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Abstract
Quantum circuit synthesis is the process inwhich an arbitrary unitary operation is decomposed into a
sequence of gates from a universal set, typically onewhich a quantumcomputer can implement both
efficiently and fault-tolerantly. As physical implementations of quantum computers improve, the
need is growing for tools that can effectively synthesize components of the circuits and algorithms they
will run. Existing algorithms for exact,multi-qubit circuit synthesis scale exponentially in the number
of qubits and circuit depth, leaving synthesis intractable for circuits onmore than a handful of qubits.
Evenmodest improvements in circuit synthesis proceduresmay lead to significant advances, pushing
forward the boundaries of not only the size of solvable circuit synthesis problems, but also inwhat can
be realized physically as a result of havingmore efficient circuits.We present amethod for quantum
circuit synthesis using deterministic walks. Also termed pseudorandomwalks, these are walks in
which once a starting point is chosen, its path is completely determined.We apply ourmethod to
construct a parallel framework for circuit synthesis, and implement one such version performing
optimalT-count synthesis over theClifford+T gate set.We use our software to present examples
where parallelization offers a significant speedup on the runtime, as well as directly confirm that the
4-qubit 1-bit full adder has optimalT-count 7 andT-depth 3.

1. Introduction

Quantumcomputers, like their classical counterparts, will require a compiler that can translate from a human-
readable input or programming language into operations that can be executed directly on quantumhardware.
Circuit synthesis is an integral part of the compilation process. Given an arbitrary quantum circuitC and a
universal gate set  , one seeks tofind a decomposition,

= Î- ( )U U U U C U, , 1k k i1 2 1

where k represents the depth of the circuit. Amyriad of algorithms currently exist tofind such a decomposition
[1–15]. They are generally divided into two classes: those that synthesize approximately (i.e.

- <∣∣ ∣∣ U U Ck 1 ) and others that synthesize exactly. Some procedures work for a single qubit, whereas
others have been generalized tomultiple qubits.Most of these algorithmswere designed towork over the
Clifford+Tuniversal gate set, though other gate sets such as theV-basis have also been studied [5, 6].

Many of the algorithms that perform exact synthesis fall victim to the fact that the time and space used
depend exponentially on both the number of qubits and the depth of the circuit in question. Even on a
reasonably fastmachine, the synthesis of circuits withmore than a handful of qubits and layers of depth becomes
intractable.

In this work, we propose amethod of circuit synthesis based on a heuristic search technique commonly used
in cryptanalysis: collision finding based on deterministic, or pseudorandom,walks. These arewalks through a
search space such that once a starting point is chosen, the path is completely determined.More generally, we
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showhowwe can use deterministic walks to traverse the space of possible circuits of a given depth and find
solutions to the synthesis problem. A key ingredient in ourmethod is amapping from the unitary operators
constructed from the gate set  to binary strings of a constant length and a suitablemapping back to the set of
unitary operators.When suchmappings are defined, we can synthesize circuits over any universal gate set on any
number of qubits by applying any existingwalkmethod that can search the space.

The structure of this article is as follows.We begin in section 2with a discussion of deterministic walks and
howwe canmap quantum circuit synthesis to these types of problems. The subsequent sections pertain to our
choice of implementation of one suchmethod, namely parallel circuit synthesis. In section 3we briefly lay out
the procedure for parallel synthesis and provide a runtime complexity estimate, detailing the important
parameters which affect the scaling of our algorithm. Section 4 introduces our software implementation, pQCS
(parallel quantum circuit synthesis), which performs optimalT-count synthesis using parallel search. Section 5
contains the numerical results of large-scale experiments run on a BlueGene/Qsupercomputer. Here, we
showcase the significant advantages afforded to us by parallelization.We conclude in section 6 and suggest
avenues of future research on this topic.

