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Abstract. Space-borne gravitational wave observatories like the Laser Interferometer Space
Antenna (LISA) and those beyond, which may utilize a Modular Gravitational Reference Sensor
(MGRS), greatly benefit from precise knowledge of the mass center location and moment of
inertia tensor of the test mass prior to launch. The motion of the mass center of a drag-
free test mass, which follows a pure geodesic, must be inferred from measurements of the
surface. Therefore, knowledge of the mass center is critical for calibration of the cross-coupling
between rotational and translational degrees of freedom. Together with the moment of inertia
tensor, the mass center can also provide an estimate of the material density inhomogeneity to
quadratic order, and the gravitational potential to second order, which improves modeling of
self gravitation forces. These benefits, which are independent of the test mass shape, motivate
the development of three new techniques for improving mass center and moment of inertia
measurements beyond the current state of the art. A static pendulum is proposed to determine
the mass center of a cubic test mass to ~ 1 pm by measuring the equilibrium position with the
cube in up to 24 different orientations relative to the pendulum platform. Measuring the natural
frequency of a dynamic torsion pendulum can determine both the mass center and moment of
inertia tensor of arbitrarily shaped objects to ~ 5 pum and 1 part in ~ 10* respectively. The
velocity modulation technique for measuring the mass center of a sphere has raised the bar
in precision to ~ 150 nm, a factor of 20 improvement over the work presented at the LISA
6th symposium. This new technique involves rolling the sphere down a set of parallel rails to
spectrally shift the mass center offset information to the rolling rate frequency, in order to avoid
the 1/f noise that typically prevents other techniques from achieving precision below 1 pm.

1. Introduction & Motivation

A drag-free spacecraft [1] shields an internal free-floating test mass (TM) from external
disturbances, while minimizing disturbances caused by the spacecraft itself. A gravitational
reference sensor contains and shields the test mass, and senses its position, enabling a feedback
control system to command thrusters to keep the spacecraft fixed with respect to the test mass.
In principle, the test mass is then completely freed from non-gravitational disturbances, so that
its mass center (MC) follows a perfect geodesic.

One exciting application of drag-free technology is space-borne gravitational wave detectors
such as the joint NASA and ESA Laser Interferometer Space Antenna (LISA) [2-4]. LISA will
require unprecedented ~ 10 pm level accuracy in the measurement of the distances between the
mass centers of drag-free test masses housed in three spacecraft separated by 5 Gm. In addition
to the challenging metrology, the disturbances applied to the test masses must be reduced four
orders of magnitude below what has been demonstrated by Gravity Probe B [5], and over four
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orders of magnitude in frequency (0.1 mHz to 1 Hz). LISA will detect and observe the emission
of gravitational radiation from massive black holes in the distant Universe and compact binaries
within our own galaxy, and consists of three drag-free spacecraft in a heliocentric orbit. Beyond
LISA is the proposed Big Bang Observer (BBO) [6; 7], which will detect primordial gravitational
waves generated during the birth of the Universe. BBO hopes to achieve acceleration noise levels
two additional orders of magnitude below that of LISA, but at higher frequencies (0.1 - 10 Hz).

LISA (and LISA Pathfinder [8]) will use two ~ 40 mm cubic test masses per spacecraft,
one aligned with each of the two remote spacecraft. The choice of cubes is based on the flight
heritage of precision accelerometers manufactured by ONERA. Cubes also provide a flat surface
for reflecting laser light. Alignment of the cubes is maintained by electrostatic actuation so that
changes in their orientation do not mimic translation of the mass center.

The Modular Gravitational Reference Sensor (MGRS) is an alternate design for future
gravitational missions, including gravitational wave detection [7; 9; 10]. The MGRS uses a single
spinning sphere as the gravitational reference, no electrostatic suspension, and a relatively large
gap (~ 20 mm) between the spacecraft and TM. All of these features make the MGRS especially
sensitive below 1 mHz, where acceleration noise dominates the sensitivity limit [11].

Several sources of acceleration noise are related, in some way, to the density distribution of
the test mass material. These include the translation of the TM mass center coupling with the
orientation control, gravitational attraction with the spacecraft, and magnetic interactions [12].
We will discuss now how precise determination of the mass center (MC) and moment of inertia
tensor of the test mass improves our ability to estimate the magnitudes of these effects

1.1. Cross-coupling of Test Mass Degrees of Freedom

The science signal for LISA, and almost any drag-free mission, is the position of the mass center
of the test mass. In the case of LISA it is the variations in the distance between the mass centers
of test masses housed in three drag-free spacecraft. Measurement of the mass center position
must be inferred from measurements of the TM surface. Therefore, precise knowledge of the
mass center of the test mass is crucial for achieving the desired science signal.

