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ABSTRACT
The analogy between acoustic modes in nonlinear metamaterials and quantum computing platforms constituted of correlated two-level sys-
tems opens new frontiers in information science. We use an inductive procedure to demonstrate scalable initialization of and scalable unitary
transformations on superpositions of states of multiple correlated logical phi-bits, classical nonlinear acoustic analog of qubits. A multiple
phi-bit state representation as a complex vector in a high-dimensional, exponentially scaling Hilbert space is shown to correspond with the
state of logical phi-bits represented in a low-dimensional linearly scaling physical space of an externally driven acoustic metamaterial. Manip-
ulation of the phi-bits in the physical space enables the implementation of a non-trivial multiple phi-bit unitary transformation that scales
exponentially. This scalable transformation operates in parallel on the components of the multiple phi-bit complex state vector, requiring
only a single physical action on the metamaterial. This work demonstrates that acoustic metamaterials offer a viable path toward achieving
massively parallel information processing capabilities that can challenge current quantum computing paradigms.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0188462

I. INTRODUCTION

Quantum information processing paradigms promise a new
era in computational power. A digital quantum computer, con-
stituted of quantum bits (qubits), leverages the properties of the
quantum wave function, i.e., a probability amplitude, which can sup-
port coherent superpositions of multiple qubit states (e.g., entangled
states). However, current quantum computing with multiple qubits
suffers from the fragility of quantum superpositions against pertur-
bations (i.e., decoherence) requiring solutions such as cryogenics
and error corrections, which use significant hardware and soft-
ware resources. Quantum computing is essentially phase computing;
it exploits the possibility of realizing and rotating the coherent
superpositions of states with complex amplitudes of correlated mul-
tipartite systems that are represented as vectors in large, exponen-
tially complex Hilbert spaces. Recently, we demonstrated analogies
between superpositions of states of acoustic waves and quantum

waves, thus potentially offering a decoherence-free acoustic-phase-
based computing alternative to quantum systems for some quan-
tum information processing applications.1–9 The development of
an acoustic-based classical quantum-inspired information process-
ing platform necessitates that acoustic waves and their supporting
medium satisfy DiVincenzo’s five criteria for the physical con-
struction of a quantum computer,10 which are as follows: “(1) a
scalable physical system with well-characterized qubit; (2) the abil-
ity to initialize the state of the qubits to a simple fiducial state; (3)
long relevant decoherence times; (4) a ‘universal’ set of quantum
gates; (5) a qubit-specific measurement capability.” In this paper, we
briefly review the concept of a logical phase bit (phi-bit),4 a classical
acoustic analog of a qubit, and how superpositions of states of logi-
cal phi-bits in externally driven metamaterials satisfy DiVincenzo’s
criteria.

The notion of acoustic phi-bit originated in the Dirac factor-
ization of the Klein–Gordon-like wave equation for an infinitely
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long acoustic waveguide coupled to a rigid substrate. This factor-
ization revealed an unconventional wave function: a plane wave
whose amplitude is a spinor with complex components. The spinor
exposes the two-state nature of the directional degree of freedom
(DOF) for propagation along the waveguide in the form of quasi-
standing waves with coherent superpositions of forward (F) and
backward (B) propagating states.11 However, stress-free boundary
conditions in physical finite length waveguides require that each F
and B quasi-standing wave become a full standing wave, thus lim-
iting the detectability of the pseudospin superposition of state.1 For
this reason, we introduced another realization of physical phi-bits
in metamaterials constituted of parallel arrays of coupled acoustic
waveguides1,12 The solution of the linear acoustic wave equation sep-
arates into the product of two functions, each dependent on DOFs
along (wave number) and across the array (e.g., orbital angular
momentum1 or spatial mode13). Externally driven resonant spatial
modes possess different wave numbers and lead to coherent super-
positions of spatial and plane wave product states. The spatial DOF
and the plane wave each act as a phi-bit. The state of the coher-
ent superposition can be represented using the usual ket notation
of quantum mechanics in the form of A∣E1⟩∣k1⟩ +D∣E2⟩∣k2⟩, where
∣Ei⟩ refer to states associated with the spatial DOF and ∣k j⟩ refer
to plane wave states. The coefficients A and D are complex reso-
nant amplitudes taking the form of Lorentzian in the presence of
dissipative metamaterials. This non-separable superposition is anal-
ogous to the non-separable Bell states of quantum mechanics. We
experimentally demonstrated that by tuning A and D through the
amplitude, phase, and/or frequency of the external drivers, we could
experimentally navigate a portion of that acoustic Bell state’s Hilbert
space2 to achieve near-maximal classical entanglement as quantified
by the “entropy of entanglement,” i.e., von Neumann entropy.2 To
explore the complete Hilbert space of product acoustic states—that
is, the general superposition, A∣E1⟩∣k1⟩ + B∣E1⟩∣k2⟩ + C∣E2⟩∣k1⟩

+D∣E2⟩∣k2⟩—we considered an externally driven system composed
of a parallel array of 1D waveguides coupled periodically along their
length.14 Band folding within a finite Brillouin zone, due to period-
icity, then offers the possibility of selecting spatial and Bloch wave
states independently and, thus, the realization of the desired general
superposition.

