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ABSTRACT

In the measured decay properties of the tau there is a discrepancy between
the total branching fraction for the one charged particle decay modes and the

sum of the branching fractions for the known individual modes. This discrepancy

‘is derived from about 60 different measurements of branching fractions and some

use of weak interaction theory. Our statistical study of these 60 measurements
shows there are problems in some of the measurements in the estimation of exper-
imental bias or systematic error. But there is no evidence that the discrepancy

derives from experimental bias or from incorrect estimation of systematic error.
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I. INTRODUCTION

At present, the decay modes of the tau lepton containing 1-charged particle
are not completely understood.!=4 By definition, the total branching fraction
for those modes, B,, is the sum of the separate branching fractions, B,, for the

individual modes containing 1-charged particle such as:

B, for 7™ s v, +e + P,

; (1a)

B, for 77 s v T + 0, (18)
By for 77 v+ 7" ; (1e)
B, for 77 s v+ p” ; (1d)
and
‘. Bpago for v~ — v+~ +27° . (Le)

As emphasized by Gilman!:2] the sum, 3" Ba, of present measurements of the in-
dividual branching fraction combined wi:h theoretical constraints on unmeasured
branching fractions does not fully explain the present measured value of B;. A
question raised by this problem is whether the errors, o,, given for the measured
branching fractions by the experimenters are correct, whether the appearance of
a discrepancy between ) B, and B, is caused by an underestimate of the size

Q
of one or more o,’s or of o;.

We have examined this question by comparing the given errors, o4, with

the scatter of the measurements about the mean for each measurement set. We
_do this for B, and for the B,’s of the modes in Egs. (1a)-(1d). Normal error
distributions are used. We find that on the whole the errors estimated from the

scatter are equal to or smaller than the given errors, oq, a.ccordingfto this test.



In other words, some sets of measurements are overconsistent. By using just the
statistical contribution to the measured errors, we can test in some cases whether
the overconsistency is caused by overestimation of systematic errors or bias in

the measurements.

As an aid to researchers in this area we present tables of the data we used.
T his is all the data published in journals, cataloged preprints, or Ph. D. thesis;
the authors being the experimenters themselves. We also present a comparison
of the measured 7 lifetime, 7,, with the leptonic branching fractions, B, and B,

for the decays in Eqgs. (1a) and (1b).

The nature of the present a.pba.rent dis?:repa.ncyl3—4] betweeﬁ By and ) B, is
diagrammed in Table 1. There is no discrepancy if considerations of the avarious
Bgy’s is limited to direct measurements. This is because there are no reliable

" measurements!4! for some modes contributing to the signature
T U+ +ny, n>4 (2)

-where z is a charged particle. Also there are no comprehensive and sufficiently
small experimental limits on unconventional 1-charged particle decay modes such

as
T~ > N°+z= , (3)

where N° is an unknown, massive, stable neutral particle.
The discrepancy appears when unconventional modes are excluded, and when
_conventional theory and other data is used[1:2] to set limits on the modes which
could contribute to the event type in Eq. (2). Then B, is larger than 3 B,
@

by about 6%.14 Table 1 demonstrates the importance of the measurements and



quoted errors on the branching fractions for B,, By, By, B,, and B;. This

motivated our study.

II. DATA USED

We used the branching fraction data listed in Tables 2 through 5 and the
lifetime data in Table 6. We have included in the tables all data presented by the
experimenters themselves in journal articles, cataloged preprints, or Ph.D. thesis
unless the experimenters have stated their measurement is replaced by their own
later measurement. We have not included measurements which are reported
only through private communication or in reviews. These criteria permit us to
work with fixed measurements and permit the reader to examine the details of
exberiments.

" Table 2 presents B3 as well as B; although most measurements of B, and Bj
are strongly correlated. Often only one is measured and the other calculated by
B, + B3 + Bs = 1, with Bs = 0.1%.

To insure the measurements for a specific branching ratio are statistically in-
dependent, we have excluded several measurements from the statistical analysis
although they are included in the tables. The MARK II collaboration has pub-
lished two measurements/®®l of By, and two measurements(57] of B, that use the
same data set but different analysis techniques. We use only the measurement
with the smallest total error. The 1982 MARK II collaboration and 1984 TPC
collaboration measurements®® of B; are not independent of their more precise

—recent measurements and thus are also excluded.



- 1II. B., B,, AND e — p UNIVERSALITY

The use of the constraint on B, and B, from e — p universality, B, = .973B,,
must be carefully considered when comparing or averaging experimental measure-
ments. Four cases occur: i) the experimenters measure the product branching
ratio B, - By and use the constraint to determine B, and Bj; ii) the experi-
menters measure B, and B, independently; iii) the experimenters measure B,
and B, separately but the measurements are strongly correlated, perhaps be-
cause they simultaneously measure the product B, - By; iv) only B, or B, is
measured. In the measurements listed in Table 3, there are four type i, six type

ii, three type iii, and eight type iv experiments.

" In our analysis of the B, and B, measurements, we first analyze only the
subsets of experiments which do not make use of the universality constraint.
The experiments in these sets can be equally treated in the analysis, and allow a

test of the universality constraint to be made. We then apply, if necessary, the

_universality constraint to each experiment in Table 3 and determine a constrained

branching ratio, B.. The third column of branching ratios listed in Table 3 are
the results of this constraint procedure. The statistical analysis is then applied

to the full set of constrained measurements.

