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Abstract Using dispersion theory, the electromagnetic
Sigma-to-Lambda transition form factors are expressed as
the product of the pion electromagnetic form factor and the
�Λ̄ → ππ scattering amplitudes with the latter estimated
from SU(3) chiral perturbation theory including the baryon
decuplet as explicit degrees of freedom. The contribution of
the K K̄ channel is also taken into account and the ππ–K K̄
coupled-channel effect is included by means of a two-channel
Muskhelishvili–Omnès representation. It is found that the
electric transition form factor shows a significant shift after
the inclusion of the K K̄ channel, while the magnetic transi-
tion form factor is only weakly affected. However, the K K̄
effect on the electric form factor is obscured by the undeter-
mined coupling hA in the three-flavor chiral Lagrangian. The
error bands of the Sigma-to-Lambda transition form factors
from the uncertainties of the couplings and low-energy con-
stant in three-flavor chiral perturbation theory are estimated
by a bootstrap sampling method.

1 Introduction

Electromagnetic form factors (EMFFs) give access to the
strong interaction, which provides one of the most notorious
challenges in the Standard Model due to the nonperturba-
tive nature of Quantum Chromodynamics (QCD) at the low
energy scale. On the one hand, the EMFFs can be extracted
from a variety of experimental processes, such as lepton–
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hadron scattering, lepton–antilepton annihilation or radiative
hadron decays. These EMFFs can be measured over a large
energy range. On the other hand, dispersion theory, which
is a powerful nonperturbative approach, allows for a theo-
retical description of the EMFFs. Consequently, the EMFFs
are an ideal bridge between experimental measurements and
theoretical studies of the low-energy strong interaction.

In the last decade, much research effort both in experiment
and theory was focused on the nucleon EMFFs, largely trig-
gered by the so-called proton radius puzzle [1]. For recent
reviews, see e.g. Refs. [2–6]. In the process of unravelling
this puzzle, dispersion theory has played and is playing a cru-
cial role in the theoretical description of the nucleon EMFFs
[7–10]. The dispersion theoretical parametrization of the
nucleon EMFFs, first proposed in the early works [11–13]
and further developed in Refs. [9,14,15], incorporates all
constraints from unitarity, analyticity, and crossing symme-
try, as well as the constraints on the asymptotic behavior
of the form factors from perturbative QCD [16]. The state
of the art of dispersive analyses of the nucleon EMFFs is
reviewed in Ref. [17]. Very recently, all current measure-
ments on electron-proton scattering, electron-positron anni-
hilation, muonic hydrogen spectroscopy, and polarization
measurements from Jefferson Laboratory could be consis-
tently described in a dispersion theoretical analysis of the
nucleon EMFFs [18].

The dispersive prescription of parameterizing the nucleon
EMFFs can also be applied to other hadron states. The first
two straightforward extensions concern the Delta baryon
and the hyperon states, with the former obtained by flip-
ping the spin of one of the quarks inside the nucleon and
the latter by replacing one or several up or down quarks
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with one or more strange quarks. The EMFFs of the Delta
and the hyperons provide complementary information about
the intrinsic structure of the nucleon [19]. The electromag-
netic properties of the Delta baryon have been studied in
detail in Ref. [20]. Recent investigations of the hyperon EM
structure are given in Refs. [19,21–26]. Ref. [19] consid-
ered once-subtracted dispersion relations for the electromag-
netic Sigma-to-Lambda transition form factors (TFFs) and
expressed these in terms of the pion EMFF and the two-pion-
Sigma-Lambda scattering amplitudes. Using an Omnès rep-
resentation, the pion EMFF could be expressed as the Omnès
function of the pion P-wave phase shift which has been well
determined from the Roy-type analyses of the pion-pion scat-
tering amplitude [27]. An improved parameterization of the
pion EMFF is also available, which includes further inelas-
ticities and is applicable at higher energies [28]. Moreover,
the two-pion-Sigma-Lambda scattering amplitudes could be
calculated in a model-independent way by using three-flavor
chiral perturbation theory (ChPT) [21]. Combining these
studies and taking some reasonable values for couplings and
the low-energy constants in three-flavor ChPT, the electro-
magnetic Sigma-to-Lambda TFFs were predicted in Ref. [19]
where the pion rescattering and the role of the explicit inclu-
sion of the decuplet baryons in three-flavor ChPT were also
investigated.

In the present work, we extend the theoretical framework
used in Ref. [19] to explore the effect of the K K̄ inelastic-
ity on the electromagnetic Sigma-to-Lambda transition form
factors. This is performed by considering the two-channel
Muskhelishvili-Omnès representation when introducing the
pion rescattering effects. In principle, one should include
even more inelasticities when implementing the dispersion
theoretical parameterization for the Sigma-to-Lambda TFFs,
as done in our previous work on the nucleon EMFFs [18].
However, it is difficult in the current case due to the poor data
base which is required when constructing reliable inelastici-
ties in the higher energy region, that is above the K K̄ thresh-
old at ∼ 1 GeV. Note that the four-pion channel has negligible
effects in the energy region around 1 GeV, see Ref. [29]. It is
also known that the contribution of the four-pion channel to
the pion and kaon form factors below 1 GeV is a three-loop
effect in ChPT [30] and thus is heavily suppressed.

We remark that the 4π channel was shown to play an
important role starting from 1.4 GeV in the S-wave case
[31]. This is caused by the presence of the nearby scalar res-
onances f0(1370) and f0(1500) which were both observed
to have a sizable coupling to four-pion states [32–34]. There
is no evidence, however, for the presence of correspond-
ing 1− isovector states in the energy region of 1...2 GeV
in the P-wave case. Moreover, another experimental find-
ing of these references is that the 4π system likes to cluster
into two resonances in the energy region above 1 GeV [31].
The lowest candidate is supposed to be the ρρ channel for

the P-wave isovector problem. From the phenomenological
point of view, the inelasticity around 1 GeV should be satu-
rated to a good approximation by the ππ and K K̄ coupled-
channel treatments in the P-wave case. Moreover, as we will
show later, the effect of K K̄ inelasticity is small. Thus, the
relative ratio between the effects of the K K̄ and four-pion
channel could be enhanced. To investigate this relative ratio,
a sophisticated calculation on the four-pion inelasticity is
needed which goes beyond the present work.

