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Abstract We show that in the Hořava–Lifshitz theory at
the kinetic-conformal point, in the low energy regime, a wave
zone for asymptotically flat fields can be consistently defined.
In it, the physical degrees of freedom, the transverse traceless
tensorial modes, satisfy a linear wave equation. The Newto-
nian contributions, among which there are terms which man-
ifestly break the relativistic invariance, are non-trivial but do
not obstruct the free propagation (radiation) of the physical
degrees of freedom. For an appropriate value of the couplings
of the theory, the wave equation becomes the relativistic one
in agreement with the propagation of the gravitational radi-
ation in the wave zone of General Relativity. Previously to
the wave zone analysis, and in general grounds, we obtain
the physical Hamiltonian of the Hořava–Lifshitz theory at
the kinetic-conformal point in the constrained submanifold.
We determine the canonical physical degrees of freedom in a
particular coordinate system. They are well defined functions
of the transverse-traceless modes of the metric and coincide
with them in the wave zone and also at linearized level.

1 Introduction

The detection of gravitational waves has opened a new era in
the study of physics [1,2]. Multi-messenger astronomy will
be decisive in the study of astrophysical and cosmological
events and can lead to the discovery of new phenomena in
extreme situations beyond the reach of experimental tests
that we now carry out.

Hořava–Lifshitz gravity is a recent proposal for a can-
didate to ultraviolet completion of General Relativity (GR)
[3,4]. This theory models the gravity as 4-dimensional differ-
entiable manifold with a foliation-structure of co-dimension
one. The foliation-leaves are 3-dimensional Riemannian sub-
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manifolds. In addition, the time and space scale in different
ways, consequently the relativistic symmetry is manifestly
broken. The anisotropic scaling allows to include interaction
terms with high spatial derivatives in the potential, without
breaking the symmetry of the action under diffeomorphisms
that preserve the foliation while keeping the second-order
time derivatives of the kinetic term. The theory contains sev-
eral coupling constants. There is only one in the kinetic term
of the Hořava–Lifshitz action, it is dimensionless and plays
a relevant role in the theory. When its value is λ = 1/3,
the so-called kinetic-conformal point, the theory propagates,
at the linearized level, the same degrees of freedom of lin-
earized General Relativity and with an appropriate choice of
coupling parameters, it is consistent with low energy exper-
iments [5,6]. At linearized level the non-propagating com-
ponents of the metric and the lapse function become zero in
both theories as a consequence of the constraints.

The original Hořava–Lifshitz gravity [3] suffers from a
strong coupling problem associated to the scalar mode of the
theory. An improved formulation was obtained by the inclu-
sion of a new interaction term proposed by Blas, Pujolàs
and Sibiryakov (BPS), quadratic in derivatives and com-
patible with the foliation preserving diffeomorphisms [4,7]
and the corresponding contributions to the potential. This
extended formulation is free from the strong coupling prob-
lem of the original Hořava–Lifshitz version. It is a weakly
coupled anisotropic description of gravity.

The Hořava–Lifshitz gravity for λ = 1/3, with the inclu-
sion of the BPS interaction term, does not propagate, at any
energy scale, the scalar mode which occurs for λ �= 1/3.
Therefore, it does not have any strong coupling problem. The
inclusion of the BPS interaction term is essential to have a
formulation of the second class constraints in terms of strictly
elliptic partial differential equations, which allow a consis-
tent elimination of non-physical modes. Besides, the field
equations for the λ = 1/3 model, evaluated at α = 0 and
β = 1 coincide exactly with the General Relativity field
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equations in the gauge π = 0 (an admissible gauge condi-
tion outside the black hole horizon in GR). This gauge was
used in the ADM analysis of the dynamics of GR [8]. More-
over, for the models with λ �= 1/3 the only dependence on
λ in the Hamiltonian is through the term proportional to π2

given by

N√
g

λ

(3λ1)
π2. (1)

On the other hand, in the Hamiltonian of the λ = 1/3
model there is no π2 term, since there is a second class
constraint π = 0 which arises directly as a primary con-
straint from the canonical formulation of the theory. The term
π2 could in principle be generated from the renormalization
group flow, since it is an admissible term in the Hamilto-
nian under the foliation preserving diffeomorphisms. How-
ever, the second class constraint which has to be imposed
at all times prevents its appearance. Consequently, the BPS
extension of the λ = 1/3 Hořava–Lifshitz gravity is a viable
model, describing anisotropic gravity.