The Hilbert space of a driven two-level spatial DOF H1 is two-
dimensional (2D). The Hilbert space of the plane wave states H2 is
also 2D, representing the DOF along the waveguides labeled by a
two-level wave number with plane wave or Bloch wave basis func-
tions. The Hilbert space tensor product H = H1 ⊗H2 of these two
2D Hilbert spaces is 22-dimensional. In the case of a periodic sys-
tem, if we introduce a unit cell with two distinct sites,14 then we
can increase the dimensionality of the product Hilbert space to 23

dimensions. However, to truly exploit the superpositions of acous-
tic waves in large exponentially complex Hilbert spaces and realize
their full potential for quantum information science, it is necessary
to elucidate the properties of externally driven arrays of nonlin-
early coupled elastic waveguides.15–17 For instance, in Ref. 17, we
theoretically considered the case of N waveguides in a planar array
with nonlinear coupling taking the form of a power function of
the relative displacements between waveguides with exponent Q.
We showed that we can produce a multipartite system composed
of two-level phi-bits, which can support coherent superpositions
of nonlinear plane wave modes spanning exponentially complex

Hilbert spaces of dimension 2Q. However, from a practical point
of view, this approach is cumbersome due to the need to measure
the mixed wave numbers of the nonlinear acoustic plane waves via
spatial Fourier transforms.

For this reason, we recently expanded the notion of phi-bits
from the physical to the logical realm.4 For an externally driven array
of three coupled acoustic waveguides, we experimentally demon-
strated non-separability for the acoustic logical phi-bits that resulted
from partitioning in the spectral domain of a nonlinear acoustic
field. External drivers nonlinearly mixed the acoustic modes with
different frequencies. Subsequently, each logical phi-bit was shown
to be a two-level nonlinear mode of vibration whose state is charac-
terized by a nonlinear frequency and spatial mode associated with
two independent relative phases between the waveguides. A mul-
tipartite composite system composed of P logical phi-bits is then
given a representation with a tensor product structure. This rep-
resentation lies in a 2P dimensional Hilbert space and was shown
to support non-separable states for systems with P phi-bits ranging
from 3 to 16. This approach offers access to large, scalable, expo-
nentially complex Hilbert spaces supporting non-separable acoustic
states.

The ultimate goal of quantum computing is to realize large-
scale multiple-qubit unitary operations.18 However, because of the
fragility of quantum superpositions of a large number of qubits,
this task is achieved by using the decomposition of large-scale uni-
tary matrices into quantum circuits involving sequences of single-
and two-qubit gates19–23 (DiVincenzo’s criterion 4). The challenge
is then to determine the minimal quantum circuit that can real-
ize the desired large-scale operation. The primary focus of this
work is to show that multiple phi-bit systems can be employed
to produce large-scale unitary operations that do not need to be
decomposed into circuits of smaller phi-bit gates. Building upon our
previous work,8 which established a correspondence for three cor-
related logical phi-bits, we extend our analysis to scalable systems
encompassing multiple phi-bits. Here, we demonstrate the scala-
bility of multi-phi-bit systems (criterion 1), the ability to initialize
multiple phi-bits in some desired state (criterion 2), and the pos-
sibility of achieving non-trivial scalable quantum-like gates that go
beyond criterion 4. This study represents one more significant step
toward the goal of bridging the gap between classical wave sci-
ence and quantum information science using nonlinear acoustic
metamaterials.

II. LOGICAL PHASE BITS (PHI-BITS)
AS QUBIT ANALOGUES

A phi-bit, a classical acoustic analog of a qubit, is a two-state
degree of freedom of an acoustic wave, which can be in a coherent
superposition of states with complex amplitude coefficients.24 A log-
ical phi-bit4 is a two-state degree of freedom in the spectral domain
of nonlinear acoustic modes supported by an externally driven array
of nonlinearly coupled waveguides (Fig. 1). As nonlinear acoustic
modes, logical phi-bits live within the same physical system. They
occupy the same real estate—the phi-bit physical system does not
need to scale physically. For instance, by using separate waveform
generators to excite different waveguides with sinusoidal signals at
different frequencies f1 and f2, the displacement field measured at
the waveguide’s detection ends is the Fourier sum of modes with the
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FIG. 1. (a) Exploded view and (b) picture of a metamaterial composed of an array of three acoustic waveguides (aluminum rods) coupled with epoxy resin and schematic
illustration of the experimental system for generating and detecting logical phi-bits. Three separate signal generators and amplifiers are used to drive piezoelectric transducers.
Driving and detecting transducers are attached to the opposite ends of the rod-like acoustic waveguides by the pressure of three independent rubber bands. A thin layer
of honey is used as an ultrasonic coupling agent between the transducers and the rod ends. The signals generated by the detecting transducers enter an oscilloscope via
independent input channels for analysis. The array of waveguides is suspended by thin threads for isolation. (c) Fourier frequency spectrum calculated from velocity time
series measured using a scanning laser Doppler vibrometer. The first and third waveguides are driven at the frequencies f1 = 62 kHz and f2 = 66 kHz, respectively. Examples
of nonlinear acoustic modes corresponding to logical phi-bits are indicated as “phi-bit modes” [5,9].

primary frequencies f1 and f2, as well as secondary nonlinear modes
whose frequencies are a linear combination of the driving frequen-
cies, pf 1 + q f 2, where p and q are integers. Since the logical phi-bits
are acoustic modes in the spectral domain with a bandwidth of a few
tens of Hz, there is a lot of room in the ultrasonic domain for increas-
ing the number of logical phi-bits beyond the number 50, which is
considered to be the threshold for quantum advantage. The displace-
ment field of one logical phi-bit at the end of the three waveguides
can be referred to and renormalized to that of the bottom waveguide,
1, in the array to obtain a 2 × 1 vector,

u(p,q)
=
⎛
⎜
⎝

ĉ2 exp (iφ12)

ĉ3 exp (iφ13)

⎞
⎟
⎠

exp (i(pω1 + qω2)t), (1)

where ωi = 2πfi; i = 1, 2, and the phase difference between the dis-
placement field at waveguides 2 and 3 relative to waveguide 1 are
φ12 = φ2 − φ1 and φ13 = φ3 − φ1, respectively. As logical phi-bits are
referenced by their values of p and q, our physical system supports
multiple logical phi-bits each with its own phase differences. The
phases φ1, φ2, and φ3 arise from the complex nature of the resonant
amplitudes of the driven system with dissipation as well as any non-
linear effect combining these resonant amplitudes. ĉ2 and ĉ3 are the
magnitudes of the acoustic field at the ends of the waveguides 2 and
3, respectively, normalized to the magnitude at the end of waveguide
1. Refer to Fig. 1(a) for the numbering of the waveguides with the
external drivers.

