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Physics of the ALICE Forward Calorimeter upgrade

ALICE Collaboration *

Abstract

The ALICE Collaboration proposes to instrument the existing ALICE detector with a forward calorime-
ter system (FoCal), planned to take data during LHC Run 4 (2029–2032). The FoCal detector is a
highly-granular Si+W electromagnetic calorimeter combined with a conventional sampling hadronic
calorimeter, covering the pseudorapidity interval of 3.4 < η < 5.8. The FoCal design is optimized to
measure isolated photons at most forward rapidity for pT ≳ 4 GeV/c.

In this note we discuss the scientific potential of FoCal, which will enable broad exploration of gluon
dynamics and non-linear QCD evolution at the smallest values of Bjorken x accessible at any current
or near-future facility world-wide. FoCal will measure theoretically well-motivated observables in
pp and p–Pb collisions which are sensitive to the gluon distribution at small x at low to moderate Q2,
based on isolated photon, neutral meson, and jet production and correlations in hadronic collisions,
and the measurement of vector meson photoproduction in ultra-peripheral collisions. These FoCal
measurements will provide incisive tests of the universality of linear and non-linear QCD evolution
in different collision systems over an unprecedented kinematic range, in particular when combined
with the comprehensive experimental program at the EIC and other forward measurements at RHIC
and the LHC. FoCal will also carry out measurements at very forward rapidity in Pb–Pb collisions,
enabling novel probes of the Quark-Gluon Plasma based on jet quenching phenomena and long-range
correlations of neutral pions, jets, and photons.

*See Appendix A for the list of collaboration members
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1 Introduction
The ALICE Collaboration proposes to install a new, high-precision FOrward CALorimeter system (Fo-
Cal) [1]. FoCal consists of a pioneering highly-granular, longitudinally-segmented silicon-tungsten (Si+W)
electromagnetic calorimeter (FoCal-E) and a conventional highly-granular metal-scintillator hadronic
calorimeter (FoCal-H). FoCal will cover pseudorapidity 3.4 < η < 5.5 over the full azimuth, and up to
η = 5.8 with partial azimuthal coverage, for measurements of prompt and isolated photons (γ), identified
π0 and other neutral mesons, J/ψ and its excited states, W and Z bosons, inclusive jets, and their cor-
relations (di-hadron, di-jet, γ+hadron, γ+jet, etc.). FoCal will be installed during LHC Long Shutdown
3 (LS3) and will take data during LHC Run 4, which is currently scheduled for the period 2029–2032.
FoCal will record data for pp, p–Pb, and Pb–Pb collisions, triggered on both hadronic interactions and on
Ultra-Peripheral Collisions (UPCs). These data will probe the partonic structure of hadronic matter with
unprecedented reach in momentum fraction Bjorken-x, down to x ∼ 10−6 for small and moderate mo-
mentum transfer Q2. 1 This note presents the physics capabilities of FoCal, with focus on key photon and
jet observables, and discusses their theoretical interpretability. It also discusses the larger experimental
program to measure saturation phenomena at RHIC, the LHC, and the Electron Ion Collider (EIC) [2],
and how to utilize this broad suite of data for comprehensive understanding of the small-x structure of
matter.

1Bjorken-x refers to the momentum fraction carried by partons in the proton or in the nucleus.
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The primary scientific goal of FoCal is the study of gluon saturation. New phenomena are expected
to emerge at very small-x, which is probed by collisions at high energy [3]. At large x QCD evolution
is linear: as x decreases, partons split in processes such as q → qg and g → qq, and gluon density g(x)
increases like a power law xg(x) ∝ x−δ/2, where the power δ is determined by fitting to data. However,
at sufficiently small x, the density increases to the extent that partons overlap and recombine. This
recombination leads to a reduction in gluon density relative to linear projections, otherwise known as
gluon shadowing [4]. This growth cannot continue unabated as x is reduced; due to the gluon self-
interaction the gluon density eventually saturates, leading to a new state of gluon-saturated matter. This
matter is characterized by a dynamically-generated saturation momentum Qsat; the density of gluons with
momentum less than Qsat is subject to saturation effects, while the density of gluons with momentum
larger than Qsat is governed by linear QCD evolution. Since the gluon density grows as x decreases,
saturation effects are expected to be strongest at small x. Saturation effects at a given value of x are
likewise larger in heavy nuclei: Qsat

2 ∼ A1/3, where ∼ A is the nuclear mass [3, 5].

Observation of non-linear QCD evolution and gluon saturation would be a landmark in physics, and this
search has been the focus of intensive theoretical and experimental effort for three decades. Various in-
clusive and coincidence observables are predicted theoretically to be sensitive to saturation phenomena in
hadronic proton-nucleus collisions and in UPCs with proton and nuclear beams at the LHC and at RHIC.
However, QCD phenomena evolve only logarithmically in x and Q2, and experimental observation and
study of non-linear QCD evolution requires “logarithmically” broad coverage in

(
x,Q2

)
, including large

x and large Q2 where saturation effects are expected to be small, in order to calibrate the probes.

For a calculational approach such as the Color-Glass Condensate (CGC) [5] to provide a universal de-
scription of the small-x structure of matter, it must self-consistently describe measurements of saturation-
sensitive observables at small-x and low Q2 in multiple collision systems. The most compelling program
to explore non-linear QCD evolution at small-x is therefore multi-messenger, combining measurements
from forward pA collisions at RHIC and LHC with those from Deep Inelastic Scattering (DIS) and
diffractive interactions in eA collisions at EIC, in order to cover a broad range in

(
x,Q2

)
with multiple

observables which probe saturation in a way that is rigorously interpretable theoretically. This program
will provide a wide-ranging set of universality tests of linear vs. non-linear QCD: is saturation required
by such data, and does it provide a unified and coherent description of the full suite of observables; i.e.
is it therefore a universal description of hadronic matter at small-x?

Forward pA measurements enabled by FoCal provide key elements of this program, because of its unique
coverage at very small x. We stress the importance of the theoretical interpretability of such measure-
ments, which requires that factorization is respected for the corresponding observable. In this note we
present several FoCal observables for which that is currently the case: isolated direct photons and their
correlations, inclusive hadron and inclusive jet production, and dijet observables sensitive to the Trans-
verse Momentum Dependent (TMD) gluon distribution [6].

At the LHC, forward measurements which probe saturation are also being carried out by the LHCb Col-
laboration. The LHCb detector [7, 8] is a single-arm spectrometer with tracking, particle identification,
and calorimetry, with forward acceptance 2 < η < 5. LHCb will carry out several important measure-
ments in the small-x region in Run 3 and 4, notably that of the Drell-Yan (DY) cross section for dimuon
masses above 5 GeV/c which probe the sea-quark distribution, as well as high-precision measurements
of open charm and bottom meson production [9].

The study of QCD matter at extreme gluon density is also one of the primary goals of the Electron-Ion
Collider (EIC). As discussed in the following, the FoCal and the EIC saturation physics programs are
complementary, together providing incisive probes of saturation physics over wide kinematic range.

We also discuss the comparison of this broad range of measurements from different experiments and
collision systems with linear and non-linear QCD calculations. The natural framework for such a com-
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parison is Bayesian Inference, which is in growing usage in the Nuclear Physics community [10–12].
However, its application to the study of saturation requires development. The calculation of NLO cor-
rections for inclusive and coincidence observables in pA collisions at the LHC is likewise an active area
in the theory community [13, 14]. Development in both areas will be required to fully exploit FoCal
measurements for this scientific program.

FoCal measurements would also have significant impact on Quark-Gluon Plasma (QGP) studies. Calcu-
lations of heavy-ion collisions may include gluon saturation effects to model the initial state, based on the
notion of a weak-coupling phase prior to QGP formation. The duration of such a phase has direct impact
on the extraction of various QGP properties from data, for instance quantitative constraints on specific
shear viscosity. These in turn have consequences on our understanding of the nature and evolution of
high temperature strongly interacting matter that the universe consisted of just after the Big Bang.

In addition to the study of saturation at small-x, the FoCal scientific program includes the following key
components:

Long range correlations and thermalization effects: Azimuthal correlations that are long range in η ,
the so-called “ridge”, have been observed in pp and p–Pb collisions [15]. Correlation measurements
between neutral mesons or photons in FoCal with particles measured in the central ALICE detector
or forward muon system (MFT), constitute an unexplored large range in pseudorapidity separation (up
to |∆η | ∼ 9). In particular, such studies promise to disentangle initial state contributions, and isolate
the role of the initial state spatial anisotropies. This will enable unique constraints on saturation based
models that attempt to describe such spatial anisotropies. The long range correlations will also provide
key information on the novel final state mechanisms contributing to the momentum anisotropy. These
have been postulated to arise from local thermalization effects, which lend themselves to a hydrodynamic
description. A number of unique measurements are proposed to test these effects.

Jet quenching at forward rapidity: One of the hallmark observations in heavy-ion collisions is the
modification of hadron and jet production due to the interaction of energetic partons in the QGP [16].
FoCal will provide measurements of high-pT neutral meson, photon and jet production at larger rapidity
than in present measurements, allowing us to map the QGP density as a function of rapidity and explore
the effect of longitudinal flow on jet quenching effects. Since the fraction of quark-initiated jets is larger
than at midrapidity, these measurements also explore the difference between energy loss for quark and
gluon jets.

2 Partonic kinematics in current data and planned experiments
2.1 Kinematics overview
Figure 1 shows an overview of the x and Q coverage for measurements of various current and planned
experiments which probe hadronic structure. The left figure shows EM probes (i.e. direct photon and
Drell-Yan measurements) from hadronic collisions at LHC, with the coverage of direct photon measure-
ments by FoCal and Drell-Yan measurements by LHCb highlighted in red and blue, respectively. The
right figure shows the coverage of hadronic and UPC measurements at RHIC and LHC. LHCb coverage
for measurements of e.g. light hadrons and open charm and bottom are marked in blue, while those for
which FoCal has acceptance for e.g. neutral mesons and jets at small x are marked in red. Not shown
is the coverage of LS3 upgrades of ATLAS and CMS, which include new tracking systems covering
|η |< 4. CMS will also have partial PID coverage and the forward HGCAL in |η |< 3.

Hadronic collision systems, such as pp and pA interactions, do not provide direct access to
(
x,Q2

)
of the

interaction. For hadronic collision systems in this figure, the momentum fraction x probed via partons
emitted with transverse momentum pT at rapidity y in collisions with a centre-of-mass energy

√
s is

approximated at Leading Order (LO, i.e. 2 → 2 processes) as
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Fig. 1: Partonic kinematics in terms of momentum-fraction x and momentum-transfer Q calculated for various
measurement channels within the experimental acceptance of current data and planned experiments which probe
hadronic structure. Left panel: EM probes (i.e. direct photon and Drell-Yan measurements) from hadronic colli-
sions, and DIS measurements including the future EIC project; right panel: hadronic and UPC measurements at
RHIC and LHC. The estimated saturation scales for proton and Pb are also indicated as discussed in the text. The
horizontal dashed line indicates the kinematic cuts above which data are usually included in the determination of
PDFs. At HERA, and hence possibly at EIC, pQCD fits worked down to even Q ≈ 0.8 GeV. Possible measure-
ments with the CMS HGCAL are denoted with dashed gray line, indicating that it is not clear if EM measurements
related to saturation such as the measurement of direct photons can be done with HGCAL which is optimized for
high-energy jets or photons from Higgs decays. The same notation has been used to indicate the possible direct
photon performance for LHCb and Drell-Yan capabilities for the MFT.

x1,2 ≈
2pT exp(±y)√

s
, (1)

where x typically denotes the negative-rapidity case x2. In this approximation, measurements at large y
and low pT for a given

√
s are most sensitive to the smallest values of x . Eq. 1 neglects non-perturbative

fragmentation effects, which are relevant in particular for hadronic observables. For pA collisions at the
LHC,

√
sNN = 8.8 TeV 2, while for RHIC we use

√
sNN = 0.2 TeV.

