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Abstract

In this work we consider different aspects of primordial perturbations gener-

ated during inflation. In the first part we discuss the production of curvature

perturbations. The standard single-field inflation model predicts almost scale-

invariant adiabatic perturbations which obey Gaussian statistics. This predic-

tion is in very good agreement with the present observational data. However

the measure of the level of non-Gaussianity is not precise yet and a devia-

tion from Gaussianity is allowed. The curvaton scenario, a model of inflation

with two scalar fields, may produce a higher level of non-Gaussianity of the

perturbations than the single-field model. In this thesis we discuss the super-

curvaton scenario, a curvaton model which naturally appears in the context

of the simplest model of chaotic inflation in supergravity. We compute the

non-linearity parameter fNL and show that the level of non-Gaussianity can

be in the observationally interesting range from O(10) to O(100).

In the second part we discuss the generation of large-scale magnetic fields from

the amplification of quantum fluctuations during inflation. We consider a very

broad class of models that can break the conformal invariance of electromag-

netism and therefore give rise to long-wave magnetic fields. We study the effect

of the back reaction of the generated field on the background and show that

they can be very important. Assuming that the back reaction does not spoil

inflation and requiring that inflation lasts at least 75 e-folds, we find a rather

strong restriction on the amplitude of the primordial fields which could be gen-

erated on inflation. Namely, this amplitude cannot exceed 10−32 G on Mpc

scales today. This magnetic field is too small to explain the field observed in

the Universe and it is too weak also to be amplified to the observable values

by the galactic dynamo mechanism.
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Chapter 1

Introduction

According to our current understanding of the Universe, all cosmological struc-

tures that we see today in the sky, like galaxies, clusters of galaxies and all the

web of the large-scale structure, and the observed temperature anisotropies in

the Cosmic Microwave Background (CMB), have a quantum origin.

The mechanism responsible for these processes is called cosmological inflation,

an epoch of accelerated expansion of the Universe that took place 10−35 seconds

after the Big Bang. Inflation predicts the observable Universe to be spatially

flat, homogeneous and isotropic on large angular scales, and the primordial in-

homogeneity to be almost scale-invariant and to obey Gaussian statistics. In the

inflationary picture, primordial density perturbations are created from quantum

fluctuations, which were stretched on super-horizon scales during inflation and

then grew into the structures we see today via gravitational instability.

Perturbations at the surface of last scattering are observable as temperature

anisotropies in the CMB. They were detected for the first time by the Cosmic

Background Explorer (COBE), a satellite for full sky measurements launched

by NASA in 1989. Several experiments followed COBE, balloon-borne exper-

iments as BOOMERanG, MAXIMA and QMAP, ground-based experiments as

Saskatoon and ACT, and space experiments as Planck and WMAP. The CMB

experiments support the predictions for homogeneity and isotropy of the Uni-

verse, and for the quasi-scale-invariance of the primordial fluctuations in the flat

Universe [68]. The Gaussianity of the primordial perturbations still needs to be

verified. In fact the 7-year WMAP analysis yields the level of non-Gaussianity,
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1. INTRODUCTION

which is encoded in the non-linearity parameter fNL, in a quite large range,

−10 < f localNL < 74.1

In the simplest inflationary scenario, inflation is driven by a scalar field, called

the inflaton. This scalar field is responsible for both inflation and the production

of density perturbations. The density perturbations are due to the fluctuations

of the inflaton when it slowly rolls down its potential and are created about 60 e-

folds before the end of inflation. At the end of the inflationary stage, the inflaton

field starts to oscillate around the minimum of its potential and decays into other

particles, thereby reheating the Universe. Single-field inflation predicts Gaussian

density perturbations with an almost scale-invariant spectrum [74, 93]. In fact

both the power, ns − 1, of the scalar power spectrum, Ps ∼ kns−1, and the non-

linearity parameter fNL are proportional to the so-called slow-roll parameters,2

η and ε, and these parameters need to be very small, ε, η � 1, in order to have

inflation. This prediction is in very good agreement with the present observational

data. However the measure of the level of non-Gaussianity is not precise yet and

a deviation from Gaussianity is still allowed [68]. Therefore other inflationary

models, which differ from the standard paradigm and allow a higher level of

non-Gaussianity of the perturbations, may also fit the data.

The precision of the observations improves every year, so in the near future

we will be able to distinguish among the myriad different inflationary scenarios.

Non-Gaussianity has the potential and the challenge to be a discriminating mea-

sure. A simple deviation from the standard scenario is represented by a model

of inflation with two scalar fields, the curvaton scenario [81, 84]. In this model

inflation is driven by the inflaton field, while the curvature perturbations are pro-

duced from an initial isocurvature fluctuation associated with the fluctuations of

a second scalar field, the curvaton. It is assumed that the perturbations given

by the inflaton field are negligible. Therefore this scenario liberates the inflaton

field from the responsibility of generating the density perturbations and there-

fore it avoids the conditions on the slow-roll parameters to affect the level of

1This result is valid for the “local” shape of the primordial bispectrum. See Section 2.6
2fNL ∼ O(ε, η) refers to the level of non-Gaussianity which is generated during the infla-

tionary stage and it does not take into account the enhancement of non-Gaussianity due to the
gravitational dynamics after inflation. If one takes into account the late-time evolution of the
cosmological perturbations, the level of non-Gaussianity is ∼ O(1). See Section 2.8.
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non-Gaussianity. Other scenarios where it is possible to produce a large non-

Gaussianity are hybrid and multi-brid models [3, 9, 10, 42, 59, 99] and certain

modulated and tachyonic (p)re-heating scenarios [36, 40, 60, 129].

Even though inflation successfully solves the main puzzles of the early Uni-

verse, we lack a derivation of an inflationary theory from first principles. As

proposed by many authors, a good scenario to implement inflation is supergravity

[66, 128]. In the first part of this thesis we study how to realize the curvaton sce-

nario in supergravity in the context of chaotic inflation. This procedure gives rise

to what we called a supercurvaton scenario. We study the level of non-Gaussianity

generated in this model and show that the non-linearity parameter fNL may take

values in the observationally interesting range. Moreover we demonstrate that

if inflation is long enough, the average value of the curvaton contribution to the

amplitude of metric perturbations and the averaged value of the parameter fNL

do not depend on the initial conditions of the curvaton field. Thus, while the

curvaton models are more complicated than the single-field inflationary models,

they make the resulting scenario much more flexible, which may be important for

a proper interpretation of the coming observational data.

Another main riddle of the Universe is the presence of magnetic fields in all

celestial objects: planets, stars, galaxies and clusters of galaxies carry fields which

are large and extensive [17, 43, 71]. They have an intensity of micro Gauss and

are correlated on scales of the order of the galaxy or cluster size. Remarkably,

magnetic fields seem to pervade the entire Universe and be present also in the

intergalactic medium. Recent data from Fermi and HESS have been used to put a

lower bound on the strength of the intergalactic field: B & 10−15 G [31, 100, 116].

The origin of these fields is unknown. An elaborate magnetohydrodynamical

process, called dynamo mechanism, has been proposed to amplify very weak seed

fields into the fields observed today in the galaxies. It is based on the conversion

of the kinetic energy of an electrically conducting fluid into magnetic field energy.

Today, the efficiency of such a mechanism has been brought into question both by

improved theoretical work and new observations of magnetic fields in high redshift

galaxies. For instance, the fact that high z galaxies have fields comparable to the

one of the Milky Way is incompatible with the necessary number of turns in order
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1. INTRODUCTION

for the dynamo mechanism to operate. Second, most galaxies and clusters have

fields of a few micro Gauss and this is not compatible with the different number

of rotations and the parameters involved in every galaxy. In addition, magnetic

fields seem to increase with redshift. Furthermore, even if the dynamo mechanism

was effective, a seed field is required to initiate the process and the origin of this

seed field is still missing. Magnetic fields in clusters of galaxies have strength and

coherence size comparable to, and in some cases larger than, galactic fields. In

the standard cold dark matter scenario for structure formation, clusters form for

aggregation of galaxies. It is now believed that magnetic fields in the intercluster

medium cannot form from ejection of the galactic field, thus it seems that we can

exclude a common astrophysical origin for both fields [51].

All these facts seem to point in the direction of a cosmological origin of the

observed magnetic fields. Cosmological magnetic fields may arise during phase

transitions, for example the electroweak [2, 16, 28, 29, 39, 49, 58, 120] or the

Quantum-Chromo-Dynamics (QCD) [5, 21, 106] phase transition. Another pro-

posal for the generation of primordial magnetic fields comes from cosmic strings

[6, 121, 127]. These mechanisms are proposed either to directly give rise to the

magnetic field observed today or to provide the seed field which will be ampli-

fied by the dynamo. However, also the seed fields must satisfy two requirements

related to their coherence length and amplitude: the coherence size should not

drop below 10 Kpc, otherwise it will destabilize the dynamo, and the minimum

required strength should vary between 10−12 and 10−22 G. The main problem

related to these constraints is that magnetic fields generated between inflation

and recombination have too small coherence length because of causality, which

constrains the field inside the size of the horizon at the time of magnetogenesis.

A prime candidate for the generation of magnetic fields which can solve the

scale problem is inflation, since it creates superhorizon-sized correlations [119].

The idea is that inflation can amplify quantum vacuum fluctuations and thus

generate long-wavelength magnetic fields. It is known that in the Friedmann-

Lemâıtre-Robertson-Walker (FLRW) Universe the conformal vacuum is preserved

if the theory is conformally invariant [102]. Classical electrodynamics is confor-

mally invariant, so that photons should not be produced in cosmological back-

ground. Thus the conformal invariance of the electromagnetism must be broken

4



to produce long-wave magnetic fields via excitation of the vacuum fluctuations.

Many mechanisms provide the breaking of the conformal invariance of the elec-

tromagnetic field [7, 32, 33, 48, 73, 89, 107, 118, 119]. However, if the fields

produced during inflation are too strong, they might have a back reaction on the

background and thus spoil inflation. In the second part of this thesis the issue of

the back reaction of the magnetic field on the background is studied extensively.

We show that this back reaction is very important and leads to rather strong

bounds on the maximal value of the strength of primordial magnetic fields which

seems not enough to explain the observed fields as a result of the amplification

of these primordial seeds by dynamo mechanism.

The thesis is organized as follows. In Chapter 2 we review the essential facts

about inflation and the linear theory of perturbations. First we discuss the basics

about the FLRW cosmology and inflation, focussing on the simplest inflation-

ary model with one scalar field. After reviewing the quantization of a massive

free scalar field in unperturbed de Sitter spacetime, we present the basic facts

from the theory of cosmological perturbations. Then we very briefly describe the

main effect for the generation of CMB anisotropies and explain the idea behind

the emergence of non-Gaussianity in the CMB. Finally we show that single-field

models of inflation generate negligible non-Gaussianity and we describe how in

these models non-Gaussianity is enhanced by the gravitational dynamics after

inflation.

In Chapter 3 we introduce inflationary models with two scalar fields. In the

first part we give a basic description of the curvaton scenario, explaining the gen-

eration of curvature perturbations and calculating the level of non-Gaussianity.

In the second part we present the supercurvaton scenario, following our paper

[26]. First we describe how to realize chaotic inflation in supergravity. Then we

investigate how to implement the curvaton scenario in supergravity in the con-

text of chaotic inflation. Lastly we study the consequences of the supercurvaton

scenario, in particular we compute the non-linearity parameter fNL which arises

in this class of theories and we find that it can take values in the observationally

interesting range from O(10) to O(100).

In Chapter 4 we present a brief review of large-scale magnetic fields. We de-
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1. INTRODUCTION

scribe the observational methods used to measure them. Then we summarize the

observations of their typical strength and coherence size in galaxies, clusters of

galaxies and the bounds on the intergalactic magnetic fields. We briefly describe

the effects of a magnetic field on the CMB and the constraints on the field am-

plitude set by Big Bang nucleosynthesis. Finally we discuss several proposals for

the generation of the observed magnetic fields in the early Universe.

Chapter 5 deals with the production of magnetic fields during inflation. In

the first part we explain why inflation is a good candidate for magnetogenesis

and how the generation of large-scale magnetic proceeds. We show that the

requirement is the breaking of the conformal invariance of electromagnetism and

we review several models proposed in the literature that realize this condition.

In the second part, which is based on our paper [27], we consider a very general

class of models where the conformal invariance is broken and study the problem

of the back reaction of the generated magnetic field on the background. We

finally provide the limits on the field strength arising from the requirement that

the generated magnetic field does not spoil the dynamics of the background.

6



Chapter 2

Inflation and perturbation theory

One of the most relevant ideas in cosmology is cosmological inflation, a period of

quasi-exponential expansion in the very early Universe. A model of inflationary

type was first proposed by Starobinsky [114] in 1979. This was the first model

predicting gravitational waves in the Universe in a quasi-de Sitter stage. In

1981 Mukhanov and Chibisov [97] proposed the first mechanism of production of

adiabatic perturbations of the metric, which are responsible for the origin of all

cosmological structures that are now visible, like galaxies, clusters of galaxies and

the whole web of large-scale structure. According to this mechanism, the large-

scale structure originated from tiny density fluctuations, which were stretched to

cosmological scales during inflation and then grew into the structures we see today

via gravitational instability. In 1981 - 1982 Guth [52], Linde [75], Albrecht and

Steinhardt [4] implemented the inflationary scenario in particle physics in order

to solve the flatness, the horizon and the monopole problems of the standard

Big-Bang cosmology.

In this chapter we review the basic arguments behind the theory of inflation.

Sections 2.1 and 2.2 are devoted to the basic equations describing the dynamics of

the Friedmann Universe and inflation. In Section 2.3 we describe the idea of the

emergence of quantum fluctuations during inflation and in Section 2.4 we present

some details about linear perturbation theory. In Section 2.5 we explain how

curvature perturbations give rise to the anisotropies in the CMB and in Section

2.6 we sketch the idea behind the non-Gaussianity in the CMB. In Section 2.7

we briefly compute the level of non-Gaussianity in single-field models of inflation

7



2. INFLATION AND PERTURBATION THEORY

and in Section 2.8 we describe how non-Gaussianity is enhanced due to non-linear

effects after inflation.

2.1 Cosmic evolution

The standard cosmology is based on the assumption that the Universe is homo-

geneous and isotropic on large scales and it is described by the FLRW metric

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
≡ gµνdx

µdxν , (2.1)

where a(t) is the scale factor, which characterizes the relative size of spacelike

hypersurfaces Σ at different times, k is the curvature parameter, gµν is the metric

of spacetime and xµ = (t, r, θ, φ) are the coordinates of events. k = 1 for positively

curved Σ, k = 0 for flat Σ and k = −1 for negatively curved Σ. The evolution of

the Universe depends on the single function a(t), whose form is dictated by the

matter content of the Universe through the Einstein field equations

Gµν ≡ Rµν −
1

2
Rgµν = 8πGTµν . (2.2)

Here Rµν is the Ricci tensor and R is the Ricci scalar

Rµν ≡ Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓ
β
µα, R ≡ gµνRµν , (2.3)

where

Γµαβ ≡
gµν

2
[gαν,β + gβν,α − gαβ,ν ] (2.4)

are the Christoffel symbols and commas denote partial derivatives (· · · ),µ ≡ ∂(··· )
∂xµ

.

Tµν is the energy-momentum tensor and G is the Newton’s constant.

On large scales matter can be approximated by a perfect fluid with energy-

momentum tensor

T µν = gµαTαν = (ρ+ p)uµuν − pδµν , (2.5)

where p and ρ are the proper energy density and pressure in the fluid rest frame

8



2.2. Inflation

and uµ is the four-velocity of the fluid. The equation of state p = p(ρ) depends on

the properties of matter and must be specified. In many cosmological interesting

cases p = ωρ, where ω is constant.

The evolution of the scale factor a(t) follows from the Einstein field equations.

The (0, 0) component of the Einstein equation gives

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− k

a2
. (2.6)

Differentiating this equation with respect to time and using the energy conserva-

tion equation ρ̇+ 3H(ρ+ p) = 0 we find

Ḣ +H2 =
ä

a
= −4πG

3
(ρ+ 3p). (2.7)

(2.6) and (2.7) are the Friedmann equations. The Friedmann equations together

with the equation of state p = p(ρ) form a complete system of equations that

determines the unknown functions a(t) and ρ(t). The solutions, and therefore

the future of the Universe, depend on the geometry and also on the equation of

state.

2.2 Inflation

In order to have an accelerated stage of expansion, the scale factor must satisfy

the condition ä > 0. In this section we will follow [93]. If the strong energy

dominance condition, ρ + 3p > 0, is satisfied, then from Equation (2.7) we see

that ä < 0 and gravity decelerates the expansion. Therefore for an accelerated

expansion the strong energy dominance condition must be violated. This is the

case, for example, of a positive cosmological constant, for which pΛ = −ρΛ and

ρΛ + 3pΛ = −2ρΛ. In this case the solution of the Einstein’s equations is a de

Sitter Universe and for t � H−1
Λ , the expansion is exponential, a ∝ exp(HΛt).

However a cosmological constant does not describe a successful inflation because

it does not possess a smooth graceful exit. In fact, in order to have a graceful

exit from inflation, we must allow the Hubble parameter to vary in time.

9



2. INFLATION AND PERTURBATION THEORY

The simplest model for a successful inflation is implemented by a scalar field

φ, called inflaton, and described by the action

S =

∫
d4x
√
−g
[

1

2
R +

1

2
gµν∂µφ∂νφ− V (φ)

]
, (2.8)

where 8πG = 1. This is the sum of the Einstein-Hilbert action and the action of

the scalar field with canonical kinetic term. The equation of motion of the scalar

field is

φ̈+ 3Hφ̇+ V,φ = 0. (2.9)

This equation is equivalent to the equation for a harmonic oscillator with a friction

term proportional to the Hubble parameter H. We know that a large friction

term decreases the initial velocities and causes a slow-roll regime in which the

acceleration can be neglected with respect to the friction term. For a general

potential H ∝
√
V , therefore for large values of V , we can neglect φ̈ compared to

3Hφ̇. Assuming φ̇2 � V , the equation of motion (2.9) becomes

3Hφ̇+ V,φ = 0, (2.10)

and the Friedmann Equation (2.6) for the scalar field becomes

H '
√
V (φ)

3
, (2.11)

where 8πG = 1 and k = 0. The assumptions we made, φ̇2 � |V | and |φ̈| �
3Hφ̇ ∼ |V,φ|, can be rephrased into two conditions on the scalar potential:(

V,φ
V

)2

� 1,

∣∣∣∣V,φφV
∣∣∣∣� 1. (2.12)

These are the so-called slow-roll conditions. For a power-law potential V (φ) =

λφn/n, both conditions are satisfied for |φ| � 1. In this case the resulting scale

factor is

a(φ(t)) ' ai exp

(
1

2n
(φ2

i − φ2(t))

)
. (2.13)

The class of inflationary models with the simple potential V (φ) = λφn/n, is

10



2.2. Inflation

Figure 2.1: Classical evolution of a scalar field φ with potential V (φ).

called chaotic inflation [76]. After the end of inflation the scalar field begins to

oscillate and a deceleration phase starts. A simple model is sketched in figure

2.1, where in the phase (a) the inflaton field φ rolls down on V (φ) slowly driving

the exponential expansion. In the phase (b) the scalar field oscillates rapidly,

ending inflation. During the oscillating phase, the inflaton field decays producing

particles and radiation in a process called reheating.

Through the years many inflationary models have been proposed. Single-

field models differ by the type of potential or by the underlying particle physics

theory. There are mainly three broad classes of scenarios: “small field”, “large

field” and “hybrid” models. An alternative to the single-field inflationary models

is represented by models of inflation with several scalar fields. Among the multi-

field models the simplest proposal is the curvaton scenario, a model of inflation

with two scalar fields, which we will discuss in the next chapter.

11



2. INFLATION AND PERTURBATION THEORY

2.3 Quantum fluctuations in de Sitter spacetime

The inflationary scenario predicts the emergence of quantum vacuum fluctua-

tions in the early Universe. Associated to these quantum fluctuations there are

primordial energy density perturbations which are the origin of the large-scale

structure. Our current understanding is that during the matter era primordial

density inhomogeneities were amplified by gravitational instability and grew into

the structures we observe today.

The basic idea behind quantum fluctuations generation is described by the sec-

ond quantization of a massive free scalar field in unperturbed de Sitter spacetime.

We describe the quantization procedure following [18, 69, 94].

In a de Sitter Universe the scale factor evolves as a(t) = a0e
Ht, where H is the

time-independent Hubble parameter. Defining the conformal time

η = −
∫ ∞
t

dt′

a(t′)
= − exp (−Ht), (2.14)

we can rewrite the metric (2.1) (k = 0) as

ds2 =
1

H2η2
[dη2 − dr2 − r2(dθ2 + sin2 θdφ2)], (2.15)

where −∞ < η < 0 and 0 6 r <∞.

