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Abstract The usual formulations of quantum field theory in Minkowski space-
time make crucial use of features—such as Poincaré invariance and the existence
of a preferred vacuum state—that are very special to Minkowski spacetime. In
order to generalize the formulation of quantum field theory to arbitrary globally
hyperbolic curved spacetimes, it is essential that the theory be formulated in an
entirely local and covariant manner, without assuming the presence of a preferred
state. We propose a new framework for quantum field theory, in which the exis-
tence of an Operator Product Expansion (OPE) is elevated to a fundamental status,
and, in essence, all of the properties of the quantum field theory are determined by
its OPE. We provide general axioms for the OPE coefficients of a quantum field
theory. These include a local and covariance assumption (implying that the quan-
tum field theory is constructed in a local and covariant manner from the spacetime
metric and other background structure, such as time and space orientations), a
microlocal spectrum condition, an ‘“associativity” condition, and the requirement
that the coefficient of the identity in the OPE of the product of a field with its
adjoint have positive scaling degree. We prove curved spacetime versions of the
spin-statistics theorem and the PCT theorem. Some potentially significant further
implications of our new viewpoint on quantum field theory are discussed.

1 Introduction

The Wightman axioms (27)) of quantum field theory in Minkowski spacetime are
generally believed to express the fundamental properties that quantum fields pos-
sess. In essence, these axioms require that the following key properties hold: (1)

School of Mathematics, Cardiff University, Cardiff, Wales CF24 4AG, UK. hol-
landss@Cardiff.ac.uk - Enrico Fermi Institute and Department of Physics, University of
Chicago, Chicago, IL 60637, USA. rmwa@midway.uchicago.edu



2 S. Hollands, R. M. Wald

The states of the theory are unit rays in a Hilbert space, ¢, that carries a uni-
tary representation of the Poincaré group. (2) The 4-momentum (defined by the
action of the Poincaré group on the Hilbert space) is positive, i.e., its spectrum
is contained within the closed future light cone (“spectrum condition™). (3) There
exists a unique, Poincaré invariant state (“the vacuum”). (4) The quantum fields
are operator-valued distributions defined on a dense domain & C 7 that is both
Poincaré invariant and invariant under the action of the fields and their adjoints.
(5) The fields transform in a covariant manner under the action of Poincaré trans-
formations. (6) At spacelike separations, quantum fields either commute or anti-
commute.

During the past 40 years, considerable progress has been made in understand-
ing both the physical and mathematical properties of quantum fields in curved
spacetime. Although gravity itself is treated classically, this theory incorporates
some key aspects of general relativity and thereby should provide a more fun-
damental base for quantum field theory. Much of the progress has occurred in the
analysis of free (.e., non-
self-interacting) fields, but in the past decade, major progress also has been made
in the perturbative analysis of interacting quantum fields. Significant insights have
thereby been obtained into the nature of quantum field phenomena in strong grav-
itational fields. In addition, some important insights have been obtained into the
nature of quantum field theory itself. One of the key insights is that—apart from
stationary spacetimes or spacetimes with other very special properties—there is
no unique, natural notion of a “vacuum state” or of “particles”. Indeed, unless the
spacetime is asymptotically stationary at early or late times, there will not, in gen-
eral, even be an asymptotic notion of particle states. Consequently, it is essential
that quantum field theory in curved spacetime be formulated in terms of the local
field observables as opposed, e.g., to S-matrices.

Since quantum field theory in curved spacetime should be much closer to a
true theory of nature than quantum field theory in Minkowski spacetime, it is of
interest to attempt to abstract the fundamental features of quantum field theory in
curved spacetime in a manner similar to the way the Wightman axioms abstract
what are generally believed to be the fundamental features of quantum field the-
ory in Minkowski spacetime. The Wightman axioms are entirely compatible with
the focus on local field observables, as needed for a formulation of quantum field
theory in curved spacetime. However, most of the properties of quantum fields
stated in the Wightman axioms are very special to Minkowski spacetime and can-
not be generalized straightforwardly to curved spacetime. Specifically, a curved
spacetime cannot possess Poincaré symmetry—indeed a generic curved spacetime
will not possess any symmetries at all—so one certainly cannot require “Poincaré
invariance/covariance” or invariance under any other type of spacetime symmetry.
Thus, no direct analog of properties (3) and (5) can be imposed in curved space-
time, and the key aspects of properties (1) and (2) (as well as an important aspect
of (4)) also do not make sense.

In fact, the situation with regard to importing properties (1), (2), and (4) to
curved spacetime is even worse than would be suggested by merely the absence
of symmetries: There exist unitarily inequivalent Hilbert space constructions of
free quantum fields in spacetimes with a noncompact Cauchy surface and (in the
absence of symmetries of the spacetime) none appears “preferred”. Thus, it is not
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appropriate even to assume, as in (1), that states are unit rays in a single Hilbert
space, nor is it appropriate to assume, as in (4), that the (smeared) quantum fields
are operators on this unique Hilbert space. With regard to (2), although energy and
momentum in curved spacetime cannot be defined via the action of a symmetry
group, the stress-energy tensor of a quantum field in curved spacetime should be
well defined as a distributional observable on spacetime, so one might hope that it
might be possible to, say, integrate the (smeared) energy density of a quantum field
over a Cauchy surface and replace the Minkowski spacetime spectrum condition
by the condition that the total energy of the quantum field in any state always is
non-negative. However, this is not a natural thing to do, since the “total energy”
defined in this way is highly slice/smearing dependent, and it is well known in
classical general relativity that in asymptotically flat spacetimes, the integrated
energy density of matter may bear little relationship to the true total mass-energy.
Furthermore, it is well known that the energy density of a quantum field (in flat or
curved spacetime) can be negative, and, in some simple examples involving free
fields in curved spacetime, the integrated energy density is found to be negative.
Consequently, there is no analog of property (2) in curved spacetime that can
be formulated in terms of the “total energy-momentum” of the quantum field.
Thus, of all of the properties of quantum fields in Minkowski spacetime stated in
the Wightman axioms, only property (6) has a straightforward generalization to
curved spacetimes!

Nevertheless, it has been understood for quite some time that the difficulties
in the formulation of quantum field theory in curved spacetime that arise from the
existence of unitarily inequivalent Hilbert space constructions of the theory can
be overcome by simply formulating the theory via the algebraic framework (14)).
Instead of starting from the postulate that the states of the theory comprise a
Hilbert space and that the (smeared) quantum fields are operators on this Hilbert
space, one starts with the assumption that the (smeared) quantum fields (together
with the identity element 1) generate a *-algebra, 7. States are then simply expec-
tation functionals (.)e : &/ — C on the algebra, i.e., linear functionals that are
positive in the sense that (A*A), > 0 for all A € o7. The GNS construction then
assures us that given a state, @, one can find a Hilbert space .77 that carries a repre-
sentation, 7, of the *-algebra <7, such that there exists a vector |¥) € ## for which
(A)p = (P|m(A)|P) for all A € o7. All of the operators, T(A), are automatically
defined on a common dense invariant domain, & C .7, and each vector |¥) €
defines a state via (A)y = (¥|m(A)|¥). Thus, by simply adopting the algebraic
viewpoint, we effectively incorporate into quantum field theory in curved space-
time the portions of the content of properties (1) and (4) above that do not refer to
Poincaré symmetry.

It is often said that in special relativity one has invariance under “special coor-
dinate transformations” (i.e., Poincaré transformations), whereas in general rel-
ativity, one has invariance under “general coordinate transformations” (i.e., all
diffeomorphisms). Thus, one might be tempted to think that the Minkowski space-
time requirements of invariance/covariance under Poincaré transformations could
be generalized to curved spacetime by requiring a similar “invariance/covariance
under arbitrary diffeomorphisms”. However, such thoughts are based upon a mis-
understanding of the true meaning of “special covariance” and “general covari-
ance”. By explicitly incorporating the flat spacetime metric, 1,5, into the formula-
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tion of special relativity, it can easily be seen that special relativity can be formu-
lated in as “generally covariant” a manner as general relativity. However, the act
of formulating special relativity in a generally covariant manner does not provide
one with any additional symmetries or other useful conditions on physical theories
in flat spacetime. The point is that in special relativity, Poincaré transformations
are symmetries of the spacetime structure, and we impose a nontrivial requirement
on a physical theory when we demand that its formulation respect these symme-
tries. However, a generic curved spacetime will not possess any symmetries at all,
so no corresponding conditions on a physical theory can be imposed. The demand
that a theory be “generally covariant” (i.e., that its formulation is invariant under
arbitrary diffeomorphisms) can always be achieved by explicitly incorporating any
“background structure” into the formulation of the theory. If one considers a fixed,
curved spacetime without symmetries, no useful conditions can be imposed upon
a quantum field theory by attempting to require some sort of “invariance” of the
theory under diffeomorphisms.

However, there is a meaningful notion of “general covariance” that can be very
usefully and powerfully applied to quantum field theory in curved spacetime. The
basic idea behind this notion is that the only “background structure” that should
occur
in the theory is the spacetime manifold and metric modulo diffeomorphisms,
together with the time and space orientations and (if spinors are present in the
theory) spin structure. The quantum fields should be “covariant” in that their con-
struction should only make use of this background structure. Indeed, since the
smeared quantum fields are associated with local regions of spacetime (namely,
the support of the test function used for the smearing), it seems natural to demand
that the quantum fields be locally constructed from the background structure in the
sense that the quantum fields in any neighborhood & be covariantly constructed
from the background structure within ¢. This idea may be formulated in a precise
manner as follows (7;|19; 20).

First, in order to assure a well defined dynamics and in order to avoid causal
pathologies, we restrict consideration to globally hyperbolic spacetimes (M, gup ).
(We consider theories in arbitrary spacetime dimension D = dimM > 2.) If spinors
are present in the theory, we also demand that M admit a spin structure. It is
essential that the quantum field theory be defined on all D-dimensional globally
hyperbolic spacetimes admitting a spin structure, since in essence, we can only tell
whether the quantum field is “locally and covariantly constructed out of the met-
ric” if we can see how the theory changes when we change the metric in an arbi-
trary way. The “background structure”, M, of the theory is taken to consist of the
manifold M, the metric g,,, the spacetime orientation—which may be represented
by a nowhere vanishing D-form, e,,.. ., on M—and a time orientation—which
may be represented e.g. by the equivalence class of a time function 7 : M — R—
i.e., we have

M= (M.g.T,e). ey

(If spinors are present in the theory, and M admits more than one spin structure,
then the choice of spin-structure over M also should be understood to be included
in ML) For each choice of M, we assume that there is specified a *-algebra .o/ (M)

that is generated by a countable list of quantum fields ¢<i) and their “adjoints”
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(p(i)*. These fields may be of arbitrary tensorial or spinorial type, and they are
smeared with arbitrarily chosen smooth, compact support fields of dual tensorial
or spinorial type. In order to determine if the quantum field theory and quantum

fields ¢<f) are “locally and covariantly constructed out of the background structure
M”, we consider the following situation: Let (M, g) and (M’,g’) be two globally
hyberbolic spacetimes that have the property that there exists a one-to-one (but not
necessarily onto) map p : M — M’ that preserves all of the background structure.
In other words, p is an isometric imbedding that is orientation and time orientation
preserving (and, if spinors are present, the choices of spin structure on M and M’
correspond under p). We further assume that p is causality preserving in the sense
that if x;,x, € M cannot be connected by a causal curve in M, then p(x;) and
P (x2) cannot be connected by a causal curve in M’. We say that the quantum field
theory is locally and covariantly constructed from M (or, for short, that the theory
is local and covariant) if (i) for every such M, M’, and p we have a corresponding
*-isomorphism x,, between <7 (M) and the subalgebra of .7 (M) generated by the

quantum fields ¢ and ¢()* smeared with test fields with support in p[M] and (i)
if p’ is a similar background structure and causality preserving map taking M’ to
M, then xop = Xp © Xp- We further say that the quantum field 0D is locally and

covariantly constructed from M (or, for short, that q)(i) is local and covariant) if
for every such M, M’, and p, we have

1 (09(9) =09 (p.(£), @

where p.(f) denotes the natural push-forward action of p on the tensor/spinor
field f on M.

Note that in contrast to the notion of Poincaré covariance—which applies to
quantum field theory on a single spacetime (namely, Minkowski spacetime)—the
notion that a quantum field theory or quantum field is local and covariant is a con-
dition that applies to the formulation of quantum field theory on different space-
times. Nevertheless, the close relationship between these notions can be seen as
follows: Suppose that we have a local and covariant quantum field theory, with
local and covariant quantum fields ¢(i). Let M and M’ both be the background
structure of Minkowski spacetime, and let p be a proper Poincaré transformation.
Then p preserves all of the background structure, so for each proper Poincaré
transformation, we obtain a *-isomorphism ¥, : o — of , where 7 here denotes
the quantum field algebra for Minkowski spacetime. Furthermore, if p and p’ are
proper Poincaré transformations, we have ., = Xp © Xp- Thus, every local and
covariant quantum field theory in curved spacetime gives rise to a Poincaré invari-
ant theory in this sense when restricted to Minkowski spacetime. Furthermore, if
q)(i) is a local and covariant quantum field, then in Minkowski spacetime it trans-
forms covariantly via Eq. (2)) under proper Poincaré transformations.