The left figure also shows the coverage for regions probed by nuclear DIS measurements [17–20], in-
cluding the EIC [2], as well as direct photon and Drell-Yan measurements by the RHIC cold nuclear
upgrade program [21], for which STAR has constructed forward detectors covering 2.5 < η < 4 [22].
3

Figure 1 shows that FoCal and LHCb measurements reach much smaller x than other existing and planned
measurements, with FoCal able to reach to the smallest x measurable prior to the far-future LHeC [23]
and FCC [24]. Both LHCb and FoCal photon measurements are planned which extend to even lower
pT and lower Q. The corresponding regions for these challenging measurements are shown in the left
panel of Fig. 1 as dark (FoCal) and open (LHCb) trapezoids. For FoCal, the main challenges at very
low pT are the large background of decay photons and the increasing contribution from fragmentation

2For pp collisions at 14 TeV, FoCal could probe to even smaller x ∼ 5×10−7.
3The performance of the ALICE muon arm to measure DY has not been explored. Hence, the corresponding accep-

tance (2.5 < η < 4) (labelled as MFT) is only shown with a dashed line.
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photons. For LHCb, a technique is being developed to reconstruct direct photons which convert to an
electron-positron pair in the detector material in the tracker [25,26]; however, this approach suffers from
small reconstruction efficiency and consequently relatively large uncertainty. More information about
the comparison between FoCal and LHCb photon performances is provided in Ref. [1].

At a given value of x, the saturation scale is given by

Q2
sat ≈

xgA(x,Q2)

πR2
A

∝ A1/3 x−λ , (2)

where gA = Ag, g is the gluon PDF of a proton, RA the radius of the nucleus, A the nuclear mass number
and the exponent λ ≈ 0.3 [27, 28]. Qualitatively, Qsat increases with the gluon density, i.e. at smaller x
and for heavier nuclei (by up to factor 6 in case of Pb). For perturbative calculations to work well in
the saturated regime, the saturation scale should be an order of magnitude larger than the QCD scale
ΛQCD ≈ 0.2 GeV/c.

Fig. 1 shows the value of Qsat determined from Eq. 2, with normalization obtained by setting its value to
1.7 GeV/c for A = 1 at x = 10−4 [29]. At high parton density or small x, non-linear QCD evolution is
expected to play a role near the saturation scale. A smooth, not abrupt, transition is expected from the
linear to the non-linear region as a function of x, and the absolute magnitude of Qs is theoretically not
well established.

FoCal and EIC will probe the structure of protons and nuclei at small x in a complementary manner. It
is the combination of EIC and FoCal measurements, together with other forward measurements at RHIC
and the LHC, which provide the widest lever arm in

(
x,Q2

)
space and broadest range of observables to

explore the non-linear description of QCD evolution and saturation phenomena, and test its universal-
ity.

2.2 Inclusive and coincidence production at the LHC: comparison of channels
While Fig. 1 shows phase-space acceptance, which is the starting point for comparing the capabilities of
different experiments and facilities, it does not indicate the quality of measurements in terms of statistical
or systematic precision, or their theoretical interpretability. In this section we present more detailed
comparison of the partonic kinematics coverage for several inclusive production channels at the LHC
(photons, D-meson, π0), and photon-jet coincidences (see Sec. 5.1 for discussion of photon production in
terms of direct, fragmentation, and prompt processes, and the experimental technique of isolation). The
calculations utilize the PYTHIA event generator [30] (partonic processes at Leading-Order plus Leading
Log to all orders; hadronization via the Lund string model; multiple-parton interactions; underlying
event), and JETPHOX [31] for calculating the inclusive photon cross section at NLO.

Figure 2 compares the x2 distribution from this calculation for prompt photons in two rapidity intervals
within the FoCal acceptance, together with that for D0-mesons within the LHCb acceptance in published
data [32]. The left panel demonstrates that prompt photon production probes a lower range in Bjorken-
x with narrower distributions than D-meson production, where the fragmentation process introduces
additional momentum spread. The right panel shows the median and the 90% interval of the gluon-x (x2)
distribution as a function of the transverse momentum of the produced particle. At lower pT, smaller x
is probed, as expected. For D-mesons at very low pT there is an increase in median x, due to the finite
mass of the D-meson and possibly to multiple parton interactions. While calculation of the effect of
multiple-parton interactions is model-dependent, the study does make it clear that the theory description
is expected to break down at low pT.

A more accurate exploration of the Bjorken-x sensitivity of direct photon and D meson production at
forward rapidity at the LHC, using NLO pQCD calculations with JETPHOX, has been reported in [31,
33]. The main result is reproduced in Fig. 3, which shows that the gluon-x (x2) distribution for direct



Physics of the FoCal 7

6−10 5−10 4−10 3−10 2−10
2x

5−10

4−10

3−10

2−10

1−10

1

10

210

310

410

(m
b)

2x
/ d

σd < 4.5η: 4.0 < γ
< 4.0η: 3.5 < γ
< 4.0η: 3.5 < 0D

< 4.5η: 4.0 < γ
< 4.0η: 3.5 < γ
< 4.0η: 3.5 < 0D

< 4.5η: 4.0 < γ
< 4.0η: 3.5 < γ
< 4.0η: 3.5 < 0D

ALICE simulation= 8.8 TeVNNsPythia8, pp, 
line : median
band : 90% CL

< 5 GeV/ctrig
T

p4 < 

1 2 3 4 5 6 7 8 9
(GeV/c)

T
pTrigger Particle 

6−10

5−10

4−10

2x

< 4.5η: 4.0 < γ

< 4.0η: 3.5 < 0D

LO estimate
= 3.5η
= 4.0η
= 4.5η

ALICE simulation= 8.8 TeVNNsPythia8, pp, 
line : median
band : 90% CL

Fig. 2: (Left) Distribution of the momentum fraction of the gluons (x2) contributing to production of D mesons and
prompt photons in the PYTHIA event generator (v8.235) for 4 < pT < 5 GeV/c. The bars above the distribution
indicate the median and the interval that contains 90% of the distribution. (Right) Median and 90% spread of the
gluon-x (x2) distribution as a function of pT. Figures from [1].
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Fig. 3: (Left) Distribution of gluon-x (x2) probed by direct photon production at forward rapidity in p–Pb collisions
at 8.8 TeV as calculated in JETPHOX using EPS09 structure functions [31]. The different components of direct
photon production are shown separately. For comparison, the x2 distribution for pion production with similar
kinematics is also shown. (Right) Comparison of gluon-x (x2) distribution for isolated γ , pion and D-meson
production from NLO pQCD calculations [31, 33].

photons is indeed peaked at small values, as expected. Comparison of the contribution of prompt and
fragmentation photons reveals that both components have sensitivity to small x; however, fragmentation
photons show a strong tail towards larger x.

The distribution corresponding to neutral pion production shows a similar (or only slightly weaker)
sensitivity to the small x-region than fragmentation photons. The sensitivity of the photon measurement
to small x improves significantly when fragmentation processes are suppressed by isolation cuts, as
discussed in Sec. 5.1. Compared to isolated photons, D mesons probe slightly larger x, with also a
broader distribution, due to fragmentation effects. For the case of constant suppression of gluons in
nuclei compared to protons, D-meson and isolated-photon production measurements are equally sensitive
to the gluon distribution, while for the case of suppression appearing only at small x, the isolated photon
measurement would be significantly more sensitive due to its lower reach in x. Under all scenarios,
the strongest physics program is one in which both D-mesons and isolated photons probe small-x, with
significantly different experimental and theoretical systematic uncertainties.
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Fig. 5: Bjorken x1 and x2 of quarks and gluons probed by prompt photons measured only with FoCal (red),
with FoCal combined with the existing central tracking and calorimeter systems of ALICE (green) or only the
latter (blue) for 4 < pT

γ < 5 GeV/c (left panel) and 20 < pT
γ < 30 GeV/c (right panel). The curves are obtained

using the simulation of signal qg→ γq processes in pp collisions at 8.8 TeV with PYTHIA. Unfilled histograms
are for all processes, while the filled histograms are for processes where x2 corresponds to a gluon.

Figure 4 shows dependence of the x2 distribution on the photon kinematics within the FoCal acceptance.
It is evident that, purely within the FoCal acceptance, significant variation in the x2 distribution can be
achieved by selecting the photon kinematics. Comparison of the open and filled histograms confirms that
small values of x2 probe almost entirely gluons.

In addition, the combined information provided by FoCal and the central tracking and calorimeter sys-
tems of ALICE can be used to significantly enhance the kinematic coverage as shown in Fig. 5. The
figure shows both the x1 (high rapidity) and x2 (low rapidity) distributions for 4 < pTγ < 5 GeV/c (left
panel) and 20 < pTγ < 30 GeV/c (right panel). Combining measurements in FoCal with those from the
ALICE central detector probes the full phase space of x2. The coincidence measurement of a photon
measured within FoCal with the measurement of a (quark) jet at midrapidity probes intermediate x2, be-
tween the forward–forward and midrapdity–midrapidity measurements provided either by FoCal or the
central ALICE detectors alone.
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Fig. 6: Map of QCD evolution as a function of (Q,x). The evolution towards large Q2 can be described by
DGLAP, and that towards small (but not too small) x by BFKL. At very small x, where the gluon density is very
high, non-linear effects become significant and other evolution equations (BK or JIMWLK) are required.

3 Partonic structure at small-x and saturation: theory
A map of QCD evolution is shown in Fig. 6. The DGLAP evolution equations [34–36] are valid at
moderate to large Q2 and moderate to large x, where the parton densities are not large. For intermediate
values of Q2 but small values of x, the BFKL equations [37], which use kT factorization, describe the
evolution.

One of the key features of evolution in this regime is that the gluon density increases as x is reduced. 4

This is because the DGLAP and BFKL evolution equations are linear, only incorporating parton splitting
processes, so that parton densities only increase towards small x and large Q2. However, at small enough
x, the presence of abundant soft gluons arising from gluon splitting leads to high parton densities, so
that parton recombination, in particular gluon fusion due to gluon self-interaction, becomes significant.
QCD evolution in this regime is therefore non-linear, and is described by the JIMWLK [38] or BK
equation [39, 40]. This non-linearity limits the growth of gluon density, with gluon generation and
annihilation processes in equilibrium at the dynamically-generated gluon saturation scale Qsat.

