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Abstract. Starting from the Skyrme energy-density functional, the microscopic model is
developed for the monopole excitations. We take into account the coupling between one-,
two-, and three-phonon terms in the wave functions of excited 0+ states. As an example,
the properties of the isoscalar giant monopole resonance (ISGMR) for the doubly magic nuclei
40,48Ca are discussed. The inclusion of complex configurations leads to a fragmentation of the
ISGMR strength to lower energy 0+ states and also higher energy tail.

Among the giant resonances discovered a long time ago in the very intensive study of this
field of nuclear research the isoscalar giant monopole resonance (ISGMR) has attracted special
attention [1]. The resonance energy is sensitive to the nature of nuclear interactions and
related to the incompressibility of nuclear matter [2]. The latter quantity is of fundamental
importance for the understanding of the saturation properties of nuclear matter and because of
that also is of astrophysical interest. Thus, the experimental source of information regarding
incompressibility is the ISGMR excited by the inelastic scattering of various projectiles at small
angles (see, e.g., [1]). A complete list of references on that subject is given in [3]. On the
theoretical side, the random phase approximation (RPA) with the Skyrme-type energy-density
functional (EDF) is the most widely used theoretical model for such collective excitation in
nuclei, see e.g. [2, 3]. These RPA calculations enable one to describe the properties of the
ground state and excited 0+ states using the same EDF. The wave functions of nuclear collective
0+ states are associated with the coherent effect of one-particle–one-hole (1p1h) excitations in
terms of the mean-field and particle-hole interaction [4]. A comparison of such calculations with
the experimental data demonstrates that the RPA approach cannot correctly reproduce the
ISGMR strength distributions. It is necessary to take into account a coupling with more complex
configurations. The decay evolution along the hierarchy of more complex configurations (2p2h,
3p3h, etc.) till compound states determines the fine structure of the ISGMR and its damping
properties [3, 5, 6]. Recently, the Skyrme-RPA has been generalized to take into account the
phonon-phonon coupling (PPC) in the case of the ISGMR strength distribution [7, 8]. It was
found that the PPC inclusion is crucial for the description of the gross properties of the ISGMR
in medium-heavy mass spherical nuclei. It is worth mentioning that the PPC follows the basic
ideas of the quasiparticle-phonon model (QPM) [9], but the single-particle (SP) spectrum and
the residual interaction are derived from the same Skyrme EDF (see details in Refs. [10, 11]).

To describe the damping properties of the ISGMR and recent experimental data in 40,48Ca
isotopes [12, 13], we analyze the effects of the coupling between one-, two-, and three-phonon
configurations in the present work.
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Our model consists in the Hartree-Fock (HF) calculation of the ground state with the effective
Skyrme interaction [4], assuming spherical symmetry for the nuclei considered here. To build
the RPA equations on the basis of HF states using consistently the residual interaction (derived
from the Skyrme force in the particle-hole channel) is a standard procedure [14]. The dimensions
of the RPA matrix grow rapidly with the size of the nucleus. Using the finite-rank separable
approximation (FRSA) [15] for the residual interactions, the eigenvalues of the RPA equations
can be obtained as the roots of the secular equation. It enables us to perform RPA calculations
in very large configuration spaces. In particular, the cutoff in the discretized SP continuum can
be chosen at 100 MeV. Excited states of even-even nuclei are treated in the terms of the phonon
excitations built upon the ground state that is considered as the RPA phonon vacuum |0〉. The
wave functions of the one-RPA phonon excited states given by Q+

λµi|0〉 as a superposition of the
1p1h configurations.

In the next step, the wave functions of the excited states are written as a sum of configurations
of different complexity by the number of phonons. If we limit this sum to one-, two-, and three
configurations only, the wave function has the form [16, 17]
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where Q+

λµi is the phonon creation operator for multipolarity λµ. Using the variational principle

and taking into account the normalization of the wave function (1), we get the secular equation
for the energies of excited states and the system of equations for finding the wave function
coefficients Ri(Jν), P

λ1i1
λ2i2

(Jν), and T λ1i1 λ2i2
J ′ λ3i3

(Jν). The resulting system of equations obtained
with the chosen Skyrme EDF has a similar form as the system of equations within the QPM by
using the Woods-Saxon potential [9, 18, 19]. The rank of the determinant is determined by the
number of the complex configurations included in the wave function (1).

In the present work, the calculations are performed by using the SLy5 EDF [20]. To construct
the wave functions (1) of the 0+ excitations up to 30 MeV we use the natural parity phonon
with λπ = 0+ − 5−. In Ref. [17], we found the main mechanisms of the ISGMR formation.
The approach takes into account correctly and consistently the coupling between one-, two- and
three-phonon terms in the wave functions of excited 0+ states.

