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Abstract

Quantum circuit synthesis is the process in which an arbitrary unitary operation is decomposed into a
sequence of gates from a universal set, typically one which a quantum computer can implement both
efficiently and fault-tolerantly. As physical implementations of quantum computers improve, the
need is growing for tools that can effectively synthesize components of the circuits and algorithms they
will run. Existing algorithms for exact, multi-qubit circuit synthesis scale exponentially in the number
of qubits and circuit depth, leaving synthesis intractable for circuits on more than a handful of qubits.
Even modest improvements in circuit synthesis procedures may lead to significant advances, pushing
forward the boundaries of not only the size of solvable circuit synthesis problems, but also in what can
be realized physically as a result of having more efficient circuits. We present a method for quantum
circuit synthesis using deterministic walks. Also termed pseudorandom walks, these are walks in
which once a starting point is chosen, its path is completely determined. We apply our method to
construct a parallel framework for circuit synthesis, and implement one such version performing
optimal T-count synthesis over the Clifford+ T gate set. We use our software to present examples
where parallelization offers a significant speedup on the runtime, as well as directly confirm that the
4-qubit 1-bit full adder has optimal T-count 7 and T-depth 3.

1. Introduction

Quantum computers, like their classical counterparts, will require a compiler that can translate from a human-
readable input or programming language into operations that can be executed directly on quantum hardware.
Circuit synthesis is an integral part of the compilation process. Given an arbitrary quantum circuit Cand a
universal gate set G, one seeks to find a decomposition,

UgUp—r - U =C, U eg, (D

where k represents the depth of the circuit. A myriad of algorithms currently exist to find such a decomposition
[1-15]. They are generally divided into two classes: those that synthesize approximately (i.e.

[|Ui -+ Up — CJ]] < €)and others that synthesize exactly. Some procedures work for a single qubit, whereas
others have been generalized to multiple qubits. Most of these algorithms were designed to work over the
Clifford+T universal gate set, though other gate sets such as the V-basis have also been studied [5, 6].

Many of the algorithms that perform exact synthesis fall victim to the fact that the time and space used
depend exponentially on both the number of qubits and the depth of the circuit in question. Even ona
reasonably fast machine, the synthesis of circuits with more than a handful of qubits and layers of depth becomes
intractable.

In this work, we propose a method of circuit synthesis based on a heuristic search technique commonly used
in cryptanalysis: collision finding based on deterministic, or pseudorandom, walks. These are walks through a
search space such that once a starting point is chosen, the path is completely determined. More generally, we
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show how we can use deterministic walks to traverse the space of possible circuits of a given depth and find
solutions to the synthesis problem. A key ingredient in our method is a mapping from the unitary operators
constructed from the gate set G to binary strings of a constant length and a suitable mapping back to the set of
unitary operators. When such mappings are defined, we can synthesize circuits over any universal gate set on any
number of qubits by applying any existing walk method that can search the space.

The structure of this article is as follows. We begin in section 2 with a discussion of deterministic walks and
how we can map quantum circuit synthesis to these types of problems. The subsequent sections pertain to our
choice of implementation of one such method, namely parallel circuit synthesis. In section 3 we briefly lay out
the procedure for parallel synthesis and provide a runtime complexity estimate, detailing the important
parameters which affect the scaling of our algorithm. Section 4 introduces our software implementation, pQCS
(parallel quantum circuit synthesis), which performs optimal T-count synthesis using parallel search. Section 5
contains the numerical results of large-scale experiments run on a Blue Gene/Q supercomputer. Here, we
showcase the significant advantages afforded to us by parallelization. We conclude in section 6 and suggest
avenues of future research on this topic.

