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Abstract

Growth of Young diagrams, equipped with Plancherel measure, follows the automodel equation of Kerov. 
Using the technology of unitary matrix model we show that such growth process is exactly same as the 
growth of gap-less phase in Gross-Witten and Wadia (GWW) model. The limit shape of asymptotic Young 
diagrams corresponds to GWW transition point. Our analysis also offers an alternate proof of limit shape
theorem of Vershik-Kerov and Logan-Shepp. Using the connection between unitary matrix model and free 
Fermi droplet description, we map the Young diagrams in automodel class to different shapes of two di-
mensional phase space droplets. Quantising these droplets we further set up a correspondence between 
automodel diagrams and coherent states in the Hilbert space. Thus growth of Young diagrams are mapped 
to evolution of coherent states in the Hilbert space. Gaussian fluctuations of large N Young diagrams are 
also mapped to quantum (large N) fluctuations of the coherent states.
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1. Introduction

The theory of random matrices has wide applications both in physics and mathematics. A 
particular class of random matrix model namely the unitary matrix model (UMM) plays a pivotal 
role in understanding the various thermodynamic properties, phase structure and dynamics of 
gauge theories in diverse dimensions. In this paper we explore yet another interesting application 
of UMM in the field of asymptotic growth of Young diagrams in representation theory. Using 
the techniques of unitary matrix models we provide a Hilbert space description of this growth of 
Young diagrams - the Plancherel growth.

Young diagrams provide a convenient diagrammatic way to describe the representations of 
symmetric group and general linear groups. There are different notations in literature to depict 
a Young diagram. In this paper we follow the “English notation”. In this notation, boxes are 
arranged in horizontal rows with the condition that number of boxes in a row is always less 
than or equal to that in the row above. In general as one goes to higher and higher dimensional 
representations the number of boxes in Young diagram increases. For our purpose we classify the 
Young diagrams in terms of total number of boxes. Let us denote the set of all Young diagrams 
with k boxes by Yk . All the diagrams in Yk+1 can be obtained by adding one box to each diagram 
in Yk in all possible allowed ways. See Fig. 1. Such a process is called growth process of Young 
diagrams. One can construct all possible Young diagrams at any arbitrary level k starting from 
null diagram (∅), means no box. For a restricted growth process, one can assign a probability to 
2
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Fig. 1. Growth of Young diagrams.

every transition. Denoting a particular Young diagram at level k by λk we associate a transition 
probability Ptransition(λk, λk+1) for a transition from λk to λk+1

Ptransition(λk, λk+1) = 1

k + 1

dim λk+1

dim λk

(1.1)

if λk+1 is obtained from λk by adding one box, otherwise Ptransition(λk, λk+1) = 0. A growth pro-
cess, following the above probability measure, is called Plancherel growth process (see [1,2] for 
a comprehensive review). Note that the probability to get a diagram at level k+1 from a diagram 
at level k does not depend on the history of transition from level k − 1 to k. Thus, the growth 
process is Markovian. It was shown by Vershik and Kerov [3] and independently by Logan and 
Shepp [4] that Young diagrams following Plancherel growth process converge to a universal di-
agram in the large k limit when the diagrams are normalised (scaled) appropriately such that the 
area of the diagram is unity. The boundary of such normalised diagram becomes smooth under 
scaling. A universal Young diagram means the boundary curve takes a particular form, which 
is called the limit shape. The limit shape follows the famous arcsin law [3,5]. In the continuum 
(large k) limit Kerov introduced a differential model to capture the growth of Young diagrams 
[1,5]. He associated a ‘time’ parameter with the continuous diagrams to study the evolution of 
these diagrams. It turns out that Young diagrams equipped with Plancherel measure follow an 
evolution equation which is a first order partial differential equation. The model was named as 
automodel [1,5]. The class of diagrams following such a growth or evolution equation is called 
automodel class. The limit shape is a unique solution of the automodel equation in far future 
with ∅ as initial condition in far past.

Random matrix models offer an independent way to analyse the growth processes of Young di-
agrams. Partition function of unitary matrix models can be written as a sum over representations 
3
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of the unitary group [6,7]. In the large N limit, one can rescale the Young diagrams appropriately 
and find the representations that dominate the partition function via saddle point analysis [7]. 
These dominant representations are indeed asymptotic Young diagrams. Growth of such con-
tinuous representations depends on the action and parameters of the model under consideration. 
However, such problems demands further investigation and study which to the best of our knowl-
edge is lacking either in mathematics or physics literature.1 In this paper we try to understand 
whether one can write down a unitary matrix model which can describe the asymptotic growth of 
Young diagrams. To our surprise, we find that the Plancherel growth process is actually captured 
by the simple Gross-Witten-Wadia (GWW) model. GWW model is one of the well studied and 
exactly solvable model in unitary random matrix theory. It is therefore quite interesting to see that 
the strong coupling (no-gap) phase of GWW model is also capable of capturing the Plancherel 
growth of Young diagrams. In fact we show that the matrix model computation offers a direct 
and simple proof of the limit shape theorem of Kerov. In this paper, we go further and map the 
growth process with the evolution of free Fermi droplets in 2 dimensions in the context of unitary 
matrix model [7]. By quantising these droplets we also construct a Hilbert space associated with 
such a growth process and show that different diagrams in the automodel class are mapped to 
coherent states in the Hilbert space. Therefore, our analysis maps the growth process of Young 
diagrams to the evolution of classical or coherent states in the Hilbert space in the large N limit. 
Large N fluctuations about the automodel diagrams [9] are mapped to quantum fluctuations of 
coherent states.

The salient observations of this paper are following.

• Following [8] we compare the growth of Young diagrams with that of 2-dimensional crys-
tals. We consider ensemble of Young diagrams with infinite members. Assigning Plancherel 
probability for a particular diagram we write down a grand canonical partition function for 
such an ensemble.

• The partition function can be computed exactly if we sum over all possible representations 
of symmetric group Sk for a given box number k. However that does not seem to be very 
exciting. To capture the growth process from the partition function we impose a cut-off N

on the number of rows of the Young diagrams. This essentially restricts us to a sub-ensemble 
where all the diagrams have maximum N number of rows. As a benefit, we are now allowed 
to study the system under saddle point approximation in the large N limit.

• We next show that the above partition function is same as the partition function of SU(N)

GWW model where the rank of the gauge group is same as the cut-off. We use the Frobenius 
formula to establish the equality.

• We observe that the no-gap phase of GWW model is mapped to the automodel class of 
Kerov. The coupling constant of GWW model plays the role of time in automodel class. The 
limit shape corresponds to the GWW transition point.

• We next focus on the free Fermi droplet description of the growth process. Large N phases 
of Unitary matrix models admit a droplet description [7]. We quantise these droplets and 
construct the Hilbert space. We show that different Young diagrams in automodel class are 
mapped to coherent states in the Hilbert space. Evolution of Young diagrams are, there-

1 A matrix model analysis of such growth process has been discussed in [8] - an asymptotic shape of large diagram has 
been computed which matches with the limit shape of [3–5,9].
4
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fore, mapped to evolution of these coherent states. Thus our analysis explicitly maps the 
Plancherel growth to the evolution of classical states in the Hilbert space.

• The Hilbert space description of the growth process also allows us to map the large N fluc-
tuations about the automodel diagrams to the quantum fluctuations of coherent states. In this 
paper we explicitly discuss this mapping.

The plan of the paper is following. In Section 2, we review earlier works where we map a 
particular class of unitary matrix models to two dimensional droplets made of fermions in phase 
space. Subsequently in Section 3, we discuss Plancherel growth of Young diagrams in details 
following the works of [3]. The growth process is mapped to the evolution of a grand canonical 
ensemble in Section 4. Section 5 is devoted to the analysis of the partition function that we set 
up for the Plancherel growth process of Young diagrams. We provide an alternate proof of the 
limit shape theorem of Kerov and Vershik. In Section 6, following a quantization procedure, we 
provide a Hilbert space description of the growth process. Appendix A provides some details of 
the analysis of a generic class of UMMs in terms of eigenvalues analysis as well as Young dia-
grams. It further discusses a connection between the two pictures. In Appendix B we discuss the 
spectral curve for the no-gap solution of the unitary matrix model. Finally, Appendix C discusses 
an asymmetric solution that comes up in the context of GWW model which has connections with 
the growth process that we discuss in this work.

