today has a strength of 1072 — 1071° G,
would produce a temperature anisotropy AT/T < 1075.

Barrow, Ferreira and Silk [11] derived an upper limit on the present strength
of any primordial homogeneous magnetic field calculating the microwave back-
ground anisotropy created by cosmological magnetic fields. They considered the
cosmological evolution of the most general homogeneous magnetic fields, calcu-
lated their gravitational effect on the temperature anisotropy of the microwave
background radiation and derived a limit on the strength of the field using the

4-year COBE microwave background measurements. They obtained the limit
B(to) < 3.5 x 1072 f1/2(Qh3,)V/C, (4.10)

where f is a O(1) shape factor which accounts for possible non-Gaussian char-
acteristics of the COBE data. From this result we see that COBE data are not

incompatible with magnetic fields of primordial origin.

4.4.2 The effect on the acoustic peaks

The presence of a sizable magnetic field has an effect on the acoustic peaks of the
CMB. Before the last scattering when primordial density fluctuations, generated

on inflation, enter the horizon they create acoustic oscillations in the plasma.
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These oscillations distort the primordial spectrum of anisotropies. The presence
of a primordial magnetic field will also affect the plasma oscillations.

We consider a magnetic field which is homogeneous on scales larger than the
scale of plasma oscillations. We assume that the medium has an infinite electric
conductivity, such that the magnetic flux is constant in time, and that there is no
dissipative effect, A = 27w /k > l4ss. The magnetic field is By + By, where By is
the background field, which is constant in space, and B is a small perturbation.
Since the Universe is expanding, By o< a~2. In this framework the equations of

magnetohydrodynamics in comoving coordinates are

s YUy (4.11)
a
' 2 By x (v, x By) B B
o1+ Loy + Gy 4 YO Box (01 x B Box (VxBy) 0, (412)
a a a 4rat 4mpoad®
. B
B, — L (”; X Bo) (4.13)
B,-B
V2, = 47Gpy <5 + “—j) , (4.14)
AT poa
V.-B; =0, (4.15)

where B = Ba?, § = p1/po, v1 are small perturbation on the background density,
gravitational potential and velocity respectively, and ¢, is the sound velocity.

If there is no magnetic field, there is the ordinary sound wave involving density
fluctuations and longitudinal velocity fluctuations. If a magnetic field is present,
there are three different waves. Two types of scalar waves, the fast and slow
magneto-sonic waves, and the Alfvén waves. Fast magneto-sonic waves are ordi-
nary sound waves which are modified by the presence of the magnetic field, their
velocity is given by & ~ ¢2 + (k- B)?/(4mp). Slow magneto-sonic waves deter-
mine a new form of wave due to the interaction of the charged plasma with the
magnetic field. The third type of waves are the Alfvén waves, they are vector per-
turbations in the plasma velocity, which oscillates. They are generated because
of the coupling of the magnetic field to the charged electron-proton plasma. Fast
magneto-sonic waves cause a slight shift of the acoustic peaks, see Figure 4.1.
This shift might be detectable in CMB experiments.
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Figure 4.1: Modification of the CMB anisotropy spectrum due to the presence of
a magnetic field of strength 2 x 1077 Gauss (dashed line). The solid line shows
the prediction of standard CDM cosmology. From [1].

4.5 Constraints from Big Bang Nucleosynthesis

Big Bang Nucleosyntesis (BBN) took place between 1072 and 1 s after the Big
Bang and is responsible for most of the *He, *He, D and “Li in the Universe.
The observational data can be compared to detailed predictions of numerical
calculations. Magnetic fields can alter the predictions of BBN, thus BBN implies
limits on the strength of primordial magnetic fields.

The main effects of the presence of a magnetic field on BBN are related with:
the proton-to-neutron conversion ratio, the expansion and cooling of the Universe
and the electron thermodynamics. Let us briefly explain how a magnetic field
affects them. Firstly, in the early Universe the weak interaction is responsible
for maintaining chemical equilibrium between protons and neutrons. A strong
magnetic field during nucleosynthesis would enhance the conversion rate of neu-
trons into protons and therefore the neutron-to-proton ratio would freeze out at
lower temperature. The result would be a less efficient production of “He and
of heavier elements [90]. The effect would be too big if B > M3/e ~ 10'" G
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at the time of nucleosynthesis. Secondly, the balance between the time-scale of
the weak interaction and the expansion rate of the Universe determines the tem-
perature at which the proton-to-neutron ratio freezes out. There is equilibrium
when I'y,_,, ~ H, where I',,_,,, is the cross-section of the interaction and H is the
Hubble parameter at that time. H is proportional to the total energy density
of the Universe where the magnetic field is present. Therefore if the magnetic
field is strong, the value of the Hubble parameter would increase and it would
cause an earlier freeze-out of the proton-to-neutron ratio and result into a larger
residual amount of *He [50, 67]. Finally, a magnetic field would also change the
phase space volume of electrons and positrons, because their momentum compo-
nent normal to the magnetic field would become discrete. So there would be an
increase of the energy density, the number density and the pressure of the elec-
tron gas, with respect to the case without a magnetic field. The increase would
make the photons transfer energy to the lowest Landau level and this would delay
the electron-positron annihilation, which in turn increases the photon-to-baryon
ratio and leads to a lower *He and D abundances [72].

Numerical calculations which take into account all these effects conclude that
the main consequence on the light elements abundance is given by the field’s
contribution to the expansion rate of the Universe. The overall constraint on the

magnetic field amplitude is B <7 x 1077 G at the time of galaxy formation [51].

4.6 Generation of large-scale magnetic fields

Many astrophysicists believe that large-scale magnetic fields are generated and
maintained by a dynamo mechanism, which is responsible for the conversion of
kinetic energy of an electrically conducting fluid into magnetic field energy. A seed
field is needed to initiate the dynamo process and various mechanisms have been
proposed to generate this seed field. An alternative to the dynamo mechanism
is to consider that the magnetic field measured today is the primordial one and
that it was not amplified by the dynamo mechanism. In the following we sketch
the idea of the dynamo mechanism and we briefly describe some of the methods
proposed in the literature to directly generate a magnetic field or to obtain a seed

field for the dynamo mechanism.
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4.6.1 The dynamo mechanism

The most common approach to the dynamo mechanism is the mean field dynamo
[51]. It is based on the assumption that fluctuations in the magnetic and ve-
locity fields are much smaller than the mean slowly varying components of the

corresponding quantities. By a suitable averaging of the equation

OB 1,

where o is the electric conductivity, one obtains the temporal evolution of the

mean component of the magnetic field

0By

WZVX (OéB()"—’U()XB())—VX [(77+6)VXBO], (417)

where . .
a = _§7c<’ul -V X 'Ul>7 ﬁ - ch<’U%>’ (418)
n = 1/4rwo is the magnetic diffusivity and 7. is the correlation time for the

ensemble of random velocities. The coefficient « is proportional to the helicity of
the flow h = (vy - V X v1), which measures the level to which the streamlines are
twisted. In order to have a o« h # 0 a macroscopic parity violation is required. A
possible source of this violation can be the Coriolis force produced by the rotation

of the galaxy. If the § term can be neglected, the solution of (4.17) is
By = (£sinkz,coskz,0)e, (4.19)

where z is the coordinate along the galaxy rotation axis and v = —nk? £ ok,
k ~ 1/L is the wavenumber. The field grows exponentially with time if the
helicity A is non-zero and if the scale L is sufficiently large. Amplification ends
when there is equipartition between the kinetic energy density of the small-scale
turbulent fluid motion and the magnetic energy density. Depending on the details
of the model and on the properties of the medium, in the case of a Universe
dominated by CDM with no cosmological constant, the time to reach saturation
starting from a seed field of strength 1072° G might be 108 — 10° years. In the

case of a Universe with a cosmological constant, the required seed field might be
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10730 G [24].