In order to eludicate the general features of gluon saturation we use the Color-Glass Condensate (CGC)
framework, which is the most common theoretical approach for describing the dynamics of gluon-
saturated matter. In the following we summarize key elements of CGC theory, and point out the deep
connection between observables in DIS and pA via the dipole scattering amplitude. This discussion
follows Ref. [5], and we refer the reader there for further details and citations to specific concepts and
results.

The CGC is an effective field theory where the separation of scales follows from the observation that,
because of time dilation at high energy, the random distribution of color sources ρ at large-x evolves
much more slowly than the natural time scale of the strong interaction, and can therefore be regarded
effectively as frozen during the interaction. This distribution serves as the source of the dynamical gauge
fields Aµ at small-x. The dynamics of the CGC are governed by the JIMWLK evolution equation which
describes how W [ρ], the statistical distribution of large-x source density ρ , evolves towards small-x.
Saturation in the CGC is characterized by an emergent scale Qsat, at which the gluon occupation number

4The sea-quark contribution also rises strongly, due to gluon splitting. However, since gluons are the dominant degrees of
freedom at small x, one usually discusses these small-x phenomena in terms of gluon distributions only.
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at small-x becomes O(1/αS).

The CGC framework enables the calculation of n-point gluon correlation functions and their evolution
with x order-by-order in perturbation theory, given a non-perturbative distribution of sources at an initial
scale x0. In the CGC approach the W [ρ] distribution is universal; the same distribution appears in
calculations of inclusive quantities in eA and pA collisions, and in UPC photoproduction.

In lepton-induced DIS the virtual photon fluctuates into a qq̄ pair, which then interacts with the proton or
nuclear target. The inclusive DIS interaction cross section is then

σγ∗T =
∫ 1

0
dz

∫
d2r⊥|ψγ∗→qq̄(z,r⊥)|2σdipole(x,r⊥) , (3)

where ψ(z,r⊥) is the qq̄ component of the virtual photon and σdipole(x,r⊥) is the cross section for qq̄
scattering off the target. Applying the optical theorem, the dipole scattering cross section can be written
in terms of the dipole forward scattering amplitude T(x⊥,y⊥). At LO,

σ
LO
dipole(x,r⊥) = 2

∫
d2b TLO(b+

r⊥
2
,b− r⊥

2
). (4)

Here, TLO is written in terms of infinite fundamental Wilson lines on the light-cone U(x⊥) encoding the
interaction between the quark and the target color field as

TLO = 1− 1
Nc

⟨tr(U(x⊥)U†(y⊥))⟩ , (5)

where Nc is the number of colors. The average over the distribution of initial configurations is indicated
by

⟨. . .⟩=
∫
[Dρ] W

Λ
−
0
[ρ](. . .), (6)

where Λ
−
0 indicates the longitudinal momentum scale which separates static color sources from dynamic

color fields.

Turning now to pA collisions, in the dilute-dense hybrid factorization approach these are treated as the
collisions of a dilute proton with a dense nucleus. Inclusive production is then described as the scattering
of a parton from the proton off the target nucleus color field. The amplitude MLO for this scattering is
proportional to the Fourier transform of a Wilson line, and its square has the form

|M|2LO ∝

∫
d2b d2r⊥eip⊥·r⊥TLO(b+

r⊥
2
,b− r⊥

2
), (7)

where TLO is the same dipole scattering amplitude used to calculate the DIS interaction cross section.
While the above expressions are specific to LO, this correspondence likewise holds at higher perturba-
tive order. This correspondence is also general, and does not rely upon the specific implementation of
the CGC. It establishes the deep theoretical connection between inclusive observables in lepton induced
DIS and in pA collisions, and provides the basis for the tests of universality we propose by compar-
ing selected FoCal and other pA measurements with those carried out at the EIC. This deep connec-
tion between pA collisions and the EIC has also recently been emphasized in the EIC Yellow Report,
Sect. 7.5.4 [41].

More complex final states, containing correlations of pairs of photons, hadrons, and jets, can likewise
be calculated based on the product of four Wilson lines which correspond to a quadrupole operator. In
order to ensure that the process can be factorized into the universal distribution of sources W [ρ], all such
observables must be sufficiently “inclusive”, in the sense of not imposing a restriction on the number of
accompanying gluons in the interaction.
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4 Search for non-linear QCD evolution: general considerations
The hallmark of gluon saturation is the non-linear evolution of gluon density at small x and low Q2.
A comprehensive experimental program to search for gluon saturation phenomena requires broad cov-
erage in both x and Q2, with measurements both at low

(
x,Q2

)
and at high x or Q2, where saturation

effects are expected to be negligible and the dynamics are expected to be well-described by linear QCD
evolution.

Section 2 shows the FoCal acceptance in
(
x,Q2

)
for several measurement channels and compares it to

that of published data and to current and other future experiments. While FoCal covers unique phase
space at small

(
x,Q2

)
, its scientific program to explore non-linear QCD evolution must also satisfy the

following criteria:

– Observables that are sensitive to non-linear QCD evolution must be rigorously interpretable the-
oretically, so that precise, quantitative comparison of data and theory can be made. For hadronic
collisions, this means that the theoretical description of such observables factorizes,i.e. their mea-
surement is sensitive to the same QCD operator that can be probed in corresponding measurements
in an eA DIS experiment in a different kinematic regime.

– Such observables must be measurable with good precision over a wide kinematic range, specif-
ically high statistical precision and systematic accuracy over a broad range in

(
x,Q2

)
5. This

includes the range in which saturation effects are predicted to be significant, and the range in
which they are predicted to be negligible, to be able to turn off the effects.

– Observables should minimize sensitivity to poorly-controlled non-perturbative effects in theory
calculations, especially modeling of hadronization.

The proposed FoCal measurements, combined with other pA measurements at LHC and RHIC, and
with eA DIS measurements at EIC, comprise a wide-ranging set of universality tests of non-linear QCD
evolution: does saturation provide a unified and coherent description of the full suite of observables, and
is it therefore the universal description of the high gluon density regime?

Different observables are sensitive to different operators [42,43]. Inclusive observables and some coinci-
dence channels can be calculated using the dipole operator, while other coincidence observables require
inclusion of the quadrupole operator. This distinction has practical consequences for the FoCal scientific
program, since quadrupole operator calculations at NLO are calculationally more complex than calcula-
tions dependent primarily on the dipole operator.

The establishment of factorization, which requires pQCD calculations beyond LO, is challenging; at
present this has been done for a handful of FoCal observables, which we discuss in Sec. 5. Extending
such calculations to observables dependent on the quadrupole operator, to enable full exploitation of
FoCal capabilities, presents an additional theory challenge.

Sections 5 and 6 discuss specific FoCal observables sensitive to gluon saturation, based on current the-
oretical calculations and general considerations. In brief, observables that are expected to be clearly
interpretable in terms of gluon saturation effects, with sensitivity to the dipole cross section, include the
following:

– inclusive isolated photon production (has not yet been calculated at NLO but necessary theoretical
tools are in place);

– isolated photon+jet (same as inclusive isolated photons);

– inclusive jets;

5Systematic uncertainty smaller than 10% is a suitable benchmark
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– dijet photoproduction in UPCs;

– cross section ratios of J/ψ and ψ(2S) production on ion vs. on proton targets in UPCs.

Observables which require additional developments include the following:

– γ-π0 correlation: calculation of the partonic-level process only requires the dipole cross section,
but the π0 Fragmentation Function presents an additional uncertainty which is harder to control
theoretically. This channel could be reclassified as “cleanly interpretable” if there is sufficient
theoretical confidence in the π0 FF at NLO.

– dijets and dihadrons: quadrupole evolution at NLO needs to be constructed and solved. This is
doable in principle but is numerically complex - a dedicated theory effort is needed;

– the cross section ratio for exclusive production of J/ψ and ψ(2S) in UPCs. The main uncertainty
is the scale dependence at NLO.

New observables sensitive to saturation physics are currently still only at the conceptual level but show
promise, for instance the measurement of energy-energy correlators [44, 45].

4.1 Quantitative comparison of data and theory
Quantitative testing of the universality of linear or non-linear QCD will require rigorous, unbiased com-
parison of complex measurements from different experiments and collider facilities.
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Fig. 7: Left: PDFs from HERAPDF2.0, which have been determined from charm data, jet data and low energy
data as well as the HERA-I and II high energy inclusive data. Middle: Comparison of the nuclear modification
between the nNNPDF1.0, EPPS16 and nCTEQ15 fits versus x at Q2 = 10 GeV2 for the gluon PDF in Pb. Data
above Q2 = 3.5 GeV2 were included for nNNPDF, while for EPPS16 and nCTEQ15 data down to 1.7 GeV2

(including light hadrons), as well as high Q2 W, Z and dijet data were used. Right: Comparison of the nuclear
modification of the gluon density between the nNNPDF2.0, based only on DIS data, and nNNPDF2.0 nuclear
PDFs, which include electroweak boson production data from the LHC in the fit. In all cases, the nuclear PDFs
have been normalized by the respective proton PDFs, and 90% confidence-level uncertainty bands are drawn.
Figures are from [46–48]

A common approach for this purpose is global fitting to determine proton and nuclear Parton Distribution
Functions (PDFs) based on collinear perturbative QCD, as shown in Fig. 7. The main experimental input
for such global fits comes from DIS measurements in which a virtual photon, W or Z boson is exchanged.
These measurements probe the quark density directly, with the gluon density derived indirectly from the
Q2-evolution of the measured cross sections. As shown in the left panel of Fig. 7, PDFs for protons are
well-constrained by DIS measurements over a broad kinematic range, although the gluon distribution
uncertainties become larger than 20% at small x and Q2 (around 10−3 and 10 GeV2, respectively) [49].
Data from hadronic collisions are also used in global PDF fits, in particular dilepton production from the
Drell-Yan (DY) process and electroweak boson production (γ , Z, W). These final states are of special
interest since they comprise elementary particles that are generated directly, without fragmentation and
hadronisation processes which require phenomenological modeling for comparison to theory. When the
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kinematic coverage of the available measurements is limited, parametrisations are used together with the
DGLAP evolution equations [34–36] to interpolate the areas covered by measurements and to extrapolate
into unconstrained regions of the (x,Q2) phase space, and hence such data are not adding new constraints.
Additional data at small x and low to moderate Q2 may generate tension in such global fits, requiring the
inclusion of non-linear evolution in x as described by the JIMWLK/BK equation [50] (see Sec. 3).

To illustrate the current state of knowledge of the gluon density in nuclei, the middle and right panels
of Fig. 7 show the nuclear modification of the gluon distribution (quantified as the ratio of nuclear over
proton PDF) and its uncertainty for different nuclear PDFs [41, 47, 51, 52]. The different parameteriza-
tions exhibit a large spread for small values of x, reflecting the lack of constraint due to the limited set of
relevant measurements, in particular with nuclear targets. Since current DIS, photon production, and DY
measurements with nuclear targets do not constrain nuclear PDFs at small x (below 10−2), determination
of the nPDFs in that region at present relies on extrapolation from large to small x and Q using linear
evolution equations, and the resulting uncertainties may consequently be underestimated. Furthermore,
analysis of nuclear PDFs requires a parametrisation of small-x behaviour which imposes a specific shape;
for example, EPPS16 [52] uses a parametrisation for the nuclear modification which is constant at small
x. Using such a parametrisation reduces the nominal uncertainties at small x, but does not reflect the fact
that no experimental information is available.