In the constraint procedure, type i experiments and experiments which mea-
sure only B, are used directly. Experiments which measure only B, are scaled:

B! = B,,/.973. Type ii experiments are constrained using the equations below:

B! = l:Be/alzgc + .973B,,/o]23“] / [1/0123‘ + .9732/0123“ Y (4)
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and

1
2

op = [1/0%3 + .973? /agu] — (5)

The universality constraint can be applied to type iii experiments if the cor-
relation between the B, and B, measurements is known. For the special case
where Be, By, and the product branching ratio B., = B, - B, are measured, then

B! is determined by minimizing the x?
x? = (BL — B.)" /0%, + (973B. — B,)" o}, + (913B." — B.,)" [0}, . (6)

This results in a cubic equation for B! and an error given by

o = [1/0%, +.973% o} +2(.973) - (3(.973)B.* — B.,.) /af;w] . (N

(ML

Note that these constraint techniques average the systematic errors for B, By,
and B,y within a single experiment. Thus, systematic errors which are common
“to the B,, By, and B,, measurements will be averaged resulting, perhaps, in an

underestimate of the systematic error on BY.

IV. ANALYSIS METHOD

Consider a particular branching fraction, B, for example. As listed in
Table 4 there are seven different measurements: By, By2 ... By;... . We want
_the weighted average < By > and the error on that average, op,. Simplifying
the notation: y; replaces By, y replaces < By > and o replaces op,. The same

notation is used for B, By, B, and B;.



Most recent measurements, y;, included a statistical error o4 ; and a sys-
tematic error o,y, ;. We follow the Particle Data Group’s method[!% of combining

these errors in quadrature

1
o; = (agtat,i + UZys,i) 2 (8)

and we use this combined error unless the experimenters provide a total error.

The formal average is

v=3 (w/ed) /3 (t/ed) . (9)

and the formal combined error in y is

(ML

1

o= (Z (1/a,.2)>_ : (10)

'The relative weight of a measurement ¢ is
w; =0%fo} . (11)

The scatter of the individual measurements, y;, from y are described by the pulls:

™

pi = (v —w)/ [0} — o7 (12)

For Gaussian distributed errors, o;, the distribution of pulls is a normal distri-

bution of unit width and zero mean.



The standard deviation, 0s.4:, of the weighted mean is calculated from the

average variance, sZ,,,, for N measurements:

sgcat = Z (Nwi[yi - y]z) /(N -1) ,

]

which reduces to

sgcat = N(Zwiy? - yz)/(N —1)

: 2 &2
Using o%,,, = s%,,:/N, we have

=

Gacat = [( > wa - ) /(v - 1) ] t (13)

Observe that the errors o; are used in this equation in the weighting of [y; — y]?,

but are not directly used to calculate o4cq:.

. Our interest centers on the relative sizes of o0 and o4.4:. As discussed in Sec. V,

'if o is significantly smaller than 4.4, some of the experimenters have given oi2
which are too small. Then the o used in Table 1 is too small, and the discrepancy
problem is less certain. If o is significantly larger than oscqt, there are three,
not exclusive, explanations. Some experimenters may have overestimated their
aiz. Or, some experimenters may have corrected their raw measurements while
biased toward a preconceived value for y, the preconception being based on the
existing accepted value of y or on theoretical considerations. Finally, systematic
—errors common to many experiments may exist which the experimenters have

accounted for in their determination of g;. In this case the correlated contribution

to o; should be removed before comparing o and 0.4¢. There are no sources of



accounted correlated systematic errors common to many experiments in these
data which are described in the referenced experimental papers. Although with
intimate knowledge of all experiments such sources might be found, we have made

no attempt here to hunt for them.

We use the ratio
r= Uacat/a (14)

to measure the relative sizes of 0,5t and o for a set of measurements. We are
particularly interested if r is significantly less than one or significantly greater
than one. To determine the significance we calculate the probability, P(< r), of
finding a smaller value of r, and the converse, P(> r), of finding a larger value

of r. [Since P(< r)+ P(> r) =1, only P(< r) need be calculated.] For example,

suppose r = .5 because o is twice oscat- If P(< .5) is 10%, then r = .5 has this

statistical significance.

" The formal average [Eq. (9)] is obtained by minimizing

=Y -y /o (15)

which has the minimum value

Xoin =Y (wiv? —¢?) Jo? . (16)

1

From Egs. (13) and (16) we see that

r= [xfm-n/ (v - 1)]% : (17)

_ Thus, the probability P(> r) is identical to the probability of having a larger

x2 for N — 1 degrees of freedom. Figure 1 plots the distribution of r for several

values of N.



We apply this analysis method first to each full set of data. However, r can
be very sensitive to a particular measurement which has a relatively large o; even
though that measurement has a small weight w; and little effect on y. Therefore,

in each data set we select the minimum number of measurements a, b, ...e such

that

wg +wp +...we > 0.81

This smaller set of measurements will have a formal error no larger that 1/.9 of ¢
and will contain fewer measurements with relative large 0;’s. We apply the same

method of analysis to these smaller sets of data.

For both the full and small data sets we apply the same method of analysis
using just the statistical errors. This tests the effects of systematic errors on the

- determination of y and 0. We examine the relative importance of statistical and
syétematic errors in determining the formal error as follows: if 044 is the formal
error obtaining using only statistical errors, then we define the contribution to

the formal error from systemétic errors to be

[(SIL

Osys = [‘72 - Uftat] . (18)

. —2 1 . -2 -1
Here 04tat = [E astat,i] 2. But note that o4y, is not [Z Opyeil
q 1

In a few measurement sets the formal error is asymmetric: o0+ # o_. In that
event we use the arithmetic average. There is no change in our conclusions if we
used the maximum or minimum of o4+, o_ because in all cases their difference is

~relatively small.
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V.SYSTEMATIC ERRORS AND r

The combined error o; of a measurement y; is obtained from o; = (a_fta“- +
b

1 . .
afy e,i) z. The statistical error, 0,4 ¢, depends on numbers of events and represents

a normal error distribution. Hence our use of 044 is straightforward. This is
not true for the systematic error, 0,4, ;. There are a multitude of uncertainties

in the estimate and use of gy, ;.

