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ABSTRACT 
.  .  

L. In the measured decay properties of the tau there is a discrepancy between 

the total branching fraction for the one charged particle decay modes and the 

sum of the branching fractions for the known individual modes. This discrepancy 

_ ‘is derived from about 60 different measurements of branching fractions and some 

use of weak interaction theory. Our statistical study of these 60 measurements 

shows there are problems in some of the measurements in the estimation of exper- 

imental bias or systematic error. But there is no evidence that the discrepancy 

derives from experimental bias or from incorrect estimation of systematic error. 
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I. INTRODUCTION 

At present, the decay modes of the tau lepton containing l-charged particle 

are not completely understood.[1-4] By definition, the total branching fraction 

for those modes, B,, is the sum of the separate branching fractions, B,, for the 

individual modes containing l-charged particle such as: 

B, for 7-+VT+e-+De ; (14 

B, for r-+vr+~-+~~ ; (lb) 

B, for r- -+ V, + zIT- 

B, for r-+vr+p- 

(14 

(14 

and 

B r2r0 for r- --+ u, + 7rr- + 27r” . (14 
. . i / . 

As -emphasized by Gilman11~2] the sum, C B,, of present measurements of the in- 

dividual branching fraction cqmbined wiih theoretical constraints on unmeasured 

branching fractions does not fully explain the present measured value of B1. A 

question raised by this problem is whether the errors, oa, given for the measured 

branching fractions by the experimenters are correct, whether the appearance of 

a discrepancy between C B, and B1 is caused by an underestimate of the size 
a 

of one or more 0,‘s or of ol. 

We have examined this question by comparing the given errors, ua, with 

the scatter of the measurements about the mean for each measurement set. We 

-do this .for B1 and for the Ba’s of the modes in Eqs. (la)-(ld). Normal error 

distributions are used. We find that on the whole the errors estimated from the 

scatter are equal to or smaller than the given errors, oa, according to this test. 
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In other words, some sets of measurements are overconsistent. By using just the 

statistical contribution to the measured errors, we can test in some cases whether 

the overconsistency is caused by overestimation of systematic errors or bias in 

the measurements. 

- 

As an aid to researchers in this area we present tables of the data we used. 

This is all the data published in journals, cataloged preprints, or Ph. D. thesis; 

the authors being the experimenters themselves. We also present a comparison 

of the measured r lifetime, rr, with the leptonic branching fractions, B, and B,, 

for the decays in Eqs. (la) and (lb). 

The nature of the present apparent discrepancy[3-41 between B1 and C B, is 

diagrammed in Table 1. There is no discrepancy if considerations of the avarious 

Bi’s is limited to direct measurements. This is because there are no reliable 

. . measurements[41 for some modes contributing to the signature 

r- + l++x- +n7 , n > 4 , (2) 

‘where x is a charged particle. Also there are no comprehensive and sufficiently 

small experimental limits on unconventional l-charged particle decay modes such 

as 

r- +NO+x- , (3) 

where No is an unknown, massive, stable neutral particle. 

The discrepancy appears when unconventional modes are excluded, and when 

-conventional theory and other data is used1 1~1 to set limits on the modes which 

could contribute to the event type in Eq. (2). Then B1 is larger than C B, 

by about 6%.141 Table 1 demonstrates the importance of the measurementiand 
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quoted errors on the branching fractions for Be, B,, B,, B,, and B,. This 

motivated our study. 

II. DATA USED 

We used the branching fraction data listed in Tables 2 through 5 and the 

lifetime data in Table 6. We have included in the tables all data presented by the 

experimenters themselves in journal articles, cataloged preprints, or Ph.D. thesis 

unless the experimenters have stated their measurement is replaced by their own 

later measurement. We have not included measurements which are reported 

only through private communication or in reviews. These criteria permit us to 

work with fixed measurements and permit the reader to examine the details of 

experiments. 

. . i / . Table 2 presents B3 as well as B1 although most measurements of B, and B3 

are strongly correlated. Often only one is measured and the other calculated by 

Br + B3 + B5 = 1, with B5 = 0.1%. 

To insure the measurements for a specific branching ratio are statistically in- 

dependent, we have excluded several measurements from the statistical analysis 

although they are included in the tables. The MARK II collaboration has pub- 

lished two measurements[5~61 of B1, and two measurements[5p71 of B, that use the 

same data set but different analysis techniques. We use only the measurement 

with the smallest total error. The 1982 MARK II collaboration and 1984 TPC 

collaboration measurements18~Ql of B1 are not independent of their more precise 

-recent measurements and thus are also excluded. 
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III. B,, BP, AND e - p UNIVERSALITY 

The use of the constraint on B, and BP from e - p universality, B, = .973B,, 

must be carefully considered when comparing or averaging experimental measure- 

ments. Four cases occur: i) the experimenters measure the product branching 

ratio B, . B, and use the constraint to determine B, and B,; ii) the experi- 

menters measure B, and B, independently; iii) the experimenters measure B, 

and B, separately but the measurements are strongly correlated, perhaps be- 

cause they simultaneously measure the product B, . BP; iv) only B, or B, is 

measured. In the measurements listed in Table 3, there are four type i, six type 

ii, three type iii, and eight type iv experiments. 

. . 