At small x, the main measurements that are available are W, Z and dijet production, which however
have large Q ≈ 90 GeV, and thus do not provide strong constraints at small Q. The EPPS16 [52]
and nCTEQ15 [51] fits include both these measurements and light-hadron production data measured
at midrapidity at RHIC. The nNNPDF analysis [47], which relies purely on inclusive DIS measure-
ments of neutral-current structure functions on nuclear targets and NNLO calculations, uses a broad set
of parametrisations which explore a larger range of possible x-dependencies at x > 10−2, resulting in
significantly larger uncertainties at smaller x.

We note that nPDF global fits are a highly-integrated representation of a vast body of data based on
collinear QCD, requiring the assumption of functional form for the PDFs, and typically assume Gaussian
uncertainties using the Hessian approximation of experimental errors for global χ2 minimization [53].
In addition, nPDF global fits require the specification of initial conditions that are sensitive to non-
perturbative physics and must be extracted by fitting to data; this procedure can mask the difference
between linear and non-linear evolution [54]. As such, global PDF fits may provide only limited tests
of universality of linear vs. non-linear evolution, with limited discriminating power to resolve tensions
between data sets and between data and theory.

An alternative approach to consider is that of Bayesian Inference, whose utilization in nuclear physics
is growing rapidly [10–12, 55]. Bayesian Inference enables the incorporation of heterogeneous datasets,
including the full experimental uncertainty covariance and theoretical uncertainties, and providing sta-
tistical tools to quantify the tension between posterior distributions of high-dimensional data. However,
Bayesian Inference analyses can be computationally expensive, requiring Machine Learning approaches
for efficient emulation and calculation of likelihoods. The application of Bayesian Inference to com-
prehensive universality tests of linear and non-linear QCD evolution still requires significant develop-
ment.

5 Search for non-linear QCD evolution in hadronic collisions: specific channels
In the following we present a detailed discussion of selected FoCal observables, in terms both of theo-
retical interpretability and of statistical precision and kinematic reach.

Projection of statistical precision requires an assumption about the integrated luminosity that will be
recorded during LHC Run 4 (2029–2032). Current estimates (spring 2023) for LHC Run 4 are as fol-
lows:



14 ALICE Collaboration

– pp at
√

s=8.8 TeV: 5 days6, L =3 pb−1;

– p–Pb at
√

s=8.8 TeV: 3 weeks, L =300 nb−1;

– Pb–Pb at
√

sNN=5.02 TeV: 3 months; L =7 nb−1;

– pp at
√

s=14 TeV: ≈ 18 months, L =150 pb−1;

However, assumptions about integrated luminosity made far in advance are by their nature uncertain,
since the LHC and FoCal instrumental capabilities, and the Run 4 run plan, will continue to develop.
In addition, the projection of statistical precision itself need not be precise; the purpose of such projec-
tions is to provide only qualitative (or perhaps, semi-quantitative) guidance about the potential physics
reach of the measurements. For the projections in this note we therefore utilize convenient “round num-
ber” estimates for the integrated luminosity at

√
s=8.8 TeV, which are easily scaled to current best esti-

mates:

– pp at
√

s=8.8 TeV: L =1 pb−1;

– p–Pb at
√

s=8.8 TeV: L =100 nb−1;

5.1 Direct photon and π0 production: theory
Direct photons refer to all photons not originating from decays [56]. Prompt photons are direct pho-
tons which are produced directly at the parton interaction vertex, and not from parton fragmentation.
Prompt photon measurements provide access to the parton kinematics since they couple directly to the
incoming quarks, and unlike hadrons are not affected by final state effects. The dominant prompt pho-
ton production process at the LHC is quark-gluon scattering (Compton process, Fig. 8a), with smaller
contribution from quark-anti-quark annihilation (Fig. 8b). For processes at next-to-leading order (NLO)
and higher order, direct photons are also generated by bremsstrahlung (Fig. 8c) and by parton fragmenta-
tion (Fig. 8d). Both processes involve the parton-to-photon fragmentation distribution , which is poorly
known at present.
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a) Compton

q

g

γ

q

b) annihilation

q

g

γ

q

d) fragmentation

q q

g γ

qq

c) bremsstrahlung

Fig. 8: Feynman diagrams for direct photon production. Prompt photons are directly produced at leading order
by the a) quark-gluon Compton process, and b) quark-antiquark annihilation process. Fragmentation photons
are produced at next-to-leading order from c) bremsstrahlung from a quark, and d) emission during the gluon
fragmentation process.

At LHC energies, a large fraction of prompt photons are produced in the fragmentation process, com-
plicating the relation between the kinematic variables of the measured photon and those of the incoming
partons, and hence their PDFs [57]. However, bremsstrahlung and fragmentation photons are accom-
panied by hadronic fragmentation products, and the contribution of these processes can be largely sup-
pressed by application of photon isolation selections, as illustrated in Fig. 9. The application of the
isolation cut ensures that the dominant process is the quark-gluon Compton scattering process, where the
measured photon is directly sensitive to the gluon PDF. For precise comparison with calculations these
selection criteria are also applied in the calculations.

6A few more days for the pp reference run may be justifiable at a later stage.
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Theoretical calculations using the dilute-dense hybrid factorization approach described in Sec. 3 have
been carried out for forward inclusive hadron production [59–61] and photon production [62–68], to-
gether with their correlations. At the operator level, while inclusive production is sensitive primar-
ily to the dipole operator for both light hadrons [59] and photons [62], photon-hadron correlations
depend only on the dipole operator, whereas di-hadron correlations depend on the quadrupole opera-
tor [42, 43, 62, 68].

Fig. 10: Theoretical calculations for RpPb of inclusive production at various values of forward rapidity using the
dipole formalism, in pp and p–Pb collisions at

√
sNN=8 TeV [65]. The horizontal axis, which is labelled kT,

corresponds to the experimentally observable transverse momentum, pT. Left panel: π0. Right panel: isolated
prompt photon. Solid lines correspond to isolation with R=0.4, dotted lines to isolation with R=0.1.

Forward inclusive hadron production in pA collisions has been calculated in the dipole framework at
NLO [59], and at NLO with threshold resummation at Leading Log (LL) accuracy [60,61]. Factorization
is proven in the dipole framework for forward inclusive photon production [64], which has also been
calculated at NLO [66].

Nuclear effects on inclusive production are quantified by the nuclear modification factor RpPb, which is
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the ratio of cross sections calculated or measured in p–Pb collisions and pp collisions normalized by
A (i.e. A = 208 for Pb).

While the theoretical framework for calculating inclusive photon and π0 distributions in the dipole frame-
work at NLO is in place, at present there are no predictions available at NLO for experimentally observ-
able distributions. Figure 10 shows such a calculation at LO, using the dipole formalism to predict RpPb
for inclusive π0 and isolated prompt photon production at forward rapidity in pp and p–Pb collisions at√

sNN=8 TeV [65].

Isolation is commonly applied in prompt photon measurements to suppress the contribution of fragmen-
tation processes, enhancing sensitivity to the Compton process which probes the gluon density directly.
In the CGC framework, isolated photon distributions were likewise found to be more sensitive to gluon
saturation effects [62]. However, Fig. 10 shows little sensitivity to the radius R of the isolation cone,
though this feature should be revisited with an NLO calculation. The figure shows marked suppression
due to saturation for both π0 and photons at low pT (labelled kT in the figure), but with strikingly different
pT-dependence. This difference arises [65] because π0s are fragments of jets, with broad variation in the
jet momentum fraction z carried by the π0. The π0 population observed at a given transverse momentum
pT therefore includes contributions from jets with large kT > Qsat in the target, resulting in little nuclear
modification. In contrast, the LO process to generate a photon is the Compton process, in which the pho-
ton pT is largely balanced by an unobserved jet, and it is the momentum imbalance kT which should be
compared to Qsat. The authors caution, however, that this simple picture may be modified substantially
when NLO effects are taken into account.

The calculations in Fig. 10 provide a valuable step towards quantitative prediction of FoCal measure-
ments. They illustrate what can be learned by measuring and comparing inclusive production of both π0

and prompt photons over a broad range in pT, including very low pT, to test and constrain the theoretical
formalism.
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Fig. 11: Left: Nuclear modification factor and uncertainties for isolated photons at η = 4 for
√

sNN = 8.8 TeV
calculated using EPPS16 [52] and nNNPDF2.0 [48] nuclear PDFs, compared to two CGC calculations [65, 69].
Only the PDF uncertainties are shown. Right: Nuclear modification factor RpA for prompt photon production
at

√
sNN = 8 TeV shown for various models using the color dipole approach [70] compared to the CGC [65]

calculation.

Additional predictions for RpPb of isolated photons at η = 4 and its uncertainties are shown in Fig. 11.
The left panel shows calculations using the EPPS16 and nNNPDF2.0 nuclear PDFs in the collinear pQCD
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framework. The central values differ by about 10–15% between the calculations but the uncertainties,
which originate from uncertainties in the nuclear PDFs, are much larger than that difference. Note in
particular nNNPDF2.0, which by design is not constrained by hadron data.

Two calculations of photon production in the CGC framework are shown for comparison. The more
recent LO calculation [65], discussed above, predicts only moderate suppression below unity, while the
earlier calculation by a different group [69, 71] shows strong suppression, RpPb ≈ 0.4. The right panel
demonstrates significant variation in the results of calculations incorporating non-linear QCD evolution
in the color dipole approach [70] and the LO CGC calculation [65] at low momentum.

5.2 Direct photon and π0 production: experiment
The key measurement proposed for FoCal is that of the isolated photon inclusive pT spectra at forward
rapidity in pp and p–Pb collisions at 8.8 TeV in Run 4 at the LHC.
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Fig. 12: Projected counts in the FoCal acceptance of inclusive isolated prompt photon, π0 and jet production
measured in pp and p–Pb collisions at

√
sNN = 8.8 TeV for integrated luminosities of 1 pb−1 and 100 nb−1 in pp

and p–Pb collisions, respectively. The prompt production cross section is obtained at NLO using JETPHOX [72]
and recent (n)PDFs, while the π0 and jet yields are calculated using PYTHIA 8 Monash tune. Left: differential
yield vs pT for prompt photons. Right: cumulative counts above a pT threshold for prompt photons, π0, and jets.

Figure 12 shows projections of the statistics achievable in FoCal measurements of inclusive isolated
photon, π0 and jet production in pp and p–Pb collisions at

√
sNN = 8.8 TeV during LHC Run 4. For

the photon measurements, statistical precision better that 10% will be achieved up to ∼ 50 GeV in pp
collisions and beyond 70 GeV in p–Pb collisions. The kinematic range of FoCal photon measurements
therefore includes both the region in which saturation effects may be evident, at low pT, and the region
where saturation effects are expected to be negigible, at pT ∼ few 10s of GeV. The kinematic reach
of FoCal measurements of inclusive π0 and jets span even wider ranges. The figure also shows that
observables relying on comparison between pp and p–Pb collisions at the same collision energy will be
limited in their statistical precision by the pp reference data.