As an illustration of the method described above, let us demonstrate the fragmentation of
the ISGMR strength function due to the coupling of the one-phonon component over complex
configurations of the ISGMR. The strength function describing the fragmentation of the 0+ states
are defined as
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where the monopole isoscalar transition operator M̂λ=0 is given as
∑A
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are the transition probabilities. The smearing

parameter ∆ in Eq. (2) is equal to 1 MeV in all the calculations. In order to discuss
the various integral characteristics, we introduce the energy-weighted moments mk =
∑
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. These values are useful in estimating the resonance centroid,

Ec = m1/m0, and also in checking numerical calculations.
The ISGMR strength distributions of 40Ca are displayed in Fig. 1(a). Both theoretical and

experimental results show the fragmentation and splitting of the ISGMR strength. One can
see that three regions can be distinguished in the strength distribution: the low-energy part



28th International Nuclear Physics Conference (INPC 2022)
Journal of Physics: Conference Series 2586 (2023) 012047

IOP Publishing
doi:10.1088/1742-6596/2586/1/012047

3

10 15 20 2510 15 20 25
0

200

400

600

w (MeV)

 

(b)
48Ca

 RCNP [12]
 iThemba LABS [13]

S(
w

) (
fm

4 M
eV

1 )

w (MeV)

 

(a)
40Ca

Figure 1. The phonon-phonon coupling effect on the ISGMR strength distributions in 40Ca (left
panel) and 48Ca (right panel). The dashed and solid curves correspond to the RPA and PPC
calculations, respectively. The smoothing parameter 1 MeV is used for the strength distribution
described by the Lorentzian function. Experimental data (open triangles and filled squares) are
taken from [12, 13].

up to 10 MeV, the resonance region (main peaks) in the range from 10 to 25.5 MeV and the
high-energy part of the ISGMR located above 25.5 MeV. The RPA results demonstrate that
the lowest state arises at the energy of 13 MeV. At the same time, the summed strength in
the resonance region exhausts 97% of the total monopole strength, i.e., 97% of the non-energy-
weighted sum rules (NEWSR) which we obtained below 30 MeV. In the case of the one-phonon
approximation, there are two main peaks at 17.8 MeV and 19.9 MeV, which exhausts about
58% of the total monopole strength. Figure 1(a) demonstrates the PPC impact on the ISGMR
strength distribution. The coupling of the 1p1h configurations to more complex 2p2h and
3p3h configurations leads to a noticeable redistribution of the ISGMR strength distribution
in comparison with the RPA results. In the resonance region, we found the decrease in the
fraction of NEWSR to be 89%. The quasiparticle-phonon interaction induces fragmentation in
the high-energy peaks (about 4% of the NEWSR fraction). The 4% contribution of NEWSR is
also moved downwards. Moreover, the PPC effect is a 600-keV downward shift in the ISGMR
centroid energy (Ec = 19.0 MeV in the one-phonon approximation). The experimental centroid
is 17.78 ± 0.17 MeV [13].

Moving from 40Ca to 48Ca, the RPA calculations predict the lowest 0+ state above 14 MeV.
As can be seen from Fig. 1(b), the RPA strength distribution is practically concentrated on three
states at 18.3, 19.4, and 22.6 MeV, which exhausts or about 79% of the NEWSR. In general,
the ISGMR strength in the energy range 10.0–25.5 MeV exhausts a bit less than 93% of the
NEWSR. The PPC inclusion leads to the fragmentation of the RPA strength distribution in the
resonance region of 48Ca and thus to the formation of the width of the ISGMR [17]. Moreover,
about 1% and 3% of the total monopole strength is shifted to the regions of low-energy (up
to 10 MeV) and high-energy (above 25.5 MeV) excitations, respectively. As a consequence,
about 89% of the total monopole strength remains in the ISGMR region of 10.0–25.5 MeV. The
PPC effect induces a 700-keV downward shift of the ISGMR centroid energy compared to the
RPA (Ec = 19.8 MeV). The calculated integral characteristic of the ISGMR is in satisfactory
agreement with the experimental data on 48Ca (Ec = 18.40 ± 0.13 MeV) [13].

The ISGMR strength distributions in 40,48Ca were measured using the high energy-resolution
capabilities at the Research Center for Nuclear Physics (RCNP) [12] and the iThemba
Laboratory for Accelerator Based Sciences (iThemba LABS) [13]. As can be seen from Fig. 1,
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the general shapes of the ISGMR obtained in the PPC are somewhat close to those observed
in the RCNP and iThemba LABS experiments. The PPC description is definitely better than
that obtained in the one-phonon approximation. It is worth mentioning that the effect of the
complex configurations on basic peculiarities of the ISGMR strength distributions of 40,48Ca
were already qualitatively discussed in [6].

In conclusion, we have been applied the self-consistent microscopic approach by using the
Skyrme interaction for calculations of the ISGMR strength distributions in 40,48Ca isotopes.
The model Hamiltonian has diagonalized on the basis of the wave functions of excited 0+ states
which include one-, two- and three-phonon configurations. The calculations performed in this
paper have shown that the phonon-phonon coupling leads to a considerable redistribution of
strength within the energy interval 10–25.5 MeV. About 4% of the ISGMR strength in 40Ca and
1% in 48Ca is shifted to the energy region below 10 MeV. Inclusion of complex configurations
is responsible for the shift of 3-4% of the ISGMR strength from the main peak towards higher
excitation energies. The calculations show that the quasiparticle-phonon interaction leads to
the formation of the low-lying 0+ states (Ex < 10.0 MeV). The main properties of the ISGMR
in 40,48Ca isotopes are described within the presented approach and found to be in reasonable
agreement with available experimental data, including the latest ones.
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