There are then three non projectable viable models of
anisotropic gravity: the healthy extension of Hořava–Lifshitz
[4] for λ �= 1/3, which describes the propagation of
transverse-traceless tensorial modes together with a scalar
one, the U (1) symmetric models [9–13] for the projectable
models and [14] for the non projectable models, and finally
the λ = 1/3 model of Hořava–Lifshitz gravity, the conformal
kinetic model, which with the inclusion of the BPS interac-
tion term, propagates only the transverse-traceless tensorial
modes. We will consider in this paper this latest model. The
theory ends up being power counting renormalizable and uni-
tary [15–28].

Beyond the linearized formulation, GR has a well defined
wave zone, on which the physical degrees of freedom prop-
agate freely on a nontrivial Newtonian background. This is a
nontrivial property of GR not necessarily valid for nonlinear
theories. Hence, we may wonder if such a property is also
valid for Hořava–Lifshitz gravity, and if it is the case what
are the effects of the anisotropy, that is, the breaking of the
Lorentz symmetry, on the wave zone.

Arnowitt, Deser and Misner (ADM) proved in the 60s
that General Relativity has a well defined wave zone [29]. In
this space-time region the metric components gTTi j at order
O(1/r) satisfy the same wave equation as in the linearized
theory around a Minkowski space-time. In the wave zone
there also exists a Newtonian background at order O(1/r)
that does not prevent the gTTi j modes, the physical degrees of
freedom, to propagate as free radiation [8,29].

We prove in this work that in the (λ = 1/3)-Hořava–
Lifshitz gravity at low energies, although the relativistic sym-
metry is broken, there is a wave zone where the physical
degrees of freedom, the transverse traceless tensorial modes,

propagate freely satisfying a wave equation, without any
interaction with the nontrivial Newtonian background as in
GR. This means that the low energy results obtained for the
wave propagation in GR, in the wave zone, are also valid for
the Hořava–Lifshitz gravity theory.

We emphasize that although in the wave zone the dynam-
ical equation satisfied by the physical degrees of freedom is
the same as the one obtained from a linearized analysis, in
the wave zone there are nontrivial Newtonian components
of the metric (background). This Newtonian background, a
nonlinear effect of the analysis, determine the energy and
momentum of the gravitational wave. This situation also hap-
pens in GR, but with different expressions for the energy and
momentum [30].

We show, using the local symmetries, that the Hořava–
Lifshitz theory, at the kinetic-conformal point, can be canon-
ically reduced to a Hamiltonian formulation in terms of the
physical degrees of freedom, in a particular coordinate frame.
The Hamiltonian density explicitly depends on the Lorentz
violating term characterized by the coupling parameter α.

In Sect. 2, we review the Hořava–Lifshitz theory at the
kinetic-conformal point. In Sect. 3, we show that there is a
Hamiltonian formulation in terms of the physical degrees of
freedom. We obtain the Hamiltonian density in a particular
coordinate system. In Sect. 4, we obtain the formulation of
the theory in the wave zone. Finally, in Sect. 5, we give the
conclusions of our paper.