2. Review 1: Droplet description of unitary matrix models

We start with a very brief discussion on droplet description of different large N phases of a 
generic UMM. The partition function of UMM is given by,

Z =
ˆ

[dU ]eS(U) (2.1)

where [dU ] is the Haar measure and S(U) is a generic function of N × N unitary matrices U . 
The Haar measure [dU ] and S(U) are invariant under unitary transformation. A particular class, 
but yet general, of unitary matrix models is given by the following action

S(U) = N

Q∑
n=1

βn

n

(
TrUn + TrU†n

)
(2.2)

where Q is any arbitrary positive integer and βns are some arbitrary real parameters. This model 
is called the single plaquette model. This model has applications in lattice gauge theory. Partition 
functions for different large N Chern-Simons matter theories can also be written as a single 
plaquette model [10]. The large N phase structure of (2.2) for Q = 2 has been studied in [11,12]. 
A special case of single plaquette model is Gross-Witten-Wadia model [13,14], where βn>1 = 0. 
The GWW model is one of the exactly solvable models and it appears in many contexts in physics 
as well as in mathematics.

Since both the Haar measure and the action in equation (2.1) are invariant under unitary trans-
formations, one can go to a diagonal basis

U → {eiθ1, · · · eiθi , · · · , eiθN },
where θis are the eigenvalues of U . In the large N limit a particular distribution of these eigen-
values on unit circle dominates the partition function. Defining a distribution function (called 
eigenvalue density) ρ(θ)
5
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ρ(θ) = 1

N

N∑
i=1

δ(θ − θi) = dx

dθ
(2.3)

one can show that in the large N limit the eigenvalue density satisfies the saddle point equation

−
ˆ

dθ ′ cot

(
θ − θ ′

2

)
ρ(θ ′) =

∑
n

βn cosnθ, with
ˆ

dθρ(θ) = 1. (2.4)

This equation is obtained by extremising the effective action associated with the partition func-
tion (2.1). For a given set of parameters {βn} one can solve this equation to find ρ(θ) correspond-
ing to different large N phases of the model under consideration. Different large N phases are 
classified by number and positions of gaps in ρ(θ) [11–15] on a unit circle.

A unitary matrix model can be equivalently analysed in terms of SU(N) (or U(N)) repre-
sentations [7,16–18], which are expressed in terms of Young diagrams and hence the generic 
partition function (2.1) can be written in Young diagram basis as well. Expanding the partition 
function in representation basis one finds

Z =
∑
{hi }

∑
�k,�l

ε( �β, �k)ε( �β, �l)
z�kz�l

χ�h(C(�k))χ�h(C(�l)) where,

ε( �β, �k) =
∞∏

n=1

(Nβn)
kn, z�k =

∞∏
n=1

kn!nkn. (2.5)

Here, {h1, · · · , hN } are a set of hook numbers characterising a Young diagram, χ�h(C(�k)) is the 
character of the permutation group Sk for a conjugacy class C(�k) with k = ∑

n nkn in represen-
tation {hi}. In the large N limit the partition function (2.5) is dominated by a Young diagram 
which is characterised by a density function u(h)

u(h) = −dx

dh
. (2.6)

Since h(x) is a monotonically decreasing function of x, Young density has an upper and lower 
cap 1 ≥ u(h) ≥ 0 ∀ x ∈ [0, 1]. Large N phases are characterised by different u(h). It is difficult to 
find a saddle point equation for u(h) for a generic plaquette model (2.2), but one can reconstruct 
dominant Young diagrams [18] through the droplet picture. See Appendix A.2 for details.

2.1. The large N droplets

Droplet description of large N phases is based on the fact that the partition function of UMM 
has two equivalent descriptions - in eigenvalue basis and in Young diagram basis. It is well known 
that eigenvalues of unitary matrices behave like position of free fermions [15]. On the other 
hand, hook lengths of Young diagrams are like momenta of these fermions [7,16]. A relation 
between these two pictures offers droplet or phase space description for different classical phases 
[7,17,18].

It was first observed in [7] that the eigenvalue and the Young diagram distributions are func-
tional inverses of each other for a particular class of unitary matrix model, namely the (a, b)

model whose phase structure is similar to that of GWW model. Later in a series of papers [17–19]
such relations were proved for a generic class of UMM. The details of the calculation is given in 
Appendix A.3. Here we present the main result.
6
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In the large N limit, the connection between eigenvalue density ρ(θ) and hook number h is 
given by

h2 − 2S(θ)h + S2(θ) − π2ρ2(θ) = 0 (2.7)

where

S(θ) = 1

2
+

∑
n

βn cosnθ. (2.8)

Using this equation one can also define a spectral curve for the generic UMM. See Appendix B.
The relation (2.7) allows us to provide a phase space picture for different large N phases 

of UMM in terms of free fermi droplets (two dimensional distributions). These distribu-
tions/droplets are similar to Thomas-Fermi distributions [20,21]. Equation (2.7) has two possible 
solutions h±(θ) given by

h±(θ) = S(θ) ± πρ(θ). (2.9)

Using this relation we define a distribution function ω(h, θ) in (h, θ) plane

ω(h, θ) = �

(
(h − h−(θ))(h+(θ) − h)

2

)
(2.10)

such that ω(h, θ) = 1 for h−(θ) < h < h+(θ) and zero otherwise. Eigenvalue distribution, by 
construction, can be obtained by integrating out h for a given θ and is given by

ρ(θ) = 1

2π

ˆ
dh ω(h, θ) = h+(θ) − h−(θ)

2π
. (2.11)

The distribution also satisfies the normalisation condition

1

2π

ˆ
dh dθ ω(h, θ) = 1. (2.12)

The function S(θ) can also be written in terms of phase space geometry

S(θ) = 1

2πρ

∞̂

0

dh h ω(h, θ) = h+(θ) + h−(θ)

2
. (2.13)

Integrating ω(h, θ) over θ for a given h gives a distribution of hook numbers h

w(h) = 1

2π

ˆ
dθ ω(h, θ) with

ˆ
dh w(h) = 1. (2.14)

w(h) captures the information about large N representations. Since ω2(h, θ) = ω(h, θ), it is ac-
tually the shape (i.e. boundary) of this distribution function which captures information about 
different large N phases of the theory. We call such two dimensional distributions large N
droplets.

The matrix model, we are considering, has no dynamics. Different large N phases, obtained 
by solving the saddle point equation, are possible minimum free energy configurations of the 
model. Hence the corresponding droplets are static - the shapes are not changing with time. To 
incorporate dynamics into the picture, we follow an ad hoc way: identify large N droplets with 
7
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Thomas-Fermi distribution at zero temperature and obtain the single particle Hamiltonian by 
comparing the two.2 In this way it is possible to incorporate time in our system.

Comparing the distribution function (2.10) with Fermi distribution at zero temperature

�(p,q) = �(μ − h(p, q)) (2.15)

(μ is chemical potential and h(p, q) is single particle Hamiltonian density) we find that the single 
particle Hamiltonian density is given by

h(h, θ) = h2

2
− S(θ)h + g(θ)

2
+ μ, where g(θ) = h+(θ)h−(θ). (2.16)

Total Hamiltonian3 can be obtained by integrating h(h, θ) over the phase space

Hh = 1

2πh̄

ˆ
dθ

ˆ
dh ω(h, θ) h(h, θ). (2.18)

We have taken into account the fact that one state occupies a phase space area of 2πh̄ in semi-
classical approximation. It needs to modify the normalisation of phase space density

1

2πh̄

ˆ
dhdθω(h, θ) = N, with h̄N = 1 (2.19)

where, N is total number of states available inside a droplet. The classical limit corresponds to 
h̄ → 0, N → ∞ with h̄N = 1.

3. Review 2: Plancherel growth of Young diagrams

The Markovian growth process of large Young diagrams can be given a statistical interpre-
tation described through a partition function. In order to achieve that we define a Young lattice 
[8]

Y =
∞⋃

k=0

Yk. (3.1)

All the members of Yk have same number of boxes but different shapes. Yk can be thought of as 
an ensemble of Young diagrams with the same macroscopic variable k. Hence, we can define a 
partition function for the grand canonical ensemble (3.1)

QY =
∞∑

k=0

zkZYk
(3.2)

where z is called fugacity (z > 0) and ZYk
is the canonical partition function for Yk , given by

2 One can also construct similar droplet description for time dependent unitary matrix model. In that case time evolution 
of these droplets are inherent [22].