4.6.2 Primordial vorticity

Harrison [54] proposed that primordial magnetic fields can be generated during
the radiation era by plasma vortical motion. The idea is that Thomson scattering
is more efficient for electrons than for ions so their rotational velocities decrease
differently in the expanding Universe in the pre-recombination era. The magnetic
field is generated by an electric current due to an electromotive force created by
the difference between the angular velocities of electrons and ions. Indeed during
the expansion the angular velocity of electrons decreases as w o a~! and the one
of ions as w o< a2, where a is the scale factor. In [55] the author shows that it is
possible to generate a field that at present time has strength 1078 G on a scale
of 1 Mpec.

However this scenario is not problem free. Rotational, or vector, density per-
turbations decay with the Universe expansion, therefore in order to produce siz-
able effects at recombination time, these perturbations should have been dom-
inant at the radiation-matter equality. This seems in disagreement with the
standard scenario for galaxy formation [109]. Moreover a consequence of the
Helmholtz-Kelvin circulation theorem, which states that the circulation around a
closed curve following the motion of matter is conserved, is that small deviations
from the isotropic Friedmann Universe cannot generate rotational perturbations.

In [122] Vilenkin noticed that parity-violating currents may develop in a vorti-
cal thermal background as a consequence of the parity violation in the Weinberg-
Salam model of the electroweak interaction. In [123] Vilenkin and Leahy proposed

that these currents can generate a strong magnetic field.

4.6.3 Magnetic fields from the electroweak phase transi-
tion

The electroweak phase transition takes place at T,,, ~ 100 GeV. It is the transition
from a symmetric phase with massless gauge bosons to the Higgs phase, in which

the SU(2) x U(1)y gauge symmetry is spontaneously broken and all the masses
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of the model are generated. First order phase transitions take place by bubble
nucleation. The new bubbles contain phases of broken symmetry, whose sizes
are at most of the order of the horizon at that time. As the Universe expands,
different domains come into causal contact and bubble walls collide with each
other. The generation of magnetic fields is given by processes that occur during
these collisions. Second order phase transitions occur in a regular way and with
an approximate thermal equilibrium throughout the process. A magnetic field
can be created also in this case.

Following [65], the first proposal for a magnetogenesis mechanism based on
first order phase transitions is due to Hogan in [58], where he tried to explain the
effects of the fields on structure formation. In this case during the transition free
energy is orderly released, inducing a dynamo in the wall of the bubble. Thus
each bubble is an independent dynamo producing fields correlated on the scale of
the bubble. The result are randomly oriented field lines that properly averaged
produce a large field which extends over regions that are not causally connected.

Baym, Bodeker and McLerran [16] proposed a dynamo mechanism where seed
fields are provided by thermal fluctuations. The walls of the broken symmetry
bubbles expand creating supersonic shock waves. The collision of these shock
waves generates a turbulent dynamo that amplifies the field. The amplification
proceeds in the following way. The Universe supercools below a critical temper-
ature, T, ~ 100 GeV, then the Higgs field tunnels locally from the unbroken
SU(2) x U(1)y phase to the broken U(1).,, phase. The tunneling forms broken
phase bubbles that expand and convert the false vacuum energy into kinetic en-
ergy. As the shock fronts collide, turbulence forms in the cones of the bubble
intersection. The magnetic field generated by this mechanism at the present time
is B(lgar) ~ 10717 — 1072° G on galactic scales [, ~ 10° AU.

In [120] Vachaspati proposed the generation of magnetic fields by second order
phase transitions. Below the critical temperature of the electroweak phase tran-
sition, 7., the minimum energy state of the Universe corresponds to a spatially
homogeneous vacuum in which the Higgs field ® is covariantly constant, namely
D,® = (0, —1ieA,)® = 0. However, during the phase transition and immediately
after it, thermal fluctuations give rise to a finite correlation length, £ ~ (eT,,)™!,

leading to spatial variations both in the Higgs field module and in its SU(2) and
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U(1)y phases. The variation of the Higgs field results in the presence of electro-
magnetic fields. This magnetic field does not need to be the Maxwell magnetic
field, it can be the magnetic field associated with any of the unbroken symmetries
at the epoch of the phase transition. The value of the field at the present time
for a scale of 100 Kpc is approximately B ~ 1073 G.

In [2] and in [39] Ahonen and Enqvist studied the case of an Abelian Higgs
model with the formation of ring-like magnetic fields in collisions of bubbles of
broken phase. The magnetic field which is formed is of the order B ~ 10 G
with a coherence length of about 102> GeV~!. They found that when the plasma
is endowed with magnetohydrodynamical turbulence, the coherence scale can be
enhanced by the inverse cascade of the magnetic helicity and the field can reach
the value B ~ 1072! G on a comoving scale of 10 Mpc today.

Grasso and Riotto [49] considered the generation of magnetic fields during a
second order electroweak phase transition. They showed that the field generation
is intimately connected to some semiclassical configurations of the gauge fields,
such as electroweak Z-strings and W-condensates. They argued that electroweak
strings are formed during the second order electroweak phase transition. This
mechanism generates a field B ~ 1072! G on 1 Mpc scale.

Diaz-Gil et al. [28, 29] analyzed the generation of magnetic fields during
preheating within a scenario of hybrid inflation at the electroweak scale. They
provided a realization of the mechanism proposed by Vachaspati, by which inho-
mogeneities of the Higgs field phases act as sources for the generation of magnetic
fields. Inflation ends at the electroweak scale, then tachyonic preheating devel-
ops and non-linearities in the fields cannot be neglected anymore. Gradients in
the orientation of the Higgs field create magnetic string-like configurations. The
important feature in this scenario is that the induced magnetic fields are helical.
During the electroweak symmetry breaking phase the magnetic fields are squeezed
in string-like structures between the bubbles. The correlation length grows as fast
as the particle horizon and this behaviour is interpreted as an indication that an
inverse cascade of magnetic helicity is in operation. However it is not possible
to extrapolate the late time behaviour because of the limited knowledge on the
primordial plasma features.