2 Foliation, geometry and Hořava–Lifshitz gravity

Let M be a 4-dimensional differentiable manifold. M has a
codimension-one foliation structure (M,F ) if the maximal
atlas F ≡ (UA , ϕA ) i.e M = ∪UA , where UA is a family
of open subsets of M and ϕA : UA → DA ⊂ R

1 × R
3 are

diffeomorphism such that if Ui ∩ Uj �= ∅ the transition of
charts is defined by

ϕi ◦ ϕ−1
j : ϕ j (Ui ∩Uj ) → ϕi (Ui ∩Uj ), (2)

(t, x) → (t̃(t), x̃(t, x)). (3)

The couple (M,F ) and its equivalents under the diffeo-
morphisms, that preserve the foliation structure, FDi f f , pro-
vide the geometrical structure of the Hořava–Lifshitz theory
where space and time scale anisotropically t → bzt and
x → bx . We remark that M is the disjoint union of 3-
dimensional Riemannian manifolds (Σt , gi j ), gi j (t, x) =
∂ x̃ l

∂xi
∂ x̃m

∂x j g̃lm(t̃, x̃), where the following geometric objects
compatibles with the foliation structure are introduced: a
proper time defined through the introduction of the lapse
N and a shift of the spatial coordinates defined through Ni

in order to have a contravariant transformation law under
FDi f f .
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Ñ (t̃, x̃)dt̃ = N (t, x)dt, (4)

dx̃i + Ñ i (t̃, x̃)dt̃ = ∂ x̃ i

∂x j
[dx j + N j (t, x)dt], (5)

we emphasize that there is not a space-time metric on M .
The metric on the leaves of the foliation gi j and the fields N
and Ni are used to describe the evolution of the gravitational
field. They scale anisotropically as gi j → b0gi j , N → b0N
and Ni → bz−1Ni .

Taking into account the anisotropic scaling and foliation
structure the proposal incorporates terms with high spatial
derivatives in the potential without breaking the symmetry
under FDi f f . The Hamiltonian of the Hořava–Lifshitz grav-
ity theory at the kinetic-conformal point is given by [6,31–33]

H =
∫

Σt

d3x

{
N

√
g

[
π i jπi j

g
− V

(
gi j , N

)]

−N j H
j − σ PN − μπ

}
+ βEADM , (6)

here π i j is the canonical conjugate of gi j , Ni ≡ gi j N j , σ

and μ are Lagrange multipliers. The surface integral

EADM ≡
∮

∂Σt

(
∂ j gi j − ∂i g j j

)
dSi , (7)

is added in order to ensure the Fréchet differentiability of the
Hamiltonian, see [34] where this idea was introduced and
it was shown that EADM is the ADM energy in GR. The
potential, up to terms quadratic on the Riemann tensor and
the vector field ai , is V = V (1) + V (2) + V (3), with [15]

V (1) = βR + αaia
i , (8)

V (2) = α1R∇i a
i + α2∇i a j∇ i a j + β1Ri j R

i j + β2R
2 (9)

V (3) = α3∇2R∇i a
i + α4∇2ai∇2ai + β3∇i R jk∇ i R jk

+β4∇i R∇ i R, (10)

where ai ≡ 1
N ∂i N , ∇i represents the affine connection, the

covariant derivative constructed with the Riemannian met-
ric on the leaves, α’s and β’s are coupling constants. The
potential also contains terms of the same order in the spa-
tial derivatives as the ones explicitly shown, but of cubic
order or greater on the Riemann tensor and the vector field
ai . Since they do not contribute to the dominant order in the
wave zone they have not been presented in (9) and (10). The
primary constraints of the theory are

H j = 2∇iπ
i j = 0, PN = 0, π = gi jπ

i j = 0. (11)

If we consider only the low energy potential, V (1), the
time preservation of primary constrains imply the following

secondary constraints:

HP ≡ 3

2

1√
g
π i jπi j + 1

2
√
gβR

+√
g

(α

2
− 2β

)
aia

i − 2β
√
g∇ i ai = 0, (12)

HN ≡ 1√
g

(
π i jπi j − βgR

)
+ α

√
gaia

i

+2α
√
g∇i a

i = 0, (13)

which together with the last two constraints in (11) are second
class constraints, while H j = 0 is a first class constraint.