Fig. 13 shows a published measurement of the nuclear modification factor for isolated photons at high
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pT [73], which does not exhibit significant suppression at forward rapidity. FoCal will extend these
measurements an order of magnitude lower in pT and to much larger rapidity. ALICE will likewise
carry out low-pT direct photon measurements at midrapidity, as done in [74]. These central and forward
measurements in the same experiment will probe a broad range in

(
x,Q2

)
by photons (Fig. 5). We expect

that these data will play a central role in the search for non-linear evolution effects.
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Figure 14 shows the pT-differential cross section of inclusive prompt photons in the FoCal acceptance
for pp collisions at

√
s=14 TeV, calculated at NLO using INCNLO [76] with two different choices of

PDF. The uncertainty bands have magnitude 20–50%. If smaller systematic uncertainty can be achieved
in this FoCal measurement, it will provide significant new constraints on the proton PDF. Furthermore,
at low pT this measurement probes x ∼ 5×10−7; saturation effects may be observable even in the proton
at such small x, for instance in the ratio of direct photon and pion spectra at y = 5 [77, 78].



Physics of the FoCal 19

102 3 4 5 6 7 8 9
pT [GeV]

0.5

1.0

1.5

R
p

P
b LHCb

0
, √ NN

, √ NN

, √ NN

, NN

, NN

h , NN

𝜋 = 8.16 TeV, 2.5 < 𝜂CM < 3.5

= 5 TeV, 2.5 < 𝜂CM < 3.0
= 5 TeV, 3.0 < 𝜂CM  < 3.5

±

±
h

s

s

s

nCTEQ15 + LHCb D0

EPPS16 + LHCb D0

CGC

Fig. 15: Measurement of the π0 nuclear modification factor at forward rapidity (2.5 < η < 3.5) by LHCb [79].
Error bars show the statistical uncertainty, while the open boxes show the systematic uncertainties. The solid gray
boxes show the overall normalization uncertainties from the luminosity estimate and efficiency correction factors.
The results are compared to pQCD calculations using nuclear PDFs [31, 80] and a CGC calculation [81].

Figure 15 shows a recent measurement by the LHCb Collaboration of RpPb of π0 in p–Pb collisions
at 8.16 TeV, in the acceptance 2.5 < ηCM < 3.5 [79]. Also shown are calculations based on linear
QCD evolution with nuclear shadowing, and on non-linear evolution in the CGC framework at LO.
While the CGC calculation is somewhat disfavored in the comparison, the calculation is at LO, and the
acceptance may not be sufficiently forward to probe the deep saturation region. FoCal data will extend
this measurement to significantly larger rapidity.

In pp and p–Pb collisions, FoCal measurements of Z→ e+e− and W→ e [83] may be possible, providing
additional constraints to nuclear PDFs at high Q2.

5.3 Photon and hadron-triggered correlations
Photon and hadron-triggered correlations in the forward region of pA collisions also probe small-x gluon
dynamics, but with different sensitivity than inclusive yields. In the dilute-dense picture, a large-x parton
from the proton scatters off the coherent small-x gluon field in the nucleus, which results in both yield
suppression and angular decorrelation. While measurement of correlated yield suppression probes gluon
density, similar to measurements of inclusive production, measurement of angular decorrelation is in
addition sensitive to the coherence of the gluonic wavefunction.

The choice of a hadron trigger and a hadron, rather than the jet, as the recoil object has advantages for
probing low kT ∼ Qsat, though the calculation of hadrons in the final state requires the use of Fragmen-
tation Functions, which have additional theoretical uncertainties relative to calculations of photon or jet
correlations. It is clear, however, that a comprehensive experimental program must exploit all such cor-
relations. We discuss γ+hadron and hadron+hadron correlations here; γ+jet and dijet correlations are
discussed in Sec. 5.4.

Figure 16 shows a recent STAR measurement of π0 + π0 correlations in the forward region in pp, p–
Al, and p–Au collisions at

√
sNN=200 GeV [82]. The two panels show different selections in trigger

and associated particle pT. A marked yield suppression is observed for nuclear targets, with larger
suppression for larger target mass A, qualitatively consistent with expectations from the CGC picture.
However, no A-dependent broadening is observed, consistent with a previous measurement by PHENIX
at RHIC [84], but in contrast to general expectations from the CGC picture.

Figure 17 shows a theoretical calculation of forward di-hadron azimuthal correlations at RHIC, compared
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Fig. 16: Azimuthal angular separation of π0-π0 pairs at forward rapidity (2.6 < η < 4.0) in pp, p–Al and p–
Au collisions at

√
sNN=200 GeV, for two different intervals in trigger and associated pT, measured by the STAR

Collaboration at RHIC [82].

to preliminary STAR data similar to those in Fig. 16 [85]. The calculation incorporates the dilute-
dense CGC framework augmented by Sudakov radiation, and interpolates between the non-linear CGC
and linear high-energy factorization pictures. The CGC description of di-hadron correlations requires
calculation of the quadrupole operator [42, 43], which in this calculation is approximated. The effect of
Sudakov radiation is found to be essential to describe such correlations in pp collisions; such effects grow
in magnitude with pT, in contrast to effects expected due to saturation. Sudakov radiation must therefore
be taken into account in any comparison of such calculations with data. Quantitative comparison of these
calculations with the data in Fig. 16 are not yet published.

Figure 18 shows a prediction of the azimuthal angular distributions of π0 + π0 pairs in pp and p–Pb
collisions at

√
sNN=8.8 TeV within the FoCal acceptance, using the same calculations as in Fig. 17 [85].

Both trigger and associated particles are selected within 4 < pT < 5, which is not at the limit of FoCal
measurement capabilities. A slight broadening of the angular distribution in p–Pb is predicted, which
sets a challenging benchmark for measurements in this channel. Note however that these calculations are
carried out at LO, while extension to NLO is needed for assessment of the theoretical uncertainty.

A parallel calculation for γ+π0 correlations is also of interest, since the required theoretical framework
is significantly different [42, 43]. As an example, Fig. 19 shows a prediction for this channel using
a different theoretical approach within the CGC framework. Modification of the recoil yield due to
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Fig. 17: Theoretical calculations of π0 +π0 correlations compared to a preliminary STAR data similar to those in
Fig. 16, but for d–Au interactions selected for high event activity (“central” d–Au collisions) [85]. Calculations
are based on the dilute-dense CGC framework with the addition of Sudakov radiation at small-x, and interpolate
between CGC formalism and high-energy factorization.
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Fig. 18: Prediction of azimuthal angular distributions of π0+π0 pairs in pp and p–Pb collisions at
√

sNN=8.8 TeV,
within the FoCal acceptance, based on the same calculation as in Fig. 17 [85].

saturation effects is also observed in this case.

5.4 Jets, γ+jet, and dijets
Forward inclusive jet production has been calculated within the dilute-dense CGC framework at NLO,
utilizing the dipole scattering amplitude [86–88]. An IR-safe NLO calculation which incorporates a
realistic jet reconstruction algorithm (anti−kT) shows the validity of rapidity factorization in this chan-
nel [87]. While the effect of multiple scattering of the projectile parton in the CGC is to induce additional
kT ∼ Qsat, such effects are significant only for very low-pT jets. This presents an experimental challenge
to observe saturation effects in inclusive jet production measurements.

Forward di-jet observables may therefore have better sensitivity than inclusive jet measurements to sat-
uration effects at small-x. That is because there are three momentum scales in the forward di-jet pro-
cess [89]: Qsat, which characterizes gluon-saturated matter at small-x; pjet

T of the individual jets in the
pair; and the momentum imbalance kT of the dijet pair, which also corresponds to the transverse momen-
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tum of the small-x gluons involved in the hard scattering. For jet measurements in practice, the value
of pjet

T is typically much larger than Qsat, while the magnitude of kT ranges from similar to Qsat to much
larger, and thereby spans a range to interpolate between the low

(
x,Q2

)
limit of a transverse momentum-

dependent (TMD) factorization framework to the high-Q2 limit where high-energy factorization applies.
For Qsat ≪ kT ∼ pjet

T , non-linear effects are negligible and the description of forward dijets involves hard
matrix elements and a single TMD gluon distribution, while for Qsat ∼ kT ≪ pjet

T , non-linear effects
persist and several different TMD distributions are required. The dijet channel is therefore promising
approach to studying parton saturation, whose effects may be observable by varying kT between pjet

T and
Qsat.

Figure 20 shows a recent calculation of the ∆Φ dependence of di-jet RpPb in the FoCal acceptance at√
sNN ∼ 8 TeV using the KaTie MC code [90–92]. KaTie is based on the Improved TMD (ITMD) factor-

ization approach, whose domain of validity is Qsat ≪ pjet
T . The ITMD formalism in Katie is augmented

by resummation of Sudakov logarithms, and by non-perturbative corrections due to hadronization and
showers using the PYTHIA event generator. While the calculation exhibits negligible dependence on
∆Φ due to saturation effects, its uncertainties relative to the central values show that the precision of
the current calculation is sufficient to provide strong discrimination of saturated and non-saturated gluon
density, and thereby also set the precision needed in FoCal measurements.

Correlations with jets in the final state and with different triggers probe different QCD operators within
the dilute/dense framework, providing significant variation to test its universality. In the ITMD approach,
photon+jet coincidences are sensitive only to the dipole TMD distribution, which also governs the DIS
interaction cross section, while dijet production in pA probes several different TMDs, and in DIS its
description requires the quadrupole operator [89].

Figure 21 shows a KaTie calculation ofγ+jet coincidence events in the FoCal acceptance for pp and p–Pb
collisions at 8.16 TeV. The left panel shows the pT-distributions of photon and jet; saturation effects are
negligible, as expected since Qsat ≪ pjet

T . The right panel shows the distribution of azimuthal separation
∆ϕ ∼ kT/pjet

T for pγ

T , pjet
T > 10 GeV/c, which exhibits greater sensitivity to saturation effects.
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Fig. 20: Prediction of RpPb for di-jets as a function of the opening angle ∆Φ in the FoCal acceptance, for p–
Pb and pp collisions at

√
sNN=8.16 TeV, calculated using the KaTie MC code [90]. The blue error band is the

uncertainty due to the variation in the factorization scale. The data points show RpPb obtained from Katie scaled
by the non-perturbative correction factors from PYTHIA, with error bars showing the cumulative uncertainty of
the factorization scale and non-perturbative corrections.
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Figure 22 shows the ∆ϕ dependence of RpPb for γ+jet and di-jet coincidences with several pT thresholds
from the same calculation as used for Fig. 21, further illustrating the magnitude of saturation effects.
The two channels exhibit similar behavior, with 30% yield suppression in the back-to-back configuration
(low kT) for the 10 GeV threshold, and gradual weakening of the suppression towards greater acopla-
narity (larger kT). However, the γ+jet and dijet channels have markedly different theoretical descriptions;
this is another opportunity for FoCal to carry out multiple measurements with different theoretical and ex-
perimental systematic dependencies, to probe the universality of the saturation picture at small-x.