In spite of the work done to realize a mechanism for the generation of pri-
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mordial magnetic fields via first order phase transitions, it seems that within the
framework of the standard model a first order electroweak phase transition is

incompatible with the Higgs mass experimental lower bound [62].

4.6.4 Magnetic fields from the quark-hadron phase tran-
sition

In the early Universe at very high temperature a QCD phase transition is pre-

dicted, where a quark-gluon plasma condensates into colorless hadrons. Lattice

computations suggest that the QCD phase transition is of first order and occurs

at Toop ~ 150 MeV [61].

This phase transition is first order so it takes place by bubble nucleation. When
the temperature goes below Tpcp, bubbles containing the hadronic phase grow
releasing heat in the quark-gluon plasma. When the shock fronts of these bubbles
collide in an out-of-equilibrium process, they reheat the plasma to THcp, stopping
the bubble growth. From this moment on new bubbles are nucleated in thermal
equilibrium, giving rise to a coexistence phase. The temperature decrease due to
the Universe expansion is compensated by the heat released by the bubbles and
when the expansion wins over, the transition ends and the remaining pockets of
quark-gluon plasma are quickly hadronized.

Quashnock, Loeb and Spergel [106] first proposed the production of magnetic
fields via QCD phase transition. The latent heat released by the deflagration front
produces a pressure gradient up to the shock front and the gradient generates a
radial electric field behind the shock front. This is due to the baryon asym-
metry which makes the baryonic component of the primordial plasma positively
charged. When the shock fronts collide, a turbulent phase starts and vorticity is
generated on the scales of the bubbles. Electric currents circulate on such scales
and magnetic fields are generated. The magnetic field generated on scales 10'°
cm, corresponding to 1 AU at present time, is B ~ 10717 G. This small strength
is dramatically suppressed if one considers scales of the order of the galactic size
~ 10 kpc.

Cheng and Olinto [21] focused on the coexistence phase of the phase transition.

They argued that stronger fields can be generated during this phase because of
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the baryon number susceptibility of the two phases. Magnetic fields are generated
by the peculiar motion of the electric dipoles which arises from the convective
transfer of the latent heat released by the expanding bubble walls. The generated
magnetic field is B ~ 1076 G in 1 pc scales.

However, in [5] Aoki et al. studied the nature of the QCD transition. They
proved that the QCD transition in the hot early Universe was not a real phase
transition, but an analytic crossover (involving a rapid change, as opposed to a
jump, as the temperature varied). Therefore the results for the generation of

magnetic fields through the QCD phase transition seem invalid.

4.6.5 Magnetic fields from cosmic strings

Cosmic strings are one-dimensional topological defects which formed via the Kib-
ble mechanism during a primordial phase transition. Vachaspati and Vilenkin
[121] proposed that cosmic strings may produce plasma vorticity and magnetic
fields. Vorticity is produced in the wakes of fast moving cosmic strings after the
beginning of structure formation and since the vortical eddies are bounded to
the strings, vorticity does not decay with the Universe expansion. The generated
field is B ~ 107'® G and the coherence scale is the scale of the wiggles of the
string and it can be up to 100 kpc.

Avelino and Shellard [6] proposed an alternative model in which vorticity is
produced not by the wiggles, but by the strings themselves, which drag matter
behind them because of a finite dynamical friction. However, the field strength
predicted is very weak (B ~ 10723 G today).

Witten predicted larger fields in [127], where he considered the case of super-
conducting cosmic strings. The superconducting charge carriers may be either
bosons or fermions. If primordial magnetic fields pre-exist, they may play a role
charging up the string loops and delaying their collapse. Otherwise supercon-
ducting cosmic strings can generate magnetic fields in a way similar to the one

proposed by Avelino and Shellard.
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Chapter 5

Large-scale magnetic fields and

inflation

The origin of magnetic fields is unknown and many scenarios have been pro-
posed to explain them. Until recently the most accepted idea for the formation
of large-scale magnetic fields was the exponentiation of a seed field as suggested
by Zeldovich and collaborators long ago. This seed mechanism is known as galac-
tic dynamo, the idea is the amplification of a tiny field created early enough by
differential rotation of the galaxies and the subsequent generation of the galactic
and cluster fields, see Section 4.6.1.

However, recent observational developments have cast serious doubts on this pos-
sibility. In fact there are already many reasons to believe that, although this is
a possible mechanism in some cases, it cannot be universal [17, 71]. Some of the
reasons to think that seeding cannot be an answer are simple [20, 51]. First, the
very existence of high z galaxies with fields comparable to the one of the Milky
Way is incompatible with the necessary number of turns. Second, the narrowness
of the distribution, most galaxies and clusters have fields of a few micro Gauss,
and this is not compatible with the different number of rotations and the pa-
rameters involved in every galaxy. Furthermore, magnetic fields seem to increase
with redshift. Though the evidence is not overwhelming, the sample of Faraday
rotations measured is now consistent with an increase and the set includes tens

of galaxies showing this pattern. Finally, as pointed out by Dolgov, it is difficult
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to create the fields in clusters since even the most efficient ejection from point
bodies in galaxies like supernovas would have difficulty creating them. All put
together, seeding seems to be ruled out and moreover, even if the galactic dy-
namo was effective, one should justify the presence of a seed field which started
the process. This is why the mechanism responsible for the origin of large-scale
magnetic fields should be searched in the early Universe [34, 51]. Among the
mechanisms for the generation of magnetic fields, some of which we have seen in
the previous chapter, inflation seems to be the favourite one, as we will see in the
following.

In this chapter we study how inflation can produce large-scale magnetic fields.
In Section 5.1 we briefly outline some scenarios of inflationary magnetogenesis.
In Section 5.2 we focus on a broad class of these scenarios and study the problem

of the back reaction of the generated field on the background.

5.1 Production of magnetic fields during infla-
tion

As it was noted by Turner and Widrow in [119], inflation is a prime candidate

for the production of magnetic fields for four reasons.

e Inflation provides the means of creating effects on very large scales at
very early times, starting from microphysical processes operating on scales
smaller than the Hubble radius. If electromagnetic quantum fluctuations
are amplified during inflation, they could appear today as large-scale mag-
netic fields (electric fields should be screened by the high conductivity of
the plasma).

e Inflation provides the means to amplify the long-wavelength electromagnetic
waves. If the conformal invariance of the electromagnetic field is broken,
electromagnetic quantum fluctuations could be excited during the de Sitter
expansion. This phenomenon is the analog of the particle production in a

rapidly changing spacetime metric.

e During inflation, the Universe is free from charged plasma and is not a
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good conductor, therefore magnetic flux is not conserved and the ratio of
the magnetic field with the radiation energy density, r = (B*/87)/p,, can

mcrease.