3 One can show that [18] integrating over h, the total Hamiltonian (without the h̄ factor) is same as the collective field 
theory Hamiltonian of Jevicki and Sakita [23]

Hh = −
ˆ

dθ

(
S2ρ

2
+ π2ρ3

6
+ Veff (θ)ρ

)
+ μ (2.17)

with an effective potential.
8
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ZYk
=

∑
λk

P(λk)δ(k − |λk|). (3.3)

P(λk) is the probability associated with the ensemble member λk - a Young diagram with k
number of boxes.

To make the growth process meaningful it is customary to assign a probability for each dia-
gram at level k in the Young lattice Y . There is a natural way to assign probability to different 
diagrams. We count the total number of inequivalent paths one can follow to come to a particular 
diagram at level k starting from ∅. See Fig. 1. It turns out that the Plancherel measure is pro-
portional to the square of that number. The proportionality constant is fixed by the normalization 
condition. To calculate the number of paths heading to a diagram λk we look at growth of Young 
tableaux rather than Young diagrams. Starting from ∅ we keep on adding one box at each level 
with increasing number. Therefore the readers can easily convince themselves that at each level 
k we have different Young tableaux and a particular tableaux can be reached from ∅ by a unique 
path only. Thus the number of paths available to reach a particular Young diagram λk is equal to 
the number of standard Young tableaux fλk

of that given shape. It is well known that [24,25],∑
λk∈Yk

(fλk
)2 = k!. (3.4)

Hence we get the Plancherel measure P(λk) for a diagram λk

P(λk) = f 2
λk

k! . (3.5)

This definition of Plancherel probability is equivalent to what we defined in equation (1.1). One 
can show that

P(λk) =
∑
paths

k−1∏
i=0

Ptransition(λi, λi+1). (3.6)

We use P(λk) to write the partition function for the growth process. The number fλk
is equal 

to the dimension of the representation λk , i.e.

fλk
= dim λk, (3.7)

and thus we have,

P(λk) = (dim λk)
2

k! . (3.8)

It was observed in [3,4] that a Young lattice equipped with Plancherel measure terminates to a 
universal class of diagram in the limit k → ∞ when the diagrams are scaled properly.

3.1. The universal diagram and automodel

Although we are using the “English” notation for Young diagrams, but the limit shape of 
Young diagrams takes a simple form in rotated French notation. A typical shape of Young 
diagram in French notation is given in Fig. 2. The centres of boxes are marked with (X, Y)

coordinates. The function X(Y) specifies a particular shape of Young diagram in this notation. 
However, it is more convenient to rotate this diagram anti-clock wise by π/4 and work in the 
redefined coordinates
9
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Fig. 2. Typical structure of a Young diagram in French notation.

Fig. 3. Typical structure of a 45◦ anti-clockwise rotated Young diagram.

u = 1

2
(Y − X) v = 1

2
(Y + X). (3.9)

A Young diagram in this notation4 is depicted in Fig. 3. Note that here the coordinate u is different 
than the Young diagram density defined in (5.10). For a finite number of boxes the function v(u)

is rough and zig-zag i.e. v′(u) = ±1. As the number of boxes goes very large we define a rescaled 
function

v̂k(u) = v(u
√

k)√
k

(3.11)

such that the area under the curve is finite and the boundary curve becomes smooth. It was 
observed by [3,4] that when the growth process follows Plancherel transition probability (1.1)

4 There is another advantage to draw the Young diagrams in rotated French notation. A transition from λk to λk+1
occurs when one keeps a box at any of the minima of rotated diagram. Putting a box at different minima corresponds to 
different diagrams at k + 1 level. Therefore the transition probabilities are denoted by μa where a is the position of a 
minimum. To find μa we define two polynomials P(x) = ∏n

a=1(x − xa) and Q(x) = ∏n−1
a=1(x − ya), where x1, · · · , xn

are positions of consecutive minima and y1, · · · , yn−1 are consecutive maxima. The transition probability from λk to 
λk+1 by adding a box at ath minima is given by decomposing the quotient into partial fraction

n∑
a=1

μa

x − xa
= Q(x)

P (x)
. (3.10)

.

10
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the asymptotic shape of rescaled Young diagrams converges uniformly to a unique curve given 
by

lim
k→∞ v̂k(u) ≡ 
(u) =

{
2
π
(u sin−1 u

2 + √
4 − u2) if |u| ≤ 2

|u| if |u| > 2.
(3.12)

In the continuum limit Kerov introduced [5] charge of a diagram, denoted by σ(u) and is 
given by (we are using the notation that v̂(u) = v̂k(u) in the large k limit)

σ(u) = 1

2

(
v̂(u) − |u|) . (3.13)

Therefore,

σ ′(u) =
{

1
2 + v̂′(u)

2 for u<0

− 1
2 + v̂′(u)

2 for u>0
. (3.14)

One can define moments of a diagram

pn = −n

ˆ
un−1dσ(u) (3.15)

such that area of a diagram (area covered under the curve v̂(h)) is given by A = (p2 − p2
1)/2. It 

is convenient to consider a moment generating function

S(x) =
∞∑

n=1

pn

n
x−n =

ˆ
dσ(u)

u − x
. (3.16)

The moment generating function as well as the sequence of moments determine the charge and 
hence the diagram (v̂(u)) completely. The moment generating function plays an important role 
in our large k analysis of partition function.

In [5] Kerov introduced a dynamical model for the growth of Young diagrams. For every con-
tinuous Young diagram characterized by the function v̂(u), one can define the function v(u, t), 
called the automodel tableaux which depends on two variables u and t as

v̂(u, t) = √
t v̂(u/

√
t) for t > 0 . (3.17)

Kerov showed that the Young diagrams, following Plancherel growth, belong to automodel class 
and satisfy the equation

∂t v̂(u, t) = 1

2t
(v̂(u, t) − u∂uv̂(u, t)). (3.18)

In terms of charges the automodel equation is given by,

∂tσ
′(u, t) + u

2t
σ ′′(u, t) = 0. (3.19)

3.2. Fluctuations of automodel diagrams

Fluctuations of Young diagrams have been under investigation in the mathematics literature 
[9,26–36]. A rescaled Young diagram defined in (3.11) in the k → ∞ limit takes the form of limit 
shape (denoted by 
, as defined in (3.12)). However there can be large k corrections to this result 
and we call such corrections as fluctuations of limit shape diagram 
. Kerov studied the Gaussian 
11
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fluctuations around the limit shape of Young diagrams 
 endowed with Plancherel measure in 
[26]. In [9], Ivanov and Olshanki reconstructed a proof of Kerov’s result on fluctuations around 
the limit shape from his unpublished work notes, 1999. The central result pertains to large k
corrections to the limit shape which can be stated as

lim
k→∞ ν̂k(u) ∼ 
(u) + 2√

k
�(u) (3.20)

The sub-leading piece �(u) is a Gaussian process defined for |u| ≤ 2. More precisely, �(u) is a 
random trigonometric series given by

�(u) = �(2 cos θ) = 1

π

∞∑
n=2

αn√
n

sin(nθ) ; u = 2 cos θ (3.21)

where αn are independent Gaussian random variables with mean 0 and variance 1. Further inves-
tigations has been done towards understanding the central limit theorem for Gaussian fluctuations 
around the limit shape [29,30]. Fluctuations of random Gaussian and Wishart matrices have been 
related to the notion of free probability and free cumulants in earlier works [34–36].

4. Partition function for Young lattice

Following (3.2), (3.3) and eq. (3.5), the grand canonical partition function for Y can be written 
as,

QY =
∞∑

k=0

zk
∑
λk

(dimλk)
2

k! δ(k − |λk|), z > 0. (4.1)

This partition function is related to Poissonised Plancherel measure [37]. The above ensemble 
sometimes is known as Meixner ensemble in literature [38,39].