Let us consider the case of a massive scalar field φ(x, η). We can write the

field using the creation, â†k, and annihilation, âk, operators, with commutation

relation [â†k, âk] = δ(3)(k − k′):

φ(x, η) =

∫
d3k

(2π)3/2

[
âkϕk(η)eik·x + â†kϕ

∗
k(η)e−ik·x

]
. (2.16)

The canonical commutation relation between φ and the conjugate momentum

πφ = a2(η)φ′:

[φ(x1, η), πφ(x2, η)] = a2(η) [φ(x1, η), φ′(x2, η)] = iδ(3)(x1 − x2), (2.17)

gives a normalization condition on ϕk(η), a2(ϕkϕ
′∗
k − ϕ∗kϕ

′
k) = i. The prime

′ denotes the derivative with respect to the conformal time, ′ = ∂/∂η. The

12



2.3. Quantum fluctuations in de Sitter spacetime

normalization condition motivates the introduction of an auxiliary field χk = aϕk,

which satisfies a new normalization condition χkχ
′∗
k − χ∗kχ′k = i. The new mode

functions satisfy the Klein-Gordon equation

χ′′k(η) + [k2 +m2
χ(η)]χk(η) = 0, (2.18)

where m2
χ(η) is a time-dependent effective mass

m2
χ(η) ≡ (m2 − 2H2)a2(η) = m2a2(η)− 2

η2
. (2.19)

The solution for the Equation (2.18) is

χk(η) =
√
−η
[
C1H

(1)
ν (−kη) + C2H

(2)
ν (−kη)

]
, (2.20)

where C1 and C2 are integration constants and ν2 = 9/4 −m2/H2. H
(1)
ν (x) is a

Hankel function of the first kind and H
(2)
ν (x) =

[
H

(1)
ν (x)

]∗
. The particular linear

combination used to define the modes determines the choice of the vacuum. In

order to fix the integration constants C1 and C2, we define a vacuum state in the

remote past η → −∞. In the remote past, when k|η| � 1, the modes do not feel

the curvature and we can fix the initial conditions by requiring

χk(η → −∞) −→
√

2

πk

(
C1e

−ikη + C2e
ikη
)
. (2.21)

The second term has negative frequency, so that C2 = 0. The first term with

C1 =
√
π/2 gives χk(η) = (2k)−1/2e−ikη. Therefore we find that the functions

χk(η) =

√
−πη
2

H(1)
ν (−kη) (2.22)

have the required asymptotic behaviour. Thus the solution for ϕk(η) is

ϕk(η) =

√
−πη

2a(η)
H(1)
ν (−kη), (2.23)

13



2. INFLATION AND PERTURBATION THEORY

and the one for φ(x, η) becomes

φ(x, η) =

√
−πη

2a(η)

∫
d3k

(2π)3/2

[
âkH

(1)
ν (−kη)eik·x + â†kH

(2)
ν (−kη)e−ik·x

]
. (2.24)

The annihilation operator âk annihilates the vacuum, âk|0in〉 = 0. We calcu-

late the amplitude of ground-state fluctuations in this vacuum:

〈0in|φ†(x, η)φ(x, η)|0in〉 =

∫ ∞
0

k2dk

2π2
|ϕk(η)|2 (2.25)

=
−η

8πa2(η)

∫ ∞
0

k2dk
∣∣H(1)

ν (−kη)
∣∣2 .

Therefore the spectrum of quantum fluctuations at a given comoving wavelength

2πk−1 is

δ2
φ(k) ≡ k3

2π2
|ϕk(η)|2 =

H2

8π
(−kη)3

∣∣H(1)
ν (−kη)

∣∣2 . (2.26)

These results are valid on all scales. However during inflation −kη = k/(aH)

becomes very small and the mode leaves the Hubble-horizon H−1. Therefore

we focus on the behaviour of the fluctuation spectrum of φ on super-horizon

scales. We obtain the spectrum of the φ fluctuations on super-horizon scales

from Equation (2.26) using the asymptotic form of the Hankel function

H(1)
ν (x� 1) ≈ −iΓ(ν)

π

(x
2

)−ν
. (2.27)

The spectrum is

δ2
φ(k) ≈

(
H

2π

)2

22ν−3

[
Γ(ν)

Γ(3/2)

]2(
k

aH

)3−2ν

, (2.28)

where ν2 = 9/4 − m2/H2. In the special case ν = 3/2, the spectrum is scale

invariant, independent of k, δ2
φ(k) = H2/(2π)2. If we assume that m2/H2 � 1,

14



2.3. Quantum fluctuations in de Sitter spacetime

then ν = 3/2−m2/(3H2) +O(m4/H4) and we obtain

δ2
φ(k) '

(
H

2π

)2(
k

aH

)2m2/(3H2)

, (2.29)

and the spectral index
d ln δ2

φ

d ln k
' 2m2

3H2
. (2.30)

In the case of a finite mass, the spectrum would be slightly “blue”. However, since

m2 � H2, the spectrum is almost scale-invariant. The assumption m2 � H2 de-

termines a long-lasting inflation and makes the scalar field φ not to roll down the

potential too quickly.

In realistic models of inflation the Hubble parameter H changes slightly in

time and decreases towards the end of inflation. Let us now investigate how this

influences the amplitude of the large-scale fluctuations. The massive scalar field

acquires a negative effective mass-squared ∆m2 < 0 as it is shown in [98]:

m2
χ(η) = −H

φ′
d2(φ′/H)

dη2
'
(
d2V

dφ2
+ 9

dH

dt

)
a2(η)− 2

η2
= m2

effa
2(η)− 2

η2
. (2.31)

Using the first-order slow-roll approximation, in the case of a quadratic potential

V (φ) = m2φ2/2, we have dH/dt ' −(dV/dφ)2/(6V ) = −m2/3, thus m2
eff =

m2 + ∆m2 ' −2m2 < 0 and the spectrum is “red” with spectral index

d ln δ2
φ

d ln k
=

2m2
eff

3H2
' −4m2

3H2
< 0. (2.32)

Any power-law potential V (φ) = Aφn with A positive gives a negative m2
eff

through m2
eff = −(1 + n/2)nAφn−2. For a generic scalar field with arbitrary

potential we have

m2
eff =

d2V

dφ2
+ 9

dH

dt
= 6

dH

dt
− 3H

d2φ/dt

dφ/dt
, (2.33)
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2. INFLATION AND PERTURBATION THEORY

and the spectral index is

d ln δ2
φ

d ln k
= 4

dH/dt

H2
− 2

d2φ/dt2

H(dφ/dt)
. (2.34)

2.4 Linear perturbation theory

In the previous section we have seen the generation of scalar field fluctuations in

an unperturbed de Sitter spacetime (no perturbations in the metric). However

scalar field fluctuations perturb the energy-momentum tensor producing metric

perturbations. In this section we study linear perturbation theory in inflation,

which includes perturbations of the metric and of a scalar field. We follow the

treatment of [93].

2.4.1 Classification of the perturbations

The metric of a flat FLRW Universe with small perturbations can be written as

ds2 = (ḡαβ + δgαβ)dxαdxβ, (2.35)

where |δgαβ| � ḡαβ. The spatially flat, homogeneous and isotropic background

spacetime possesses a number of symmetries and these symmetries allow the

metric perturbations δgαβ to be categorized into three different types: scalar,

vector and tensor perturbations. At a given moment of time the background is

invariant with respect to the group of spatial rotations and translations. The δg00

component behaves as a scalar under these rotations and hence

δg00 = 2a2ΦP , (2.36)

where ΦP is a 3-scalar. The spacetime components δg0i can be decomposed

into the sum of the spatial gradient of some scalar B and a vector Si with zero

divergence

δg0i = a2(B,i + Si), (2.37)
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2.4. Linear perturbation theory

where B,i = ∂B/∂xi. The components δgij, which behave as a tensor under

3-rotations, can be written as the sum of irreducible pieces:

δgij = a2(2ΨP δij + 2E,ij + Fi,j + Fj,i + hij), (2.38)

where ΨP and E are scalar functions, F i
,i = 0 and hij is traceless and transverse,

namely hii = 0, hij,i = 0.

Scalar perturbations are characterized by the four scalar functions ΦP , ΨP , B

and E. They are caused by energy density inhomogeneities. They exhibit grav-

itational instability and may lead to the formation of structure in the Universe.

Vector perturbations are described by the two vectors Si and Fi and are related

to the rotational motion of the fluid. As in Newtonian theory, they decay very

quickly and are not very interesting from the point of view of cosmology. Tensor

perturbations hij describe gravitational waves, which are the degrees of freedom

of the gravitational field itself. In the linear approximation the gravitational

waves do not induce any perturbations in the perfect fluid.

Using conformal time, the metric for scalar perturbations takes the form

ds2 = a2
[
(1 + 2ΦP )dη2 + 2B,idx

idη − ((1− 2ΨP )δij − 2E,ij) dx
idxj

]
. (2.39)

For vector perturbations

ds2 = a2
[
dη2 + 2Sidx

idη − (δij − Fi,j − Fj,i) dxidxj
]
, (2.40)

and for tensor perturbations

ds2 = a2
[
dη2 − (δij − hij) dxidxj

]
. (2.41)

Scalar perturbations change under a change of coordinates. Under the gauge

transformation

xα → x̃α = xα + ξα, (2.42)

and decomposing the spatial component as ξi = ξi⊥ + ζ ,i, the scalar metric per-
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2. INFLATION AND PERTURBATION THEORY

turbations transform as

ΦP → Φ̃P = ΦP −
1

a
(aξ0)′, (2.43)

ΨP → Ψ̃P = ΨP +
a′

a
ξ0,

B → B̃ = B + ζ ′ − ξ0,

E → Ẽ = E + ξ.

By choosing ξ0 and ζ appropriately we can make any two of the four functions

ΦP , ΨP , B and E vanish. The simplest gauge-invariant linear combinations of

these functions are

Φ ≡ ΦP −
1

a
[a(B − E ′)]′ , Ψ ≡ ΨP +

a′

a
(B − E ′). (2.44)

2.4.2 Evolution of the perturbations

In order to obtain the equations for the perturbations we need to linearize the

Einstein equations

Gµν ≡ Rµν −
1

2
Rδµν = 8πGTµν , (2.45)

for small inhomogeneities about a FLRW Universe. The Einstein tensor for the

background metric is

G
0

0 =
3H
a2
, G

0

i = 0, G
i

j =
1

a2
(2H′ +H2)δij, (2.46)

where H ≡ a′/a. In order to satisfy the background Einstein equations, the

energy-momentum tensor for matter, T
α

β , must have the following symmetry

properties:

T
0

i = 0, T
i

j ∝ δij. (2.47)

In the presence of small perturbations the Einstein tensor can be written as

Gα
β = G

α

β + δGα
β + · · · , where δGα

β are terms which are linear in the metric

perturbations. The energy-momentum tensor can be split in the same way and
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2.4. Linear perturbation theory

the linearized Einstein equations are

δG
α

β = 8πGδT
α

β . (2.48)

2.4.3 Perturbations of a slowly-rolling scalar field

Let us consider the Universe filled by a scalar field φ with potential V (φ). A small

perturbation in the scalar field φ = φ0(η)+ δφ(x, η) induces metric perturbations

and the metric takes the form (2.39). The homogeneous component satisfies the

Klein-Gordon equation

φ′′0 + 2Hφ′0 + a2V,φ = 0. (2.49)

To linear order in the metric and the field perturbations, it becomes

δφ′′+2Hδφ′−∆(δφ−δφ′0(B−E ′))+a2V,φφδφ−φ′0(3Ψ+Φ)′+2a2V,φΦ = 0. (2.50)

This equation is valid in any coordinate system. We can rewrite it in terms of the

gauge-invariant variables Φ and Ψ from Equation (2.44) and the gauge-invariant

scalar field perturbation

δφ ≡ δφ− φ′0(B − E ′). (2.51)

The resulting equation is

δφ
′′

+ 2Hδφ′ −∆δφ+ a2V,φφδφ− φ0(3Ψ + Φ)′ + 2a2V,φΦ = 0. (2.52)

In order to find the three unknown variables δφ, Φ and Ψ, this equation must be

supplemented by the Einstein equations. The energy-momentum tensor for the

scalar field is

Tαβ = gαγφ,γφ,β − (gγδφ,γφ,δ − V (φ))δαβ , (2.53)

and hence its (0, i) component is

δT
0

i =
1

a2
φ′0δφ,i −

1

a2
φ′

2
0(B − E ′),i =

1

a2
(φ′0δφ),i. (2.54)
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2. INFLATION AND PERTURBATION THEORY

The (0, i) component of the Einstein equations δG
α

β = 8πGδT
α

β is

(Ψ′ +HΨ),i = 4πGa2δT
0

i . (2.55)

Therefore for a scalar field, this equation becomes

Ψ′ +HΦ = 4πGφ′0δφ. (2.56)

The non-diagonal spatial component of the Einstein equations[
Ψ′′ +H(2Ψ + Φ)′ + (2H′ +H2)Φ +

1

2
∆(Φ−Ψ)

]
δij (2.57)

− 1

2
(Φ−Ψ),ij = −4πGa2δT

i

j,

where δT
i

j = −δpδij, reduces to

(Φ−Ψ),ij = 0 (i 6= j). (2.58)

The only solution consistent with Ψ and Φ being perturbations is Ψ = Φ.

Now we determine the behaviour of the long-wavelength perturbations using

the slow-roll approximation. To do so, first we rewrite Equations (2.52) and (2.56)

in terms of physical time:

δφ̈+ 3Hδφ̇−∆δφ+ V,φφδφ− 4φ̇0Φ̇ + 2V,φΦ = 0, (2.59)

Φ̇ +HΦ = 4πφ̇0δφ, (2.60)

where we have set δφ ≡ δφ and we have used Φ = Ψ, and where G = 1. The

spatial derivative term ∆δφ can be neglected for long-wavelength perturbations.

Since we are considering the slow-roll approximation, we next omit terms pro-

portional to δφ̈ and Φ̇ and after finding the solution of the simplified equations

one can check that the omitted terms are actually negligible. The new equations
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2.4. Linear perturbation theory

become

3Hδφ̇+ V,φφδφ+ 2V,φΦ ' 0, (2.61)

HΦ ' 4πφ̇0δφ. (2.62)

Introducing the new variable y ≡ δφ/V,φ, we obtain

3Hẏ + 2Φ ' 0, (2.63)

HΦ ' 4πV̇ y. (2.64)

During inflation 3H2 ' 8πV , therefore

d(yV )

dt
= 0, (2.65)

which gives y = A/V , where A is a constant of integration. The final result is

δφk = Ak
V,φ
V
, (2.66)

Φk = 4πAk
φ̇0

H

V,φ
V

= −1

2
Ak

(
V,φ
V

)2

. (2.67)

The integration constant is fixed by requiring that at the moment of horizon

crossing, δφk has the minimal vacuum amplitude and one finds that

Ak ∼
k−1/2

ak

(
V

V,φ

)
k∼Ha

. (2.68)

At the end of inflation (t ∼ tf ), the slow-roll conditions are not valid anymore and

V,φ/V becomes of order unity. Therefore the amplitude of the metric fluctuations

becomes

δΦ(k, tf ) ∼ Akk
3/2 ∼

(
H
V

V,φ

)
k∼aH

∼
(
V 3/2

V,φ

)
k∼aH

. (2.69)

Using H '
√
V/3 and V,φ = −3Hφ̇ one can show that this result is consistent
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with the spectrum ∆2
ζ in [69], Equation (2.43)

δ2
Φ ∼ ∆2

ζ =

[
H2

2πφ′

]
. (2.70)

The relation between the variables Φ and ζ will be explained in the following.

In the case of a power-law potential V = λφn/n we have

δΦ(k, tf ) ∼ λ1/2(φ2
k∼aH)(n+2)/4 ∼ λ1/2(lnλphHk)

(n+2)/4, (2.71)

where λph ∼ a(tf )k
−1 is the physical wavelength. In the specific case V = m2φ2/2

the amplitude of the metric fluctuations is

δΦ ∼ m ln (λphHk). (2.72)

Perturbations present at the end of inflation do not change during reheating.

Therefore the shape of the spectrum is predicted: it has logarithmic deviations

from a flat spectrum with the amplitude growing slightly towards larger scales.

The prediction of a slightly red-tilted spectrum is in agreement with the cur-

rent observational data. In fact CMB experiments [68] show that a red-tilted

primordial power spectrum is preferred. The 7-year WMAP data combined with

the latest distance measurements from the Baryon Acoustic Oscillations (BAO)

in the distribution of galaxies [110] and the Hubble constant (H0) measurement

[111] exclude a scale-invariant spectrum at 99.5% confidence level, if they ignore

tensor modes (gravitational waves). The spectral index ns defined as

ns − 1 ≡
d ln δ2

φ

d ln k
(2.73)

is found to be ns = 0.968± 0.012 at 68% confidence level.
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2.4.4 Gauge-invariant variables

We have seen that the value of δφ, (2.51), and Ψ, (2.44) are independent of a

gauge choice. Using a proper combination of these gauge-invariant variables, one

can build a new gauge-invariant variable

v ≡ a

(
δφ+

φ′0
H

Ψ

)
. (2.74)

Let us note that, as we have seen before, in the case of a Universe filled with a

single scalar field the non-diagonal spatial component of the Einstein Equations

(2.57) gives Ψ = Φ. The new gauge-invariant variable v plays an important role.

In fact Mukhanov, Feldman and Brandenberger [98] showed that v obeys the

same Klein-Gordon equation as the variable χk that we defined in Section 2.3

about quantization of quantum vacuum fluctuations during inflation, see Equa-

tion (2.18). Therefore the argument on the quantization of quantum fluctuations

during inflation applies to v as well.

Another gauge-invariant variable was proposed by Bardeen, Steinhardt and

Turner [8]

ζ ≡ −Hv
φ′0

= −Ψ− H

φ̇0

δφ. (2.75)

The variable ζ is important in the perturbation analysis because it is gauge-

invariant and also because it is conserved on super-horizon scales throughout the

cosmic evolution. Here again Ψ = Φ in the case of a single scalar field.

The variable Φ gives the closest analogy to the Newtonian potential. The

general relativistic cosmological perturbation theory gives the relation between ζ

and Φ for adiabatic perturbations [93],

ζ =
2

3

H−1Φ′ + Φ

1 + ω
+ Φ, (2.76)

where ω is the equation of state parameter. On super-horizon scales during the

radiation era (ω = 1/3) we have Φ = 2
3
ζ and during the matter era (ω = 0) we

have Φ = 3
5
ζ.
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2.5 Generation of CMB anisotropy

Temperature fluctuations in the CMB arise due to five distinct physical effects:

our peculiar velocity with respect to the cosmic rest frame, fluctuations in the

gravitational potential on the surface of last scattering, fluctuations intrinsic to

the radiation field itself on the surface of last scattering, the peculiar velocity

of the surface of last scattering and the damping of anisotropies if the Universe

should be re-ionized after decoupling. The second effect, known as Sachs-Wolfe

effect, is the dominant contribution to the anisotropies on large angular scales,

θ � 1◦. Let us therefore consider this effect.

The Sachs-Wolfe effect predicts that the CMB that resides in a potential well

initially has an adiabatic temperature fluctuation of ∆T/T = [2/3(1 + ω)]Φ,

and at the decoupling epoch, when it is climbing up the potential, it receives an

additional fluctuation −Φ. The total CMB fluctuation that we observe today is

therefore
∆T

T
=

2

3(1 + ω)
Φ− Φ = −1 + 3ω

3 + 3ω
Φ = −1 + 3ω

5 + 3ω
ζ. (2.77)

In the case of isocurvature perturbations the initial temperature fluctuations are

given by −Φ for both radiation and matter era, therefore the total amount of

CMB perturbations is given by ∆T/T = −Φ− Φ = −2Φ.

At the decoupling epoch, the Universe has already entered the matter era

with ω = 0 and ∆T/T = −1
3
Φ = −1

5
ζ and, using (2.70), the spectrum of the

Sachs-Wolfe effect is

δ2
SW (k) =

1

25
δ2
ζ (k) =

[
H2

10πφ̇

]2

, (2.78)

where H is the Hubble parameter during inflation [19]. We can obtain the angular

power spectrum Cl by projecting the 3-dimensional CMB fluctuation spectrum

δ2
SW (k) on the sky,

CSW
l = 4π

∫ ∞
0

dk

k
δ2
SW (k)j2

l [k(η0 − ηdec)] (2.79)

= CSW
2

Γ[(9− n)/2]Γ[l + (n− 1)/2]

Γ[(n+ 3)/2]Γ[l + (5− n)/2]
,
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2.6. Non-Gaussian fluctuations

where η0 and ηdec are the present day and the decoupling time, and n ≡ 1 +

[d ln δ2(k)/d ln k] ≡ ns is the spectral index defined in (2.73).

2.6 Non-Gaussian fluctuations

While quantum fluctuations are Gaussian, non-linearity in inflation produces

weakly non-Gaussian fluctuations, which result in non-Gaussianity in the CMB.

In the following we present the idea behind it reviewing [69].

The curvature perturbation produces small anisotropies ∆T/T in the CMB.

In linear perturbation theory the relation between Φ and ∆T/T is linear,

∆T

T
∼ gTΦ, (2.80)

where gT is the radiation transfer function. We have seen in the previous section

that for temperature fluctuations on super-horizon scales at the decoupling epoch,

gT = −1/3 for adiabatic fluctuations and gT = −2 for isocurvature fluctuations.