2. Walking through circuits

Consider a hash function h : D — R, typically considered to operate over binary strings. If ki is a good hash
function, then for an arbitrary input, x € D, thevalue h(x) = y € R will be in practice indistinguishable from
arandom output. Suppose there exists another function, r : R — D, unrelated to h, which maps elements of its
range back to the domain (such a function is commonly termed a reduction function). Repeatedly applying r o h
to an input will produce a trail of points scattered throughout D. However, once the initial input is chosen, the
progression of the trail is completely determined, hence we favour the term deterministic rather than
pseudorandom walk even though the path of the walk appears random due to the natures of hand r.

Such determinism has led to a set of algorithms with a variety of applications. One well-known variation is
rainbow tables [16], which are used for finding pre-images of hash functions (conventionally with the intention
of cracking passwords). Collision finding in one hash function or claw finding between two functions has also
been accomplished in parallel using deterministic walks [17], and was used to find collisions in double DES [18].

Deterministic walks are advantageous due to their low storage requirement: one need only store the starting
point of a walk, its ending point, and the number of intermediate steps, whereas conventional search techniques
would store the value of every point computed throughout.

With this in mind, we show how one can map the problem of circuit synthesis to a problem that can be
solved using an algorithm based on deterministic walks. We have, as per equation (1), a product constructed
from the universal gate set G. It is possible to specify a unique way of encoding the information about
{U), ..., Uy} into binary strings {by, ..., by} of equal length £ (where we assume £ is sufficiently long as to
encompass all the information described in what follows). Suppose G contains a number of single- and two-
qubit gates. If we enumerate all the gates in G, then for each U; we might use a few bits to identify all the
constituent gates, and maybe a few more to specify if we should use their Hermitian conjugates. We will also
need to indicate on which qubit(s) they act. Furthermore, there must be some space to indicate controls and
targets where appropriate. Given any gate set, we can find a way of doing this such that every possible U; can be
represented by a unique string b;. Then, the concatenation (by|---|b;) will be a unique string of length k#
representing the product of unitaries U --- Uj.

We can perform a deterministic walk over unitary matrices as follows (this process is displayed graphically in
figure 1). Let us define a function p which maps a binary string of length k# to a unitary matrix over a specified
gate set G. Then, define a mapping v from the unitaries over G back to binary strings {0, 1}*. Finally, choose a
good hash function h from {0, 1}* to strings of length k# (this may be a simple hash function or a combination
of hash and reduction-type functions). Repeatedly applying & o v o i toarandomly chosen binary string of
length k# will allow us to traverse products of unitaries in a pseudorandom fashion; we can then use this to
search the space of possible solutions to (1).

3. Parallel circuit synthesis

Once we have mappings as proposed in section 2, we can reformulate the circuit synthesis problem as a problem
that can be solved using search algorithms based on deterministic walks. We specifically implemented one which
performs parallel claw finding. Let i : D; — R and h, : D, — R be two hash functions. A claw between h;
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Figure 1. Schematic diagram showing the process of walking over circuits. Binary strings are mapped to products of unitary matrices
over the gate set G via some correspondence p. The product of these matrices is then mapped via v back to a binary string, which is
then passed through a hash function h. Repeated application of h o v o i allows us to traverse the set of possible circuitsin a
pseudorandom fashion.

and h, is a pair of inputs x; € Dy, x, € D, such that
hi(x) = hy (). 2

This is, in a sense, a collision search between two functions.

Our interest in claw finding stems from recent work on circuit synthesis using a meet-in-the-middle
(MITM) approach [12]. The motivation for that work is as follows. One can, of course, find a decomposition of
(1) by brute force, computing all possible combinations starting from depth 1 up until a solution is found. Let £
represent the number of unitaries having depth 1. Typically, £ will depend exponentially on the number of
qubits, 7. Then, the runtime for brute force synthesis of a circuit with depth k takes time O(£X). AMITM
approach achieves a roughly square-root speedup over this, accomplished by dividing the synthesis equation in
half:

Upp o U= Uﬁﬂﬂ -~ UlC, U €q. (3)

Databases of unitaries having the form of each side of (3) are sequentially constructed (starting from depth 1),
stored in binary trees, and then searched through until a suitable decomposition is found. This reduces the size
of the search space by a square root factor, yielding runtime O(§ H log (¢ H )), where the log factor is picked up
due to the binary search.