An obvious problem is that 0,4, ; may not represent a normal error distribu-
tion. Suppose it represents an error distribution with tails relatively larger than
those of a normal distribution. VThe use Qf o; to calculate the ‘weighted formal
average is still acceptable. But it would be wrong to interpret the formal error,

o, as representing a normal distribution when one is considering discrepancies

which are several o in magnitude. In a later paper(!!l we will consider a method

— of treating érrors which does not depend on the normal distribution assumption;
in this paper we maintain the normal error distribution assumption for o4y, ; as
well as 0,441 5-

The determination of a branching fraction requires the counting in a data set
of the number of 7 decays with that decay mode. This number is then multiplied
by factors f, g, h... . These factors include: normalization quantities such
as total number of 7 decays or total luminosity or total cross section, efficiency
factors such as detector acceptance, and perhaps other quantities. A few of these
factors are obtained by counting events in the data set — the total number of
decays, for example — and are assigned a statistical error. But most of the factors

_are obtained by computation or from other data and are assigned a systematic
error. (A few factors may have both types of errors.) Let o;(f) be the systematic

error assigned to the factor f; by the experimenters who reportea branching

11



fraction measurement y; with errors o4 ; and o4y, ;.

We are about to tabulate some of the problems that can occur in a mea-

surement set y1, Y2 ...y; ...from incorrect evaluation of f;’s or o;(f)’s. We

emphasize two aspects of these incorrect evaluations: a) we examine whether the

formal error o will be smaller or larger than the actual error on y; b) we look at

the ratio r = 04cqt/0. If 0scqt is significantly less than o, that is r < 1, then the

measurement set is overconsistent. If o,.4: is significantly greater than o, then

the measure set is inconsistent.

(2)

(i)

(i33)

Overestimate of Some o;(f)’s: For the sake of caution and because of the

difficulty of evaluating some f’s, experimenters may assign large o;(f)’s.

Then:
a) o is larger than the actual error on y;

b) 0Oscqt is smaller than o and the measurement set is overconsistent, there-

fore r < 1.

Underestimation of Some o;(f)’s: In spite of caution, the history of physics

has many examples of underestimation of systematic errors. Then:
a) o is smaller than the actual error on y;

b) Oscat is larger than o and the measurement set is inconsistent, therefore

r > 1.

Biasing of y;’s: The values of some f;’s may be set unconsciously so that

the resulting y; tends towards an already published or preconceived value of

y. The o0;(f)’s may not be set large enough to encompass this bias. Then:
a) o is smaller than the actual error on y;

b) depending on whether different experiments are biased in a similar di-

12



(¢v)

rection or towards a similar value, 0., might be smaller than o and the

measurement set may be overconsistent, perhaps r < 1.

Uncorrelated, Unaccounted o;(f)’s: One experiment ¢ may have a mistake

in f; not encompassed in its o;(f), another experiment j may have a differ-
ent mistake in f; or may have a mistake in another factor g;, neither may

be encompassed in 0;(f) or g;(g). Then:
a) o is smaller than the actual error on y;

b) Oscat is larger than o and the measurement set is inconsistent, therefore

r>1.

Correlated, Unaccounted o;(f)’s: Suppose most measurements in a set use

the same factor f, that it is slightly wrong, but the mistake is not encom-

. passed in any of the o0;(f)’s. This would shift the value of y. The error

representing this shift would not be in o, it might show up in 64c4:. Then:
a) o is smaller than the actual error on y;

b) 0scqt might be larger than o and the measurement set may be inconsis-

tent, perhaps r > 1.

All these factors may simultaneously exist in a specific data set, and com-

peting effects may work together to make the data set appear consistent. For
example, experimenters may be tempted to increase poorly understood system-

atic errors if their result appears to be inconsistent with other published results.

However, there is one instance when the existence of problem iii (bias) can

_be demonstrated: i.e., an overconsistent measurement set remains overconsistent
when only the statistical errors, 0,4, are used. This assumes that experi-

menters do not overestimate statistical errors. If systematic errors dominate the

13



measurements, the overconsistency may cease when using only o044 ; even if bias

is present because the systematic errors exist and contribute to the scatter.

VI. EXAMPLE

We clarify the method and our interpretation by the example of B, summa-
rized in Table 7. We use only the higher energy measurements as described in

Sec. VII A. The average values and errors for the 11 measurements are:

y = 86.58%

o = +.28%

Oscat = 0.27% (19)
i r = .96

P(< .96) = 49%, P(> .96) = 51%

We interpret these values of r and P(< r) to mean that o;’s given by the exper-

imenters are the right size as measured by 0;cqt.

We then analyze this data set using only 044 to calculate y and 0. We

obtain:
y = 86.79%

Ostat = 10.14%
Oscat = 0.21% (20)
r = 148
P(< 1.48) = 98.0%, P(> 1.48) = 2.0%
The formal error is now significantly smaller than the error determined from the

scatter. This indicates that, as expected, systematic errors are indeed present

14



in the experiments. Using Eq. (18), we obtain o0,y, = +0.24%, and the ratio of
systematic to statistical errors is o,y, /0stat = 1.7. Thus, the measurement of B;

is dominated by systematic errors.

We now repeat the analysis using the five measurements with largest weights

whose combined weight is greater than 0.81, Table 7. For this small set we find:

y = 86.64%

o = $0.29%

Oscat = 0.33% (21)
r = 1.10

P(< 1.10) = 70%, P(> 1.10) = 30%

. The reduction from 11 measurements to 5 does not change y, a desirable feature

in a set of measurements. The removal of measurements with small w,;’s and
hence relatively large o;’s increases r to 1.10. But P(> 1.10) = 30%, therefore

the difference of r from 1 is not significant.