According to the general relativistic perturbation theory there is a non-linear

relation between ∆T/T and Φ:

∆T

T
∼ (gTΦ + fΦΦ2), (2.81)

where fΦ ∼ O(1) is the higher second order correction arising from the second-

order perturbation theory [105]. So even if Φ is Gaussian, ∆T/T is weakly non-

Gaussian.

We should also note that non-linearity in inflation makes Φ non-Gaussian. By

expanding the fluctuation dynamics in inflation up to second order, we find a

non-linear relation between Φ and the inflaton fluctuations δφ,

Φ ∼M−1
P gΦ(δφ+M−1

P fδφδφ
2). (2.82)

Salopek and Bond [112] showed that this relation is a solution for curvature

perturbations on super-horizon scales. The solution gives gΦ ∼ O(10) and fδφ ∼
O(10−1) for a class of slowly-rolling single-field inflationary models.
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Quantum fluctuations produce Gaussian δφ. However, non-trivial interaction

terms in the equation of motion of the inflaton field, or a non-linear coupling be-

tween long-wavelength classical fluctuations and short-wavelength quantum fluc-

tuations (in the context of chaotic inflation), can make δφ weakly non-Gaussian:

δφ ∼ gδφ(ε+M−1
P fεε

2), (2.83)

where ε are initially produced quantum fluctuations, gδφ ∼ 1 and fε ∼ O(10−1).

The above contributions result in a non-linear relation between ∆T/T and Φ,

∆T

T
∼ gT

[
ΦL + (fΦ + g−1

Φ fδφ + g−1
Φ g−1

δφ fε)Φ
2
L

]
, (2.84)

where ΦL ≡ gΦgδφM
−1
P ε ∼ 10M−1

P ε is an auxiliary Gaussian curvature perturba-

tion. We can define a non-linear coupling parameter fNL = fΦ+g−1
Φ fδφ+g−1

Φ g−1
δφ fε,

where the first term is O(1) and it is dominant compared to the other two terms,

which are O(10−2), non-linearity in slow-roll. Using fNL we can rewrite (2.84)

and (2.80) as

Φ(x) = ΦL(x) + fNL
[
Φ2
L(x)− 〈Φ2

L(x)〉
]
, (2.85)

where the angular brackets denote the statistical ensemble average. fNL is a di-

mensionless parameter and, as it is defined in (2.85), it is used to characterize

the local form of Gaussianity.

We can define a generalized fNL parameter in the following way:

fNL(k1, k2, k3) =
BΦ(k1, k2, k3)

2[PΦ(k1)PΦ(k2) + PΦ(k2)PΦ(k3) + PΦ(k3)PΦ(k1)]
, (2.86)

where PΦ(k) and BΦ(k1, k2, k3) are respectively the power spectrum and the bis-

pectrum and they are defined in the Fourier space as

〈Φk1Φk2〉 = (2π)3PΦ(k1)δ3(k1 + k2), (2.87)

〈Φk1Φk2Φk3〉 = (2π)3BΦ(k1, k2, k3)δ3(k1 + k2). (2.88)

The delta function in Equation (2.88) enforces that the three Fourier modes of
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2.7. Non-Gaussianity in single-field inflation

the bispectrum form a closed triangle. Different inflationary models predict max-

imal non-Gaussianity for different triangle configurations. Physically motivated

models for producing non-Gaussian perturbations often produce signals that peak

at special triangle configurations. Three important special cases are: the squeezed

triangle (k1 ≈ k2 � k3), this is the dominant mode of models with multiple light

fields during inflation, the curvaton scenario, inhomogeneous reheating and New

Ekpyrotic models. The equilateral triangle (k1 = k2 = k3), this is relevant for

models with higher-derivative interactions and non-trivial speeds of sound. The

folded triangle (k1 = 2k2 = 2k3), this shape arises in models with non-standard

initial states.

2.7 Non-Gaussianity in single-field inflation

Creminelli and Zaldarriaga [23], generalizing an observation by Maldacena [86]

imposed a consistency relation on the 3-point correlation function of single-field

inflation. They demonstrated that the non-linearity parameter fNL is propor-

tional to 1 − nS, where nS is the spectral index of scalar perturbations, and

thus fNL for single-field models is very small. Now we review the argument of

Creminelli and Zaldarriaga [23] as it is treated in [45].

We want to calculate the 3-point correlation function 〈ζk1ζk2ζk3〉1 in the limit

k3 � k1, k2. We have that

〈ζk1ζk2ζk3〉 = 〈〈ζk1ζk2〉ζk3
ζk3〉, (2.89)

where we define 〈· · · 〉ζk3
to be the expectation value of · · · given that ζk3 has

a particular value. We compute 〈ζk1ζk2〉ζk3
after the k1, k2 modes have left the

horizon so that the mode k3 will have crossed the horizon in the distant past.

Thus ζk3 will be part of an essentially classical background ζB which affects the

scalar field through the metric. Considering only modes far outside the horizon,

the metric is

ds2 = dt2 − a2(t)e2ζB(x)dx2, (2.90)

1In this case the variable ζ is a gauge dependent variable and it is different from the one
used in 2.4.4. At linear level it corresponds to the intrinsic curvature perturbation Ψ.
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where

ζB(x) ≡
∫
k�k1,k2

d3k

(2π)3
ζke

ik·x. (2.91)

The background perturbation ζB is small, so it makes sense to expand the corre-

lation function in a power series about ζB and keep only the first term:

〈ζ2〉ζB(x,∆x) = 〈ζ2〉0(∆x) +

∫
d3kζBk

 δ

δζk

∣∣∣∣∣
ζB=0

〈ζ2〉ζB(x,∆x)

+ · · · , (2.92)

where x ≡ (x1 + x2)/2 and ∆x ≡ x2 − x1. For k3 small enough, we can

perform a change of coordinates x → x′ = eζ
B(x)x to put (2.90) in the form

of the unperturbed FLRW metric. In these new coordinates, the background is

unperturbed so

〈ζ2〉ζB(x,∆x) ≈ 〈ζ2〉0(|x′2 − x′1|) ≈ 〈ζ2〉0(eζ
B(x)∆x). (2.93)

Therefore
δ

δζk

∣∣∣∣∣
ζB=0

〈ζ2〉ζB(x,∆x) =
eik·x

(2π)3

d[〈ζ2〉0(∆x)]

d ln ∆x
. (2.94)

Substituting this into (2.92), moving to Fourier space and correlating with ζk3 ,

we find

〈ζk1ζk2ζk3〉 = 〈〈ζk1ζk2〉ζk3
ζk3〉 (2.95)

= (2π)3δ(3)(
∑
i

ki)P (k3)FT

[
d〈ζ2〉0
d ln ∆x

]
(kS) (2.96)

= −(2π)3δ(3)(
∑
i

ki)P (k3)
1

k3
S

d[k3
SP (kS)]

d ln kS
(2.97)

= (2π)3δ(3)(
∑
i

ki)P (k1)P (k3)(1− nS), (2.98)

where ks ≡ (k1−k2)/2 ≈ k1 and we have used the fact that nS − 1 ≡ d ln [k3P (k)]
d ln k

.

This yields the result of [23].

We have seen in (2.86) that fNL parametrizes the part of the bispectrum that
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2.8. Enhancement of non-Gaussianity after inflation

has the form

〈ζk1ζk2ζk3〉 = (2π)3δ(3)(
∑
i

ki)
6

5
fNL[Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1)].

(2.99)

Since we measure that Pζ(k) ∼ k−3 [68], we can see that the bispectrum has a

“squeezed” shape, namely it peaks at the squeezed limit, and its squeezed form

is

〈ζk1ζk2ζk3〉k3�k1,k2 = (2π)3δ(3)(
∑
i

ki)
12

5
fNLPζ(k1)Pζ(k3). (2.100)

Confronting the results (2.98) and (2.100) we obtain that for any single-field

inflation model

fNL =
5

12
(1− nS). (2.101)

Since 1 − nS = 0.037 [68], every single model should produce a level of non-

Gaussianity fNL ' 0.02 during inflation.

2.8 Enhancement of non-Gaussianity after infla-

tion

From the study of the late-time evolution of the cosmological perturbations it

was found that a large non-linearity is generated by the gravitational dynamics

from the original inflationary quantum fluctuations. This leads to a significant

enhancement of the tiny intrinsic non-Gaussianity produced during inflation in

single-field slow-roll models. We review a general discussion of this argument as

given in [70].

As we have seen previously, we can expand ∆T in spherical harmonics

∆T (n̂) =
∑
lm

almYlm(n̂), (2.102)

where n̂ denotes the direction of observation. Given the form of the gravitational
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potential Φ, one can calculate the harmonic coefficients

alm = 4π(−i)l
∫

d3k

(2π)3
ΦPr(k)gT l(k)Y ∗lm(k), (2.103)

where gT l is the radiation transfer function and the index “Pr” stands for pri-

mordial, by which we mean ΦPr = 3
5
ζ. So far, we have assumed that one can

use the formula (2.103) to convert the primordial curvature perturbation to the

temperature anisotropy. However this equation is valid only for linear theory.

Since any non-linear effect can produce non-Gaussianity, one has to study the

consequence of various non-linear effects.

The origin of the linear radiation transfer function is the linearized Boltzmann

equation
∂∆(1)

∂η
+ ikµ∆(1) + σTnea∆(1) = S(1)(k, µ, η), (2.104)

where η is the conformal time, µ ≡ k · n̂, ∆(1) ≡ 4[∆T (1)(k, µ, η)/T ] is the

perturbation in the photon energy density, and S(1) is the linear source function,

which depends on the metric perturbations and on the density, velocity, pressure

and stress perturbations of matter and radiation and the photon polarization.

The second-order Boltzmann equation is written in a similar way,

∂∆(2)

∂η
+ ikµ∆(2) + σTnea∆(2) = S(2)(k, n̂, η), (2.105)

where ∆(2) ≡ 8[∆T (2)(k, n̂, η)/T ] + 12[∆T (1)(k, n̂, η)/T ]2, and S(2) is the second-

order source function. Note that at second order the perturbations depend on the

directions of k and n̂ independently. In this case the second-order alm is given

by [101]

a
(2)
lm =

4π

8
(−i)l

∫
d3k

(2π)3

∫
d3k′

(2π)3

∫
d3k′′δD(k′ + k′′ − k)Φ

(1)
Pr (k′′) (2.106)

×
∑
l′m′

F l′m′

lm (k′,k′′,k)Y ∗l′m′(k̂),

where F l′m′

lm is the second-order radiation transfer function and its form is deter-

mined by the second-order source function S(2) in the Boltzmann equation.
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The shape of the second order bispectrum, 〈a(1)
l1m2

a
(1)
l2m3

a
(2)
l3m3
〉, is given by the

second-order radiation transfer function. If the latter vanishes in the squeezed

limit, i.e. F l′m′

lm (k′,k′′,k) → 0 for k → 0, then the CMB bispectrum would not

peak at the squeezed limit configuration, and thus the resulting f localNL would be

small.

The second-order source function is quite complicated, but it can be decom-

posed into two parts: (a) the terms given by the products of the first-order pertur-

bations, such as [Φ(1)]2 and (b) the terms given by the “intrinsically second-order

terms”, such as Φ(2). This decomposition depends on the gauge choice, so which

terms belong to (a) or (b) depends on the gauge. A convenient gauge-choice

seems the Newtonian gauge (B = E = 0 in (2.39)), chosen by Pitrou, Uzan

and Bernardeau [103, 104] and Bartolo, Matarrese and Riotto [14, 15], where the

products of the first-order terms only give |f localNL | < 1. The intrinsically second

order terms are sourced by products of the first-order perturbations and therefore

they are created by the late-time evolution of cosmological perturbations, while

the terms in (a) are set by the initial conditions. In [104], the authors showed

that the terms in (b) give f localNL ∼ 5 for the Planck data (lmax = 2000).
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Chapter 3

The curvaton scenario

As we have seen in the previous chapter, quantum fluctuations of the inflaton field

in the simplest inflationary models produce perturbations which are adiabatic,

Gaussian and with a slightly red tilted power spectrum. This prediction seems

in very good agreement with the observational data. The 7-year WMAP data

combined with the latest distance measurements from the Baryon Acoustic Oscil-

lations (BAO) in the distribution of galaxies [110] and the Hubble constant (H0)

measurement [111] find ns = 0.968±0.012 at 68% confidence level [68], confirming

the prediction of single-field inflation for the scalar power spectrum. However,

there is not yet a very precise measurement of the level of non-Gaussianity of

the curvature perturbations. The 7-year WMAP analysis yields the non-linearity

parameter fNL for the local form in the following range: −10 < f localNL < 74. The

prediction for non-Gaussianity of single-field inflation models is in this range.

However, other inflationary models which deviate from the standard paradigm

and predict a higher level of non-Gaussianity might also fit the data. Since the

precision of the observations improves every year, in the near future we will be

able to discriminate among the various inflationary models by studying the degree

of non-Gaussianity of the perturbations.

A higher level of non-Gaussianity is obtained in inflationary models such as

two-field [13, 83, 84, 87], hybrid and multi-brid [3, 9, 10, 42, 59, 99] inflation and

in certain modulated and tachyonic (p)re-heating scenarios [36, 40, 60, 129].

In this chapter we study the simplest of these models, which is a model of in-

flation with two scalar fields, called the curvaton scenario. In Section 3.1 we give
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3. THE CURVATON SCENARIO

a basic description of this model describing the generation of curvature perturba-

tions and calculating the level of non-Gaussianity. In Section 3.2 we investigate

how to implement the curvaton scenario in supergravity in the context of chaotic

inflation and we compute the level of non-Gaussianity which arises in this class

of models.

3.1 Two-field inflation

It is possible to produce non-Gaussian adiabatic perturbations in models contain-

ing several scalar fields. The simplest case is a model with two scalar fields, the

inflaton and the curvaton. In such a model the power spectrum of perturbations

can be non-flat and it can be non-Gaussian. This possibility was first proposed

in [81] and then it was significantly developed in [30, 80, 83–85, 91, 92] and many

other works.

In this scenario the adiabatic density perturbations are produced after in-

flation from purely isocurvature curvaton perturbations. The curvaton field is

subdominant during inflation and therefore its perturbations are of isocurvature

type. The curvature perturbation becomes relevant when the energy density of

the curvaton field becomes a significant fraction of the total energy density. This

happens when the Hubble parameter drops below the curvaton mass and the cur-

vaton field starts to oscillate around the minimum of its potential, behaving like

non-relativistic matter. Afterwards the curvaton decays into thermalized radia-

tion generating an adiabatic perturbation. It is also possible that some residual

isocurvature perturbations survive after the curvaton decay. For example in the

case where the curvaton, when subdominant, decays into a component of Cold

Dark Matter (CDM) which does not thermalize with the existing radiation. We

now analyze the generation of curvaton perturbations following [83] and [12].

3.1.1 The curvaton field perturbation

During inflation the curvaton field σ is supposed to be an almost free scalar field

with effective mass m2
σ = |Vσσ| � H2 and it is supposed to give a negligible

contribution to the energy density. It is assumed that the curvaton field does
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3.1. Two-field inflation

not have any significant coupling with other fields or that the effect of any cou-

pling can be integrated out to give a possibly time-dependent potential V . The

unperturbed curvaton field satisfies the equation of motion

σ̈ + 3Hσ̇ + V,σ = 0. (3.1)

If we expand the curvaton field as σ(t,x) = σ(t)+δσ(t,x), then the perturbation

satisfies the equation

δσ̈ + 3Hδσ̇ + V,σσδσ = 0, (3.2)

where we made the first-order approximation δ(V,σ(t,x)) ≈ V,σσ(t)δσ(t,x). The

fluctuations δσ on super-horizon scales are Gaussian with an almost scale-invariant

power spectrum:

δ2
δσ ≈

H2
∗

4π2
, (3.3)

where ∗ denotes the epoch of horizon exit k = aH. After the end of inflation, the

inflaton energy density is converted into radiation and the curvaton field remains

approximately constant until H2 ∼ m2
σ. When the Hubble parameter falls below

the curvaton mass, the curvaton starts to oscillate around the minimum of its

potential. Even if the potential is not quadratic, after a few Hubble times, we

can make the approximation V ≈ 1
2
m2
σσ

2 and the energy density will be

ρσ(t,x) ≈ m2
σσ

2(t,x). (3.4)

From Equations (3.1) and (3.2) we see that for a quadratic potential the ratio

δσ/σ does not evolve. The perturbation in ρσ depends on the curvaton field

perturbation through both a linear and a quadratic term. Assuming, for the

moment, that the linear term dominates, the resulting relative energy density

perturbation is
δρσ
ρσ

= 2

(
δσ

σ

)
∗
. (3.5)

3.1.2 The curvature perturbation

Perturbations in the energy density of the curvaton field produce a primordial

density perturbation well after the end of inflation. The primordial adiabatic
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3. THE CURVATON SCENARIO

density perturbation is associated with a perturbation in the spatial curvature Ψ

and it is characterized by the gauge-invariant variable ζ, which was introduced

in the previous chapter, Equation (2.75).

When the Hubble parameter falls below the curvaton mass, the curvaton field

starts to oscillate. At this moment, the energy density is dominated by radiation

(γ), which is the result of the decay of the inflaton field. During the curvaton

oscillations, ρσ ∝ a−3 and ργ ∝ a−4. Therefore the curvaton component of

the energy density ρσ increases with respect to the radiation component ργ and

the perturbations in the curvaton field are then converted into the curvature

perturbation.

To analyze the generation of the curvature perturbation it is convenient to

consider the curvature perturbations ζi associated with each individual energy

density component:

ζi ≡ −Ψ−H
(
δρi
ρ̇i

)
. (3.6)

In particular, on unperturbed hypersurfaces Ψ = 0 (spatially flat gauge), ζσ is

ζσ =
1

3

δρσ
ρσ

. (3.7)

and thus the total curvature perturbation can be written as the weighted sum

ζ = (1− f)ζγ + fζσ, (3.8)

where f defines the relative contribution of the curvaton field to the total curva-

ture perturbation and it is given by

f =
3ρσ

4ργ + 3ρσ
. (3.9)

In the following we assume the approximation of sudden decay of the curvaton

field. Under this assumption, the radiation and the curvaton field satisfy separate
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conservation equations

ρ̇γ = −4Hργ, (3.10)

ρ̇σ = −3Hρσ, (3.11)

and each ζi is constant on super-horizon scales until the curvaton decay. Thus

from Equation (3.8) it follows that the evolution of ζ on these scales is given by

ζ̇ = ḟ(ζσ − ζγ) = Hf(1− f)(ζσ − ζγ). (3.12)

The curvaton scenario corresponds to the case where the curvature perturbation

in the radiation produced at the end of inflation is negligible, ζγ ≈ 0. In the sud-

den decay approximation, ζγ and ζσ both remain constant up until the curvaton

decays. Well after the decay of the curvaton, during the matter and radiation

eras, the curvature perturbation stays constant on super-horizon scales at a value

which is fixed by

ζ ≈ fdecζσ, (3.13)

where fdec is f at the decay time. Going beyond the sudden decay approximation,

we can introduce a parameter r defined in the following way:

ζ = rζσ, (3.14)

=
r

3

δρσ
ρσ

, (3.15)

where ζ is evaluated after the curvaton decay and ζσ is evaluated before the

curvaton decay. In the case where the curvaton completely dominates the energy

density before it decays, r = 1. In this limit the sudden decay approximation

becomes exact. In the case where the curvaton does not dominate, numerical

studies performed in [88] show that

r ≈
(
ρσ
ρtot

)
dec

. (3.16)

The prediction of the curvaton model for the spectrum of the curvature per-

37



3. THE CURVATON SCENARIO

turbation is

δζ =
2

3
rδδσ/σ. (3.17)

The COBE measurements of the CMB anisotropy require δζ(COBE) = 4.8×10−5.

Therefore, if the curvaton dominates the energy density before it decays (r = 1),

this implies that

δδσ/σ = 7.2× 10−5. (3.18)

3.1.3 Non-Gaussianity of the curvature perturbation

From Equation (3.4) and (3.15) we can see that the curvature perturbation de-

pends on the curvaton field perturbations through both a linear and a quadratic

term. The linear term gives a Gaussian contribution to the curvature perturba-

tion, but if the quadratic term in the energy perturbation is not negligible, then

the curvature perturbation will have a non-Gaussian component.

The level of non-Gaussianity is encoded in the non-linearity parameter fNL.

As we have seen previously, a phenomenological way of parametrizing the level of

non-Gaussianity is to expand the fully nonlinear primordial Bardeen gravitational

potential Φ in powers of the linear gravitational potential ΦL,

Φ = ΦL + fNLΦ2
L. (3.19)

We have seen that the relation between Φ and ζ during the matter era on super-

horizon scales is Φ = 3
5
ζ, thus

Φ =
r

5

δρσ
ρσ

. (3.20)

Equation (3.4) gives
δρσ
ρσ

= 2
δσ

σ
+

(δσ)2

σ2
. (3.21)

Therefore, using Equations (3.19), (3.20) and (3.21), we obtain the prediction of

the curvaton scenario for the level of non-Gaussianity:

fNL =
5

4r
. (3.22)

We should note that in order to make this estimate we assumed first-order cosmo-
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3.2. The curvaton scenario and supergravity

logical perturbation theory. The validity of the estimate (3.22) requires that the

curvaton contributes only a small fraction of the energy density before it decays.