In the present work, the K K̄ inelasticity is implemented
using SU(3) ChPT. The inclusion of the K K̄ channel allows
one to construct the Sigma-to-Lambda transition form fac-
tors up to 1 GeV precisely. In addition, the estimation of the
theoretical uncertainties is improved by using the bootstrap
approach [35].

The paper is organized as follows: In Sect. 2 we intro-
duce the dispersion theoretical description of the electromag-
netic Sigma-to-Lambda transition form factors and present
the coupled-channel Muskhelishvili-Omnès representation
for the inclusion of the K K̄ inelasticity. Numerical results
are collected in Sect. 3. The paper closes with a summary.
Some technicalities are relegated to the appendix.

2 Formalism

Here, we discuss the basic formalism underlying our calcu-
lations. We first write down once-subtracted dispersion rela-
tions for the electric and magnetic Sigma-to-Lambda transi-
tion form factor and then discuss in detail their various ingre-
dients, namely the vector form factor of the pion and the kaon
and the amplitudes for �0Λ̄ → ππ and �0Λ̄ → K K̄ , in
order.

2.1 Dispersion relations for the Sigma-to-Lambda TFFs

The electromagnetic Sigma-to-Lambda TFFs are defined as
in Refs. [19,21],

〈�0(p′)| jμ|Λ(p)〉
= e ū(p′)

( (
γ μ + mΛ − m�0

t
qμ

)
F1(t)

+ iσμν qν

mΛ + m�0
F2(t)

)
u(p) , (1)

with t = (p′ − p)2 = q2 the four-momentum transfer
squared. The scalar functions F1(t) and F2(t) are called the
Dirac and Pauli transition form factors, respectively. One
also writes the electric and magnetic Sachs transition form
factors, given by the following linear combinations,

GE (t) = F1(t) + t

(mΛ + m�0)2 F2(t),

123
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GM (t) = F1(t) + F2(t), (2)

with the normalizations F1(0) = GE (0) = 0 and F2(0) =
GM (0) = κ ≈ 1.98. Here, κ is estimated from the exper-
imental width of the decay �0 → Λγ , see Ref. [19] for
details. Unlike the nucleon case where one constructs dis-
persion relations for F1 and F2 [17], we work with the elec-
tric and magnetic Sachs form factors, i.e. GE and GM , for
the Sigma-to-Lambda TFFs as in Ref. [19] since the Sigma-
to-Lambda TFFs are of pure isovector type and the helicity
decomposition used in Ref. [19] can easier be applied to the
Sachs FFs.

In order to apply the spectral decomposition to estimate
the imaginary part Im GE/M , we consider the matrix element
of the electromagnetic current Eq. (1) in the time-like region
(t > 0), which is obtained via crossing symmetry,

〈0| jμ|�0(p3)Λ̄(p4)〉
= e v̄(p4)

( (
γ μ + mΛ − m�0

t
(p3 + p4)

μ

)
F1(t)

− iσμν (p3 + p4)ν

mΛ + m�0
F2(t)

)
u(p3) (3)

where p3 and p4 are the momenta of the �0 and Λ̄ cre-
ated by the electromagnetic current, respectively. The four-
momentum transfer squared in the time-like region is then
t = (p3 + p4)

2. With the ππ and K K̄ inelasticities taken
into account as depicted in Fig. 1, the unitarity relations for
the Sigma-to-Lambda TFFs read [19,24,36,37],

1

2i
discunit GE/M (t)

= 1

12π
√
t

×
(
q3
π (t) FV

π (t)∗ T ππ
E/M (t) θ

(
t − 4M2

π

)

+ 2q3
K (t) FV

K (t)∗ T K K̄
E/M (t) θ

(
t − 4M2

K

) )
, (4)

where

qπ/K (t) =
√

λ(M2
π/K , M2

π/K , t)

4t
(5)

is the center-of-mass momentum of the ππ/K K̄ two-body
continuum with λ(x, y, z) = x2 + y2 + z2 −2(xy+ yz+ zx)
the Källén function. FV

π/K (t) is the vector-isovector form fac-
tor (J = I = 1) of the pion/kaon and T ππ

E (t) and T ππ
M (t) are

two independent reduced P-wave �0Λ̄ → π+π− ampli-
tudes in the helicity basis. Similarly, T K K̄

E (t) and T K K̄
M (t)

denote the corresponding reduced amplitudes for �0Λ̄ →
K+K−(K 0 K̄ 0). Then the once-subtracted dispersion rela-
tions for the Sigma-to-Lambda TFFs are written as,

Fig. 1 The spectral decomposition of the matrix element of the elec-
tromagnetic current jμ in Eq. (3)

GE/M (t) = GE/M (0) + t

2π i

∫ ∞

4M2
π

dt ′
discunit GE/M (t ′)
t ′(t ′ − t − iε)

+ Ganom
E/M (t) , (6)

where the last term Ganom
E/M (t) denotes the contribution of the

anomalous cut which is non-zero when there exists an anoma-
lous threshold in the involved processes [24,38–41]. This
does happen when the K K̄ channel is taken into account, see
Appendix A for detailed discussions and the explicit expres-
sions of the anomalous part. Next, we need to consider the
various factors contributing to Eq. (6).