Note also that, more generally, in any curved spacetime with symmetries, a
local and covariant quantum field theory will be similarly invariant under these
symmetries, and a local and covariant quantum field will transform covariantly
under these symmetries. But even for spacetimes without any symmetries, the
requirement that the quantum field theory and quantum fields be local and covari-
ant imposes a very powerful restriction akin to requiring Poincaré invariance/covariance
in Minkowski spacetime.
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From these considerations, it can be seen that if we adopt the above algebraic
framework for quantum field theory in curved spacetime and if we additionally
demand that the quantum field theory and the quantum fields ¢(i> be local and
covariant, then we obtain satisfactory generalizations to curved spacetime of prop-
erties (1), (4), and (5) of the Wightman axioms in Minkowski spacetime. Since we
already noted that (6) has a trivial generalization to curved spacetime, only prop-
erties (2) and (3) remain to be generalized to curved spacetime.

We have already noted above that there is no analog of property (2) in curved
spacetime that can be formulated in terms of the “total energy-momentum” of the
quantum field. However, it is possible to reformulate the spectrum condition in
Minkowski spacetime in terms of purely local properties of the quantum fields.
Specifically, the “positive frequency” (and, thereby, positive energy) properties of
states are characterized by the short-distance singularity structure of the n-point
functions of the quantum fields, as described by their wavefront set. One thereby
obtains a microlocal spectrum condition (55 16; 24) that is formulated purely in
terms of the local in spacetime properties of the quantum fields. This microlocal
spectrum condition has a natural generalization to curved spacetime (see Sect.
below), thus providing the desired generalization of property (2) to curved space-
time.

Consequently, only property (3) remains to be generalized. In Minkowski space-
time, the existence of a unique, Poincaré invariant state has very powerful conse-
quences, so it is clear that a key portion of the content of quantum field theory in
Minkowski spacetime would be missing if we failed to impose an analogous con-
dition in curved spacetime. However, as already mentioned above, one of the clear
lessons of the study of free quantum fields in curved spacetime is that, in a gen-
eral curved spacetime, there does not exist a unique, “preferred” vacuum or other
state. Furthermore, even if a prescription for finding a unique “preferred state” on
each spacetime could be found, since generic curved spacetimes do not have any
symmetries and states on different spacetimes cannot be meaningfully compared,
there would appear to be no sensible “invariance” properties that such a preferred
state could have. We do not believe that property (3) can be generalized to curved
spacetime by a condition that postulates the existence of a preferred state with
special properties.

In addition, we question the fundamental status of demanding the existence
of a state that is invariant under the symmetries of the spacetime. For example,
it is well known that the free massless Klein-Gordon field in two-dimensional
Minkowski spacetime does not admit a Poincaré invariant state. However, there is
absolutely nothing wrong with the quantum field algebra of this field; the quan-
tum field theory is “Poincaré covariant” and the quantum field transforms in a
“Poincaré covariant manner” in the sense described above. Furthermore, there is
no shortage of physically acceptable (“Hadamard”) states. Thus, the only thing
unusual about this quantum field theory is that it happens not to admit a Poincaré
invariant state. We do not feel that this is an appropriate reason to exclude the
free massless Klein-Gordon field in two-dimensional Minkowski from being con-
sidered to be a legitimate quantum field theory. Similar remarks apply to the free
Klein-Gordon field of negative m? in Minkowski spacetime of all dimensions. The
classical and quantum dynamics of this field are entirely well posed and causal,
although they are unstable in the sense of admitting solutions/states where the field
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grows exponentially with time. This instability provides legitimate grounds for

arguing that the free Klein-Gordon field of negative m” does not occur in nature,
but we do not feel that the absence of a Poincaré covariant state constitutes legiti-
mate grounds for rejecting this theory as a quantum field theory; see Sect. [6]below
for further discussion.

For the above reasons, we seek a replacement of property (3) that does not
require the existence of states of a special type. The main purpose of this paper is
to propose that the appropriate replacement of property (3) for quantum field the-
ory in curved spacetime is to postulate the existence of a suitable operator product
expansion (26529} 131) of the quantum fields. The type of operator product expan-
sion that we shall postulate is known to hold in free field theory and to hold order
by order in perturbation theory on any Lorentzian curved spacetime (15). We thus
propose to elevate this operator product expansion to the status of a fundamental
property of quantum ﬁeldﬂ Although the assumption of the existence of an oper-
ator product expansion in quantum field theory in curved spacetime is remarkably
different in nature from the assumption of the existence of a Poincaré covariant
state in quantum field theory in Minkowski spacetime, we will show in Sects. [4]
and [5|below that it can do “much of the same work” as the latter assumption. It is
shown in (21) how to exploit consistency conditions on the OPE in a framework
closely related to that presented here. In particular, it is shown how perturbations
of a quantum field theory can be characterized and calculated via consistency con-
ditions arising from the OPE.

We have an additional motivation for proposing to elevate the operator product
expansion to the status of a fundamental property of quantum fields. For free quan-
tum fields in curved spacetime, an entirely satisfactory *-algebra, 7, of observ-
ables has been constructed (55 165 [19), which includes all Wick powers and time-
ordered products. However, the elements of <% correspond to unbounded opera-
tors, and there does not seem to be any natural algebra of bounded elements (with,
e.g., a C*-structure) corresponding to 4. Furthermore, 2% does not appear to
have any natural topology (apart from a topology that can be defined a posteriori
by using the allowed states as semi-norms). Fortunately, a topology is not actu-
ally needed to define <% because the relations that hold in 2% can be expressed in
terms of finite sums of finite products of fields. However, it is inconceivable that
the relations that define an interacting field algebra will all be expressible in terms
of finite sums of finite products of the fields. Thus, without a natural topology and
without finitely expressible relations, it is far from clear as to how an interact-
ing field algebra might be defined. We claim that an operator-product expansion
effectively provides the needed “relations” between the quantum fields, and we
will propose in this paper that these relations are sufficient to define a quantum
field theory. In other words, we believe that an interacting quantum field theory
is, in essence, defined via its operator-product expansion. From this perspective, it

! Various axiomatic approaches to conformal field theories based on the operator product
expansion have been proposed previously, see e.g. the one based upon the notion of “vertex
operator algebras” given in (2; [11523). However, in contrast to our approach, these approaches
incorporate in an essential way the conformal symmetry of the underlying space. In some
approaches to quantum field theory on Minkowski space, the OPE is not postulated, but instead
derived (3} 45 110).
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seems natural to view the operator product-expansion as a fundamental aspect of
the quantum field theory.

In the next section, we will describe our framework for quantum field theory
in curved spacetime. In particular, we will provide a precise statement of what we
mean by an operator-product expansion and the properties that we will assume that
it possesses. In Sect. [3| we will state our axioms for quantum field theory in curved
spacetime and explain how it is constructed from the operator-product expansion.
Finally, in Sects. ] and [5] we will show that our axioms have much of the same
power as the Wightman axioms by establishing “normal” (anti-)commutation rela-
tions and proving curved spacetime versions of the spin-statistics theorem and
PCT theorem. Some further implications of our new perspective on quantum field
theory are discussed in Sect. [

2 General Framework for the Formulation of QFT

We will now explain in much more detail our proposed framework for defining
quantum field theory. We fix a dimension D > 2 of the spacetime and consider all
D-dimensional globally hyperbolic spacetimes (M, g.5). As explained in the pre-
vious section, we will assume that each spacetime is equipped with an orientation,
specified by a nowhere vanishing D-form e, 4, on M, and a time orientation,
specified by (the equivalence class of) a globally defined time function 7 : M — R.
The set of background data specified this way will be denoted

M= (M,g,T,e). (3)

In certain cases, more background structure may be prescribed, such as a choice of
bundles in which the quantum fields live. For example, if spinors are present and
if M admits more than one spin structure, then a choice of spin-structure over M is
assumed to be given as part of the background structureﬂ and is understood to also
be part of M. It should be emphasized that two spacetimes with the same mani-
fold and metric, but, e.g., with different time-orientations define distinct back-
ground structures. Below, we will consider quantum field theories associated with
background structures, and we stress that, at this stage, the quantum field theories
associated with different background structures (e.g., ones that merely differ in the
choice of, say, time-orientation) need not have any relation whatsoever.

The quantum fields present in a given theory will be assumed to correspond
to sections of vector bundles over M. We will denote the various quantum fields
by ¢, with i € I, where [ is a suitable indexing set, and we will write V(i) for

2 Tt is convenient to think of the background structure as a category (7), whose objects are the
tuples M. Morphisms in the category of tuples M are isometric, causality, orientation, and other
background structure preserving embeddings,

p:M— M. @)

Thus, p is a diffeomorphism M — M’ such that g = p*g’, such that p*T’ represents the same
time-

orientation as 7, such that p*e’ represents the same orientation as e, and such that the
causal relations in (M, g) inherited from (M’,g") coincide with the original ones. Furthermore,
if M also includes the choice of a spin structure, then p must also preserve the spin structures.
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the vector bundle over M, of which qb(i) corresponds to a section. It should be
emphasized that i € [ labels all of the quantum fields present in the theory, not
just the “fundamental” ones. Thus, even if we were considering the theory of a
single scalar field ¢, there will be infinitely many composite fields of various
tensorial types corresponding to all monomials in ¢ and its derivatives, each of
which would be labeled by a different index i. It will be convenient to also include
a field denoted ¢V in the list of quantum fields, which will play the role of the
identity element, 1, in the quantum field algebra.

We assume that each field q)(i) has been assigned a Bose/Fermi parity F (i) =
0, 1 modulo two.

We further assume that there is an operation

*:I—1 i7", (5)

having the property that V (i*) = V (i), where for any vector space E, the vector
space E consists of all anti-linear maps EY — C, with EV denoting the dual space
of E. In particular, if i is associated with, say the vector bundle V (i) of spinors
with P primed and U unprimed indices, then V (i*) is the bundle of spinors with U
primed and P unprimed spinor indices. We demand that the star operation squares
to the identit ** = i. We also require that (1) = ¢(U, j.e. that 1* = 1.

As in many other approaches to quantum field theory, we will use the smeared
fields q)(i) (f)—with i € I, and f a compactly supported test section in the dual
vector bundle V(i) to V (i)—to generate a *-algebra of observables, .27 (M). How-
ever, in most other algebraic approaches to quantum field theory, .7 (M) is assumed,
a priori, to possess a particular topological and/or other structure (e.g., C*-algebra
structure) and the algebraic relations within ¥ (M)—together, perhaps, with spec-
ified actions of symmetry groups on 2/ (M)—are assumed to encode all of the
information about the quantum field theory under consideration. In particular,
since the state space, ./(M), is normally taken to consist of all positive linear
maps on </ (M), it is clear that .#”(M) cannot contain any information about the
quantum field theory that is not already contained in <7 (M). We shall not proceed
in this manner because it is far from clear to us what topological and other struc-
ture 7 (M) should be assumed to possess a priori in order to describe the quantum
field theory. Instead, we shall view the theory as being specified by providing both
an algebra of observables, <7 (M), and a space of allowed states, .#’(M). Essen-
tially the only information about the theory contained in the algebra of obervables,
o/ (M), will be the list of fields appearing in the theory and the relations that can
be written as polynomial expressions in the fields and their derivatives. In our
approach, the information normally encoded in the topology of 7 (M) will now
be encoded in .’(M). Of course, the semi-norms provided by .(M) could be
used, a posteriori, to define a topology on .27 (M), but it is not clear that this topol-
ogy would encode all of the information in .#(M); in any case, we find it simpler
and more natural to consider the quantum field theory to be defined by the pair
{o M), M)}.

The key idea of this paper is that we will obtain the pair {</(M),. (M)}
in a natural (i.e., functorial) manner from the space of field labels I and another
datum, namely, the collection of “operator product expansion (OPE) coefficients”.

3 This operation gives / the structure of an involutive category.
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The OPE coefficients are a family
“(M) = {cg;y'"“")(xl,...7xn;y) Dl jEL N E N}, (6)

where each C ((;.'))"'(i”) is a distribution on M1, valued in the vector bundle

E=V(iy)x - xV(in) xV(j)* = m"H! (7)

that is defined in some open neighborhood of the diagonal in M"*!. Thus, given
% (M), we will construct both the algebra .o/ (M) and the state space .7’ (M)

(M)
/ |
%(M)  dualpairing

42{(|M)

Thus, in our framework, a quantum field theory is uniquely specified by providing
a list of quantum fields I and a corresponding list of OPE coefficients 4’ (M). The
OPE coefficients will be required to satisfy certain general properties, which, in
effect, become the “axioms” of quantum field theory in curved spacetime. Most of
the remainder of this section will be devoted to formulating these axioms. How-
ever, before providing the axioms for € (M), we briefly outline how the algebra
o/ (M) and the state space .’ (M) are constructed from % (M) for any background
structure M = (M, g, T, e).

The algebra </ (M) is constructed by starting with the free algebra Free(M)
generated by all expressions of the form (])(i) (f) with i € I, and f a compactly

supported test section in the dual vector bundle to V(). We define an antilinear
*-operation on Free(M) by requiring that its action on the generators be given by

O] =0 (), (8)

where f € Sectg[V (i)] is the conjugate test section to f € Secto(V (i)). The *-
algebra o7 (M) is taken to be the resulting free *-algebra factored by a 2-sided
ideal generated by a set of polynomial relations in the fields and their derivatives.
These relations consist of certain “universal” relations that do not depend on the
particular theory under consideration (such as linearity of (i)(i) (f) in f and (anti-
)commutation relations) together with certain relations that may arise from the
OPE coefficients ¢’ (M). A precise enumeration of the relations that define </ (M)
will be given at the beginning of Sect.[3}

The state space .(M) is a subspace of the space of all linear, functionals
o : o/ (M) — C that are positive in the sense that ®(A*A) = (A*A), > 0forallA €
</ (M). This subspace is specified as follows: First, we require that for any state
o € . (M), the OPE coefficients in the collection ¢’ (M) in Eq. (6) appear in the
expansion of the expectation value of the product of fields (¢ 1) (x1)--- ¢ (") (x,,))

in terms of the fields (¢/)(y)) .