To parallelize circuit synthesis, we build on the principles of the MITM algorithm. Rather than searching
through static binary trees, we search the space in parallel, adapting a search technique originally developed for
cryptanalysis [17]. Though our runtime will retain the exponential dependence on # and [k/2], it scales inversely
with the number of processors, allowing us to tackle larger problems that were infeasible using previous
methods, as well as speed up the synthesis of some known circuits. We provide a brief description of the

algorithm here as it pertains specifically to circuit synthesis. For a more detailed description, the reader is

referredto [17] or [19].
Recall equation (3), and for simplicity, let us define
Vi=Up - Uy 4)
= Ul ... Ur
W= U UG 5)

asrepresenting the left and right sides of this equation. Define a suitable mapping between unitary matrices and
binary strings of length k# as in section 2. Then, let )’ represent the set of binary strings that are of the form V;,
and likewise W those of the form W. When kis odd, V' and W may differ in size by a factor of £ In this case, we
partition V' into equal-sized chunks V, ..., Vlg, 1»and consider V = V! independently (a search can then be
executed with each V! sequentially or in parallel, adding another layer of parallelism to the implementation).
When kis even, we simplylet V = V',

Let N = {0, 1}*. Define functions z : N'— N and z, : N'— A/ . One way these functions might be
implemented is by converting the input string into a sequence of unitary matrices (in V for z, and W for z,),
computing their product, deriving a new binary string with the information about each of the matrix elements,
and then running that string through a known hash function so that the outputs of both functions are in the
same space and in practice appear to be random.
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Figure 2. Possible ways two trails can merge. Let fand gbe two functions between which we want to find a claw. Left: one trail starts
before the other. Centre: the two trails merge after performing the same function, i.e. a collision f (x;) = f (y;). Right: the two trails
merge after performinga different function, i.e.aclaw f (x) = g (3;).

Let us define a ‘super’ function f : N x {1, 2} — AN x {1, 2} such that one application of f is a single step
in the deterministic walk, i.e. f (x, b) = z;,(x). Finding a claw between z; and z, is now equivalent to finding a
collision in fwith distinct values for b, i.e. we must find two inputs x; and x, such that

fea, 1) = f (o, 2). (6)

Consider m processors all having access to a shared memory. We will denote some fraction 6 of points in A/
as marked or distinguished. Every processor chooses a random starting pair (19, bp) in A/ x {1, 2}. Repeatedly
applying fproduces a trail through the space of possible circuits, which roughly half of the time will produce a
part of equation (3) which is an element of V, and the other half of the time will produce an element of WW. The
trail continues until the next input, say x,, is a distinguished point. The trail is then terminated.

The collection of found distinguished points is stored in the shared memory. Distinguished points are stored
as a triple consisting of the first pair (19, by), the last pair (14, b;), and the value d, which is the number of steps
taken to reach the distinguished point. When a processor finishes its trail, it will attempt to add its distinguished
point to the shared memory. If it sees that a trail ending at the given point is not present in this shared memory, it
will insert it and then begin a new trail. However, if it sees that there is already a triple in storage that ended at the
same distinguished point but had a different starting point, it means that somewhere along the way these two
trails must have merged. The processor then takes the starting points of these two trails and traces back through
them to locate the merge point.

There are a number of possibilities here as depicted in figure 2. First, it could be that one trail started ‘before’
the other, i.e. the merge point was at the beginning of the shorter trail. Another possibility is that when the trails
merged, both had just performed z; or both had just performed z,. Even if the inputs were different, this case
does not provide us with a solution to the problem at hand. The final case is that immediately before they
merged, one trail performed z; and one performed z,; it is only in this final case that we have found a solution.
With the information about the inputs in the step just before the collision, we can extract the unitary matrices
from the binary string and have fully synthesized our circuit.