2.2 The �0Λ̄-ππ and �0Λ̄-K K̄ amplitudes in the
two-channel Muskhelishvili-Omnès representation

We start with the four-point amplitudes �0Λ̄ → π+π− and
�0Λ̄ → K+K−. Note that the matrix element Eq. (3), and
also the four-point function �0Λ̄ → ππ , can be written in
the general form v̄Λ(−pz, λ)
u�0(pz, σ ) when one works
in the center-of-mass frame and chooses the z-axis along
the direction of motion of the �0. Here, σ and λ are the
helicities of the �0 and Λ̄ baryons, respectively. Due to parity
invariance, there are only two non-vanishing terms, σ = λ =
+1/2 and σ = −λ = +1/2. Concerning the matrix element
Eq. (3), all components except for μ = 3 vanish in the case
of σ = λ = +1/2, that is,

〈
0| j3|�0

(
pz,

1

2

)
Λ̄

(
−pz,

1

2

)〉

= v̄Λ(−pz,+1/2)γ 3u�(pz,+1/2)GE (t). (7)

For σ = −λ = +1/2, only components related to μ = 1, 2
survive:

〈
0| j1|�0

(
pz,

1

2

)
Λ̄

(
−pz,−1

2

)〉

= v̄Λ(−pz,−1/2)γ 1u�(pz,+1/2)GM (t), (8)

and the matrix element for μ = 2 differs from μ = 1 only
by a factor i . Equations (7) and (8) show that TE in the
imaginary part of GE is only related to the amplitude com-
ponent M�Λ̄→ππ/K K̄ (+1/2,+1/2) while TM comes from

123
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Fig. 2 The four-point functionππ → �0Λ̄ including two-pion rescat-
tering. The hatched circle is the part containing only left-hand cuts and
a polynomial

M�Λ̄→ππ/K K̄ (+1/2,−1/2). Then we define the reduced
amplitudes TE/M as [19,42]

M�Λ̄→ππ/K K̄ (t, θ,+1/2,+1/2)

= v̄Λ(−pz,+1/2)γ 3u�(pz, +1/2)qπ/K T
π/K
E (t)d1

0,0(θ)

+ other partial waves with J �= 1 , (9)

M�Λ̄→ππ/K K̄ (t, θ, +1/2,−1/2)

= −√
2v̄Λ(−pz, −1/2)γ 1u�(pz,+1/2)qπ/K T

π/K
M (t)d1

1,0(θ)

+ other partial waves with J �= 1 , (10)

where d1
1/2±1/2,0(θ) is the Wigner d-matrix. Finally, we

obtain

T π/K
E (t)

= 3

2

π∫
0

dθ sin θ
M�Λ̄→ππ/K K̄ (t, θ,+1/2, +1/2)

v̄Λ(−pz ,+1/2) γ 3 u�(pz ,+1/2) qπ/K
cos θ ,

(11)

T π/K
M (t)

= 3

4

π∫
0

dθ sin θ
M�Λ̄→ππ/K K̄ (t, θ,+1/2, −1/2)

v̄Λ(−pz , −1/2) γ 1 u�(pz ,+1/2) qπ/K
sin θ . (12)

As done in Ref, [19], the pion rescattering effect can be
introduced into TE/M via the Muskhelishvili-Omnès equa-
tion that is shown in Fig. 2. With the inclusion of the K K̄
channel, the two-channel Muskhelishvili-Omnès representa-
tion reads [43–46]

TE/M (t) = KE/M (t) + Tanom
E/M (t)

+ Ω(t)

(
P0,E/M (t) − t

π

∫ ∞

4M2
π

dt ′
[ImΩ−1(t ′)]KE/M (t ′)

t ′(t ′ − t − iε)

)
,

(13)

with T = (
Tπ ,

√
2TK

)T
, P0 = (

P0,π ,
√

2P0,K
)T

and K =(
Kπ ,

√
2KK

)T
.1 Ω(t) is the two-dimension Omnès matrix

for the P-wave isovector ππ–K K̄ coupled-channel system.
Tanom
E/M (t) again indicates the anomalous contribution and its

explicit formula is given in Appendix. A. The Kπ/K denotes

1 K = (
Kπ θ(t ′ − 4M2

π ),
√

2KK θ(t ′ − 4M2
K )

)T
is implicit in the

integrand [ImΩ−1(t ′)]K(t ′).

the part of the �Λ̄ → ππ/K K̄ amplitude that only contains
the left-hand cut (LHC) and P0 is the remainder which is
purely polynomial. Therefore, Kπ/K and P0,π/K are given
by

KE (t)

= 3

2

π∫
0

dθ sin θ
Mpole(t, θ,+1/2, +1/2)

v̄Λ(−pz , +1/2) γ 3 u�(pz , +1/2) qπ/K
cos θ ,

(14)

PE
0 (t)

= 3

2

π∫
0

dθ sin θ
Mcontact(t, θ,+1/2, +1/2)

v̄Λ(−pz , +1/2) γ 3 u�(pz , +1/2) qπ/K
cos θ ,

(15)

with M�Λ̄→ππ/K K̄ (t, θ) = Mpole + Mcontact. The mag-
netic parts are derived equivalently from Eq. (12),

KM (t)

= 3

4

π∫
0

dθ sin θ
Mpole(t, θ,+1/2, −1/2)

v̄Λ(−pz , −1/2) γ 1 u�(pz , +1/2) qπ/K
sin θ ,

(16)

PM
0 (t)

= 3

4

π∫
0

dθ sin θ
Mcontact(t, θ,+1/2, −1/2)

v̄Λ(−pz , −1/2) γ 1 u�(pz , +1/2) qπ/K
sin θ .

(17)

All the reduced amplitudes Kπ/K and P0,π/K are calculated
up to next-to-leading order (NLO) within the framework
of the three-flavor baryon ChPT that includes the decuplet
baryon as explicit degrees of freedom. Their explicit expres-
sions are derived in detail in Appendix B.