We redefine the state of the logical phi-bit {p, q}, Su(p,q) , in terms
of phase differences of the displacement field only, by construct-
ing the nontemporal part of the field as the normalized complex
amplitude state vector,

∣Su(p,q)⟩ =
1
√

2

⎛
⎜
⎝

exp (iφ12)

exp (iφ13)

⎞
⎟
⎠
=

1
√

2
(exp (iφ12)∣0⟩ + exp (iφ13)∣1⟩).

(2)
This state vectors lives on the Bloch sphere, i.e., in the single

logical phi-bit 2D Hilbert space, h, with basis {∣0⟩ = (1

0
), ∣1⟩ = (0

1
)}.

The state of each logical phi-bit (i.e., nonlinear mode) is correlated
with all other logical phi-bits through the nonlinearity of the system.
This enables us to define the state of multiple logical phi-bits as a ten-
sor product of single logical phi-bit states (DiVincenzo’s criterion 1).
In other words, an N state is defined in an exponentially scaling 2N

dimensional Hilbert space, H, which is the tensor product of the
N Hilbert spaces of the individual logical phi-bits, H = h(1) ⊗ ⋅ ⋅ ⋅ ⊗

h(N). A coherent superposition of states of multiple phi-bits can be
expressed on the basis vectors, ⟨00 . . . 0∣, ∣00 . . . 1⟩, . . . , ∣11 . . . 1⟩. For
example, the N phi-bit state can be written as a tensor product of
single phi-bit states,

V = S(1) ⊗ S(2) ⊗ S(3) . . .⊗ S(N). (3)

Here, we have simplified the notation of Eq. (2) and expressed the
state vector ∣Su(p,q)⟩ of logical phi-bit “i” with {p, q} as S(i). The 2N
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components of a N phi-bit coherent superposition of states are cor-
related. In other words, a change in the conditions of the physical
systems such as in one of the driving frequencies changes all 2N

components of the superposition instantaneously.4 The correspon-
dence between the state of correlated logical phi-bits represented
in a low-dimensional linearly scaling physical space of the support-
ing metamaterial through the pairs of φ(i)12 , φ(i)13 and the complexity
of their state representation in a high-dimensional, exponentially
scaling Hilbert space enable the creation of any multiple phi-bit
states. By manipulating the physical phi-bit variables and measuring
them in the physical space of the system with at most 2 ×N dimen-
sions, and by choosing a pertinent representation, one can initialize
any coherent superposition of states in the 2N -dimensional Hilbert
space.5,9 Coherent superpositions of phi-bit states are acoustic com-
plex amplitudes. These states are not subjected to decoherence, in
contrast to the probability amplitude of quantum systems composed
of qubits (DiVincenzo’s criterion 3).

Measurements in conventional quantum computing
approaches entail the collapse of the wavefunction. This is the
destruction of the coherent superposition of states that is at the
heart of the exponential scaling that leads to quantum advantage.
In contrast, measurements in phi-bit systems do not alter the
wave function, which persists as long as the drivers are applied
(DiVincenzo’s criterion 5). Regarding measurement, we note that
contact measurement methods become integral parts of the phi-bit
supporting physical system. Other methods, such as laser Doppler
vibrometry, enable non-contact measurements.3

III. INITIALIZATION AND SCALABILITY OF
QUANTUM-LIKE GATES USING PHI-BITS
A. Background

Quantum computing harnesses the quantum phenomenon of
entanglement (i.e., non-separability of superpositions of states).
Indeed, even though the Schrödinger equation is linear for a non-
interacting multipartite quantum system, Born’s rule renders the
probability of observations nonlinear functions of the probability
amplitude wave function. This phenomenon provides the quantum
correlation between the subsystems and the capability of process-
ing in a massively parallel manner information encoded in the
multipartite wavefunction. Logical phi-bits are correlated via the
nonlinearity of the elasticity of the physical system, while classi-
cal entanglement is needed to access regions of Hilbert space with
non-separable multi-phi-bit superpositions of states. Acoustic wave
entanglement increases the number of possible states and, therefore,
the range of information that can be encoded and subsequently pro-
cessed in those states. Several physical parameters, e.g., frequency,
relative phase, or magnitude of the driving forces, can be used to
control the coherent superposition of states of the logical phi-bits
in their exponentially scaling Hilbert space. By varying a few of
these parameters, one operates predictably via unitary operations
on the superpositions in the high-dimensional Hilbert space. Uni-
tary operations, mathematically described as unitary transformation
matrices, T, acting on logical phi-bit state vectors representation,
V , expressed in some basis, {ζ1, ζ2, ζ3, . . .}, that produce the new
state vector V ′ are analogous to quantum gates. A single phi-bit
gate operates on states expressed in a 2D basis. A two phi-bit gate