The evolution equations are,

∂t gi j = 2N√
g
πi j + 2∇(i N j) − μgi j , (14)

∂tπ
i j = N

2

gi j√
g
πklπkl − 2N√

g
π ikπ j

k

+N
√
gβ

(
R

2
gi j − Ri j

)

−αN
√
g

(
aia j − 1

2
gi j aka

k
)

−∇k

[
2πk(i N j) − π i j Nk

]

+β
√
g

[
∇(i∇ j)N − gi j∇2N

]
+ μπ i j . (15)

3 Energy in Hořava–Lifshitz gravity

If we calculate the Hamiltonian (5) in the constrained sub-
manifold it reduces to a surface term. We are going to show in
this section that the physical Hamiltonian, that is, the Hamil-
tonian expressed solely in terms of the physical degrees of
freedom is the mentioned surface term. To do so, we evaluate
the Lagrangian on the constrained submanifold and express
the kinetic terms solely in terms of the physical degrees of
freedom. From it we obtain the physical Hamiltonian which
ends up being the surface term E . This is a way to show that
the gravitational energy is given by the surface term E . An
interesting point in our argument will be that no integration
by parts needs to be performed.

In order to identify which field components propagate
and which are static ones, we will use an orthogonal linear
decomposition in transverse and longitudinal parts, the ADM
decomposition [8,29]. A symmetric tensor that vanishes at
infinity can be expressed as

fi j = f T Ti j + f Ti j + 2∂( j fi). (16)

The transverse part f Ti j ≡ 1
2 [δi j f T − 1

Δ
∂i∂ j f T ] is

divergence-free. The f T Ti j -part is divergence-free and trace-
free. The remaining term 2∂( j fi) is its longitudinal part.
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f T = δi j f Ti j is the trace of the transverse part of fi j . 1
Δ

is
the inverse of the flat space Laplacian, defined on the space
of functions which vanish at infinity.

It is known that the Hamiltonian of the Hořava–Lifshitz
action can be rewritten as a linear combination of constraints
[15] provided two surface terms are included:

E = −β

∮
∂Σt

d Si g
T
,i − 2α

∮
∂Σt

d Si N,i , (17)

and that the physical degrees of freedom of the Hořava–
Lifshitz gravity at the linearized level are the TT tensorial
modes. Notice that the expression of gT and N in terms of
the physical degrees of freedom can be obtained from the
two second class constraints (13) and (12), respectively.

The Lagrangian evaluated on the submanifold of con-
straints reduces to the kinetic terms plus surface terms

L =
∫

dtd3x π i j ∂t gi j − E . (18)

We assume the following flat asymptotic behaviour, as in
GR:

gi j − δi j = O(1/r), ∂gi j = O(1/r2), (19)

π i j = O(1/r2), ∂π i j = O(1/r3), (20)

N − 1 = O(1/r), ∂N = O(1/r2), (21)

Ni = O(1/r), ∂Ni = O(1/r2). (22)

Furthermore, we can fix, using the spacelike diffeomor-
phisms FDi f f , the coordinate condition [8]

gi = xi +
(

1

4Δ

)
gT,i , (23)

or in differential form

gi j, jkk − 1

4
gkj,k ji − 1

4
g j j,kki = 0. (24)

We will use an equivalent decomposition to (16) but reor-
ganized in a different way. We consider the following orthog-
onal decomposition of hi j ≡ gi j − δi j ,

hi j = hT τ
i j + hτ

i j + 1

3
δi j h, (25)

where δi j hT τ
i j = δi j hτ

i j = 0, ’τ ’ means traceless with respect

to δi j . It follows that h = hii . By definition, ∂i hT τ
i j = 0,

’T’ means transverse with respect to ∂i , and hτ
i j is defined in

terms of a vector field Wj

hτ
i j = ∂iW j + ∂ jWi − 2

3
δi j∂kWk . (26)