2.3 The P-wave Omnès matrix and π , K vector form
factors

In this subsection, we derive the P-wave isovector Omnès
matrix and solve for the pion and kaon EMFFs in the coupled-
channel formalism. Ω satisfies the unitarity relation [46]

1

2i
disc Ωi j = (t1

1 )∗im�mΩmj , (18)

where

�(t) = diag
(
σπq

2
πθ(t − 4M2

π ), σKq
2
K θ(t − 4M2

K )
)

(19)

with

σπ/K (t) =
√

1 − 4M2
π/K

t
(20)

123
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is the diagonal phase space matrix. The J = I = 1 ππ–K K̄
coupled-channel T -matrix t11 is parameterized as

t11 =

⎛
⎜⎜⎜⎝

ηe2iδ1
1 − 1

2iσπq2
π

geiψ

geiψ
ηe2i(ψ−δ1

1) − 1

2iσKq2
K

⎞
⎟⎟⎟⎠ . (21)

where g and ψ are the modulus and phase of the P-wave
isovector ππ → K K̄ scattering amplitude, respectively. The
inelasticity η is defined by

η(t) =
√

1 − 4σπσK (qπqK )2g2θ(t − 4M2
K ). (22)

Then we can write the dispersion relation for the Omnès
matrix Ω as

Ωi j (t) = 1

2π i

∫ ∞

4M2
π

dz
disc Ωi j (z)

z − t − iε
. (23)

The analytic solution of the integral equation Eq. (23) was
given in Ref. [47] for the single-channel problem. However,
there are no known analytic solutions for two or more chan-
nel cases where one has to construct the solutions numeri-
cally, either by an iterative procedure [48] or a discretization
method [31]. Here, we adopt the iterative approach to solve
the P-wave ππ–K K̄ coupled-channel Omnès matrix. Sub-
stituting Eq. (18) into Eq. (23), one obtains a two-dimensional
system of integral equations⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Re χ1(t) = 1

π
P

∫ ∞

4M2
π

dz
Imχ1(z)

z − t
,

Re χ2(t) = 1

π
P

∫ ∞

4M2
π

dz
Imχ2(z)

z − t
,

(24)

where

Imχ1(z) = Re
[
(t1

1 )∗11�1χ1

]
+ Re

[
(t1

1 )∗12�2χ2

]
,

Imχ2(z) = Re
[
(t1

1 )∗21�1χ1

]
+ Re

[
(t1

1 )∗22�2χ2

]
, (25)

and P denotes the principal value. Searching for solutions
of Ω(t) is equivalent to searching for two independent solu-
tions of the integral equation set for the two-dimensional
array (χ1, χ2)

T . Using the iterative procedure, one can obtain
a series of solutions (χλ

1 , χλ
2 )T starting with various initial

inputs χ1(t) = 1, χ2(t) = λ, where λ is a real parameter.
Note that the iterative process is linear and the results of the
iteration is therefore a linear function of λ [48]. Then the
solution family {(χλ

1 , χλ
2 )T } contains only two linearly inde-

pendent members. Here, we take the same convention as Ref.
[46] to construct two independent solutions, (Ω11,Ω21)

T and
(Ω12,Ω22)

T , that satisfy the normalizations

Ω11(0) = Ω22(0) = 1 and Ω12(0) = Ω21(0) = 0 ,

from two arbitrary solutions (χ
λ1
1 , χ

λ1
2 )T and (χ

λ2
1 , χ

λ2
2 )T .

With the two-channel Muskhelishvili-Omnès representa-
tion, the binary function composed of the vector FFs of the
pion and the kaon fulfills the same unitarity relation Eq. (18).
Then one can solve the pion and kaon vector form factors(

FV
π (t)√

2FV
K (t)

)
=

(
Ω11(t) Ω12(t)
Ω21(t) Ω22(t)

)(
FV

π (0)√
2FV

K (0)

)
, (26)

which are normalized as FV
π (0) = 1 and FV

K (0) = 1/2.
To solve the J = I = 1 ππ–K K̄ Omnès matrix, the

required input is the P-wave isovector ππ–K K̄ scattering
matrix t11, i.e. Equation (21), that is constructed from the ππ

P-wave isovector phase shift δ1
1, the modulus g and phase ψ

of the P-wave isovector ππ → K K̄ amplitude. The phase
shift δ1

1 up to 1.4 GeV was extracted precisely from the Roy-
type analyses of the pion-pion scattering amplitude in Ref.
[27]. We take the same prescription as in Ref. [28] to extrap-
olate it smoothly to reach π at infinity. Then δ1

1(t) is given
by

δ1
1(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, 0 ≤ √
t ≤ 2Mπ ,

δ f1(t), 2Mπ <
√
t ≤ 2MK ,

δ f2(t), 2MK <
√
t ≤ √

t0,

δ f3(t),
√
t0 <

√
t,

(27)

where

δ f1(t) = cot−1
( √

t

2q3
π

(M2
ρ − t)

(
2M3

π

M2
ρ

√
t

+ 1.043

+ 0.19

√
t − √

t1 − t√
t + √

t1 − t

))
,

δ f2 (t) = δ f1(4M
2
K ) + 1.39

( √
t

2MK
− 1

)
− 1.7

( √
t

2MK
− 1

)2

,

δ f3(t) = π + (δ f2 (t0) − π)

(
t2 + t0
t2 + t

)
. (28)

Here, t0 = (1.4 GeV)2, t1 = (1.05 GeV)2 and t2 =
(10 GeV)2.

The P-wave ππ → K K̄ amplitude up to
√
t3 =

1.57 GeV is taken from Ref. [49] where the modulus g in
the region of 4M2

π ...4M2
K was solved from the Roy-Steiner

equation with the experimental data of P-wave ππ → K K̄
scattering [50,51] above the K K̄ threshold as input, while the
phase ψ was fitted to experimental data [50,51]. Note that the
two-channel Muskhelishvili-Omnès representation in terms
of ππ and K K̄ intermediate states should only work well in
the lower energy region [46]. Further, the asymptotic values
of phase shifts in the coupled-channel systems have to satisfy

lim
t→∞

∑
δ Il (t) ≥ nπ, (29)

to ensure that the system of integral equations, Eq. (24), has
a unique solution [31,52]. n is the number of channels that
are considered in the formalism. It requires ψ = δ1

1,ππ +
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Fig. 3 The modulus g of the P-wave ππ → K K̄ amplitude given by
Ref. [49]