There are two general situations that can potentially confuse rotation of the test mass with
translation of the mass center. The first is rotation of the TM about its mass center, without any
real mass center motion. For a faceted test mass, if the direction of the distance measurement to
the TM surface does not pass through the mass center, then rotation about the mass center will
produce a false measurement of mass center position variations. The second case occurs when
the TM orientation control rotates the TM about an axis not coincident with the mass center.
This will inadvertently produce a force acting at the mass center, which corrupts the science
measurement. Both of these systematic effects can be mitigated by incorporating accurate mass
center information in the orientation control software and in the data reduction.

1.2. Density Inhomogeneity

Measurements of the mass, mass center and moment of inertia tensor can provide some
information regarding the density distribution of the TM. To be more quantitative, let us choose
a particular model for the true density distribution, p(z,y, z),

p(z,y,2) = co + cra+coy + ez +cax® +esy® + cp 22
+ cryz+cgrz+cogxy+ .. .. (1)

This model is simply a polynomial expansion of the density distribution to quadratic order,
including cross product terms.

Assume that the three mass properties are measured, which represent ten numbers: the mass,
three components of the mass center location and six independent components of the moment of
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inertia tensor. These ten numbers directly specify the parameters ¢; in the model for p(x,y, z)
which minimizes the error in density (true density distribution minus the quadratic model)
squared and integrated over the TM volume. In other words the mass properties provide the
best fit polynomial model, to quadratic order, to the true density in a least-squares sense.
Knowledge of the density inhomogeneities is vital for materials like gold-platinum, where
spinodal decomposition during the material cooling process, can cause the gold and platinum to
separate. A uniform mixture of the diamagnetic gold and paramagnetic platinum is required for
a near-zero magnetic susceptibility. A low susceptibility reduces the TM to spacecraft stiffness
and TM disturbances due to fluctuations in the magnetic field in the LISA frequency band.

1.3. Gravitational Self-attraction

The gravitational self-attraction force between the satellite and the TM is a dominant
contribution to the disturbance budget. Although the attraction force can not be easily measured
directly, the mass attraction formula through a second order expansion consists of the measurable
quantities of mass, mass center, and moment of inertia about the mass center. Thus, the
gravitational self-attraction force on the drag free reference due to the satellite can be indirectly
measured. By computing the attraction force from the measured mass properties, variations
in density as well as geometric variations will be included in the gravitational self-attraction
calculation. As a result, the exact density distribution within the test mass need not necessarily
be known or measured in order to determine the actual gravitational attraction properties.

2. Measuring Mass Center & Moment of Inertia
The LISA laboratory at Stanford University is exploring three methods of measuring the mass
center and moment of inertia tensor of objects on the same scale as the LISA test masses.

2.1. Mass Center Measurement for a Cube with a Static Pendulum

The first technique is a static pendulum specifically designed to quickly and accurately determine
the mass center of a cube. A schematic of the apparatus, which is currently in the development
stages at Stanford, is shown in Figure 1 (a). Five wires are used to suspend a triangular
platform. The position and orientation of the five wires are chosen so that they constrain all but
one degree of freedom. The free motion of the pendulum, shown in Figure 1 (a) by the dashed
lines, is primarily lateral translation, with a small amount of tilt. The pendulum platform has
a triangular hole to accommodate a cubic test mass. Six gauge spheres are fixed to the edges of
the triangular hole so that the cube is kinematically constrained to the platform.

The measurement is the equilibrium position of the pendulum, which depends on the mass
center locations of both the pendulum platform and cubic TM. The equilibrium position can be
measured using a laser interferometer, shown in Figure 1 (a), or by an optical shadow sensor. To
separate the mass center of the platform from that of the cube, and to determine the mass center
of the cube in all three dimensions, many measurements are taken, each time with the cube in a
different orientation. Each time the orientation of the cube is changed, the cube’s mass center is
changed relative the mass center of the platform. There a total of 24 possible orientations of the
cube on the pendulum platform. This provides more than enough measurements to determine
the mass centers of both the pendulum platform and the cubic TM in all three directions, and
provide an estimate of the measurement error using the post-fit residuals.

The static pendulum can potentially measure the MC location of the cube to better than 1
pm. This assessment is based on the sensitivity of the optical detection, which can be less than
10 nm for either an interferometric or a shadow sensor, and the geometry and masses of the the
pendulum and cubic TM. In addition, the measurement procedure is easy since it only involves
changing the orientation of the cube and measuring the resulting equilibrium position. The data
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Figure 1. (a) Elevation view (top) and plan view (bottom) of the static pendulum for measuring
the mass center of a cubic test mass. (b) Schematic of the dynamic five-wire pendulum for
measuring the moment of inertia tensor and mass center of arbitrary objects.

reduction entails the proper coordinate transformations for each of the cube orientations, and
the proper weighting of the mass of the cube with respect to that of the platform.

2.2. Mass Center & Moment of Inertia Measurement with a Dynamic Pendulum
An apparatus which is designed to generate a pure rotation about an axis provides the ability to
measure the mass center location and the moment of inertia. For example, in order to measure
the moment of inertia, I, the object is rotated about an axis and the pendulum natural frequency,
w/2m, is used to determine the radius of gyration, R,, about that rotational axis:

2
Rf]:izlo—i-mor :% @)
m m w

Here, k is the torsion coeflicient or stiffness constant of the pendulum and m is the total mass.