This decomposition exists and it is unique. It is analogous to
the York decomposition, however it is not covariant. It can
also be rewritten as
(

1 + 1

3
h

)
hi j = hT τ

i j + hτ
i j + 1

3
gi j h. (27)

Comparing the decomposition (25) with the T+L ADM
decomposition (16) we obtain

hT τ
i j = hTTi j , Wi = hi − 1

4

∂i hT

Δ
, h = hii = hT + 2∂i hi ,

(28)

where hTTi j , hT and hi are the T+L components of the ADM
decomposition. Using the FDi f f symmetry we can always
fix Wi = 0. In fact, the gauge fixing condition is exactly (23).
We then have

hi j = hT τ
i j

1 + 1
3h

+ 1

3
gi j

h

1 + 1
3h

. (29)

In order to analyse the reduction to the Hamiltonian den-
sity in terms of the physical degrees of freedom, the trans-
verse traceless modes, we consider now the covariant decom-
position introduced by York [35]

π i j = π̃ i jT τ + π̃ i jτ + 1

3
gi j π̃ , (30)

where gi j π̃ i jT τ = gi j π̃ i jτ = 0 , ∇i π̃
i jT τ = 0 and π̃ i jτ is

defined in terms of a vector field U j

π̃ i jτ = ∇ iU j + ∇ jU i − 2

3
gi j∇kU

k . (31)

It then follows from the constraints of the theory that

π i j = π̃ i jT τ . (32)

We remark that π̃ i jT τ is a function of theπ i jT T transverse-
traceless ADM modes which are independent of the metric
gi j . One way of making explicit this point is to consider the

sequence π
i j
n , n = 0, 1, 2, . . . , where π

i j
0 = π i jT T and

∂iπ
i j
n+1 + 


j
ikπ

ik
n = 0, δi jπ

i j
n+1 + hi jπ

i j
n = 0. (33)

If this sequence is convergent, that is if there exists a fixed
point of the procedure, we obtain π

i j
n → π̃ i jT τ , which

depends on the metric gi j and πT T
i j the transverse-traceless

modes of the ADM decomposition. We argue now that the
Hamiltonian density in terms of physical degrees of freedom
can be obtained in terms of π̃ i jT τ and hTTi j

π i jT T , hTTkl ←→ π̃ i jT τ
(
hTTmn , πT T

pq

)
, hTTkl . (34)
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The Lagrangian of the Hořava–Lifshitz theory at the
kinetic-conformal point evaluated on the constrained sub-
manifold is given by (18), where the surface terms E , (17),
arise from the Fréchet differentiability of the action and the
expression of the Hamiltonian rewritten in terms of the con-
straints.

We then have, using that gi jπ i j = 0 is a constraint,

π i j∂t hi j = π i j∂t

(
hT τ
i j

1 + 1
3h

+ 1

3
gi j

h

1 + 1
3h

)

= π i j∂t

(
hT τ
i j

1 + 1
3h

)
+ π i j∂t gi j

h

3
(
1 + 1

3h
) . (35)

Also ∂t gi j = ∂t hi j , hence

π i j∂t hi j =
[(

1 + 1

3
h

)
π̃ i jT τ

]
∂t

[
hT τ
i j

1 + 1
3h

]
, (36)

where, in the gauge Wi = 0 , 1 + 1
3h = 1 + 1

2h
T , hT is the

transverse component in the ADM decomposition and can be
obtained from the constraints of the theory in terms of hTTi j .
We then conclude that the canonical conjugate variables are

hTTi j

1 + 1
2h

T
,

(
1 + 1

2
hT

)
π̃ i jT τ . (37)

The value of the Hamiltonian on the constrained subman-
ifold is then given by the two surface terms in (17). The
Lagrangian is

L =
∫

dtd3x

[
(1 + 1

2
hT )π̃ i jT τ

]
∂t

[
hTTi j

1 + 1
2h

T

]
−E, (38)

where E is the surface term (17). In contrast with the analysis
in [8], in our argument there is no integration by parts.