In our analysis of the B, and B, measurements, we first analyze only the 

subsets of experiments which do not make use of the universality constraint. 

The experiments in these sets can be equally treated in the analysis, and allow a 

test of the universality constraint to be made. We then apply, if necessary, the 

universality constraint to each experiment in Table 3 and determine a constrained 

branching ratio, BL. The third column of branching ratios listed in Table 3 are 

the results of this constraint procedure. The statistical analysis is then applied 

to the full set of constrained measurements. 

In the constraint procedure, type i experiments and experiments which mea- 

sure only Be are used directly. Experiments which measure only B, are scaled: 

Bd = B,/.973. Type ii experiments are constrained using the equations below: 

(4 
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and 

of,, f l/u& + .9732/u;p 1 . c (5) 
The universality constraint can be applied to type iii experiments if the cor- 

relation between the B, and B, measurements is known. For the special case 

where B,, BP, and the product branching ratio B,, = B, . B, are measured, then 

BL is determined by minimizing the x2 

X2 = (B; - &)2/u;e + (.973B; - Ba)2/u&p + (.973BL2 - B,,)2/u&er . (6) 

This results in a cubic equation for BL and an error given by 

1 
-4 -uB; = l/u& + .9732/u;p + 2(.973) . (3(.973)Bi2 - Bep)/u&,. - (7) 

. . i / . 

Note that these constraint techniques average the systematic errors for B,, BP, 

and B,, within a single experiment. Thus, systematic errors which are common 

to the B,, B,, and B,, measurements will be averaged resulting, perhaps, in an 

underestimate of the systematic error on BL. 

IV. ANALYSIS METHOD 

Consider a particular branching fraction, B, for example. As listed in 

Table 4 there are seven different measurements: Brl, Br2 . . . B,i . . . . We want 

-the weighted average < B, > and the error on that average, U&. Simplifying 

the notation: yi replaces BTi, y replaces < B, > and u replaces Ug,. The same 

notation is used for B,, BP, BP and B1. 
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Most recent measurements, yi, included a statistical error u,tot,+ and a sys- 

tematic error u,~~,+. We follow the Particle Data Group’s method[lO] of combining 

these errors in quadrature 

and we use this combined error unless the experimenters provide a total error. 

The formal average is 

y= c (Y&:,/c (W) ’ 
i 

and the formal combined error in y is 

. . 

Q= (7 (l,u:))i * 

(9) 

(10) 

The relative weight of a measurement i is 

wi=u2/uf . (11) 

The scatter of the individual measurements, yi, from y are described by the pulls: 

pi = (y- yi>/ [uf -u2p . (14 

For Gaussian distributed errors, ui, the distribution of pulls is a normal distri- 

bution of unit width and zero mean. 
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The standard deviation, u scat, of the weighted mean is calculated from the 

average variance, .sfcat, for N. measurements: 

&at = c (Nwi[yi 
i 

which reduces to 

- Y12) /(N - 1) 9 

Using ufCat = &,,/N, we have 

y2 (N >I 
- 

Uscat = KC 2 2 WiYi - Y >I P - 
i 

. . Observe that the errors ui are used in this equation i / . 
but are not directly used to calculate uscat. 

-1) . 

(13) 

in the weighting of [yi - y12, 

Our interest centers on the relative sizes of u and uacat. As discussed in Sec. V, 

if u is significantly smaller than uscat, some of the experimenters have given a: 

which are too small. Then the u used in Table 1 is too small, and the discrepancy 

problem is less certain. If u is significantly larger than uscat, there are three, 

not exclusive, explanations. Some experimenters may have overestimated their 

a?. Or, some experimenters may have corrected their raw measurements while 

biased toward a preconceived value for y, the preconception being based on the 

existing accepted value of y or on theoretical considerations. Finally, systematic 

-errors common to many experiments may exist which the experimenters have 

accounted for in their determination of ui. In this case the correlated contribution 

to ui should be removed before comparing u and uscat. There are no sources of 
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accounted correlated systematic errors common to many experiments in these 

data which are described in the referenced experimental papers. Although with 

intimate knowledge of all experiments such sources might be found, we have made 

no attempt here to hunt for them. 

We use the ratio 

r = Qscat /a 04 

to measure the relative sizes of oecat and u for a set of measurements. We are 

particularly interested if r is significantly less than one or significantly greater 

than one. To determine the significance we calculate the probability, P( < r) , of 

finding a smaller value of r, and the converse, P(> r), of finding a larger value 

of r. [Since P(< t) +P(> r) = 1, only P(< r) need be calculated.] For example, 

suppose r = .5 because u is twice uscat. If P(< .5) is lo%, then r = .5 has this 
. . z. ~ statistical significance. 

The formal average [Eq. (9)] is obtained by minimizing 

x2 = c (Yi - Y> 2 /4 
i 

which has the minimum value 

Xkin = c (WY; - Y2> /a2 - 
i 

From Eqs. (13) and (16) we see that 

r= [J&,/(N-I)]’ . (17) 

(15) - 

(16) 

_ Thus, the probability P(> r) is identical to the probability of having a larger 

x2 for N - 1 degrees of freedom. Figure 1 plots the distribution of r for several 

values of N. 
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We apply this analysis method first to each full set of data. However, r can 

be very sensitive to a particular measurement which has a relatively large q even 

though that measurement has a small weight wi and little effect on y. Therefore, 

in each data set we select the minimum number of measurements a, b, . . . e such 

that 

Wa+Wb+...We >0.81 . 