Finally, we analyze the small set using only Ogcat,i- The results are:

y = 86.73%

Ostat = +0.15%

Oscat = 0.23% (22)
r = 1.55

P(< 1.55) = 95.3%, P(> 1.48) = 4.7%

The small set, which contains only those experiments with the largest weight,

has properties similar to the large set.
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The results in Eqgs. (19)—(22) show that the measurements used to find the

formal average and error for B, in this example have reasonable errors attached

to them by the experimenters.

VII. RESULTS

This section consists of these parts: the results of the analysis for the indi-
vidual measurement sets B;, B3, B., By, By, and B,; a combined analysis for

B., By, By, and B,; and a comparison of B, and By with 7.

A. Analysis of B,, Bs, B, B,‘,i By, and ‘Bp

Table 8 lists quantities found for each measurement set from which a reader
can draw conclusions as to the quality of the set. We offer some comments as a
— guide.

Comments on B;, Bs: The set is dominated by the measurement from the HRS

collaboration!!?] which contributes half the total weight. Looking at Table 2, the
‘three lowest energy measurements are quite different from the formal average,
but only the one from the DELCO collaboration[13! is by itself statistically in-
consistent. The deviation of the low energy measurement is usually attributed to
insufficient correction for background from the process e*e™ — hadrons. How-
ever we cannot rule out the existence of an energy dependent, unknown process
being confused with the events used to determine B; and Bj at either low or
high energy. The average of the other low energy experiments is also inconsistent
—with the formal average. In order to test the statistical properties of the precise
high energy experiments, we exclude all low energy experiments from the B; and

B3 analyses in Table 8.
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As discussed in Sec. VI, 0,4 is consistent with o, hence a large number
of experiments agree on these relatively simple measurements and the formal

average seems to be reliable.

Comment on B., By: As discussed in Sec. III, we first analyze the 10 uncon-

strained measurements of B, and the 16 unconstrained measurements of B, listed

ih Table 3. The results are given in Table 8. The measured ratio of B, /B, is
B,/B. = 1.005 + .034 (23)

which is consistent with the expected value of .973. Systematic and statistical
errors are about equal: g,y, /am;t = .9. When the full sets of measurements are
used, the sets are consistent as defined in Sec. V. However, the small set of B,

measurements tends to be overconsistent:
By, smallset: r= .47, P(<r)=4.5%
If 6n1y statistical errors are used, a hint of overconsistency remains:
By, small set, 044 : r= .67, P(<r)=18.7%

The B, data set is the largest set, and due to the universality constraint, the
formal errors are much smaller than for the B, or B, measurements. Both the

full set and small set tend to be overconsistent:

Bl, fullset: r=.73, P(<.73) =4.6%

’

B!, smallset: r=.52, P(<.52)=6.9%

Either the experiments may have overestimated their errors, in which case the

formal error is too large, or else there may be bias in the measurements in which

17



case the formal error is too small. When using just the statistical errors, a hint

of bias remains.

Comment on By: Systematic errors dominate these measurements: 05y, /040t =

2.1. Here again the full set of measurements tend toward overconsistency as

defined in Sec. V.
By, fullset: r=.59, P(<r)=28.3%

This overconsistency remains when the smaller sets are used, although the sta-
tistical significance is weaker since there are only four measurements in the small

set.

By, smallset: r=.56, P(<r)=19.%

The systematic errors are so much larger than the statistical errors, that when

only the statistical errors are used, no hint of overconsistency remains.

‘Comment on B,: Like the By measurements, systematic errors dominate the

measurements: O,ys/0stat = 2.1. Both the full set and small set are very over-

consistent:

B,, fullset: r=.21, P(<r)=0.1%

’

B,, smallset: r =.19, P(<r)=3.5%

The overconsistency is so strong that even though the systematic errors are more

than twice as large as the statistical ones, the data sets remain overconsistent

18



when only statistical errors are used:

B,, full set, 04q5: r=.39, P(<r)=2.0%

’

B,, small set, 045qt: r=.38, P(<r)=13.8%

Bias clearly exists in these measurements. The formal error on the average is too

small since this bias is not included in the systematic errors.

B. Combined Analysis of B., B, By, and B,

The three data sets B), By, and B,, show evidence of overconsistency as
measured by r. However, r is most sensitive to points which are furthest from

the mean and can change considerably if one measurement is far from the mean.

" Another indicator of the consistency of a data set is the distribution of pulls

[Eq. (12)], which should be a normal distribution of unit width and zero mean
for a data set with Gaussian errors. r is very nearly equal to the rms deviation
of the pull distribution. Figure 2 shows the sum of the pull distributions for the
4three data sets Bl, Byr, and B, along with the expected distribution. Here also
there is clear evidence of the overconsistency of the data sets. Figure 3 shows the
same distribution for the small sets. Of the 13 measurements in the three small

sets, none is more than one sigma away from the small set mean.