4 The gravitational fields in the wave zone

We define the wave zone, as in [8,29], by the following three
conditions: First, kr 
 1 where k is the wave number and r is
radial distance. This condition is the same that defines the far-
zone in linear theories such as classical electrodynamics, and
can be satisfied if the radial distance is far enough from the
sources. In addition to the previous condition, for non-linear
theories it is necessary to impose more restrictive conditions
in order to ensure that the self-interaction does not destroy the
free propagation of the dynamical modes. Then as a second
condition, we demand that the deviations of the fields from
“flat background” are of the order ofO(1/r), i.e. |gi j−δi j | ∼
|N − 1| ∼ |Ni | = O(A/r) � 1, where A(t, θ, φ) represent
generic functions of time, and angular coordinates such that

A and all its derivatives are bounded. The third condition
is |∂g/∂(kr)|2 ∼ |∂N/∂(kr)|2 ∼ |∂Ni/∂(kr)|2 � |g −
δ|, which is necessary to guarantee that the interaction of
sub-leading order modes can not interfere to leading order
O(1/r).

The wave zone in GR is a region of space far away from
the source where the TT modes of the metric, the physical
degrees of freedom, propagate freely according to a linear
wave equation. On the near zone the interaction terms are
relevant and the propagation of the TT modes is not governed
by the linear wave equation. The T mode of the metric and
lapse N are nontrivial in the wave zone and contribute to the
gravitational energy and momentum. Beyond the wave zone
the dominant terms are the T mode and the lapse N .

The solution of primary constraints (11) implies that the
propagating parts of the momenta in the wave zone behaves
as

π i jT ∼ π i j L ∼ Bi j

r2 + k
Âi j eikr

r2 , (39)

π i jT T ∼ Bi j

r2 + k
Âi j eikr

r
, (40)

we use A y B as generic tensorial functions of angles such
that they and their derivatives are bounded.

If we use (39) and (40) in the secondary constrains (12)
and (13) and the transverse gauge gi j, j = 0, we obtain a
coupled system of second-order elliptical partial differential
equations for variables gT and N . We use here a different
gauge condition than in the previous section. A more ade-
quate one for the present analysis. This is admissible since
the gravitational energy, the surface term E , obtained in the
previous section is independent of the gauge condition. If we
multiply (12) by two and add the result to (13) we decoupled
the system and, since β �= α

2 for the values of β and α deter-
mined from experimental data, we can estimate N and gT at
low energies in the wave zone:

N − 1 ∼ gT ∼ B

r
+ Âeikr

r2 , (41)

these fields have a nontrivial Newtonian part O(1/r). They
are zero in a linearized version of the theory.

In the complete version of the theory, where higher order
derivative terms are included, there are oscillatory zero
modes of the same order which have to be eliminated to
obtain consistency of the theory. We do not have this prob-
lem in the low energy regime.

In the low energy regime, where only the contribution (8)
to the potential is considered, the term αaiai breaks mani-
festly the relativistic symmetry. Its contribution to the present
analysis can be determined directly from (41). We obtain
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ai � Bi
r2 + k

Âi eikr

r2 , (42)

aia
i � B

r4 + k2 Âe
ikr

r4 , (43)

∇ i ai � B

r3 + k2 Âe
ikr

r2 , (44)

although terms including the vector ai are not involved in
the field equations at order O (1/r), they do contribute to the
gravitational energy and to the Newtonian background.