2.Walking through circuits

Consider a hash function  h : , typically considered to operate over binary strings. If h is a good hash
function, then for an arbitrary input, Î x , the value = Î( ) h x y will be in practice indistinguishable from
a randomoutput. Suppose there exists another function,  r : , unrelated to h, whichmaps elements of its
range back to the domain (such a function is commonly termed a reduction function). Repeatedly applying ◦r h
to an inputwill produce a trail of points scattered throughout . However, once the initial input is chosen, the
progression of the trail is completely determined, hence we favour the term deterministic rather than
pseudorandomwalk even though the path of thewalk appears randomdue to the natures of h and r.

Such determinismhas led to a set of algorithmswith a variety of applications. Onewell-known variation is
rainbow tables [16], which are used for finding pre-images of hash functions (conventionally with the intention
of cracking passwords). Collisionfinding in one hash function or clawfinding between two functions has also
been accomplished in parallel using deterministic walks [17], andwas used tofind collisions in doubleDES [18].

Deterministic walks are advantageous due to their low storage requirement: one need only store the starting
point of awalk, its ending point, and the number of intermediate steps, whereas conventional search techniques
would store the value of every point computed throughout.

With this inmind, we showhowone canmap the problemof circuit synthesis to a problem that can be
solved using an algorithmbased on deterministic walks.We have, as per equation (1), a product constructed
from the universal gate set  . It is possible to specify a uniqueway of encoding the information about

¼{ }U U, , k1 into binary strings ¼{ }b b, , k1 of equal lengthℓ (wherewe assumeℓ is sufficiently long as to
encompass all the information described inwhat follows). Suppose  contains a number of single- and two-
qubit gates. If we enumerate all the gates in  , then for eachUiwemight use a few bits to identify all the
constituent gates, andmaybe a fewmore to specify if we should use theirHermitian conjugates.Wewill also
need to indicate onwhich qubit(s) they act. Furthermore, theremust be some space to indicate controls and
targets where appropriate. Given any gate set, we can find away of doing this such that every possibleUi can be
represented by a unique string bi. Then, the concatenation ( ∣ ∣ )b bk 1 will be a unique string of length ℓk
representing the product of unitariesU Uk 1 .

We can perform a deterministic walk over unitarymatrices as follows (this process is displayed graphically in
figure 1). Let us define a functionμwhichmaps a binary string of length ℓk to a unitarymatrix over a specified
gate set  . Then, define amapping ν from the unitaries over  back to binary strings { }*0, 1 . Finally, choose a
good hash function h from { }*0, 1 to strings of length ℓk (thismay be a simple hash function or a combination
of hash and reduction-type functions). Repeatedly applying n m◦ ◦h to a randomly chosen binary string of
length ℓk will allow us to traverse products of unitaries in a pseudorandom fashion; we can then use this to
search the space of possible solutions to (1).

3. Parallel circuit synthesis

Oncewe havemappings as proposed in section 2, we can reformulate the circuit synthesis problem as a problem
that can be solved using search algorithms based on deterministic walks.We specifically implemented onewhich
performs parallel claw finding. Let  h :1 1 and  h :2 2 be two hash functions. A claw between h1
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and h2 is a pair of inputs Î Î x x,1 1 2 2 such that

=( ) ( ) ( )h x h x . 21 1 2 2

This is, in a sense, a collision search between two functions.
Our interest in clawfinding stems from recent work on circuit synthesis using ameet-in-the-middle

(MITM) approach [12]. Themotivation for thatwork is as follows. One can, of course, find a decomposition of
(1) by brute force, computing all possible combinations starting fromdepth 1 up until a solution is found. Let ξ
represent the number of unitaries having depth 1. Typically, ξwill depend exponentially on the number of
qubits, n. Then, the runtime for brute force synthesis of a circuit with depth k takes time x( ) k . AMITM
approach achieves a roughly square-root speedup over this, accomplished by dividing the synthesis equation in
half:

= Î
+

( )† † ⎡⎢ ⎤⎥ ⎡⎢ ⎤⎥U U U U C U, . 3k i1 1
k k2 2

 