1

e Classical fluctuations with wavelength A 2 H~' of massless, minimally

coupled fields can grow superadiabatically, i.e. their energy density decreases
only as ~ a~2, rather than the usual ~ a=*.
However, in order to generate magnetic fields during inflation, there is a major

problem to overcome. The action for the massless vector field is

1 1
S=-1 / E, F"\/=gdx = - / FupFoeg™ g7 /—gd'z, (5.1)

where F,, =V, ,A, -V, A, =0,A, —0,A, is conformally invariant. It is easy to
see that under conformal transformation g,,, — 2?g,,, the determinant transforms
as g — Q% and g — Q~2¢*. This is the reason why in the Friedmann Universe
with the metric

ds* = a® (n) (dn® — Syda’da”) (5.2)

the conformal vacuum is preserved. Therefore, if we want to amplify quantum
fluctuations on inflation and thus explain the origin of primordial magnetic fields,
the conformal invariance of electromagnetism must be broken.

Several ways out this obstacle have been proposed. Turner and Widrow [119]
considered the following possibilities. First they investigated the case where the
conformal invariance is broken explicitly by introducing a gravitational coupling
like

1 b
L - _ZFNVF#V + §RA'LLA“ - gRuVA“AV' (53)

The first term is the usual Maxwell Lagrangian and the other terms are the
new interactions which break the conformal invariance and give to the photon
a non-zero, time-dependent mass. In fact, one of the most severe constraints
to this scenario comes from the experimental upper limit to the photon mass,
which is m., < 2 x 1076 eV. The authors showed that for some suitable choice
of the parameters which enter in the Lagrangian, the strength of the generated

magnetic field could be astrophysically interesting, even without invoking the
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galactic dynamo mechanism. They consider also other possibilities:

(a) the coupling of gravitational and electromagnetic fields through terms of
the form RF?:

1 1
L = —Z MVFMV — 4—77/L2(6RFM,/FW/ + CRMVFMHF: + dRuV)\nFMVF/\H)a (54)

where m, is the electron mass;

(b) a massless, charged scalar field, minimally coupled to both gravity and the

elctromagnetic fields:
1
L=—-D,p(D"'¢)" — ZFWF“V, (5.5)

where D, = 0, —ieA;

(c) the axion electrodynamics. For energies well below the Pecci-Quinn symmetry-

breaking scale f,, the effective Lagrangian for axion electrodynamics is
1 “ 1 2% [y
L= —53H08 0 — L_LFMVF + gaeF/.u/F s (56)

where g, is a coupling constant, 8 = ¢,/ f., ¢, is the axion field and Fis
the dual of F.

However, these scenarios do not give an appreciable result.

Another way to produce fields large enough to seed the dynamo is proposed by
Dolgov and Silk [33]. They considered the spontaneous breaking of the gauge sym-
metry of electromagnetism which implies non-conservation of the electric charge.

In [32] Dolgov considers the breaking of conformal invariance due to the trace
anomaly, i.e. the trace of the energy-momentum tensor which should be zero in
conformally invariant theory becomes non-vanishing due to the triangle diagram
connecting two photons to a graviton. This may lead to strong electromagnetic
amplification during inflation. In fact the quantum anomaly results in the fol-

lowing modification of the Maxwell equations:

9
O, F! + k2 i =, (5.7)
a

30



5.1. Production of magnetic fields during inflation

where a = a(n) is the scale factor and 7 is the conformal time. The numerical
coefficient x in SU(N) gauge theory with Ny charged fermions is equal to x =
a/m(11N/3 — 2N;/3). Here « is the fine structure constant at the momentum
transfer p equal to the Hubble parameter during inflation p = H. Equation (5.7)

in the Fourier space gives rise to the equation
a/
A"+ KA+ k—A =0, (5.8)
a

where A is the amplitude of the vector potential. From equation (5.8), Dolgov
found that the energy density of the electromagnetic field generated during in-
flation at the moment when its wave reenters the horizon is F,(H))*/\* and
for K ~ O(1) the amplitude of the magnetic field can be large enough to seed
the observed magnetic fields in galaxies. The additional anomalous term can
produce magnetic fields large enough even without a dynamo amplification. The
magnitude of the effect is too small in the case of the contribution of one electron
loop, but in theories with many charged particles, e.g. grand unified theories, the
effect may be significant.

In [118] the authors proposed to break the conformal invariance adding by
hand a mass term m2g" A, A, /2 to the Lagrangian. Several models can show
this behaviour. First they consider inflation with two scalar fields, s real and
¢ complex, where ¢ couples minimally to the photon field A,, giving it a mass
m?% = 2e%|¢|?. The potential is Vis®+my|o?/2+ Ns|0|* /4 — gs?|6|*/2, where V is
an increasing function. During inflation, s and |¢| decrease as they roll along the
curve |¢| = \/(932 —mj)/ Ay until s < my/\/g, after which |¢] = 0. The second

possibility is given by the back reaction of the vacuum fluctuations of a scalar

field (®T®) on the equation of motion of a minimally coupled gauge field. During
inflation (®T®) grows and it would give a mass 2¢*(®T®) to the photon. If ®
decays soon after inflation, the mass goes to zero. This would be the case if ® is
a heavy squark field or the electroweak Higgs field and the electroweak symmetry
is restored by reheating. All these mechanisms result in a gauge field spectrum
A ~ k™% ~ k73/2 corresponding to a magnetic field By ~ [73/%** ~ [~ where
[ is the relevant coherence scale and v ~ 1/2. This scenario can give rise to a

seed field for the dynamo mechanism.
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As we discussed above, conformal invariance of the electromagnetism is spoiled
if the electromagnetic field is coupled to a scalar field. In [107] Ratra suggested
a coupling of the form e"F"F,, where k is an arbitrary parameter. This
kind of coupling is produced in some peculiar scenarios of inflation [108] with
an exponential inflaton potential. This model may lead to a huge amplification
of the electromagnetic quantum fluctuations and the present time intergalactic
magnetic field can be as large as 1072 G. However, depending on the parameters
of the model, the predicted field could also be as low as 107% G.

A slightly more predictive model has been proposed independently by Lemoine
and Lemoine [73] and Gasperini, Giovannini and Veneziano [48] and is based on
string cosmology. In this scenario the electromagnetic field is coupled not only to
the metric g,,,, but also to the dilaton field ¢. In the low energy limit of the theory
and after the dimensional reduction from 10 to 4 spacetime dimensions, such a
coupling takes the form /—ge ?F"F,,, breaks the conformal invariance of the
electromagnetic field and coincides with the coupling considered by Ratra [107].
While Ratra assumed that inflation is driven by the scalar field potential, in string
cosmology there is the problem that dilaton potentials are too steep to produce
the required slow roll of the inflaton field. Thus they assumed that inflation is
driven by the kinetic part of the dilaton field. In this scenario the Universe evolves
from a flat, cold and weakly coupled (¢ = —o0) initial unstable vacuum state
toward a curved, dilaton-driven, strong coupling regime. This period is called
pre-Big-Bang phase and is the time when electromagnetic field amplification from
vacuum quantum fluctuations takes place. Lemoine and Lemoine [73] estimate
that in the most simple model of dilaton-driven inflation a very tiny magnetic
field is predicted today. Gasperini et al. [48] claim that larger magnetic fields
can be produced on protogalactic scales. This is due to the presence of a new
phase between the dilaton-dominated phase and the FRW phase during which
the dilaton potential is non-vanishing. The new phase is called string phase and
should start when the string length scale A\; becomes comparable to the horizon
size at the conformal time 7. Unfortunately the duration of this phase is unknown
and this makes the model not very predictive.