We quantify the overconsistency of the summed pull distribution by evaluat-

ing the rms deviation, Ry. For the full sets Ry = .636. The probability that Ry
_is less than or equal to .636 for an equivalent set of experiments having Gaussian
errors is .14 + .01%. For the small sets, Ry = .484. The probability of finding a

smaller Ry is .64 £+ .04%.
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Another method to measure the combined statistical significance of the ob-
served overconsistency is to study the sum of the r values, Xr, for the three data
sets. There is no reason to expect the overconsistency to be of the same mag-
nitude in the three different types of measurements. For example, the ratio of
systematic to statistical errors is twice as large for By and B, as it is for B.. The
summed pull distribution will not be sensitive to a very overconsistent data set if
that data s‘et has relatively few measurements. The value of Xr for the full sets
is 1.53. The probability that Xr is less than or equal to 1.53 for an equivalent
set of experiments having Gaussian errors is .017 4 .005%. For the small sets,

Yr = 1.27. The probability of a smaller Xr is .54 & .03%.
C. Comparison of B,, By, and 7,

" The analysis of the 7, set of measurements, Table 9, shows again some evi-

dence for overestimation of some o; or biasing of some y;:

77, full set: r = .65, P(<r)=6.2%

This overconsistency remains when the smaller sets are used, although the sta-

tistical significance is weaker since there are only five measurements in the small

set:

7, smallset : r = .65, P(<r)=21.%

The assumption of e — g — 7 universality leads to the prediction

5
Ty = <ﬁ> 7w Be (24)
‘B, =0.973 B, ) (25)
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when the e mass and all neutrino masses are set to 0. From Table 8, the full set

formal average for Bj is
B, = (17.96 +0.26)% . (26)
Then from Egs. (24) and (26)
7r(predicted) = (2.874 £0.042) x 1071 s (27)
compared with the full set mea.sgred valug from Table 9

7r(measured) = (3.026 +0.085) x 10713 s . (28)

- The difference is

7r(measured) — 7,(predicted) = (0.152 4 0.095) x 10713 5 (29)

.and is not statistically significant. We have noted the errors in B,, By, and 7,

may be overestimated or there may be biases in B,, By, and 7;. Given these
uncertainties, the difference in Eq. (29) cannot be interpreted as requiring larger

values of B, and B,.
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VIII. CONCLUSIONS

We studied the measurements of various decay branching fractions and the
lifetime of the 7 lepton for statistical consistency, assuming normal error distribu-
tions. There is clear evidence for overestimation of errors or bias in the individual
measurements for B!, By, and particularly for B,. By considering only the sta-
tistical errors, there is clear evidence for bias in the B, measurements, and hints
of bias in other measurements. Therefore, the formal error on the average of
the B, measurements is too small. Since the error on the p branching ratio is
the largest contribution to the error on the sum of the well measured one prong
decay modes, the significance of the one prong discrepancy is reduced.

While we find evidence for bias, there is no evidence that the bias causes the
discrepancy in summing the branching fractions. For example, although the B,

) mea,guremeﬁts cluster too much, they may still cluster about the true value of
B,. Or the true value of B, may be larger, decreasing the discrepancy; or the
true value of B, may be smaller, increasing the discrepancy. We do not know

the size or sign of the bias.
There is no evidence for widespread underestimation of systematic errors in

the sets of measurements examined here. Hence the discrepancy should not be

ignored simply by claiming that the errors should be set larger.

In summary, our examination of the branching fraction measurements has
not resolved the existing problem in understanding the 1-charged particle decay
modes of the tau. Resolution of this discrepancy requires new information such

—as measurements with greatly improved statistical and systematic precision, or

explicit measurement of as yet unmeasured or poorly measured modes.
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Table 1a. Summary of measured branching fractions of modes with 1-charged particle.

Type of
Measurement Row Decay Mode Branching Fraction (%) | Reference
Exclusive A e Dy 17.6 £+ 0.4 Table 8
Measurements B [T 7N 2 177+ 0.4 Table 8
of Modes with C T Vs 10.8 £ 0.6 Table 8
‘ 0 or 7° D p vy _ 22.5+0.9 Table 8
E K v, 0.7 +0.2 Ref. 3
F K* v, 14+0.1 Ref. 3
Sum of rows A-F| G 70.7 £ 1.2
Called Byeyurpx
H 7 nmlv;, n>1
Sum w‘innu,-, n>0
of Modes with T~ mrlnnr, m+n>1 8. to 16. Ref. 4
> 179 or with n’s K nn,, n>1
Called Bj mult neut : :

~r - Table 1b. Summary of 1-charged particle branching fractions in percent.

Decay Mode Category Branching Fraction (%) and Origin
Bieprpk ‘ 70.8 + 1.2 from measurement
(Table 1a)
- 8 to 16 <938
B mult neut from measurement | from theory and other data
(Ref. 4) (Refs. 1, 2, 4)
Bleurpk + Bimult neut 79. to 87. < 80.5+1.2
B, 86.6 0.3 from measurement
(Table 8)
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Table 2.

7 topological branching fractions in percent. The statistical error is given first, the systematic error

second. We list all measurements provided the measurement is described in a preprint, journal article, or
Ph.D. thesis authored by the experimenters, arid the authors have not stated the measurement is superseded
by a more recent measurement. :

- B,

By

Energy

Measurement

Combined
Error

Weight

Measurement

Combined
Error

(GeV)

Experimental
Group

Reference

70.*

+10.

30.t

+10.

3.6 to 5.0

PLUTO

J. Burmester et al.,

Phys. Lett. 68B,
297 (1977)

68. 1

+5.

32.*

+5.

3.1to 74

DELCO

W. Bacino et al.,
Phys. Rev. Lett. 41,
13 (1978)

65.1

+11.

35.*

+11.

3.9t05.2

DASP

R. Brandelik et al.,
Phys. Lett. 73B,
109 (1978)

g2.1*

+6.5

18.*

+6.5

6to 7.4

MARK I

J. Jaros et al.,
Phys. Rev. Lett. 40,
1120 (1978)

76.*

+6.

24.*

+6.