This smaller set of measurements will have a formal error no larger that l/.9 of u 

and will contain fewer measurements with relative large q’s. We apply the same 

method of analysis to these smaller sets of data. 

For both the full and small data sets we apply the same method of analysis 

using just the statistical errors. This tests the effects of systematic errors on the 

determination of y and u. We examine the relative importance of statistical and 

systematic errors in determining the formal error as follows: if ustat is the formal -. 

error obtaining using only statistical errors, then we define the contribution to 

the formal error from systematic errors to be .-. I UBY8 = [2 -u:tat]i . 
Here ustat = [C u~;$]-;. But note that u8ys is not [c ~~jz,~]-i. 

i i 

(18) 

In a few measurement sets the formal error is asymmetric: a+ # u-. In that 

event we use the arithmetic average. There is no change in our conclusions if we 

used the maximum or minimum of u+, u- because in all cases their difference is 

-relatively small. 
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V. SYSTEMATIC ERRORS AND r 

The combined error ui of a measurement yi is obtained from ui = (uftat,+ + 

u~~~,J f . The statistical error, u,tat i, , depends on numbers of events and represents 

a normal error distribution. Hence our use of u,tat,+ is straightforward. This is 

not true for the systematic error, uaye,+. There are a multitude of uncertainties 

in the estimate and use of ueye,+. 

An obvious problem is that uays,i may not represent a normal error distribu- 

tion. Suppose it represents an error distribution with tails relatively larger than 

those of a normal distribution. The use of ui to calculate the weighted formal 

average is still acceptable. But it would be wrong to interpret the formal error, 

u, as representing a normal distribution when one is considering discrepancies 

which are several u in magnitude. In a later paperllll we will consider a method 

. . of treating errors which does not depend on the normal distribution assumption; 2. / 
in this paper we maintain the normal error distribution assumption for u,~~,+ as 

well as ustat,+. 

The determination of a branching fraction requires the counting in a data set 

of the number of r decays with that decay mode. This number is then multiplied 

by factors f, g, h . . . . These factors include: normalization quantities such 

as total number of r decays or total luminosity or total cross section, efficiency 

factors such as detector acceptance, and perhaps other quantities. A few of these 

factors are obtained by counting events in the data set - the total number of 

decays, for example - and are assigned a statistical error. But most of the factors 

-are obtained by computation or from other data and are assigned a systematic 

error. (A few factors may have both types of errors.) Let ai be the systematic 

error assigned to the factor ji by the experimenters who reported branching 
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fraction measurement y; with errors uStat,+ and u,~~,+. 

We are about to tabulate some of the problems that can occur in a mea- 

surement set yr, y2 . . .3/i . . . from incorrect evaluation of fi’s or ai(f) We 

emphasize two aspects of these incorrect evaluations: a) we examine whether the 

formal error u will be smaller or larger than the actual error on y; b) we look at 

the ratio r = oscat/o. If uscat is significantly less than u, that is r < 1, then the 

measurement set is overconsistent. If uacat is significantly greater than u, then 

the measure set is inconsistent. 

(4 

(ii) 

(iii) 

Overestimate of Some ai(f) ‘s: For the sake of caution and because of the 

difficulty of evaluating some f’s, experimenters may assign large ai(f) 

Then: 

a) u is larger than the actual error on y; 

b) USCat is smaller than u and the measurement set is overconsistent, there- 

fore r < 1. 

Underestimation of Some ai(f) ‘s: In spite of caution, the history of physics 

has many examples of underestimation of systematic errors. Then: 

a) u is smaller than the actual error on y; 

b) uscat is larger than u and the measurement set is inconsistent, therefore 

r > 1. 

Biasing of yi’s: The values of some fi’s may be set unconsciously so that 

the resulting yi tends towards an already published or preconceived value of 

y. The ui( f)‘s may not be set large enough to encompass this bias. Then: 

a) u is smaller than the actual error on y; 

b) depending on whether different experiments are biased in a similar di- 
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rection or towards a similar value, u acat might be smaller than u and the 

measurement set may be overconsistent, perhaps r < 1.. 

(iv) Uncorrelated, Unaccounted q(f) ‘s: One experiment i may have a mistake 

in fi not encompassed in its ai(f) , another experiment j may have a differ- 

ent mistake in fi or may have a mistake in another factor gj, neither may 

be encompassed in ai or ui (g). Then: 

a) u is smaller than the actual error on y; 

b) uscat is larger than u and the measurement set is inconsistent, therefore 

t > 1. 

(v) Correlated, Unaccounted q (f) ‘s: Suppose most measurements in a set use 

the same factor f, that it is slightly wrong, but the mistake is not encom- 

- passed in any of the q(f)‘s. This would shift the value of y. The error 
. . 2. / - representing this shift would not be in u, it might show up in u,cat. Then: 

a) u is smaller than the actual error on y; 

b) oacat might be larger than a and the measurement set may be inconsis- 

tent, perhaps r > 1. 

All these factors may simultaneously exist in a specific data set, and com- 

peting effects may work together to make the data set appear consistent. For 

example, experimenters may be tempted to increase poorly understood system- 

atic errors if their result appears to be inconsistent with other published results. 