Databases of unitaries having the formof each side of (3) are sequentially constructed (starting fromdepth 1),
stored in binary trees, and then searched through until a suitable decomposition is found. This reduces the size

of the search space by a square root factor, yielding runtime x x( ( ))
⎡⎢ ⎤⎥ ⎡⎢ ⎤⎥log

k k
2 2 , where the log factor is picked up

due to the binary search.
To parallelize circuit synthesis, we build on the principles of theMITMalgorithm. Rather than searching

through static binary trees, we search the space in parallel, adapting a search technique originally developed for
cryptanalysis [17]. Though our runtimewill retain the exponential dependence on n and⌈ ⌉k 2 , it scales inversely
with the number of processors, allowing us to tackle larger problems that were infeasible using previous
methods, as well as speed up the synthesis of some known circuits.We provide a brief description of the
algorithmhere as it pertains specifically to circuit synthesis. For amore detailed description, the reader is
referred to [17] or [19].

Recall equation (3), and for simplicity, let us define

≔ ( )⎡⎢ ⎤⎥V U U , 41k
2


+
≔ ( )† †⎡⎢ ⎤⎥W U U C, 5k1k

2



as representing the left and right sides of this equation. Define a suitablemapping between unitarymatrices and
binary strings of length ℓk as in section 2. Then, let ¢ represent the set of binary strings that are of the formV,
and likewise those of the formW.When k is odd, ¢ and may differ in size by a factor of ξ. In this case, we
partition ¢ into equal-sized chunks ¢ ¼ ¢x- , ,0 1, and consider = ¢  i independently (a search can then be
executedwith each ¢ i sequentially or in parallel, adding another layer of parallelism to the implementation).
When k is even, we simply let = ¢  .

Let = { } ℓ 0, 1 k . Define functions  z :1 and  z :2 . Oneway these functionsmight be
implemented is by converting the input string into a sequence of unitarymatrices (in  for z1 and for z2),
computing their product, deriving a newbinary stringwith the information about each of thematrix elements,
and then running that string through a knownhash function so that the outputs of both functions are in the
same space and in practice appear to be random.

Figure 1. Schematic diagram showing the process of walking over circuits. Binary strings aremapped to products of unitarymatrices
over the gate set  via some correspondenceμ. The product of thesematrices is thenmapped via ν back to a binary string, which is
then passed through a hash function h. Repeated application of n m◦ ◦h allows us to traverse the set of possible circuits in a
pseudorandom fashion.
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Let us define a ‘super’ function ´  ´{ } { } f : 1, 2 1, 2 such that one application of f is a single step
in the deterministic walk, i.e. =( ) ( )f x b z x, b . Finding a claw between z1 and z2 is now equivalent tofinding a
collision in fwith distinct values for b, i.e. wemust find two inputs x1 and x2 such that

=( ) ( ) ( )f x f x, 1 , 2 . 61 2

Considerm processors all having access to a sharedmemory.Wewill denote some fraction θ of points in 
asmarked or distinguished. Every processor chooses a random starting pair ( )n b,0 0 in ´ { } 1, 2 . Repeatedly
applying f produces a trail through the space of possible circuits, which roughly half of the timewill produce a
part of equation (3)which is an element of  , and the other half of the timewill produce an element of . The
trail continues until the next input, say xd, is a distinguished point. The trail is then terminated.

The collection of found distinguished points is stored in the sharedmemory. Distinguished points are stored
as a triple consisting of the first pair ( )n b,0 0 , the last pair ( )n b,d d , and the value d, which is the number of steps
taken to reach the distinguished point.When a processor finishes its trail, it will attempt to add its distinguished
point to the sharedmemory. If it sees that a trail ending at the given point is not present in this sharedmemory, it
will insert it and then begin a new trail. However, if it sees that there is already a triple in storage that ended at the
same distinguished point but had a different starting point, itmeans that somewhere along theway these two
trailsmust havemerged. The processor then takes the starting points of these two trails and traces back through
them to locate themerge point.

There are a number of possibilities here as depicted infigure 2. First, it could be that one trail started ‘before’
the other, i.e. themerge point was at the beginning of the shorter trail. Another possibility is that when the trails
merged, both had just performed z1 or both had just performed z2. Even if the inputs were different, this case
does not provide uswith a solution to the problem at hand. Thefinal case is that immediately before they
merged, one trail performed z1 and one performed z2; it is only in this final case that we have found a solution.
With the information about the inputs in the step just before the collision, we can extract the unitarymatrices
from the binary string and have fully synthesized our circuit.