FIG. 2. Schematic illustration of quantum-like gate described as a unitary transfor-
mation matrix, T , acting on an input data string of complex numbers initialized in
a multiple logical phi-bit state vector representation, V , producing an output data
string in the new state vector V ′. {ζ1, ζ2, ζ3, . . .} is the basis for the representation
of V and V′.

operates on the superposition of states expressed on a 22
= 4-

dimensional basis, tensor product of the individual phi-bit bases.
An N phi-bit gate operates on states supported by an exponen-
tially scaling basis of dimension 2N (Fig. 2). Similar to quantum
computers, it is this exponential scaling that potentially gives the
advantage of phi-bit-based computing over conventional comput-
ing. However, quantum computing faces the challenge of physically
operating simultaneously on many qubit states and of maintaining
the quantum correlation between qubits during these operations.
Strongly nonlinearly correlated logical phi-bits do not suffer from
this fragility.

In that context, we experimentally demonstrated the single
phi-bit quantum-like phase and Hadamard gates,6 and the two phi-
bit C-NOT gate.7 These gates form the components of a universal
set of gates (DiVincenzo’s criterion 4) that can be used to gener-
ate multiple phi-bit quantum-like circuits. However, the power of
phi-bit-based computing resides in the scalability of multiple log-
ical phi-bit representations and the robust nonlinear correlation
between phi-bits. This allows us to consider the development of
large-scale (N ≥ 3) phi-bit gates that do not need to be decom-
posed into circuits of small-scale gates and that would, therefore,
present challenges for current quantum computing platforms. This
development is illustrated in Sec. III B.

B. Initialization and scalable multi-phi-bit
quantum-like gate

We have shown that phi-bit phases φ12 and φ13 exhibit a rich
set of behaviors resulting from the nonlinearities of the physical sys-
tem as driving physical parameters such as frequency5 or phase9

are varied. These behaviors include, for example, sharp π jumps
superposed on smooth monotonous background variations (Fig. 3).
For all logical phi-bits, the background phases show variations as
a function of frequency of several thousand Hz or as a function
of drivers’ phase, Δθ, of tens of degrees. The π jumps occur over
much shorter frequency intervals of at most a few hundred Hz or a

AIP Advances 14, 025010 (2024); doi: 10.1063/5.0188462 14, 025010-4

© Author(s) 2024

 11 M
arch 2024 20:56:00

https://pubs.aip.org/aip/adv


AIP Advances ARTICLE pubs.aip.org/aip/adv

FIG. 3. Experimentally measured phases, φ12 and φ13, for a phi-bit nonlinear mode
with {p = 4, q = −2} as a function of its nonlinear frequency 4 f1 − 2 f2 when the
constant frequency f1 = 62 kHz is applied to the first waveguide and the sec-
ond driving frequency, applied to the third waveguide, is varied in the interval
[70–62 kHz] by decreasing increments of 50 Hz. The solid black and gray lines
are background phases.

few degrees. The background behavior of the phases φ12 and φ13 of
any logical phi-bit, pf 1 + q f2, can be expressed as the linear combi-
nation pφ12( f1, Δθ) + qφ12( f2, Δθ) and pφ13( f1, Δθ) + qφ13( f2, Δθ).
In other words, the phases of all logical phi-bit possess a com-
mon background behavior that can be related to the phases of
the primary modes at the frequencies f1 and f2 with a drivers’
phase Δθ.

By adding a general phase, one can create regions of driver
parameters where the phi-bit background phases φ12 and φ13,
reduced to the phases of the primary modes, cross and can be
exchanged (Fig. 4). We denote these as adjusted background phases.
Therefore, phi-bits have relatively adjusted phases that vary in the
same way upon tuning one of the physical parameters. In that
case, φ(1)12 = φ(2)12 = φ(3)12 = ⋅ ⋅ ⋅ = f (ΔX) and φ(1)13 = φ(2)13 = φ(3)13 = ⋅ ⋅ ⋅

= g(ΔX), where ΔX denotes a change in the driving conditions
such as a variation, Δν, in the driving frequency or a change in the
drivers’ phase Δθ. Here, we use upper scripts (1), (2) . . . to label
the phi-bits.

For the initialization, starting with the tensor product state, V ,
we then define a new representation for the N phi-bits such that the
state at the crossing, ΔX∗, can be described by 2N

× 1 vector con-
taining all 1’s and properly normalized by the factor 1/

√
2N . In the

last step of the initialization, we find a unitary matrix, U2N
×2N , which

transforms the above vector into one with a 1 as the first component
and all other 2N

− 1 components become 0.
We then consider the general vector in this initialization rep-

resentation by setting all φ(i)12 ’s to be f and all φ(i)13 ’s to be g. Finally,
we exchange f and g, which is then to be described by a non-trivial
transformation, T, in the new representation.

We now illustrate initialization and transformation in the cases
N = 1 through 5.

FIG. 4. Schematic representation of phi-bit adjusted background phase differ-
ences as functions of a change in the driving conditions, ΔX . At ΔX∗, one has
f = g⋅ ΔX1 and ΔX2 are values corresponding to a swap of the values of f
and g.

Case I: N = 1.
In this case, according to Eq. (2), we simply have V2×1

= 1
√

2
(

exp(iφ(1)
12 )

exp(iφ(1)
13 )
). Since φ(1)12 and φ(1)13 cross at ΔX∗, at the crossing

V2×1 =
1
√

2
(

1

1
) up to an overall phase that is neglected.