12 to 31.6

TASSO

R. Brandelik et al.,
Phys. Lett. 92B,
199 {1980)

84.0

+2.0

.019

15.0

+2.0

32.0 to 36.8

CELLO

H. J. Behrend et al.,
Phys. Lett. 114B,
282 (1982)

86.0+ 2.0+ 1.0*

+2.2

140+ 2.0+ 1.0*

+2.2

29.0

MARK I

C. A. Blocker et al.,
Phys. Rev. Lett. 49,
1369 (1982)

85.2+0.9+£1.5"

14.8+ 0.9+ 1.5*

29.0

TPC

H. Aihara et al.,
Phys. Rev. D30,
2436 (1984)

85.2+26+1.3

+2.9

.009

1484+20+1.3

14.0

CELLO

H. J. Behrend et al.,
Z. Phys. C28,
103 (1984)

85.1+2.8+13

+3.1

.008

145+2.2x1.3

22.0

CELLO

H. J. Behrend et al.,
Z. Phys. C283,
103 (1984)

87.8+1.3+3.9

+4.1

.005

12.2+1.3+ 3.9

34.6 average

PLUTO

Ch. Berger et al.,
Z. Phys. C28,
1/(1985)

+1.6
84.7+ 1.1718

024

.3
15.3+1.1%12

13.9 to 43.1

TASSO

M. Althoff et al.,
Z. Phys. C286,
521 (1985)

86.7+ 0.3+ 0.6

+0.7

.157

13,3+ 0.3+ 0.6

+0.7

29.0

MAC

E. Fernandez et al.,
Phys. Rev. Lett. 54,
1624 (1985)

86.9+0.2+0.3

+0.4

.482

13.0+0.2+0.3

+0.4

29.0

HRS

C. Akerlof et al.,
Phys. Rev. Lett. 55,
570 (1985)

86.1+0.5+0.9

+1.0

077

1380508

+0.9

30.0 to 46.8

JADE

W. Bartel et al.
Phys. Lett. 1618,
188 (1985)

87.9+0.5+1.2

.046

1213+ 0.5+ 1.2

29.0

DELCO

W. Ruckstuhl et al.,
Phys. Rev. Lett. 56,
2132 (1986)

87.2+0.5+0.8

+0.9

.095

12.8+0.5+0.8

29.0

MARK II

W. B. Schmidke et al.,
Phys. Rev. Lett. 57,
527 (1986)

87.1+ 1.0+ 0.7

+1.2

12.8+1.0+0.7*

29.0

MARK II

P. R. Burchat et al.,
Phys. Rev. D85,
27 (1987)

84.7+ 0.8+ 0.6

*1.0

.077

151+ 0.8+ 0.6

+1.0

29.0

TPC

H. Aihara et al,,
Phys. Rev. D35,
1553 (1987)

1 Calculated from B, or B3 measurement using By + B3z + Bg = 1. with By = 0.1%.

*Not included in average.

26




L7

|

Table 3. 7 leptonic branching fractions }n percent. The statistical error is given first, the systematic error second. We list all measurements
provided the measurement is described in a preprint, journal article, or Ph.D. thesis authored by the experimenters, and the authors have not
stated the measurement is superseded by a more recent measurement. The first two columns of branching ratios are published measurements.
The third column contains values we have determined using the u — e universality constraint B, = .973 B, as described in the text.

Use B(r~ — ¢”pevr) B(r~ — p”bpvr) B(r~ —e¢” pevy) Assuming Bu=973 Be| Energy |Experimental
c—p Reference
Universality Measurement | Combined | Weight | Measurement | Combined | Weight | Measurement | Combined | Weight (GeV) Group
Error Error Error
. . M. L. Perl et al.,
Yest 18.9+1.01+2.8 +3.0 — 18.3+1.0+2.8 +3.0 — 18.94+1.0+2.8 +3.0 .008 3.8t07.8 MARK I Phys. Lett. 70B,
487 (1977)
Same Data
No 17.5+2.7+3.0 +4.0 .011 |[18.0+2.813.1 +4.2 .004 38t 7.8 MARK I as above
M. Cavalli-Sforza
et al., Lett. Nuovo
No 22. o 002 |22.6 1108 .0009 48 Cimento 20, 387
(1977)
Lead Glass |} A. Barbaro-Galtieri
Yest 22.7 +5.5 — 221 +5.5 — 227 +5.5 .002 4.1to 7.4 Wall et al., Phys. Rev. Lett.
39, 1058 (1977)
J. Burmester ef al.,
No 15. +3.0 .019 (154 13.1 .007 3.6 to 5.0 PLUTO Phys. Lett. 68B,
‘ 297 (1977)
W. Bacino et al,,
No 16.0 +1.3 .116 16.0 +1.3 041 31to7.4 DELCO Phys. Rev. Lett. 41,
' 13 (1978)
J. G. Smith et al.,
No 22. g 004 |22.6 e 0012 | 6.4to74 | Iron Ball |Phys. Rev. D18,
1 (1978)
R. Brandelik et al.,
Yes! 18.5:42.81+1.4 13.1 — 18.0+2.8+1.4 +3.1 — 18.5+2.8+1.4 +3.1 .007 3.9t05.2 DASP Phys. Lett. 78B,
109 (1978)
W. Bacino et al.,
No 21+5+3 +6. .005 [21.6+5.113.1 16.0 .002 36to7.4 DELCO Phys. Rev. Lett. 42,
6 (1979)
R. Brandelik et al.,
No 19. 19.0 .002 }35. +14. .0009 {23.8 7.6 .0012 12 to 31.6 TASSO Phys. Lett. 92B,
199 (1980)
Ch. Berger et al.,
No 17.842.0+1.8 +2.7 023 [18.3+2.1+1.8 +2.8 .009 9.4 t0 31.6 PLUTO Phys. Lett. 99B,
489 (1981)

continued ...
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Table 3. continued ...