The runtime complexity of this algorithm can be estimated by applying the parameters of our problem
directly to that in [17]. The size of the spaces ¢ and are

x x= =¢ ( ) 
⎡⎢ ⎤⎥ ⎢⎣ ⎥⎦N N, . 7

k k
2 2

Our algorithm then scales as

x tµ + ( )⎡⎢ ⎤⎥ ⎢⎣ ⎥⎦T
w m

1 1
, 8QCS

k k
2

1
2 2

wherew is the number of distinguished points that can be held inmemory. The parameter τ is the execution
time for a single iteration of z1 or z2, the bulk of whichwill likely be spent performingmatrixmultiplication. Let

us assume in theworst case that we are taking the product of ⎡⎢ ⎤⎥k

2
´2 2n n unitaries using amultiplication

algorithmwhich scales as a( )2n , whereα is some constant, typically a< 2 3. Thus, we obtain our final
estimate:

xµ a +( ) ( )
⎡
⎢⎢

⎤
⎥⎥

⎡⎢ ⎤⎥ ⎢⎣ ⎥⎦T
w m

k
2

1 1

2
. 9QCS

n k k
2

1
2 2

Figure 2.Possible ways two trails canmerge. Let f and g be two functions betweenwhichwewant to find a claw. Left: one trail starts
before the other. Centre: the two trailsmerge after performing the same function, i.e. a collision =( ) ( )f x f y1 3 . Right: the two trails
merge after performing a different function, i.e. a claw =( ) ( )f x g y1 3 .
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As previouslymentioned, this time is still exponential in the number of qubits as well as the depth of the circuit.
We also note that it is often the case thatmatrixmultiplication can be parallelized, or that some specific
properties of the implementation at hand (such as sparsity) can be leveraged so as to improve the scaling.What is
key here is that the runtime benefits frombeing inversely proportional to the number of processors and available
memory.

4. Implementation details

4.1. OptimalT-count synthesis
The synthesis algorithmwe chose to apply our approach to is the optimalT-count algorithmpresented in [13].
Such an algorithm is relevant as inmany state-of-the-artmethods for fault-tolerant quantum computation,T
gates are considered to be expensive to implement due to the need to distillmagic states (see, for example, [20]).

Let n represent the n-qubit Pauli group.We reshuffle and rewrite the decomposition of a circuitC as

=f ( ) ( ) ( )e R P R P D C, 10i
t 1

where t is theT-count,D is a Clifford, Î Pj n, and

= + + -p p( ) ( )( ) ( )R P e I e P
1

2
1

1

2
1 . 11j j2

i
n

i
4 4

It thus suffices tofind a set of tPaulis and aCliffordwhichwill satisfy equation (10)up to a global phase. The
dependence on the global phase can also be removed by using the channel representation of everymatrix in the
above equation:

=( ) ( ) ( )R P R P D C , 12t 1  

where the channel representation of somematrixU is thematrix with coefficients

= Î( ) ( )† U P UP U P P
1

2
Tr , , . 13ij n i j i j n

The channel representation of an n-qubit unitary has dimension ´4 4n n, with each row and columnbeing
indexed by a Pauli operator.

Using the optimalT-count algorithmhas afforded us a number of advantages. First of all, theT-count
formulation allows us to represent each unitarymatrix in the sequence as a list of n-qubit Paulis.With binary
symplectic representation, we can then represent each Pauli directly as a binary string, which leads to a very
simplemappingwithwhichwe can performour deterministic walks. Another strong point of the algorithm is
that the channel representations ofR(P) for Î P n are sparsematrices. Thus, wewere able to implement a
sparsematrixmultiplication algorithm that allows us to very quickly computemostmatrix products despite the
channel representations having dimension ´4 4n n.

