Eur. Phys. J. C (2021) 81:923
https://doi.org/10.1140/epjc/s10052-021-09720-6

THE EUROPEAN ()]
PHYSICAL JOURNAL C e

updates

Regular Article - Theoretical Physics

Wave zone in the Horava—-Lifshitz theory at the kinetic-conformal

point in the low energy regime

J. Mestra-Paez*®, J. M. Peiia®, A. Restuccia®

Departamento de Fisica, Universidad de Antofagasta, Aptdo, 02800 Antofagasta, Chile

Received: 1 July 2021 / Accepted: 5 October 2021
© The Author(s) 2021

Abstract We show that in the Hofava—Lifshitz theory at
the kinetic-conformal point, in the low energy regime, a wave
zone for asymptotically flat fields can be consistently defined.
In it, the physical degrees of freedom, the transverse traceless
tensorial modes, satisfy a linear wave equation. The Newto-
nian contributions, among which there are terms which man-
ifestly break the relativistic invariance, are non-trivial but do
not obstruct the free propagation (radiation) of the physical
degrees of freedom. For an appropriate value of the couplings
of the theory, the wave equation becomes the relativistic one
in agreement with the propagation of the gravitational radi-
ation in the wave zone of General Relativity. Previously to
the wave zone analysis, and in general grounds, we obtain
the physical Hamiltonian of the Hotava—Lifshitz theory at
the kinetic-conformal point in the constrained submanifold.
We determine the canonical physical degrees of freedom in a
particular coordinate system. They are well defined functions
of the transverse-traceless modes of the metric and coincide
with them in the wave zone and also at linearized level.

1 Introduction

The detection of gravitational waves has opened a new era in
the study of physics [1,2]. Multi-messenger astronomy will
be decisive in the study of astrophysical and cosmological
events and can lead to the discovery of new phenomena in
extreme situations beyond the reach of experimental tests
that we now carry out.

Hotava-Lifshitz gravity is a recent proposal for a can-
didate to ultraviolet completion of General Relativity (GR)
[3,4]. This theory models the gravity as 4-dimensional differ-
entiable manifold with a foliation-structure of co-dimension
one. The foliation-leaves are 3-dimensional Riemannian sub-
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manifolds. In addition, the time and space scale in different
ways, consequently the relativistic symmetry is manifestly
broken. The anisotropic scaling allows to include interaction
terms with high spatial derivatives in the potential, without
breaking the symmetry of the action under diffeomorphisms
that preserve the foliation while keeping the second-order
time derivatives of the kinetic term. The theory contains sev-
eral coupling constants. There is only one in the kinetic term
of the Hotava—Lifshitz action, it is dimensionless and plays
a relevant role in the theory. When its value is A = 1/3,
the so-called kinetic-conformal point, the theory propagates,
at the linearized level, the same degrees of freedom of lin-
earized General Relativity and with an appropriate choice of
coupling parameters, it is consistent with low energy exper-
iments [5,6]. At linearized level the non-propagating com-
ponents of the metric and the lapse function become zero in
both theories as a consequence of the constraints.

The original Hotava—Lifshitz gravity [3] suffers from a
strong coupling problem associated to the scalar mode of the
theory. An improved formulation was obtained by the inclu-
sion of a new interaction term proposed by Blas, Pujolas
and Sibiryakov (BPS), quadratic in derivatives and com-
patible with the foliation preserving diffeomorphisms [4,7]
and the corresponding contributions to the potential. This
extended formulation is free from the strong coupling prob-
lem of the original Hotfava—Lifshitz version. It is a weakly
coupled anisotropic description of gravity.