A more general way to break the conformal invariance is proposed by Bamba

and Sasaki [7]. They considered a coupling of the form IF?, where I can be a
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5.1. Production of magnetic fields during inflation

function of non-trivial background fields that vary in time. The generation of
magnetic fields with large amplitude is archieved if the function I is extremely
small at the beginning and increases rapidly in time during inflation.

A similar coupling is studied by Martin and Yokoyama in [89]. The infla-
ton field is described in a supergravity framework where the conformal invari-
ance of the electromagnetic field is naturally broken with a coupling of the form
2(¢)F*™ F,,, where ¢ is the inflaton field. They determined the form of the cou-
pling that is consistent with the magnetic field observations for different inflation-
ary scenarios. In finding the form of the coupling they also took into account the
problem of the back reaction of the magnetic field on the background. Then they
studied whether the required coupling can naturally emerge in well-motivated
models, but they realized that this is nontrivial and can be realized only for a
restricted class of scenarios, among which power-law inflation. However, this sce-
nario seems consistent only if the energy scale of inflation is low and the reheating
stage is prolonged.

An interesting possibility was studied by Durrer, Hollenstein and Jain in [35].
They considered the generation of helical magnetic fields during single-field in-
flation, where a coupling to the parity-violating term F'F, i.e. a term f(¢)FF,
is added to the standard electromagnetic action F?2, where F is the dual of F
and ¢ is the inflaton. As a consequence magnetic helicity is generated. This has
two effects. Helical magnetic fields evolve in the cosmic magnetohydrodynamic
plasma via inverse cascade and this transfers power from small to large scales, so
that even blue spectra can lead to significant power on large scales. Second, since
helical magnetic fields violate parity symmetry, they leave a very distinctive sig-
nature and therefore observable effects, e.g. correlations between the anisotropies
in the temperature and B-polarization, or in the E- and the B-polarizations in
the CMB. They showed that a helical coupling always leads to a spectral index
n = 1 for B*(k) ~ k™, as long as slow-roll inflation is considered. Even though
the inverse cascade in the radiation dominated era after inflation moves power to
larger scales, the final strength of the magnetic field on cosmologically interest-
ing scales is still insufficient to provide seeds for the observed magnetic fields in
galaxies and clusters, except if the inflation scale is low, T, < 10* Gev and the

axial coupling is very strong.
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5.2 Back reaction of the generated magnetic fields

In this section we follow our paper [27]. We consider a broad class of models
where conformal invariance is broken during inflation and investigate the back
reaction of the generated magnetic field on the background. We show that the
back reaction is very important and leads to rather strong bounds on the maximal
value of the strength of primordial magnetic fields which seems not enough to
explain the observed fields as a result of amplification of these primordial seeds
by dynamo mechanism.

In the previous section we have seen that if we want to explain the origin of
primordial magnetic fields via amplification of quantum fluctuations on inflation,
the conformal invariance of electromagnetism must be broken. Most of the models
considered above are effectively reduced either to the appearance of an effective
mass or a time dependent coupling constant. Both of these options are taken into
account if we write the action in the form

S = / (—%lIQFWF“” + M2A#A“> V—gd'z. (5.9)
Here I(t) = I(¢(t),---), where ¢ can be the inflaton, dilaton or some other
scalar field and the dots can be anything, for instance, invariants of the curvature
[7, 48, 107]. The appearance of the time dependence of the coefficient in front
of F? term is naturally interpreted as a time-dependent coupling constant of the
vector field. In fact if we write the Lagrangian density of the vector field coupled

with a charged fermion in the standard form as
1 _
L= _ZFMVFW/ + iy (0, + igA,)Y, (5.10)

where g is the coupling constant, then after rescaling the vector potential by the

coupling constant A, — gA, we bring this Lagrangian to the form

1 b T :
L= —4—92FWF“ + iy (0, + 1AL, (5.11)

which is “ready” for introducing a time-dependent coupling constant. Note that [

is an inverse coupling constant and small values of I correspond to a large coupling
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5.2. Back reaction of the generated magnetic fields

constant g, which in turn would mean that we are in an uncontrollably strong
coupling regime. Only if [ is large we can trust the theory. For our purposes
we do not need to specify in more detail the origin of the time dependence of I
here. Note that the time-dependent effective coupling leaves the Lagrangian to
be U (1) gauge-invariant.

The mass term introduced by “hand” spoils gauge invariance. Only when it is
generated via Higgs mechanism the gauge invariance is preserved. On the other
hand as it was noticed already in [119], large enough magnetic fields can be ob-
tained only if M? is negative during inflation. However, to generate negative mass
squared term via Higgs mechanism one needs a ghost scalar field with negative
kinetic energy [37, 57]. As it is well known, ghosts lead to catastrophic instabili-
ties and therefore we will not exploit this possibility any further here. Instead we
introduce the effective negative mass square terms considering the non-minimal

coupling of the vector field to gravity, so that,

M? =m? +¢R, (5.12)

where for generality we also keep the “hard” mass term m?

, assuming that it is
positive.

Let us now rewrite the action (5.9) in terms of the vector potential A, =
(Ag, A;) . Tt is convenient to decompose the spatial part of the vector potential
in terms of its transverse and longitudinal components A; = Al + 9;y, where
;AT = 0 (we will be assuming summation over repeated indices irrespective of
their position). In the homogeneous flat Universe with metric (5.2), the action

(5.9) then becomes

1
5= / (12 (AT AT 4 ATAAT 12400y — AgAA — Y'AX)
+M?a® (Af 4+ xAx — ATAD)]d'z, (5.13)

where prime denotes the derivative with respect to the conformal time n. We will

consider different cases separately.
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5. LARGE-SCALE MAGNETIC FIELDS AND INFLATION

5.2.1 Time dependent coupling

Let us first consider the case when M? = 0 and I = I (¢). Then the variation of
the action (5.13) with respect to Ay gives Ay =/, and the action simplifies to

s5=1 / 12 (AT AT 4 ATAAT) d'z. (5.14)

Substituting the expansion

T (o) zk:c d3k,
Al =Y [ AY G (5.15)

o=1,2

where 5§U)(k), o = 1,2 are two orthogonal polarization vectors, into (5.14), we

obtain

Z / 1260 (—k) (A(” ‘ALY k?Ag”AEf;) dndk.  (5.16)

0'12

Rewritten in terms of the new variable
N VAR (5.17)

this action becomes

I//
Z/( o) o')/ <k2 7) UI(:)J_G&) dnd’k. (5.18)

012

It describes two real scalar fields with time-dependent effective masses in terms
of their Fourier components.