δ1
1,K K̄

≥ 2π in Eq. (21). g and ψ are extrapolated smoothly
to 0 and 2π by means of [31]

ψ(t) = 2π + (ψ(t4) − 2π) f̂

(
t

t4

)
,

g(t) = g(t3) f̂

(
t

t3

)
, with f̂ (x) = 2

1 + x3/2 . (30)

where the extrapolation point t4 of ψ should be far away from
1.5 GeV since there is a structure located around 1.5 GeV
in the phase of the P-wave ππ → K K̄ amplitude. Here we

take the value
√
t4 = 5 GeV for ψ . Such a structure should

also leave trails in the modulus g. However, only g up to√
2 GeV is estimated in Ref. [49] and a small bump around

1.5 GeV in g is only reflected roughly by several data points
above 1.4 GeV measured by Ref. [50], see Fig. 9 in Ref. [49].
The modulus used in our work is presented in Fig. 3, while
the δ1

1 and ψ are presented when we show the solved pion
and kaon vector form factors.

The obtained Ω matrix elements are presented in Fig. 4.
The pion and kaon vector form factors calculated from
Eq. (26) are then given in Fig. 5. Clearly, one can see from
Fig. 5 that the phase of FV

π and FV
K are consistent with the

input ππ phase shift δ1
1 and the phase ψ of the P-wave

ππ → K K̄ scattering amplitude respectively, which is sim-
ilar with the finding for the S-wave case by Ref. [46].

3 Results

Using the reduced amplitudes PE/M
0,π/K and K E/M

π/K given in
Appendix B and the anomalous expressions presented in
Appendix A, we can now calculate the amplitudes T π/K

E/M in

Eq. (4) including ππ/K K̄ rescattering effects from Eq. (13).
Finally, we calculate the Sigma-to-Lambda transition form
factors GE/M from the dispersion relations Eq. (6). Two
issues remain to be clarified. First, we have to fix all the
couplings in the expressions of PE/M

0,π/K and K E/M
π/K . These are

Fig. 4 Real (solid line) and imaginary (dashed line) parts of the Omnès matrix elements Ω
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Fig. 5 Modulus (left) and phase (right) of the vector pion (upper) and
kaon (lower) form factors given by Eq. (26). The input ππ phase shift
δ1

1 (upper) and phase ψ (lower) of the P-wave isovector ππ → K K̄
amplitude are also presented as the red-dashed lines for comparison.

Note that the asymptotic values of δ1
1 and ψ are π and 2π respectively.

The latter is invisible in the plot since its extrapolation point is set as
5 GeV

Fig. 6 The imaginary (red) and real (blue) part of the electric transition
form factor GE . The dash-dotted, dotted, solid lines denote the results
within the single ππ channel, ππ–K K̄ coupled channel without and
with the anomalous contribution scenarios, respectively, when FΦ =
100 MeV, b10 = 1.06 GeV−1, hA = 2.22 and Λ = 1.5 GeV. The
vertical dashed and solid lines represent respectively the anomalous
threshold (Eq. (36)) and the K K̄ threshold

D, F , FΦ for the LO octet-to-octet interactions, hA for the
LO decuplet-to-octet interaction, and b10 for the NLO octet-
to-octet interaction. In ChPT, D and F are well constrained
around 0.8 and 0.5, respectively. Here we use D = 0.80,

Fig. 7 The imaginary (red) and real (blue) part of the magnetic tran-
sition form factor GM . For notations, see Fig. 6

F = 0.46 [21]. In SU(3) ChPT, FΦ can take three different
values at LO, namely Fπ = 92.4 MeV, FK = 113.0 MeV
and Fη = 120.1 MeV [53]. Often, one chooses the aver-
age of these, that is, FΦ = (Fπ + FK + Fη)/3. Here, we
take FΦ = 100 ± 10 MeV to cover mainly the π and K
contributions. hA can be determined from the experimental
widths of either �∗ → Λπ or �∗ → �π . We take the
value hA = 2.3 ± 0.3 [19], here an additional 10% error
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is added to account for the SU(3) flavor symmetry break-
ing effect when applied to the vertices involving a �∗. The
low-energy constant b10 was estimated in Ref. [54] based on
the resonance saturation hypothesis as b10 = 0.95 GeV−1.
A larger value b10 = 1.24 GeV−1 is used in Ref. [21]. A
very recent determination based on the ChPT fits to lattice
data of the axial-vector currents of the octet baryons gives
b10 = 0.76 GeV−1 [55]. Taking all these determinations into
account, b10 = (1.0 ± 0.3) GeV−1 is used here. Second, we
introduce an energy cutoff Λ in the integration along the uni-
tarity cut in Eq. (6) and Eq. (13). We consider two values for
the cutoff, Λ = 1.5 and 2.0 GeV, to check the sensitivity of
our results to it.

Now we are in the position to present our numerical results
for the electromagnetic Sigma-to-Lambda transition form
factors. First, we present the electric transition form factor
GE obtained with the radius-adjusted parameters given in
Ref. [19], i.e. FΦ = 100 MeV, b10 = 1.06 GeV−1 and
hA = 2.22 where the radius is adjusted to the fourth-order
ChPT result from Ref. [21], in Fig. 6. Note that Λ = 1.5 GeV
is used in these calculations. The result from the single ππ

channel consideration is also plotted for an intuitive com-
parison. Taking the same parameter values, we find good
agreement with Ref. [19]. After the inclusion of the K K̄
inelasticity, a logarithmic singularity located at the anoma-
lous threshold t− = 0.935 GeV in the unphysical area of the
time-like region is introduced into the TFF GE . Moreover,
additional nonzero imaginary parts along the anomalous cut
are produced for the TFFs by Eq. (42) and Eq. (43). This
is similar to the triangle singularity mechanism that leads to
a quasi-state phenomenon in the physical observables [56],
except the anomalous threshold here can not be accessed
directly by the experiments. The imaginary parts ofGE in the
space-like region, however, are still zero since the nonzero
contributions from Eq. (42) are exactly canceled by those
from the unitarity integral of Eq. (43).