However, there is one instance when the existence of problem iii (bias) can 

-be demonstrated: i.e., an overconsistent measurement set remains overconsistent 

when only the statistical errors, u,tat,+, are used. This assumes that experi- 

menters do not overestimate statistical errors. If systematic errors dominate the 
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measurements, the overconsistency may cease when using only u8tat,+ even if bias 

is present because the systematic errors exist and contribute.to the scatter. 

VI. EXAMPLE 

We clarify the method and our interpretation by the example of Bl, summa- 

rized in Table 7. We use only the higher energy measurements as described in 

Sec. VII A. The average values and errors for the 11 measurements are: 

y = 86.58% 

U = f.28% 

Qacat = 0.27% (19) 
r = .96 

. . i / P&.96)= 49%, I’(> .96)= 51% 

We interpret these values of r and P(< r) to mean that q’s given by the exper- 

imenters are the right size as measured by uscat. 

We then analyze this data set using only o,tat,i to calculate y and u. We 

obtain: 
y = 86.79% 

Ustat = f0.14% 

Qscat = 0.21% (20) 
r = 1.48 

P(< 1.48) = 98.0%, P(> 1.48) = 2.0% 

The formal error is now significantly smaller than the error determined from the 

scatter. This indicates that, as expected, systematic errors are indeed present 
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in the experiments. Using Eq. (18), we obtain osy# = f0.24%, and the ratio of 

systematic to statistical errors is usys /ustat = 1.7. Thus, the measurement of B1 

is dominated by systematic errors. 

We now repeat the analysis using the five measurements with largest weights 

whose combined weight is greater than 0.81, Table 7. For this small set we find: 

y = 86.64% 

U = f0.29% 

U8& = 0.33% 

r = 1.10 

(21) 

P(< l.lO)= 70%, P(> 1.10) = 30% 

The-reduction from 11 measurements to 5 does not change y, a desirable feature 

i. in .a set of measurements. The removal of measurements with small wi’s and 

hence relatively large ui’s increases r to 1.10. But P(> 1.10) = 30%, therefore 

the difference of r from 1 is not significant. 

- Finally, we analyze the small set using only u,,,t,+. The results are: 

(22) 

y = 86.73% 

ustat = f0.15% 

u,,,t = 0.23% 

r = 1.55 

P(< 1.55) = 95.3%, P(> 1.48) = 4.7% 

The small set, which contains only those experiments with the largest weight, 

has properties similar to the large set. 
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The results in Eqs. (19)-(22) h s ow that the measurements used to find the 

formal average and error for J3r in this example have reasonable errors attached 

to them by the experimenters. 

VII. RESULTS 

This section consists of these parts: the results of the analysis for the indi- 

vidual measurement sets Br, B3, B,, BP, B,, and B,; a combined analysis for 

B,, B,, B,, and B,; and a comparison of B, and BP with rr. 

A. Analysis of B,, &, Be, B,, &, and BP 

Table 8 lists quantities found for each measurement set from which a reader 

can draw conclusions as to the quality of the set. We offer some comments as a 

guide. 
i 

. 

Comments on B1, B3: The set is dominated by the measurement from the HRS 

collaborationl12l which contributes half the total weight. Looking at Table 2, the 

three lowest energy measurements are quite different from the formal average, 

but only the one from the DELCO collaboration[13] is by itself statistically in- 

consistent. The deviation of the low energy measurement is usually attributed to 

insufficient correction for background from the process e+e- + hadrons. How- 

ever we cannot rule out the existence of an energy dependent, unknown process 

being confused with the events used to determine B1 and B3 at either low or 

high energy. The average of the other low energy experiments is also inconsistent 

-with the formal average. In order to test the statistical properties of the precise 

high energy experiments, we exclude all low energy experiments from the B1 and 

B3 analyses in Table 8. 
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As discussed in Sec. VI, Uscat is consistent with O, hence a large number 

of experiments agree on these relatively simple measurements and the formal 

average seems to be reliable. 

Comment on B,, B,: As discussed in Sec. III, we first analyze the 10 uncon- 

strained measurements of Be and the 16 unconstrained measurements of B, listed 

in Table 3. The results are given in Table 8. The measured ratio of BP/B, is 

BP/B, = 1.005f.034 (23) 

which is consistent with the expected value of .973. Systematic and statistical 

errors are about equal: ~~~~~ oatat = .9. When the full sets of measurements are 

used, the sets are consistent as defined in Sec. V. However, the small set of B, 

measurements tends to be overconsistent: 

. . i / B,, small set : r = .47, P(< r) = 4.5% . 

If only statistical errors are used, a hint of overconsistency remains: 

B,, small set, ustat,+ : r = .67, P(< t) = 18.7% . 

The BL data set is the largest set, and due to the universality constraint, the 

formal errors are much smaller than for the B, or B, measurements. Both the 

full set and small set tend to be overconsistent: 

BL, full set : r = .73, I'(< -73) = 4.6% , 

B:, small set : t = .52, I=(< .52) = 6.9% . 

Either the experiments may have overestimated their errors, in which case the 

formal error is too large, or else there may be bias in the measurements in which 
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case the formal error is too small. When using just the statistical errors, a hint 

of bias remains. 