From the transverse and longitudinal decomposition of the
dynamical equations (14) and (15), we obtain the canonical
form of the wave equation

∂t g
T T
i j = 2πT T

i j + O(1/r2), (45)

∂tπ
i jT T = 1

2
βΔgTTi j + O(1/r2), (46)

equivalently,

∂2
t g

i jT T − βΔgi jT T = 0 + O(1/r2). (47)

Then to the leading order O(1/r) the transverse traceless
components of the spatial metric satisfy a wave equation
with speed of propagation

√
β. Detection from gravitational

waves arising from the merge of the neutron star binary sys-
tem GW170817 [36] and its electromagnetic counterpart, γ -
ray burstGBR170817A [37], restrict the space ofβ-parameter
to |1−√

β| ≤ 10−15 [38]. Then, if that is so, the prediction on
gravitational waves of Hořava–Lifshitz theory at the kinetic-
conformal point, at low energies, is the same as in GR.

5 Discussion and conclusions

We showed that in Hořava–Lifshitz theory at the kinetic-
conformal point, in the low energy regime, a wave zone
can be consistently defined. In it the physical degrees of
freedom, which reduce to the transverse traceless tensorial
modes, satisfy a linear wave equation. The same one that
arises from a linear perturbative approach [30,39], but unlike
this there are Newtonian non-trivial contributions, that do
not obstruct the free propagation (radiation) of the phys-
ical degrees of freedom. Among these contributions there
are terms which manifestly break the relativistic symmetry.
These terms which determine a different physical behavior,
for example of the static, spherically symmetric solutions
of the Hořava–Lifshitz gravity theory compared to GR, do
not contribute to the free propagation of the physical degree
of freedom to the dominant order in the wave zone. How-
ever, they provide a relevant contribution to the gravitational
energy and the gravitational momentum.

The gravitational energy of the Hořava–Lifshitz gravity
has been considered in [30] from an asymptotic analysis,

however the canonical reduction of the Hamiltonian to the
physical degrees of freedom has not been analyzed. In GR
the reduction to a canonical formulation in terms of the TT
modes can be achieved by a suitable gauge fixing condition.
The main point is that the gauge fixing procedure for the
Hořava–Lifshitz gravity reduces to a spacelike coordinate
election, since only reparametrization on time is allowed.
We obtained in Sect. 3 the canonical reduction in terms of
the true physical degrees of freedom, which at linearized level
reduce to the TT modes of the metric. In general they are well
defined functions of the TT modes of the metric.

We showed, using the FDi f f symmetry, that the Hořava–
Lifshitz theory, at the kinetic-conformal point, can be canon-
ically reduced to a Hamiltonian formulation in terms of the
physical degrees of freedom, in a particular coordinate frame.
They reduce to the TT tensorial modes in the wave zone.

In Hořava–Lifshitz theory there does not exist a universal
(scale invariant) constant as the light velocity, however the
energy-dependent coupling constant

√
β, in the renormal-

ization flow from the UV regime to the IR point, should end
up having a value very near or equal to the speed of light.
In that case, although the Hořava–Lifshitz theory breaks the
relativistic symmetry, the wave equation coincides with the
relativistic one arising in GR.

We expect that the interaction terms with high spatial
derivatives modify the wave equation by introducing lin-
ear high order spatial derivatives in the wave zone, i.e Δ2

and Δ3 operators in the propagating equation. However, it
is unknown if in this case the Newtonian background inter-
acts in a non-trivial way with the propagation of the physical
degrees of freedom. In particular, the resolution of the con-
straints is in this case a non-trivial problem.
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26. A. Wang, Hořava gravity at a Lifshitz point: a progress report. Int.
J. Mod. Phys. D 26(07), 1730014 (2017). https://doi.org/10.1142/
S0218271817300142

27. S. Shin, M.-I. Park, On gauge invariant cosmological perturba-
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ity. Phys. Rev. D 84, 064004 (2011). https://doi.org/10.1103/
PhysRevD.84.064004

31. A. Restuccia, F. Tello-Ortiz, Pure electromagnetic-gravitational
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kinetic-conformal Hořava theory. Int. Mod. Phys. D 27, 1750174
(2018). https://doi.org/10.1142/S0218271817501747