We need a unitary transformation U2×2 that zeros the second

element. There are at least two possibilities, U2×2 =
1
√

2
(

1 1

−1 1
) or

U2×2 =
1
√

2
(

1 1

1 −1
). Choosing the antisymmetric matrix U2×2V2×1

= 1
√

2
(

1 1

−1 1
) 1
√

2
(

1

1
) = (

1

0
). Note that this unitary transformation is

skew-symmetric so that, in the parlance of quantum computing, it
is irreversible, that is, applying it twice to a vector does not leave
the vector unchanged. In our classical system, unitary matrices do
not need to be reversible since the physical state of the system
can be restored exactly as it was before after a transformation is
performed.

The general vector in the transformed representation is,
therefore,

Ṽ2×1 = U2×2V2×1 =
1
2

⎛
⎜
⎝

1 1

−1 1

⎞
⎟
⎠

⎛
⎜
⎝

exp (iφ(1)12 )

exp (iφ(1)13 )

⎞
⎟
⎠

=
1
2

⎛
⎜
⎝

exp (iφ(1)12 ) + exp (iφ(1)13 )

− exp (iφ(1)12 ) + exp (iφ(1)13 )

⎞
⎟
⎠

.

Setting φ(1)12 = f and φ(1)13 = g leads to

Ṽ2×1 =
1
2

⎛
⎜
⎝

exp (if ) + exp (ig)

− exp (if ) + exp (ig)

⎞
⎟
⎠

.

Changing the drivers’ physical parameters from ΔX1 to ΔX2
swaps the values of f and g, yielding

Ṽ ′2×1 =
1
2

⎛
⎜
⎝

exp (ig) + exp (if )

− exp (ig) + exp (if )

⎞
⎟
⎠

.
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We can find by inspection the transformation matrix T2×2 for
which T2×2Ṽ2×1 = Ṽ′2×1. This transformation matrix is given by

T2×2 =
⎛
⎜
⎝

1 0

0 −1

⎞
⎟
⎠

, (4)

which is the Pauli spin matrix σz .
Case II: N = 2.
We define a two phi-bit representation as

V4×1 =
1
2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

exp (iθ1)

exp (iθ2)

exp (iθ3)

exp (iθ4)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where θ1 = φ(1)12 +
1
2 φ(2)12 ; θ2 = φ(1)12 +

1
2 φ(2)13 ; θ3 = φ(1)13 +

1
2 φ(2)12 ;

θ4 = φ(1)13 +
1
2 φ(2)13 .

Note the coefficient 1/2 in the previous expression, which dif-
ferentiates phi-bit 1 from phi-bit 2. At the crossing point ΔX∗,

neglecting an overall phase, this state vector becomes V4×1 =
1
2

⎛
⎜
⎜
⎝

1

1

1

1

⎞
⎟
⎟
⎠

.

Let us introduce the unitary matrix U4×4

= 1
2

⎛
⎜
⎜
⎝

1 1 1 1

−

√

2
√

2 0 0

1 1 −1 −1

0 0 −

√

2
√

2

⎞
⎟
⎟
⎠

so that U4×4V4×1 =

⎛
⎜
⎜
⎝

1

0

0

0

⎞
⎟
⎟
⎠

. Applying

this unitary matrix to the general state vector V4×1 produces the
new state vector Ṽ4×1, which is given by

Ṽ4×1 =
1
4

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ṽ1

Ṽ2

Ṽ3

Ṽ4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where Ṽ1 = ∑
4
j=1 exp (iθj); Ṽ2 = −

√
2 exp (iθ1) +

√
2 exp (iθ2);

Ṽ3 = exp (iθ1) + exp (iθ2) − exp (iθ3) − exp (iθ4); Ṽ4 = −
√

2 exp
(iθ3) +

√
2 exp (iθ4).

Following our initialization process, we set φ(1)12 = φ(2)12 = f and
φ(1)13 = φ(2)13 = g, that is, θ1 =

3
2 f ; θ2 = f + 1

2 g; θ3 =
1
2 f + g; θ4 =

3
2 g.

To identify the transformation T4×4, one swaps f and g. The cor-
responding physical action of changing the physical parameter ΔX1
into ΔX2 exchanges the phases θ1 ↔ θ4 and θ2 ↔ θ3 so the state

vector becomes Ṽ ′4X1 =
1
4

⎛
⎜
⎜
⎝

Ṽ1

−Ṽ4

−Ṽ3

−Ṽ2.

⎞
⎟
⎟
⎠

.

The unitary transformation matrix that relates Ṽ′4×1 to Ṽ4×1 is
easily found to be

T4×4 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 0 0 −1

0 0 −1 0

0 −1 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5)

This transformation keeps the first component of the state vec-
tor, changes the phase of the third component by π, and swaps the
other two components plus a π phase change.

Case III: N = 3.
As vectors and matrices get larger, it is useful to make a few

definitions. In what follows, all vectors will be composed of ele-
ments of the form V j = exp (iθj) so that specifying the θj’s will
define the vector. Furthermore, some 4 × 4 submatrices will help
make large unitary transformation matrices more compact. For this,
we define

A(N) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1

−2
N−1

2 2
N−1

2 0 0

2
N−2

2 2
N−2

2 −2
N−2

2 −2
N−2

2

0 0 −2
N−1

2 2
N−1

2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

B =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= −C.