A similar plot for the magnetic TFF GM is shown in Fig. 7
where there is a cusp-like structure rather than a logarith-
mic singularity in GE located at the anomalous threshold
since the coefficient f in Eq. (39) which is proportional to
(Y 2 − κ2) does vanish at the anomalous threshold for GM .
Note that such cusp-like structure is almost invisible due to
the large scale variation of the magnitude of GM . With that
set of parameters, a 52% decrease is produced by the K K̄
channel for GE at t = −1 GeV2,2 while only a 3% decrease
happens for GM . One should be aware, however, of the large
difference between the effects of K K̄ channel in GE and
GM is the result of the much larger magnitude that GM has
overall than GE . The absolute effect of the K K̄ inelasticity

2 Note that GE is overall very small, as is expected due to the vanishing
overall charge of the Λ and �0.

in GM is actually of compatible size as in GE (sometimes
even larger).

In Fig. 8, we show the electric transition form factor GE

between the estimation including only the ππ intermediate
state and the ππ–K K̄ coupled-channel determination with
errors. Note that the TFFs are real-valued in the space-like
region. The solid curves are calculated again with the radius-
adjusted parameters. The error bands in Fig. 8 are estimated
by the bootstrap sampling over the three-dimensional param-
eter space that is spanned by FΦ , b10 and hA. Note that the
electric form factor is independent of the low-energy con-
stant b10, see the expressions in Appendix B. As in Ref. [19],
the uncertainty in hA gives the dominant contribution. The
effect on GE introduced by the inclusion of the K K̄ inelas-
ticity is heavily intertwined with the large uncertainties from
the variation of hA and Λ. Overall, the role of the cutoff is
a bit more complicated than in the single ππ channel case.
The situation is different for GM which is displayed in Fig. 9.
The magnetic Sigma-to-Lambda transition form factorGM is
almost unchanged after including the K K̄ inelasticity. More-
over, GM has much larger absolute errors from the bootstrap
method. At t = −1 GeV2, the bootstrap uncertainty from
FΦ , hA and b10 is already of order ±1, dominated by the
uncertainty in b10. As in Ref. [19], we find a very small sen-
sitivity of GM to the variation of the cutoff Λ. In addition
to providing valuable insights into the electromagnetic struc-
ture of hyperons, experimental data for the transition form
factors may thus also help to constrain these parameters.

4 Summary

In this paper, we extended the dispersion theoretical deter-
mination of the electromagnetic Sigma-to-Lambda transition
form factors presented in Ref. [19] from the ππ intermediate
state to the ππ–K K̄ coupled-channel configuration within
the SU(3) ChPT framework. After including the K K̄ chan-
nel, a shift of the electric Sigma-to-Lambda transition form
factor GE is presented, while the magnetic form factor GM

stays essentially unchanged. At present, the dispersion the-
oretical determination of electromagnetic Sigma-to-Lambda
transition form factors suffers from sizeable uncertainties due
to the poor knowledge of the LEC b10 and coupling hA. The
precise determination of this three-flavor LEC from the future
experiments will be helpful to pin down the hyperon TFFs. In
a next step, it will be of interest to explore the elastic hyperon
electromagnetic form factors based on the theoretical frame-
work that combines dispersion theory and three-flavor chiral
perturbation theory.
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Fig. 8 The electric transition form factor GE obtained from the once-
subtracted dispersion relation Eq. (6) with an energy cutoff Λ =
1.5 GeV (left) and 2.0 GeV (right). The blue lines denote the results

from the single ππ channel consideration as in Ref. [19] and the red
lines are those after including the K K̄ channel. The error bands are
estimated based on bootstrap sampling

Fig. 9 The magnetic transition form factor GM obtained from the once-subtracted dispersion relation Eq. (6) with an energy cutoff Λ = 1.5 GeV
(left) and 2.0 GeV (right). For notations, see Fig. 8
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A Unitarity relations and the anomalous pieces

Let us start from the single channel case. The unitarity rela-
tions for the �-to-Λ TFFs GE/M (in the followings we drop
the index E/M) within the single ππ channel assumption
read [19,24]

1

2i
discunit G(t) = 1

24π
Tπ�π F

V∗
π , (31)
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where �π = σπq2
π with σ and q defined by Eq. (20) and

Eq. (5) respectively, andq = √
tσ/2. Moving to the ππ–K K̄

coupled-channel case, one first considers the vector pion and
kaon form factors; they satisfy the unitarity relations [46,57],

1

2i
disc FV (t) = t1 ∗

1 �FV , FV = (
FV

π ,
√

2FV
K

)T
. (32)

Similarly, the �0Λ̄ → ππ and �0Λ̄ → K K̄ P-wave ampli-
tudes fulfill the unitarity relations

1

2i
disc T(t) = t1 ∗

1 �T, T = (
Tπ ,

√
2TK

)T
. (33)

The key information that the above two equations provide us
is the relative ratio between the ππ and K K̄ channels in the
J = I = 1 coupled-channel problem. Then with the single-
ππ unitarity relations at hand already, that is, Eq. (31), one
can easily extend to the two-channel case:

1

2i
discunit G(t) = 1

24π
TT�FV∗

= 1

24π

(
Tπ ,

√
2TK

)
.

(
�π 0
0 �K

)
.