The above partition function does not capture the growth process of Young diagrams as it can 
exactly be calculated using the normalization eq. (3.4)

QY = 1

1 − z
. (4.2)

However, to study the growth process through the partition function we regularise the sum by 
imposing a cut-off on the Young diagrams in the summation over λk in eq. (4.1). We introduce 
a large positive integer N and constrain that the Young diagrams in lattice Y can not have more 
than N rows. In presence of such a cut-off the summation over λk for k > N is not equal to unity 
anymore. The regularised partition function is therefore given by

QN
Y =

∞∑
k=0

zk
∑

n1,··· ,nN≥0

(dimλk)
2

k! δ

(
k −

N∑
i=1

ni

)
, with n1 ≥ n2 ≥ · · · ≥ nN ≥ 0. (4.3)

This regularisation gives us a handle on the partition function to carry out a saddle point anal-
ysis of the problem. In the large N limit, the partition function is dominated by a single Young 
diagram for a given value of z. It turns out that the shape of this dominant diagram falls into 
the automodel class of Kerov [5], parametrised by z. For a particular value of the parameter z
it becomes the limit shape [3–5]. Before we present the calculation, we show that the partition 
function (4.3) is equivalent to the partition function of SU(N) Gross-Witten-Wadia model and 
its cousins.
12
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4.1. A connection between Young lattice and Gross-Witten-Wadia model

The Gross-Witten-Wadia model is a well studied unitary matrix model in physics. The parti-
tion function for this model is defined over an ensemble of N × N unitary matrices with a real 
potential TrU + TrU†, where the trace is taken over fundamental representations. The partition 
function of GWW model is given by

ZGWW =
ˆ

[dU ] e
N
λ

(TrU+TrU†), λ ≥ 0. (4.4)

Gross and Witten [13] (and independently, Wadia [14]) studied this matrix model in the context 
of lattice QCD and observed that the system undergoes a third order phase transition at λ = 2. 
Different phases of this model are characterised by the topology of distribution of eigenvalues 
of the unitary matrix U on a unit circle. The strong coupling phase (λ > 2) corresponds to a 
gap-less distribution of eigenvalues whereas weak coupling phase (λ < 2) shows a finite gap in 
eigenvalue distribution.

A close cousin of GWW model [40,41] is given by

Zc =
ˆ

[dU ] eaTrUTrU†
. (4.5)

The phase structure and eigenvalue distributions of this model are similar to those of GWW up 
to a redefinition of parameters: a〈TrU 〉 = N/λ [17]. Expanding the exponential in (4.5) we get

Zc =
ˆ

[dU ]
∞∑

k=0

ak

k! (TrU)k(TrU†)k. (4.6)

Using Frobenius formula for the characters of symmetric group we can write

(TrU)k =
∑
R

χR(1k)TrRU, and (TrU†)k =
∑
R

χR(1k)TrRU† (4.7)

where the sum is over representations of U(N) (or SU(N)) and χR(1k) is the character of con-
jugacy class (1k) of symmetric group Sk in representation R. Finally using the normalization 
condition for the characters of unitary groupˆ

[dU ]TrRUTrR′U† = δRR′ (4.8)

we arrive at the final expression for Zc written in terms of sum over representations of U(N) [7]

Zc =
∞∑

k=0

ak
∑
R

(χR(1k))2

k! . (4.9)

It is well known that the character of the conjugacy class (1k) of symmetric group Sk in repre-
sentation R is equal to the dimension of the representation [24]

χR(1k) = dimR. (4.10)

Representations of U(N) can be expressed in terms of Young diagrams. Since χR(1k) is non-zero 
only when total number of boxes in the Young diagram is k we have

Zc =
∞∑

ak
∑ (dimλk)

2

k! δ(k − |λk|). (4.11)

k=0 λk

13
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Thus we see that the partition function for (cousin of) GWW model is same as that of a Young 
lattice with the coupling constant a playing the role of fugacity. The rank of the gauge group 
SU(N) in GWW model plays the role of the cut-off N in (4.3).

5. Large N analysis of partition function: an alternate proof of the limit shape theorem

The large N analysis of partition function (4.1) was explicitly done in [7]. We briefly review 
the procedure for the readers not familiar with matrix model techniques (for a more comprehen-
sive treatment of matrix models, see [42–44]). To analyse the partition function (4.3) we denote 
a valid Young diagram of symmetric group Sk by a set of numbers {ni}Ni=1 where ni denotes the 
number of boxes in ith row. N is an arbitrary positive integer greater than or equal to the height 
of the first column. See Fig. 4. The dimension of a representation λk of Sk is given by [24]

dimλk = k!
h1!h2! · · ·hN !

N∏
i=1
i<j

(hi − hj ) (5.1)

where,

hi = ni + N − i (5.2)

is the hook length of the first box in ith row.
We consider the large N limit of the partition function (4.3). In this limit the hook numbers 

hi ∼ N (5.2). Therefore we define the following continuous functions to describe Young dia-
grams at large N

n(x) = ni

N
, h(x) = hi

N
, where x = i

N
, x ∈ [0,1]. (5.3)

The function n(x) or h(x) captures the distribution of boxes in a large k Young diagram. The 
relation between n(x) and h(x) follows from equation (5.2) and is given by

h(x) = n(x) + 1 − x. (5.4)

The number of boxes in a Young diagram in the large N limit is given by

k =
N∑

i=1

ni −→ N2

⎡
⎣ 1ˆ

0

dx (h(x) + 1 − x)

⎤
⎦ = N2

⎡
⎣ 1ˆ

0

dxh(x) − 1

2

⎤
⎦ = N2k′ (5.5)

where

k′ =
1ˆ

0

dxh(x) − 1

2
(5.6)

is the renormalised box number and is an O(1) quantity. Thus we see that the number of boxes 
in a Young diagram in the large N limit goes as ∼O(N2) and hence N ∼ O(

√
k). The partition 

function (4.3) in N → ∞ limit is given by,

QY =
ˆ

[Dh(x)]e−N2Seff[h(x)] (5.7)

where
14
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Fig. 4. A generic Young diagram in English notation. Here N is an arbitrary positive integer. The number of boxes in the 
first column is less than or equal to N . In general, ∃ a number 0 < M ≤ N such that ni = 0 for i = M + 1, · · · , N .

−Seff[h(x)] =
1ˆ

0

dx −
1ˆ

0

dy ln |h(x)−h(y)|−2

1ˆ

0

dxh(x) lnh(x)+k′ ln(zk′)+k′+1. (5.8)

Therefore, the dominant contribution to the partition function comes from the extrema of 
Seff[h(x)]. Varying Seff[h(x)] with respect to h(x) we get the saddle point equation

−
ˆ

u(h′)dh′

h − h′ = ln

(
h

ξ

)
, where ξ2 = zk′ (5.9)

where the Young diagram density u(h) is given by

u(h) = −∂x

∂h
. (5.10)

Monotonicity of h(x) implies 0 ≤ u(h) ≤ 1. u(h) also satisfies two conditions
ˆ

dhu(h) = 1, and
ˆ

hu(h)dh = k′ + 1

2
. (5.11)

We solve the saddle point equation (5.9) to find Young diagram density that satisfies the con-
straints (5.11).