The Hotfava—Lifshitz gravity for A = 1/3, with the inclu-
sion of the BPS interaction term, does not propagate, at any
energy scale, the scalar mode which occurs for A # 1/3.
Therefore, it does not have any strong coupling problem. The
inclusion of the BPS interaction term is essential to have a
formulation of the second class constraints in terms of strictly
elliptic partial differential equations, which allow a consis-
tent elimination of non-physical modes. Besides, the field
equations for the A = 1/3 model, evaluated at « = 0 and
B = 1 coincide exactly with the General Relativity field
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equations in the gauge # = 0 (an admissible gauge condi-
tion outside the black hole horizon in GR). This gauge was
used in the ADM analysis of the dynamics of GR [8]. More-
over, for the models with A # 1/3 the only dependence on
A in the Hamiltonian is through the term proportional to 72
given by

7z G e (1)

On the other hand, in the Hamiltonian of the A = 1/3
model there is no 72 term, since there is a second class
constraint 7 = 0 which arises directly as a primary con-
straint from the canonical formulation of the theory. The term
72 could in principle be generated from the renormalization
group flow, since it is an admissible term in the Hamilto-
nian under the foliation preserving diffeomorphisms. How-
ever, the second class constraint which has to be imposed
at all times prevents its appearance. Consequently, the BPS
extension of the A = 1/3 Horfava—Lifshitz gravity is a viable
model, describing anisotropic gravity.

There are then three non projectable viable models of
anisotropic gravity: the healthy extension of Hotava—Lifshitz
[4] for A # 1/3, which describes the propagation of
transverse-traceless tensorial modes together with a scalar
one, the U(1) symmetric models [9—13] for the projectable
models and [14] for the non projectable models, and finally
the A = 1/3 model of Hotava-Lifshitz gravity, the conformal
kinetic model, which with the inclusion of the BPS interac-
tion term, propagates only the transverse-traceless tensorial
modes. We will consider in this paper this latest model. The
theory ends up being power counting renormalizable and uni-
tary [15-28].

Beyond the linearized formulation, GR has a well defined
wave zone, on which the physical degrees of freedom prop-
agate freely on a nontrivial Newtonian background. This is a
nontrivial property of GR not necessarily valid for nonlinear
theories. Hence, we may wonder if such a property is also
valid for Hotava-Lifshitz gravity, and if it is the case what
are the effects of the anisotropy, that is, the breaking of the
Lorentz symmetry, on the wave zone.

Arnowitt, Deser and Misner (ADM) proved in the 60s
that General Relativity has a well defined wave zone [29]. In
this space-time region the metric components gS.T at order
O'(1/r) satisfy the same wave equation as in the linearized
theory around a Minkowski space-time. In the wave zone
there also exists a Newtonian background at order &'(1/r)
that does not prevent the gigT modes, the physical degrees of
freedom, to propagate as free radiation [8,29].

We prove in this work that in the (A = 1/3)-Hofava—
Lifshitz gravity at low energies, although the relativistic sym-
metry is broken, there is a wave zone where the physical
degrees of freedom, the transverse traceless tensorial modes,
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propagate freely satisfying a wave equation, without any
interaction with the nontrivial Newtonian background as in
GR. This means that the low energy results obtained for the
wave propagation in GR, in the wave zone, are also valid for
the Horava—Lifshitz gravity theory.

We emphasize that although in the wave zone the dynam-
ical equation satisfied by the physical degrees of freedom is
the same as the one obtained from a linearized analysis, in
the wave zone there are nontrivial Newtonian components
of the metric (background). This Newtonian background, a
nonlinear effect of the analysis, determine the energy and
momentum of the gravitational wave. This situation also hap-
pens in GR, but with different expressions for the energy and
momentum [30].

We show, using the local symmetries, that the Hotfava—
Lifshitz theory, at the kinetic-conformal point, can be canon-
ically reduced to a Hamiltonian formulation in terms of the
physical degrees of freedom, in a particular coordinate frame.
The Hamiltonian density explicitly depends on the Lorentz
violating term characterized by the coupling parameter «.

In Sect. 2, we review the Hotava—Lifshitz theory at the
kinetic-conformal point. In Sect. 3, we show that there is a
Hamiltonian formulation in terms of the physical degrees of
freedom. We obtain the Hamiltonian density in a particular
coordinate system. In Sect. 4, we obtain the formulation of
the theory in the wave zone. Finally, in Sect. 5, we give the
conclusions of our paper.