If the curvaton dominates the energy density before its decay, the non-Gaussianity

calculated at linear order is lost in the noise of the unknown second-order correc-

tions to cosmological perturbation theory.

We have seen that the curvaton scenario can be consistent with the observa-

tions. In fact the density fluctuations generated in such a scenario are almost

scale-invariant and the level of non-Gaussianity can be quite significant. In or-

der to generate large non-Gaussianity with the curvaton, it is necessary that the

energy density of the curvaton at the time of its decay is much smaller than that

of the dominant component of the Universe (which is expected to be from the

inflaton).

3.2 The curvaton scenario and supergravity

The success of the inflationary paradigm in solving the main puzzles of the early

Universe is outstanding. Nontheless we still do not have a derivation from first

principles of a theory of inflation. In fact we lack a natural way of identifying the

fields involved with fundamental fields in particle physics.

Supersymmetry is widely discussed as the most interesting candidate for the

physics beyond the standard model. It may solve the hierarchy problem, namely

the discrepancy between the experimentally anticipated order of magnitude for

the Higgs boson mass and its theoretical expectation. It also allows for the

unification of the weak interaction, the strong interaction and electromagnetism,

in the sense that the values of the three coupling constants agree at a certain

energy scale only in a supersymmetric version of the standard model.

In the previous chapter we have seen that in the simplest inflationary model

inflation is due to the potential energy of a scalar field. Such a potential must

be relatively flat in order to guarantee a long duration of inflation and a small

deviation from scale invariance of primordial density fluctuations. However, the

flatness of the scalar potential can be easily destroyed by radiative corrections.

This problem can be solved by supersymmetry. When combined with gravity,

supersymmetry must be a local symmetry. Such a supersymmetric version of

39



3. THE CURVATON SCENARIO

gravity is called supergravity, and its action is uniquely specified by the choice

of two functions, the Kähler potential K and the superpotential W . For review

see [125]. Therefore it is very natural to consider inflation in the context of

supergravity.

3.2.1 Chaotic inflation in supergravity

Among various inflationary models, chaotic inflation [76] seems very attractive

since it is very simple and it does not suffer from any initial condition problem.

However for many years, it seemed very difficult to realize chaotic inflation in

supergravity. This issue was solved by Kawasaki, Yamaguchi and Yanagida in

[66]. In the following we review their argument.

The main problem to overcome in order to realize simultaneously supergravity

and chaotic inflation is the fact that the minimal supergravity potential has an

exponential factor, exp (φ∗iφi/M
2
P ), which prevents any scalar field φi from having

values larger than MP ' 1019 GeV. However in chaotic inflation, the inflaton field

φ must have a value larger than MP in order to cause inflation.

In [66] the problem was solved assuming that the form of the Kähler potential

is determined by a symmetry. With this symmetry the inflaton field is allowed to

have values larger than MP and hence it can cause inflation. The authors assumed

that the Kähler potential K(Φ,Φ∗) is invariant under the shift symmetry of Φ,

Φ→ Φ + iCMP , (3.23)

where C is a dimensionless parameter. Therefore the Kähler potential will be a

function of Φ + Φ∗, K(Φ,Φ∗) = K(Φ + Φ∗). The imaginary part of the field Φ

is canceled out in the Kähler potential and therefore it is allowed to have values

larger than MP . For this reason we can identify the imaginary part of Φ with

the inflaton field φ. However, as long as the shift symmetry is exact, the inflaton

field never has a potential and it never causes inflation. Thus it is necessary to

introduce a small breaking term for Φ in the superpotential

W = mSΦ, (3.24)
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where S(x, θ) is a new superfield. The potential is given by

V = eK

[(
∂2K
∂Φ∂Φ∗

)−1

DΦWDΦ∗W
∗ − 3|W |2

]
, (3.25)

where

DΦW =
∂W

∂Φ
+
∂K(Φ + Φ∗)

∂Φ
W, (3.26)

here Φ is the scalar component of the superfield Φ and we set MP = 1. We should

notice that this model possesses U(1)R symmetry under which

S(θ)→ e−2iαS(θeiα), (3.27)

Φ(θ)→ Φ(θeiα). (3.28)

We consider that the small parameter m is originated from small breaking of the

shift symmetry in a more fundamental theory and as long as m � O(1), the

corrections from the breaking term (3.24) to the Kähler potential are negligibly

small. Then we assume that the Kähler potential has the shift symmetry (3.23)

and the U(1)R × Z2 symmetry neglecting the breaking effects,

K(Φ,Φ∗, S, S∗) = K[(Φ + Φ∗)2, SS∗]. (3.29)

In the following analysis we take

K =
1

2
(Φ + Φ∗)2 + SS∗ + ... (3.30)

The Lagrangian density is now given by

L(Φ, S) = ∂µΦ∂µΦ∗ + ∂µS∂
µS∗ − V (Φ, S), (3.31)

with potential

V (Φ, S) = m2eK
[
|Φ|2(1 + |S|4) + |S|2{1− |Φ|2 + (Φ + Φ∗)2(1 + |Φ|2)}

]
, (3.32)

where we have neglected higher order terms in the Kähler potential and S denotes
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the scalar component of the superfield S. After decomposing the complex scalar

field Φ as Φ = (η + iφ)/
√

2, the Lagrangian density takes the form

L(η, φ, S) =
1

2
∂µη∂

µη +
1

2
∂µφ∂

µφ+ ∂µS∂
µS∗ − V (η, φ, S), (3.33)

with

V (η, φ, S) = m2 exp (η2 + |S|2) (3.34)

×
[

1

2
(η2 + φ2)(1 + |S|4) + |S|2

{
1− 1

2
(η2 + φ2) + 2η2

(
1 +

1

2
(η2 + φ2)

)}]
.

Because of the presence of the factor eK, we have that |η|, |S| � O(1). φ can take

values much larger than O(1) since eK does not contain φ. For |η|, |S| � O(1),

the potential becomes

V (η, φ, S) ' 1

2
m2φ2(1 + η2) +m2|S|2. (3.35)

The initial value of φi is determined so that V (φi) ∼ 1
2
m2φ2

i ∼ 1, thus we have

φi ∼ m−1 � 1. For such a large value of φ the effective mass of η becomes much

larger than m, so η is quickly stabilized at η = 0. The field S has a light mass

and slowly rolls down to S = 0. The potential (3.35) becomes

V (η, φ) ' 1

2
m2φ2 +m2|S|2. (3.36)

Since φ� 1 and |S| < 1, the field φ dominates the potential and chaotic inflation

takes place.

Therefore we see that chaotic inflation naturally takes place if we assume that

the Kähler potential is invariant under a shift symmetry of the inflaton field and

introduce a small breaking term of this shift symmetry.

3.2.2 Supercurvaton

In this section we will follow our paper [26]. One of the main reasons to introduce

the curvaton scenario was to obtain a realistic mechanism of generation of non-

Gaussian adiabatic perturbations of metric. Since that time, many interesting
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curvaton models were proposed. However, it would be nice to have a curvaton

model which would be as simple as the basic chaotic inflation scenario with the

potential m2φ2/2 [76]. It would be good also to find a natural implementation of

this scenario in the context of supergravity.

As we have seen in Section 3.2.1, it is possible to implement chaotic inflation

in supergravity. The authors of [66] proposed a very simple model describing two

fields, S and Φ, with the superpotential

W = mSΦ, (3.37)

and Kähler potential

K = SS∗ − 1

2
(Φ− Φ∗)2. (3.38)

Note that the Kähler potential does not depend on the phase of the field S and

on the real part of the field Φ. Therefore it will be convenient for us to represent

the fields S and Φ as S = σ eiθ/
√

2 and Φ = (φ + iχ)/
√

2. The field φ plays the

role of the inflaton field, with the quadratic potential, as in the simplest version

of the chaotic inflation scenario [76]:

V (φ) = 3H2 =
m2

2
φ2, (3.39)

where H is the Hubble constant during inflation. Near the inflationary trajectory

with S = 0, the mass squared of the imaginary part of the field Φ is m2
χ =

6H2 +m2. Thus during inflation m2
χ > 6H2, and therefore the imaginary part of

the field Φ is stabilized at Im Φ = 0. No perturbations of this field are generated.

Both components of the field S may remain light during inflation, and therefore

inflationary perturbations of these fields can be generated [25]. Since the potential

does not depend on the field θ, we will ignore fluctuations of this field in our study

of the curvaton perturbations. The potential of the fields φ, σ at χ = 0 is

V (φ, σ) =
m2

2
eσ

2/2

[
φ2 + σ2 +

φ2

4
σ2(σ2 − 2)

]
. (3.40)
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For σ � 1 one has

V (φ, σ) =
m2φ2

2
+
m2σ2

2
+
m2φ2σ4

16
. (3.41)

The effective mass squared of the field σ at σ � 1 is given by

m2
σ = Vσσ = m2 +

3

4
m2φ2σ2 = m2 +

9

2
H2σ2, (3.42)

where Vσσ means second partial derivative of V with respect to σ. One can

easily see that m2
σ = m2 for φσ � 1. During inflation m2 � H2, and therefore

inflationary perturbations of the field σ can be generated. At φσ & 1, the effective

mass squared of the field σ is dominated by the term 3
4
m2φ2σ2 = 9

2
H2σ2 >

m2. For σ � 1 one still has m2
σ � H2, so the perturbations of the field σ

are generated in this regime as well. However, at σ & 1 the potential becomes

exponentially steep, and m2
σ � H2. Therefore inflationary fluctuations of this

field are generated only for σ . 1. This is a very important advantage of the

curvaton scenario in supergravity: the steepness of the curvaton potential at

σ & 1 protects us from extremely large perturbations of the curvaton field which

otherwise could be produced during eternal inflation in this scenario [77, 80].

If one does not take into account the curvaton fluctuations in this scenario

and studies only the usual inflaton fluctuations [8, 53, 56, 95, 96, 115], then the

COBE normalization requires m ∼ 6× 10−6, in the system of units MP = 1 [76,

78, 79, 93]. Thus, the mass of the inflaton field must be somewhat smaller than

6× 10−6 if we want to add the curvaton fluctuations to the inflaton fluctuations.

Recently the supergravity model described above was substantially generalized

in [63, 64]. The generalized scenario describes a theory with a superpotential

W = Sf(Φ), (3.43)

where f(Φ) is an arbitrary real holomorphic function. The Kähler potential in

this class of models may take several different functional forms, e.g.

K = SS̄ − 1

2
(Φ− Φ̄)2 − α

12
(SS̄)2. (3.44)
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In this theory, the inflaton potential is given by

V (φ) = f 2(φ/
√

2) (3.45)

and the mass of the field σ is

m2
σ = αH2 + (f ′(φ/

√
2))2. (3.46)

In this class of models, one can implement chaotic inflation in supergravity, with

an arbitrary shape of the inflaton potential V (φ). In all of these models one has

H2 = f 2(φ/
√

2)/3. The term (f ′(φ/
√

2))2 is equal to 3H2ε, where ε � 1 is the

slow roll parameter. For α & 1 one has m2
σ & H2. In this case no curvaton

perturbations are produced, so all standard predictions of the single-field inflaton

scenario remain intact.

On the other hand, in models with α � 1 one has m2
σ � H2 during infla-

tion, which means that quantum fluctuations of the field σ are generated during

inflation [63, 64].

Thus we have a broad class of models of chaotic inflation where the curvaton

scenario can be realized. One can further generalize this scenario by adding terms

∼ S3 to the superpotential, and by using other versions of the Kähler potential,

as long as the Kähler potential has certain properties described in [63, 64]. The

requirements which are necessary for the existence of the light curvaton fields

in this class of models can be formulated in an invariant way in terms of the

curvature of the Kähler geometry. In particular, the parameter α is related to

the curvature of the Kähler manifold [64]. The field σ itself has an interesting

interpretation from the point of view of supergravity: it is the scalar component

σ of the goldstino multiplet. Because of the generality and simplicity of this

scenario and because of its supergravity origin, one may call it the supercurvaton

scenario.

Here we will concentrate on the simplest model (3.37), (3.38), but with an

additional term − α
12

(SS̄)2 in the Kähler potential, as in Equation (3.44). In this

model the curvaton mass squared along the inflationary trajectory with σ = 0 is
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given by

m2
σ = m2 + αH2, (3.47)

and in a more general case 0 < σ � 1 the effective mass squared of the field σ is

m2
σ = m2 + αH2 +

9

2
H2σ2 = m2 +

α

6
m2φ2 +

3

4
m2φ2σ2. (3.48)

3.2.2.1 Curvaton perturbations and non-Gaussianity

During inflation, the curvaton perturbations are produced. An average amplitude

of perturbations produced during each Hubble time H−1 is given by δσ = H
2π

.

Then these fluctuations are stretched, overlap with each other, and eventually

produce a classical curvaton field σ which looks relatively homogeneous in the

observable part of the Universe, but may take different values in other parts of

the Universe [80]. The amplitude of the perturbations of density of the curvaton

field with a quadratic potential is given by δρσ/ρσ ∼ 2δσ/σ. However, the total

energy density of matter at the moment when the curvaton field decays may be

greater than the energy of the classical field σ. This may happen, for example, if

the decay of the inflaton field during reheating produces many curvaton particles

[80]. Therefore the relative perturbation of density will be given by

δρσ
ρ
∼ 2rδσ

σ
, (3.49)

where r = ρσ/ρ at the time of the curvaton decay. According to [83], these

perturbations will match the COBE normalization of the spectrum for

r
δσ

σ
∼ 7× 10−5. (3.50)

As we have seen in the previous section, these perturbations are non-Gaussian,

with the amplitude of local non-Gaussianity given by [83]

fNL =
5

4r
. (3.51)

Our goal will be to find a typical value of σ in some of the simplest supergrav-

ity models described above, calculate δσ, find the value of r required to satisfy

46



3.2. The curvaton scenario and supergravity

Equation (3.50), and finally determine fNL. The most complicated part of this

program is finding a typical value of σ.

3.2.2.2 Stochastic approach

We will begin our study with an investigation of the behavior of the distribution of

the fluctuations of the curvaton field σ with a simple quadratic potential m2
σσ

2/2.

This approach will allow us to describe the case when m2
σ = m2 + αH2, but not

the more general situation when m2
σ depends on σ as in (3.48), which will be

discussed separately later.

During inflation, the long-wavelength distribution of this field generated at the

early stages of inflation behaves as a nearly homogeneous classical field, which

satisfies the equation

3Hσ̇ + Vσ = 0, (3.52)

or, equivalently,
dσ2

dt
= −2Vσ σ

3H
. (3.53)

However, each time interval H−1 new fluctuations of the scalar field are generated,

with an average amplitude squared

〈δσ2〉 =
H2

4π2
. (3.54)

The wavelength of these fluctuations is rapidly stretched by inflation. This effect

increases the average value of the square of the classical field σ in a process similar

to Brownian motion. As a result, the square of the field σ at any given point with

inflationary fluctuations taken into account changes, in average, with the speed

which differs from the predictions of the classical equation of motion by H3

4π2 :

dσ2

dt
= −2Vσ σ

3H
+
H3

4π2
. (3.55)

Using 3Hφ̇ = −Vφ, one can rewrite this equation as

dσ2

dφ
=

2Vσ σ

Vφ
− V 2

12π2Vφ
. (3.56)
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Its solution with the initial condition σ(φi) = 0 for m2
σ = m2 + αH2 is given by

σ2 (φ) =
1

12π2

φi∫
φ

V 2(φ̃)

V ′(φ̃)
exp

−2

φ̃∫
φ

m2
σ

V ′(φ̄)
dφ̄

 dφ̃, (3.57)

where φi is the initial value of the inflaton field.

If inflation continued for much longer time than 60 e-foldings, as we will assume

here, the main contribution to σ is given by perturbations produced at the very

early stages of inflation. Such fluctuations look almost absolutely homogeneous

on the scale of the observable part of our Universe, so our calculations give us a

typical value of the classical field σ inside the observable part of our Universe.

However, in different parts of the Universe, the field σ may be significantly smaller

or greater than its “typical” value calculated above. As a result, the amplitude

of the curvaton perturbations is not a constant, but it varies in space [80]. The

same is true for the degree of non-Gaussianity fNL, see Section 3.2.2.8.

Therefore, to be precise, one should distinguish between the average amplitude

of the field σ calculated above, when the averaging it taken all over the Universe,

and the local value of the field σ in each horizon-size part of the Universe. We

will make this distinction in Section 3.2.2.8, where we will make a slight change

of notation and call the value of the curvaton field averaged over the whole Uni-

verse σ̄, reserving the letter σ for the average value of the curvaton field in the

horizon-size part of the Universe. However, in the main part of this work we will

not distinguish between σ and σ̄. This means, in particular, that when we will

calculate fNL(σ), our results will in fact describe the value of this parameter for

σ = σ̄, i.e. the value of fNL for an average value of σ, all over the Universe.

In Section 3.2.2.8 we will show, however, that the value of fNL for an average

value of σ can be significantly different from the average value of fNL; the order

of averaging in certain cases can be very important. One should take this effect

into account when making predictions of the non-Gaussianity in each particular

curvaton scenario.

We should note also that in general the curvaton field may not be equal to zero

at the beginning of chaotic inflation, so one may also consider a possibility that

initially 〈σ2〉(φi) was very large. In this respect, the supergravity model which
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we are going to study provides an important simplification: The curvaton field

initially cannot be much larger than O(1) because of the exponential steepness of

the potential at σ & 1. Also, the effective mass term 3
4
m2φ2σ2 in the supergrav-

ity potential (3.40) rapidly reduces the initial value of the field σ, thus making

quantum fluctuations generated during inflation more important than the initial

value of the classical field σ. We will study these issues in the following, starting

from the simple toy model with m2
σ = m2 and ending up with the model with

m2
σ = m2 + α

6
m2φ2 + 3

4
m2φ2σ2. As we will see, in all these cases the final result

does not depend on the initial distribution of the curvaton field if inflation lasts

long enough.

3.2.2.3 A toy model with m2
σ = m2

In this section we will study the distribution of the curvaton field with the mass

m2
σ = m2 during inflation driven by the massive inflaton field with potential

V = 1
2
m2φ2. In this case Equation (3.57) implies that the classical scalar field σ

which is nearly homogeneous on the scale of the horizon has a typical amplitude

σ(φ) =
mφφi

4π
√

6
. (3.58)

Meanwhile the amplitude of fluctuations of σ generated at that time is

δσ ∼ H

2π
=

mφ

2π
√

6
. (3.59)

During the subsequent evolution of the Universe, σ and δσ both decrease in the

same way, and therefore at the end of inflation the curvaton perturbations have

flat spectrum with the amplitude

δσ

σ
=

2

φi
. (3.60)

As we mentioned above the amplitude of the perturbations must be normalized

as

r
δσ

σ
' 2r

φi
∼ 7× 10−5, (3.61)

49



3. THE CURVATON SCENARIO

and hence

fNL =
5

4r
∼ 3.5× 104

φi
. (3.62)

This means that the degree of non-Gaussianity depends on the initial value of

the inflaton field. Unless this field is very large, fNL may be extremely large.

However, in the supergravity models which we study in this work the approach

developed above is valid only if inflation was short enough, that is, φi � m−1/3

and for large values of φi one cannot ignore the supergravity correction to the

mass in Equation (3.42).

3.2.2.4 m2
σ = m2 + 9

2
H2σ2

In the previous section we made a simplifying assumption that the curvaton

mass does not depend on σ, which allowed us to use Equation (3.57). However,

as one can see from (3.40), in the supergravity model (3.37), (3.38) the curvaton

mass does depend on σ in a rather complicated way. The leading correction to

the curvaton mass squared m2 is given by 3
4
m2φ2σ2 = 9

2
H2σ2 and it becomes

dominant for φσ & 1.

To find out how it will change the final result one has to solve Equation (3.56)

for

V =
m2φ2

2
+
m2σ2

2
+
m2φ2σ4

16
, (3.63)

which takes in this case the form

y′ =
y

x
+
y2

4
− bx, (3.64)

where x = φ2, y = σ2, and b = m2

96π2 .

The general solution of this equation can be expressed in terms of Airy func-

tions,

y(x) = −(2b)2/3x
Ai(z)− cBi(z)

Ai′(z)− cBi′(z)
, (3.65)

where z = 2−2/3b1/3x and c is a small constant which should be chosen in such a

way that y(xi) = 0.

Suppose first that the initial value of the field φ is much higher than m−1/3,

i.e. z � 1. One can check that in this case one should take c � 1 to have
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y(xi) = 0. Inflation ends at φ ∼ 1, when z � 1. In this limit, all functions are

O(1). Therefore the functions Bi(z) drop out from the final expression because of

the small coefficient c, Ai(z) ≈ Ai(0) = 3−2/3 Γ−1(2/3), Ai′(z) ≈ Ai′−1/3 Γ−1(1/3).