For the 8 × 1 vector V8×1, the elements include θ1
= φ(1)12 +

2
3 φ(2)12 +

1
3 φ(3)12 ; θ2 = φ(1)12 +

2
3 φ(2)12 +

1
3 φ(3)13 ; θ3 = φ(1)12 +

2
3 φ(2)13

+ 1
3 φ(3)12 ; θ4 = φ(1)13 +

2
3 φ(2)12 +

1
3 φ(3)12 ; θ5 = φ(1)12 +

2
3 φ(2)13 +

1
3 φ(3)13 ; θ6

= φ(1)13 +
2
3 φ(2)12 +

1
3 φ(3)13 ; θ7 = φ(1)13 +

2
3 φ(2)13 +

1
3 φ(3)12 ; θ8 = φ(1)13 +

2
3 φ(2)13

+ 1
3 φ(3)13 .

At crossing, f = g, all elements are equal to 1 divided by the
normalization factor 2

√
2. Again, we have dropped a general phase.

We now seek the unitary transformation U8×8, which initializes the

system at the crossing point, that is, it satisfies U8×8V8×1 =

⎛
⎜
⎜
⎝

1

0

.

0

⎞
⎟
⎟
⎠

. This

unitary matrix can be constructed as follows:

U8×8 =
1

2
√

2

⎛
⎜
⎝

A(3) B

C A(3)

⎞
⎟
⎠

.

Applying this unitary matrix to the general three phi-bit state
vector leads to the vector in the new basis Ṽ , whose elements are
given by
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Ṽ1 = ∑
8
j=1 exp (iθj); Ṽ2 = −2 exp (iθ1) + 2 exp (iθ2); Ṽ3

=
√

2 exp (iθ1) +
√

2 exp (iθ2) −
√

2 exp (iθ3) −
√

2 exp (iθ4); Ṽ4

= −2 exp (iθ3) + 2 exp (iθ4); Ṽ5 = ∑
4
j=1 exp (iθj) −∑

8
j=5 exp (iθ j);

Ṽ6 = −2 exp (iθ5) + 2 exp (iθ6); Ṽ7 =
√

2 exp (iθ5) +
√

2 exp (iθ6)

−
√

2 exp (iθ7) −
√

2 exp (iθ8); Ṽ8 = −2 exp (iθ7) + 2 exp (iθ8).
By setting φ(1)12 = φ(2)12 = φ(3)12 = f and φ(1)13 = φ2

13 = φ(3)13 = g,
we have θ1 = 2 f ; θ2 =

5
3 f + 1

3 g; θ3 =
4
3 f + 2

3 g; θ4 = f + g; θ5 = f + g;
θ6 =

2
3 f + 4

3 g; θ7 =
1
3 f + 5

3 g; θ8 = 2g.
Through physical action on the drivers’ parameters,

ΔX1 → ΔX2, one swaps f and g. This action exchanges the
phases θ1 ↔ θ8; θ2 ↔ θ7; θ3 ↔ θ6; θ4 ↔ θ5. These phase swaps
lead to the new vector in the chosen representation, Ṽ ′8×1,
with elements Ṽ ′1 = Ṽ1; Ṽ ′2 = −Ṽ8; Ṽ ′3 = −Ṽ7; Ṽ ′4 = −Ṽ6; Ṽ ′5
= −Ṽ5; Ṽ ′6 = −Ṽ4; Ṽ ′7 = −Ṽ3; Ṽ ′8 = −Ṽ2. This new vector is
related to V8×1 by the transformation Ṽ ′8×1 = T8×8V8×1. The
transformation matrix can be constructed by inspections as

T8×8 =
⎛
⎜
⎝

Tp Ta

Ta −Tp

⎞
⎟
⎠

, (6)

where we introduce the 4 × 4 submatrices

Tp =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and Ta =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0

0 0 0 −1

0 0 −1 0

0 −1 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

These submatrices will be employed when addressing the scal-
ability of initialization and the transformation, T, beyond three
phi-bits.

Case IV: N = 4.
The four phi-bit state vector V16×1 is normalized by 1

4 and is
composed of the elements V j = exp (iθ j), with θ1 = φ(1)12 +

3
4 φ(2)12

+ 1
2 φ(3)12 + +

1
4 φ(4)12 ; θ2 = φ(1)12 +

3
4 φ(2)12 +

1
2 φ(3)12 +

1
4 φ(4)13 ; θ3 = φ(1)12 +

3
4

φ(2)12 +
1
2 φ(3)13 +

1
4 φ(4)12 ; θ4 = φ(1)12 +

3
4 φ(2)13 +

1
2 φ(3)12 +

1
4 φ(4)12 ; θ5 = φ(1)13

+ 3
4 φ(2)12 +

1
2 φ(3)12 +

1
4 φ(4)12 ; θ6 = φ(1)12 +

3
4 φ(2)12 +

1
2 φ(3)13 +

1
4 φ(4)13 ; θ7 = φ(1)12

+ 3
4 φ(2)13 +

1
2 φ(3)12 +

1
4 φ(4)13 ; θ8 = φ(1)13 +

3
4 φ(2)12 +

1
2 φ(3)12 +

1
4 φ(4)13 ; θ9 =φ(1)12

+ 3
4 φ(2)13 +

1
2 φ(3)13 +

1
4 φ(4)12 ; θ10 = φ(1)13 +

3
4 φ(2)12 +

1
2 φ(3)13 +

1
4 φ(4)12 ; θ11

= φ(1)13 +
3
4 φ(2)13 +

1
2 φ(3)12 +

1
4 φ(4)12 ; θ12 = φ(1)12 +

3
4 φ(2)13 +

1
2 φ(3)13 +

1
4 φ(4)13 ;

θ13 = φ(1)13 +
3
4 φ(2)12 +

1
2 φ(3)13 +

1
4 φ(4)13 ; θ14 = φ(1)13 +

3
4 φ(2)13 +

1
2 φ(3)12 +

1
4

φ(4)13 ; θ15 = φ(1)13 +
3
4 φ(2)13 +

1
2 φ(3)13 +

1
4 φ(4)12 ; θ16 = φ(1)13 +

3
4 φ(2)13 +

1
2 φ(3)13

+ 1
4 φ(4)13 .