5.1. Large N solutions and automodel diagrams

All possible large N solutions of (5.9) were discussed in [7] and it was observed that (5.9)
admits two possible solutions. However, here we look at the problem more carefully keeping the 
symmetry of the growth process in mind. From the Plancherel measure (3.8) we see that at any 
level k, two Young diagrams related to each other by transposition, have same probability P(λk). 
Therefore the large N solution of (5.9) must be invariant under transposition. Young diagrams, 
symmetric under transposition, are called rectangular diagrams [2,5].
15
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Following [7], we can take the following ansatz for u(h) to get a rectangular Young diagram

u(h) =
{

1 h∈[0,p)

ũ(h) h∈(p,q].
(5.12)

To solve the saddle point equation we define a resolvent

H(h) =
hUˆ

hL

u(h′)dh′

h − h′ . (5.13)

After a little algebra, we find that the resolvent H(h) is given by [7]

H(z) = ln

⎡
⎣h

(
h − 1 − √

(h − 1)2 − 4ξ2
)

2ξ2

⎤
⎦ . (5.14)

The resolvent is same as the moment generating function for the rectangular diagrams defined 
in (3.16) [5]. The resolvent has a branch cut in the complex h plane. Young diagram density is 
given by the discontinuity of H(h) about the branch cut

ũ(h) = 1

π
cos−1

[
h − 1

2ξ

]
, for p ≤ h ≤ q. (5.15)

The supports p and q are given by,

p = 1 − 2ξ, q = 1 + 2ξ. (5.16)

This particular class of solution exists subject to the following condition

k′ = ξ2. (5.17)

Since p ≥ 0, this solution is valid for 0 ≤ ξ ≤ 1/2. From the definition of ξ (ξ2 = zk′) we also 
see that this solution exists for

either ξ = k′ = 0 or z = 1. (5.18)

The case ξ = k′ = 0 is trivial. This means there is no box in the Young diagram. The non-trivial 
solution corresponds to z = 1 (i.e. fugacity is one and hence zero chemical potential). It is easy 
to check that the Young diagram is invariant under transposition. The height of the first column 
can be calculated from equation (5.4) and is given by 2ξ which is similar to the length of the 
first row. Also the function ũ(h) is symmetric about body diagonal. A typical Young diagram 
for this class is depicted in Fig. 5. In this phase the renormalised number of boxes (i.e. k′) in a 
Young diagram grows from k′ = 0 to k′ = 1/4 as ξ changes from 0 to 1/2. For any value of ξ
between 0 and 1/2 the dominant Young diagram is always symmetric under transposition and 
hence a rectangular diagram. The limiting value ξ = 1/2 (GWW transition point) corresponds to 
the distribution

ũ(h) = 1

π
cos−1(h − 1). (5.19)

This terminal distribution is same as the universal curve or the limit shape obtained by [3,4]. 
Hence we see that the limit shape Young diagram corresponds to GWW transition point in matrix 
model side.
16
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Fig. 5. A Young diagram in English notation for automodel class (0 < ξ < 1/2).

We calculate Plancherel measure (3.8) for this dominant diagram. Following [7], the 
Plancherel measure in large N limit is given by

1

N2 lnPλk
=

qˆ

0

dhu(h) −
qˆ

0

dh′u(h′) ln |h − h′| − 2

qˆ

0

u(h)h lnh dh + k′ + 1 + k′ lnk′.

(5.20)

Evaluating the right hand side for symmetric solutions (5.12) and (5.15) we get

Pλk
= 1 + O (1/N) . (5.21)

Thus we see that in the large k (or large N ) limit the symmetric solution (5.12), (5.15) is the 
maximum probable solution. Probability of having other diagrams is suppressed by powers of N . 
This gives an alternate proof of limit shape theorem of Vershik-Kerov and Logan-Shepp result 
[3,4].

The partition function (4.3) admits another phase. The dominant diagrams in that phase are 
not self-transpose. See Appendix C for details. Growth of such diagrams are different than that 
studied in section 3.

5.2. A connection with automodel

To make a precise connection between automodel class and the above solution, we need to 
set up a dictionary between the variables defined in (u, v) plane and (h, x) plane. The relation 
between French notation and English notation is Y = n and X = x. We use the following trans-
formation between (n, x) and (u, v) so that u = v = 2 point is mapped to n = 1, x = 0

u

2
= n − x

v

2
= n + x.

(5.22)

Using this mapping one can show that the Young diagram distribution function (5.10) is related 
to v′(u) in the following way
17
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u(h) = 1

2
− 1

2
v′(u) with u = 2(h − 1). (5.23)

One can also check that the terminal diagram (5.19) is exactly same as the limit shape defined 
in (3.12). Thus we see that the Young diagram density u(h) is related to charge σ(u) defined in 
(3.13) by u(h) = −σ ′(u). The resolvent (5.14) for this symmetric solution is same as the moment 
generating function for charges (3.16).

We also observe that the symmetric distributions (5.12) for 0 < ξ < 1/2 satisfies,

∂ξu(h, ξ) + h − 1

ξ
∂hu(h, ξ) = 0. (5.24)

Since for this branch we have ξ2 = k′, the above equation can be written as,

∂k′u(h, k′) + h − 1

2k′ ∂hu(h, k′) = 0. (5.25)

Thus we see that the Young diagram density satisfies the automodel equation5 (3.19) with k′
playing the role of automodel time t . This is natural to expect that the renormalised box number 
k′ plays the role of growth parameter t in Kerov’s paper [5]. Hence we conclude that the no-gap 
phase of GWW model (4.5) or (4.9), in the limit of large box number, captures the Plancherel 
growth of Young diagrams and the dominating Young diagrams belong to the automodel class of 
Kerov.

6. The Hilbert space for Plancherel growth

As we have reviewed in section 2, the unitary matrix models admit a phase space or droplet 
description in two dimensions spanned by (h, θ). Following [22] we show that the growth of 
Young diagrams can be described in terms of evolution of classical or coherent states in a Hilbert 
space. The goal of this section is to construct the Hilbert space by quantising the free Fermi 
droplets.

6.1. Droplet quantisation

The single particle Hamiltonian (2.16) is not in diagonal form. We define a new variable

h̄ = h − S(θ). (6.1)

In terms of this new variables (h̄, θ) the Hamiltonian density is given by

h(h̄, θ) = h̄2

2
− π2

2
ρ(θ)2 (6.2)

and the droplet boundary is given by

h̄±(θ) = ±πρ(θ). (6.3)

The phase space Hamiltonian (2.18) can be calculated by integrating over h̄ from h̄−(θ) to h̄+(θ)

and is given by,

Hh = 1

3πh̄

ˆ
dθ π3ρ(θ)3. (6.4)

5 Please note the difference in notation. Here u is Young diagram density and h is hook number.
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The phase space boundary is doubly degenerate, i.e. for a given θ there are two boundaries, h̄±
corresponding to two signs on the right hand side of (6.3). Hence, we write the Hamiltonian (6.4)
over the two segments of droplets [45]

Hh = 1

6πh̄

⎡
⎣ˆ

+
dθ h̄3+(t, θ) −

ˆ

−
dθ h̄3−(t, θ)

⎤
⎦ . (6.5)

From the single particle Hamiltonian (6.2) we find that the equations of motion satisfied by the 
droplet boundaries are given by,6

˙̄h±(t, θ) = h̄±(t, θ)h̄′±(t, θ) (6.7)

where the dot and prime denote derivative with respect to t and θ respectively.7

In order to quantise the droplets we find a simplectic form such that the Hamilton’s equation

˙̄h±(t, θ) = {h̄±(t, θ),Hh} (6.8)

would coincide with (6.7) [45,49]. To achieve the above goal we introduce Poisson brackets 
between h̄±(t, θ) and h̄±(t, θ ′)

{h̄±(t, θ), h̄±(t, θ ′)} = ±πh̄δ′(θ − θ ′) and {h̄+(t, θ), h̄−(t, θ ′)} = 0. (6.9)

It is easy to check that using these Poisson brackets, equation (6.8) boils down to (6.7). Also,

{Hh,A} = 0 (6.10)

where

A =
π̂

−π

dθ (h+(t, θ) − h−(t, θ)) (6.11)

is the area of the phase space droplets. This implies that the area is preserved under classical time 
evolution.