We are interested in the correlation functions of the transverse components of
the vector potential and magnetic field assuming that initially the field was in
its vacuum state. The quantization of the fields with action (5.18) is standard
and we will simply summarize here the results referring the reader to [93, 94]
for the details. Taking into account (5.17) and (5.15), we immediately find the
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5.2. Back reaction of the generated magnetic fields

correlation function

1 sin klx — y| dk
AT AT@ / k’g—
< O| (na ) (777 )|0 >= 4 Ar2,2T2 a2l? Z |Uk k‘| y\ k'
(5.19)

where v,(:) (n) satisfy the equations

]'//
o 4 ()l =0, WP (n) = (kQ - 7) ; (5.20)

which immediately follow from action (5.18). The initial conditions for these

equations corresponding to the initial vacuum state at »; are

(J)(

ni) = (U)/ (nz) w (M) (5'21)

w (1:)
These initial conditions make sense only if w? > 0. Anyway, we will need them
only for the short-wavelength modes for which w? ~ k2. The power spectrum
characterizing the typical amplitude squared of the invariant magnitude of the
vector potential, A = /—A;A?, in the appropriate comoving scale A = 27/k is

(o) 21.3
0% (ko) = > %ﬂ. (5.22)

2,272
a?l
o=1,2

Taking into account that the magnitude of the magnetic field is

1 1
B*= -B,B' = 2—a4Fka = (0;ARO; Ay — OLA0; Ay) (5.23)

we obtain for the power spectrum of the magnetic field

k5
5% (kyn) = 8% (k) o Z‘M Dl (5.24)

204]2

that is, its amplitude decays faster by an extra power of the scale compared to the
amplitude of the vector potential. For example, a flat spectrum of the magnetic
field (6 (k) = const) corresponds to the linearly growing towards large scales

spectrum for the vector potential, that is, d4 (k,n) oc kL.
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5. LARGE-SCALE MAGNETIC FIELDS AND INFLATION

We will need to control the back reaction of the generated electromagnetic
field on the background. For this purpose let us calculate the expectation value
of the energy density equal to Ty component of the energy-momentum tensor:

2

1 I
T = I? (ZFaﬁFW — Foa FOQ) = AlAT + 9,AL 9, A7) . (5.25)

2
Taking into account (5.15) and (5.17) we obtain

epn = < 0[T9]0 > (5.26)

!

_ 1 @z L@ (17 2) @0z 3k
~ser 2, [ W00 = Gl () ]

Let us assume that the function I depends on time during inflation and find the
resulting spectrum of the magnetic field at the end of inflation. For short waves
with k|n| > 1 we can neglect I”/I compared to k? in (5.20) and the solution of

this equation with vacuum initial conditions (5.21) then becomes
0l () ~ =), (5.27)

Because || decreases during inflation, at some moment |7;| ~ 1/k the physical
scale of the wave with comoving wavenumber k begins to exceed the curvature
scale and taking into account that k? < I"”/I, we can write the general longwave
solution of (5.20) as

ﬁ?

where C7 and C, are the constants of integration which have to be fixed by

, d
vl () ~ C1T + 021/ 7 (5.28)

matching this solution to (5.27) at |n| =~ 1/k. Let us assume that [ is a power-

law function of the scale factor during inflation

=1, <1>n (5.29)

ar
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where ay is the scale factor at the end of inflation. Taking into account that

d
dn:—a

= (5.30)

and the Hubble constant H does not change significantly during inflation, we
obtain from (5.28)
0l () ~ Cya” + Cha ™1, (5.31)

5.2.1.1 Strong coupling case

In the case n > —1/2 the first mode dominates and, matching solutions (5.27)
and (5.31) at |mg| ~ 1/k, we find

E A Y CO P

where we have taken into account that at the moment 7, when the corresponding
wave crosses the Hubble scale, the scale factor is aj ~ k/H;. Substituting (5.32)
into (5.24) we obtain at the end of inflation

2 n—2
05 (Aphs ny) = \/gilf (%) , (5.33)
where Ay, = as/k is the physical wavelength and H; is the Hubble constant on
inflation. This formula is valid for H; ' (as/a;) > A\, > H; ', where a; is the value
of the scale factor at the beginning of inflation. If n = 2, the spectrum of the
magnetic field is flat. For H? ~ 107! (in Planck units), required by primordial
inhomogeneities [93], and Iy >~ O (1), the amplitude of the field is the same in all
scales and it is equal to dp ~ 10712 Planck units or ~ 10%*® G immediately after
inflation. Later on the magnetic field is frozen and decays inversely proportional
to the scale factor squared. To estimate how much the scale factor increases after
inflation, we can use the entropy conservation law. Assuming that inflation is

followed by the dust dominated stage we obtain

1/2 1/4
G gt (“—R> : (5.34)
ar T() ays
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5. LARGE-SCALE MAGNETIC FIELDS AND INFLATION

where ¢ is the number of relativistic degrees of freedom of those particles which
later on transfer their entropy to the photons, T is the temperature of the back-
ground radiation today and ag the scale factor at the moment of reheating. The
lower bound on this ratio is obtained by assuming that reheating happens im-
mediately after inflation. In this case for Hy ~ 107% we have ag/a; ~ 10* and
correspondingly the strength of the generated magnetic field cannot exceed 10712
G.

Let us calculate the energy density of the generated magnetic field. The main
contribution to the energy density comes from the scales exceeding HI_1 because
the contribution from the subhorizon scales is renormalized in the leading order.
In the case where the dominant mode v oc I and AT oc v/I o const, the time
derivatives of the vector potential in (5.25) contribute only in subleading k? order
and their contribution is comparable to the contribution of the magnetic field itself

given by the last term in (5.26). Thus we obtain

O (1) [He
o= 2 [ i prtar, (539

Hra;

where a; is the value of the scale factor at the beginning of inflation. Substituting
(5.32) into (5.35) we find that at the end of inflation when a = ay

= n < 2,
e = O (1) Hf x In “—f) ; for n =2, (5.36)
a 2(n—2)
ﬁ (a—f , n> 2.

We see that the magnetic field energy can be comparable with the energy density
of the background only for n > 2. Requiring that inflation should last at least
75 e-folds, we obtain that the contribution of the magnetic field energy density
does not spoil inflation, that is, egys is smaller that H? until the end of inflation,
only if n —2 < 0.2. Thus, we can have a magnetic field spectrum which is slightly
growing toward large scales. In particular, for n ~ 2.2 the amplitude of the
magnetic field in Mpc scales can be larger by a factor 10° compared to the above
considered case of the flat spectrum, that is, dg ~ 10~ G today. This is the

greatest amplitude of the primordial magnetic field which we can obtain in the
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5.2. Back reaction of the generated magnetic fields

above considered case. Note that the theory where I grows with the scale factor
corresponds to the case where the effective coupling constant, which is inversely
proportional to I, is incredibly large at the beginning of inflation and becomes
of the order of one at the end of inflation. Hence at the beginning we are in a
strongly coupled regime where such a theory is not trustable at all.