As a result,

y(x) ≈ −(2b)2/3 x Γ(1/3)

31/3 Γ(2/3)
. (3.66)

Expressing everything in terms of the original fields φ and σ, we find

σ(φ) ≈ − m2/3 φ

24/3
√

3π2/3

Γ(1/3)

Γ(2/3)
≈ 0.15 m2/3 φ. (3.67)

This yields
δσ

σ
∼ 0.4m1/3. (3.68)

The COBE normalization requires rm1/3 ∼ 7 × 10−5. Therefore, for m ∼ 10−7

we have r ∼ 0.04 and fNL ∼ 30.

If, on the other hand, the initial value of field φ is much smaller than m−1/3,

then the final result looses its universality and become sensitive to φi. In this case,

one can either use the analytical solution above, with different initial conditions,

or simply use the results of the previous section (one can see that in this case

φσ � 1, and hence the results of Section 3.2.2.3 are valid).

Note that in our calculation of fNL we used Equation (3.51), which was

obtained in [83] under the assumption that the curvaton potential is purely

quadratic. Meanwhile in our case the curvaton potential contains the quadratic

term m2σ2

2
as well as the quartic term m2φ2σ4

16
, see (3.63). This could lead to some

corrections to Equation (3.51) [41, 113]. Fortunately, one can show that during

the last 60 e-foldings of inflation in our model the quartic term is vanishingly

small as compared to the quadratic term. That is why one can use the simple

Equation (3.51) for the calculation of fNL.

3.2.2.5 m2
σ = m2 + αH2, α > 0

Now we will consider the case when the mass of the curvaton field is given by

m2
σ = αH2 +m2 = m2

(
αφ2

6
+ 1

)
, (3.69)
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where we have ignored the correction 3
4
m2φ2σ2, which will be taken into account

in Section 3.2.2.6.

To study this case we consider separately the evolution of perturbations at

αφ2/6 > 1 and αφ2/6 < 1 assuming that during the last 60 e-folds of inflation

the condition αφ2/6 < 1 is satisfied, which means that α . 1/40. Thus during

the last 60 e-folds, m2
σ ≈ m2, and hence one can use the results of Section 3.2.2.2.

Substituting m2 = αH2 = α
3
V in (3.57), we obtain

σ2 (φ) =
1

12π2

φi∫
φ

V 2(φ̃)

V ′
exp

−2α

3

φ̃∫
φ

V

V ′
dφ̄

 dφ̃. (3.70)

For the case of the power-law potential V the integral in (3.70) can be calculated

exactly. In particular, for V = 1
2
m2φ2 and α� φ−2

i ∼ m� φ2 one obtains

σ2 (φ) =
m2

16π2α

(
φ2 +

6

α

)
. (3.71)

Note that this result does not depend on the initial value of the inflaton field. At

the end of the first stage of inflation when αφ2
1/6 = 1, both terms in the brackets

are equal to each other and the averaged value of σ at that time is about

σ(φ1) '
√

3m

2πα
, (3.72)

while the amplitude of the perturbations of field σ is

δσ(φ1) ' m

2π
√
α
. (3.73)

The CMB normalization of the amplitude of the perturbations thus requires

r
δσ

σ
' r

√
α

3
∼ 7× 10−5. (3.74)

Note that in this case the amplitude of the curvaton perturbations does not

depend on the inflaton mass m.

Taking α = 10−4 we find that r ≈ 10−2 and hence fNL ∼ 102. Meanwhile for
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α = 10−2 we should have r ≈ 10−3, which gives fNL ∼ 103.

One may wonder what is the origin of such an incredible sensitivity of the

results to the choice of the parameter α. The answer is that this parameter

makes the mass of the curvaton field much greater than the mass of the inflaton

field at the early stages of inflation. As a result, the distribution of the field σ

shrinks fast while the field φ rolls down.

In the calculations above we have ignored the supergravity correction to the

curvaton mass squared: 3
4
m2φ2σ2 = 9

2
H2σ2. As we will show in the next section

this correction can be ignored only if α� 10−1m2/3 and hence the results of this

section are applicable only in this case.

3.2.2.6 m2
σ = m2 + αH2 + 9

2
H2σ2, α > 0

Now we will study the curvaton perturbations in the theory with the general

potential

V =
m2φ2

2
+
m2σ2

2
+
m2φ2σ4

16
+ α

m2φ2σ2

6
, (3.75)

which corresponds to the curvaton mass (3.48). For σ2 � 1 Equation (3.56)

becomes
dy

dx
=
y

x
+
αy

3
+
y2

4
− bx, (3.76)

where x = φ2, y = σ2, b = m2

96π2 . In this case, unlike to Equation (3.64), there

is no exact analytical solution. Nevertheless one can investigate the solutions of

this equation using the phase diagram method. If inflation lasts long enough, all

solutions, independently of the initial conditions, converge at a certain attractor

trajectory in the phase space (y, x), or, equivalently in the space (σ, φ), see Fig.

3.1. For large φ, this attractor trajectory is given in the leading order by the

solution of the algebraic equation:

ỹ2

4
+ ỹ

(
1

x
+
α

3

)
− bx = 0, (3.77)

which is

ỹ(x) = −2

(
1

x
+
α

3

)
+ 2

√(
1

x
+
α

3

)2

+ bx. (3.78)
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Figure 3.1: Behavior of the average value of the curvaton field σ as a function of
the inflaton field φ, for various initial conditions. As we see, all trajectories which
start at the early stages of inflation (large field φ) converge to the same attractor
solution. We follow it until the field φ becomes O(1) and inflation ends. At large
φ, this solution is very close to the square root of the function (3.78), which is
shown by the blue dashed line.

The existence of the attractor solution implies that if inflation is long enough,

the final results do not depend on the choice of initial conditions for the curvaton

field. We have also found above that in the limit α → 0 one should get the

asymptotic solution (3.67), whereas for large α the asymptotic solution is given

by (3.71), (3.72). One may wonder how large should α become for the switch

between these asymptotic regimes?

To answer this question, let us use the variables:

x = z b−1/3 , y = u b1/3 , α = γ b1/3, (3.79)

in terms of which Equation (3.76) becomes

du

dz
=
u

z
+
γu

3
+
u2

4
− z. (3.80)

After rewriting Equation (3.76) in this form it becomes clear that the behavior of

the solutions is controlled by a single parameter γ = α b−1/3 ∼ 10αm−2/3. One
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can easily understand that the two asymptotic regimes discussed above corre-

sponds to γ � 1 and γ � 1. One can confirm this conclusion by direct numerical

calculations.

This means that the results obtained in Section 3.2.2.4 are valid for α �
10−1m2/3. Meanwhile in the opposite limit α � 10−1m2/3 one should use the

results of Section 3.2.2.5. To give a particular example, let us take m ∼ 10−6.

In this case one can use the results of Section 3.2.2.4 for α � 10−5, whereas for

α� 10−5 one should use the results of Section 3.2.2.5.

3.2.2.7 m2
σ = m2 + αH2 + 9

2
H2σ2, α < 0

Finally, we will study the case α < 0. At first glance in this model the mass

squared of the curvaton field at large H2 and σ = 0 is negative, and therefore one

expects a tachyonic instability. However, similar to the model considered in the

previous section, one can show that for |α| � 10−1m2/3 the effect related to the

negative mass squared contribution αH2 is subdominant and can be ignored. In

this case the results obtained in previous Section 3.2.2.4 are applicable.

For 10−1m2/3 � |α| � 1, the tachyonic instability leads to spontaneous sym-

metry breaking controlled by the supergravity correction 9
2
H2σ2 = 3

4
m2φ2σ2 to

the curvaton mass squared. Indeed, one can show that the minimum of the su-

pergravity potential for the curvaton field, in the regime with |α|, σ � 1, can be

found from the following equation:

σ2 =
2|α|

3
+

4

φ2
. (3.81)

Therefore at large φ and α < 0 the potential has a minimum at

σ2 =
2|α|

3
. (3.82)

This means that during inflation the field σ falls towards this minimum, and its

distribution becomes centered not at σ = 0 but at σ =
√

2|α|
3

. As for the height

of the potential along the trajectory with σ =
√

2|α|
3

, for small |α| it remains

approximately given by m2φ2/2.

When the field φ2 becomes smaller than 6/|α|, the minimum of the potential
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shifts towards σ = 0, and the curvaton mass squared becomes equal to m2.

However, this does not mean that the distribution of the field σ instantly follows

the position of the minimum. Since the mass of the field σ at that time is much

smaller than H, the field σ will move towards σ = 0 very slowly, decreasing at the

same rate as the amplitude of perturbations δσ. As before, we are assuming that

|α| . 1/40, and therefore the curvaton mass squared is given by m2 during the

last 60 e-folds of inflation. This leads to the following result for the perturbations:

δσ

σ
∼ m

√
3

2
√

2π |α|
. (3.83)

For m ∼ 10−7 and α ∼ −10−4 a proper amplitude of perturbations corresponds

to r ≈ 1/3 and, hence, fNL = O(3). However, one can easily increase fNL

by increasing m and/or decreasing |α|. For example, taking m ∼ 10−7 and

α ∼ −10−5 gives fNL ∼ 30.

3.2.2.8 Non-Gaussianity and the curvaton web

In the previous sections we have evaluated the average value of the curvaton field

at the last stages of inflation, and calculated the parameter fNL describing local

non-Gaussianity. However, we should remember that when we were talking about

the classical homogeneous curvaton field σ, we had in mind the long-wavelength

perturbations which look homogeneous on the scales corresponding to the present

observable part of the Universe. In reality this classical field in our model is a

random variable with the expectation value σ̄ =
√
〈δσ2〉 obtained by summing

up the contributions of all long-wavelength fluctuations (larger than the present

horizon) generated on inflation. All calculations above were performed taking σ

to be equal σ̄. However, because σ is a random Gaussian variable it takes different

values in different parts of the Universe of the size of our horizon [80].

To evaluate the observational implications of this fact, let us try to understand

how the amplitude of perturbations of the metric and the local value of fNL depend

on the local value of σ. For simplicity, we will assume that the standard inflaton

perturbations are very small, so that we can ignore them in our investigation.

This can be achieved by considering a model with m � 6 × 10−6. We will also
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assume that the curvaton field density at the moment of the curvaton decay is

much smaller than the total density, i.e. r � 1. In this case, the change of σ

does not affect the total density ρ, but it does affect δρ(σ), which is proportional

to σ. This means that the amplitude of perturbations of the metric produced by

fluctuations of the curvaton field will be proportional to σ
σ̄
:

δρ(σ)

ρ
=
δρ(σ̄)

ρ
· σ
σ̄
. (3.84)

Meanwhile the local value of fNL is inversely proportional to r = ρ(σ)
ρ

. For small

σ, the value of ρ(σ) is proportional to σ2. Therefore

fNL(σ) = fNL(σ̄) · σ̄
2

σ2
. (3.85)

The probability that the curvaton field will take some value much greater than

σ̄, is exponentially small. However, the probability that σ is substantially smaller

than σ̄ can be rather large. To estimate this probability we will make a simplifying

assumption. Namely, we assume that all values of the field S = σ eiθ/
√

2 with

|S| < σ̄ are equally probable, but the probability vanishes for |S| > σ̄. The

maximal value of the curvaton field is σ̄
√

2, the probability to find the field σ

in the interval dσ from 0 to σ̄
√

2 is given by σdσ
σ̄2 , and the average value of the

curvaton field is σ̄, as it should be.

Now let us evaluate the average value of the amplitude of density perturba-

tions, averaged over all possible values of σ:

〈
δρ(σ)

ρ

〉
' δρ(σ̄)

ρ

σ̄
√

2∫
0

σ

σ̄

σdσ

σ̄2
' 2
√

2

3

δρ(σ̄)

ρ
. (3.86)

Thus, the average amplitude of the curvaton perturbations almost exactly co-

incides with the amplitude of perturbations in the Universe with an average

curvaton field σ̄.

However, the situation with 〈fNL〉 is quite different. Since fNL is proportional

to σ−2, its expectation value over the whole Universe acquires a divergent con-

tribution from the parts of the Universe with small σ. Our calculations are valid
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only for fluctuations produced well before the last 60 e-folds of inflation, with a

combined amplitude σ above O(H). Introducing the cut-off at σ ∼ H ∼ 2πδσ,

we find

〈fNL〉 ' fNL (σ̄)

σ̄
√

2∫
H

( σ̄
σ

)2 σdσ

σ̄2
' fNL (σ̄) ln

(
σ̄√

2πδσ

)
. (3.87)

How significant is the effect discussed above? To give a particular numerical

example, let us consider the case α = 0. In this case, according to Equation

(3.68), one has δσ
σ̄
∼ 0.4m1/3. We found that for m ∼ 10−7 one has fNL(σ̄) ∼ 30.

In this case Equation (3.87) implies that 〈fNL〉 ∼ 5 fNL(σ̄) ∼ 150.

Thus we deal with a significant effect of statistical amplification of non-Gaussianity:

Even though the fraction of the volume of the Universe with fNL(σ)� fNL(σ̄) is

relatively small, the values of fNL in those parts of the Universe can be huge, so

the expectation value of fNL can be much greater than the value of this parameter

fNL(σ̄) calculated in the previous sections.

This effect becomes even stronger in the models where the curvaton field is

real (instead of being a radial part of a complex field). In such models

〈fNL〉 ' fNL (σ̄)

2σ̄∫
H

( σ̄
σ

)2 dσ

σ̄
' fNL (σ̄)

σ̄

2 πδσ
. (3.88)

In the particular example discussed above, δσ
σ̄
∼ 0.4m1/3 and m ∼ 10−7, this

would lead to an enormously large amplification effect: 〈fNL〉 ∼ 102 fNL(σ̄) ∼
3000.

Thus we see that in the curvaton scenario some fraction of the Universe can be

in a state with the curvaton field σ significantly smaller than its average value σ̄.

In such parts of the Universe, the locally observed level of non-Gaussianity will

strongly exceed its value fNL(σ̄) calculated in the previous sections. This effect

is so significant that the average value of the parameter fNL can be much greater

than the value fNL in the part of the Universes with an average value of the field

σ. In other words, operations of averaging in this case are not commutative.

For a complete investigation of this effect one should also take into account

the standard inflationary perturbations of metric. The curvaton perturbations
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are important only in the cases where the standard inflaton perturbations are

suppressed. That is why we assumed that m � 6 × 10−6. But the standard

inflaton perturbations may dominate in the rare parts of the Universe where

σ � σ̄. In such cases one should perform a more detailed investigation of non-

Gaussianity of perturbations produced by all sources.

This means that one should be very careful when formulating predictions for

the non-Gaussianity parameter fNL in the curvaton scenario, because the distri-

bution of possible values of fNL in the curvaton web can be extremely broad.

Moreover, the existence of the anti-correlation between the amplitude of the per-

turbations of the metric
(
δρ(σ)
ρ

)2

and the non-Gaussianity parameter fNL for

r � 1 (see Equations (3.84) and (3.85)) suggests that anthropic considerations

may play a very important role in the evaluation of the probability to live and

make observations in parts of the curvaton web with different values of the non-

Gaussianity parameter fNL [46, 47, 80–82, 117].

The difference between 〈fNL〉 and fNL(σ̄) clearly demonstrates that fNL is

not a perfect tool for the description of non-Gaussianity. As shown in [80], the

distribution of the regions of small (large) perturbations of metric and spikes

of non-Gaussianity has an interesting structure, which we called “the curvaton

web”. This structure has a non-perturbative origin.

Indeed, the non-Gaussianity parameter fNL(σ) takes its largest values in the

regions of the Universe where the classical curvaton field σ is small, see (3.85). In

the theories where the curvaton field is a real, single component field, the regions

of small σ correspond to domain walls separating large domains with σ > 0 from

large domains with σ < 0 [80].

In the theory studied in the present work, the curvaton field σ corresponds to

the radial component of a complex field S. In this case, the regions of small σ

form strings, reminiscent of the cosmic strings which appear due to spontaneous

symmetry breaking. In our case, however, unlike in the usual cosmic string case,

the curvaton strings appear in the places corresponding to the minimum of en-

ergy of the curvaton field. If one considers more complicated models, where the

curvaton has O(3) symmetry, instead of the domain walls and cosmic strings one

will have localized objects reminiscent of global monopoles. In other words, the

distribution of the peaks of non-Gaussianity in the curvaton scenario has topolog-
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ical origin, which cannot be fully described by the standard tools of perturbation

theory, such as fNL and gNL.

3.2.2.9 Discussion

We discussed the curvaton scenario, which naturally emerges in the simplest

supergravity realization of the chaotic inflation scenario [63, 64, 66]. The inves-

tigation of this scenario consists of several parts. The main step is to find an

average value of the curvaton field σ after a long stage of inflation. One needs

this to calculate the amplitude of perturbations of the density of the curvaton

field. We performed this investigation by analyzing the growth of the curvaton

perturbations during inflation.

To conclude this investigation, one should find the ratio r of the energy of the

curvaton field to the energy density of all other particles and fields at the time of

the curvaton decay. This is a complicated and model-dependent problem, which

requires the study of reheating after inflation, the decay rate of the curvaton

field, and the composition of matter at the time of the curvaton decay. Here we

simply treated r as a free phenomenological parameter, but one should remember

that all of the issues mentioned above should be addressed in a more detailed

investigation.

We analyzed the model with the simplest quadratic inflaton potential and with

the curvaton mass given by αH2 + m2. Our investigation demonstrates that if

inflation is long enough, then the average value of the curvaton contribution to

the amplitude of metric perturbations, as well as the averaged value of the non-

Gaussianity parameter fNL, do not depend on initial conditions for the curvaton

field. The final results depend on the inflaton mass m, and on the parameter

α, which is related to the curvature of the Kähler manifold [64]. However, the

locally observable parameter fNL and the amplitude of the curvaton perturbations

may take different values in different parts of the Universe and in certain cases

they may significantly deviate from their averaged values [80]. Moreover, the

average value of the parameter fNL can be much greater than the value fNL in

the part of the Universe with an average value of the field σ. For a certain choice

of parameters, the value of the non-Gaussianity parameter fNL can be in the
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observationally interesting range from O(10) to O(100).

The curvaton perturbations in our simple model have a flat spectrum. This

is a consequence of the degeneracy of the masses of the inflaton and curvaton

field at the end of inflation. One can change the spectral index by switching to a

theory with a different inflaton potential. This can be easily realized in the new

class of chaotic inflation models in supergravity, or by splitting the spectrum of

fluctuations of the curvaton field into two branches with different masses [63, 64].

The last possibility can be realized by modifying the Kähler potential, or by

adding a term ∼ S3 to the superpotential.

Another interesting possibility is to take the inflaton mass just a little bit

smaller than m ∼ 6 × 10−6, to decrease the amplitude of the standard inflaton

perturbations. Then one may compensate for this decrease by adding a small

contribution of the curvaton fluctuations. This will result in a smaller amplitude

of tensor modes and a larger spectral index ns, which would improve the agree-

ment of the predictions of the simplest chaotic inflation models with the WMAP

data. Also, as our calculations demonstrate, for certain values of parameters even

a small contribution of the curvaton perturbations may dramatically increase the

non-Gaussianity of the combined spectrum of perturbations of metric.

Thus, whereas the curvaton models are more complicated than the single-field

inflationary models, they make the resulting scenario much more flexible, which

may be important for a proper interpretation [38] of the coming observational

data.

Our final comment deals with the topological features of the distribution of

perturbations in the curvaton scenario. We point out that in the theory of a

single-component real curvaton field, the regions of the Universe with large non-

Gaussianity form domain walls [80], reminiscent of the exponentially thick cosmic

domain walls. Meanwhile in the theory of a complex curvaton field, which was

studied here, the regions of large non-Gaussianity form exponentially thick cosmic

strings. In more complicated theories, these regions may form separate islands

of large local non-Gaussianity, resembling global monopoles. Since these effects

have a non-perturbative, topological origin, non-Gaussianity in the curvaton sce-

nario cannot be fully described by such tools as the familiar perturbation theory

parameters fNL and gNL.
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Chapter 4

Magnetic fields in the early

Universe

Astronomical observations show that all celestial bodies carry magnetic fields.

From planets to interstellar medium, fields of varying strength and extension

have been measured. A particularly interesting case are galaxies, galaxy clusters

and beyond, the intergalactic medium and the Universe at large. These fields

are of the order of a few micro Gauss and they extend over kiloparsecs or more.

Unfortunately their structure is not always simple. Beside a constant compo-

nent they have a complex structure with varying symmetry, which shows that

processing has taken place since their appearance.

In this chapter we want to review the effects and the production mechanisms

of magnetic fields. In Section 4.1 we describe the observational methods used to

measure galactic and extra-galactic magnetic fields and we summarize the obser-

vations of the typical strength detected in galaxies, clusters of galaxies and the

limits on the intergalactic magnetic fields. In Section 4.4 we describe the effects

of a magnetic field on the CMB and in Section 4.5 we consider the constraints

on the amplitude of magnetic fields set by Big Bang nucleosynthesis. Finally in

Section 4.6 we review several mechanisms for magnetogenesis. In this chapter we

follow [51, 65, 126].
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4.1 Large-scale magnetic fields in the Universe

4.2 Observational methods

There are mainly three methods for the observation of galactic and extra-galactic

magnetic fields: the intensity and the polarization of synchrotron emission from

free relativistic electrons, the Faraday rotation measurements of polarized radi-

ation passing through an ionized plasma and the Zeeman splitting of spectral

lines. The Zeeman splitting is a direct method for detecting the magnetic field,

but it is very difficult to observe and at present there are no confirmed detections

in systems beyond the galaxy. Synchrotron emission and Faraday rotation allow

to measure magnetic fields in very distant objects.