(00 0x) 00 () = T w,min) (0U0)) - O
J

[0
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Here “~” means that this equation holds in a suitably strong sense as an asymp-
totic relation in the limit that xy,...,x, — y. A precise definition of what is meant
by this asymptotic relation will be given in Eq. (39) below. Secondly, we require
that @ satisfy a microlocal spectrum condition that, in essence, states that the sin-
gularities of (¢ (x;)... 9! (x,)) e are of “positive frequency type” in the cotan-
gent space T(fcl----,xn M". The precise form of this condition will be formulated in
terms of the wave front set (22) (see Eqgs. and below).

We turn now to the formulation of the conditions that we shall impose on the
OPE coefficients 4’(M). As indicated above, in our framework, these conditions
play the role of axioms for quantum field theory. Each operator product coefficient

C((;‘))'"(i”) in ¢ (M) is a distribution*{on M"*!, valued in the vector bundle V (i) x

- X V(ip) x V(j)" that is defined in some open neighborhood of the diagonal in
M"+1. We will impose the following requirements on these coefficients:

C1) Locality and Covariance,

C2) Identity element,

C3) Compatibility with the x-operation,
C4) Commutativity/Anti-Commutativity,
CS5) Scaling Degree,

C6) Asymptotic positivity,

C7) Spectrum condition,

C8) Associativity,

C9) Analytic dependence upon the metric.

Before formulating these conditions in detail, for each i € I we define the
dimension, dim(i) € R, of the field ¢(*) byf]

dim(i) := 1 sup  sd {c@f’” } (10)
backgrounds M
where “sd” denotes the scaling degree of a distribution (see Appendix A) and it
is understood that the scaling degree is taken about a point on the diagonal. In
other words, dim(7) measures the rate at which the coefficient of the identity 1 in
the operator product expansion of ¢ (x;)¢") (x,) blows up as x; — x;. It will
follow immediately from Condition (C3) below that dim(i*) = dim(7). Note also
that dim(1) = 0.
For distributions #; and u, on M"*!, we introduce the equivalence relation

uy ~ up (11)

4 More precisely, each OPE coefficient is an equivalence class of distributions, where two
distributions are considered equivalent if their difference satisfies Eq. below for all § > 0
and all T. Indeed, the OPE coefficients are more properly thought of as a sequence of (equiv-
alence classes of) distributions, such that the difference between the n'™ and m™ terms in the
sequence satisfies Eq. for 6§ = min(m,n). However, to avoid such an extremely cumber-
some formulation of our axioms and results, we will treat each OPE coefficient as a distribution.

5 Note that, when V(i) is not equal to M x C, i.e., when q)(i) is not a scalar field, then quantities

like C((i))(i*) are, by definition, distributions taking values in a vector bundle. What we mean by
the scaling degree here and in similar equations in the following such as Eq. is the maximum

of the scaling degrees of all “components” of such a bundle-valued distribution.
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to mean that the scaling degree of the distribution ¥ = u; — u about any point on
the total diagonal is —co. However, it should be noted that in the formulation of
Condition (C8) below and in the precise definition of the operator product expan-
sion, Eq. (39), we will need to consider limits where different points approach the
total diagonal at different rates. We will then introduce a stronger notion of equiva-
lence that, in effect, requires a scaling degree of —eo under these possibly different
rates of approach. It is this stronger notion that was meant in Eq. (9) above.

(C1) Covariance Let p : M — M’ be a causality preserving isometric embedding
preserving the orientations, spin-structures, and all other background structure, i.e.
p is a morphism in the category of background structures. We postulate that for
each member of the above collection (6)), we have

(p™x+p*x p ) M)~ ) ). (12)

(C2) Identity element We require that

C((j.l))"‘m”‘(i”) (X1, s Xn3y) = C((j.l))"'(i")<ik“)'”(i”)(xl, Xk 1y Xkt 15 X3 Y)s (13)

where the identity 1 is in the k™ place. When n = 1, the condition involves the OPE
coefficient CVM () (x1,x2;y) = CW () (x1;y). This coefficient should be thought
of as describing the operator product expansion around the reference point y of
product of the field labelled by i and localized at the point x; with the identity
operator. These coefficients should hence merely implement a Taylor expansion
around y, and to express this idea, we impose the following further conditions on
those coefficients. As in a Taylor series, we demand that these coefficients depend
only polynomially on the Riemannian normal coordinates of x| relative to y (and
are thus in particular smooth), and that

) (xix) = 81)id i (x), (14)

where id ;) (x) is the identity map in the fiber over x of the vector bundle V (i). Since
a Taylor expansion of an operator at x; around another point y involves the deriva-
tives of the operators considered at y, and because derivatives tend to increase the
dimension, we further demand that C ((?) =0if dim(j) < dim(i). Finally, if we Tay-
lor expand a quantity at x| successively around a second point x;, and then a third

point x3, this should be equivalent to expanding it in one stroke around the third
point. Thus, we require that we have

€l i) = %Cé?) (x1522)C 4 (23%3), (15)

where we note that the sum is only over the (finitely many) field labels & such that
dim(k) < dim(}j).
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(C3) Compatibility with = This relation encodes the fact that the underlying theory
will have an operation analogous to the hermitian adjoint of a linear operator. The
requirement is

C((;'I))M(in)(xla cee axl’lay) ~ C((;’Q)(ll) © E(XI [ AR »xn»)’)7 (16)

where 7 is the permutation

(1 2 ... .an+1
”—<nn—1...1n+1>' a7
(C4) Commutativity/Anti-Commutativity Let ¢ be the permutation
(1 ...k k+1... n+l1
G_(l k1 kL n+1>’ (18)

and let F (i) be the Bose/Fermi parity of ¢ (). Then we have

C((;;il)-~-(6in) o G(X] s ,xn,y> = _(_1)F(ik)F(ik+l>C((;“1)).“(in) (X] PR ,Xn,y) (19)
whenever x; and x| are spacelike separated (and in the neighborhood of the
diagonal in M"*!, where the OPE coefficients are actually defined).

(C5) Scaling Degree We require that
sd {c(‘,?))“'("") } < dim(i}) + - - +dim(i,) — dim(k). (20)

(C6) Asymptotic Positivity Let i € I be any given index. Then, for D > 3 we pos-
tulate that dim(i) > 0, and that dim(¢) = 0 if and only if i = 1. Note that, because
we are taking the supremum over all spacetimes in Eq. (I0), our requirement that

dim(i) > 0 for i # 1 does not imply that the scaling degree of CE;))(i*) fori#1is
positive for all spacetimes, since the coefficient may e.g. “accidentally” happen to
have a lower scaling degree for certain spacetimes of high symmetry, as happens
for certain supersymmetric theories on Minkowski spacetime.

On a spacetime M where the scaling degree of C ((i))(i*> is dim(7), we know that if

we scale the arguments of this distribution together by a factor of A, and multiply
by a power of 4 less than 2dim(i), then the resulting family of distributions cannot
be bounded as A — 0. For our applications below, it is convenient to have a slightly
stronger property, which we now explain. Let X“ be a vector field on M locally
defined near y such that V, X? = —5[’,’ at y. Let &, be the flow of this field, which
scales points by a factor of e~ relative to y along the flow lines of X%, If f is a
compactly supported test section in V (i), we set f; = AP D .l f- This family of

test sections becomes more and more sharply peaked at y as A — 0. We postulate
that, for any 6 > 0 and any X“ as above, there exists an f such that

lim
A—0

w03 [ )y v ) fy () ) ditdis| ==, 21)
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uniformly in y in some neighborhood. This statement is slightly stronger than the
statement that the scaling degree of our distribution is dim(7) on M, since the latter
would only imply that the rescaled distributions under the limit sign in Eq. (21)
contain a subsequence that is unbounded in A for some test section F(x,x;) in
V(i) x V (i*), not necessarily of the form f(x;)f(x2).

The reason for the terminology ‘““asymptotic positivity axiom” arises from
Lemma [2] below. An alternative essentially equivalent formulation of this con-
dition, which is related to “quantum inequalities”, is given in Appendix B.

In D = 2 spacetime dimensions, the above form of the asymptotic positivity
condition is in general too restrictive. The reason is that in D = 2, there are usually
many fields ¢! of dimension dim(i) = 0 different from the identity operator. For
example, for a free Klein-Gordon field, the basic field ¢ and all its Wick-powers
have vanishing dimension—in fact, their OPE-coefficients have a logarithmic scal-
ing behavior. A
possible way to deal with this example would be to consider only composite fields
containing derivatives, as this subspace of fields is closed under the OPE. For this
subspace of fields, the asymptotic positivity condition would then hold as stated.
Another possibility is to introduce a suitably refined measure of the degree of
divergence of the OPE coefficients also taking into account logarithms. Such a
concept would clearly be sensible for free or conformal field theories in D = 2,
and it would also be adequate in perturbation theory (to arbitrary but finite orders).
A suitable refinement of the above asymptotic positivity condition could then be
defined, and all proofs given in the remainder of this paper would presumably still
hold true, with minor modifications. For simplicity, however, we will not discuss
this issue further in this paper, and we will stick with the asymptotic positivity
condition in the above form.

(C7) Spectrum condition The spectrum condition roughly says that the singulari-
ties of a field product ought to be of “positive frequency type,” and is completely
analogous the condition imposed on states that we will impose below: We demand
that, near the diagonal, the wave front set (see Appendix[A)) of the OPE coefficient
satisfies

WE(C() ") C I, (M) x 2°M, (22)
where the last factor Z*M is the zero section of T7*M and corresponds to the ref-
erence point y in the OPE, and where the set I;;(M) C T*M™\{0} is defined as
follows. Consider embedded graphs G(&,8, §) € %, in the spacetime manifold
M which have the following properties. Each graph G has n so-called “exter-
nal vertices”, xi,...,x, € M, and m so-called “internal” or “interaction vertices”
Yi,---,¥m € M. These vertices are of arbitrary valence, and are joined by edges,
e, which are null-geodesic curves 7, : (0,1) — M. It is assumed that an order-
ing of the vertices is defined, and that the ordering among the external vertices is
x1 < -+ < X, while the ordering of the remaining interaction vertices is uncon-
strained. If e is an edge joining two vertices, then s(e) (the source) and #(e) (the
target) are the two vertices ¥ (0) and 7,(1), where the curve is oriented in such a
way that it starts at the smaller vertex relative to the fixed vertex ordering. Each
edge carries a future directed, tangent parallel covector field, p., meaning that
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V. pe =0, and p, € V. With this notation set up, we define

Lim(M,g) = {(xl,kl; o3 Xn, ky) € T*M™\{0}|3 decorated graph G(&.8, ) € G

such that y; € J© ({x1,...,x, ) NI~ ({x1,...,x,}) forall 1 <i<m,
such that k; = Z Pe— Z p. for all x; and

e:s(e)=x; et(e)=x;

such that 0 = Z De — Z pe for all )’z}7 (23)

e:s(e)=y; eit(e)=y;

where J£(U) is the causal future resp. past of a set U C M, defined as the set of
points that can be reached from U via a future resp. past directed causal curve. We
set

L= Lun (24)

m>0

Note in particular that the microlocal spectrum condition implies that the depen-
dence of our OPE coefficients (6) on the reference point y is smooth. When the
spacetime is real analytic, we require a similar condition for the “analytic” wave
front set (22)) WF,4 of the OPE coefficient.

Our formulation of the microlocal spectrum condition is a weaker condition
than that previously proposed in (5), based on earlier work of (24). The microlo-
cal spectrum condition of (9)) is satisfied by the correlation functions of suitable
Hadamard states in linear field theory, but need not hold even perturbatively for
interacting fields. In essence, our formulation allows for the presence of inter-
action vertices, thus weakening the condition relative to the free field case. Our
condition can be shown to hold for perturbative interacting fields (L5).

(C8) Associativity Following (15), a notion of associativity is formulated by con-
sidering configurations (xi,...,x,) of points in M" (where n > 2) approaching a
point y € M at different rates. For example, if we have 3 points (xj,x2,x3), we
may consider all points coming close to each other at the same rate, i.e., assume
that their mutual distances are of order €, where € — 0. Alternatively, we may
consider a situation in which, say, x;,x, approach each other very fast, say, at rate
€2, while x3 approaches x;,x; at a slower rate, say at rate €. The first situation
corresponds, intuitively, to the process of performing the OPE of a triple product
of operators “at once”, while the second situation corresponds to first performing
an OPE in the factors corresponding to x, x>, and then successively performing a
second OPE between the resulting fields and the third field situated at x3. Obvi-
ously, for an arbitrary number n of points, there are many different possibilities
in which configurations can come close. We classify the different possibilities in
terms of “merger trees,” T. Each merger tree will give rise to a separate associa-
tivity condition.