Finally, we note that a CMS measurement of forward di-jet momentum imbalance and η-dependence of
yield in p–Pb collisions [93] has been incorporated into a recent nPDF fit and found to have significant
constraining power [53]. However, while the jet acceptance of these measurements (4 < η < 5.2) over-
laps that of FoCal, the magnitude of jet pT are pleading

T > 120 GeV/c and psubleading
T > 30 GeV/c, making
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precise dijet imbalance measurements at the saturation scale Qsat ∼few GeV/c challenging. FoCal will
carry forward jet and di-jet measurements at much lower pT, which will complement and extend these
and forthcoming forward jet measurements from CMS.

5.5 Heavy flavor
For completeness we also discuss the theoretical status of forward heavy flavor production that is mea-
surable by the LHCb collaboration [32], and which is likewise a key component of comprehensive pro-
gram to test the universality of linear and non-linear QCD evolution. D-meson production is directly
sensitive to the gluon density since the dominant production process for cc̄ production is gluon fusion,
gg → cc̄.

]c[GeV/
T

p
0 2 4 6 8 10

pP
b

R

0

0.5

1

1.5

2

= 5 TeVNNs
LHCb

Forward

EPS09LO
D  LHCb

EPS09NLO

DD  LHCb
D LHCb

0 nCTEQ15
CGC

Fig. 23: RpPb for prompt D0 in acceptance 2.5 < |y∗| < 4.0 for pT < 6 GeV/c and 2.5 < |y∗| < 3.5 for 6 < pT <

10 GeV/c, for p–Pb collisions at
√

sNN = 5.02 TeV, measured by LHCb [32]. Theoretical calculations are also
shown, using linear QCD evolution with nuclear PDFs [51, 94], and a CGC-based [95] framework. In the case of
nCTEQ15 the two (blue-dashed) lines indicate the spread of the theoretical uncertainty of the calculation.

LHCb has reported a precise measurement of prompt D-meson production at forward rapidity 2.5 < y <
4.0 [32], which also probes small-x. Figure 23 shows this measurement of the relative inclusive yield,
RpPb, as a function of pT. Forward production of prompt D-mesons is observed to be suppressed in p–Pb
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compared to pp collisions, with RpPb ∼ 0.6 at low pT, increasing slowly with pT. This directly confirms
that the shadowing at small x is strong.

The measured suppression is in line with expectations based on the various nuclear PDF sets, which are
also shown in the figure. The suppression of charm production in the calculations with nuclear PDFs is
a direct result of the reduced gluon density at x ≲ 10−2 (see Fig. 7). The calculated values of RpPb range
from about 0.3 to 0.9, reflecting the current uncertainties in the nuclear modification of the small-x gluon
density. This is because the NMC data which initially identified shadowing [17–19]only constrain the
nuclear PDFs on the large x side of the shadowing region, near x = 10−2.

Fig. 24: Comparison of Rg for nNNPDF2.0 vs. nNNPDF3.0 without charm (left) and for nNNPDF3.0 with charm
and without charm [96]. Uncertainties are at 65% confidence level.

Including the D-meson data in the determination of the nuclear PDFs only slightly influences the central
value, but reduces the uncertainties by up to a factor 2 [80] 7. However, a quantitative determination of
the magnitude of gluon shadowing based on hadron production measurements is complicated by the fact
that hadronic final state effects (rescattering) may also influence the distribution. The recently observed
flow-like long-range correlations [98–102], discussed in Sec. 7, need to be taken into account in the
interpretation of the measurements.

Despite these concerns, recent nuclear PDFs [53,96] have included the precise LHCb charm data [32] in
their global fits. As an example, the gluon density modification Rg is shown in Fig. 24 for the nNNPDF3.0
nuclear PDF, with and without the LHCb charm data. Significant suppression of Rg at small x is obtained
with small systematic uncertainties, even at x values well below 10−5. Comparison of precise forward
photon and charm measurements will allow one to test factorization and universality of the nuclear
PDFs.

6 Small-x studies using ultra-peripheral heavy-ion collisions
Ultra-peripheral collisions (UPCs) are the energy frontier for photon-mediated interactions, probing col-
lisions at γ p center of mass energies above 1 TeV [103–105], which far exceeds the energy accessible
at the HERA ep collider. For γ–A collisions, the maximum γ–N center of mass energies are 700 GeV
and 1.5 TeV in Pb–Pb and p–Pb collisions respectively. With its far forward geometry, Focal is the best-
suited LHC detector subsystem to exploit this energy; it will probe the gluon densities of protons and
heavy ions down to Bjorken−x values below 10−6 [106].

In UPC, the photons come from the Lorentz-boosted electromagnetic fields of the colliding ions. These
fields can be treated as a flux of quasi-real photons. In vector meson photoproduction, these photons

7Note that the updated PDFs introduce a tension with the ALICE midrapidity D0 meson nuclear modification factor [97].
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fluctuate to quark-antiquark dipoles (virtual vector mesons) which then interact elastically with the target
nucleus, emerging as real vector mesons. For production of a vector meson with mass MV at rapidity y,
the photon energy and Pomeron x value are [107]

k = γMV exp(±y) (8)

and
x =

MV

γmp
exp(∓y) (9)

The ± and ∓ signs are present because, for coherent photoproduction, there is an ambiguity about which
nucleus emitted the photon and which is the target. This ambiguity can be resolved in pA collisions,
where the photon is usually emitted by the heavy nucleus. In Pb–Pb collisions, one method to resolve
the ambiguity is by considering events with different nuclear breakup conditions, as will be discussed
below. With this, in lead-lead collisions at

√
sNN = 5.6 TeV, J/ψ photoproduction at y = 5.8, near the

edge of the Focal acceptance, probes the target at x = 5× 10−7; for pp collisions, the Lorentz boosts
are higher, so reaching targets down to x = 2×10−7. For vector meson photoproduction, the hard scale
comes from the heavy-quark masses, so Q2 = (MV/2)2, or Q2 ≈ 2.25 GeV2. Different Q2 values can be
probed with different mesons, including the ψ ′ and the low mass vector meson states. In pQCD, vector
meson photoproduction is actually described by a generalized parton distribution; this difference may be
bridged by the use of a Shuvayev transformation [108]. And, recent NLO calculations have pointed to the
presence of a significant quark contribution at that order, along with a significant scale dependence [109].
The scale dependence can be treated by comparing cross sections on proton and lead targets, while the
quark contribution can become part of fits to extract parton distributions, as is already done with direct
photons.

The signature for coherent vector meson photoproduction decaying to e+e− will be very distinctive in
FoCal —two electromagnetic showers back-to-back in azimuthal angle, with nothing else present in the
event (except for some neutrons in the zero degree calorimeters). The rates for these processes are large,
even at large |y| [105–107].

6.1 Physics measurements in ultra-peripheral p–Pb collisions
The ALICE collaboration has studied the energy dependence of the J/ψ photoproduction cross section in
p–Pb collisions, and found that it continues to follow the power law seen by HERA: σ(γ p → J/ψ p) ∝

W δ
γ p, with δ = 0.70±0.05 [110]. In LO pQCD, this gives a gluon density that evolves as xg(x) ∝ x−δ/2.

Saturation would reduce the high-energy cross section below this power law. ALICE measurements [110,
111], extending down to x ∼ 10−5, showed no deviation from this behaviour, although the statistical error
was large. An alternative explanation for the reduction of the cross section could be large higher order
corrections, but no such calculations exist. Also early work has indicated that such corrections will lead
to an increase of the cross section [112]. The FoCal detector will access an unexplored kinematic regime
at even smaller x where a different trend in the growth of the cross section might occur. While the LHCb
collaboration has studied exclusive J/ψ in pp collisions at

√
s= 7 TeV [113,114] and

√
s= 13 TeV [115],

their analyses of σ(γp) are strongly model dependent because of the ambiguity in the photon direction
present in symmetric colliding systems (see Refs. [106, 116] for details).

There are three published models that use non-linear QCD to make predictions at high energies, namely,
the Hot Spot model (CCT) [119], the NLO BFKL [120] and the CGC-based (MS) calculations [121].

To illustrate the prospects of observing saturation effects with FoCal, the projection of the energy de-
pendence of the J/ψ photoproduction cross section in the FoCal acceptance was obtained using the NLO
BFKL model [120]. It is shown in Fig. 25, while Fig. 26 shows the ratio of the NLO BFKL projection
to the same power-law used to fit the ALICE data. The figures demonstrate that if saturation occurs, as
predicted by these models, the future FoCal UPC measurements would provide the first observation of
the deviation from the power-law trend at high energies. These figures are based on a simplified model of
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Fig. 25: Figure from [106]. Current ALICE data [117]( full red squares) from p–Pb UPCs at
√
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the FoCal performance, conservatively assuming a 60% efficiency at η < 5, and not extending to higher
pseudorapidities. In the projected pseudorapidity range this is lower, on the average, than obtained from
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detailed simulations. Since the photon flux decreases exponentially in rapidity, the projected data points
for FoCal do not cover the energy reach which is illustrated with a box on these figures.
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Fig. 27: Energy dependence of the ratio of dissociative to exclusive J/ψ photoproduction cross sections as a
function of Wγp. The full triangles correspond to the H1 measurement [112]. The projected data are shown with
open and full circles for the measurements with the ALICE muon detectors during Run 3 and the ALICE FoCal
detector during Run 4, respectively. The corresponding kinematic regions are indicated by the two boxes. The
projected points were obtained using STARlight [122] for the exclusive process, and the BM model prediction for
the dissociative process. Theoretical calculations based on the CCT and MS saturation models are also shown. The
projected points are also smeared randomly according to the Gaussian distribution with the width corresponding
to the expected statistics of each measurement. The points show the statistical and systematic uncertainties added
in quadrature. Figure from [106].

The ratio of the cross sections between ψ(2S) and J/ψ is also predicted to be sensitive to gluon satura-
tion [123]. These two vector mesons have different wave functions, different energy evolution of their
color dipole sizes. Figure 28 shows the H1 and ZEUS data [124, 125], and the projected STARlight
events within the FoCal acceptance. The HERA points are compared to two different types of model
calculations: the calculations based on the color dipole model (GBW) and on the BGK model, respec-
tively [123]. For these two types of calculations, the linear and the non-linear (saturation) predictions are
shown. There is a clear separation between the linear and the non-linear calculation, making this ratio a
very promising measurement to observe gluon saturation at the LHC. The comparison between these two
different sets of calculations, the GBW and BGK, provide some estimate of the theoretical uncertainty.
The figure also shows the kinematic region that can be explored utilizing the ALICE muon spectrometer
during Run 3.