The circular droplet (ρ(θ) = 1
2π

) corresponds to h̄±(t, θ) = ± 1
2 and satisfy the classical equa-

tions of motion (6.7). We consider quantum fluctuations about this classical circular droplet

6 Equations of motion from (6.2) are given by

˙̄h(t) = − ∂h

∂θ
= π2ρ(θ)ρ′(θ), θ̇ (t) = ∂h

∂h̄
= h̄(t) (6.6)

Substituting the boundary relations (6.3) in these equations, one finds (6.7).
7 At this point one should note that (6.7) is in the standard from of an inviscid Burger’s equation, which is a KdV 

type equation. The appearance of KdV type equations is quite common in random matrix theories which indicates that 
the problem is exactly solvable. For the Fermi fluid picture that appears in the context of unitary matrix model one 
can actually construct an infinite set of commuting Hamiltonians/conserved charges [46,47], signifying the integrability 
of the system. In fact, in [47] the authors have used analogous variables of (2.9) to deduce the Lax pairs with the 
same Hamiltonian as (6.5). Further, the commuting Hamiltonians described in [47,48] can be shown to be similar to 
different moments of the diagram (3.15) and the resolvent (5.13) or similarly the moment generating function (3.16)
includes information about the full spectrum of the Hamiltonians. Therefore from the integrability structure emergent 
from the matrix model side one can show that all the moments of the diagram as described by [5] is conserved. In the 
current context we are interested in canonically quantising the droplets, rather than looking at the underlying integrability 
structure of (6.5).
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h̄±(t, θ) = ±1

2
+ h̄ h̃±(t, θ). (6.12)

We also assume that the fluctuations preserve the total area of the droplet. This implies that

π̂

−π

dθ(h̃+(t, θ) − h̃−(t, θ)) = 0. (6.13)

The Hamiltonian (6.5) for these fluctuations is given by

Hh = 1

12h̄
+ h̄

4π

π̂

−π

(
h̃2+(t, θ) + h̃2−(t, θ)

)
dθ + h̄2

6π

π̂

−π

(
h̃3+(t, θ) − h̃3−(t, θ)

)
dθ. (6.14)

From equation (6.9), we find that the Poisson bracket for h̃±(t, θ) are given by

{h̃±(t, θ), h̃±(t, θ ′)} = ±π

h̄
δ′(θ − θ ′) and {h̃+(t, θ), h̃−(t, θ ′)} = 0. (6.15)

To quantise the above classical system we promote the Poisson brackets (6.15) to commutation 
relations[

h̃±(t, θ), h̃±(t, θ ′)
]

= ±πiδ′(θ − θ ′) and [h̃+(t, θ), h̃−(t, θ ′)] = 0. (6.16)

We decompose h̃±(t, θ) into Fourier modes

h̃+(t, θ) =
∞∑

n=−∞
a−n(t)e

inθ (6.17)

and

h̃−(t, θ) = −
∞∑

n=−∞
bn(t)e

inθ . (6.18)

From the constraint equation (6.13), we see that the zero-modes a0 and b0 are equal up to a sign

a0 = −b0 = π0. (6.19)

It follows from equation (6.15) that the Fourier modes an and bn satisfy U(1) Kac-Moody algebra

[am(t), an(t)] = 1

2
mδm+n, [bm(t), bn(t)] = 1

2
mδm+n, and [am(t), bn(t)] = 0. (6.20)

Since h̃±(t, θ) are real we have a−n = a
†
n and b−n = b

†
n. The Hamiltonian (6.14) in terms of 

these modes is given by (up to over all constant factors)

H̃ = H+ + H− (6.21)

where

H+ = h̄

2
a2

0 + h̄2

3
a3

0 − h̄2

24
a0 + h̄(1 + 2h̄a0)

∑
n>0

a†
nan

+ h̄2
∑ (

a
†
m+naman + h.c.

) (6.22)
m,n>0
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and H− has a similar expression in terms of modes bn’s.
Since π0 commutes with all the an, bn and hence with H̃ , application of an’s and bn’s cannot 
change the eigenvalue of π0. Therefore the Hilbert space is constructed upon a one parameter 
family of vacua |s, s〉 ≡ |s〉 where,

an|s
〉 = 0, bn|s

〉 = 0 for n > 0

and a0|s
〉 = −b0|s

〉 = π0|s
〉 = s|s〉. (6.23)

Starting with the primary |s〉 we can now construct a Hilbert space H which is a s charged 
module. Let us denote H+ and H− as Hilbert spaces associated with a and b sectors respectively. 
The commutativity of a and b operators implies that the full Hilbert space is factorizable into H+
and H− i.e. H = H+ ⊗H−.

A generic excited state in H is given by

|�k, �l〉 = ∞∏
n,m=1

(
a†
n

)kn
(
b†
m

)lm |s〉. (6.24)

The �k and �l vectors correspond to excitations in the upper and lower Fermi surfaces. Since an and 
bn commute, generic excitation |�k, �l〉 ∈ H can be written as a direct product of states belonging 
to the two sectors i.e. |�k, �l〉 = |�k〉 ⊗ |�l〉.

The excited states in H+ are orthogonal with the normalization

〈 �k′|�k〉 = z�kδ�k �k′ where z�k =
∏
j

kj !
(

j

2

)kj

(6.25)

and has π0 eigenvalue s. They also satisfy the completeness relation∑
�k

1

z�k
|�k〉〈�k| = IH+ (6.26)

and hence form a basis in H+. The particle like excited states |�k〉 in either sectors are eigenstates 
of the free Hamiltonian of the corresponding sectors

H±
free|�k

〉 = h̄(1 ± 2sh̄)

( ∞∑
n=1

nkn

)
|�k〉

, (6.27)

but not an eigenstate of the full Hamiltonian. The interaction Hamiltonian is such that its action 
on an excited state doesn’t change the level of the state. Explicitly stated, the interaction Hamil-
tonian takes a state |�k〉

to | �k′〉 satisfying 
∑

n nkn = ∑
n nk′

n. The expectation value of h̄+(t, θ)

operator in |�k〉
state is (1/2 + h̄s). The quantum dispersion, �h̄+ in |�k〉

state is O(h̄) and hence 
a generic |�k〉

state can be interpreted as quantum fluctuations over the ground state.
A generic coherent state in H+ can be defined as8

|τ+
〉 = exp

( ∞∑
n=1

2τ+
n a

†
n

nh̄

)
|s〉. (6.28)

8 A rather interesting feature of coherent states written in this form is pointed out by [50–52]. One can show that the 
inner product between the coherent state (6.28) and a state lying in the Grassmannian is tau function of the KP hiererchy.
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The state |τ+
〉

is not normalised. The normalization is given by

〈
τa+|τb+

〉 = exp

(∑
n

4τa
n+τb

n+
nh̄2

)
. (6.29)

The coherent state |τ+
〉

is an eigenstate of an (∀ n > 0) operator with eigenvalue τ+
n /h̄. A coher-

ent state |τ+
〉

can be expanded in |�k〉 basis in the following way

|τ+
〉 = ∑

�k

τ+
�k
z�k

|�k〉
, where τ+

�k =
∏
m

(
τ+
m

h̄

)km

. (6.30)

The expectation value of h̄+ operator in a coherent state |τ+
〉

is given by

ωτ+(z) =
〈
τ+| h̄+(z)

π
|τ+

〉
〈
τ+|τ+

〉 = 1

2π
+ sh̄

π
+ 1

π

∑
n>0

τ+
n

(
zn + 1

zn

)
. (6.31)

Value of ωτ+(z) on the unit circle (|z| = 1) in the complex z plane is given by,

ωτ+(θ) ≡ ωτ+(z = eiθ ) = 1

2π
+ sh̄

π
+ ω̃τ+(θ)

where ω̃τ+(θ) = 2

π

∑
n>0

τ+
n cosnθ.

(6.32)

Since the quantum dispersion of h̄+ in a coherent state is zero, we call such states classical.
We set up a map between a state |ψ 〉 ∈ H+ and shape of the upper Fermi surface

|ψ 〉 → {〈ψ |h̄+(θ)|ψ 〉}. (6.33)

This maps the following three types of states in H+ to three different types of shapes of the upper 
Fermi surface h̄+. Such a mapping has been also discussed in [22]. Expectation value of h̄+ in 
ground state is given by 1

2 + sh̄ and has zero dispersion. Thus, ground state |s〉 corresponds to an 
overall shift of h̄+ by an amount s/N over the classical value. Generic normalised excited states 
correspond to O(h̄) ripples on h̄+. In this case, the expectation value of h̄+ picks up a non-zero 
dispersion at O(h̄). O(1) deformation to the upper Fermi surface h̄+ is mapped to coherent states 
|τ+

〉
in H+ as is evident from (6.32). Here we have assumed 〈τ+|h̄+(θ)|τ+〉 is a single valued 

function of θ . An important thing to note here is that the classical deformations do not disturb 
the quadratic profile of the droplets i.e. for a given θ , there exists unique values of h±(θ).