(
FV∗

π√
2FV∗

π

)

= 1

24π

(
Tπ�π F

V∗
π θ

(
t − 4M2

π

)

+ 2TK�K FV∗
K θ

(
t − 4M2

K

))
. (34)

That becomes Eq. (4) after substituting the identity q =√
tσ/2. Recalling that all the left-hand cut (LHC) part of

T is included in K , then T − K only contains the right-hand
cut (RHC) and its unitarity relation is given by Eq. (33) for
the two-channel assumption. One can also write [46]

1

2i
disc Ω−1(T − K) = −

[
ImΩ−1

]
K, (35)

which leads to Eq. (13).
When m2

� +m2
Λ −2M2

i > 2m2
exch and λ(m2

Λ,m2
exch, M

2
i )

< 0 with Mi = Mπ (MK ) for the process �Λ̄ → ππ

(�Λ̄ → K K̄ ), the LHC and RHC will overlap, leading to
the non-zero anomalous terms Ganom and Tanom in Eq. (4)
and Eq. (13), respectively [24,38–41]. This indeed happens
in the proton exchange diagram for the process �Λ̄ → K K̄ .
Such anomalous contributions are estimated by the dispersive
integrals of the discontinuity along the cut that connects the
anomalous threshold to the starting point of the RHC (the
physical threshold of the two-body intermediate state). The
anomalous threshold t− is defined by [39]

t− = 1

2
(m2

� + m2
Λ + 2M2

K − m2
N )

− 1

2m2
N

(
(m2

� − M2
K )(m2

Λ − M2
K )

+ λ1/2(m2
�,m2

N , M2
K )λ1/2(m2

Λ,m2
N , M2

K )

)
. (36)

Numerically, t− = 0.935 GeV located at the real axis of t
just below the K K̄ threshold. To go further, one first has to
derive the discontinuity along the anomalous cut for the TFFs
G and the scattering amplitudes T. After implementing the
partial-wave projection, namely the integration in Eq. (14)
and Eq. (16), one obtains

KN = f

κ3 log
Y + κ

Y − κ
+ remainder, (37)

where

Y = −(m2
� + m2

Λ + 2M2
K − t − 2m2

N ),

κ = λ1/2(t,m2
�,m2

Λ)σK (t). (38)

f is the coefficient of the logarithm which is a smooth func-
tion over the transferred momentum square t without any
cut. The anomalous threshold is generated by the logarithm
function. As illustrated in Refs. [24,39], the discontinuity of
KN along the anomalous cut reads

1

2i
discanom KN = f

κ2

2π

(−λ(t,m2
�,m2

Λ))1/2σK
. (39)

Note that the argument of
√
z is defined in the range of [0, π)

in the present work. Regarding T, one can rewrite Eq. (35)
into

1

2i
discanom Ω−1(T − K) = −

[
ImΩ−1

] 1

2i
discanom K

=
(
Ω−1t1∗

1 �
) 1

2i
discanom K,

where we replace (− [
ImΩ−1

]
) with (Ω−1t1∗

1 �) in the sec-
ond line since

[
ImΩ−1

]
12 = [

ImΩ−1
]

22 = 0 below the K K̄
threshold.3 Finally, the discontinuity of the TFFs G along the
anomalous cut can be read off straightforwardly in terms of
that of T,

1

2i
discanom G = 1

24π

(
(t1∗

1 )−1 1

2i
discanom (T − K)

)T

FV∗

= 1

24π

(
(t1∗

1 )−1Ω
(
Ω−1t1∗

1 �
) 1

2i
discanom K

)T

FV∗

= 1

24π

1

2i
(discanom K)T�FV∗. (40)

3 This replacement is necessary since
[
ImΩ−1

]
is solved numerically

in our calculation and
[
ImΩ−1

]
12 = [

ImΩ−1
]

22 = 0 always holds in
the unphysical region. The combined quantity Ω−1t1∗

1 � can be simpli-
fied analytically when multiplied to discanom K. Then it turns out that
the products Ω−1t1∗

1 and � discanom K, respectively, are finite along
the anomalous cut. Moreover, the identity − [

ImΩ−1
] = Ω−1t1∗

1 � is
checked numerically and does hold near the K K̄ threshold.
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Fig. 10 The absolute values of the scalar triangle loop function
C0(m2

�,m2
Λ, s, M2

K ,m2
N , M2

K ) calculated numerically using Feynman
parameters (solid black line) as well as dispersively with (dashed red
line) and without the anomalous contribution (dot-dashed blue line).
Note that the solid black and the dashed red line coincide

Substituting Eq. (39) into the above equation, one obtains

1

2i
discanom G = 1

24

− f FV∗
K t

(−λ(t,m2
�,m2

Λ))3/2
. (41)

Then we arrive at the expressions for Ganom and Tanom. They
are

Ganom(t) = t

24π

∫ 1

0
dx

dt ′(x)
dx

1

t ′(x) − t

× − f (t ′(x))FV∗
K (t ′(x))

(−λ(t ′(x),m2
�,m2

Λ))3/2
, (42)

Tanom(t) = Ω(t)
t

π

∫ 1

0
dx

dt ′(x)
dx

1

t ′(x) − t

×
(
Ω−1t1∗

1 �
) 1

2i discanom K

t ′(t ′ − t − iε)
, (43)

with t ′(x) = (1 − x) t− + x 4M2
K .

To cross-check whether this prescription is correct, we
present the calculation of a scalar triangle loop function
C0(m2

�,m2
Λ, s, M2

K ,m2
N , M2

K ) in Fig. 10. The exact agree-
ment is achieved only when the anomalous contribution is
taken into account.

B The reduced amplitudes Kπ/K and P0,π/K

The four-point amplitudes M�Λ̄→ππ/K K̄ (t, θ) are calcu-
lated up to next-to leading order within the framework of
SU(3) chiral perturbation theory. It turns out that the explicit
inclusion of the decuplet baryon in the three-flavor ChPT

Lagrangian is important to reproduce the correct GE/M (0) 4

and reasonable electric and magnetic transition radii, 〈r2
E 〉

and 〈r2
M 〉 [19]. We use the same Lagragians as in Ref. [19].