2 Foliation, geometry and Horava-Lifshitz gravity

Let M be a 4-dimensional differentiable manifold. M has a
codimension-one foliation structure (M, .%) if the maximal
atlas # = (Uy, ¢o7) 1.6 M = U Uy, where Uy is a family
of open subsets of M and ¢, : U,y — D, C R! x R? are
diffeomorphism such that if U; N U; # ¢ the transition of
charts is defined by

giop; 1 9iUiNU) — ¢;(UiNU)), )
(t,x) = (1), £(t, %)) 3)

The couple (M, %) and its equivalents under the diffeo-
morphisms, that preserve the foliation structure, .%p; ff>pro-
vide the geometrical structure of the Hotfava-Lifshitz theory
where space and time scale anisotropically + — b%t and
x — bx. We remark that M is the disjoint union of 3-
dimensional Riemannian manifolds (X, g;;), g;j(t,x) =
g—ﬁg—’fglm(f, X), where the following geometric objects
compatibles with the foliation structure are introduced: a
proper time defined through the introduction of the lapse
N and a shift of the spatial coordinates defined through N’
in order to have a contravariant transformation law under

fDiff-
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N, %)di = N(t, x)dt, 4)

ol
dit + N'(i, %)di = %[dxf + N7 (¢, x)dt], (5)
we emphasize that there is not a space-time metric on M.
The metric on the leaves of the foliation g;; and the fields N
and N’ are used to describe the evolution of the gravitational
field. They scale anisotropically as g;; — bOg; N — bON
and N — b~ INT.

Taking into account the anisotropic scaling and foliation
structure the proposal incorporates terms with high spatial
derivatives in the potential without breaking the symmetry
under .%p; r¢. The Hamiltonian of the Hofava—Lifshitz grav-
ity theory at the kinetic-conformal pointis given by [6,31-33]

S T

oY

~N;jH/ —oPy —IUT} + BEapwm, (6)

here 7%/ is the canonical conjugate of g;;, N; = g[ij, o
and p are Lagrange multipliers. The surface integral

Eapm = ?g (0j8ij — 0igjj) dSi. @)
3

is added in order to ensure the Fréchet differentiability of the
Hamiltonian, see [34] where this idea was introduced and
it was shown that E4pys is the ADM energy in GR. The
potential, up to terms quadratic on the Riemann tensor and
the vector field a;, is ¥ = ¥V + 7@ 4+ 7 with [15]

¥ = BR + aag;d’, ®)

¥® = @|RV;a' + 0Via;Via) + iR RV + poR*>  (9)

VO = a3 VERVid' + aqV2a;V?a' + B3V R VI R/
+B4ViRV'R, (10)

where a; = L8,-N , V; represents the affine connection, the
covariant derivative constructed with the Riemannian met-
ric on the leaves, a’s and B’s are coupling constants. The
potential also contains terms of the same order in the spa-
tial derivatives as the ones explicitly shown, but of cubic
order or greater on the Riemann tensor and the vector field
a;. Since they do not contribute to the dominant order in the
wave zone they have not been presented in (9) and (10). The
primary constraints of the theory are
H/ =2Vin'/ =0, Py=0, 7w=g;z’=0. (11)
If we consider only the low energy potential, 7 (!, the
time preservation of primary constrains imply the following

secondary constraints:

31 1
HP = 577[”7”'/ + 5\/§,3R

+Vz (E - 2,8) aia’ — 2B /gVa; =0, (12)
Hy = «/IE (7‘[ Tij — ﬁgR) +otfa,

+2a,/gVia' =0, (13)

which together with the last two constraints in (11) are second
class constraints, while H/ = 0 is a first class constraint.
The evolution equations are,

N
—mij +2ViNj) —

2
0:8ij = NG HUgijs (14)
ij g7 o 2N i
o = — my — — kgl
2 & V8

+Nf;3< ' U)
i Lk

—aN,/g|a'a — 58" aka

niij]

N [v“vf')N — g"f'va] + (15)

VA [an(i NI —

3 Energy in Horava-Lifshitz gravity

If we calculate the Hamiltonian (5) in the constrained sub-
manifold it reduces to a surface term. We are going to show in
this section that the physical Hamiltonian, that is, the Hamil-
tonian expressed solely in terms of the physical degrees of
freedom is the mentioned surface term. To do so, we evaluate
the Lagrangian on the constrained submanifold and express
the kinetic terms solely in terms of the physical degrees of
freedom. From it we obtain the physical Hamiltonian which
ends up being the surface term E. This is a way to show that
the gravitational energy is given by the surface term E. An
interesting point in our argument will be that no integration
by parts needs to be performed.