We now consider the mapping between the automodel diagrams and states in the Hilbert 
space. The automodel diagrams corresponds to

h̄±(θ) = ±
(

1

2
+ ξ cos θ

)
. (6.34)

The set of coherent states with τ1 = ξ/2, τn = 0 ∀n > 1 are mapped to the automodel diagrams. 
In particular, the state corresponding to the limit shape is given by

|τ∗〉 = exp

(
a

†
1ξ

h̄

)
|0〉. (6.35)

Thus Plancherel growth of Young diagrams is mapped to evolution of classical states [22]. One 
can also compute the transition amplitude of such evolution process. The ground state ξ = 0 is 
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an eigenstate of the Hamiltonian and hence its evolution is trivial. Therefore, we take our initial 
state as

|τi

〉 = exp 2a
†
1 |s〉. (6.36)

Such state corresponds to a droplet with 1
2 + h̄ cos θ . The transition amplitude for evolution from 

this state to a automodel state in time T is therefore given by [22]

T ∼
∑
R

(
dimR

k!
)2 (

ξ

h̄

)|R|
eiT h̄C2(R) (6.37)

where C2(R) is given by

C2(R) = N
∑
i=1

li +
∑
i=1

li (li − 2i + 1) (6.38)

Here li is the number of boxes in the ith row of the Young diagram R.
Excitations over this state correspond to O(h̄) fluctuations of the limit shape. Consider the 

states

exp

(
a

†
1ξ

h̄
+

∑
n>1

2αna
†
n√

n

)
|0〉 (6.39)

The expectation value of h̄+(θ) in such a state gives

1

2
+ ξ cos θ + 2h̄

∑
n>1

√
nαn cosnθ (6.40)

which is essentially the result (3.20) of Ivanov and Olshanki [9].

7. Conclusion

In this paper we show that the growth of Young diagrams equipped with Plancherel measure 
can be studied through a simple unitary matrix model, namely Gross-Witten-Wadia model. Con-
sidering the growth process to be Markovian and governed by Plancherel probability naturally 
we write down a partition function for such growth process. Plancherel growth also serves as 
an interesting toy model to study growth or melting of 2d crystals [8,53]. Strictly speaking, the 
partition function can be evaluated exactly as one can explicitly perform the sum over all pos-
sible representations. However, in order to capture the growth process via saddle point analysis 
in the limit of large box number, we introduce a cut-off N on the number of rows in the Young 
diagrams. The regularised partition function turns out to be identical to that of the GWW model 
with N playing the role of the rank of the gauge group. We performed a saddle point analysis 
of the regularised partition function and find that in the continuum limit the partition function 
is dominated by a class of diagrams. The class is isomorphic to no-gap phase of GWW model. 
Different diagrams in this class are characterised by a single parameter 0 < ξ < 1/2. The lim-
iting diagram ξ → 1/2 corresponds to limit shape and mapped to GWW transition point in the 
eigenvalue side. This gives an alternate proof of the limit shape theorem of large Young dia-
grams [3,4]. In [5], Kerov introduced a differential model for the growth of Young diagrams, 
known as the automodel. We find that in continuum limit the above one parameter class of di-
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agrams falls in the automodel class of Kerov with renormalised box number playing the role of 
time.

There exists a correspondence between unitary matrix models and free Fermi droplets in 
two dimensions. Using this correspondence, we see that the evolution of Young diagrams in 
automodel class can be mapped to different shapes of incompressible fluid droplets in two 
dimensions. Automodel evolution corresponds to area preserving deformation of these fluid 
droplets. Such identification was possible due to the equivalence between GWW model and 
automodel partition function [7]. Since eigenvalues of unitary matrices behave like position of 
free fermions, two dimensional fluid droplets are identified with classical phase space of these 
free fermions [7,18]. Although the model under consideration is non-dynamical, we introduce 
time in an ad-hoc manner by identifying our eigenvalue distribution with the Fermi distribu-
tion at zero temperature thus constructing a one particle Hamiltonian. We subsequently use 
the techniques developed in [22] to provide a Hilbert space description for the growth pro-
cess of Young diagrams. In order to achieve this, we quantise these free Fermi droplets and 
find that the boundary modes satisfy Kac-Moody algebra. Edge excitations of fractional quan-
tum Hall fluid also satisfy similar algebra [54]. We construct the Hilbert space associated with 
the quantised droplets and identify a mapping between Young diagrams and coherent states 
in the Hilbert space. Firstly, the ground state of the Hilbert space corresponds to the circu-
lar shape of the Fermi surfaces and are identified with no box diagram. Secondly, a generic 
excited state corresponds to O(1/N) ripples on the Fermi surface. Thirdly, a O(1) deforma-
tion to the Fermi surfaces are captured by coherent states in the Hilbert space and is mapped 
to regularised large N diagrams. Certain coherent states in the Hilbert space correspond to 
automodel Young diagrams. Young diagrams in automodel class are characterised by a one pa-
rameter class of coherent states. Hence, growth of Young diagrams are mapped with evolution 
of these coherent states in the Hilbert space. We also observe that the shape of arbitrary fluc-
tuations matches with the fluctuations of limit shape studied earlier by Ivanov and Olshanki. 
[9].
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Appendix A. Analysing unitary matrix models

A.1. Eigenvalue analysis

In this section, we will briefly review the eigenvalue analysis, the Young diagram analysis and 
their connection in the context of the so-called single plaquette model. Interested readers may 
refer to [18] for further details.

In the diagonal basis the partition function of the single plaquette model described by the 
action (2.2) is given by (up to an overall volume dependent factor),

Z =
ˆ N∏

i=1

dθi

∏
i<j

sin2
(

θi − θj

2

)
expN

∑
n

2βn

n

N∑
i=1

cosnθi. (A.1)

In the large N limit, the discrete eigenvalues θi goes over to a smooth continuous function θ(x)

where x ∈ [0, 1]. One can write down a saddle point equation in the continuum limit which is 
given by

−
ˆ 1

0
dy cot

(
θ(x) − θ(y)

2

)
=

∑
n

βn cosnθ(x). (A.2)

Defining a distribution function (called eigenvalue density) ρ(θ) for eigenvalues over a unit circle

ρ(θ) = 1

N

N∑
i=1

δ(θ − θi) = dx

dθ
. (A.3)

the saddle point equation (A.2) can be recast as

−
ˆ

dθ ′ cot

(
θ − θ ′

2

)
ρ(θ ′) =

∑
n

βn cosnθ, with
ˆ

dθρ(θ) = 1. (A.4)

A.2. Young diagram analysis

The exponential appearing in the partition function of the single plaquette model can be ex-
panded into an infinite series which runs over representations R of unitary group U(N),

Z =
∑∑ ε( �β, �k)

z�k

∑ ε( �β, �l)
z�l

χR(C(�k))χR(C(�l)). (A.5)

R �k �l
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Here χR(C(�k)) is the character of conjugacy class C(�k) of permutation group SK , K = ∑
n nkn

and

ε( �β, �k) =
∞∏

n=1

Nknβkn
n , z�k =

∞∏
n=1

kn!nkn. (A.6)

Sum of representations of SU(N) can be written as a sum over different Young diagrams. Say, 
ni is the number of boxes in the i-th row of the Young diagram. We decompose the sum over 
representations as a sum over all possible Young diagrams that one can draw for the symmetric 
group. We introduce N new variables which are defined as:

hi = ni + N − i ∀ i = 1, · · · ,N. (A.7)

hi ’s are called hook numbers and they satisfy the following constraint

h1 > h2 > · · · > hN ≥ 0. (A.8)

In terms of the new variables hi , the partition function (A.5) is therefore given by,

Z =
∑
{hi }

∑
�k,�l

ε( �β, �k)ε( �β, �l)
z�kz�l

χ�h(C(�k))χ�h(C(�l)) (A.9)

where �h denotes a particular representation.
As before we define continuous variables in the large N limit

hi

N
= h(x), kn = N2k′

n, x = i

N
with x ∈ [0,1]. (A.10)

Writing characters χ�h in terms of h(x) and k′
n, partition function (A.5), in large N limit, can be 

written as

Z =
ˆ

[dh(x)]
∏
n

ˆ
dk′

ndl′n exp
[
−N2Sh

eff [h(x), �k′
n,

�l′n]
]
, (A.11)

where Sh
eff is the effective action in Young diagram basis. Dominant contribution to partition 

function comes from those representations which minimise the effective action Sh
eff . To find the 

most dominant representations at large N , we introduce a function called Young tableaux density 
defined as,

u(h) = −dx

dh
. (A.12)

Thus we see that the unitary matrix model under consideration can be expressed in two dif-
ferent basis - eigenvalue basis (picture I) and Young diagram basis (picture II). Different large N
phases can be characterised either by distributions of eigenvalues or Young diagrams. Therefore 
it is expected that there is a relation between these two pictures. We now discuss this relation.