For this, one constructs curves in M" parametrized by &, which are in M{)‘
(the space M™ minus all its diagonals) for € > 0, and which tend to a point on
the diagonal as € — 0. These curves are labeled by trees T that characterize the
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Fig.1 T={S0,51,...,5},5 =1{1,2,3,4}, S1 ={1,2}, S ={3,4}, S3 ={1}, Sa={2}, S5 =
{3}7 Se = {4}

Fig. 2T = {50,517,,,756},)61(8) = &v; + £2V37xz(8) = &v; + 82V4,X3(£) = €vy +
£2vs, x4(€) = evy + €%vg

subsequent mergers of the points in the configuration as € — 0. A convenient way
to formally describe a tree T (or more generally, the disjoint union of trees, a
“forest”) is by a nested set T = {Sj,...,S¢} of subsets S; C {1,...,n}. “Nested”
means that two sets are either disjoint, or one is a proper subset of the other. We
agree that the sets {1},...,{n} are always contained in the tree (or forest). Each
set S; in T represents a node of a tree, i.e., the set of vertices Vert(T) is given by
the sets in T, and S; C S; means that the node corresponding to S; can be reached
by moving downward from the node represented by S;. The root(s) of the tree(s)
correspond to the maximal elements, i.e., the sets that are not subsets of any other
set. If the set {1,...,n} € T, then there is in fact only one tree, while if there are
several maximal elements, then there are several trees in the forest, each maximal
element corresponding to the root of the respective tree. The leaves correspond to
the sets {1},...,{n}, i.e., the minimal elements. For example for a configuration of
n = 4 points, a tree might look like in the following figure, and the corresponding
nested set of subsets is also given.

In the following, we will consider only T with a single root. The desired curves
#]€) tending to the diagonal are associated with T and are constructed as follows.
First, we construct Riemannian normal coordinates around the reference point y,
so that each point in a convex normal neighborhood of y may be identified with a
tangent vector v € T,M. We then choose a tetrad and further identify 7,M =~ RP, so
that v is in fact viewed as an element in RP. With each set S € T, we now associate
a vector vg € RP, which we collect in a tuple

F= (vs,,-.-,vs,) € RO T={s),....8,}, (25)

and we agree that vy, = 0, and where |T| is the number of nodes of the tree,
i.e. the number of elements of the set T. For € > 0, we define a mapping

yr(e) : R) M RO (v, vs,) = (x5, (€), 035, (€)) (26)

by the formula

xs(e) =Y, erilyg, 27)
§':S¢S'

where depth(S') is defined as the number of nodes that connect S” with the root of
the tree T. For ¢ sufficiently small, and &in a ball B; (0)/Tl, the vectors xg(g) € RP
may be identified with points in M via the exponential map. If the vectors vg
satisfy the condition that, vy # vg for any §’,S” that are connected to a common
S by an edge, then the vector (x{11(€),...,x(,(€)) € M" does not lie on any of
the diagonals, i.e., any pair of entries are distinct from each other. Its value as
€ — 0 approaches the diagonal of M". The i point in the configuration x{,-}(s) is

obtained starting from y by following the branches of the tree towards the i leaf,
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moving along the first edge by an amount € in the direction of the corresponding
vs, then the second by an amount € in the direction of the corresponding vs, and
so forth, until the i leaf is reached. The curve (x(13(€),- -, X(ny(€)) € M" thus
represents a configuration of points which merge hierarchically according to the
structure of the tree T, as € — 0. That is, the outermost branches of the tree merge
at the highest order in &, i.e., at rate gdepthofbranch hen the next level at a lower
order, and so forth, while the branches closest to the root merge at the slowest rate,
€. The following figure illustrates our definition.

Thus, the points are scaled towards the diagonal of M", even though possibly
at different speeds, and the limiting element as € — 0 is the element (y,...,y) on
the diagona]ﬂ

Using the maps yr(€) we can define an asymptotic equivalence relation ~ g

for distributions u defined on M!l. For points within a convex normal neighbor-
hood, and sufficiently small € > 0, we can define the pull-back u o yy(€). This
may be viewed as a distribution in the variables vy € RP,S € T. We now define

urps 0 = 813&8—5”0 vr(e)=0 for § >0, (29)

in the sense of distributions defined on a neighborhood of the origin in (R”)!TI,
We write u =~ 0 if u ~p 5 0 for all T and all 8. The condition that u ~ 0 is
stronger than the previously defined condition u ~ 0 [see Eq. (I1)], which cor-
responds to the requirement that u ~p 5 0 for all & only for the trivial tree T =
{{1},...{n},{1,...,n}}.

We can now state the requirement of associativity. Recall that if T is a tree
with n leaves, then yr(€) gives a curve in the configuration space of n points in
M which represents the process of a subsequent hierarchical merger of the points
according to the structure of the tree. If a subset of points in (x;}(€), ..., X(,) (€))
merges first, then one intuitively expects that one should be able to perform the
OPE in those points first, and then subsequently perform OPE’s of the other points
in the hierarchical order represented by the tree. We will impose this as the asso-
ciativity requirement. For example, if we have 4 points, and the tree corresponds to
the nested set of subsets
T={{1,2},{3,4},{1,2,3,4} } as in the above figure, the pairs of points x;,(€),x2, (&)
respectively x(3) (€),x(4) (€) approach each other at order €2, while the two groups

6 However, if the vector (x{1}(€),...,x(,}(€)) € M" is alternatively viewed as an element of
the “Fulton-MacPherson compactification” M” of the configuration space M", then its limiting
value may be viewed alternatively as lying in the boundary dM? of the compactification, and the
vectors & may be viewed as defining a coordinate system of that boundary, which thereby has
the structure of a stratifold

oM = Jm[T), (28)
T

with each face T corresponding to a lower dimensional subspace associated with a given merger
tree (L).
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then approach each other at a slower rate €. We postulate thal[]

C({l)(iz)(i3)(i4)<

(is) xlaxZax3ax4;y) ~T,8

5
) Cg;))(iz)(xl ,X23X6) ng;““(x3,x4;x7)C((;;’))(i7) (x6,x73¥),  (30)

U657

where the sums are finite but carried out to sufficiently large order (depending
on & > 0). For the same product of operators, consider alternatively the tree T' =
{{1,2,3},

{1,2,3,4}}. The corresponding associativity relation for the OPE coefficient is
now

X1,X2,X3,X43)) ~1 5 ZC((Q;UZ)W(X17x27x3;x6)C((f:))(i“)(%ym;ﬁ

i6

C({'l)(iz)(i3)(i4)(

(is)

€19

It is important to note, however, that there is in general no simple relation between
the right hand sides of Eqs. (30), for different trees T and T'.

The corresponding relation for arbitrary numbers of points, and arbitrary types
of trees is a straightforward generalization of this case, the only challenge being
to introduce an appropriate notation to express the subsequent OPE’s. For this,
we consider maps ¢ T — I which associate with every node S € T of the tree an
element is € I, the index set labelling the fields. If S € T, we let S(1),S(2),...5(r)
be the branches of this tree, i.e. the nodes connected to S by a single upward
edge. With these notations in place, the generalization of Eqs. (30) and (3T) for
an arbitrary number n of points, and an arbitrary tree T is as follows. Let T be an
arbitrary tree on n elements, and let § > 0 be an arbitrary real number. Then we
hav

i1)...(in (ig(1))---(ig(r))
C((jl)) ( )(xla"'axn;y) ~T,8 Z (Hc<ljgl) St (x5(1>,...,x5(,);x5)>,

¢eMap(T,I) \S€T
(32)
where the sums are over ¢ with the properties that
1y =il = lny i1 0} = J- (33)

The sum over ¢ is finite, with dim(is) < A, where A is a number depending
on the tree T and the real number 8. Furthermore, it is understood that Xy =
X1y ey Xp) = Xn, and that X{1,..nt = Y-

7 Here, the distribution on the left side is viewed as a distribution in x1,...,x7,y with a trivial
dependence on x5, x6,X7.

8 Here, the distribution on the left is regarded as a distribution in xg;S € T, with a trivial
dependence on the xs with S not equal to {1},...,{n},{1,...,n}.



Axiomatic Quantum Field Theory in Curved Spacetime 19

(C9) Analytic and smooth dependence Due to requirement (C1), the OPE coeffi-
cients may be regarded as functionals of the spacetime metric. We require that the

distributions C((i'l))'"(i")
this, let g(S) be a l-parameter family of analytic metrics, depending analytically

on s € R. Then the corresponding OPE-coefficients C((j.'))"'(i">

X1,...,Xp,y that also depend on the parameter s. We demand that the dependence
on s is “analytic”. It is technically somewhat involved to define what one precisely

means by this, because C, 8.1))”'“") itself is not analytic, but instead a distribution in

the spacetime points. The appropriate way to make this definition rigorous was
provided in (16; 20). Similarly, if the spacetime is only smooth, we require a cor-
responding smooth variation of the OPE coefficients under smooth variations of
the metric.

have an analytic dependence upon the spacetime metric. For

are distributions in

3 Construction of the QFT from the OPE Coefficients

Now that we have stated in detail all the desired properties of the OPE coefficients,
we are ready to give the precise definition of quantum field theory. A quantum field
theory in curved spacetime associated with a collection of OPE coefficients satis-
fying the above properties is the pair {27 (M),.(M)} consisting of a *-algebra
/(M) and a space of states .’(M) on /(M) that is canonically defined by the
operator product coefficients, ¢’ (M), for any choice of the background spacetime
structure M. The algebra </ (M) is defined as follows. To begin, let Free(M) be
the free *-algebra generated by all expressions of the form ¢ ) (f) with i € I, and
f a compactly supported test section in the vector bundle V(i) associated with
the tensor or spinor character of ¢(!). The algebra o7 (M) is obtained by factoring
Free(M) by a set of relations, which are as follows.

Al) Identity We have ¢V (f) = [ fdu-1.

A2) Linearity For any complex numbers aj,a;, any test sections fi, f>, and any
field ¢, we have ¢ (ay fi +azfo) = 10 (f1) + a0 (f>). The linearity con-
dition might be viewed as saying that, informally,

00 (f) = /M 0 (x) £(x)du (34)

is a pointlike field that is averaged against a smooth weighting function. We shall
often use the informal pointlike fields as a notational device, with the understand-
ing that all identities are supposed to be valid after formally smearing with a test
function.

A3) Star operation For any field ¢, and any test section f € Secty(V (7)), let
f € Secto(V(i)), be the conjugate test section. Then we require that

O] =0 (F). (35)
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A4) Relations arising from the OPE Let K C I be a subset of the index set, and let
¢(i),1 € K be scalar valued differential operators [i.e., differential operators taking
a section V (i) to a scalar function on M], such that

sd{ Y (& @ j))c((j*)“f)} <0. (36)

i.jek
Then we impose the relation

0=Y o (f) (37

ick

for all f € Ci(M). Here the differential operators act in the sense of distributions,
ie., c(i)q)(i) (f) by definition means ¢(i)(c(i)'f), where ¢ means the dual of a dif-
ferential operator defined with respect to the volume element e associated with
the metric. This relation can be intuitively understood as follows. Let O(f) be the
smeared quantum field defined by the right side of Eq. (37). If we consider the
OPE of the quantity O(x;)O(x2)*, then the term involving the identity operator
will have a negative scaling degree due to (36). Above, in the asymptotic positiv-
ity requirement, we demanded that any one of our fields (P(i) except the identity
field must have a non-negative scaling degree. It is natural to extend this postulate
also to linear combinations of such fields such as O. In other words, O should
vanish if its scaling degree is negative. This is what our requirement states.

The above requirement serves to eliminate any redundancies in the field con-
tent arising e.g. from initially viewing, say, a field ¢ and L¢ as independent fields,
or from initially specifying a set of linearly dependent fields. More nontrivially,
this requirement should also serve to impose field equations in 7 (M). For exam-
ple, in A @*-theory, we expect that a field equation of the form O —m?>¢@ — 1> =
0 should hold, where @3 is a composite field in the theory that should appear
in the operator product expansion of three factors of ¢. If such a field equation
holds, then clearly (@ — m?>¢@ — A¢@> should have a trivial OPE with itself. In
particular, the OPE coefficient multiplying the identity operator in this expan-
sion should have arbitrarily low scaling degree. Thus, in this example, if we take
cy="U fmz,c(z) =—A,and ¢(1) = (p,(])(z) = ¢, then Eq. 1| should hold. Our
requirement effectively demands that field equations hold if and only if they are
implied by the OPE condition Eq. (36).

AS5) (Anti-)commutation relations Let ¢(1) and ¢2) be fields, and let f; and f>
be test sections corresponding to their respective spinor or tensor character, whose
supports are assumed to be spacelike separated. Then the relation

O ()01 () + (=) IR (£)0 1 (f1) =0 (38)

holds in &7 (M).

Having defined the algebra <7 (M), we next define the state space (M) to
consist of all those linear functionals (. ), : &/ (M) — C with the following prop-
erties:
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S1) Positivity The functional should be of positive type, meaning that (A*A)g, > 0
for each A € &7 (M). Physically, (A), is interpreted as the expectation value of the
observable A in @.

S2) OPE The operator product expansion holds as an asymptotic relation. By this
we mean more precisely the following. Let ¢(i‘),...,¢(i") be any collection of
fields, let & > 0 be arbitrary but fixed, and let T be any merger tree as described in
the associativity condition. Let ~ 5  be the associated asymptotic equality relation
between distributions of n spacetime points that are defined in a neighborhood of
the diagonal which was defined in the associativity condition [see Eq. (29]. Then
we require that

(00190 (x)) ~or TG xiy) (0V0)) L (39)
J

where the sum is carried out over all j such that dim(j) < A, where A is a number
depending upon the tree T, and the specified accuracy, 8.

S3) Spectrum condition We have
WE (00 (x1)...900) (x,))a) € I (M), (40)

where the set I,(M) C T*M"\{0} was defined above in Eq. (23). By definition,
I7 (M) = 0, so the microlocal spectrum condition says in particular that (¢ (x))
is smooth in x.

As part of our definition of a quantum field theory, we make the final require-
ment that there is at least one state, i.e.,

(M) #0 forall M. (41)

If the state space were empty, then this is a sign that the OPE is inconsistent, and
does not define a physically acceptable quantum field theory.

Remarks (1) The OPE coefficients enter the construction of the algebra o7 (M)
only via condition (A4). However, they provide a strong restriction on the
state space .¥(M) via condition (S2).