We can apply equations (8) and (9) to the optimalT-count synthesis to obtain a runtime estimate. EachR(P)
contributes a singleT gate to the circuit, and can be considered as a single layer of depth in this implementation.
Thus, we have that x = -4 1n , as all Paulis save for the identity are valid choices. Our estimate for the runtime is
thus

µ a
-

+ +( ) ( )
⎡
⎢⎢

⎤
⎥⎥

⎡⎢ ⎤⎥ ⎢⎣ ⎥⎦T
w m

t
2

1 1

2
. 14QCS T

n 2 2 t t
2 2

4.2. Computer specifications
We implemented the optimalT-count version of the parallel algorithm inC++11. It is called pQCS and is
available for download and research use at https://qsoft.iqc.uwaterloo.ca/#software. Parallelizationwas
accomplished using the Boost.MPI compiled library [21]. A scaled-down version of pQCS that uses only
OpenMP for parallelization (and can be run on a standardmulti-core personal computer) is also available in the
above package.

pQCSwas extensively tested on two large-scalemachines. TheOpenMP-only versionwas tested on
SHARCNET’sOrca using a single nodewith up to 16 processors at 2.2 GHz speed. TheMPI versionwas tested
on Scinet’s BlueGene/Q (BG/Q) supercomputer, which has 65536 processors at 1.6 GHz speed. The largest test
we have run to date involved a total of 8192 cores. All results below are from trials on the BG/Q.Aflowchart and
description of the distribution of work in theMPI version is presented infigure 3.
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5. Results

5.1.Determining effective simulation parameters
pQCShas a number of tunable parameters. Inwhat follows, wewill synthesize a known circuit, the Toffoli gate,
and explore the scaling of our algorithm.

In the original description of the parallel collision finding algorithm [17], each processor was responsible for
performing not only the search for a distinguished point, but also storing it and subsequently checking the
validity of any possible solutions; it is from this setup that the heuristic runtimes are derived. In pQCS, however,
processors are divided into three categories (as per figure 3) that communicate viaMPI.Worker processors
performdeterministic walks and generate distinguished points. Distinguished points are collected and stored in-
core on collector processes. Each collector has access to a number of verifier processors towhich pairs of walks
are sent for verificationwhen the possibility of a claw occurs. The parametersm andwmay not necessarily
depend, then, on the total number of processors, but rather on the number of processors in one ormore of the
different classes. For example,wwill depend solely on the number of collectors, whereas we expectm to be a
function of the number of workers, assuming a sufficient number of collectors and verifiers are in place.

First, we focus on howmany collectors and verifiers we should use.We chose two values for the total number
of cores, 1024 and 2048.We then varied the fraction of nodes designated as collectors in increments of 1/16,
from1/16 to 1/4 the total (values outside this range clearly yielded inferior results). For each fraction of
collectors, we either used the same or double the number of verifiers. The results of these trial runs are shown in
figure 4. In all of these trials, we let 1/4 of the points in the space be designated as distinguished (later wewillfine-
tune this parameter as well). Each point is the average of 100 independent trials.Wefind that for both total
quantities of processors, the optimal number of collectors is 1/8 the total number, and for verifiers 1/4 the total.
Whenmore than 3/8 of the total processes are being used on storage and verification, there are not enough
workers to perform the deterministic walks. On the other hand, when there are toomanyworkers, each collector
must store and process a larger collection of distinguished points each time. Furthermore,more timewill be
spent by theworkers gathering and sending the increased quantity of distinguished points.

With this knowledge, we then tested the Toffoli with varying number of cores. Again, we let 1/4 of the points
be distinguished and take the average of 100 independent trials. The results are shown infigure 5.Here, we

Figure 3. Flowchart of work distribution for the version of pQCS run on the BlueGene/Q.Worker processors performwalks and
generate distinguished points. These are funneled through a headworker to a head collector processor, which then distributes the
points amongst all the collectors for processing and storage. Each collector has access to a number of verifiers. Collectors thatfind
pairs of walks ending at the same distinguished point distribute the pairs to their verifiers to check for a claw.

6
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clearly see the expected inverse dependence on the number of processors as predicted by (8).We do note that
there is significant deviation from the expected trendwhenwe reach 8192 cores.We suspect that for a problem
of this size, the parallel overhead and communication costs outweigh the potential benefits of using thismany
cores.