I Use
e—p
Universality

B(r~

— e Devr)

* B(r~

— B ouvr)

|B(r~ —¢ ™ Devr) Assuming By=.973 B,

Measurement

Combined
Error

Weight

Measurement

Combined
Error

Weight

Measurement

3

Combined
Error

Weight

Energy
(GeV)

Experimental

Croup

Reference

Yes

17.6+0.611.0

*1.3

17.110.6+1.0

+1.3

17.6+0.6+1.0

+1.3

.048

3.5t06.7

MARK II

C. A. Blocker ¢t al.,
Phys. Lett. 109B,
119 (1982)

No

18.3+2.41+1.9

+3.1

.021

17.642.6+2.1

.016

18.2+1.8+1.4

+2.3

.013

34.0

CELLO

H. J. Behrend et al.,
Phys. Lett. 1278,
270 (1983)

No

+1.4
20.4+3.0114

.019

0.7
12.041.710%

.052

15.0+1.5%7

.027

13.9 to 43.1

TASSO

M. Althoff et al.,
Z. Phys. C26,
521 (1985)

13.0+1.9+2.9

.016

19.4+1.6+1.7

.032

17.8+1.2+1.5

.019

34.6 average

PLUTO

Ch. Berger et al.,
Z. Phys. C28,
1 (1985)

No

18.2+0.74+0.5

+0.9

.243

18.0+1.030.6

117

18.340.540.4

191

3.8

MARK III

R. M. Baltrusaitis
et al., Phys. Rev.
Lett. 55,1842 {1985)

No

17.41+0.810.5

243

17.740.840.5

.208

29.0

MAC

W. W. Ash et al.,
Phys. Rev. Lett. 55,
2118 (1985)

Yes

17.840.4+0.34

17.3+0.440.3%

+0.5

17.8+0.420.3%

+0.5

275

29.0

MAC

Same Data
as above

17.440.6+0.8

.169

17.940.6+0.8

+1.0

.069

4.0 to 46.8

MARK J

B. Adeva et al.,
Phys. Lett. 179B,
177 (1986)

No

17.0+0.710.9

.163

18.840.81+0.7

+1.1

.139

18.240.5+0.6

.107

34.6 average

JADE

W. Bartel et al.,
Phys. Lett. 182B,
216 (1986)

No

18.4+1.241.0

077

17.741.240.7

.086

29.0

TPC

H. Aihara et al.,
Phys. Rev. D35,
1553 (1987)

Yes

18.3+0.74+0.5

+0.9

17.840.710.5

18.31+0.74£0.5

+0.9

085

29.0

TPC

Same Data
as above

No

19.1+0.8+1.1

+1.4

.100

18.310.940.8

117

18.940.6+0.7

+0.9

.085

29.0

MARK II

P. R. Burchat et al,,
Phys. Rev. D385,
27 (1987)

tAdjusted for B(r™ — uopvr)/B(r™ — e~ bevr) = 973

1We have determined the breakdown of statistical and systematic errors.




Table 4. 7~ — #n~ v, branching ratio in percent. The statistical error is given first, the
systematic error second. We list all measurements provided the measurement is described
in a preprint, journal article, or Ph.D. thesis authored by the experimenters, and the
authors have not stated the measurement is superseded by a more recent measurement.

Measurement | Combined | weight| Energy | Experimental
Error (GeV) Group

Reference

G. Alexander et al.,
9.0+£29+25 +3.8 .025 4.1 to 5.0 PLUTO Phys Lett. 78B,

162 (1978)

] . .W. Bacino et al.,
80+3.2+1.3 +3.5 029 36to 74 DELCO Phys Lett. 42,

6 (1978)

C. A. Blocker et al.,
11.7+04+18| =+1.8 109 | 3.5t06.7 | MARKII |Phys. Lett. 109B,
119 (1982)

' H. J. Behrend et al.,
99+1.7+1.3 +2.1 .080 34.0 CELLO Phys. Lett. 1278,
270 (1983)

W. Bartel et al.,
11.8+06+1.1 +1.3 .210 | 34.6 average JADE Phys. Lett. 182B,
216 (1986)

, W. T. Ford et al.,
107+ 0.5+ 0.8 +0.9 438 29.0 MAC Phys. Rev. D35,
408 (1987)

P. R. Burchat et al.,
100X+1.1+1.4 +1.8 109 29.0 MARK II Phys. Rev. D35,

27 (1987)
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Table 5. 7~

— p~ v, branching ratio in percent. The statistical error is given first, the

systematic error second. We list all measurements provided the measurement is described in
a preprint, journal article, or Ph.D. thesis authored by the experimenters, and the authors
have not stated the measurement is superseded by a more recent measurement.

Measurement

Combined
Error

Weight

Energy
(GeV)

Experimental
Group

Reference

24.+6.+7.1

+9.

.009

3.6 to 5.2

DASP

R. Brandelik et al.,
Z. Phys. C1,
233 (1979)

21.5+ 1.7+ 3.0

+3.4

.063

3.7 to 6.0

MARK I

C. A. Blocker,
Thesis, LBL-10801
(1980)

221+19+1.6

+2.5

116

14.0 to 34.0

CELLO

‘H. J. Behrend et al.,
Z. Phys. C23,
103 (1984)

1223+£06+14

1.5

.323

29.0

MARK II

J. M. Yelton et al.,
Phys. Rev. Lett. 56,
812 (1986)

23.0£13x1.7

2.1

.165

3.8

MARK III

J. Adler et al.,
Phys. Rev. Lett. 59,
1527 (1987)

25.8 +1.7+2.5*

+3.0

29.0

MARK II

P. R. Burchat et al.,
Phys. Rev. D35,
27 (1987)

226+05+14

+1.5

323

9.4 to 10.6

CRYSTAL
BALL

S. T. Lowe et al.,
SLAC-PUB-4449
(1987)

*Allr — 20

Not included in formal average.

vy included in 77 — p7 vy

TWe have determined the breakdown of statistical and systematic errors.
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Table 6. 7 lifetime in units of 10713 5. The statistical error is given first, the systematic error
second. We list all measurements provided the measurement is described in a preprint, journal
article, or Ph.D. thesis authored by the experimenters and the authors have not stated the
measurement is superseded by a more recent measurement.