The runtime complexity of this algorithm can be estimated by applying the parameters of our problem
directly to that in [17]. The size of the spaces V' and W are

Ny =il Ny = el %)
Our algorithm then scales as
Tocs o g[ﬂ+%l§J ! iT, (8)
W m

where wis the number of distinguished points that can be held in memory. The parameter 7is the execution
time for a single iteration of z; or z,, the bulk of which will likely be spent performing matrix multiplication. Let
us assume in the worst case that we are taking the product of [ﬂ 2" x 2" unitaries using a multiplication
algorithm which scales as (2")*, where « is some constant, typically 2 < a < 3. Thus, we obtain our final

estimate:

k 1| k k
Tocs o zang([zelzJ)%%[ E]’ )




10P Publishing

Quantum Sci. Technol. 1(2016) 015003 O Di Matteo and M Mosca

As previously mentioned, this time is still exponential in the number of qubits as well as the depth of the circuit.
We also note that it is often the case that matrix multiplication can be parallelized, or that some specific
properties of the implementation at hand (such as sparsity) can be leveraged so as to improve the scaling. What is
key here is that the runtime benefits from being inversely proportional to the number of processors and available
memory.

4. Implementation details

4.1. Optimal T-count synthesis

The synthesis algorithm we chose to apply our approach to is the optimal T-count algorithm presented in [13].

Such an algorithm is relevant as in many state-of-the-art methods for fault-tolerant quantum computation, T'

gates are considered to be expensive to implement due to the need to distill magic states (see, for example, [20]).
Let P, represent the n-qubit Pauli group. We reshuffle and rewrite the decomposition of a circuit Cas

e“R(P,) - R(P)D = C, (10)
where tis the T-count, D is a Clifford, P, € B,,and

R(P) = %(1 +ef) Iy + %(1 L (11)

It thus suffices to find a set of t Paulis and a Clifford which will satisfy equation (10) up to a global phase. The
dependence on the global phase can also be removed by using the channel representation of every matrix in the
above equation:

R(B) - R(P)D = C, (12)

where the channel representation of some matrix U is the matrix with coefficients

~ 1
Uj = ETr(Pi UP,UY), P, P;€P. (13)

The channel representation of an n-qubit unitary has dimension 4" x 4", with each row and column being
indexed by a Pauli operator.

Using the optimal T-count algorithm has afforded us a number of advantages. First of all, the T-count
formulation allows us to represent each unitary matrix in the sequence as a list of n-qubit Paulis. With binary
symplectic representation, we can then represent each Pauli directly as a binary string, which leads to a very
simple mapping with which we can perform our deterministic walks. Another strong point of the algorithm is
that the channel representations of R(P) for P € T, are sparse matrices. Thus, we were able to implement a
sparse matrix multiplication algorithm that allows us to very quickly compute most matrix products despite the
channel representations having dimension 4" x 4".

We can apply equations (8) and (9) to the optimal T-count synthesis to obtain a runtime estimate. Each R(P)
contributes a single T gate to the circuit, and can be considered as a single layer of depth in this implementation.
Thus, we have that { = 4" — 1, as all Paulis save for the identity are valid choices. Our estimate for the runtime is
thus

Tocs—1 X z"(M“f‘zH%J)%%E]. (14)

4.2. Computer specifications
We implemented the optimal T-count version of the parallel algorithm in C++11. It is called pQCS and is
available for download and research use at https://qsoft.igc.uwaterloo.ca/#software. Parallelization was
accomplished using the Boost. MPI compiled library [21]. A scaled-down version of pQCS that uses only
OpenMP for parallelization (and can be run on a standard multi-core personal computer) is also available in the
above package.

pQCS was extensively tested on two large-scale machines. The OpenMP-only version was tested on
SHARCNET’s Orca using a single node with up to 16 processors at 2.2 GHz speed. The MPI version was tested
on Scinet’s Blue Gene/Q (BG/Q) supercomputer, which has 65536 processors at 1.6 GHz speed. The largest test
we have run to date involved a total of 8192 cores. All results below are from trials on the BG/Q. A flowchart and
description of the distribution of work in the MPI version is presented in figure 3.