2) Ifwe M) and A € o/ (M), then @(A*-A) is a positive linear functional
on o/ (M) [i.e., satisfying (S1)] which can also be shown to satisfy (S3). This
functional can be identified with a vector state in the Hilbert space repre-
sentation of <7 (M) obtained by applying the GNS construction to @, and is
therefore in the domain of all smeared field operators. It is natural to expect
that, in a reasonable quantum field theory, the OPE [i.e. (S2)] should hold in
such states as well, but this does not appear to follow straightforwardly within
our axiomatic setting.

(3) There are some apparent redundancies in our assumptions in that commutativity/anti-

commutativity conditions have been imposed separately on the OPE coeffi-
cients and the algebra (see Conditions (C4) and (AS5)), and microlocal spec-
trum conditions have been imposed separately on the OPE coefficients and the
states (see Conditions (C7) and (S3)). It is possible that our assumptions could
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be reformulated in such a way as to eliminate these redundancies, e.g., it is
possible that Condition (A5) might follow from Condition (C4) with perhaps
somewhat stronger assumptions about states. However, we shall not pursue
these possibilities here.

The construction of the pair {2/ (M),.# (M)} obviously depends only upon
the data entering that construction, namely the set of all operator product coeffi-
cients (M), as well as the assignments i — V(i) and i — F (i) of the index set
enumerating the fields with tensor/spinor character, and with Bose/Fermi charac-
ter. Thus, any transformation on field space preserving the OPE and the Bose/Fermi
character will evidently give rise to a corresponding isomorphism between the
algebras, and a corresponding map between the state spaces. We now give a more
formal statement of this obvious fact, and then point out some applications.

Let W : M — M’, not necessarily an isometry at this stage. Furthermore, for
each pair of indices (i, j) € I x I, assume that we are given a C-linear bundle map
z%{)) from V (i), viewed as a bundle over M, to V (), viewed as a bundle over M’.
We make the following requirements about the pair (y,z): First, we require that
the following diagram commutes:

ZE?'))
40] ()
- [ (42)
M L) M
where 7y respectively m,; are the bundle projections associated with the vector
bundles V(i) and V() over M respectively M’ that characterize the spinor/tensor
character of the field labelled by i and ;.

We furthermore require that zE% =0 unless dim(j) < dim(i), and unless F (i) =
F(j). Recalling that V' (i*) is required to be equal to the hermitian conjugate bundle
V (i), and denoting by conj the operation of conjugation mapping between these
bundles, we also require as a consistency condition that

conjyy © ZEzj)) = ZEQ o Conjyp, (43)
for all indices i, j € I. We say that a collection of OPE coefficients ¥’ (M) on
M = (M,g,T,e) and a collection €' (M’) on M’ = (M',g',T',¢') are equivalent
under (z, ) if

Moy, @)
see Eq. (TT). Note that the sums are finite, since we are assuming that the number

of fields less than a fixed dimension is finite, and note that (ZV’I)EIQ denotes the

inverse matrix of dual maps between the dual bundles. As before, let 27 (M) be the
algebra and ./ (M) the state space defined from % (M), and similarly let .7/ (M’)
and ./ (M') be defined from ¢’ (M'). By simply going through the definitions it
is then clear that the following (almost trivial) lemma holds.
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Lemma 1 Under the consistency conditions and (@4), and assuming that ¥
preserves all background structure (i.e., Y is an isometric embedding preserv-
ing the causality relations, orientations, and spin structures) the map Oy ;)
o (M) i— /" (M)

Oy 0 (F) = Lo 1)) Fow ], (45)
J

defines a linear *-homomorphism. The dual map OtVW‘Z) between the corresponding
state spaces defines a map ' (M') — 7 (M).

Another way of stating this result is to view the pairs (z, ) as described above
as
morphisms in the category whose objects are the OPE-coefficient systems & (M).
The above lemma then says that the constructions of ./(M) and of .2/ (M) from
%' (M) are functorial in nature.

We now discuss some applications of the lemma:

Application 1 Consider the case where ¢’ (M) = ¢’ (M) for all M, zglj)) = 5((;.; Vi,
W : M — M’ is an isometric embedding preserving orientations and any other back-
ground structure, and Y, is the natural bundle map (push-forward) associated with
v. Then obviously holds, while holds because of the locality and covari-
ance property of the OPE coefficients. The map oy, ) : &/ (M) — .o/ (M’), whose
existence is guaranteed by the lemma, then corresponds to the map y, discussed

in the Introduction. In particular, the assignment
Background Structures — Algebras, M — o/ (M) (46)

is functorial, in the sense that if p is an arrow in the category of background
structures—i.e., an orientation and causality preserving isometric embedding from
one spacetime into another—then Y, is the corresponding arrow in the category
of *-algebras—i.e., an injective *-homomorphism. Functoriality means that the
assignment

Isometric Embeddings — Algebra Homomorphisms, p — %, 47)

respects composition of arrows in the respective categories. Thus, in the terminol-
ogy of the introduction, the assumptions of our framework define a local, covariant
quantum field theory, and all fields (])(i) are local, covariant quantum fields. Fur-
thermore, </ : M — &/ (M) is a functor in the sense of (7).

Application 2 As the second application, consider an internal symmetry, i.e., con-
sider the case that M =M’, €(M) = ¢"(M), y = id. Then ¢4 . acts upon ./ (M)
as a
*-automorphism, i.e., an internal symmetry. More generally, there could be an
entire group G. In this case, we get an action of G on 2/ (M) by *-automorphisms
0Oiq ) satisfying the composition law 0y ;) © O(iq /) = @(ig z0')- Here the compo-
sition is defined as

)y, 0 o0
(20 =25 ° iy “%)
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The sum over j is finite because we are assuming that there are only a finite num-
ber of indices up to a given dimension.

Application 3 Field redefinitions are covered by the case M = M, y = id. The
lemma then states that there is a *-homomorphism, /(M) — «7/(M’). In other
(i)

words, if we change the definition of the field by a “mixing matrix” z ; and make

a corresponding change of the OPE coefficients as in Eq. (44)), then we obtain an
equivalent theory. In renormalized perturbation theory, such changes arise natu-
rally from changes in the renormalization conditions.

Another simple consequence of our axioms is the following lemma. As above
in (C6), let X“ be a vector field on M locally defined near y such that V,X b— —Sf
at y. Let &, be the flow of this ﬁel(ﬂ which scales points relative to y by a factor
of e7*. If f is a compactly supported test section in V (i), we set f} = AP Doort
for A > 0.

Lemma 2 Fori# 1, there exists an M and test section f such that

plm lzcum(i)_é/ C(?(i*)(xl ,x2,9) /2 (X1) f2 (x2) dindpy = +oo,  (49)
A—0 MxM @

Sor all sufficiently small & > 0.

Proof Let o be an arbitrary state. Then we have (¢ (f;)0)(f;))e > 0, from
the star axiom (C3), and the positivity of any state. Let M be such that the scaling
degree of Cé;))(’ ) equals 2dim(i). By the scaling degree and asymptotic positivity
axioms (C5) and (C6), for sufficiently small & > 0, the quantity 2dim(i) — § is

bigger than the scaling degree of C((;))(i*> for any j # 1. Hence using Eq. (39) and

(1)p = 1, we have

Jim 22402 {<¢<” (fz)¢(i*)(f/1)> -y )(fm)} —0.  (50)
(0]

By Axiom (C6), we can choose f so that the second term tends to oo in abso-

lute value as A — 0. However, the first term is always non-negative. Therefore,

C (o) = e D

4 Normal (Anti-)Commutation Relations

In our axioms, we assumed that every field ¢(i) was either a Bose or Fermi field,
i.e., that there was a consistent assignment i — F (i) € Z, such that holds.
A priori, there is no relation between F (i) and the Bose/Fermi character of the
corresponding hermitian conjugate field, i.e., F(i*). We will now prove that, in
fact, F (i) = F(i*) as a consequence of our axioms.

9 Tt follows that we can write Dipen(x) =y + A~1(x—y) in a suitable coordinate system
covering y.
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Theorem 1 We have “normal (anti-)commutation relations,” in the sense that
F(i) =F(i") (5D)
foralliel

Proof Let f and h be compactly supported test sections with support in a convex
normal neighborhood of a point y € M. Let @ be a quantum state, i.e., a posi-
tive normalized linear functional .«# (M) — C. Using (33), we see that positivity
immediately implies that

(09100 (W )(F)) =0, (52)

0]

Assume now that the supports of f,h are spacelike separated. Then, using the
(anti-)
commutation relations Eq. (38), it follows that

p (0917 (e (W9 (h)) o0, (53)

NF(i )2 . .
where p = (—1)FOFE)HFE) Clearly, if we could show that the expectation
value in this expression were positive for some test sections, f, %, in some space-
time, then it would follow that p = +1, i.e.

F()F(*)+F(@*)*=0 mod 2, (54)
and by reversing the roles of i and *, it would also follow that
F())F(*)+F(@{)>=0 mod?2, (55)

from which the statement F (i) = F (i*) modulo 2 would follow. Clearly, it suffices
to show that the expectation value is asymptotically positive for a 1-parameter
family of test sections f; ,h; whose supports are scaled towards y € M as A — 0.

To show this, we consider the particular merger tree T of Fig. [I] and the
corresponding associativity condition. This tree corresponds to the scaling map

Yr(e) : £(1) — £€), with

= Exp, (8V1 + &2 V3

= Exp, (8\/2 + €%vs ,

(56)

)
Expy <8V1 +€ V4) ,
)
)

Expy (8\12 +€? V6

— Exp, (1),

6(€) = Exp, (evz) ,
Y-
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The corresponding associativity condition together with (S2) yields

e <<¢“’) (31(£))07) (x2(e)) 9" <x3<e>>¢<"><x4<e>>>

w

= Y 7V tie)male)as(e) ) (xs(e), xa():x6(€))

J15J2,03
<N (x5 (), x(€):) <¢<f3><y>> ) =0, (57)
w
This is to be understood in the sense of distributions in vy,...,vs. The sums go

over all indices with dim(j;) < A, where A depends on J. We now use Axioms
(C5) and (C6) to analyze the scaling of the individual terms under the sum. It
follows that

lim %) (x1(e), xa(£):x5(£)) €)Y (3 (8), a6

L (58)
x6(€)) CINV (x5 (€), x6(€);7) = 0
if o0 > 8dim(i) — dim(j; ) — dim(j2) — dim(3) in the sense of distributions. Thus,
the term under the sum with the potentially most singular behavior as € — 0 is
the one where dim(j;) = dim(j,) = dim(j3) is minimal, i.e. equal to 0, by Axiom
(C6). If these dimensions vanish, then by Axiom (C6), we have j; = 1.
Because (1), = 1, and because the OPE coefficients involving only identity
operators are equal to 1 by the identity axiom, we have

e—0

lim 88dim(i)+5 <<¢(l) (xl (8))¢(i*)(x2(8))¢(i*)(x3 (8))(]5(’) (X4(8))>

[0

—C (i (e)xa(e),x5(e)) Cfy) (x3(e),x4(e),x6(e)>> =0, (59)

for some & > 0. We now integrate this expression against the test section f(v3) f(v4)

h(vs)h(ve), where f, h are of compact support, and change integration variable
Then we get for the terms under the limit sign

<¢<">(fe>¢<"*)(fe>¢<"*>(fzs)¢“>(hs)> ~C e Fe ) (he.he). (60)

(O]

Here, we have defined f(x) = €72 fo o (€,x) and he (x) = e Pho o (€, x) with
a;(g,.) : M — RP are the maps that are defined in a sufficiently small neighbor-
hood of y by

ai(e,x) = & v+ & Bxp; ' (x), (61)
o (e,x) = &'y + £ 2Exp; ! (x). (62)

10" We should also integrate against a test function in v, v,. But the result is already
smooth in these variables, so we can omit this smearing.
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(D)

. )
(fe, fe) — oo and C((;))(l )(he,he) — +oo for some spacetime and some subse-
quence of € — 0. In view of Eq. (60), it follows that

Finally, we use the Lemmato conclude that there exist f, 4 such that both C

tim (9(fe)0 ™) (70)9" (he)0 " (he)) =+, (©3)
so the expectation value (53)) is positive for the choice of test sections f, i given by
fe,he, see Eq. (61), for sufficiently small €. These test sections will have spacelike
separated support as long as Exp,v; and Exp,v; are spacelike, which we may
assume to be the case. O '

5 The Spin-statistics Theorem and the PCT-theorem

In this section, we prove that appropriate versions of the spin-statistics theorem
and the PCT theorem hold in curved spacetime under our axiom scheme. We
explicitly discuss the case when the spacetime dimension is even, D = 2m and
discuss the case of odd dimensions briefly in Remark 2 below the PCT theorem.
The key ingredient in both proofs is a relation, proven in (16)), between the OPE
coefficients %' (M) on the background structure M = (M, g,T,e), and the OPE
coefficients ¢’ (M) on the background structure

M= (M,g,~T,e) (64)
consisting of the same manifold M, the same metric g, the same orientation e,

but the opposite time orientation 7. For even spacetime dimensions D = 2m, this
relation ig' !}

W 171:(])(_1)7(-/(]) szl iF(ik)(_l)U(ik) m even,
i—F)+U)—P()) T, iF i) =UG)+P() 1 0dd,

(65)

where i = v/—1. Here, we recall that with each quantum field ¢V there is asso-
ciated a bundle V(i) over M corresponding to the tensor or spinor character of
the quantum field. In even spacetime dimensions D = 2m, such a bundle V (i) is a
tensor product

V(i) =52V g 520, (66)

where the first factor corresponds to the U (i) “unprimed-" and the second to the
P(i) “primed” spinor indices. More precisely, the bundles S. are defined as the
+1 eigenspaces of the chirality operato@

1

— H(_1)(m—1)(2m—1)/2 etl1a2».111),ya1 Yar - Yap» 1—~2 _ ids, (67)

1" Note that the “bar” symbol is referring to the PT-reversed background structure in the term
on the left side, while it means hermitian conjugation on the right side.
12 Here, the orientation D-form is normalized so that g1 ... g@bp €q,..apb,..bp = —D!.
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acting on a 2"-dimensional complex vector bundle S over M of “Dirac spinors”.
This bundle S corresponds to a fundamental representation of the Clifford algebra
(in the tangent bundle) generated by the curved space gamma-matrices },. There
exists a linear isomorphism ¢ : S — S, where S is the conjugate bundle of anti-linear
maps S¥ — C. Owing to the relation I" = (—1)"~!c¢I" ¢!, it follows that for even
m, the bundles S+ and §¢ are isomorphic via ¢, while for odd m the bundles S+
and Sy are isomorphic, and we will hence always identify these bundles. Thus,
for even m the roles of primed and unprimed spinor indices [i.e., respective tensor
factors in Eq. (66)] are exchanged when passing to the hermitian adjoint o) of a
quantum field ¢ (), while for odd m the roles are not exchanged.