4.2.1 Synchrotron emission

Synchrotron radiation refers to the radiation produced when relativistic electrons

interact with a magnetic field. It is used to study magnetic fields ranging from

pulsars to superclusters. The total synchrotron emission provides the strength

of the magnetic field and the degree of polarization gives informations about the

field’s uniformity and structure.

4.2.2 Faraday rotation

The magnetic field in the intracluster medium in clusters of galaxies can be mea-

sured direclty through the effect of the field on the propagation of the linearly

polarized radiation. When passing through an ionized and magnetized plasma,

linearly polarized radiation experiences Faraday rotation, namely a rotation in

time of the electric field vector.

4.2.3 Zeeman splitting

In vacuum, an atom has several electronic configurations with the same energy,

the electronic energy levels are independent of the direction of the angular mo-

mentum vector. A magnetic field breaks this degeneracy by splitting neighboring
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energy levels. This is the most direct method for observing magnetic fields, but

it is very difficult to detect outside our galaxy.

4.3 Observations of magnetic fields

Magnetic fields in galaxies are determined using several methods. Typical strength

in spiral galaxies are around 10 µG. Radio faint galaxies have weaker fields, 5 µG,

while starburst and merging galaxies have the strongest field, between 50 and 100

µG. The magnetic structure observed can be symmetrical and in some cases there

is no recognizable field structure [22].

Magnetic fields have also been measured in clusters of galaxies, through syn-

chrotron emission of electrons spiralling along the field lines and Faraday rota-

tion measurements of polarized emissions crossing the intracluster medium. The

strength detected within clusters of galaxies is of 1 - 10 µG and varies slightly

with the type of cluster. The field structure is not homogeneous, indicating the

presence of a tangled magnetic field [124].

High resolution Faraday rotation measurements have detected magnetic fields

in high redshift objects, such as very far quasars. A particular example is the

quasar 3C191 at z = 1.945 with a field strength in the range of 0.4 - 4 µG [43].

The intergalactic medium is also permeated with magnetic fields. Recently

limits on intergalactic fields have been found using combined data from Atmo-

spheric Cherenkov Telescopes and Fermi Gamma-Ray Space Telescope based on

the spectra of three blazars, 1 × 10−17 G < B < 3 × 10−14 G [44]. Using data

from HESS and Fermi a lower bound of ∼ 10−15 G was imposed [31, 100, 116].

Measurements of intergalactic magnetic fields are very important because they

may allow to distinguish between a cosmological and an astrophysical origin of

the fields and this may open a new window in the understanding of the physics

of the Early Universe.
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4.4 Effects on the Cosmic Microwave Background

4.4.1 A constant magnetic field

A spatially constant magnetic field affects the geometry of the Universe intro-

ducing a shear. The electromagnetic energy-momentum tensor acts as a source

in the Einstein equations and has the form [51]

Tαβem =
1

4π

(
−FαµF β

µ +
1

4
F µνFµν

)
, (4.1)

where F µν is the electromagnetic field tensor. In the presence of a homogeneous

magnetic field directed along the z axis

T 00 = T 11 = T 22 = −T 33 = ρB =
B2

8π
, T 0i = 0, (4.2)

the energy-momentum tensor becomes anisotropic with a positive pressure along

the x and y axes and a negative pressure along the z axis. This anisotropic

pressure gives rise to an anisotropic expansion law. Let us consider the most

axially symmetric model with metric

ds2 = dt2 − a2(t)(dx2 + dy2)− b2(t)dz2, (4.3)

and define α = ȧ/a, β = ḃ/b and r ≡ ρB/ρrad, σ ≡ α − β. Assuming r < 1 and

σ < 1 the Einstein equations will take the following form

d

dt

( σ
H

)
= −

( σ
H

) γ − 2

γt
+

4r

γt
, (4.4)

dr

dt
= − 2r

9γt

(
4
σ

H
+ 9γ − 12

)
, (4.5)

where H = (2α+β) and p = (1−γ)ρ. Substituting the asymptotic value σ → 6r

into (4.5) during the radiation era one finds

r(t) =
q

1 + 4q ln (t/t0)
, (4.6)

66



4.4. Effects on the Cosmic Microwave Background

where q is a constant. Thus the ratio of the magnetic and blackbody radiation

densities is changing logarithmically during the radiation era. We assume that at

the recombination time trec the temperature is everywhere Trec. At the present

time t0 the temperature of relic photons coming from the three directions is

Tx,y = Trec
a

a0

= Trec exp

(
−
∫ t0

trec

αdt

)
, (4.7)

Tz = Trec
b

b0

= Trec exp

(
−
∫ t0

trec

βdt

)
. (4.8)

Therefore the temperature anisotropy is

∆T

T
=
Tx − Tz
Trec

≈ −1

2

∫ t0

trec

σd ln t. (4.9)

This means that a magnetic field, which today has a strength of 10−9− 10−10 G,

would produce a temperature anisotropy ∆T/T . 10−6.

Barrow, Ferreira and Silk [11] derived an upper limit on the present strength

of any primordial homogeneous magnetic field calculating the microwave back-

ground anisotropy created by cosmological magnetic fields. They considered the

cosmological evolution of the most general homogeneous magnetic fields, calcu-

lated their gravitational effect on the temperature anisotropy of the microwave

background radiation and derived a limit on the strength of the field using the

4-year COBE microwave background measurements. They obtained the limit

B(t0) < 3.5× 10−9f 1/2(Ω0h
2
50)1/2G, (4.10)

where f is a O(1) shape factor which accounts for possible non-Gaussian char-

acteristics of the COBE data. From this result we see that COBE data are not

incompatible with magnetic fields of primordial origin.

4.4.2 The effect on the acoustic peaks

The presence of a sizable magnetic field has an effect on the acoustic peaks of the

CMB. Before the last scattering when primordial density fluctuations, generated

on inflation, enter the horizon they create acoustic oscillations in the plasma.
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These oscillations distort the primordial spectrum of anisotropies. The presence

of a primordial magnetic field will also affect the plasma oscillations.

We consider a magnetic field which is homogeneous on scales larger than the

scale of plasma oscillations. We assume that the medium has an infinite electric

conductivity, such that the magnetic flux is constant in time, and that there is no

dissipative effect, λ = 2π/k � ldiss. The magnetic field is B0 +B1, where B0 is

the background field, which is constant in space, and B1 is a small perturbation.

Since the Universe is expanding, B0 ∝ a−2. In this framework the equations of

magnetohydrodynamics in comoving coordinates are

δ̇ +
∇ · v1

a
= 0, (4.11)

v̇1 +
ȧ

a
v1 +

c2
s

a
∇δ +

∇φ1

a
+
B̂0 × (v̇1 × B̂0)

4πa4
+
B̂0 × (∇× B̂1)

4πρ0a5
= 0, (4.12)

∂tB̂1 =
∇× (v1 × B̂0)

a
, (4.13)

∇2φ1 = 4πGρ0

(
δ +

B̂0 · B̂1

4πρ0a4

)
, (4.14)

∇ · B̂1 = 0, (4.15)

where B̂ ≡ Ba2, δ = ρ1/ρ0, v1 are small perturbation on the background density,

gravitational potential and velocity respectively, and cs is the sound velocity.

If there is no magnetic field, there is the ordinary sound wave involving density

fluctuations and longitudinal velocity fluctuations. If a magnetic field is present,

there are three different waves. Two types of scalar waves, the fast and slow

magneto-sonic waves, and the Alfvén waves. Fast magneto-sonic waves are ordi-

nary sound waves which are modified by the presence of the magnetic field, their

velocity is given by c2
+ ∼ c2

s + (k ·B)2/(4πρ). Slow magneto-sonic waves deter-

mine a new form of wave due to the interaction of the charged plasma with the

magnetic field. The third type of waves are the Alfvén waves, they are vector per-

turbations in the plasma velocity, which oscillates. They are generated because

of the coupling of the magnetic field to the charged electron-proton plasma. Fast

magneto-sonic waves cause a slight shift of the acoustic peaks, see Figure 4.1.

This shift might be detectable in CMB experiments.
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Figure 4.1: Modification of the CMB anisotropy spectrum due to the presence of
a magnetic field of strength 2 × 10−7 Gauss (dashed line). The solid line shows
the prediction of standard CDM cosmology. From [1].

4.5 Constraints from Big Bang Nucleosynthesis

Big Bang Nucleosyntesis (BBN) took place between 10−2 and 1 s after the Big

Bang and is responsible for most of the 4He, 3He, D and 7Li in the Universe.

The observational data can be compared to detailed predictions of numerical

calculations. Magnetic fields can alter the predictions of BBN, thus BBN implies

limits on the strength of primordial magnetic fields.

The main effects of the presence of a magnetic field on BBN are related with:

the proton-to-neutron conversion ratio, the expansion and cooling of the Universe

and the electron thermodynamics. Let us briefly explain how a magnetic field

affects them. Firstly, in the early Universe the weak interaction is responsible

for maintaining chemical equilibrium between protons and neutrons. A strong

magnetic field during nucleosynthesis would enhance the conversion rate of neu-

trons into protons and therefore the neutron-to-proton ratio would freeze out at

lower temperature. The result would be a less efficient production of 4He and

of heavier elements [90]. The effect would be too big if B � M2
P/e ∼ 1017 G
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at the time of nucleosynthesis. Secondly, the balance between the time-scale of

the weak interaction and the expansion rate of the Universe determines the tem-

perature at which the proton-to-neutron ratio freezes out. There is equilibrium

when Γn→p ∼ H, where Γn→p is the cross-section of the interaction and H is the

Hubble parameter at that time. H is proportional to the total energy density

of the Universe where the magnetic field is present. Therefore if the magnetic

field is strong, the value of the Hubble parameter would increase and it would

cause an earlier freeze-out of the proton-to-neutron ratio and result into a larger

residual amount of 4He [50, 67]. Finally, a magnetic field would also change the

phase space volume of electrons and positrons, because their momentum compo-

nent normal to the magnetic field would become discrete. So there would be an

increase of the energy density, the number density and the pressure of the elec-

tron gas, with respect to the case without a magnetic field. The increase would

make the photons transfer energy to the lowest Landau level and this would delay

the electron-positron annihilation, which in turn increases the photon-to-baryon

ratio and leads to a lower 3He and D abundances [72].

Numerical calculations which take into account all these effects conclude that

the main consequence on the light elements abundance is given by the field’s

contribution to the expansion rate of the Universe. The overall constraint on the

magnetic field amplitude is B . 7× 10−7 G at the time of galaxy formation [51].

4.6 Generation of large-scale magnetic fields

Many astrophysicists believe that large-scale magnetic fields are generated and

maintained by a dynamo mechanism, which is responsible for the conversion of

kinetic energy of an electrically conducting fluid into magnetic field energy. A seed

field is needed to initiate the dynamo process and various mechanisms have been

proposed to generate this seed field. An alternative to the dynamo mechanism

is to consider that the magnetic field measured today is the primordial one and

that it was not amplified by the dynamo mechanism. In the following we sketch

the idea of the dynamo mechanism and we briefly describe some of the methods

proposed in the literature to directly generate a magnetic field or to obtain a seed

field for the dynamo mechanism.
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4.6.1 The dynamo mechanism

The most common approach to the dynamo mechanism is the mean field dynamo

[51]. It is based on the assumption that fluctuations in the magnetic and ve-

locity fields are much smaller than the mean slowly varying components of the

corresponding quantities. By a suitable averaging of the equation

∂B

∂t
= ∇× (v ×B) +

1

4πσ
∇2B, (4.16)

where σ is the electric conductivity, one obtains the temporal evolution of the

mean component of the magnetic field

∂B0

∂t
= ∇× (αB0 + v0 ×B0)−∇× [(η + β)∇×B0], (4.17)

where

α = −1

3
τc〈v1 · ∇ × v1〉, β =

1

3
τc〈v2

1〉, (4.18)

η = 1/4πσ is the magnetic diffusivity and τc is the correlation time for the

ensemble of random velocities. The coefficient α is proportional to the helicity of

the flow h = 〈v1 · ∇× v1〉, which measures the level to which the streamlines are

twisted. In order to have α ∝ h 6= 0 a macroscopic parity violation is required. A

possible source of this violation can be the Coriolis force produced by the rotation

of the galaxy. If the β term can be neglected, the solution of (4.17) is

B0 = (± sin kz, cos kz, 0)eγt, (4.19)

where z is the coordinate along the galaxy rotation axis and γ = −ηk2 ± αk,

k ∼ 1/L is the wavenumber. The field grows exponentially with time if the

helicity h is non-zero and if the scale L is sufficiently large. Amplification ends

when there is equipartition between the kinetic energy density of the small-scale

turbulent fluid motion and the magnetic energy density. Depending on the details

of the model and on the properties of the medium, in the case of a Universe

dominated by CDM with no cosmological constant, the time to reach saturation

starting from a seed field of strength 10−20 G might be 108 − 109 years. In the

case of a Universe with a cosmological constant, the required seed field might be
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10−30 G [24].

4.6.2 Primordial vorticity

Harrison [54] proposed that primordial magnetic fields can be generated during

the radiation era by plasma vortical motion. The idea is that Thomson scattering

is more efficient for electrons than for ions so their rotational velocities decrease

differently in the expanding Universe in the pre-recombination era. The magnetic

field is generated by an electric current due to an electromotive force created by

the difference between the angular velocities of electrons and ions. Indeed during

the expansion the angular velocity of electrons decreases as ω ∝ a−1 and the one

of ions as ω ∝ a−2, where a is the scale factor. In [55] the author shows that it is

possible to generate a field that at present time has strength 10−8 G on a scale

of 1 Mpc.

However this scenario is not problem free. Rotational, or vector, density per-

turbations decay with the Universe expansion, therefore in order to produce siz-

able effects at recombination time, these perturbations should have been dom-

inant at the radiation-matter equality. This seems in disagreement with the

standard scenario for galaxy formation [109]. Moreover a consequence of the

Helmholtz-Kelvin circulation theorem, which states that the circulation around a

closed curve following the motion of matter is conserved, is that small deviations

from the isotropic Friedmann Universe cannot generate rotational perturbations.

In [122] Vilenkin noticed that parity-violating currents may develop in a vorti-

cal thermal background as a consequence of the parity violation in the Weinberg-

Salam model of the electroweak interaction. In [123] Vilenkin and Leahy proposed

that these currents can generate a strong magnetic field.

4.6.3 Magnetic fields from the electroweak phase transi-

tion

The electroweak phase transition takes place at Tew ∼ 100 GeV. It is the transition

from a symmetric phase with massless gauge bosons to the Higgs phase, in which

the SU(2)× U(1)Y gauge symmetry is spontaneously broken and all the masses
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of the model are generated. First order phase transitions take place by bubble

nucleation. The new bubbles contain phases of broken symmetry, whose sizes

are at most of the order of the horizon at that time. As the Universe expands,

different domains come into causal contact and bubble walls collide with each

other. The generation of magnetic fields is given by processes that occur during

these collisions. Second order phase transitions occur in a regular way and with

an approximate thermal equilibrium throughout the process. A magnetic field

can be created also in this case.

Following [65], the first proposal for a magnetogenesis mechanism based on

first order phase transitions is due to Hogan in [58], where he tried to explain the

effects of the fields on structure formation. In this case during the transition free

energy is orderly released, inducing a dynamo in the wall of the bubble. Thus

each bubble is an independent dynamo producing fields correlated on the scale of

the bubble. The result are randomly oriented field lines that properly averaged

produce a large field which extends over regions that are not causally connected.

Baym, Bödeker and McLerran [16] proposed a dynamo mechanism where seed

fields are provided by thermal fluctuations. The walls of the broken symmetry

bubbles expand creating supersonic shock waves. The collision of these shock

waves generates a turbulent dynamo that amplifies the field. The amplification

proceeds in the following way. The Universe supercools below a critical temper-

ature, Tcr ∼ 100 GeV, then the Higgs field tunnels locally from the unbroken

SU(2) × U(1)Y phase to the broken U(1)em phase. The tunneling forms broken

phase bubbles that expand and convert the false vacuum energy into kinetic en-

ergy. As the shock fronts collide, turbulence forms in the cones of the bubble

intersection. The magnetic field generated by this mechanism at the present time

is B(lgal) ∼ 10−17 − 10−20 G on galactic scales lgal ∼ 109 AU.

In [120] Vachaspati proposed the generation of magnetic fields by second order

phase transitions. Below the critical temperature of the electroweak phase tran-

sition, Tcr, the minimum energy state of the Universe corresponds to a spatially

homogeneous vacuum in which the Higgs field Φ is covariantly constant, namely

DµΦ = (∂µ− ieAµ)Φ = 0. However, during the phase transition and immediately

after it, thermal fluctuations give rise to a finite correlation length, ξ ∼ (eTcr)
−1,

leading to spatial variations both in the Higgs field module and in its SU(2) and
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U(1)Y phases. The variation of the Higgs field results in the presence of electro-

magnetic fields. This magnetic field does not need to be the Maxwell magnetic

field, it can be the magnetic field associated with any of the unbroken symmetries

at the epoch of the phase transition. The value of the field at the present time

for a scale of 100 Kpc is approximately B ∼ 10−30 G.

In [2] and in [39] Ahonen and Enqvist studied the case of an Abelian Higgs

model with the formation of ring-like magnetic fields in collisions of bubbles of

broken phase. The magnetic field which is formed is of the order B ∼ 1020 G

with a coherence length of about 102 GeV−1. They found that when the plasma

is endowed with magnetohydrodynamical turbulence, the coherence scale can be

enhanced by the inverse cascade of the magnetic helicity and the field can reach

the value B ∼ 10−21 G on a comoving scale of 10 Mpc today.

Grasso and Riotto [49] considered the generation of magnetic fields during a

second order electroweak phase transition. They showed that the field generation

is intimately connected to some semiclassical configurations of the gauge fields,

such as electroweak Z-strings and W-condensates. They argued that electroweak

strings are formed during the second order electroweak phase transition. This

mechanism generates a field B ∼ 10−21 G on 1 Mpc scale.

Diaz-Gil et al. [28, 29] analyzed the generation of magnetic fields during

preheating within a scenario of hybrid inflation at the electroweak scale. They

provided a realization of the mechanism proposed by Vachaspati, by which inho-

mogeneities of the Higgs field phases act as sources for the generation of magnetic

fields. Inflation ends at the electroweak scale, then tachyonic preheating devel-

ops and non-linearities in the fields cannot be neglected anymore. Gradients in

the orientation of the Higgs field create magnetic string-like configurations. The

important feature in this scenario is that the induced magnetic fields are helical.

During the electroweak symmetry breaking phase the magnetic fields are squeezed

in string-like structures between the bubbles. The correlation length grows as fast

as the particle horizon and this behaviour is interpreted as an indication that an

inverse cascade of magnetic helicity is in operation. However it is not possible

to extrapolate the late time behaviour because of the limited knowledge on the

primordial plasma features.

In spite of the work done to realize a mechanism for the generation of pri-
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mordial magnetic fields via first order phase transitions, it seems that within the

framework of the standard model a first order electroweak phase transition is

incompatible with the Higgs mass experimental lower bound [62].

4.6.4 Magnetic fields from the quark-hadron phase tran-

sition

In the early Universe at very high temperature a QCD phase transition is pre-

dicted, where a quark-gluon plasma condensates into colorless hadrons. Lattice

computations suggest that the QCD phase transition is of first order and occurs

at TQCD ∼ 150 MeV [61].

This phase transition is first order so it takes place by bubble nucleation. When

the temperature goes below TQCD, bubbles containing the hadronic phase grow

releasing heat in the quark-gluon plasma. When the shock fronts of these bubbles

collide in an out-of-equilibrium process, they reheat the plasma to TQCD, stopping

the bubble growth. From this moment on new bubbles are nucleated in thermal

equilibrium, giving rise to a coexistence phase. The temperature decrease due to

the Universe expansion is compensated by the heat released by the bubbles and

when the expansion wins over, the transition ends and the remaining pockets of

quark-gluon plasma are quickly hadronized.

Quashnock, Loeb and Spergel [106] first proposed the production of magnetic

fields via QCD phase transition. The latent heat released by the deflagration front

produces a pressure gradient up to the shock front and the gradient generates a

radial electric field behind the shock front. This is due to the baryon asym-

metry which makes the baryonic component of the primordial plasma positively

charged. When the shock fronts collide, a turbulent phase starts and vorticity is

generated on the scales of the bubbles. Electric currents circulate on such scales

and magnetic fields are generated. The magnetic field generated on scales 1010

cm, corresponding to 1 AU at present time, is B ∼ 10−17 G. This small strength

is dramatically suppressed if one considers scales of the order of the galactic size

∼ 10 kpc.

Cheng and Olinto [21] focused on the coexistence phase of the phase transition.