The case considered above is the only one in which we can generate strong
enough fields on inflation. Let us show that in all other cases there is very strong
bound on the possible value of the generated field due to the back reaction of this
field on the background.

5.2.1.2 Weak coupling case

For n < —1/2 the second term in (5.31) dominates and
v () oca™™ 1t (5.37)

In this case the result follows immediately by substituting in the formulae (5.32)
and (5.33) —n — 1 instead of n, so that

v (n) ~ % (%) - % (%)Wl , (5.38)

and , 5
H Aon N
65 (Apnsnyp) =2 —= ( ! ) : 5.39
8 (Aph, 1f) Varl, \H;1 (5.39)
Thus the spectrum of the magnetic field is flat for n = —3. This case corresponds

to the coupling constant growing as I~! o< a®, that is, it changes from extremely
small values at the beginning of inflation to values of order of unity at the end
of inflation. Thus the theory is trustable everywhere. However, here the back

reaction of the field is very large because A o v/I o< a=2"!

changes very fast and
the main contribution to the energy density comes from the time derivative of

the vector potential in (5.25), that is, from the electric field. Substituting (5.38)
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n (5.26) we obtain that at the end of inflation

% n> -2,
4n2 + 4n + 1 af
PSS L M L a—) n=-2, (5.40)
87T2 2(n+2)
1
—m (%) s n < —2.

Requiring that inflation should last at least 75 e-folds, we find that egy, < H?
at the end of inflation only if n > —2.2. Thus the flat spectrum of the magnetic
field cannot be generated during inflation because in this case the back reaction
of the electromagnetic field would spoil inflation too early. In the most favorable
admissible case n ~ —2.2, the amplitude of the magnetic field decays as dp )\;,? 8
and its value cannot exceed 10732 G in Mpc scales today. Thus in this model
with weak coupling constant during inflation one cannot explain the origin of the

primordial magnetic field.

5.2.2 Massive field

Now we set [ = 1 and consider the case where magnetic fields are generated by

the mass term in the action. Variation of action (5.13) with respect to Ay gives
AX' — AAg + M?a*Ay = 0. (5.41)

Taking the Fourier transform

) = [ e e = [antiere S )

we obtain from here

k2
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Substituting into the action (5.13) the expansions (5.15), (5.42) and using (5.43)

to express Aok in terms xj, we obtain

S = % Z / (v,&a)/v(jg/ — (K + M?a®) v,(:)v(jz) dnd®k (5.44)

o=1,2

1 JI-FE]
+—/3ign(1—Fk) VX — | K+ M2a? — VAL YeXok | dnd®k,
2 V1= Fi

where v\ is defined in (5.17) (I = 1), and

Thus we see that in the case of massive field the longitudinal degree of freedom
x becomes dynamical. In the case of positive mass squared, F}, is always smaller
than unity and therefore the sign in front of the longitudinal part of the action is
positive. However, if M? is negative then 1 — F}, is negative for high momentum
modes with k%2 > M?Z2a? and these modes have negative kinetic energy. The
low momentum modes with &% < M?2a® have positive kinetic energy because Fj,
is negative for them. Thus, introducing a tachyonic mass for the vector field
in a “hard” way seems to lead inevitably to the appearance of ghost for high
momentum longitudinal modes [37]. Therefore if we want to avoid catastrophic
instabilities related with ghosts fields we have to consider a tachyonic vector
field only as a low energy effective field theory description of some yet unknown
theory with “safe” ultraviolet completion. On the other hand if negative effective
mass appears as an interaction with the curvature, M? = ¢R, then the field is
massless on scales smaller than the typical distance between particles inducing the
average curvature and thus there is a natural ultraviolet cutoff in the theory. Note
that this argument is not directly applicable in the presence of the cosmological
constant. Let us assume that the problem of ghosts can be somehow solved and
proceed with the calculation of the magnetic field from inflation in the theory
with M? = m? + {R. In the case m = 0 the photon mass is m, ~ RY2, where
RY? ~ H. Today it would be m, = Hiygay ~ 1073%eV, well below the available

experimental limits on the photon mass. The breaking of charge conservation
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also manifests itself only on scales of the horizon or larger (> H~' ~ 10%cm)
and hence has no observable consequences.

The equations of motion for transverse and longitudinal modes follow imme-
diately from the action (5.44):

o+ (K4 M2a?) o) =0, (5.46)

and

VI—El
X+ <k2 + M2 - ﬁ) X = 0. (5.47)
\ A

Let us consider the de Sitter Universe where

1

. 5.48
Hin ( )

a =
Taking into account that R = —12H?7, for m? = 0 equation (5.46) becomes
o 12 o

For short waves with k|n| > 1, the solution of this equation corresponding to

vacuum initial conditions is
(o) 1 ik(n—ni)
vy () ~ —=e : (5.50)

For k|n| < 1 we can neglect the k? term in (5.49), and the dominating long-

wavelength solution of this equation is

v,(f) (n) ~ % (%)n, n= % (\/@ - 1) , (5.51)

where we use the matching conditions at |n| ~ 1/k to fix the constant of
integration. Since here the calculations are very similar to those in the previous

section we can immediately write the result for the magnetic field:

)\ n—2
55 (Apn,1s) ~ O (1) H? (Hﬂl) . (5.52)
I
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For £ = 1/6 we have n = 1 and the spectrum linearly decays with the scale.
In this case its value today is about 10737 G in Mpc scales. The flat spectrum
is obtained for £ = 1/2. However, to find out whether this case is possible, we
have to verify that the back reaction of the magnetic field will not spoil inflation
too early. In the energy density also contributes the longitudinal mode and to
determine its contribution we will need a long-wavelength solution for yg. It is
easy to check that the term which is different in the equations (5.46) and (5.47)

can be neglected for both short-wave and long-wave solutions and hence

win = (A) L n-g (vViTRe-). (5.5

Variation of action (5.9), where I = 1 and M? = m? + (R, with respect to the

metric gives

| ) 1 .
T} = {0/ FasF b FPPF,;— SOn(m® + ER)Aq A (5.54)

+ (m® + ER)ALA? + ERLALAY + g[agvava(AﬂAﬁ) — V. V*(AP Ap)).

As a result of straightforward but rather lengthy calculations we obtain

< 0|7010 >=ep + €1, (5.55)
where
1 (o)112 (0))21 2 2 2 2 2\ 1,.(0))2 sdk
5T:WZ [Ivk | — 66aH vy’ —|—(/<: +m-a +6£Ha)]vk|]k?
o=1,2
(5.56)

is the contribution of the transverse modes and H = a’/a? is the Hubble constant.