We also note that the coefficients on the right side of Eq. (63) are sections
in the (tensor product of the) spin bundles Vi (i) referring to the time function 7
associated with M, while the coefficients on the left side are sections in the spinor
bundles Vg;(i*) defined via the opposite time orientation —7T associated with M.
As explained in (16)), there is a natural identification map between these bundles,
and this identification map is understood in (63)).

The proof of (63) makes use of the microlocal, analytical, and causal properties
of the OPE coefficients and proceeds via analytic continuation (16)). Since it is the
main input in the proofs of both the spin-statistics theorem and the PCT theorem,
we now outline, following (16), how (63) is proven within our axiomatic setting.
We first consider the case where g is analytic. Let y € M and introduce Riemannian
normal coordinates x = (x%,...,x”~1) € RP about y. In this neighborhood of y,
consider the 1-parameter family of metrics g*) for all |s| < 1 defined by

¢ = gy (sx) dxtdx. (68)

Note that this family, in effect, interpolates between the given metric g = g“) and
the flat Minkowski metric 1 = g(®). We can expand g*) in a power series in s
about s = 0, which takes the form

g =My + X 5" Puvpy o, (1) 3P xPr2, (69)
n=2

where each p is a curvature polynomial p(y) = p[Ruvep(y),---, V(g ---V%iz))

Ryvop (¥)]. It can then be shown, using Axiom (C1), that each OPE coefficient has
an asymptotic expansion of the form

ey, ) = k;()‘lk()’) W) ), (70)

where g = (k) y, .., is @ curvature polynomial of the same general form as the
p, and where Wy, = (W )"+« are distributions defined on a neighborhood of 0
in (RP)", valued in the tensor product of (RP)®¥ with the spinor representa-
tion corresponding to the index structure of the quantum fields in the operator
product considered. They transform covariantly under the connected component
Sping (D — 1, 1) of the spin group of D-dimensional Minkowski space.

Consider now the map p defined in a suitable convex normal neighborhood,
O, of yby (x%,..., 2P~ 1) — (=x%,..., —xP~1). In Minkowski spacetime, this map



Axiomatic Quantum Field Theory in Curved Spacetime 29

would define an isometry which preserves spacetime orientation but reverses time
orientation. In a general curved spacetime, this map does not define an isometry.
Nevertheless, we may view p as a map

p:(0,8¥,e,T) — (0,87,e,~T). (71)

Viewed in this manner, it is easily seen that p preserves all background structure,
i.e., it is a causality preserving isometry that preserves orientations. Consequently,
by the covariance axiom (Cl), the relation (63) is equivalent to a correspond-
ing relation between the OPE-coefficients on the spacetimes (M ,g(s),e,T) and
(M ,g(">,e,T), i.e., spacetimes with different metrics but the same orientation
and time orientation. If one now differentiates this relation m-times with respect
to s and puts s = O afterwards, then one can prove that (63)) is equivalent to the
relation

Wk(xl,.. . ,xn) =

i“FD(—)-Uv e iF ) (— 1)V @R
x i (=1 [T, i7" (=1) m even,
(=D T Wil =xn,..., —x1) - {i—F(j)—U(j)+P(/) [T, iF - VEHPa) o odd,

(72)

forallk=0,1,2,.... Here, 7 is the permutation (I7), which acts by permuting the
implicit spinor/indices associated with the spacetime points x;.

We have thus reduced the proof of (63) to the proof of a statement about
Minkowski distributions W, that transform covariantly under Sping(D — 1, 1)o.
To prove it, one next shows that W; can be analytically continued, and that the
analytic continuation transforms covariantly under the connected component of
the identity in the complexified spin group Sping(D — 1,1)¢. For this, one first
proves, using the microlocal condition on the OPE-coefficients, that, near O, the
analytic wave front set (22), WFy4, of W, satisfies

WF4 (W) C K. (73)

Here, K is a conic set defined in terms of the Minkowskian metric 1) and orienta-
tione, T, by

K = {(yl,kl;...;yn,k,,) eT*(x"B,)\{0} ‘ dpijeVin>j>i>1:

ki=Y pij— Y pji foralli}, (714)

Jij>i Jij<i

where V™ is the closure of the forward light cone V™ in Minkowski space (defined
with respect to the time orientation 7T'),

VE={keR? | nu kMK >0, K'V,T >0}. (75)

The relation is important because a theorem of (22) now guarantees that W
is the distributional boundary value

Wi(xt,...,x) = B.V.  Wi(xy +iy1,..., X, +iya) (76)
(V15-yn) EKY—0
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of a holomorphic function W (zy,...,z,) that is defined in the “half-space”
Wi :B,(0)"+iK¥ — C, somer >0, (77)

where B, (0) is a ball of radius r in R, where K" is the “dual cone” of all covectors
(V1,---,yn) € (RP)" with the property that Y k; -y; > 0 for all (ky,...,k,) € K.
Using the “edge of the wedge-theorem” (27)), one proves that the holomorphic
function W (zi,...,z,) transforms covariantly under the spin group Sping (D —
1,1)p. As explained in more detail in (16), one can use this in turn to prove the
desired relation (72):

For D = 2m and m even, we consider the chirality element I'" in Eq. in
flat space, which is an element of the connected component of the identity of the
complexified spin group Sping(D — 1, 1)o. It corresponds to the reflection element
p:RP — RP x i+ —x of the complexified Lorentz group SO(D — 1,1;C) under
the standard covering homomorphism between these groups. This is an imme-
diate consequence of the relation I'y,I"~! = —7,. Using the method of analytic
continuation in overlapping patches, it can be shown that W, may be continued to
a single valued analytic function on an extension of the domain in Eq. (77), and it
can be shown that this continuation transforms covariantly under I". As explained
above, I'" acts as +ids, on each tensor factor corresponding to a primed spinor
index, and as —ids_ on each tensor factor associated with an unprimed spinor
index. Therefore, if we apply the transformation law of W; under the element I,
then we obtain relation for complex spacetime arguments, except that the
order of the complex spacetime arguments zi,...,2, is reversed, and except for
the factors relating to the Bose-Fermi character of the fields involved. In order to
be able to take the limit Imz; — O from within KV, we must pass to so-called “Jost
points” (zy,. ..,z ) in the extended domain of holomorphicity. For such points, the
(anti-)commutativity may be used, effectively allowing to permute the spacetime
arguments in W, in such a way that one can take the limit to real points from within
K" as required in Eq. afterwards. When permuting the arguments, we pick up
the factors related to the Bose/Fermi character of the fields.

For D = 2m and m odd, we consider instead the element il of the connected
component of the identity of the complexified spin group Sping(D — 1, 1)g. This
element again covers the reflection p (x) = —x on D-dimensional Minkowski space.
It acts as +iidg, on each tensor factor corresponding to a primed spinor index, and
as —iids_ on each tensor factor associated with an unprimed spinor index. Again
it can be shown that W, may be continued analytically to a domain extending that
in Eq. (77), and that it transforms covariantly under iI" on the extended domain.
The additional factor of i gives rise to the different factors in Eq. compared
to the case when m is even. The rest of the argument is identical to that case.

This proves the PCT-relation (63)) for analytic spacetimes, and even dimen-
sions
D = 2m. The validity of the corresponding relation for smooth spacetimes then
follows from the smoothness of the OPE-coefficients under smooth variations of
the metric, since any smooth metric can be viewed as the limiting member of a
smooth 1-parameter family of metrics g*) that are analytic for A > 0 and smooth
for A = 0. The differences in the statement and proof of the PCT-relation (63)) for
odd spacetime dimension D are described in Remark 2 below, following the proof
of the PCT-Theorem.
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We now are ready to state and prove the spin-statistics theorem within our
framework. The statement and proof of this theorem closely parallel the Minkowski
spacetime version:

Theorem 2 (Spin-Statistics Theorem). If our axioms hold, then the spin statistics
relation

F(i)=U(®i)+P(i) mod?2, (78)

also holds, i.e. fields with integer spin (= one half the number of primed + unprimed
spinor indices) have Bose statistics, while fields of half integer spin have Fermi
statistics.

Proof Let i € I, and, as above, we restrict consideration to the even dimensional

case D = 2m. Consider the PCT-relation (63)) for the OPE-coefficient Céi))(i*). This
condition can be written as
) g SF(D)+F (%) (_1\U*)+U(i)
(H)(i*) (*)(0) . i (=1 m even,
C(ll) i (xl ,x27y)M ~ C(ll) U (XZ;)CI ’y)m {iF(i)+U(i)P(i)+F(i*)+U(i*)P(i*) m Odd,

(79)

where we have used the hermitian conjugation axiom, and where we have used that
F (1) = 0 since the identity is always a Bose field, by the identity axiom. When m
is even, then U (i*) = P(i) because conjugation of a spinor exchanges the number
of primed and unprimed indices. Furthermore, F (i) = F(i*) by Theorem[] so we
obtain

C((;))(l >(x1 ;x2;y)M ~ (_ 1)F(i)+U(i)+P(i)C((;))<l) (x27x1 9y)ﬁ (80)
When m is odd, U(#*) = U(i) and P(i*) = P(i), because conjugation of a spinor
does not change the number of primed and unprimed spinor indices in that case.
Using this, we again obtain the expression Eq. when m is odd.
We now smear this expression with the test section f3 (x1)f;, (x2), where

L&) =2 fy+A" (x—y)). (81)

We are taking here an f of compact support in a sufficiently small neighborhood of
y covered by some coordinate system, and y+A~! (x —y) is computed in this arbi-
trary coordinate system. Furthermore, by Lemma 2] we may assume that Eq. (#9)
is satisfied for this choice for all sufficiently small § > 0. Denote by dim(i) the
dimension of the field labeled by i. It then follows from Eq. (80) that

2,2dim()=8 / i e, x033)m £ (61) o (x2) dpndpss
_ pA2dim(i)=8 /C((;*))(i) (x2,213)w51 f2 (¥1) f (x2) dpdi, — 0 (82)

as A — 0, for all sufficiently small § > 0 where p = (—1)F)+TV@O+P()_ The first
term goes to +oo by Lemma [2} and hence the second term must be unbounded,
too. In fact, arguing as in the proof of Lemma [2| (now for M), the second term
goes to —p - o0, The two terms can only cancel for small A if we have p = +1,
meaning that F (i) + P(i) + U (i) = 0 modulo 2. Hence the spin-statistics relation
must hold. O
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Next, we state and prove the PCT theorem, the formulation of which is quite
different from the Minkowski spacetime version (see the discussion below). Again,
we restrict consideration here to D = 2m, and describe the differences occurring
in odd dimensions in Remark 2 below:

Theorem 3 (PCT-Theorem). Given a background structure M = (M, g,e,T), we
write M = (M, g,e,—T). In spacetime dimension D = 2m, define the anti-linear
map 6T : o/ (M) — o/ (M) by

. . F()(_1\U®) :
PCT . (i) (W), mx ) IT(=1) when m is even,
O O (f) = 0y ()" {iF(i)+U(i)—P(i) when m is odd. (83)
Then Glf,ICT is an anti-linear *-isomorphism such that the diagram
gPCT o
xp l l%p (84)
9P9T —
d M) M (M)
as well as the diagram
— GP(/:TV
X l lx,! (85)
GNPICTV

SM) —— (M)

commute for every isometric, causality and orientation preserving embedding p :
M — M'. Here Xp denotes the dual of the linear map ¥, and OFCTY denotes the

dual of 8PCT.