The unitary transformation U16×16 is expressed in terms of
4 × 4 submatrices A(N = 4), B, and C. There are a number of
options for the unitary transformations that accomplish our aim of

finding a representation for Ṽ16×1. Recalling that the unitary trans-

formation for N = 3 is U8×8 =
1

2
√

2
(

A(3) B

C A(3)
), we construct U16×16

by using U8×8 as a submatrix along the diagonal. For instance,

U16×16 =
1
2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A(4) B B B

C A(4) B C

C C A(4) B

C B C A(4)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Looking at the unitary transformations U for N = 3 and N = 4,
we can see that the diagonal contains the unitary transformation for
the previous N with A updated to the N under consideration [e.g.,
A(3)→ A(4) as N = 3→ N = 4]. Noting that the first row of A and
B is composed of +1’s and that of C is composed of −1’s. Referring to
the first two 4 × 4 submatrices as images and to C as an anti-image,
we can think of the upper (lower) off-diagonal submatrix in U8×8 as
being symmetric (antisymmetric). Following that theme, we see that
the U16×16 can be constructed by taking the symmetric image of U8×8
in the upper off-diagonal block and mirroring it. Similarly, the lower
off-diagonal block can be obtained by mirroring the antisymmetric
image of U8×8.

Applying this unitary matrix to the general three phi-bit state
vector leads to the vector in the new basis Ṽ16×1. With the physical
action swapping f and g, to create the state vector Ṽ′16×1, we obtain
the following transformation matrix:

T16×16 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Tp 0 0 Ta

0 Tp Ta 0

0 Ta −Tp 0

Ta 0 0 −Tp

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (7)

Case V: N = 5.
The prescription for forming the unitary transformation U for

N+1, which is rank 2N+1, is to form 4 rank 2N submatrices. The diag-
onal submatrices are the unitary transformations from N with A(N)
replaced by A(N + 1) and the off-diagonal submatrices formed from
the symmetric and antisymmetric mirrored images of the unitary
transformation from N. For the case of N = 5, we need a more
compact notation since the matrix is now 32 × 32. The 32 phases
(θ1, . . . , θ32) are defined by linear combinations of φ12 and φ13 with
coefficients 1, 4/5, 3/5, 2/5, 1/5, such as θ1 = φ(1)12 +

4
5 φ(2)12 +

3
5 φ(3)12

+ 2
5 φ(4)12 +

1
5 φ(5)12 , and permutations for the five phi-bit upper scripts.

We also note that θi ↔ θj for all i + j = 33. The initial 32 × 1
vector at the crossing point contains all 1’s up to an overall
phase and normalization constant 1

4
√

2
. Now, we write the uni-

tary transformation that takes the initial 32 × 1 vector into a
vector with a 1 for the first component and 0 for all other
components,

U32×32 =
1

4
√

2

⎛
⎜
⎝

U16×16(5) MS
16×16

MA
16×16 U16×16(5)

⎞
⎟
⎠

,
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where U16×16(5) is the form of the 16 × 16 unitary transformation
without the normalization factor 1

2 , and A(4) replaced by A(5). The
matrix MS

16×16 (MA
16×16) is the symmetric (antisymmetric) mirrored

image of U16×16,

MS
16×16 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B B B B

C B B C

B B C C

B C B C

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

MA
16×16 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C C C C

B C C B

C C B B

C B C B

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It is straightforward to check that U32×32 is unitary by
calculating

U32×32UT
32×32 =

1
32

⎛
⎜
⎝

U16×16(5)UT
16×16(5) +MS

16×16(M
S
16×16)

T
U16×16(5)(MA

16×16)
T
+MS

16×16UT
16×16(5)

MA
16×16UT

16×16(5) +U16×16(5)(MS
16×16)

T
U16×16(5)UT

16×16(5) +MA
16×16(M

A
16×16)

T

⎞
⎟
⎠

,

U32×32UT
32×32 = I32×32. Following our procedure, by applying this

unitary transformation onto the general vector V32×1, to obtain the
vector Ṽ32×1 and swapping f and g, yields Ṽ′32×1. This later vector is
related to Ṽ32×1 by the following transformation matrix:

T =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Tp 0 0 0 0 0 0 Ta

0 Tp 0 0 0 0 Ta 0

0 0 Tp 0 0 Ta 0 0

0 0 0 Tp Ta 0 0 0

0 0 0 Ta −Tp 0 0 0

0 0 Ta 0 0 −Tp 0 0

0 Ta 0 0 0 0 −Tp 0

Ta 0 0 0 0 0 0 −Tp

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (8)

Case VI: From N to N+1.
One can use the result for five logical phi-bits to determine

the initial state vector and corresponding transformation matrix
for six logical phi-bits. The series of transformation matrices given
by Eqs. (4)–(8) for N = 1, 2, 3, 4, and 5 logical phi-bits form
the foundation for proving by induction that the process of ini-
tialization and transformation generalizes from any N phi-bits to
N + 1 phi-bits. This inductive procedure presented below demon-
strates the scalability of multiple phi-bit vector states and the
non-trivial transformation associated with an action on the phi-bit
supporting acoustic metamaterial.