In addition, the dissociative process (γ p → J/ψ p∗) has received recent interest [119, 126, 127]. The
Good-Walker paradigm relates incoherent photoproduction to event-by-event fluctuations in the nuclear
configuration, including gluonic hot spots, and, for heavier ions, fluctuations in the positions of the
nucleons [128]. Although there are theoretical issues with separating coherent and incoherent production
in the Good-Walker paradigm [129], the separation appears to work in practice. Studies of HERA data
using this approach [126] found evidence for a proton with large fluctuations. With FoCal, as shown in
Fig. 27, these measurements could be extended to considerably lower x than was possible at HERA; ion
targets can also be studied. Of particular interest is the search for the possible onset of the black-disk
regime, where the incoherent cross section reaches a maximum, and then declines with further increases
in photon energy [130]. The observation of a significant reduction of the cross section as energy increases
would be a signature of gluon saturation at high energies.
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and to the STARlight projections (full circles). For the STARlight projected points only the statistical uncertainty is
shown based on the number of expected events multiplied by the reconstruction efficiency. Theoretical calculations
based on BKG and GBW saturation models and their corresponding linearized versions [123], are also shown. The
two boxes illustrate the kinematic regions that can be explored utilizing the ALICE muon detectors during Run 3
and the ALICE FoCal detector during Run 4, respectively.

6.2 Physics measurements in ultra-peripheral Pb–Pb collisions
Exclusive photonuclear production of vector mesons (VMs) has been studied by several experiments in
ultra-peripheral Pb–Pb collisions at the LHC [131–136]. In particular, J/ψ photoproduction is measured
using nuclear targets to study gluon shadowing. ALICE has studied J/ψ photoproduction at both midra-
pidity and in the forward region, revealing significant shadowing at medium and small x down to 10−5

and Q ≈ MJ/ψ/2. The major experimental issue is resolving the two-fold ambiguity as to which nucleus
emitted the photon, and which was the target. The directional ambiguity can be addressed by studying
events with neutrons in different directions and possibly by also studying photoproduction in peripheral
hadronic collisions [119,137]. Figure 29 shows the σ(γPb) cross section for coherent J/ψ photoproduc-
tion in ultra-peripheral Pb–Pb collisions as function of WγPb. The uncertainty of the measurement results
from propagating the experimental uncertainties of the dσ/dys in the various neutron configurations (see
Ref. [106] for details). At present, no experimental data exist for this measurement although ALICE
has an ongoing analysis and CMS has recently presented preliminary results. Note that LHCb does not
have ZDCs installed at present or for Run 4, making ALICE with FoCal the only experiment capable of
carrying out this analysis to probe down to x values of about 2×10−6.

In addition to a measurement of structure functions at small Bjorken-x, the FoCal coherent photopro-
duction data could also be used to study the evolution of the nuclear shape with Q2, at smaller x values
than previously [138, 139]. By studying how the apparent nuclear shape changes with decreasing x in
J/ψ photoproduction on lead targets, ALICE can search for the onset of gluon saturation using a new
approach.

Finally, the study of dijet photoproduction in UPCs is also of great interest. The photoproduction of dijets
was explored by the ATLAS collaboration [140] as a promising probe to access a wide range of x values
above 10−4 at Q> 7 GeV/c, while CMS has studied angular correlations of diffractive dijets [141]. FoCal
will have a competitive advantage over ATLAS and CMS because of the high-granularity detection and
the forward rapidity coverage.
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7 Long-range correlations in pp and p–Pb collisions
The situation regarding the sensitivity of hadronic observables to the initial state, in particular the gluon
density, has been greatly enriched by unexpected features discovered in small systems at RHIC and the
LHC [15, 142]. Among those is the “double ridge”, a two-hadron correlation in the relative azimuthal
angle ∆ϕ extending over a large range in ∆η , as shown in the left panels of Fig. 30 and Fig. 31. The
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√
sNN = 5.02 TeV for the 0–20% event class after subtrac-

tion of the yield obtained in the corresponding 60–100% event class [143]. (Right) The v2 values extracted from
two-particle correlations in p–Pb collisions at

√
sNN = 5.02 TeV for hadrons (black squares), pions (red triangles),

kaons (green stars) and protons (blue circles) as a function of pT in the 0–20% event class after subtraction of the
60–100% event class [98].

structure of the correlation in ∆ϕ can be well described by a Fourier decomposition with a dominant
second order coefficient v2, also known as elliptic flow [145]. By now, v2 has been measured for numer-
ous hadrons, including open and hidden charm [98–102, 146]; examples are shown in the right panels of
Fig. 30 and Fig. 31.
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The mechanisms causing these correlations are not fully understood, and two sources have been identi-
fied: an anisotropy in the initial state momentum distribution [147, 148]; and an anisotropy in the spatial
distribution that is imprinted on the momentum distributions by final state scattering [149, 150]. In anal-
ogy to heavy-ion collisions, final-state scattering can arise from from a hydrodynamic response. This
occurs if the system is in local thermal equilibrium, with pressure gradients driving the system to global
equilibrium. The hydrodynamic response generates collective motion from the conversion of initial spa-
tial anisotropy to momentum anisotropy. This mechanism would generate the observed dependence of
the light flavor v2 values as a function of hadron mass, which is characteristic of a hydrodynamic re-
sponse. On the other hand, measurements of J/ψ v2 in small systems can be explained by initial state
momentum anisotropies only, expected from saturation models [151]. Attempts to model J/ψ v2 us-
ing only final state effects have proven unsuccessful so far [152]. Therefore, both initial and final state
momentum anisotropies may have competing contributions, which calls for future measurements to dis-
entangle these effects in small systems.
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FoCal can play a leading role in disentangling initial and final state momentum anisotropies by measuring
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long-range correlations in unexplored kinematic regimes. This can be achieved by measuring azimuthal
correlations between particles at forward rapidity with FoCal, and at mid/backward rapidity using the
ALICE Central TPC/MFT detectors. The measurement could be done in the same manner as those
shown in the left panel of Fig. 31.

As mentioned, for small systems, a key question is to what extent initial state momentum anisotropies
contribute to the momentum anisotropies observed in the final state. Measuring anisotropic flow vs. the
rapidity difference of the outgoing particles is critical for addressing this question. Recent studies have
shown that, for differences of |∆η | < 1, initial state momentum anisotropies play a significant role, but
at larger |∆η |1 the observed momentum anisotropy should be dominated by final state effects [153,154].
The momentum anisotropies at |∆η | > 1 are therefore speculated to only result from a hydrodynamic
response to initial state spatial anisotropies. The 3+1D IP-Glasma model, which incorporates gluon sat-
uration effects, predicts a decorrelation between second order initial state anisotropies over large rapidity
differences in p–Pb collisions at LHC energies [153]. The decorrelations resulting from such a calcu-
lation are shown in the left panel of Fig. 32 as a function of different multiplicity classes (e.g. 0-5%
represent collisions with the highest number of produced particles, 80-90% the lowest). The normalized
(N) correlation function at different rapidities y1 and y2 vs the rapidity difference is defined as:

CN
ε2
(∆y) =

⟨ε2(y1)ε2(y2)⟩√
⟨ε2(y1)2⟩⟨ε2(y2)2⟩

(10)

where ε2(y) is the eccentricity at rapidity y. It is 1 when the eccentricities are the same at different
rapidities y1 and y2 i.e. fully correlated, and 0 if they are fully de-correlated. The decorrelation is
most pronounced at the largest rapidity separations for p–Pb collisions with the lowest multiplicity (80–
90%).

In the right panel of Fig. 32, we present an estimation of v2
2 using FoCal and other ALICE detectors

in p–Pb collisions, to illustrate the effect of the decorrelations on this observable. The FoCal can be
used to measure π0 hadrons at forward rapidities, and the EMCal at midrapidity. The TPC (|η | < 1) or
MFT (−3.6 < η <−2.5) can be used to measure charged hadrons (in the case of the MFT, muons from
charged hadron decays). We use the decorrelation predictions from the left panel and measurements of
v2 vs. η in d–Au collisions from PHENIX at the top RHIC energy [155] for this estimation. A Fourier
decomposition of the ridge provides a measurement of v2

2, hence the product v2(π
0)× v2(h±) for the y-

axis. This can be obtained using two particle correlations of v2(π
0) and v2(h±) vs. ∆η and ∆φ , as shown

in the left panels of Fig. 30 and Fig. 31. It is clear that the FoCal provides a unique opportunity to investi-
gate decorrelation effects, as the differences between low and high multiplicity events occur at the largest
rapidity separations. Such differences ultimately test initial state models, that are now in the process of
pursuing a 3D description of the dynamical evolution of nuclear collisions (3+1D). The majority of cur-
rent hydrodynamic models only evolve the system vs. time in the transverse direction (2+1D). Whether
saturation based models are a key component is a critical question — for example, the (non-saturation)
AMPT model also predicts similar effects for decorrelations of initial state spatial anisotropies [156]. In
addition, correlations of forward isolated photons with midrapidity hadrons are of interest. These test
mechanisms at work in the initial stages of the collisions, as isolated photons should suffer very little
influence from final state interactions. The mass scaling related to the hydrodynamic response at forward
rapidities can also be tested with measurements of heavier mesons (η , ω), also utilizing very long range
correlations to minimize the contributions from initial state momentum anisotropies.

Finally, gluon saturation at small x has also been postulated to be the source of quantum entanglement
effects [157]. These could lead to instant thermalization based on the potential equivalence of entangle-
ment and thermodynamic entropy. This is due to the fact that entropy is already generated in the initial
state for partons, which provides a means for fast entropy maximization needed for thermalization of
hadrons in the final state. In order to study this type of parton-hadron duality, using FoCal ALICE can



Physics of the FoCal 33

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

PHENIX π0, y = 0
BRAHMS π-, y = 2.2

R AA

pT (GeV/c)

RHIC Au+Au 200 GeV
0-10% central

Fig. 33: Nuclear modification factor RAA as a function of pT for identified pion production in central Au–Au
collisions at RHIC. Shown are measurements of π0 at midrapidity by PHENIX [159] (blue symbols) and of π− at
η = 2.2 by BRAHMS [160] (red symbols). Only statistical errors are shown.

complement the EIC measurements in ep and eA systems via measurements in pp, pA and AA colli-
sions. The survival of the coherent state as a function of system size can be measured through particle
multiplicities and quantum tomographic correlation functions of particles from small-x processes [158].
FoCal will be useful also for such studies in an x region of 10−6 < x < 10−5 that is not yet accessible
experimentally. The final state entropy is determined from hadron multiplicity distributions, which can
be measured in the neutral channel using FoCal.

8 Exploration of jet quenching in Pb–Pb collisions at large rapidity
One of the hallmark results from high-energy heavy-ion collisions is the observed suppression of high-
pT particle production compared to the expected scaling with the number of binary nucleon–nucleon
collisions. This suppression arises from parton energy loss due to interactions of the high-energy partons
with the QGP, usually called jet quenching, before they fragment into high-pT hadrons [16].

As of yet, the knowledge on the rapidity dependence of the single hadron or jet suppression is very
limited. At RHIC, the only forward measurements of hadron spectra in central Au–Au collisions have
been performed by the BRAHMS experiment. Figure 33 shows results of the nuclear modification fac-
tor (RAA) of the forward negative pion production compared to the results for neutral pions at midrapidity
as measured by PHENIX. A suppression is apparent in both modification factors. However, while the
midrapidity measurements are of relatively high precision, the forward measurements suffer from large
uncertainties, and are of very limited reach in transverse momentum. This is due partially to the steeper
momentum spectra at high rapidities and partially due to the fact that there is no large acceptance detector
for high rapidity at RHIC. Given the large statistical uncertainties, no strong statement about the rapidity
dependence of RAA at RHIC can be made. At the LHC, the nuclear modification factor has been mea-
sured out to η ≈ 2, see right panel of Fig. 34; this covers however only a small fraction of the available
dynamic range in rapidity. These measurements are unfortunately not conclusive – no clear systematic
trend can be identified in the data, also because of the limited range in pseudorapidity.