5
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Circuit Total number of MPI processes
Inputs: T-count Number of collectors
Distinguishing criteria Number of verifiers

Workers Collectors Verifiers

Head worker Head collector

distinguished points from
collector

Receive distinguished
points from head worker

Gather distinguished
points from workers

v Retrace steps of both trails
Scatter distinguished and search for a collision
points to other collectors between them

Abort all processes and exit

MPI gather i sond
them both to
verifier

MPI Scatter
Distinguished points @
Perform a deterministic . =
walk and generate a B |

distinguished point Receive distinguished

points from head collector

| Send distinguished point
to head worker

Find partner
and send
them both to
verifier

Figure 3. Flowchart of work distribution for the version of pQCS run on the Blue Gene/Q. Worker processors perform walks and
generate distinguished points. These are funneled through a head worker to a head collector processor, which then distributes the
points amongst all the collectors for processing and storage. Each collector has access to a number of verifiers. Collectors that find
pairs of walks ending at the same distinguished point distribute the pairs to their verifiers to check for a claw.

5.Results

5.1. Determining effective simulation parameters
pQCS has a number of tunable parameters. In what follows, we will synthesize a known circuit, the Toffoli gate,
and explore the scaling of our algorithm.

In the original description of the parallel collision finding algorithm [17], each processor was responsible for
performing not only the search for a distinguished point, but also storing it and subsequently checking the
validity of any possible solutions; it is from this setup that the heuristic runtimes are derived. In pQCS, however,
processors are divided into three categories (as per figure 3) that communicate via MPI. Worker processors
perform deterministic walks and generate distinguished points. Distinguished points are collected and stored in-
core on collector processes. Each collector has access to a number of verifier processors to which pairs of walks
are sent for verification when the possibility of a claw occurs. The parameters m and w may not necessarily
depend, then, on the total number of processors, but rather on the number of processors in one or more of the
different classes. For example, w will depend solely on the number of collectors, whereas we expect m tobe a
function of the number of workers, assuming a sufficient number of collectors and verifiers are in place.

First, we focus on how many collectors and verifiers we should use. We chose two values for the total number
of cores, 1024 and 2048. We then varied the fraction of nodes designated as collectors in increments of 1/16,
from 1/16 to 1/4 the total (values outside this range clearly yielded inferior results). For each fraction of
collectors, we either used the same or double the number of verifiers. The results of these trial runs are shown in
figure 4. In all of these trials, we let 1/4 of the points in the space be designated as distinguished (later we will fine-
tune this parameter as well). Each point is the average of 100 independent trials. We find that for both total
quantities of processors, the optimal number of collectors is 1/8 the total number, and for verifiers 1/4 the total.
When more than 3/8 of the total processes are being used on storage and verification, there are not enough
workers to perform the deterministic walks. On the other hand, when there are too many workers, each collector
must store and process a larger collection of distinguished points each time. Furthermore, more time will be
spent by the workers gathering and sending the increased quantity of distinguished points.

With this knowledge, we then tested the Toffoli with varying number of cores. Again, we let 1/4 of the points
be distinguished and take the average of 100 independent trials. The results are shown in figure 5. Here, we

6
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Average synthesis time for Toffoli gate on BGQ (100 trials)

1024 cores 2048 cores

325+
300+
275+
250+
2251
2004 ®V=C
1754 ® V=2C
150+
125+
100+
75
504, : : ; ; : ; ;
0.0625 0.125 0.1875 025  0.0625 0.125 0.1875 0.25
Proportion of collector nodes

Average synthesis time (s)

Figure 4. Variation of the number of collectors and verifiers when synthesizing the Toffoli gate. The fraction of distinguished points
was setat 1/4. Thelegend V' = Cindicates equal amounts of collectors and verifiers, whereas V = 2C indicates two verifiers per
collector. We find that the optimal number of collectors seems to be about 1/8 the total number of processors, and the number of
verifiers to be twice that at 1/4 the total number.