A.3. Finding the connection between two pictures

The character of permutation group is given by Frobenius formula

χR(C(�k)) =
[
�(x)

∏
(Pn(x))kn

]
(A.13)
n (h1,h2,···hN )
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where

Pn(x) =
N∑

i=1

xn
i , �(x) =

∏
i<j

(xi − xj ) (A.14)

and (x1, · · · , xN) are set of auxiliary variables. The notation [· · · ](h1,··· ,hN ) implies

[f (x)](h1,··· ,hN ) = coefficient of x
h1
1 · · ·xhN

N in f (x). (A.15)

Promoting N auxiliary variables to N complex variables (z1, · · · , zN), Frobenius formula (A.13)
can be written as a residue of a complex function as follows

χ[h(x),C( �k′)] =
(

1

2πi

)N ˛ [Dz(x)]
z(x)

exp[−N2Sχ(h[x], �k′)] . (A.16)

This is subsequently used in (A.5) to obtain

Z =
∏
n

ˆ
dk′

ndl′n
ˆ

[dh(x)]
˛

[dz(x)]
˛

[dw(x)]
∞̂

−∞
dt

∞̂

−∞
ds

× exp
(
−N2Stotal

[
h, z,w, �k′, �l′, t, s

])
(A.17)

where,

− Stotal

[
h, z,w, �k′, �l′, t, s

]
=

∑
n

[
k′
n

(
1 + ln

(
βnZn

nk′
n

))
+ l′n

(
1 + ln

(
βnWn

nl′n

))]

+ 1

2

1ˆ

0

dx −
1ˆ

0

dy (ln |z(x) − z(y)| + ln |w(x) − w(y)|)

−
1ˆ

0

dxh(x) ln z(x)w(x) + it

(∑
n

nk′
n − K ′

)
+ is

(∑
n

nl′n − K ′
)

.

(A.18)

Extremising Stotal with respect to h(x), z(x), w(x), k′
n and l′n, we see that the saddle point 

equations are given by

∑
n

nk′
n

Zn

zn(x) + −
1ˆ

0

dy
z(x)

z(x) − z(y)
− h(x) = 0 (variation w.r.t. z(x)) (A.19)

where,

Zn =
1ˆ

0

dxzn(x). (A.20)

Similar equation can be obtained when we vary action with respect to w(x). Variation with 
respect to h(x) gives

z(x)w(x) = e−i(t+s) = constant (independent of x). (A.21)

Finally, variation with respect to k′ and l′ provides,
n n
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βnZn

nk′
n

= e−itn, and
βnWn

nl′n
= e−isn. (A.22)

Since the contours are unit circle around origin, one can take a consistent solution to the above 
two equations (A.21), (A.22) as

z(x) = eiθ(x), w(x) = e−iθ(x), t = s = 0 (A.23)

and

k′
n = l′n = βnρn

n
, where Zn =

ˆ
dθρ(θ) cosnθ ≡ ρn. (A.24)

Defining ρ(z) = dx
dz

equation (A.19) can be written as

h(z) = �
ˆ

C

dz′ρ(z′) z

z − z′ +
∑
n

nk′
n

Zn

zn. (A.25)

We define a quantity h̄(z)

h̄(z) =
˛

C

dz′ρ(z′) z

z − z′ +
∑
n

nk′
n

Zn

zn. (A.26)

h̄(z) is analytic everywhere in complex z plane except inside the support of ρ(z) on C. It has a 
branch cuts along the support of ρ(z). If h+(z) and h−(z) are values of h̄(z) on either sides of 
branch cuts then we have

h±(z) = +
∑
n

nk′
n

Zn

zn +
˛

C

dz′ρ(z′) z

z − z′ ± iπzρ(z). (A.27)

Considering contour C to be unit circle we have

∑
n

nk′
n

Zn

einθ + −
π̂

−π

dθρ(θ ′) eiθ

eiθ − eiθ ′ − h±(θ) ± πρ(θ) = 0 (A.28)

Evaluating the partition function (A.17) on equations (A.19), (A.21), (A.22) we find,

Z =
ˆ

[Dθ ] exp

[
N2

∞∑
n=1

2
βn

n
ρn + N2 1

2
−
ˆ

dθρ(θ) −
ˆ

dθ ′ρ(θ ′) ln

∣∣∣∣4 sin2
(

θ − θ ′

2

)∣∣∣∣
]

.

(A.29)

Thus we see that the partition function is exactly same as the partition function of one plaque-
tte model written in eigenvalue basis (equation (A.1)) with ρ(θ) being the eigenvalue density. 
Hence, we identify the auxiliary variables we used to write the character of symmetric group 
with eigenvalues of the corresponding unitary matrix model involved.

Separating the saddlepoint equation (A.28) into real and imaginary part we see that the imag-
inary part of this equation is same as the saddle point equation (5.9) for ρ(θ). Hence we are left 
with only the real part, which is given by,

h±(θ) = 1

2
+

∑
βn cosnθ ± πρ(θ). (A.30)
n
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The above two relations can be written as a solution of a quadratic equation of h

h2 − 2S(θ)h + S(θ) − π2ρ2(θ) = 0 (A.31)

where S(θ) = 1
2 + ∑

n βn cosnθ .

Appendix B. Spectral curve

Complexifying the above equation by replacing θ → −i ln z yields,

h(z)2 − 2S(z)h(z) + S2(z) − π2ρ2(z) = 0, S(z) = 1

2
+

∑
n

βn

2

(
z + z−1

)
. (B.1)

h(z) is defined on a two-sheeted cover of our original complex plane. The two sheets correspond 
to the two solutions of the quadratic equation (B.1). The solutions are given by

h±(z) = S(z) ± πρ(z). (B.2)

The analytic properties of h±(z) on two Riemann sheets depends on the ρ(z). S(z) is a known 
meromorphic function with pole at z = 0. For no-gap solution πρ(z) = S(z) and hence h+(z) =
2S(z) and h(z) = 0. Therefore both h+(z) and h−(z) are analytic on both the Riemann sheets. 
There is no way one can connect these two Riemann sheets. The resulting geometry is given by 
S2 ∪ S2 once we identify the points at infinity for both the Riemann sheets separately.

For a s-gap solution ρ(z) has the following form [17]

ρ(z) =
√

F(z)

2π
, where F(z) = f (z)

s∏
i=1

(
z + ai + 1

z

)
, (B.3)

with ai �= aj for i �= j . ai is also real and −2 ≤ ai ≤ 2, ∀i. The function f (z) is analytic. Hence 
h±(z) has s branch cuts on unit circles on both the Riemann sheets. One can, therefore, glue 
these two Riemann sheets along s cuts. As a result, the geometry is given by a genus g = s − 1
Riemann surface.

Appendix C. Asymmetric solutions

In large k limit the matrix model (4.5) renders another class of solution [7]. This solution is 
given by

u(h) = 2

π
cos−1

(
h + ξ − 1/2

2
√

ξh

)
, for p ≤ h ≤ q

= 0 otherwise
(C.1)

where,

√
p = √

ξ − 1√
2
, and

√
q = √

ξ + 1√
2

(C.2)

and fugacity z (or a) is given by

z = 4ξ2

. (C.3)

4ξ − 1
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The solution is valid for ξ > 1/2. The Young diagrams for this distribution is not symmetric 
under transposition.

This is a valid solution in the context of GWW model. In case of GWW model the sum 
in equation (4.11) was over the representations of unitary group U(N) for which the maximum 
number of boxes in the first column of a Young diagram is N . Therefore, the symmetric represen-
tation fails to be a valid solution of GWW when the first column saturates this bound. As a result, 
GWW model undergoes a third order phase transition at ξ = 1/2, known as Gross-Witten-Wadia 
phase transition.

However we are dealing with partition function (3.2) where the sum is running over the rep-
resentations of symmetric group. In this case there is no such restriction on N (number of boxes 
in the first column). Thus we do not see any such phase transition here.
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