In order to identify which field components propagate
and which are static ones, we will use an orthogonal linear
decomposition in transverse and longitudinal parts, the ADM
decomposition [8,29]. A symmetric tensor that vanishes at
infinity can be expressed as
fii = 15T+ 15 420 £y (16)
S8 T — 509,71 is
divergence-free. The fl./T.T—part is divergence-free and trace-
free. The remaining term 29 f;) is its longitudinal part.

The transverse part fl? =

@ Springer
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fr =6l fg is the trace of the transverse part of fi;. + is
the inverse of the flat space Laplacian, defined on the space
of functions which vanish at infinity.

It is known that the Hamiltonian of the Hotfava—Lifshitz
action can be rewritten as a linear combination of constraints
[15] provided two surface terms are included:

E=-8 dsigh — 2a7§ dSiN ;, (17)
X X

and that the physical degrees of freedom of the Hofava—
Lifshitz gravity at the linearized level are the TT tensorial
modes. Notice that the expression of g7 and N in terms of
the physical degrees of freedom can be obtained from the
two second class constraints (13) and (12), respectively.
The Lagrangian evaluated on the submanifold of con-
straints reduces to the kinetic terms plus surface terms

= /dtd3x 7 dgij — E. (18)

We assume the following flat asymptotic behaviour, as in
GR:

gij —8ij = O(/r), dgij =01/r?, (19)
=00/, o'l =00/, (20)
N—1=01/r), N =01/r), 1)
N; = 0(1/r), ON; = O0(1/r?). (22)

Furthermore, we can fix, using the spacelike diffeomor-
phisms % p; 7f» the coordinate condition [8]

o
gi:x:+<4A>gV (23)

or in differential form

1 1

8ij.jkk = 7 8kjkji — 7 8jjkki = 0. (24
We will use an equivalent decomposition to (16) but reor-
ganized in a different way. We consider the following orthog-

onal decomposition of 4;; = g;; — dij,

1
51, (25)

hl]_hTT+hT+3

where §; jhiTjT = 8ijhj; = 0,7’ means traceless with respect
to §;;. It follows that & = h;;. By definition, a,»hl.ij =0,
T’ means transverse with respect to 9d; , and hl.’j is defined in
terms of a vector field W;

2
h; = 0;W; +0;W; — 3810 Wi (26)

@ Springer

This decomposition exists and it is unique. It is analogous to
the York decomposition, however it is not covariant. It can
also be rewritten as

1 1
(1+§h)h1_h”+hf + =

3g,'jh. (27)

Comparing the decomposition (25) with the T+L ADM
decomposition (16) we obtain

hT‘E_hTT _h_lahT

ij o 1A h=h,-,~=hT—|—28,»h,~,

(28)

where hiTjT ,hT and h; are the T+L components of the ADM
decomposition. Using the .#p; sy symmetry we can always
fix W; = 0. In fact, the gauge fixing condition is exactly (23).
We then have

Rl h
hij = —1— 4+ —gij———. (29)
TR I T3 L
In order to analyse the reduction to the Hamiltonian den-
sity in terms of the physical degrees of freedom, the trans-
verse traceless modes, we consider now the covariant decom-
position introduced by York [35]

mtl = gUTT 4 FUT 4 lg”ﬁ (30)
3 b

where gijﬁijTT = gijfr"ff =0, V;7TT = 0 and 797 is

defined in terms of a vector field U/

At =viul +viu' — 5gl/kak. (31)

It then follows from the constraints of the theory that

l J 7'[1 J Tr (32)
We remark that 7/ 7 is a function of the 77/ 77 transverse-
traceless ADM modes which are independent of the metric
gij- One way of making explicit this pomt is to consider the

ij z]TT nd

sequence nn/ ,n=0,1,2,..., where Ty =T

gl + Ttk =0, 8w | +hijmi = 0. (33)

If this sequence is convergent, that is if there exists a fixed
point of the procedure, we obtain n,;/ — #UTT which
depends on the metric g;; and nST the transverse-traceless
modes of the ADM decomposition. We argue now that the

Hamiltonian density in terms of physical degrees of freedom

can be obtained in terms of #%/77 and hiTjT
{TT . TT FiTe (7T TT
T ’ hkl ! (hmn ’ ) ’ hkl : (34)
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The Lagrangian of the Hofava—Lifshitz theory at the
kinetic-conformal point evaluated on the constrained sub-
manifold is given by (18), where the surface terms E, (17),
arise from the Fréchet differentiability of the action and the
expression of the Hamiltonian rewritten in terms of the con-
straints.