123

https://doi.org/10.1038/s41586-019-1129-z
https://doi.org/10.1038/s41586-019-1129-z
http://arxiv.org/abs/2105.09151
https://doi.org/10.1103/PhysRevD.79.084008
https://doi.org/10.1103/PhysRevLett.104.181302
https://doi.org/10.1103/PhysRevLett.104.181302
https://doi.org/10.1103/PhysRevD.97.024032
https://doi.org/10.1103/PhysRevD.97.024032
https://doi.org/10.1103/PhysRevD.87.084020
https://doi.org/10.1103/PhysRevD.87.084020
https://doi.org/10.1016/j.physletb.2010.03.073
https://doi.org/10.1016/j.physletb.2010.03.073
https://doi.org/10.1007/s10714-008-0661-1
https://doi.org/10.1103/PhysRevD.82.064027
https://doi.org/10.1103/PhysRevD.82.064027
https://doi.org/10.1103/PhysRevD.83.044031
https://doi.org/10.1103/PhysRevD.83.044031
https://doi.org/10.1088/0264-9381/28/5/055011
https://doi.org/10.1088/0264-9381/28/5/055011
https://doi.org/10.1103/PhysRevD.83.044049
https://doi.org/10.1103/PhysRevD.83.044049
https://doi.org/10.1103/PhysRevD.84.044051
https://doi.org/10.1103/PhysRevD.84.101502
https://doi.org/10.1103/PhysRevD.84.101502
https://doi.org/10.1103/PhysRevD.94.064041
https://doi.org/10.1103/PhysRevD.94.064041
https://doi.org/10.1088/1126-6708/2009/08/070
https://doi.org/10.1088/1126-6708/2009/08/070
http://arxiv.org/abs/0912.4757
https://doi.org/10.1016/j.physletb.2010.01.054
https://doi.org/10.1016/j.physletb.2010.01.054
https://doi.org/10.1088/0264-9381/26/15/155021
http://arxiv.org/abs/0906.1645
https://doi.org/10.1007/JHEP03(2014)078
https://doi.org/10.1007/JHEP12(2013)017
https://doi.org/10.1007/JHEP12(2013)017
https://doi.org/10.1103/PhysRevLett.113.171101
https://doi.org/10.1007/JHEP10(2015)126
https://doi.org/10.1007/JHEP10(2015)126
https://doi.org/10.1103/PhysRevD.93.064022
https://doi.org/10.1103/PhysRevD.93.064022
https://doi.org/10.1142/S0218271817300142
https://doi.org/10.1142/S0218271817300142
https://doi.org/10.1088/1475-7516/2017/12/033
https://doi.org/10.1088/1475-7516/2017/12/033
https://doi.org/10.1103/PhysRevD.85.105001
https://doi.org/10.1103/PhysRevD.85.105001
https://doi.org/10.1103/PhysRev.121.1556
https://doi.org/10.1103/PhysRev.121.1556
https://doi.org/10.1103/PhysRevD.84.064004
https://doi.org/10.1103/PhysRevD.84.064004
https://doi.org/10.1140/epjc/s10052-020-7674-7
https://doi.org/10.1140/epjc/s10052-020-7674-7
https://doi.org/10.1103/PhysRevD.98.104018
https://doi.org/10.1103/PhysRevD.98.104018
http://arxiv.org/abs/2012.09354
https://doi.org/10.1016/0003-4916(74)90404-7
https://doi.org/10.1063/1.1666338
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/2041-8213/aa91c9
https://doi.org/10.3847/2041-8213/aa91c9
https://doi.org/10.1103/PhysRevLett.123.011102
https://doi.org/10.1103/PhysRevLett.123.011102
https://doi.org/10.1142/S0218271817501747

	Wave zone in the Hořava–Lifshitz theory at the kinetic-conformal point in the low energy regime
	Abstract 
	1 Introduction
	2 Foliation, geometry and Hořava–Lifshitz gravity
	3 Energy in Hořava–Lifshitz gravity
	4 The gravitational fields in the wave zone
	5 Discussion and conclusions
	Acknowledgements
	References