Proof The proof of this theorem is, in essence, an application of lemmal[l] In the
notation of lemma (1, we choose M = (M, g,e,T), we choose M’ = M, we take

v = id and we choose zg?) = 5((]’:;) V() where y{;) is the natural anti-linear bundle
map from Vi (/) to Vgz(j*) that is implicit in the formula (§3)), composed with the
multiplication map by i ) (—1)V() when m is even and by i () +U()—=P()
is odd. From this definition we then have

when m

—1)FO/24+F()/2+U(0)-U () “Y(ryoconjy  meven,

conjygo W) = {iF(i)+F(i*)U(i)U(i*)+P(i)+P(i*) Wy oconjyy  m odd,

(86)

where con jy is the anti-linear map that sends a spinor to the hermitian conjugate
spinor on M. Now for even m the number of unprimed spinor indices associated
with V(i) is precisely equal to the number of primed indices P(i*) associated with
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V (i*), because V (i*) is assumed to be equal to V (i). Thus, P(i) = U (i*). Further-
more, we have F (i) = F(i*) by Theorem[l] and F (i) = U (i) + P(i) mod 2 by the
spin-statistics theorem. Consequently, when m is even we have shown

CONjyg © YW(i) = Y(j+) © CONjyy- (87)
This immediately implies the required compatibility condition @3] required for
lemmal(l] When m is odd, then U (i) = U (i*) and P(i) = P(i*), and the compatibil-
ity condition again holds because of F (i) = F(i*) and the spin-statistics theorem.
Thus, we have shown that the first input in lemma [1| holds. The second input is
the compatibility of the OPE coefficients on M and M, Eq. (#4)). That condition
is essentially equivalent to the relation (63]), except that the latter relation also
involves an additional complex conjugation of the OPE-coefficient. However it is
immediately seen that this will result only in the following difference in the con-
clusion of lemma Instead of the linear
*-homomorphism as provided by this lemma, we now find that the PCT-map §F¢T
defined by Eq. (83) yields an anti-linear *-homomophism. O

Remarks (1) The above formulation of the PCT-theorem was suggested in (16).
As noted in (9) the theorem can be stated in the language of functors by saying
that the functors M — ./ (M) and M — .o/ (M) = ./ (M) are equivalent.

(2) In odd spacetime dimensions D = 2m+- 1, the chirality operator I'" of Eq.
is proportional to the identity in S. Thus, in this case there is no decomposi-
tion S =S, &S_ as in the even dimensional case, and there is consequently no
difference between “primed” and “unprimed” spinors. If we denote the num-
ber of spinor indices of a quantum field by N(i) (i.e., the bundle associated
with the label i of the field is V (i) = S®N()), then the factors in formula (63)
are now i~ FU)~NUTTif W +NGi)  In the proof of this formula, one must now
consider the map p : (x*,x!,... . xP1) = (—=x0, —x!, ... 4xP~1). This corre-
sponds again to a change of time orientation in Minkowski spacetime which
leaves the spacetime orientation invariant. The rest of the proof is similar.

We now explain the relation of the above formulation of the PCT theorem to
the usual PCT theorem in Minkowski spacetime (see e.g. (27)). Changing 7 — —T
while keeping e unchanged is equivalent to changing parity (i.e., the spatial orien-
tation s of a Cauchy surface X induced by e and T via dT A s = ¢) and time (i.e.,
the time function). Furthermore, the field appearing on the right side of Eq. (83) is

usually referred to as the “charge conjugate field” to (Pl&) (f)- Thus our formulation
of the PCT theorem asserts that the theory is indeed invariant under simultaneous
PCT-reversal in the sense that the theory on M is “the same” as the theory on M
with the fields replaced by their charge conjugates. However, note that our PCT
theorem relates theories on the two different background structures, M and M. By
contrast, the usual PCT theorem in Minkowski spacetime provides a symmetry of
the theory defined on a single background structure, namely Minkowski spacetime
with a fixed choice of orientation and time orientation. Indeed, the usual formu-
lation of the PCT theorem in Minkowski spacetime asserts the existence of an
anti-unitary operator ® : 77 — ¢ on the Hilbert space, .77, of physical states
such that, if p denotes the isometry on the, say, even-dimensional Minkowski
spacetime defined by

p:(xo,xl,...,fol)H(fxo,fxl,...,ffol), (83)



34 S. Hollands, R. M. Wald

and if ¢€ is the charge conjugate field associated with ¢ defined by Eq. (83)), then
Ade¢(p(x)) = O (p(x)O = ¢ (x).

The relationship between these formulations can be seen as follows. Start with
our formulation of the PCT theorem. The isometry p maps Minkowski spacetime
M = (RP,n,e,T) with a given choice of orientation e and time orientation T, to
M = (RP,n,e,—T). Thus, by “Application 1” of Lemma we know that there is
a *-homomorphism J, : &/ (M) — </ (M) mapping the quantum fields ¢n(f) on
M to the “same” quantum fields ¢y;(p;(f)) on M. Thus, if we define

Adg =7, o6y ', (89)

we obtain a result that is essentially equivalent to the usual Minkowski version
(as suitably reformulated in an algebraic setting). Conversely, if we start with the
usual formulation of the PCT theorem and if we define quantum field theory on

</ (M) in terms of quantum field theory on M by means of the map Y, then we
obtain a version essentially equivalent to our formulation by setting

OiCT = xp 0 Ade. (90)

Although the above formulations are essentially equivalent in Minkowski space-
time, in a general spacetime, there does not exist any discrete isometry analogous
to p. Thus, in general we only have a PCT theorem describing the relation between
the theory defined on different backgrounds M and M. Of course in the case of a
spacetime that admits an isometry p mapping (e,T) to (e,—T) (as occurs, e.g.
in Schwarzschild and deSitter spacetimes), then a “same background structure”
version of the PCT theorem can be given via Eq. (89).

The example of a Robertson-Walker spacetime

g = —dr* +a(r)*dx-dx (91)

with a(t) a strictly increasing function of #, may be useful for clarifying the physi-
cal meaning of our formulation of the PCT theorem in a general curved spacetime.
If we choose the time orientation 7 =t, then the above metric describes an expand-
ing universe, while if we take T = —t¢, it describes a corresponding contracting
universe (with opposite choice of spatial orientation since we keep e fixed). In
essence, our formulation of the PCT theorem relates phenomena/processes occur-
ing in the expanding universe Eq. to corresponding processes (involving the
charge conjugate fields and also a reversal of parity) in the corresponding contract-
ing universe. Since the metric Eq. (91)) has no time reflection isometry p, there are
no relations implied by the PCT theorem between phenomena/processes occurring
in the expanding universe, Eq. with T =t. As a concrete illustration of this,
suppose that it were possible to give a definition of “particle masses” in curved
spacetime—although it is far from obvious that any such useful notion exists. The
PCT theorem would then imply that the mass of a particle in an expanding uni-
verse must be equal to the mass of the corresponding antiparticle in a contracting
universe. However, it would make no statement about the masses of particles and
antiparticles in the same univers

13 It is worth noting that the “third Sakharov necessary condition” for baryogenesis in the early
universe (namely, “interactions out of thermal equilibrium”) is based upon the (now seen to be
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6 Conclusions and Outlook

In this paper we have proposed a new axiomatic framework for quantum field the-
ory on curved spacetime. We demonstrated that our new framework captures much
of the same content as the Wightman axioms by proving curved spacetime analogs
of the spin-
statistics theorem and PCT theorem. In this section, we discuss some of the impli-
cations and potential ramifications of the viewpoint suggested by this new frame-
work.

First, we address the issue of why we even seek an axiomatic framework for
quantum field theory in curved spacetime at all. Since gravity is being treated
classically, quantum field theory in curved spacetime cannot be a fundamental
theory of nature, i.e., it must have a limited domain of validity. In particular, we
have focused considerable attention in this paper on the OPE of quantum fields in
curved spacetime, but the OPE is a statement about the arbitrarily-short-distance
singularity structure of products of fields. One would not expect that quantum
field theory in curved spacetime would give an accurate description of nature at
separations smaller than, say, the Planck scale. Consequently, why should one
seek a set of mathematically consistent rules governing quantum field theory that
are rigorously applicable only in a regime where the theory is not expected to be
valid?

Our response to this question is that an exactly similar situation arises for clas-
sical field theory. Classical field theory also is not a fundamental theory of nature,
and its description of nature makes essential use of differentiability/smoothness
properties of the classical fields at short distance scales; one could not even write
down the partial differential equations governing the evolution of classical fields
without such short-distance-scale assumptions. However, if quantum field theory
is any guide, the description of physical fields as smooth tensor fields is drasti-
cally wrong at short distance scales. Nevertheless, classical field theory has been
found to give a very accurate description of nature within its domain of validity,
and we have obtained a great deal of insight into nature by obtaining a mathe-
matically precise formulation of classical field theory. It is our belief that there
exists a mathematically consistent framework for quantum field theory in curved
spacetime, and that by obtaining and studying this framework, we will not only
get an accurate description of nature within the domain of validity of this theory,
but we will also get important insights and clues concerning the nature of quantum
gravity.

We began our quest for the mathematical framework of quantum field theory in
curved spacetime by seeking to generalize the Wightman axioms to curved space-
time in as conservative a manner as possible. As described much more fully in
the Introduction, there are three key ingredients of the Wightman axioms that do
not generalize straightforwardly to curved spacetime: (1) Poincaré invariance; (2)
the spectrum condition; (3) existence of a Poincaré invariant state. We have seen

unjustified) assumption that particle and antiparticle masses are equal in an expanding universe.
However, to the extent that particle and antiparticle masses might differ in an expanding universe
(even assuming that a useful notion of “particle mass” can be defined) as a result of the lack of a
time reflection symmetry, it would probably not even be possible to define a notion of “thermal
equilibrium” as a result of the lack of a time translation symmetry.
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in this paper that quantum field theory can be generalized to curved spacetime
by replacing these ingredients by the following: (1°) quantum fields are locally
and covariantly defined; (2”) the microlocal spectrum condition; (3’) existence of
an OPE. Although the formulation of conditions (1°) and (2”) differs significantly
from the formulation of conditions (1) and (2), the basic content of these con-
ditions is essentially the same. Indeed, there would be no essential difference in
the formulation of axiomatic quantum field theory in Minkowski spacetime if one
replaced (1) and (2) with (1’) and (2’). By contrast, as we shall elucidate further
below, the replacement of (3) by (3”) leads to a radically different viewpoint on
quantum field theory.

The most important aspect of this difference is that the existence of a “pre-
ferred state” no longer plays any role in the formulation of the theory. States are
inherently non-local in character, and the replacement of (3) by (3’)—along with
the replacements of (1) with (1”) and (2) with (2’)—yields a formulation of quan-
tum field theory that is entirely local in nature. In this way, the formulation of
quantum field theory becomes much more analogous to the formulation of clas-
sical field theory. Indeed, one can view a classical field theory as being specified
by providing the list of fields ¢(i> occuring in the theory and the list of local, par-
tial differential relations satisfied by these fields. Solutions to the classical field
theory are then sections of the appropriate vector bundles that satisfy the partial
differential relations as well as regularity conditions (e.g., smoothness). Similarly,
in our framework, a quantum field theory is specified by providing the list of fields
q)(i) occurring in the theory and the list of local, OPE relations satisfied by these
fields. Thus, the OPE relations play a role completely analogous to the role of
field equations in classical field theory. States—which are the analogs of solu-
tions in classical field theory—are positive linear maps on the algebra .7’ defined
in Sect. [3] that satisfy the OPE relations as well as regularity conditions (in this
case, the microlocal spectrum condition). We note that in classical field theory,
the field equations always manifest all of the symmetries of the theory, even in
cases where there are no solutions that manifest these symmetries. Similarly, in
our formulation of quantum field theory, the OPE relations that define the theory
should always respect the symmetries of the theory (30), even if no states happen
to respect these symmetries.

Our viewpoint on quantum field theory is more restrictive than standard view-
points in that we require the existence of an OPE. On the other hand, it is less
restrictive in that we do not require the existence of a ground state. This latter
point is best illustrated by considering a free Klein-Gordon field ¢ in Minkowski
spacetime

(O—m?)p =0, 92)

where the mass term, m2, is allowed to be positive, zero, or negative. In the stan-
dard viewpoint, a quantum field theory of the free Klein-Gordon field does not
exist in any dimension when m? < 0 and does not exist in D = 2 when m? = 0
on account of the non-existence of a Poincaré invariant state. However, there is no
difficulty in specifying OPE relations that satisfy our axioms for all values of m?>
and all D > 2. In particular, for D = 4 we can choose the OPE-coefficient C of the
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identity in the OPE of ¢(x;)@(x,) to be given by
C(x1,x2;y) =

1 1 2 .12 2 2 2 . 2 2 2

where Ax? = (x; —x2)? and t = x — x). Here i is an arbitrarily chosen mass scale
and j(z) = ﬁJ 1(iy/z) is an analytic function of z, where J; denotes the Bessel
function of order 1. Furthermore, A(z) is the analytic function defined by

h(z) =—-m i (Wk+1)+ y(k+2)] k‘(z/4)k (94)
k=0 :

(k+1)!"

with y the psi-function. This formula for the OPE coefficient—as well as the
corresponding formulas for all of the other OPE coefficients—is as well defined
for negative m? as for positive m?. Existence of states satisfying all of the OPE
relations for negative m> can be proven by the deformation argument of (12),
using the fact that such states exist for positive m?.

Although, in our framework, the Klein-Gordon field with negative m?> now
joins the ranks of legitimate quantum field theories, this theory is not physically
viable because, in all states, field quantities will grow exponentially in time'*| The
potential importance of the above example is that it explicitly demonstrates that
the local OPE coefficients can have a much more regular behavior under variations
of the parameters of the theory as compared with state-dependent quantities, such
as vacuum expectation values. The OPE coefficients in the above example are
analytic in m?. On the other hand, the 2-point function of the global vacuum state
is, of course, defined only for m? > 0 and is given by

(Olp(x1)@(x2)[0) =
1

P (M +m? jim>Ax*] log[m?(Ax* +i01)] +m2h[m2Ax2]> . (95)
This behaves non-analytically in m? at m> = 0 on account of the logm? term.
In other words, in free Klein-Gordon theory, vacuum expectation values cannot
be constructed perturbatively by expanding about m?> = 0—as should be expected,
since no vacuum state exists for m? < O—but there is no difficulty in perturbatively
constructing the OPE coefficients by expanding about m?> = 0.