We then have, using that g;;7"/ = 0 is a constraint,

hTr

1+ 3%,

ﬂl]a[h” = ﬂijat (

Tt
= 7y, h”'l + n"fa,gULl. (35)
14 3h 3(1+ 3h)

Also 9, gij = 0;hj , hence

. 1\ hi
7T'</athij = [(1 + §h> ﬁ'l'lTT:| 0 |:1—|j—]1/’li| > (36)
3

where, in the gauge W; =0, 1 + %h =1+ %hT , hT s the
transverse component in the ADM decomposition and can be
obtained from the constraints of the theory in terms of th]T
We then conclude that the canonical conjugate variables are

wIT 1 y
—4 (14 =hT )7V, (37)
1+ 3h? 2

The value of the Hamiltonian on the constrained subman-
ifold is then given by the two surface terms in (17). The
Lagrangian is

TT

1 g h;.
L= |[dtd®x |+ =hDHziTe |5, | —L— |—E, (38
/ x[(+2 )T }'[1+lhT (38)

2

where E is the surface term (17). In contrast with the analysis
in [8], in our argument there is no integration by parts.

4 The gravitational fields in the wave zone

We define the wave zone, as in [8,29], by the following three
conditions: First, kr > 1 where k is the wave number and r is
radial distance. This condition is the same that defines the far-
zone in linear theories such as classical electrodynamics, and
can be satisfied if the radial distance is far enough from the
sources. In addition to the previous condition, for non-linear
theories it is necessary to impose more restrictive conditions
in order to ensure that the self-interaction does not destroy the
free propagation of the dynamical modes. Then as a second
condition, we demand that the deviations of the fields from
“flat background” are of the order of &'(1/r),i.e. |gij —8;j| ~
IN — 1]~ |Nij| = O(A/r) < 1, where A(t, 0, ¢) represent
generic functions of time, and angular coordinates such that

A and all its derivatives are bounded. The third condition
is |0g/d(kr)[> ~ [aN/3(kr)[* ~ [aN;/d(kr)* < |g —
8|, which is necessary to guarantee that the interaction of
sub-leading order modes can not interfere to leading order
o/r).

The wave zone in GR is a region of space far away from
the source where the TT modes of the metric, the physical
degrees of freedom, propagate freely according to a linear
wave equation. On the near zone the interaction terms are
relevant and the propagation of the TT modes is not governed
by the linear wave equation. The T mode of the metric and
lapse N are nontrivial in the wave zone and contribute to the
gravitational energy and momentum. Beyond the wave zone
the dominant terms are the T mode and the lapse N .

The solution of primary constraints (11) implies that the
propagating parts of the momenta in the wave zone behaves
as

y . Bl Al pikr
atil gt~ — ke ——, (39)
r r
Al pikr

ij

ijrr _ B
T 2
r r

) (40)

we use A y B as generic tensorial functions of angles such
that they and their derivatives are bounded.

If we use (39) and (40) in the secondary constrains (12)
and (13) and the transverse gauge g;;,; = 0, we obtain a
coupled system of second-order elliptical partial differential
equations for variables g7 and N. We use here a different
gauge condition than in the previous section. A more ade-
quate one for the present analysis. This is admissible since
the gravitational energy, the surface term E, obtained in the
previous section is independent of the gauge condition. If we
multiply (12) by two and add the result to (13) we decoupled
the system and, since B # 5 for the values of 8 and « deter-
mined from experimental data, we can estimate N and gT at
low energies in the wave zone:

N1~ TNE AAeikr
& r+ }’2 ’

(41)

these fields have a nontrivial Newtonian part &'(1/r). They
are zero in a linearized version of the theory.