Comment on B,: Systematic errors dominate these measurements: Cr,ys/ostat = 

2.1. Here again the full set of measurements tend toward overconsistency as 

defined in Sec. V. 

B,, full set : r = .59, I’(< r) = 8.3% . 

This overconsistency remains when the smaller sets are used, although the sta- 

tistical significance is weaker since there are only four measurements in the small 

set. 

B,, small set : r = .56, P(< r) = 19.% . 

The systematic errors are so much larger than the statistical errors, that when 

only the statistical errors are-used, no hint of overconsistency remains. 

_ Comment on B,: Like the B, measurements, systematic errors dominate the 

measurements: dsye /a,t,t = 2.1. Both the full set and small set are very over- 

consistent: 

B,, full set : r = .21, P(< r) = 0.1% , 

B,, small set : r = .19, P(< 7) = 3.5% . 

The overconsistency is so strong that even though the systematic errors are more 

than twice as large as the statistical ones, the data sets remain overconsistent 
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when only statistical errors are used: 

B,, full set, cratat,+ : r = .39, P(< r) = 2.0% , 

B,, small set, batat,+ : r = .38, P(< r) = 13.8% . 

Bias clearly exists in these measurements. The formal error on the average is too 

small since this bias is not included in the systematic errors. 

B. Combined Analysis of B,, BP, &, and BP 

The three data sets Bi, B,, and B,, show evidence of overconsistency as 

measured by r. However, r is most sensitive to points which are furthest from 

the mean and can change considerably if one measurement is far from the mean. 

. . Another indicator of the consistency of a data set is the distribution of pulls i I 
[Eq. (12)], which should b e a normal distribution of unit width and zero mean 

for a data set with Gaussian errors. r is very nearly equal to the rms deviation 

of the pull distribution. Figure 2 shows the sum of the pull distributions for the 

three data sets BL, B,, and B, along with the expected distribution. Here also 

there is clear evidence of the overconsistency of the data sets. Figure 3 shows the 

same distribution for the small sets. Of the 13 measurements in the three small 

sets, none is more than one sigma away from the small set mean. 

We quantify the overconsistency of the summed pull distribution by evaluat- 

ing the rms deviation, Rx. For the full sets Rx = .636. The probability that Rc 

-is less than or equal to .636 for an equivalent set of experiments having Gaussian 

errors is .14 f .Ol%. For the small sets, Rx = .484. The probability of finding a 

smaller Rx is .64 f .04%. 
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Another method to measure the combined statistical significance of the ob- 

served overconsistency is to study the sum of the t values, Cr, for the three data 

sets. There is no reason to expect the overconsistency to be of the same mag- 

nitude in the three different types of measurements. For example, the ratio of 

systematic to statistical errors is twice as large for B, and B, as it is for Bk. The 

summed pull distribution will not be sensitive to a very overconsistent data set if 

that data set has relatively few measurements. The value of Cr for the full sets 

is 1.53. The probability that Cr is less than or equal to 1.53 for an equivalent 

set of experiments having Gaussian errors is .017 f .005%. For the small sets, 

Cr = 1.27. The probability of a smaller Cr is .54 f .03%. 

C. Comparison of B,, BP, and rr 

The analysis of the rr set of measurements, Table 9, shows again some evi- 

. . dence for overestimation of some ai or biasing of some yi: i ~ . 

r7, full set : r = .65, I’(< r) = 6.2% . 

This overconsistency remains when the smaller sets are used, although the sta- 

tistical significance is weaker since there are only five measurements in the small 

set: 

rr, small set : r = .65, P(< r) = 21.010 . 

The assumption of e - p- r universality leads to the prediction 

77 = 3 

Bp = 0.973 Be 

(24 

(25) 
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when the e mass and all neutrino masses are set to 0. From Table 8, the full set 

formal average for BL is 

B; = (17.96f 0.26)% . 

Then from Eqs. (24) and (26) 

(26) 

r7(predicted) = (2.874 f 0.042) x lo-l3 s (27) 

compared with the full set measured value from Table 9 

rr(measured) = (3.026 f 0.085) x lo-l3 s . (28) 

- The- difference is 
i ~ 

r7(measured) - rr(predicted) = (0.152 f 0.095) x lo-l3 s (29) 

and is not statistically significant. We have noted the errors in Be, BP, and r7 

may be overestimated or there may be biases in Be, B,, and r7. Given these 

uncertainties, the difference in Eq. (29) cannot be interpreted as requiring larger 

values of B, and B,. 
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VIII. CONCLUSIONS 

We studied the measurements of various decay branching fractions and the 

lifetime of the r lepton for statistical consistency, assuming normal error distribu- 

tions. There is clear evidence for overestimation of errors or bias in the individual 

measurements for Bi, B,, and particularly for B,. By considering only the sta- 

tistical errors, there is clear evidence for bias in the BP measurements, and hints 

of bias in other measurements. Therefore, the formal error on the average of 

the B, measurements is too small. Since the error on the p branching ratio is 

the largest contribution to the error on the sum of the well measured one prong 

decay modes, the significance of the one prong discrepancy is reduced. 