The contribution of the longitudinal mode is given by

- 87éa4 /(1 - F) { (1 — 6ELF) 3| — 6€aH (%) Xel” (5.57)

m2a® + 66 H?a?\  _ dk
+ ( : ) |Xk|2}/f3—,

€L

1—-F k
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where . .
 H+4TH?>+4HY

X=xX/VI1-F, b= Ve (5.58)

For the longwave modes with k? < |M?a?| we have F, < 1, ¥ ~ ¥ and their

contribution to the total energy density is the same as the contribution of the
transverse mode. It is interesting to note that the longitudinal mode is the ghost
in the de Sitter background. However, in the Friedmann Universe filled by matter
with positive pressure it is not ghost in spite of the fact that the effective mass
squared is negative.

Substituting (5.51) into (5.56) we find that in the leading order the contribu-

tion of the long-wave modes into the energy density in the case m = 0 is

ai ., fre 27.2
er~ 0O (1) — (n® — 12n& + 6¢) ok (n)|?k>dk, (5.59)
Hra;
and calculating the integral we obtain
= for n <1,
e ~ O (1) Hf (n* — 12n€ + 6¢) , 2(n—1) (5.60)
1 ((%) s for n > 1.

In the case £ = 1/6 and when n = 1 the contribution is canceled in the leading
order and k? terms give a contribution of the order of H}, which is the same as
for n < 1. However, for £ > 1/6, and correspondingly n > 1, the energy density
of the long-wavelengh electromagnetic waves grows with time rather fast. It is
negative and therefore when it becomes of order H? inflation is over. Requiring
that inflation should last at least 75 e-folds we find that the contribution of
electromagnetic field does not spoil inflation only if n — 1 < 0.2. Thus, in the
most favorable case of n ~ 1.2, the amplitude of the magnetic field decays as

dp o< A and its value does not exceed 107 G in Mpc scales today.

5.2.3 Conclusions

We have studied the generation of large-scale magnetic fields in two classes of
models. In the first case the conformal invariance of the Maxwell field is bro-

ken by a non-minimal coupling of the form RA?, which gives a non-zero time-
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dependent mass to the photon. In the second case the conformal invariance is

violated because of the time-dependent coupling constant, I(t)F* F,,, where

e
I(t) = I(¢(t),---) is a general function of nontrivial background fields and ¢ can
be for instance inflaton or dilaton.

In principle it looks like inflation can strongly amplify the vacuum quantum
fluctuations and therefore can lead to sizable magnetic fields. However, if we
take into account the back reaction of the electromagnetic field and require that
inflation lasts at least 75 e-folds, the strength of the primordial field cannot exceed
10732 G on Mpc scales and it is not clear whether such a small field can work as
a seed for a possible dynamo mechanism.

Only in the strong coupling case, I(t)F*F,,, where I = I;(a/as)" and
n ~ 2.2, the amplitude can reach the interesting value of 10~7 G today. However,
this case corresponds to the situation where the effective coupling constant is
extremely large at the beginning of inflation and becomes of the order of one at
the end of inflation and hence the theory is not trustable.

We conclude therefore that the models considered above are not efficient in pro-
ducing primordial magnetic fields during inflation and, even if the galactic dy-
namo was effective, the field produced seems to be too small to play the role of

a seed for this mechanism.

97



5. LARGE-SCALE MAGNETIC FIELDS AND INFLATION

98



Chapter 6

Conclusions

The success of the inflationary paradigm in describing the observed properties of
the Universe is outstanding. We have seen how inflation can explain the amplifica-
tion of the primordial perturbations, which give rise to all cosmological structures,
and the temperature anisotropies in the CMB, which we observe today through
many experiments. We have shown that so far the simplest model of inflation,
a single-field slow-roll scenario, is in perfect agreement with the observations. In
fact it predicts Gaussian curvature perturbations with an almost scale-invariant
power spectrum. The 7-year WMAP analysis confirms these predictions, but it
leaves an open question about the issue of a possible non-Gaussianity of the per-
turbations. Indeed the value of the non-linearity parameter fyr is found to be
within the range —10 < fi%5% < 74 [68]. Therefore inflationary theories which
provide a higher level of non-Gaussianity still fit the data. Many models that
can enhance the level of the primordial non-Gaussianity have been proposed in
the literature. Among them, a simple deviation from the standard scenario is
represented by a theory of inflation with two scalar fields, called the curvaton
scenario.

We have studied the curvaton scenario, describing the generation of curva-
ture perturbations and calculating the level of non-Gaussianity. Then we have
discussed the realization of the curvaton scenario in supergravity in the con-
text of chaotic inflation. We have shown that the observational consequences of
the resulting scenario, which we called supercurvaton, are very interesting. In

fact we have computed the level of non-Gaussianity and we have found that the
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fnr parameter is in the observationally interesting range from O(10) to O(100).
Moreover, our investigation has demonstrated that if inflation is long enough,
then the average value of the curvaton contribution to the amplitude of metric
perturbations, as well as the averaged value of the parameter fyr, do not de-
pend on the initial conditions for the curvaton field. The final results depend
on the inflaton mass m, and on the parameter .. Therefore, while the curvaton
models are more complicated than the single-field inflationary models, they make
the resulting scenario much more flexible, which may be important for a proper

interpretation of the coming observational data.

Further, we have introduced the issue of the ubiquitous presence of large-
scale magnetic fields in the Universe, outlining the basic effects on the CMB and
the constraints coming from Big Bang nucleosynthesis. Then we have presented
various mechanisms for magnetogenesis in the early Universe.

In particular we have focussed on the study of inflationary magnetic fields. In-
flation can amplify quantum fluctuations giving rise to long-wavelength magnetic
fields. The necessary condition is that the conformal invariance of electromag-
netism is broken. In principle it looks like inflation can strongly amplify the
magnetic fields. However, inflationary magnetogenesis is not problem free. In
fact the generated magnetic field might back react on the background spoiling
the inflationary stage. We have briefly reviewed different proposals for the gener-
ation of magnetic fields during inflation and we have noted that in the majority of
the models the breaking of the conformal invariance is effectively reduced either
to the appearance of an effective mass or a time dependent coupling constant.
In the first case the conformal invariance is broken by a non-minimal coupling
of the form RA? and in the second one because of the time-dependent coupling
constant of the form I(t)F?, where I(t) = I(¢(t),---) is a general function of
non-trivial background fields. We have studied these two broad classes of models
and provided limits on the generated magnetic fields by taking into account the
back reaction of the electromagnetic field and by requiring that inflation lasts at
least 75 e-folds. The result is that the strength of the primordial field cannot
exceed 10732 G on Mpc scales. The only case where the amplitude of the field
can reach the interesting value 1077 G is in the theory I(¢)F? with I = (a/a;)"
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and n ~ 2.2. However, this case corresponds to the situation where the effective
coupling constant, which is inversely proportional to I, is extremely large at the
beginning of inflation and approaches unity at the end of inflation. Hence at the
beginning we are in a strongly coupled regime and the theory is not trustable.
We have concluded that the two broad classes of models we have considered are
very much constrained by requiring that the back reaction of the generated mag-
netic field on the background evolution is small. The back reaction leads to strong
bounds on the maximal value of the field strength, which is not enough to explain

the observed magnetic fields, even if the dynamo mechanism was effective.
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