In the complete version of the theory, where higher order
derivative terms are included, there are oscillatory zero
modes of the same order which have to be eliminated to
obtain consistency of the theory. We do not have this prob-
lem in the low energy regime.

In the low energy regime, where only the contribution (8)
to the potential is considered, the term aa;a’ breaks mani-
festly the relativistic symmetry. Its contribution to the present
analysis can be determined directly from (41). We obtain

@ Springer
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B;: A ikr
Ty S, 42)
r r
) B AA ikr
aial < o+ (43)
r r
) B A ikr
Vig S = + K55, (44)
r r

although terms including the vector a; are not involved in
the field equations at order &' (1/r), they do contribute to the
gravitational energy and to the Newtonian background.

From the transverse and longitudinal decomposition of the
dynamical equations (14) and (15), we obtain the canonical
form of the wave equation

agl =2l +00/r%), (45)
- 1

ol = Spagyt + 001/, (46)
equivalently,

378"t — BAg T =0+ 0(1/17). (47)

Then to the leading order &'(1/r) the transverse traceless
components of the spatial metric satisfy a wave equation
with speed of propagation «/B. Detection from gravitational
waves arising from the merge of the neutron star binary sys-
tem GW170817 [36] and its electromagnetic counterpart, y -
ray burst GBR170817A [37], restrict the space of S-parameter
to|1—4/B] <10~ 15 [38]. Then, if that is so, the prediction on
gravitational waves of Hofava—Lifshitz theory at the kinetic-
conformal point, at low energies, is the same as in GR.

5 Discussion and conclusions

We showed that in Horava-Lifshitz theory at the kinetic-
conformal point, in the low energy regime, a wave zone
can be consistently defined. In it the physical degrees of
freedom, which reduce to the transverse traceless tensorial
modes, satisfy a linear wave equation. The same one that
arises from a linear perturbative approach [30,39], but unlike
this there are Newtonian non-trivial contributions, that do
not obstruct the free propagation (radiation) of the phys-
ical degrees of freedom. Among these contributions there
are terms which manifestly break the relativistic symmetry.
These terms which determine a different physical behavior,
for example of the static, spherically symmetric solutions
of the Hofava-Lifshitz gravity theory compared to GR, do
not contribute to the free propagation of the physical degree
of freedom to the dominant order in the wave zone. How-
ever, they provide a relevant contribution to the gravitational
energy and the gravitational momentum.

The gravitational energy of the Horava—Lifshitz gravity
has been considered in [30] from an asymptotic analysis,

@ Springer

however the canonical reduction of the Hamiltonian to the
physical degrees of freedom has not been analyzed. In GR
the reduction to a canonical formulation in terms of the TT
modes can be achieved by a suitable gauge fixing condition.
The main point is that the gauge fixing procedure for the
Hotava-Lifshitz gravity reduces to a spacelike coordinate
election, since only reparametrization on time is allowed.
We obtained in Sect. 3 the canonical reduction in terms of
the true physical degrees of freedom, which at linearized level
reduce to the TT modes of the metric. In general they are well
defined functions of the TT modes of the metric.

We showed, using the .%p, sy symmetry, that the Hofava—
Lifshitz theory, at the kinetic-conformal point, can be canon-
ically reduced to a Hamiltonian formulation in terms of the
physical degrees of freedom, in a particular coordinate frame.
They reduce to the TT tensorial modes in the wave zone.

In Horava—Lifshitz theory there does not exist a universal
(scale invariant) constant as the light velocity, however the
energy-dependent coupling constant /B, in the renormal-
ization flow from the UV regime to the IR point, should end
up having a value very near or equal to the speed of light.
In that case, although the Hotava—-Lifshitz theory breaks the
relativistic symmetry, the wave equation coincides with the
relativistic one arising in GR.

We expect that the interaction terms with high spatial
derivatives modify the wave equation by introducing lin-
ear high order spatial derivatives in the wave zone, i.e A”
and A3 operators in the propagating equation. However, it
is unknown if in this case the Newtonian background inter-
acts in a non-trivial way with the propagation of the physical
degrees of freedom. In particular, the resolution of the con-
straints is in this case a non-trivial problem.
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