While we find evidence for bias, there is no evidence that the bias causes the 

discrepancy in summing the branching fractions. For example, although the BP 

measurements cluster too much, they may still cluster about the true value of 

B,. Or the true value of B, may be larger, decreasing the discrepancy; or the 

true value of B, may be smaller, increasing the discrepancy. We do not know 

the size or sign of the bias. 

There is no evidence for widespread underestimation of systematic errors in 

the sets of measurements examined here. Hence the discrepancy should not be 

ignored simply by claiming that the errors should be set larger. 

In summary, our examination of the branching fraction measurements has 

not resolved the existing problem in understanding the l-charged particle decay 

modes of the tau. Resolution of this discrepancy requires new information such 

-as measurements with greatly improved statistical and systematic precision, or 

explicit measurement of as yet unmeasured or poorly measured modes. 
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Table la. Summary of measured branching fractions of modes with l-charged particle. 

Type of 
Measurement Row Decay Mode Branching Fraction (%) Reference 

Exclusive A e -- ueul 17.6 f 0.4 Table 8 
Measurements B p-fipur 17.7 f 0.4 Table 8 
of Modes with C A-lJr 10.8 f 0.6 Table 8 

0 or 7r” D P-h 22.5 f 0.9 Table 8 
E K-l+ 0.7 f 0.2 Ref. 3 
F K*-UT 1.4 f 0.1 Ref. 3 

Sum of rows A-F G 70.7 f 1.2 

Called Bleprp~ 

H r-nr”ur, n > 1 
Sum ctr-nqur, n > 0 

of Modes with - 7r m7r 0 nrju,, m+n> 1 8. to 16. Ref. 4 
> 1~~ or with q’s K-nrOu,, n > 1 

-Called BI mult neut 
. . 
. 

-. I  Table lb. Summary of l-charged particle branching fractions in percent. 

Decay Mode Category 

B le/~pK 

Branching Fraction (%) and Origin 

70.8 f 1.2 from measurement 
(Table la) 

B 1 mult neut 

8 to 16 5 9.8 
from measurement from theory and other data 

(Ref. 4) (Refs. 1, 2, 4) 

B 1e~rpK •I- Blmult neut 1 79. to 87. 5 80.5 f 1.2 

BI 86.6 f 0.3 from measurement 
(Table 8) 



Table 2. r topological branching fractions in percent. The statistical error is given first, the systematic error 
second. We list all measurements provided the measurement is described in a preprint, journal article, or 
Ph.D. thesis authored by the experimenters, and the authors have not stated the measurement is superseded 
by a more recent measurement. 

& B3 Energy Experimental Reference 
Measurement Co;J&d Weight Measurement Combined 

Error 
WY Group 

70.’ *lo. 
J. Burrnester et al., 

- 30.t* f10. 3.6 to 5.0 PLUTO Phys. Lett. 68B, 
297 (1977) 

sa.t* *5. 
W. Bacino et al., 

- 32.’ f5. 3.1 to 7.4 DELCO Phys. Rev. L&t. 41, 
13 (1978) 

G5.t’ *Ill. 
R. Brandelik et al., 

- 35.’ Itll. 3.9 to 5.2 DASP Phye. Lett. 7SB, 
109 (1978) 

52.t* +6.5 
J. Jaros et al., 

- 18.’ f6.5 6 to 7.4 MARK I Phys. Rev. Lett. 40, 
1120 (1978) 

76: 

84.0 

&6. - 24.’ 
R. Brandelik et al., 

f6. 12 to 31.6 TASS0 Phys. Lett. 92B, 
199 (1980) 
H. J. Behrend et al., 

f2.0 .019 15.0 *2.0 32.0 to 36.8 CELLO Phys. Lett. 114B, 
282 (1982) 

86.0 3~ 2.0 rf: 1.0’ f2.2 
C. A. Blocker et al., 

- 14.0 f 2.0 f 1.0’ rt2.2 29.0 MARK II Phys. Rev. Lett. 49, 
1369 (1982) 

85.2 dz 0.9 zk 1.5’ f1.7 - 14.8 f 0.9 f 1.5’ TPC 
H. Aihara et al., 

f1.7 29.0 .’ Phys. Rev. DSO, 
2436 (1984) 
H. J. Behrend et al., 

85.2 zt 2.6 + 1.3 f2.9 .009 14.8 If: 2.0 * 1.3 f2.4 14.0 CELLO Z. Phys. C2S, 
103 (1984) 

85.1* 2.8 z!z 1.3 zh3.1 

87.8 * 1.3 * 3.9 zt4.1 

H. J. Behrend et al., 
.008 14.5 & 2.2 * 1.3 f2.6 22.0 CELLO Z. Phys. C2S, 

103 (1984) 
Ch. Berger et al., 

.005 12.2 f 1.3 f 3.9 f4.1 34.6 average PLUTO Z. Phys. C28, 
1 (1985) 

84.7 * 1.1”;:; 

86.7 k 0.3 f 0.6 

86.9 f 0.2 * 0.3 

86.1 f 0.5 f 0.9 

87.9 5 0.5 f 1.2 

87.2 + 0.5 f 0.8 

+1.0 -1.7 

f0.7 

f0.4 

f1.0 

f1.3 

f0.9 

+1.7 M. Althoff et al., 
.024 15.3 + 1.12;:; -1.9 13.9 to 43.1 TASS0 Z. Phys. C26, 

521 (1985) 
E. Fernandez et a[., 

.157 13.3 310.3 rt 0.6 f0.7 29.0 MAC Phys. Rev. Lett. 54, 
1624 (1985) 
C. Akerlof et a[., 

.482 13.0 f 0.2 f 0.3 *0.4 29.0 HRS Phys. Rev. L&t. 55, 
570 (1985) 
W. Bartel et al. 