They argued that stronger fields can be generated during this phase because of
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the baryon number susceptibility of the two phases. Magnetic fields are generated

by the peculiar motion of the electric dipoles which arises from the convective

transfer of the latent heat released by the expanding bubble walls. The generated

magnetic field is B ∼ 10−16 G in 1 pc scales.

However, in [5] Aoki et al. studied the nature of the QCD transition. They

proved that the QCD transition in the hot early Universe was not a real phase

transition, but an analytic crossover (involving a rapid change, as opposed to a

jump, as the temperature varied). Therefore the results for the generation of

magnetic fields through the QCD phase transition seem invalid.

4.6.5 Magnetic fields from cosmic strings

Cosmic strings are one-dimensional topological defects which formed via the Kib-

ble mechanism during a primordial phase transition. Vachaspati and Vilenkin

[121] proposed that cosmic strings may produce plasma vorticity and magnetic

fields. Vorticity is produced in the wakes of fast moving cosmic strings after the

beginning of structure formation and since the vortical eddies are bounded to

the strings, vorticity does not decay with the Universe expansion. The generated

field is B ∼ 10−18 G and the coherence scale is the scale of the wiggles of the

string and it can be up to 100 kpc.

Avelino and Shellard [6] proposed an alternative model in which vorticity is

produced not by the wiggles, but by the strings themselves, which drag matter

behind them because of a finite dynamical friction. However, the field strength

predicted is very weak (B ∼ 10−23 G today).

Witten predicted larger fields in [127], where he considered the case of super-

conducting cosmic strings. The superconducting charge carriers may be either

bosons or fermions. If primordial magnetic fields pre-exist, they may play a role

charging up the string loops and delaying their collapse. Otherwise supercon-

ducting cosmic strings can generate magnetic fields in a way similar to the one

proposed by Avelino and Shellard.
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Chapter 5

Large-scale magnetic fields and

inflation

The origin of magnetic fields is unknown and many scenarios have been pro-

posed to explain them. Until recently the most accepted idea for the formation

of large-scale magnetic fields was the exponentiation of a seed field as suggested

by Zeldovich and collaborators long ago. This seed mechanism is known as galac-

tic dynamo, the idea is the amplification of a tiny field created early enough by

differential rotation of the galaxies and the subsequent generation of the galactic

and cluster fields, see Section 4.6.1.

However, recent observational developments have cast serious doubts on this pos-

sibility. In fact there are already many reasons to believe that, although this is

a possible mechanism in some cases, it cannot be universal [17, 71]. Some of the

reasons to think that seeding cannot be an answer are simple [20, 51]. First, the

very existence of high z galaxies with fields comparable to the one of the Milky

Way is incompatible with the necessary number of turns. Second, the narrowness

of the distribution, most galaxies and clusters have fields of a few micro Gauss,

and this is not compatible with the different number of rotations and the pa-

rameters involved in every galaxy. Furthermore, magnetic fields seem to increase

with redshift. Though the evidence is not overwhelming, the sample of Faraday

rotations measured is now consistent with an increase and the set includes tens

of galaxies showing this pattern. Finally, as pointed out by Dolgov, it is difficult
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to create the fields in clusters since even the most efficient ejection from point

bodies in galaxies like supernovas would have difficulty creating them. All put

together, seeding seems to be ruled out and moreover, even if the galactic dy-

namo was effective, one should justify the presence of a seed field which started

the process. This is why the mechanism responsible for the origin of large-scale

magnetic fields should be searched in the early Universe [34, 51]. Among the

mechanisms for the generation of magnetic fields, some of which we have seen in

the previous chapter, inflation seems to be the favourite one, as we will see in the

following.

In this chapter we study how inflation can produce large-scale magnetic fields.

In Section 5.1 we briefly outline some scenarios of inflationary magnetogenesis.

In Section 5.2 we focus on a broad class of these scenarios and study the problem

of the back reaction of the generated field on the background.

5.1 Production of magnetic fields during infla-

tion

As it was noted by Turner and Widrow in [119], inflation is a prime candidate

for the production of magnetic fields for four reasons.

• Inflation provides the means of creating effects on very large scales at

very early times, starting from microphysical processes operating on scales

smaller than the Hubble radius. If electromagnetic quantum fluctuations

are amplified during inflation, they could appear today as large-scale mag-

netic fields (electric fields should be screened by the high conductivity of

the plasma).

• Inflation provides the means to amplify the long-wavelength electromagnetic

waves. If the conformal invariance of the electromagnetic field is broken,

electromagnetic quantum fluctuations could be excited during the de Sitter

expansion. This phenomenon is the analog of the particle production in a

rapidly changing spacetime metric.

• During inflation, the Universe is free from charged plasma and is not a
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good conductor, therefore magnetic flux is not conserved and the ratio of

the magnetic field with the radiation energy density, r = (B2/8π)/ργ, can

increase.

• Classical fluctuations with wavelength λ & H−1 of massless, minimally

coupled fields can grow superadiabatically, i.e. their energy density decreases

only as ∼ a−2, rather than the usual ∼ a−4.

However, in order to generate magnetic fields during inflation, there is a major

problem to overcome. The action for the massless vector field is

S = −1

4

∫
FµνF

µν
√
−gd4x = −1

4

∫
FµρFνσg

µνgρσ
√
−gd4x, (5.1)

where Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ is conformally invariant. It is easy to

see that under conformal transformation gµν → Ω2gµν the determinant transforms

as g → Ω8g and gµν → Ω−2gµν . This is the reason why in the Friedmann Universe

with the metric

ds2 = a2 (η)
(
dη2 − δikdxidxk

)
, (5.2)

the conformal vacuum is preserved. Therefore, if we want to amplify quantum

fluctuations on inflation and thus explain the origin of primordial magnetic fields,

the conformal invariance of electromagnetism must be broken.

Several ways out this obstacle have been proposed. Turner and Widrow [119]

considered the following possibilities. First they investigated the case where the

conformal invariance is broken explicitly by introducing a gravitational coupling

like

L = −1

4
FµνF

µν +
b

2
RAµA

µ − c

2
RµνA

µAν . (5.3)

The first term is the usual Maxwell Lagrangian and the other terms are the

new interactions which break the conformal invariance and give to the photon

a non-zero, time-dependent mass. In fact, one of the most severe constraints

to this scenario comes from the experimental upper limit to the photon mass,

which is mγ < 2 × 10−16 eV. The authors showed that for some suitable choice

of the parameters which enter in the Lagrangian, the strength of the generated

magnetic field could be astrophysically interesting, even without invoking the
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galactic dynamo mechanism. They consider also other possibilities:

(a) the coupling of gravitational and electromagnetic fields through terms of

the form RF 2:

L = −1

4
FµνF

µν − 1

4m2
e

(bRFµνF
µν + cRµνF

µκF ν
κ + dRµνλκF

µνF λκ), (5.4)

where me is the electron mass;

(b) a massless, charged scalar field, minimally coupled to both gravity and the

elctromagnetic fields:

L = −Dµφ(Dµφ)∗ − 1

4
FµνF

µν , (5.5)

where Dµ = ∂µ − ieAµ;

(c) the axion electrodynamics. For energies well below the Pecci-Quinn symmetry-

breaking scale fa, the effective Lagrangian for axion electrodynamics is

L = −1

2
∂µθ∂

µθ − 1

4
FµνF

µν + gaθFµνF̃
µν , (5.6)

where ga is a coupling constant, θ = φa/fa, φa is the axion field and F̃ is

the dual of F .

However, these scenarios do not give an appreciable result.

Another way to produce fields large enough to seed the dynamo is proposed by

Dolgov and Silk [33]. They considered the spontaneous breaking of the gauge sym-

metry of electromagnetism which implies non-conservation of the electric charge.

In [32] Dolgov considers the breaking of conformal invariance due to the trace

anomaly, i.e. the trace of the energy-momentum tensor which should be zero in

conformally invariant theory becomes non-vanishing due to the triangle diagram

connecting two photons to a graviton. This may lead to strong electromagnetic

amplification during inflation. In fact the quantum anomaly results in the fol-

lowing modification of the Maxwell equations:

∂µF
µ
ν + κ

∂µa

a
F µ
ν = 0, (5.7)
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where a = a(η) is the scale factor and η is the conformal time. The numerical

coefficient κ in SU(N) gauge theory with Nf charged fermions is equal to κ =

α/π(11N/3 − 2Nf/3). Here α is the fine structure constant at the momentum

transfer p equal to the Hubble parameter during inflation p = H. Equation (5.7)

in the Fourier space gives rise to the equation

A′′ + k2A+ κ
a′

a
A′ = 0, (5.8)

where A is the amplitude of the vector potential. From equation (5.8), Dolgov

found that the energy density of the electromagnetic field generated during in-

flation at the moment when its wave reenters the horizon is F 2
µν(Hλ)κ/λ4 and

for κ ∼ O(1) the amplitude of the magnetic field can be large enough to seed

the observed magnetic fields in galaxies. The additional anomalous term can

produce magnetic fields large enough even without a dynamo amplification. The

magnitude of the effect is too small in the case of the contribution of one electron

loop, but in theories with many charged particles, e.g. grand unified theories, the

effect may be significant.

In [118] the authors proposed to break the conformal invariance adding by

hand a mass term m2gµνAµAν/2 to the Lagrangian. Several models can show

this behaviour. First they consider inflation with two scalar fields, s real and

φ complex, where φ couples minimally to the photon field Aµ, giving it a mass

m2
A = 2e2|φ|2. The potential is Vss

2 +mφ|φ|2/2+λφ|φ|4/4−gs2|φ|2/2, where Vs is

an increasing function. During inflation, s and |φ| decrease as they roll along the

curve |φ| =
√

(gs2 −m2
φ)/λφ until s < mφ/

√
g, after which |φ| = 0. The second

possibility is given by the back reaction of the vacuum fluctuations of a scalar

field 〈Φ†Φ〉 on the equation of motion of a minimally coupled gauge field. During

inflation 〈Φ†Φ〉 grows and it would give a mass 2e2〈Φ†Φ〉 to the photon. If Φ

decays soon after inflation, the mass goes to zero. This would be the case if Φ is

a heavy squark field or the electroweak Higgs field and the electroweak symmetry

is restored by reheating. All these mechanisms result in a gauge field spectrum

Ak ∼ k−1−ν ∼ k−3/2, corresponding to a magnetic field Bl ∼ l−3/2+ν ∼ l−1, where

l is the relevant coherence scale and ν ' 1/2. This scenario can give rise to a

seed field for the dynamo mechanism.
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As we discussed above, conformal invariance of the electromagnetism is spoiled

if the electromagnetic field is coupled to a scalar field. In [107] Ratra suggested

a coupling of the form eκφF µνFµν , where κ is an arbitrary parameter. This

kind of coupling is produced in some peculiar scenarios of inflation [108] with

an exponential inflaton potential. This model may lead to a huge amplification

of the electromagnetic quantum fluctuations and the present time intergalactic

magnetic field can be as large as 10−9 G. However, depending on the parameters

of the model, the predicted field could also be as low as 10−65 G.

A slightly more predictive model has been proposed independently by Lemoine

and Lemoine [73] and Gasperini, Giovannini and Veneziano [48] and is based on

string cosmology. In this scenario the electromagnetic field is coupled not only to

the metric gµν , but also to the dilaton field φ. In the low energy limit of the theory

and after the dimensional reduction from 10 to 4 spacetime dimensions, such a

coupling takes the form
√
−ge−φF µνFµν , breaks the conformal invariance of the

electromagnetic field and coincides with the coupling considered by Ratra [107].

While Ratra assumed that inflation is driven by the scalar field potential, in string

cosmology there is the problem that dilaton potentials are too steep to produce

the required slow roll of the inflaton field. Thus they assumed that inflation is

driven by the kinetic part of the dilaton field. In this scenario the Universe evolves

from a flat, cold and weakly coupled (φ = −∞) initial unstable vacuum state

toward a curved, dilaton-driven, strong coupling regime. This period is called

pre-Big-Bang phase and is the time when electromagnetic field amplification from

vacuum quantum fluctuations takes place. Lemoine and Lemoine [73] estimate

that in the most simple model of dilaton-driven inflation a very tiny magnetic

field is predicted today. Gasperini et al. [48] claim that larger magnetic fields

can be produced on protogalactic scales. This is due to the presence of a new

phase between the dilaton-dominated phase and the FRW phase during which

the dilaton potential is non-vanishing. The new phase is called string phase and

should start when the string length scale λs becomes comparable to the horizon

size at the conformal time ηs. Unfortunately the duration of this phase is unknown

and this makes the model not very predictive.

A more general way to break the conformal invariance is proposed by Bamba

and Sasaki [7]. They considered a coupling of the form IF 2, where I can be a
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function of non-trivial background fields that vary in time. The generation of

magnetic fields with large amplitude is archieved if the function I is extremely

small at the beginning and increases rapidly in time during inflation.

A similar coupling is studied by Martin and Yokoyama in [89]. The infla-

ton field is described in a supergravity framework where the conformal invari-

ance of the electromagnetic field is naturally broken with a coupling of the form

f 2(φ)F µνFµν , where φ is the inflaton field. They determined the form of the cou-

pling that is consistent with the magnetic field observations for different inflation-

ary scenarios. In finding the form of the coupling they also took into account the

problem of the back reaction of the magnetic field on the background. Then they

studied whether the required coupling can naturally emerge in well-motivated

models, but they realized that this is nontrivial and can be realized only for a

restricted class of scenarios, among which power-law inflation. However, this sce-

nario seems consistent only if the energy scale of inflation is low and the reheating

stage is prolonged.

An interesting possibility was studied by Durrer, Hollenstein and Jain in [35].

They considered the generation of helical magnetic fields during single-field in-

flation, where a coupling to the parity-violating term F̃F , i.e. a term f(φ)F̃F ,

is added to the standard electromagnetic action F 2, where F̃ is the dual of F

and φ is the inflaton. As a consequence magnetic helicity is generated. This has

two effects. Helical magnetic fields evolve in the cosmic magnetohydrodynamic

plasma via inverse cascade and this transfers power from small to large scales, so

that even blue spectra can lead to significant power on large scales. Second, since

helical magnetic fields violate parity symmetry, they leave a very distinctive sig-

nature and therefore observable effects, e.g. correlations between the anisotropies

in the temperature and B-polarization, or in the E- and the B-polarizations in

the CMB. They showed that a helical coupling always leads to a spectral index

n = 1 for B2(k) ∼ kn, as long as slow-roll inflation is considered. Even though

the inverse cascade in the radiation dominated era after inflation moves power to

larger scales, the final strength of the magnetic field on cosmologically interest-

ing scales is still insufficient to provide seeds for the observed magnetic fields in

galaxies and clusters, except if the inflation scale is low, T∗ < 104 Gev and the

axial coupling is very strong.
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5.2 Back reaction of the generated magnetic fields

In this section we follow our paper [27]. We consider a broad class of models

where conformal invariance is broken during inflation and investigate the back

reaction of the generated magnetic field on the background. We show that the

back reaction is very important and leads to rather strong bounds on the maximal

value of the strength of primordial magnetic fields which seems not enough to

explain the observed fields as a result of amplification of these primordial seeds

by dynamo mechanism.

In the previous section we have seen that if we want to explain the origin of

primordial magnetic fields via amplification of quantum fluctuations on inflation,

the conformal invariance of electromagnetism must be broken. Most of the models

considered above are effectively reduced either to the appearance of an effective

mass or a time dependent coupling constant. Both of these options are taken into

account if we write the action in the form

S =

∫ (
−1

4
I2FµνF

µν +M2AµA
µ

)√
−gd4x. (5.9)

Here I(t) = I(φ(t), · · · ), where φ can be the inflaton, dilaton or some other

scalar field and the dots can be anything, for instance, invariants of the curvature

[7, 48, 107]. The appearance of the time dependence of the coefficient in front

of F 2 term is naturally interpreted as a time-dependent coupling constant of the

vector field. In fact if we write the Lagrangian density of the vector field coupled

with a charged fermion in the standard form as

L = −1

4
FµνF

µν + iψ̄γµ(∂µ + igAµ)ψ, (5.10)

where g is the coupling constant, then after rescaling the vector potential by the

coupling constant Aµ → gAµ we bring this Lagrangian to the form

L = − 1

4g2
FµνF

µν + iψ̄γµ(∂µ + iAµ)ψ, (5.11)

which is “ready” for introducing a time-dependent coupling constant. Note that I

is an inverse coupling constant and small values of I correspond to a large coupling
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constant g, which in turn would mean that we are in an uncontrollably strong

coupling regime. Only if I is large we can trust the theory. For our purposes

we do not need to specify in more detail the origin of the time dependence of I

here. Note that the time-dependent effective coupling leaves the Lagrangian to

be U (1) gauge-invariant.

The mass term introduced by “hand” spoils gauge invariance. Only when it is

generated via Higgs mechanism the gauge invariance is preserved. On the other

hand as it was noticed already in [119], large enough magnetic fields can be ob-

tained only if M2 is negative during inflation. However, to generate negative mass

squared term via Higgs mechanism one needs a ghost scalar field with negative

kinetic energy [37, 57]. As it is well known, ghosts lead to catastrophic instabili-

ties and therefore we will not exploit this possibility any further here. Instead we

introduce the effective negative mass square terms considering the non-minimal

coupling of the vector field to gravity, so that,

M2 = m2 + ξR, (5.12)

where for generality we also keep the “hard” mass term m2, assuming that it is

positive.

Let us now rewrite the action (5.9) in terms of the vector potential Aα =

(A0, Ai) . It is convenient to decompose the spatial part of the vector potential

in terms of its transverse and longitudinal components Ai = ATi + ∂iχ, where

∂iA
T
i = 0 (we will be assuming summation over repeated indices irrespective of

their position). In the homogeneous flat Universe with metric (5.2), the action

(5.9) then becomes

S =
1

2

∫
[I2
(
AT ′i A

T ′
i + ATi ∆ATi + 2A0∆χ′ − A0∆A0 − χ′∆χ′

)
+M2a2

(
A2

0 + χ∆χ− ATi ATi
)
]d4x, (5.13)

where prime denotes the derivative with respect to the conformal time η. We will

consider different cases separately.
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5.2.1 Time dependent coupling

Let us first consider the case when M2 = 0 and I = I (t) . Then the variation of

the action (5.13) with respect to A0 gives A0 = χ′, and the action simplifies to

S =
1

2

∫
I2
(
AT ′i A

T ′
i + ATi ∆ATi

)
d4x. (5.14)

Substituting the expansion

ATi (x,η) =
∑
σ=1,2

∫
A

(σ)
k (η)ε

(σ)
i (k)eik·x

d3k

(2π)3/2
, (5.15)

where ε
(σ)
i (k), σ = 1, 2 are two orthogonal polarization vectors, into (5.14), we

obtain

S =
1

2

∑
σ=1,2

∫
I2ε

(σ)
i (k)ε

(σ)
i (−k)

(
A

(σ)′
k A

(σ)′
−k − k

2A
(σ)
k A

(σ)
−k

)
dηd3k. (5.16)

Rewritten in terms of the new variable

v
(σ)
k =

√
ε

(σ)
i ε

(σ)
i IA

(σ)
k , (5.17)

this action becomes

S =
1

2

∑
σ=1,2

∫ (
v

(σ)′
k v

(σ)′
−k −

(
k2 − I ′′

I

)
v

(σ)
k v

(σ)
−k

)
dηd3k. (5.18)

It describes two real scalar fields with time-dependent effective masses in terms

of their Fourier components.

We are interested in the correlation functions of the transverse components of

the vector potential and magnetic field assuming that initially the field was in

its vacuum state. The quantization of the fields with action (5.18) is standard

and we will simply summarize here the results referring the reader to [93, 94]

for the details. Taking into account (5.17) and (5.15), we immediately find the
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5.2. Back reaction of the generated magnetic fields

correlation function

< 0|ÂTi (η,x)ÂT i(η,y)|0 >= − 1

4π2a2I2

∑
σ=1,2

∫
|v(σ)
k (η)|2k3 sin k|x− y|

k|x− y|
dk

k
,

(5.19)

where v
(σ)
k (η) satisfy the equations

v
(σ)′′
k + ω2 (η) v

(σ)
k = 0, ω2 (η) ≡

(
k2 − I ′′

I

)
, (5.20)

which immediately follow from action (5.18). The initial conditions for these

equations corresponding to the initial vacuum state at ηi are

v
(σ)
k (ηi) =

1√
ω (ηi)

, v
(σ)′
k (ηi) = i

√
ω (ηi). (5.21)

These initial conditions make sense only if ω2 > 0. Anyway, we will need them

only for the short-wavelength modes for which ω2 ' k2. The power spectrum

characterizing the typical amplitude squared of the invariant magnitude of the

vector potential, A =
√
−AiAi, in the appropriate comoving scale λ = 2π/k is

δ2
A (k, η) =

∑
σ=1,2

|v(σ)
k (η)|2k3

4π2a2I2
. (5.22)

Taking into account that the magnitude of the magnetic field is

B2 = −BiB
i =

1

2a4
FikFik =

1

a4
(∂iAk∂iAk − ∂kAi∂iAk) , (5.23)

we obtain for the power spectrum of the magnetic field

δ2
B (k, η) = δ2

A (k, η)
k2

a2
=
∑
σ=1,2

|v(σ)
k (η)|2k5

4π2a4I2
, (5.24)

that is, its amplitude decays faster by an extra power of the scale compared to the

amplitude of the vector potential. For example, a flat spectrum of the magnetic

field (δB (k) = const) corresponds to the linearly growing towards large scales

spectrum for the vector potential, that is, δA (k, η) ∝ k−1.
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5. LARGE-SCALE MAGNETIC FIELDS AND INFLATION

We will need to control the back reaction of the generated electromagnetic

field on the background. For this purpose let us calculate the expectation value

of the energy density equal to T 0
0 component of the energy-momentum tensor:

T 0
0 = I2

(
1

4
FαβF

αβ − F0αF
0α

)
=

I2

2a4

(
AT ′i A

T ′
i + ∂iA

T
k ∂iA

T
k

)
. (5.25)

Taking into account (5.15) and (5.17) we obtain

εEM = < 0|T̂ 0
0 |0 > (5.26)

=
1

8π2a4

∑
σ=1,2

∫ [
|v(σ)′
k (η)|2 − I ′

I
|v(σ)
k (η)|2′ +

(
I ′2

I2
+ k2

)
|v(σ)
k (η)|2

]
k3dk

k
.