Lifetime Errors combined Weight Energy Experimental Reference
in quadrature (GeV) Group
G. Feldman et al.,
4.6 +1.9 .002 29.0 MARK II |Phys. Rev. Lett. 48,
66 (1982)
W. Ford et al.,
4.9 +2.0 .002 29.0 MAC Phys. Rev. Lett. 49,
: 106 (1982)
i H. J. Behrend et al.,
4.7 fg:g .0006 |17.1 average CELLO Nucl. Phys. B211,
369 (1983)
M. Althoff et al.,
3.18%5:22 £ 0.56 & | 010 | 39.8-45.2 TASSO ° |Phys. Lett. 141B,
264 (1984)
E. Fernandez et al.,
3.15 £ 0.36 + 0.40 +0.54 .025 29.0 MAC Phys. Rev. Lett. 54,

1624 (1985)

D. E. Klem ef al.,
2.63 £ 0.46 £ 0.20 +0.50 .029 29.0 DELCO SLAC-Report-300
(1986), p. 67

D. Amidei et al.,

12.88 +£0.16 +0.17 +0.23 134 29.0 MARK II |SLAC-PUB-4362

(1987)

H. R. Band et al,,

"13.09 +0.19° .202 29.0 MAC Phys. Rev. Lett. 59,

415 (1987)

S. Abachi et al.,
2.99 +£0.15£0.10 +0.18 225 29.0 HRS Phys. Rev. Lett. 59,
2519 (1987)

C. Bebek et .al.,

3.25+£0.14 £0.18 +0.23 .140 10.5 CLEO Phys. Rev. D36,
690 (1987)
H. Albrecht et al.,
2.95+0.14 £ 0.11 +0.18 .230 9.3-10.6 ARGUS Phys. Lett. 199B,
580 (1987)
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Table 7. Example of the calculation of statistical quantities using
the topological branching fraction B; in percent.

Measurement Combfned Weight | Pull | Used in Largest
Error Weights Analysis
84. +2.0 .019 1.27
85.2 +2.9 .009 .46
85.1 3.1 .008 .46
87.8 +4.1 .005 —-.31
84.7 R 024 | 1.02
86.7 +0.7 157 —.28 Yes
86.9 +0.4 482 - |-1.32 Yes
86.1 +1.0 077 44 Yes
87.9 +1.3 .046 [-1.09
87.2 +.9 .095 -.79 Yes
QS ] 84.7 +1.0 075 | 1.89 Yes
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Table 8. Calculated values of y, lo|, |Oscat|, 75 P(< r), Osys/Ostat, and number of
measurements for By, Bj;, unconstrained B, and B,, B!, By, and B,. Values of y, o,
and ot are in percent.

Branching | Measurement Number y lo| ”
. ) of Formal | Formal | [04cat|| r | P(< 1) o
Fraction Selection | Measurements Average| Error

full set 11 86.58 .28 27 96| .491 1.7
Ostat, ONly 10 86.79 .14 21 |1.48| .980 —
B small set. 5 86.64 .29 33 [1.10( .699 1.7
Ostat, Only 5 86.73 .15 23 (1.55| .953 —
full set 11 13.32 .28 .24 .87} .313 1.7
Ostat, Only 10 13.13 .14 19 |1.40] .957 —
B3 small set 5 13.27 .29 .30 11.03| .618 1.7
Ostat, ONly 5 13.18 .15 21 1.42 .908 —_
full set 10 17.62 44 37 .83 297 9
Ostat, ONly 8 17.81 .34 45 1.31| .898 —
B, small set 5 17.56 .48 44 93| .514 9
Ostat, Only 4 17.88 .37 45 [1.22]| .784 —
full set 16 17.71 41 37 91 .345 - 9
_ Ostat, Only 12 17.80 31 33 [1.05] .645 —
e B, small set 6 17.95 .45 21 A7 .045 9
Ostat only 6 17.92 .34 .23 67| .187 —
full set 21 17.96 .26 .19 .73 047 1.0

Ostat, Only : 15 18.07 .19 15 .79 .158

B! small set 6 18.13 .29 15 | .52 | .069 9
Ostat, ONly 6 18.16 21 16 | .73 | .245 —

full set 7 10.78 .60 .35 59| .083 2.1

Ostat, ONly 7 11.25 .26 .28 11.07| .671 —

B, small set 4 11.00 .64 .36 56| .190 2.2
Ostat, ONly 4 11.33 .27 33 11.23| .789 —

full set 6 22.45 .85 .18 .21} .001 2.1

Ostat, ONly: 6 22.47 .35 .14 39| .020 —

B, small set 3 22.56 .95 .18 19| .035 24
Osiqt Only 3 22.52 37 .14 38| .138 —
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Table9. Calculated values of y, |o|, |0scat|, 7y P(< 1), :—"’L‘, and number
of measurements for the 7 lifetime .. Values of y, o, and 0., are in
10713 sec units. :

Number Y o]
- of Formal |Formal||oscat|| r |P(< 1) :—',’;
Selection  |Measurements Average| Error

Measurement

full set 11 3.026 | .085 | .055 | .65 | .062 8
Ostat, only 7 3.024 .070 | .062 | .88 | .411 | —
small set 5 3.025 .089 | .058 [ .65 | .208 .8
Ostat, ONly 4 3.027 .073 | .082 |1.12] .710 | —
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FIGURE CAPTIONS

1. r distribution for different values of N.
2. Sum of the pull distributions for the B!, By, and B, full data sets.

3. Sum of the pull distributions for the B!, B, and B, small data sets.
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