Average synthesis time for Toffoli gate on BGQ (100 trials)

500
450+
400+
350+
300+
250+
200+
150+
100+

50 ®

Average synthesis time (s)

256 512 1024 2048 4096 8192
Cores

Figure 5. Varying the total number of cores when synthesizing the Toffoli gate. We used 512 collectors and 1024 verifiers with 1/4 of
the points distinguished. Data follows the inverse trend line quite closely until around the 4096 core mark. After this point, it is likely
that the overhead and communication costs are too large for a problem of this size.

Average synthesis time for Toffoli gate on BGQ (100 trials)

300+
260+
220+
180+ °
140+
100

60

Average synthesis time (s)

20+ $
132 116 18 1/4 12
Fraction of distinguished points

Figure 6. Varying the fraction of distinguished points while synthesizing the Toffoli gate. As the size of the search space is much less
than the available memory, we see roughly the expected inverse dependence on the fraction of distinguished points.

clearly see the expected inverse dependence on the number of processors as predicted by (8). We do note that
there is significant deviation from the expected trend when we reach 8192 cores. We suspect that for a problem
of this size, the parallel overhead and communication costs outweigh the potential benefits of using this many
cores.
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Figure 7. Circuit diagrams for the five 3-qubit circuits with T-count 7 that we synthesized.

Table 1. Synthesis of a known set of 3-qubit circuits all
having optimal T-count 7. All results come from 100
independent trials using 4096 cores (512 collectors, 1024
verifiers) and 1/2 of points distinguished as per the
results of section 5.1.

Circuit Average time (s) Std. dev. (s)
Toffoli 25.9870 11.0733
Fredkin 25.0031 9.4869
Peres 25.4931 11.1753
Quantum OR 24.1854 9.1417
Negated Toffoli 26.9162 11.1561

Finally, we investigate how the runtime varies with the fraction of distinguished points, 6. In the case of the
Toffoli, the amount of available memory using the above number of processors on the BG/Q is significantly
greater than that required to store even the entire space. Variation of this parameter is thus somewhat contrived
for such a (relatively) small problem. In this case, we would expect an inverse dependence on € (see the appendix
for more details). We ran 100 trials on 4096 processors (512 collectors and 1024 verifiers) using fractions of
distinguished points { 1/2,1/4,1/8,1/16,1/32 }. The results are displayed in figure 6, where we see the
expected inverse dependence. We also report here our best synthesis times for the Toffoli gate, clocking in at
roughly 26s on average. To fully explore the effects of this parameter (and more importantly the dependence on
the available memory w), we would need to use a much larger circuit.

5.2. Benchmarking known circuits

Some of the largest circuits that were directly synthesizable by both the original MITM algorithm and optimal
T-count algorithm were those with T-count 7 on 3 qubits [12, 13]. There are a number of such circuits shown in
figure 7. Using our knowledge from optimization of parameters in the previous section (4096 cores, 1/2 points
distinguished, 512 collectors and 1024 verifiers), we obtain the synthesis times reported in table 1. We note that
atroughly 25s, these times are a marked improvement over those reported in [19], which were greater than

4 minutes. This highlights the advantage of using many processors and is a promising sign that we will be able

to synthesize circuits which are much larger in a reasonable amount of time.

5.3. Pushing the boundaries
The largest circuit synthesized to date using pQCS is the 4-qubit 1-bit full adder shown in figure 8. A synthesized
version of this adder appeared in [12] with T-count 8, where it was accomplished using peephole optimization
techniques. It was suspected that it has T-count 7 [22], which we confirm.