We assume that the unitary transformation exists for N and
show that the above procedure creates the unitary transformation
for N + 1. To simplify the notation, we define d = 2N and d′ = 2N+1.
We posit that

Ud′×d′ =
1
√

d′
⎛
⎜
⎝

Ud×d(N + 1) MS
d×d

−MS
d×d Ud×d(N + 1)

⎞
⎟
⎠

. (9)

First, we have verified that this is a unitary transformation
by taking the product of the matrix with its transform (see the
Appendix).

The form of the transformation matrix on the exchange of f
and g can be described by two d × d dimensional matrices: a diago-
nal matrix, Tp

d×d, composed of blocks of the Tp 4 × 4 matrix, and an
antidiagonal matrix, Ta

d×d, composed of blocks of the Ta4 × 4 matrix
as

Td′×d′ =
⎛
⎜
⎝

Tp
d×d Ta

d×d

Ta
d×d −Tp

d×d

⎞
⎟
⎠

. (10)

The generalized form of the unitary transformation defin-
ing the representation in the 2N+1 space and the transforma-
tion in that representation complete the demonstration that the
above procedure scales to all N, i.e., the procedure is robustly
scalable.

IV. CONCLUSIONS
We have established a correspondence between the state of

logical phi-bits, classical nonlinear acoustic analog of qubits, rep-
resented in a low-dimensional linearly scaling physical space of an
externally driven acoustic metamaterial and a multiple phi-bit state
representation as a complex vector in a high-dimensional, expo-
nentially scaling Hilbert space. We used an inductive procedure
to demonstrate the scalability of the initialization and the unitary
transformations of exponentially complex superpositions of states
of multiple correlated logical phi-bits. We also show that manipu-
lating the phi-bits in the physical space enables the implementation
of a non-trivial multiple phi-bit unitary transformation. This scal-
able transformation operates in parallel on the components of the
multiple phi-bit complex state vector, requiring only a single phys-
ical action on the metamaterial. This work shows that we can
realize large-scale multiple phi-bit unitary operations on nonlin-
ear acoustic metamaterials and transformations that do not require
decomposition into quantum-like circuits of single- and two-qubit
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gates. This study is one significant step in demonstrating that log-
ical phi-bits present advantageous scalable algorithm development
approaches that are unaffected by measurements and decoherence.
This advantage makes nonlinear externally driven acoustic meta-
materials a potentially compelling option to complement existing
quantum computing technologies.
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APPENDIX: UNITARITY DEMONSTRATION FOR N
PHI-BIT TRANSFORMATION

Ud′×d′U
T
d′×d′ =

1
d′
⎛
⎜
⎝

Ud×d(N + 1)UT
d×d(N + 1) +MS

d×d(M
S
d×d)

T
−Ud×d(N + 1)(MS

d×d)
T
+MS

d×dUT
d×d(N + 1)

−MS
d×dUT

d×d(N + 1) +Ud×d(N + 1)(MS
dXd)

T
Ud×d(N + 1)UT

d×d(N + 1) +MS
d×d(M

S
d×d)

T

⎞
⎟
⎠

.

Let us begin by considering that the off-diagonal blocks Ud×d
are composed of the 4 × 4 submatrices A(N), B, and C, and the
off-diagonal blocks are comprised of matrix products of these
submatrices. Note that the product

A(N + 1)BT
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= BAT
(N + 1) = BBT

= CCT

= −A(N + 1)CT
= −CAT

(N + 1) = −BCT
= −CBT.

The elements of off-diagonal blocks can be written as summa-
tions over the 4 × 4 submatrices as follows:

[−Ud×d(N + 1)(MS
d×d)

T
+MS

d×dUT
d×d(N + 1)]

ik

=

d/4

∑
j=1
(−Uij(MS

jk)
T
+MS

i jU
T
jk).

Recalling how the symmetric mirrored image is constructed
and the product relations above, we can write, by letting d

4 = l,

l

∑
j=1
(−Uij(MS

jk)
T
+MS

i jU
T
jk)

=
l

∑
j=1
(−MS

i(l− j+1)M
S
k j

T
+MS

i jM
S
k(l− j+1)),

and by letting j′ = l − j + 1 in the second summation, we see that

l

∑
j=1
(−Uij(MS

jk)
T
+MS

i jU
T
jk) =

l

∑
j=1
−MS

i(l− j+1)M
S
k j

T

+
l

∑
j′=1

MS
i(l−j ′+1)M

S
kj ′ ,

which cancels term by term such that the off-diagonal blocks are the
d × d null matrix.

In considering the diagonal blocks, recall the definition of
A(N),
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A(N) =
⎛
⎜
⎜
⎜
⎝

1 1 1 1

−2
N−1

2 2
N−1

2 0 0

2
N−2

2 2
N−2

2 −2
N−2

2 −2
N−2

2

0 0 −2
N−1

2 2
N−1

2

⎞
⎟
⎟
⎟
⎠

, which is on the diago-

nal of Ud×d(N + 1) forming the first product in the diagonal block
of Ud′×d′U

T
d′×d′ . We need to evaluate

A(N + 1)AT
(N + 1) =

⎛
⎜
⎜
⎝

4 0 0 0

0 2N+1 0 0

0 0 2N+1 0

0 0 0 2N+1

⎞
⎟
⎟
⎠

, which appears

2N−1 times on the diagonal. As noted above, both BBT and CCT

add 4 to the (1,1) element of this matrix. Furthermore, Ud×d is
a unitary matrix so that its off-diagonal blocks are null matrices.
Finally, MS

d×d(M
S
d×d)

T contains BBT and CCT on its diagonal, and
null matrix off-diagonal blocks so that the diagonal elements of
the Ud′×d′ are d′ and all other elements are zero, including the
normalization constant, 1

d′ , and we see that Ud′×d′ is unitary.
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