Jet quenching at high rapidities is of interest because the conditions of the hot and dense matter do change
with rapidity, although this dependence is not expected to be strong as one can see from pseudorapidity
densities of charged particles, which do not vary very strongly. In addition to variations in the medium
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properties, there are other rapidity dependent effects relevant for parton energy loss measurements, e.g.
the relative mixture of quark vs. gluon contributions, which is modified due to the contributions of larger
Bjorken-x for one of the primary partons, and the slope of the initial parton spectrum, which is strongly
modified when one gets closer to the kinematic limit at high rapidity. The latter can be particularly
important for the measurement of the single hadron nuclear modification factor, as shown in the left panel
of Fig. 34. In fact, while high-pT hadrons at midrapidity originate from a broad distribution of parton pT,
this source of uncertainty is reduced at high rapidity, where the kinematic range of parton pT is limited.
In addition, this effect would lead to a stronger suppression at large rapidity compared to midrapidity.
Jets and intermediate pT hadrons show very little rapidity dependence of the suppression, while the
dependence is very strong for high pT hadrons, an effect that is likely due to the strong modification in
the parton spectrum.
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The measurements of the nuclear modification factor of neutral pions in a more forward rapidity range
with FoCal will allow to explore this region in more detail. To make these measurements most useful
requires FoCal coverage that (partially) overlaps with the Muon Spectrometer, as we discuss now. The
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study of parton energy loss and the medium density at forward rapidity is also important to interpret
the existing measurements of quarkonium production at forward rapidity. To illustrate some of the open
questions in charmonium production and suppression, the left panel of Fig. 35 compares the nuclear
modification of J/ψ production at RHIC and LHC. The smaller suppression of J/ψ at the LHC com-
pared to RHIC is now generally interpreted as an interplay of Debye-screening, which is dominant at
RHIC and leads to a strong suppression, and an additional final state production mechanism (statistical
hadronisation or kinetic recombination), which becomes important at LHC and compensates part of the
suppression. Our understanding is unfortunately complicated by the different rapidity coverage of the
measurements.

Further indications for the rapidity dependence can be found in a comparison of midrapidity and forward
rapidity measurements of J/ψ suppression in Pb–Pb collisions by ALICE as displayed in the right panel
of Fig. 35. While the suppression seems to be small and very similar for |y| < 0.8 and y = 3, RAA
decreases significantly for y > 3. This decrease is not explained by nuclear shadowing, as is seen from
the comparison to the theoretical curves shown in the figure. Possibly there are other initial state effects
that play a role here (like gluon saturation as discussed earlier), or the properties of the medium do change
significantly as a function of rapidity. In addition to π0 measurements, for which the FoCal performance
in heavy-ion collisions has been evaluated in detail as discussed in the next sections, we also expect that
FoCal can provide measurements of the heavier η and ω mesons.

Furthermore, measurements of isolated photons and jets will be possible using the electromagnetic and
hadronic sections of the calorimeter enabling measurements of isolated photon and jet RAA up to about
y ≈ 5.

9 Summary
The FoCal detector consists of a highly-granular Si+W electromagnetic calorimeter combined with a
conventional sampling hadronic calorimeter, covering 3.4 < η < 5.5.

The main goals of the FoCal science program are to:

– Explore gluon dynamics and non-linear QCD evolution at the smallest values of Bjorken x using
theoretically well-motivated observables in pp and p–Pb which are sensitive to the gluon distribu-
tion at small x at low to moderate Q2, such as isolated photon, neutral meson, and jet production
and their correlations in hadronic collisions, and the measurement of vector meson photoproduc-
tion in ultra-peripheral collisions.

– Investigate the origin of flow-like effects by measurements of particle and jet correlations over a
large range in rapidity in pp and p–Pb collisions;

– Quantify parton energy loss at forward rapidity by measuring the neutral meson and jet nuclear
modification factors at high-pT in Pb–Pb collisions.

Other measurements will be possible but are not further emphasized in this document, such as the mea-
surements of (di-)jets in ultra-peripheral collisions, W, Z in pp and p–Pb collisions and direct photon
production and photon interferometry (HBT) as well as centrality and reaction plane determination in
Pb–Pb collisions. Lastly, measurements of EEM/Ehad possibly accessible by FoCal at forward rapidity
are important in interpreting data from cosmic-ray air showers.
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[95] B. Ducloué, T. Lappi, and H. Mäntysaari, “Forward J/ψ production in proton-nucleus collisions
at high energy,” Phys. Rev. D 91 no. 11, (2015) 114005, arXiv:1503.02789 [hep-ph].

[96] R. A. Khalek, R. Gauld, T. Giani, E. R. Nocera, T. R. Rabemananjara, and J. Rojo, “nNNPDF3.0:
Evidence for a modified partonic structure in heavy nuclei,” arXiv:2201.12363 [hep-ph].

[97] ALICE Collaboration, S. Acharya et al., “Measurement of prompt D0, D+, D∗+, and D+
s

production in p–Pb collisions at
√

sNN = 5.02 TeV,” arXiv:1906.03425 [nucl-ex].

[98] ALICE Collaboration, B. B. Abelev et al., “Long-range angular correlations of π , K and p in
p–Pb collisions at

√
sNN = 5.02 TeV,” Phys. Lett. B726 (2013) 164–177, arXiv:1307.3237

[nucl-ex].

[99] ALICE Collaboration, J. Adam et al., “Forward-central two-particle correlations in p-Pb
collisions at

√
sNN = 5.02 TeV,” Phys. Lett. B753 (2016) 126–139, arXiv:1506.08032

[nucl-ex].

[100] ALICE Collaboration, S. Acharya et al., “Search for collectivity with azimuthal J/ψ-hadron
correlations in high multiplicity p–Pb collisions at

√
sNN = 5.02 and 8.16 TeV,” Phys. Lett. B780

(2018) 7–20, arXiv:1709.06807 [nucl-ex].

[101] ALICE Collaboration, S. Acharya et al., “Azimuthal anisotropy of heavy-flavour decay electrons
in p–Pb collisions at

√
sNN=5.02 TeV,” arXiv:1805.04367 [nucl-ex].

http://dx.doi.org/10.1016/j.physletb.2018.08.011
http://arxiv.org/abs/1805.05712
http://dx.doi.org/10.1103/PhysRevD.100.114029
http://arxiv.org/abs/1910.13116
http://dx.doi.org/10.1007/JHEP07(2022)041
http://arxiv.org/abs/2204.03026
http://arxiv.org/abs/2211.08322
http://dx.doi.org/10.1007/JHEP12(2016)034
http://dx.doi.org/10.1007/JHEP12(2016)034
http://arxiv.org/abs/1607.03121
http://arxiv.org/abs/2210.06613
http://dx.doi.org/10.1007/JHEP09(2015)106
http://dx.doi.org/10.1007/JHEP09(2015)106
http://arxiv.org/abs/1503.03421
http://dx.doi.org/10.1016/j.cpc.2017.11.005
http://arxiv.org/abs/1611.00680
http://dx.doi.org/10.1140/epjc/s10052-014-2951-y
http://dx.doi.org/10.1140/epjc/s10052-014-2951-y
http://arxiv.org/abs/1401.4433
http://dx.doi.org/10.1088/1126-6708/2009/04/065
http://arxiv.org/abs/0902.4154
http://dx.doi.org/10.1103/PhysRevD.91.114005
http://arxiv.org/abs/1503.02789
http://arxiv.org/abs/2201.12363
http://arxiv.org/abs/1906.03425
http://dx.doi.org/10.1016/j.physletb.2013.08.024
http://arxiv.org/abs/1307.3237
http://arxiv.org/abs/1307.3237
http://dx.doi.org/10.1016/j.physletb.2015.12.010
http://arxiv.org/abs/1506.08032
http://arxiv.org/abs/1506.08032
http://dx.doi.org/10.1016/j.physletb.2018.02.039
http://dx.doi.org/10.1016/j.physletb.2018.02.039
http://arxiv.org/abs/1709.06807
http://arxiv.org/abs/1805.04367


Physics of the FoCal 43

[102] CMS Collaboration, A. M. Sirunyan et al., “Elliptic flow of charm and strange hadrons in
high-multiplicity p–Pb collisions at

√
sNN = 8.16 TeV,” Phys. Rev. Lett. 121 no. 8, (2018)

082301, arXiv:1804.09767 [hep-ex].

[103] S. Klein and P. Steinberg, “Photonuclear and two-photon interactions at high-energy nuclear
colliders,” Ann. Rev. Nucl. Part. Sci. 70 (2020) 323–354, arXiv:2005.01872 [nucl-ex].

[104] J. G. Contreras and J. D. Tapia Takaki, “Ultra-peripheral heavy-ion collisions at the LHC,” Int. J.
Mod. Phys. A 30 (2015) 1542012.

[105] Z. Citron et al., “Future physics opportunities for high-density QCD at the LHC with heavy-ion
and proton beams,” in HL/HE-LHC Workshop: Workshop on the Physics of HL-LHC, and
Perspectives at HE-LHC Geneva, Switzerland, June 18-20, 2018. 2018. arXiv:1812.06772
[hep-ph].

[106] A. Bylinkin, J. Nystrand, and D. Tapia Takaki, “Vector meson photoproduction in UPCs with
FoCal,” arXiv:2211.16107 [nucl-ex].

[107] S. Klein and J. Nystrand, “Exclusive vector meson production in relativistic heavy ion
collisions,” Phys. Rev. C 60 (1999) 014903, arXiv:hep-ph/9902259.

[108] S. P. Jones, A. D. Martin, M. G. Ryskin, and T. Teubner, “Probes of the small x gluon via
exclusive J/ψ and ϒ production at HERA and the LHC,” JHEP 11 (2013) 085,
arXiv:1307.7099 [hep-ph].

[109] K. J. Eskola, C. A. Flett, V. Guzey, T. Löytäinen, and H. Paukkunen, “Exclusive J/ψ
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R. Cruz-Torres 75, P. Cui 6, A. Dainese 54, M.C. Danisch 95, A. Danu 63, P. Das 81, P. Das 4,
S. Das 4, A.R. Dash 136, S. Dash 47, A. De Caro 29, G. de Cataldo 50, J. de Cuveland39, A. De Falco 23,
D. De Gruttola 29, N. De Marco 56, C. De Martin 24, S. De Pasquale 29, R. Deb132, S. Deb 48, R. Del
Grande 96, L. Dello Stritto 29, W. Deng 6, P. Dhankher 19, D. Di Bari 32, A. Di Mauro 33, B. Diab 129,
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32 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
33 European Organization for Nuclear Research (CERN), Geneva, Switzerland
34 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split,
Croatia
35 Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
36 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech
Republic
37 Faculty of Physics, Sofia University, Sofia, Bulgaria
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