The first successful synthesis of the adder took 12.5 hours using 4096 cores (512 collectors, 1024 verifiers)
and 1/2 points distinguished. We note that a circuit as large as the adder would likely benefit from a larger
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Figure 8. 4-qubit adder. We find directly that it has T-count 7 and T-depth 3, and that these results are optimal.
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Figure 9. Decomposition of the 4-qubit adder over Clifford+T, optimized for T-depth. The X gates indicate swaps.

number of processors, so more testing is in progress. A full version of the circuit is shown in figure 9. The initial
output of pQCS is a sequence of Paulis and a unitary corresponding to a Clifford gate as per (10). The Pauli
portion of the circuit (R (P;) --- R(Py)) was generated using the algorithm given in the appendix of [13], and the
Clifford component was generated using the algorithm in [23]. The resultant sequence of gates was then
optimized for T-depth using T-par [24]. Interestingly, this new synthesis of the adder led to the observation that
it requires identical resources as the Toffoli gate, i.e. T-count 7, T-depth 3, and to the question of whether thisis a
coincidence. In fact, it was subsequently pointed out to us that this adder is affine equivalent to the Toffoli (i.e.
unitarily equivalent up to application of CNOTSs) [25].

6. Concluding remarks

We presented a framework for quantum circuit synthesis based on deterministic walks, as well as an algorithm
and software for parallel quantum circuit synthesis. We observed a clear advantage over existing techniques
using a relatively modest number of processors and were able to directly synthesize a 4-qubit circuit, which
would have been intractable using previous methods.

Ongoing and future work on pQCS includes improvements to the application structure and parallelization
routines, extensions for synthesis in general over a specified gate set, and the implementation of approximate
circuit synthesis. Furthermore, we seek to push the application to its limits in order to fully characterize the scaling,
in particular with respect to the available memory once the circuit search spaces become sufficientlylarge.
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Appendix

The runtimes presented in equations (8) and (9) stem from a so-called ‘flawed’ runtime analysis originally
presented in [17]. Suppose we are searching for a collision in a space of size N, and that the available memory is
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full with w distinguished points. The number of steps required to find a single collision in this case is

NG + 2 s (A1)
w 0
where 0 is the fraction of points which are distinguished. The first term comes from the fact that to fill the
memory with w distinguished points, w /6 elements in the space will be traversed on average, and any given
pointinanew trail hasa 1/N probability of landing on a previously seen point; the second term comes from the
need to trace back through both trails to locate the collision, and each trail has length 1/6 on average.
The assumption is made that there is a single ‘golden’ collision. In this case, N /2 ‘bad’ collisions will be
found on average before the golden one is found. If we parallelize using m processors and assume each step in a
trail takes time 7, then we obtain a runtime:

2
T x L(N—0 + E)T (A.2)
m\ 2w 0

The next step taken in [17] is to differentiate and find 6 such that (A.1) is optimized, which is what results in
the inverse-square-root dependence on w. They then performed computational experiments for a range of w
and N to find optimal prefactors.

However, the optimal 0 is expressed in terms of w/N, which when w >> N (asis the case when we
synthesize the Toffoli on the BG/Q) would not result in a fractional €. So let us continue a hypothetical analysis
of this form without finding the optimal . Consider the case where we are optimizing for T-count. In the most
general case, the two halves of the MITM equation will be different sizes Ny and N,, where Nj = 4" [%]and
N, = #1:] (tbeing the T-count). Since when we have an odd depth, we partition the larger space and search
sequentially (in theory this could also be done in parallel), we must add a prefactor of N;/Nj in front of the
runtime and the Nbecomes 2N, because the full space we’re searchingis thatof N, x {1, 2}. Asfor 7, let’s

assume 7 = [%—I 4" where «is a constant which reflects the complexity of the matrix multiplication algorithm.
Then we have that

e HE (\3)
[ g #lde 1
[2]2m4 ( ) w + 9 (A.4)

When w > N, the first term disappears and the expression reduces to
n|la+1 +|—£-|
- [ t ] gr(or14s])
2 mb

which is exponential in both # and ¢, and inversely proportional to both m and 6, which is precisely what we have
observed in practice.

> (A.5)
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