.077 13.6 f 0.5 f 0.8 f0.9 30.0 to 46.8 JADE Phys. Lett. IS&, 
188 (1985) 
W. Ruckstuhl et al., 

.046 12.1 f 0.5 & 1.2 f1.3 29.0 DELCO Phys. Rev. Lett. 56, 
2132 (1986) 
W. B. Schmidke et al. 

.095 12.8 f 0.5 zt 0.8 f0.9 29.0 MARK II Phys. Rev. L&t. 57, 
527 (1986) 

87.1& 1.0 f 0.7t* 
P. R. Burchat et al., 

f1.2 - 12.8 * 1.0 * 0.7’ ztl.2 29.0 MARK II Phys. Rev. DS5, 
27 (1987) 
H. Aihara et al., 

84.7 3~ 0.8 f 0.6 fl.O .077 15.1 zt 0.8 rt 0.6 fl.O 29.0 TPC Phys. Rev. DS5, 
1553 (1987) 

I 
ICalculated from Bl or Bs measurement using Bl + Ba + B5 = I. with Bs = 0.1%. 
‘Not included in average. 
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Table 4. r- --t Z-Y, branching ratio in percent. The statistical error is given first, the 
systematic error second. We list all measurements provided the measurement is described 
in a preprint, journal article, or Ph.D. thesis authored by the experimenters, and the 
authors have not stated the measurement is superseded by a more recent measurement. 

Measurement Combined Weight Energy Experimental Reference 
Error (G w Group 

G. Alexander et al., 
9.0 f 2.9 f 2.5 f3.8 .025 4.1 to 5.0 PLUTO Phys Lett. 78B, 

162 (1978) 
.W. Bacino et al., 

8.0 f 3.2 If: 1.3 f3.5 .029 3.6 to 7.4 DELCO Phys Lett. 42, 
6 (1978) 
C. A. Blocker et al., 

11.7 f 0.4 f 1.8 f1.8 .109 3.5 to 6.7 MARK II Phys. Lett. 109B, 
119 (1982) 

H. J. Behrend it al., 
9.9 f 1.7 f 1.3 f2.1 .080 34.0 CELLO Phys. Lett. 127B, 

270 (1983) 
W. Bartel et al., 

11.8 f 0.6 f 1.1 f1.3 .210 34.6 average JADE Phys. Lett. 182B, 
216 (1986) 

W. T. Ford et al., 
10.7 f 0.5 f 0.8 f0.9 .438 29.0 MAC Phys. Rev. D35, 

408 (1987) 
P. R. Burchat et al., 

10.0 f 1.1 f 1.4 f1.8 .109 29.0 MARK II Phys. Rev. D35, 
27 (1987) 
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Table 5. T- + p-v, branching ratio in percent. The statistical error is given first, the 
systematic error second. We list all measurements provided the measurement is described in 
a preprint, journal article, or Ph.D. thesis authored by the experimenters, and the authors 
have not stated the measurement is superseded by a more recent measurement. 

i 

Measurement CoE:iEed Weight Energy Experimental Reference 
( GeV) Group 

24. f 6. zt 7.t 
.R. Brandelik et al., 

f9. .009 3.6 to 5.2 DASP Z. Phys. Cl, 
233 (1979) 

21.5 f 1.7 f 3.0t f3.4 

22.1 f 1.9 f 1.6 f2.5 

22.3 f 0.6 f 1.4 Al.5 

23.0 31 1.3 f 1.7 f2.1 

25.8 h 1.7 f 2.5* f3.0 

22.6 f 0.5 f 1.4 f1.5 

C. A. Blocker, 
.063 3.7 to 6.0 MARK II Thesis, LBL-10801 

(1980) 
.H. J. Behrend et al., 

.116 14.0 to 34.0 CELLO Z. Phys. C23, 
103 (1984) 
J. M. Yelton et al., 

.323 29.0 MARK II Phys. Rev. Lett. 56 
812 (1986) 
J. Adler et al., 

.165 3.8 MARK III Phys. Rev. Lett. 59 
1527 (1987) 

P. R. Burchat et al., 
- 29.0 MARK II Phys. Rev. D35, 

27 (1987) 
S. T. Lowe et al., 

,323 9.4 to 10.6 CRYSTAL SLAC-PUB-4449 
BALL (1987) 

‘All r + T-TOY, included in r- + P-V,. 

Not included in formal average. 

t We have determined the breakdown of statistical and systematic errors. 
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Table 6. 7 lifetime in units of lo-l3 s. The statistical error is given first, the systematic error 
second. We list all measurements provided the measurement is described in a preprint, journal 
article, or Ph.D. thesis authored by the experimenters and the authors have not stated the 
measurement is superseded by a more recent measurement. 