By measuring the natural frequency of rotation, the mass center offset from the geometric
center of an object is also obtained. In Eq. (2), we replace the moment of inertia about
the geometric center, I, by the moment of inertia about the objects mass center, I,, plus the
parallel axis theorem components of the object mass, m,, times the square of the distance from
the rotation center to the mass center, r2. Therefore, placing the object on the pendulum far
from the rotation axis amplifies the contribution due to the mass center offset from the geometric
center, due to its quadratic dependence on r. By changing the orientation of the object with
a fixed geometric location relative to the pendulum rotation center, the mass center offset is
determined by measuring the change in the natural frequency, w/27.

The difficulty in the measurements lies within the ability to generate pure rotation about
one degree of freedom. Care must be taken to minimize the extra degrees of freedom in the
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system. In a five-wire torsion pendulum shown in Figure 1 (b), five wires are arranged to
minimize translational degrees of freedom in order to reduce errors due to tilt and translation
[13; 14]. By reducing the errors associated with generating a pure rotation, the five-wire
pendulum has demonstrated a consistent frequency measurement to better than 107> Hz for
a 2.5 Hz pendulum frequency. As show in Ref. [13], the precision on the frequency measurement
results in a repeatable moment of inertia measurement on the order of a few parts in 10%. For
the mass center measurement, the five wire pendulum has demonstrated the ability to determine
the mass center offset to within 5 ym.

2.8. The Velocity Modulation Technique for Mass Center Measurement

A new technique for measuring the mass center of a sphere to ~ 100 nm, called velocity
modulation, was presented in 2006 [15; 16]. Previous methods of determining the mass center,
involving measurement of the sphere’s natural pendulous period, are typically limited to MC
offsets ~> 1 pum due to low frequency (1/f) instrumentation noise. In the velocity modulation
technique, the sphere is rolled down a set of parallel rails to spectrally shift the MC offset
information to the rolling rate frequency. The sphere’s trajectory is measured optically by
recording the times that the sphere crosses five optical gates.

The experimental apparatus is shown in Figure 2 (a). The two ~ 1 m long steel rails are
supported above a base plate mounted on an optical bench. The light from a single laser is
broken into five beams, by five polarizing beam splitters, so that the beams cross the rails at
right angles at the exact height of the sphere’s geometric center. Measurement of the sphere’s
location on the rails is made by pairs adjacent photo-detectors mounted opposite to the beam
splitters. The reflected laser beams and photo-detectors are space one diameter of the sphere
apart so that exactly half of the incident light is occulted when the sphere is precisely between
two detectors. The voltage produced by the pair of photo-detectors is differenced so that when
the voltage difference is zero, the sphere is exactly between the two optical gates. Fluctuations
in laser intensity are consequently eliminated in the differential signal because laser intensity
variations are common to all detectors. The sphere is rolled three times, each time with a
different initial phase, in order to separate the geometric irregularities in the rails, which are
fixed in the laboratory, from the MC offset, which depends on the initial conditions. A Monte-
Carlo parameter search is used to fit all relevant parameters in a simplified mechanics model to
the measured data, including the optical gate locations, initial velocities and MC location.

The velocity modulation technique can also determine the MC of an arbitrarily shaped test
mass (including a cube) to ~ 1 pm by placing the TM inside a spherical fixture. To separate
the MC of the TM from that of the spherical fixture, several measurements are made, each time
changing the orientation of the TM with respect to the fixture. In this case, the measurement
error is limited by the repeatability of the placement of the test mass inside the spherical fixture.

The precision of the velocity modulation technique is demonstrated by the repeatability of
independent measurements. Figure 2 (b) shows four independent measurements of the mass
center of a stainless steel gauge sphere. All four measurements are consistent within their
uncertainties estimated by the RMS of the post-fit residuals. The mean result and one standard
deviation error ellipse with maximum radius less than 150 nm are also shown in Figure 2 (b).

3. Summary

Future drag-free missions like LISA, with strict requirements for both metrology and disturbance
reduction greatly benefit from precise determination of the mass center and moment of
inertia tensor of its test masses prior to launch. This allows verification of several design
requirements, including degree of freedom cross-coupling, gravitational disturbances and density
inhomogeneity. Three techniques developed at Stanford for measuring these mass properties
represent the state of the art, with accuracies listed in Table 1.
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Figure 2. (a) Velocity modulation apparatus for mass center measurement. (b) Precision
of mass center measurement demonstrated through the repeatability of four independent
measurements. The mean result and error ellipse are shown in black.

Mass property Technique Accuracy
Mass center (any shape) Static/dynamic pendulum or  ~ 1 um
velocity modulation
Mass center (sphere) Velocity modulation ~ 150 nm
Moment of inertia (any shape) Dynamic pendulum ~ 1077

Table 1. Mass center and moment of inertia measurement capability.
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