Figure 4.Variation of the number of collectors and verifiers when synthesizing the Toffoli gate. The fraction of distinguished points
was set at 1/4. The legendV= C indicates equal amounts of collectors and verifiers, whereas =V C2 indicates two verifiers per
collector.We find that the optimal number of collectors seems to be about 1/8 the total number of processors, and the number of
verifiers to be twice that at 1/4 the total number.

Figure 5.Varying the total number of cores when synthesizing the Toffoli gate.We used 512 collectors and 1024 verifiers with 1/4 of
the points distinguished. Data follows the inverse trend line quite closely until around the 4096 coremark. After this point, it is likely
that the overhead and communication costs are too large for a problemof this size.

Figure 6.Varying the fraction of distinguished points while synthesizing the Toffoli gate. As the size of the search space ismuch less
than the availablememory, we see roughly the expected inverse dependence on the fraction of distinguished points.
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Finally, we investigate how the runtime varies with the fraction of distinguished points, θ. In the case of the
Toffoli, the amount of availablememory using the above number of processors on the BG/Q is significantly
greater than that required to store even the entire space. Variation of this parameter is thus somewhat contrived
for such a (relatively) small problem. In this case, wewould expect an inverse dependence on θ (see the appendix
formore details).We ran 100 trials on 4096 processors (512 collectors and 1024 verifiers) using fractions of
distinguished points {1/2, 1/4, 1/8, 1/16, 1/32}. The results are displayed infigure 6, wherewe see the
expected inverse dependence.We also report here our best synthesis times for the Toffoli gate, clocking in at
roughly 26s on average. To fully explore the effects of this parameter (andmore importantly the dependence on
the availablememoryw), wewould need to use amuch larger circuit.

5.2. Benchmarking known circuits
Some of the largest circuits that were directly synthesizable by both the originalMITMalgorithm and optimal
T-count algorithmwere thosewithT-count 7 on 3 qubits [12, 13]. There are a number of such circuits shown in
figure 7.Using our knowledge fromoptimization of parameters in the previous section (4096 cores, 1/2 points
distinguished, 512 collectors and 1024 verifiers), we obtain the synthesis times reported in table 1.We note that
at roughly 25s, these times are amarked improvement over those reported in [19], whichwere greater than
4minutes. This highlights the advantage of usingmany processors and is a promising sign thatwewill be able
to synthesize circuits which aremuch larger in a reasonable amount of time.

5.3. Pushing the boundaries
The largest circuit synthesized to date using pQCS is the 4-qubit 1-bit full adder shown infigure 8. A synthesized
version of this adder appeared in [12]withT-count 8, where it was accomplished using peephole optimization
techniques. It was suspected that it hasT-count 7 [22], whichwe confirm.

Thefirst successful synthesis of the adder took 12.5 hours using 4096 cores (512 collectors, 1024 verifiers)
and 1/2 points distinguished.Wenote that a circuit as large as the adder would likely benefit from a larger

Figure 7.Circuit diagrams for thefive 3-qubit circuits withT-count 7 that we synthesized.

Table 1. Synthesis of a known set of 3-qubit circuits all
having optimalT-count 7. All results come from100
independent trials using 4096 cores (512 collectors, 1024
verifiers) and 1/2 of points distinguished as per the
results of section 5.1.

Circuit Average time (s) Std. dev. (s)

Toffoli 25.9870 11.0733

Fredkin 25.0031 9.4869

Peres 25.4931 11.1753

QuantumOR 24.1854 9.1417

Negated Toffoli 26.9162 11.1561

8

QuantumSci. Technol. 1 (2016) 015003 ODiMatteo andMMosca



number of processors, somore testing is in progress. A full version of the circuit is shown infigure 9. The initial
output of pQCS is a sequence of Paulis and a unitary corresponding to aClifford gate as per (10). The Pauli
portion of the circuit ( ( ) ( )R P R P7 1 )was generated using the algorithm given in the appendix of [13], and the
Clifford componentwas generated using the algorithm in [23]. The resultant sequence of gates was then
optimized forT-depth usingT-par [24]. Interestingly, this new synthesis of the adder led to the observation that
it requires identical resources as the Toffoli gate, i.e.T-count 7,T-depth 3, and to the question of whether this is a
coincidence. In fact, it was subsequently pointed out to us that this adder is affine equivalent to the Toffoli (i.e.
unitarily equivalent up to application of CNOTs) [25].