Lifetime Errors combined Weight Energy Experimental Reference 
in quadrature (GeV) Group 

G. Feldman et al., 
4.6 k1.9 .002 29.0 MARK II Phys. Rev. Lett. 48 

66 (1982) 
W. Ford et al., 

4.9 f2.0 .002 29.0 MAC Phys. Rev. Lett. 49 
106 (1982) 
H. J. Behrend et al. 

4.7 +3.9 -2.9 9006 17.1 average CELLO Nucl. Phys. B211, 
369 (1983) 

3.18:;:;; f 0.56 

3.15 f 0.36 f 0.40 

2.63 f 0.46 f 0.20 

2.88 f 0.16 f 0.17 

+0.81 
M. Althoff et al., 

-0.94 .OlO 39.8-45.2 TASS0 Phys. Lett. 141B, 
264 (1984) 
E. Fernandez et al., 

f0.54 .025 29.0 MAC Phys. Rev. Lett. 54 
1624 (1985) 
D. E. Klem et’ cd., 

f0.50 .029 29.0 DELCO SLAC-Report’300 
(i986), p. 67 
D. Amidei et al., 

f0.23 .134 29.0 MARK II SLAC-PUB-4362 
(1987) 

3.09 f0.19’ 
H. R. Band et al., 

.202 29.0 MAC Phys. Rev. Lett. 59 
415 (1987) 
S. Abachi et al., 

2.99 5 0.15 f 0.10 f0.18 .225 29.0 HRS Phys. Rev. Lett. 59 
2519 (1987) 
C. Bebek et al., 

3.25 h 0.14 310.18 f0.23 .140 10.5 CLEO Phys. Rev. D36, 
690 (1987) 
H. Albrecht et al., 

2.95 x!z 0.14 f 0.11 f0.18 .230 9.3-10.6 ARGUS Phys. Lett. 199B, 
580 (1987) 
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Table 7.. Example of the calculation of statistical quantities using 
the topological branching fraction B1 in percent. 

Measurement 1 Co;:rd 1 Weight 

I f2.0 .019 

85.2 I f2.9 I .009 

I f1.3 I .046 

Pull Used in Largest 
Weights Analysis 

.46 1 
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Table 8. Calculated values of y, (01, IcraC4tl, t, P(< r), odyd/crdtOt, and number of 
measurements for Br, Bs, unconstrained B, and I?,, B:, B,,.and B,. Values of y, (T, 
and uscat are in percent. 

i 

Branching Measurement Number Y b-4 
of 

Fraction Selection 
Formal Formal lcrdcat I 

Measurements Average Error 
r PC< 4 s 

full set 11 86.58 .28 .27 .96 .491 1.7 
u8tat, only 10 86.79 .14 .21 1.48 .980 - 

Bl small set 5 86.64 .29 .33 1.10 .699 1.7 
ustut, only 5 86.73 .15 .23 1.55 .953 - 

full set 11 13.32 .28 .24 .87 .313 1.7 
ustut, only 10 13.13 -14 .19 1.40 .957 - 

J33 small set 5 13.27 .29 .30 1.03 .618 1.7 
~dot, only 5 13.18 .15 .21 1.42 .908 - 

full set 10 17.62 .44 .37 .83 .297 .Q 
oht , only 8 17.81 .34 .45 1.31 .898 - 

& small set 5 17.56 .48 .44 .93 .514 .Q 
u8tat, only 4 17.88 .37 .45 1.22 .784 - 

full set 16 17.71 .41 .37 .91 .345 .9 
ustot, only 12 17.80 .31 .33 1.05 .645 - 

BP small set 6 17.95 .45 .21 .47 .045 .9 
o&at only 6 17.92 .34 .23 .67 .187 - 

full set 21 17.96 .26 .19 .73 .047 1.0 
adtat, only . 15 18.07 .19 .15 .79 .158 - 

B: small set 6 18.13 .29 .15 .52 .069 .9 
d8tat, only 6 18.16 .21 .16 .73 .245 - 

full set 7 10.78 .60 .35 .59 .083 2.1 
d6tUf, only 7 11.25 .26 .28 1.07 .671 - 

B, small set 4 11.00 .64 .36 .56 .190 2.2 
udtat, only 4 11.33 .27 .33 1.23 .789 - 

full set 6 22.45 .85 .18 .21 .OOl 2.1 
ustat, only. 6 22.47 .35 .14 .39 .020 - 

4 small set 3 22.56 .95 .18 .19 .035 2.4 
ustat only 3 22.52 .37 .14 .38 .138 - 
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Table 9. Calculated values of y, 101, Ioscatl, r, I’(< r), 2, and number 
of measurements for the 7 lifetime 77. Values of y, u, and oacat are in 
lo-l3 set units . 

1 k.Ieasurement Number Y IQI 
of 

Selection 
Formal Formal loscat I 

Measurements Average Error 
r P( < r) z 

full set 11 3.026 .085 .055 .65 .062 .8 

md, only 7 3.024 .070 .062 .88 .411 - 

small set 5 3.025 .089 .058 .65 .208 .8 

Q&at, only 4 3.027 .073 .082 1.12 .710 - 

: 
r 
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FIGURE CAPTIONS 

1. r distribution for different values of N. 

2. Sum of the pull distributions for the II:, B,, and B, full data sets. 

3. Sum of the pull distributions for the BL, B,, and BP small data sets. 

i. 
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