Let us assume that the function I depends on time during inflation and find the

resulting spectrum of the magnetic field at the end of inflation. For short waves

with k |η| � 1 we can neglect I ′′/I compared to k2 in (5.20) and the solution of

this equation with vacuum initial conditions (5.21) then becomes

v
(σ)
k (η) ' 1√

k
eik(η−ηi). (5.27)

Because |η| decreases during inflation, at some moment |ηk| ' 1/k the physical

scale of the wave with comoving wavenumber k begins to exceed the curvature

scale and taking into account that k2 � I ′′/I, we can write the general longwave

solution of (5.20) as

v
(σ)
k (η) ' C1I + C2I

∫
dη

I2
, (5.28)

where C1 and C2 are the constants of integration which have to be fixed by

matching this solution to (5.27) at |ηk| ' 1/k. Let us assume that I is a power-

law function of the scale factor during inflation

I = If

(
a

af

)n
, (5.29)
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5.2. Back reaction of the generated magnetic fields

where af is the scale factor at the end of inflation. Taking into account that

dη =
da

Ha2
, (5.30)

and the Hubble constant H does not change significantly during inflation, we

obtain from (5.28)

v
(σ)
k (η) ' C1a

n + C2a
−n−1. (5.31)

5.2.1.1 Strong coupling case

In the case n > −1/2 the first mode dominates and, matching solutions (5.27)

and (5.31) at |ηk| ' 1/k, we find

v
(σ)
k (η) ' 1√

k

(
a

ak

)n
' 1√

k

(
HIa

k

)n
, (5.32)

where we have taken into account that at the moment ηk, when the corresponding

wave crosses the Hubble scale, the scale factor is ak ' k/HI . Substituting (5.32)

into (5.24) we obtain at the end of inflation

δB (λph, ηf ) '
H2
I√

2πIf

(
λph

H−1
I

)n−2

, (5.33)

where λph = af/k is the physical wavelength and HI is the Hubble constant on

inflation. This formula is valid for H−1
I (af/ai) > λph > H−1

I , where ai is the value

of the scale factor at the beginning of inflation. If n = 2, the spectrum of the

magnetic field is flat. For H2
I ' 10−12 (in Planck units), required by primordial

inhomogeneities [93], and If ' O (1) , the amplitude of the field is the same in all

scales and it is equal to δB ' 10−12 Planck units or ∼ 1046 G immediately after

inflation. Later on the magnetic field is frozen and decays inversely proportional

to the scale factor squared. To estimate how much the scale factor increases after

inflation, we can use the entropy conservation law. Assuming that inflation is

followed by the dust dominated stage we obtain

a0

af
' g1/12H

1/2
I

T0

(
aR
af

)1/4

, (5.34)
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where g is the number of relativistic degrees of freedom of those particles which

later on transfer their entropy to the photons, T0 is the temperature of the back-

ground radiation today and aR the scale factor at the moment of reheating. The

lower bound on this ratio is obtained by assuming that reheating happens im-

mediately after inflation. In this case for HI ' 10−6 we have a0/af ' 1029 and

correspondingly the strength of the generated magnetic field cannot exceed 10−12

G.

Let us calculate the energy density of the generated magnetic field. The main

contribution to the energy density comes from the scales exceeding H−1
I because

the contribution from the subhorizon scales is renormalized in the leading order.

In the case where the dominant mode v ∝ I and AT ∝ v/I ∝ const, the time

derivatives of the vector potential in (5.25) contribute only in subleading k2 order

and their contribution is comparable to the contribution of the magnetic field itself

given by the last term in (5.26). Thus we obtain

εEM =
O (1)

a4

∫ HIa

HIai

|vk(η)|2k4dk, (5.35)

where ai is the value of the scale factor at the beginning of inflation. Substituting

(5.32) into (5.35) we find that at the end of inflation when a = af

εEM = O (1)H4
I ×


1

2−n , n < 2,

ln
(
af
ai

)
, for n = 2,

1
n−2

(
af
ai

)2(n−2)

, n > 2.

(5.36)

We see that the magnetic field energy can be comparable with the energy density

of the background only for n ≥ 2. Requiring that inflation should last at least

75 e-folds, we obtain that the contribution of the magnetic field energy density

does not spoil inflation, that is, εEM is smaller that H2
I until the end of inflation,

only if n−2 < 0.2. Thus, we can have a magnetic field spectrum which is slightly

growing toward large scales. In particular, for n ' 2.2 the amplitude of the

magnetic field in Mpc scales can be larger by a factor 105 compared to the above

considered case of the flat spectrum, that is, δB ' 10−7 G today. This is the

greatest amplitude of the primordial magnetic field which we can obtain in the
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above considered case. Note that the theory where I grows with the scale factor

corresponds to the case where the effective coupling constant, which is inversely

proportional to I, is incredibly large at the beginning of inflation and becomes

of the order of one at the end of inflation. Hence at the beginning we are in a

strongly coupled regime where such a theory is not trustable at all.

The case considered above is the only one in which we can generate strong

enough fields on inflation. Let us show that in all other cases there is very strong

bound on the possible value of the generated field due to the back reaction of this

field on the background.

5.2.1.2 Weak coupling case

For n < −1/2 the second term in (5.31) dominates and

vk (η) ∝ a−n−1. (5.37)

In this case the result follows immediately by substituting in the formulae (5.32)

and (5.33) −n− 1 instead of n, so that

v
(σ)
k (η) ' 1√

k

(
a

ak

)−n−1

' 1√
k

(
HIa

k

)−n−1

, (5.38)

and

δB (λph, ηf ) '
H2
I√

2πIf

(
λph

H−1
I

)−n−3

. (5.39)

Thus the spectrum of the magnetic field is flat for n = −3. This case corresponds

to the coupling constant growing as I−1 ∝ a3, that is, it changes from extremely

small values at the beginning of inflation to values of order of unity at the end

of inflation. Thus the theory is trustable everywhere. However, here the back

reaction of the field is very large because A ∝ v/I ∝ a−2n−1 changes very fast and

the main contribution to the energy density comes from the time derivative of

the vector potential in (5.25), that is, from the electric field. Substituting (5.38)
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in (5.26) we obtain that at the end of inflation

εEM '
4n2 + 4n+ 1

8π2
H4
I ×


1

n+2
, n > −2,

ln
(
af
ai

)
, for n = −2,

− 1
n+2

(
af
ai

)−2(n+2)

, n < −2.

(5.40)

Requiring that inflation should last at least 75 e-folds, we find that εEM < H2
I

at the end of inflation only if n > −2.2. Thus the flat spectrum of the magnetic

field cannot be generated during inflation because in this case the back reaction

of the electromagnetic field would spoil inflation too early. In the most favorable

admissible case n ' −2.2, the amplitude of the magnetic field decays as δB ∝ λ−0.8
ph

and its value cannot exceed 10−32 G in Mpc scales today. Thus in this model

with weak coupling constant during inflation one cannot explain the origin of the

primordial magnetic field.

5.2.2 Massive field

Now we set I = 1 and consider the case where magnetic fields are generated by

the mass term in the action. Variation of action (5.13) with respect to A0 gives

∆χ′ −∆A0 +M2a2A0 = 0. (5.41)

Taking the Fourier transform

χ(x,η) =

∫
χk(η)eik·x

d3k

(2π)3/2
, A0(x,η) =

∫
A0k(η)eik·x

d3k

(2π)3/2
, (5.42)

we obtain from here

A0k =
k2

k2 +M2a2
χ′k ≡ Fkχ

′
k. (5.43)
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Substituting into the action (5.13) the expansions (5.15), (5.42) and using (5.43)

to express A0k in terms χ′k we obtain

S =
1

2

∑
σ=1,2

∫ (
v

(σ)′
k v

(σ)′
−k −

(
k2 +M2a2

)
v

(σ)
k v

(σ)
−k

)
dηd3k (5.44)

+
1

2

∫
sign (1− Fk)

(
χ̄′kχ̄

′
−k −

(
k2 +M2a2 −

√
|1− Fk|

′′√
|1− Fk|

)
χ̄kχ̄−k

)
dηd3k,

where v
(σ)
k is defined in (5.17) (I = 1), and

χ̄k = k
√
|1− Fk|χk. (5.45)

Thus we see that in the case of massive field the longitudinal degree of freedom

χ becomes dynamical. In the case of positive mass squared, Fk is always smaller

than unity and therefore the sign in front of the longitudinal part of the action is

positive. However, if M2 is negative then 1− Fk is negative for high momentum

modes with k2 > M2a2 and these modes have negative kinetic energy. The

low momentum modes with k2 < M2a2 have positive kinetic energy because Fk

is negative for them. Thus, introducing a tachyonic mass for the vector field

in a “hard” way seems to lead inevitably to the appearance of ghost for high

momentum longitudinal modes [37]. Therefore if we want to avoid catastrophic

instabilities related with ghosts fields we have to consider a tachyonic vector

field only as a low energy effective field theory description of some yet unknown

theory with “safe” ultraviolet completion. On the other hand if negative effective

mass appears as an interaction with the curvature, M2 = ξR, then the field is

massless on scales smaller than the typical distance between particles inducing the

average curvature and thus there is a natural ultraviolet cutoff in the theory. Note

that this argument is not directly applicable in the presence of the cosmological

constant. Let us assume that the problem of ghosts can be somehow solved and

proceed with the calculation of the magnetic field from inflation in the theory

with M2 = m2 + ξR. In the case m = 0 the photon mass is mγ ∼ R1/2, where

R1/2 ∼ H. Today it would be mγ = Htoday ∼ 10−33eV , well below the available

experimental limits on the photon mass. The breaking of charge conservation
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also manifests itself only on scales of the horizon or larger (≥ H−1 ∼ 1028cm)

and hence has no observable consequences.

The equations of motion for transverse and longitudinal modes follow imme-

diately from the action (5.44):

v
(σ)′′
k +

(
k2 +M2a2

)
v

(σ)
k = 0, (5.46)

and

χ̄′′k +

(
k2 +M2a2 −

√
|1− Fk|

′′√
|1− Fk|

)
χ̄k = 0. (5.47)

Let us consider the de Sitter Universe where

a = − 1

HIη
. (5.48)

Taking into account that R = −12H2
I , for m2 = 0 equation (5.46) becomes

v
(σ)′′
k +

(
k2 − 12ξ

η2

)
v

(σ)
k = 0. (5.49)

For short waves with k |η| � 1, the solution of this equation corresponding to

vacuum initial conditions is

v
(σ)
k (η) ' 1√

k
eik(η−ηi). (5.50)

For k |η| � 1 we can neglect the k2 term in (5.49), and the dominating long-

wavelength solution of this equation is

v
(σ)
k (η) ' 1√

k

(
HIa

k

)n
, n =

1

2

(√
1 + 48ξ − 1

)
, (5.51)

where we use the matching conditions at |ηk| ' 1/k to fix the constant of

integration. Since here the calculations are very similar to those in the previous

section we can immediately write the result for the magnetic field:

δB (λph, ηf ) ' O (1)H2
I

(
λph

H−1
I

)n−2

. (5.52)
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For ξ = 1/6 we have n = 1 and the spectrum linearly decays with the scale.

In this case its value today is about 10−37 G in Mpc scales. The flat spectrum

is obtained for ξ = 1/2. However, to find out whether this case is possible, we

have to verify that the back reaction of the magnetic field will not spoil inflation

too early. In the energy density also contributes the longitudinal mode and to

determine its contribution we will need a long-wavelength solution for χ̄k. It is

easy to check that the term which is different in the equations (5.46) and (5.47)

can be neglected for both short-wave and long-wave solutions and hence

χ̄k (η) ' 1√
k

(
HIa

k

)n
, n =

1

2

(√
1 + 48ξ − 1

)
. (5.53)

Variation of action (5.9), where I = 1 and M2 = m2 + ξR, with respect to the

metric gives

T ρµ =
1

4
δρµFαβF

αβ − F ρβFµβ −
1

2
δρµ(m2 + ξR)AαA

α (5.54)

+ (m2 + ξR)AµA
ρ + ξRρ

µAαA
α + ξ[δρµ∇α∇α(AβAβ)−∇µ∇ρ(AβAβ)].

As a result of straightforward but rather lengthy calculations we obtain

< 0|T̂ 0
0 |0 >= εT + εL, (5.55)

where

εT =
1

8π2a4

∑
σ=1,2

∫ [
|v(σ)′
k |

2 − 6ξaH|v(σ)
k |

2′ +
(
k2 +m2a2 + 6ξH2a2

)
|v(σ)
k |

2
]
k3dk

k

(5.56)

is the contribution of the transverse modes and H = a′/a2 is the Hubble constant.

The contribution of the longitudinal mode is given by

εL =
1

8π2a4

∫
(1− F )

{
(1− 6ξbF ) |χ̃′k|2 − 6ξaH

(
1 + F

1− F

)
|χ̃k|2′ (5.57)

+

(
m2a2 + 6ξH2a2

1− F

)
|χ̃k|2

}
k3dk

k
,
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where

χ̃ = χ̄/
√
|1− Fk|, b =

Ḣ + 7H2 + 4H Ṁ
M

M2
. (5.58)

For the longwave modes with k2 � |M2a2| we have Fk � 1, χ̃ ' χ̄ and their

contribution to the total energy density is the same as the contribution of the

transverse mode. It is interesting to note that the longitudinal mode is the ghost

in the de Sitter background. However, in the Friedmann Universe filled by matter

with positive pressure it is not ghost in spite of the fact that the effective mass

squared is negative.

Substituting (5.51) into (5.56) we find that in the leading order the contribu-

tion of the long-wave modes into the energy density in the case m = 0 is

εL ' O (1)
H2
I

a2

(
n2 − 12nξ + 6ξ

) ∫ HIa

HIai

|vk(η)|2k2dk, (5.59)

and calculating the integral we obtain

εL ' O (1)H4
I

(
n2 − 12nξ + 6ξ

)
1

1−n , for n < 1,

1
n−1

(
a
ai

)2(n−1)

, for n > 1.
(5.60)

In the case ξ = 1/6 and when n = 1 the contribution is canceled in the leading

order and k2 terms give a contribution of the order of H4
I , which is the same as

for n < 1. However, for ξ > 1/6, and correspondingly n > 1, the energy density

of the long-wavelengh electromagnetic waves grows with time rather fast. It is

negative and therefore when it becomes of order H2
I inflation is over. Requiring

that inflation should last at least 75 e-folds we find that the contribution of

electromagnetic field does not spoil inflation only if n − 1 < 0.2. Thus, in the

most favorable case of n ' 1.2, the amplitude of the magnetic field decays as

δB ∝ λ−0.8
ph and its value does not exceed 10−32 G in Mpc scales today.

5.2.3 Conclusions

We have studied the generation of large-scale magnetic fields in two classes of

models. In the first case the conformal invariance of the Maxwell field is bro-

ken by a non-minimal coupling of the form RA2, which gives a non-zero time-
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dependent mass to the photon. In the second case the conformal invariance is

violated because of the time-dependent coupling constant, I(t)F µνFµν , where

I(t) = I(φ(t), · · · ) is a general function of nontrivial background fields and φ can

be for instance inflaton or dilaton.

In principle it looks like inflation can strongly amplify the vacuum quantum

fluctuations and therefore can lead to sizable magnetic fields. However, if we

take into account the back reaction of the electromagnetic field and require that

inflation lasts at least 75 e-folds, the strength of the primordial field cannot exceed

10−32 G on Mpc scales and it is not clear whether such a small field can work as

a seed for a possible dynamo mechanism.

Only in the strong coupling case, I(t)F µνFµν , where I = If (a/af )
n and

n ' 2.2, the amplitude can reach the interesting value of 10−7 G today. However,

this case corresponds to the situation where the effective coupling constant is

extremely large at the beginning of inflation and becomes of the order of one at

the end of inflation and hence the theory is not trustable.

We conclude therefore that the models considered above are not efficient in pro-

ducing primordial magnetic fields during inflation and, even if the galactic dy-

namo was effective, the field produced seems to be too small to play the role of

a seed for this mechanism.
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Chapter 6

Conclusions

The success of the inflationary paradigm in describing the observed properties of

the Universe is outstanding. We have seen how inflation can explain the amplifica-

tion of the primordial perturbations, which give rise to all cosmological structures,

and the temperature anisotropies in the CMB, which we observe today through

many experiments. We have shown that so far the simplest model of inflation,

a single-field slow-roll scenario, is in perfect agreement with the observations. In

fact it predicts Gaussian curvature perturbations with an almost scale-invariant

power spectrum. The 7-year WMAP analysis confirms these predictions, but it

leaves an open question about the issue of a possible non-Gaussianity of the per-

turbations. Indeed the value of the non-linearity parameter fNL is found to be

within the range −10 < f localNL < 74 [68]. Therefore inflationary theories which

provide a higher level of non-Gaussianity still fit the data. Many models that

can enhance the level of the primordial non-Gaussianity have been proposed in

the literature. Among them, a simple deviation from the standard scenario is

represented by a theory of inflation with two scalar fields, called the curvaton

scenario.

We have studied the curvaton scenario, describing the generation of curva-

ture perturbations and calculating the level of non-Gaussianity. Then we have

discussed the realization of the curvaton scenario in supergravity in the con-

text of chaotic inflation. We have shown that the observational consequences of

the resulting scenario, which we called supercurvaton, are very interesting. In

fact we have computed the level of non-Gaussianity and we have found that the
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fNL parameter is in the observationally interesting range from O(10) to O(100).

Moreover, our investigation has demonstrated that if inflation is long enough,

then the average value of the curvaton contribution to the amplitude of metric

perturbations, as well as the averaged value of the parameter fNL, do not de-

pend on the initial conditions for the curvaton field. The final results depend

on the inflaton mass m, and on the parameter α. Therefore, while the curvaton

models are more complicated than the single-field inflationary models, they make

the resulting scenario much more flexible, which may be important for a proper

interpretation of the coming observational data.

Further, we have introduced the issue of the ubiquitous presence of large-

scale magnetic fields in the Universe, outlining the basic effects on the CMB and

the constraints coming from Big Bang nucleosynthesis. Then we have presented

various mechanisms for magnetogenesis in the early Universe.

In particular we have focussed on the study of inflationary magnetic fields. In-

flation can amplify quantum fluctuations giving rise to long-wavelength magnetic

fields. The necessary condition is that the conformal invariance of electromag-

netism is broken. In principle it looks like inflation can strongly amplify the

magnetic fields. However, inflationary magnetogenesis is not problem free. In

fact the generated magnetic field might back react on the background spoiling

the inflationary stage. We have briefly reviewed different proposals for the gener-

ation of magnetic fields during inflation and we have noted that in the majority of

the models the breaking of the conformal invariance is effectively reduced either

to the appearance of an effective mass or a time dependent coupling constant.

In the first case the conformal invariance is broken by a non-minimal coupling

of the form RA2 and in the second one because of the time-dependent coupling

constant of the form I(t)F 2, where I(t) = I(φ(t), · · · ) is a general function of

non-trivial background fields. We have studied these two broad classes of models

and provided limits on the generated magnetic fields by taking into account the

back reaction of the electromagnetic field and by requiring that inflation lasts at

least 75 e-folds. The result is that the strength of the primordial field cannot

exceed 10−32 G on Mpc scales. The only case where the amplitude of the field

can reach the interesting value 10−7 G is in the theory I(t)F 2 with I = (a/af )
n
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and n ' 2.2. However, this case corresponds to the situation where the effective

coupling constant, which is inversely proportional to I, is extremely large at the

beginning of inflation and approaches unity at the end of inflation. Hence at the

beginning we are in a strongly coupled regime and the theory is not trustable.

We have concluded that the two broad classes of models we have considered are

very much constrained by requiring that the back reaction of the generated mag-

netic field on the background evolution is small. The back reaction leads to strong

bounds on the maximal value of the field strength, which is not enough to explain

the observed magnetic fields, even if the dynamo mechanism was effective.
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