6. Concluding remarks

Wepresented a framework for quantum circuit synthesis based on deterministic walks, as well as an algorithm
and software for parallel quantum circuit synthesis.We observed a clear advantage over existing techniques
using a relativelymodest number of processors andwere able to directly synthesize a 4-qubit circuit, which
would have been intractable using previousmethods.

Ongoing and futurework onpQCS includes improvements to the application structure andparallelization
routines, extensions for synthesis in general over a specified gate set, and the implementationof approximate
circuit synthesis. Furthermore, we seek to push the application to its limits inorder to fully characterize the scaling,
inparticularwith respect to the availablememory once the circuit search spaces become sufficiently large.
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Appendix

The runtimes presented in equations (8) and (9) stem from a so-called ‘flawed’ runtime analysis originally
presented in [17]. Supposewe are searching for a collision in a space of sizeN, and that the availablememory is

Figure 8. 4-qubit adder.We find directly that it hasT-count 7 andT-depth 3, and that these results are optimal.

Figure 9.Decomposition of the 4-qubit adder over Clifford+T, optimized forT-depth. TheX gates indicate swaps.
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full withw distinguished points. The number of steps required tofind a single collision in this case is

q
q

+ ( )N

w

2
, A ,1

where θ is the fraction of points which are distinguished. Thefirst term comes from the fact that tofill the
memorywithw distinguished points, qw elements in the spacewill be traversed on average, and any given
point in a new trail has a N1 probability of landing on a previously seen point; the second term comes from the
need to trace back through both trails to locate the collision, and each trail has length q1 on average.

The assumption ismade that there is a single ‘golden’ collision. In this case, N 2 ‘bad’ collisions will be
found on average before the golden one is found. If we parallelize usingm processors and assume each step in a
trail takes time τ, thenwe obtain a runtime:

q
q

tµ + ( )
⎛
⎝⎜

⎞
⎠⎟T

m

N

w

N1

2
A.2

2

The next step taken in [17] is to differentiate and find θ such that (A.1) is optimized, which is what results in
the inverse-square-root dependence onw. They then performed computational experiments for a range ofw
andN tofind optimal prefactors.

However, the optimal θ is expressed in terms of w N , whichwhen w N (as is the case whenwe
synthesize the Toffoli on the BG/Q)would not result in a fractional θ. So let us continue a hypothetical analysis
of this formwithout finding the optimal θ. Consider the case wherewe are optimizing forT-count. In themost

general case, the two halves of theMITMequationwill be different sizesN1 andN2, where = ⎡⎢ ⎤⎥N 4n
1

t
2 and

= ⎢⎣ ⎥⎦N 4n
2

t
2 (t being theT-count). Sincewhenwe have an odd depth, we partition the larger space and search

sequentially (in theory this could also be done in parallel), wemust add a prefactor of N N1 2 in front of the
runtime and theN becomes N2 2 because the full space we’re searching is that of ´ { }N 1, 22 . As for τ, let’s

assume t = a⎡⎢ ⎤⎥4t n
2

whereα is a constant which reflects the complexity of thematrixmultiplication algorithm.

Thenwe have that

q
q

µ + a-
+( ) · ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⎡

⎢⎢
⎤
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⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦
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2

2 4
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2 2
2 2
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⎢⎣ ⎥⎦t

m w2

1

2
4
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1 t

t

2
2

When w N2 , the first termdisappears and the expression reduces to

q
µ

a+ +( )
( )

⎡
⎢⎢

⎤
⎥⎥

⎡⎢ ⎤⎥
T

t

m2

4
, A.5

n 1 t
2

which is exponential in both n and t, and inversely proportional to bothm and θ, which is precisely whatwe have
observed in practice.
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