The above considerations raise the possibility that the well known failure of
convergence of perturbation series in interacting quantum field theory may be due
to the non-analytic dependence of states on the parameters of the theory, rather
than any non-analytic dependence of the fields themselves, i.e., that the OPE coef-
ficients may vary analytically with the parameters of the theory. In other words,

14 In this respect, the quantum field of the Klein-Gordon field with negative m? behaves very
similarly to the corresponding classical theory. The classical Klein-Gordon field with nega-
tive m? has a well posed initial value formulation and causal propagation (despite frequently
expressed claims to the contrary). However, the classical Klein-Gordon field with negative m?
is not physically viable since it is unstable, i.e., it admits solutions that grow exponentially with
time.
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we are suggesting the possibility that the perturbation series for OPE coefficients
may converge, and, thus, that, within our framework, it may be possible to pertur-
batively construclE] interacting quantum field theories. In order to do so, it will
be necessary to define the basis fields gb(i) appropriately (see below and (18))
and also to parametrize the theory appropriately (since a theory with an ana-
Iytic dependence on a parameter could always be made to appear non-analytic
by a non-analytic reparametrization). Aside from the free Klein-Gordon example
above, the only evidence we have in favor of convergence of perturbative expan-
sions for OPE coefficients is the example of super-renormalizable theories, such
as 7L(p4-theory in two spacetime dimensions (17). Here, only finitely many terms
in a perturbative expansion can contribute to any OPE coefficient up to any given
scaling degree, so convergence (up to any given scaling degree) is trivial. By con-
trast, for A@*-theory in two spacetime dimensions, the rigorously constructed,
non-perturbative ground state n-point functions can be proven to be non-analytic
at A =0 (29).

In cases—such as free Klein-Gordon theory above—where the OPE coeffi-
cients can be chosen to be analytic in the parameters of the theory, it seems natural
to require that the theory be defined so that this analytic dependence holds. This
requirement has some potentially major ramifications. Since vacuum expectation
values of a product of fields (i.e., a correlation function) would be expected to
have a non-analytic dependence on the parameters of the theory, it follows that
if the OPE coefficients have an analytic dependence on these parameters, then,
even in Minkowski spacetime, some of the fields appearing on the right side of
the OPE of a product of fields must acquire a nonvanishing vacuum expectation
value, at least for some values of the parameters. This point is well illustrated by
the above Klein-Gordon example. It is natural to identify the next term in the OPE
of @(x1)@(x2) [i.e., the term beyond the identity term, whose coefficient is given
by Eq. (93)] as being @ (with unit coefficient), i.e.,

P(x1)P(x2) ~ Clx1,2x2:9) 1+ @* () + ... (96)

This corresponds to the usual “point-splitting” definition of @2, except that C(x,x2;)
now replace<0|(p(x1 )@©(x2)|0). If we take the vacuum expectation value of this
formula (for m= > 0, when a vacuum state exists) and compare it with Eq. (©93),
we obtain

2
1672

(0l9*(y)|0) = log(m®/u?). 97)

15 However, we are not suggesting that it should be possible to perturbatively construct states
of the theory. Even if one had the complete list of OPE coefficients, it would not be obvious how
to construct states.

16 The point-split expression using (0| (x;)@(x2)|0) yields the “normal ordered” quantity :
@? .. From the point of view of quantum field theory in curved spacetime it is much more
natural to define @2 via Eq. (@) than by normal ordering, since there is no generalization of
normal ordering to curved spacetime that is compatible with a local and covariant definition of
@? (19). Indeed, it follows from the results of (19) that Eq. (96) is the unique way to define
@?* compatible with desired properties, with the only ambiguities in the definition of @ arising
from different allowed choices of C(xy,x3;Y). These correspond to a field redefinition of @> by
addition of a multiple of the identity.
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Thus, we cannot set (0|¢?|0) = 0 for all values of m?. A similar calculation for
the stress-energy tensor of @ yields
m
(O1Tup(1)10) = 5 108 (m® /14%) . %)
T

As in other approaches, the freedom to choose the arbitrary mass scale u in
Eq. (93) gives rise to a freedom to choose the value of the “cosmological con-
stant term” in Eq. (98). However, unlike other approaches, there is no freedom
to adjust the value of the cosmological constant when m?> = 0 (i.e., we unam-
biguously obtain (0|7,,|0) = 0 in Minkowski spacetime in that case), and the
m?-dependence of the cosmological constant is fixed (since y is not allowed to
depend upon m?).

A much more interesting possibility arises for interacting field theories, such
as non-abelian gauge theories. In such theories, it is expected that there are “non-
perturbative effects” that vary with the coupling parameter g as exp(—1/g?). Such
non-perturbative effects can potentially be very small compared with the natural
scales appearing in the theory. If such non-perturbative terms occur the vacuum
expectation values of products of fields and if—as we have speculated above—
the OPE coefficients have an analytic dependence on the coupling parameter, then
composite fields—such as the stress-energy tensor—must acquire nonvanishing
vacuum expectation values that vary as exp(—1/g?). This possibility appears wor-
thy of further investigation.

Acknowledgements This research was supported in part by NSF Grant PHY04-56619 to the
University of Chicago.

A Definition of the Scaling Degree and Wave Front Set of a Distribution

In this Appendix, we recall the notion of scaling degree and of the wave front set of a distribution,
which play an important role in the body of the paper. Quite generally, let u be a distribution
on R”. We say that u has scaling degree d at x = 0, if d is the smallest real number such that
Adu(fy) — 0 as A — 0+, for all § > d. Here, f;(x) = A"f(A~'x) denotes the function of
compact support that is obtained by rescaling a smooth test function f around x = 0, making it
more and more sharply peaked at that point. The scaling degree at an arbitrary point is obtained
by simply translating the distribution u or the test function f by the desired amount. We write
sdy(u) = d for the scaling degree at a point x.

We next recall the definition of the wave front set of a distribution # on R”. Let ) be any
smooth function of compact support. Then yu is evidently a distribution of compact support,
and its Fourier transform Yu(k) defines an entire function of k € R". For any distribution v of
compact support, we define its corresponding “singular set”, X(v) as the collection of all k € R"
such that

V(Ak)| > CAY, (99)

for some C > 0, and some N, and all A > A for some Ay. We define the wave front set WF, (i)
at a point x € R" as the intersection

WE ()= ] Z(xu), (100)
X:XESuUpp )
and we define WF(u) as the union

WF(u) = | | WF(u). (101)

xeR?
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Each set WF,(u) is a conic set, in the sense that if k € WF,(u), then so is tk for any ¢ > 0,
and k = 0 is never in WF,(u). It immediately follows from the definition that WF, () = 0 if
and only if u can be represented by a smooth function in an open neighborhood of x. In this
sense, the wave-front set tells one at which points a distribution is singular. It also contains
information about the most singular directions in local momentum space, which are represented
by k € WF,(u).

It turns out that both the scaling degree of a distribution at a point x, as well as the wave
front set at x are invariantly defined. By this one means the following. Let p : V — U be a smooth
diffeomorphism between open sets U,V C R”". Let u be a distribution supported in U, and let
p*u be the pulled back distribution in V, where the pull-back is defined by analogy with the pull
back of a smooth function. Then it is easy to show that sd,(p*u) = sd,(y) (). Furthermore, if

x' = p(x), and if we define p*(x',k") = (x,k), where k = [dp(x)]'k', then one can show
WE,(p*u) = p* WE, () (u). (102)

These relations imply that the scaling degree and the wave front set can be invariantly defined
on an arbitrary manifold X, and that the wave-front set should be viewed as a subset of T*X.

In the body of the paper, we frequently consider the case X = M"*!, and the scaling degree
at the point (y,y,...,y), i.e., points on the total diagonal. To save writing, this is simply denoted
sd u.

B Equivalent Formulation of Condition (C6)

In this Appendix, we relate the scaling degree (C5) and asymptotic positivity (C6) assumptions
to other properties of the quantum field theory. The first is essentially just a repetition of a result
obtained in (8):

Theorem 4 For any x € M, and any (scalar) field T not equal to a multiple of the identity
operator, we define the convex set S, C R by

Sy ={(T(x))® | P a normalized state} (103)
Then, Sy = R for at least one spacetime M.

Remarks The statement means that pointlike hermitian fields 7'(x) are unbounded from above
and below, even though their classical counterpart (if the theory has a classical limit) might be
manifestly non-negative, such as the Wick square 7' = @2, or the energy density T = T,u¢u® of
a free Klein-Gordon field ¢.

Proof Choose any state @. We may assume that (T'(f)) = 0, because if not, we just need to
replace T'(x) by T (x) — (T (x))e1. Also, we may assume without loss of generality that 7* =T,
for otherwise we can just pass to the hermitian and anti-hermitian parts of 7'. Define

A:cosal—ksina%, (104)
(TANT(e
for a real testfunction f, and define a new normalized state by (.)q = (A.A*)¢. Then
(T(f))a = asin2a +b(1 —cos2a), (105)
where
L R (106

Minimizing over & gives

inf (T(/)w <b—Va? +12. (107)
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Replacing f by —f also gives
sup (T(f))w > —b+\/a®+b2. (108)
¥

Now, consider a test function f with [ fdp =1, f(x) #0,and let £, () = AP f(x+1 7 (y—x)),
A >0.By Lemma[2] there exists a spacetime, a choice of f, and a state such that [(T (f3)T (f2))o| >
¢~ 1124428 for some ¢ > 0, sufficiently small § > 0, and all A < Ag. d > 0 is the dimension of
the field 7. Also, combining the operator product expansion and the scaling degree axiom (C5),

we have [(T(f)T(f)T (f2))e| < cA =348 forall A < Ay. Combining these inequalities gives

(TAIT())el? = AT (AT (ST (f2)) o] (109)

forall A < Ap.

We now consider two cases: (a) there exists a sequence 4, — 0 such that |a,/b,| > € >0
for some € and all n, where a,, b, are defined using the rescaled testfunctions f, = fj,. Then,
as a, — oo, it follows immediately from Eq. (T07) that infy (T (f;,)) becomes arbitrarily small
as n — oo. It similarly follows from Eq. (T08) that supy (T (f,)) becomes arbitrarily large as
n — oo. (b) |ay/by| — 0 for each sequence A, — 0. Then |b,| — oo, and we may in fact assume
that b, — oo, for otherwise the statement follows immediately from Eqs. (I07), (T08). From
the above inequality @ we then have a, /b, > c*ZAﬁ for sufficiently large n. It follows that
(using vV1+x>1+ Zﬁx for sufficiently small x > 0)

1 a 1 1
[y N ST . — LY Qu———y 110
nTN GO S T e, Qre)2 =" e (110)

for sufficiently large n. We can choose 8 < 3d/2. Then the right side tends to —eo, and we con-
clude that infy (T (f,)) becomes arbitrarily small as n — oo. It similarly follows that supy (T(f,))
becomes arbitrarily large as n — 0. O

Our next result is in some sense a converse to the above result:

Theorem 5 Let the set S, be equal to R for a given spacetime M, and all hermitian operators
T not equal to a multiple of the identity. Then for any i,k € I with i # 1, and any sections v(;y of

V(i) we have that

sdIC) ) (v @ )] < sdlC(H S vy @ 7)) (111)

Remarks In generic spacetimes, we expect that the scaling degree of the right side is equal to
2dim(k), where dim(k) is the dimension of the field ¢(¥); see the scaling degree axiom (C5). We
also expect the quantity on the left side to be equal to 2dim(k) — dim(i); see again (C5). Thus,
the result tells us that, in this situation, dim(i) > 0 unless q)(i) is the identity field. Thus, in this
sense, the assumption of the theorem implies the asymptotic positivity axiom (C6), or—stated
differently—the asymptotic positivity axiom is inconsistent with not having S, = R.

Proof By assumption, we can find a state ¢ such that (7'(x))¢ > A for each A € R. Consider an

arbitrary, but fixed, finite collection ¢(1), ... ¢ of fields. Each field is valued in some vector
bundle V (i). The set of expectation values of this collection of fields forms a subset which we
denote

K, = {<<¢“><x>>¢,...,<¢<"><x>>¢>

n
states <1>} CEPV(i)=:Vr. (112)
i=1

Because the set of states is convex (i.e., any convex linear combination of normalized states is
again a normalized state), the set K, is a convex subset of V,. We claim that, in fact, K, = V,.
Assume that this were not the case. Then, since any proper convex subset of a finite dimensional
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vector space can be enclosed by a collection of planes, there exists a collection of dual vectors
c() € V(i)Y and an A € R such that

Re Yo <A, forall vV, v €K, (113)
)

However, this would mean by definition that if 7 = Re Y. c(; ¢, then (T (x)) < A for all states
&, a contradiction.

Assume that the statement of the theorem is not true. Leti = 1,...,n € I be the field labels,
with i # 1 for which the inequality (TTT) does not hold. From what we have just shown, if we
define K, as above, then K is equal to V;. In particular, we may find states &, ¥, and nonzero
v() with the property that

(00w =v, (01 (@)e =110, e

Let f (x) = A2 f(y+ A~ (x —)) be a test section in the dual of the space V (k), and let & be a
real number which is bigger than 2dim(k), but smaller than the left side of Eq. (ITI)). Using the

fact that (¢®) (£3)9*") (f,))w > 0 for all A, we find from the operator product expansion that

BTG i) 4 e
(i)

for at least one f and a subsequence of A tending to 0. Applying a similar argument to the state
@ gives that

— 2RO iy — oo, (116)
(@)

for this subsequence of A tending to 0. This is a contradiction, so the inequality (TTT) must hold.
O
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