To be specific, the relevant interaction part of the leading
order (LO) chiral Lagrangian that contains both the octet and
decuplet states as active degrees of freedom for the reactions
of interest is given by [21,58]

L(1)
8+10 = D

2
〈B̄γ μγ5{uμ, B}〉 + F

2
〈B̄γ μγ5[uμ, B]〉

+ 1

2
√

2
hAεadegμν

(
T̄μ
abcu

ν
bd Bce + B̄ecu

ν
dbT

μ
abc

)
,

(44)

and the relevant NLO Lagrangian reads [59,60]

L(2)
8 = i

2
b10〈B̄{[uμ, uν], σμνB}〉, (45)

where 〈· · · 〉 denotes a flavor trace. The chirally covariant
derivatives are defined by

DμB := ∂μB + [
μ, B] (46)

with


μ = 1

2

(
u† (

∂μ − i(vμ + aμ)
)
u

+ u
(
∂μ − i(vμ − aμ)

)
u†

)
. (47)

Here, v and a are external sources and u2 = U =
exp(iΦ/FΦ) with the Goldstone bosons encoded in the
matrix

Φ =
⎛
⎜⎝

π0 + 1√
3

η
√

2 π+ √
2 K+

√
2 π− −π0 + 1√

3
η

√
2 K 0

√
2 K− √

2 K̄ 0 − 2√
3

η

⎞
⎟⎠ . (48)

The octet baryons also make up a 3 × 3 matrix in the flavor
space that is given by

B =
⎛
⎜⎝

1√
2

�0 + 1√
6

Λ �+ p

�− − 1√
2

�0 + 1√
6

Λ n

�− �0 − 2√
6

Λ

⎞
⎟⎠ .

(49)

Finally, Tabc is a totally symmetric flavor tensor that denotes
the decuplet baryons,

T111 = Δ++, T112 = 1√
3

Δ+,

T122 = 1√
3

Δ0, T222 = Δ−,

4 Here, the normalization of electromagnetic Sigma-to-Lambda TFFs
is estimated with the unsubtract dispersion relations, see Ref. [19] for
more details.
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Fig. 11 Pictorial representation of the bare input of the four-point
amplitude ππ → �0Λ̄ obtained up to NLO

Fig. 12 Pictorial representation of the bare input of the four-point
amplitude K K̄ → �0Λ̄ obtained up to NLO

T113 = 1√
3

�∗+, T123 = 1√
6

�∗0, T223 = 1√
3

�∗−,

T133 = 1√
3

�∗0, T233 = 1√
3

�∗−, T333 = Ω. (50)

The amplitudes M�Λ̄→ππ/K K̄ are described as a Born term
in the LO plus a contact term in the NLO within the three-
flavor ChPT, see Fig. 11 and Fig. 12.

From above Lagrangians, one obtains the �-exchange
Born term for �0(p1) + Λ̄(p2) → π−(p3) + π+(p4),

iM� = i(Mt + Mu)

iMt = DF√
3F2

Φ

(
v̄Λγ μγ5 p3,μS�−,tγ

νγ5 p4,νu�

)
,

iMu = −DF√
3F2

Φ

(
v̄Λγ μγ5 p4,μS�+,uγ

νγ5 p3,νu�

)
, (51)

with S�−,t = i((p1 − p4)
μγμ +m�)/(t−m2

�) and S�+,u =
i((p1 − p3)

μγμ + m�)/(u − m2
�) the propagator of the

exchanged � in the t- and u-channel respectively. And the
�∗-exchange Born term,

iM�∗ = i(Mt + Mu)

=
( −hA

2
√

2FΦ

)2
v̄Λgμν p

ν
3Δ

μα
t

(−1√
3

)
gαβ pβ

4 u�,

+
( −hA

2
√

2FΦ

)2
v̄Λ(−1)gμν p

ν
4Δ

μα
u

(−1√
3

)
gαβ pβ

3 u�,

(52)

with the spin-3/2 Rarita-Schwinger propagator [61]

iΔμν(p) = γ α pα + m

p2 − m2

(
gμν − 1

3
γ μγ ν

− 1

3p2 γαγβ pρ pλ(g
μβgνλgαρ + gναgμρgβλ)

)

− 2

3m2

pμ pν

p2 (γ α pα + m)

+ −i

3m p2 (gμρgνβgαλ + gμαgνλgβρ)σαβ pρ pλ,

and t = (p1 − p4)
2, u = (p1 − p3)

2. Here, m denotes the
mass of the exchanged spin-3/2 resonance. The NLO contact
term for the reaction �0(p1)+ Λ̄(p2) → π−(p3)+π+(p4)

is given by

MNLO =
(
b10

1

F2
Φ

4√
3

)
1

2

×
(

(m� + mΛ)
(−v̄Λγ μ(p4 − p3)μu�

)

+ (u − t)v̄Λu�

)
. (53)

The corresponding expressions for the �0(p1) + Λ̄(p2) →
K−(p3) + K+(p4) (M�0Λ̄→K 0 K̄ 0 = −M�0Λ̄→K+K− in
the isospin limit) read

iMborn = i(Mu + Mt + M�∗ ) ,

iMu = 1

F2
Φ

(
−D

2
√

3
+ −√

3F

2

)
D − F

2

×
(

v̄Λγ μγ5 p4,μSp,uγ
νγ5 p3,νu�

)
,

iMt = 1

F2
Φ

(
−D

2
√

3
+

√
3F

2

)
D + F

2

×
(

v̄Λγ μγ5 p3,μS�,tγ
νγ5 p4,νu�

)
,

iM�∗ =
( −hA

2
√

2FΦ

)2

v̄Λ(+1)gμν p
ν
3Δ

μα
t (

−1√
3
)gαβ p

β
4 u� .

MNLO =
(
b10

1

F2
Φ

2√
3

)
1

2

×
(

(m� + mΛ)
(−v̄Λγ μ(p4 − p3)μu�

) + (u − t)v̄Λu�

)
,

(54)

with Sp,u = i((p1 − p3)
μγμ + mp)/(u − m2

p) and S�,t =
i((p1 − p4)

μγμ + m�)/(t − m2
�) the propagator of the

exchanged proton and � baryon, respectively. To proceed,
it is helpful to introduce the following equivalents,

E1 ≡ v̄1/2,Λγ μ(p1 − p2)μu1/2,�

v̄1/2,Λγ 3u1/2,�

= v̄1/2,Λu1/2,�(mΛ + m�)

v̄1/2,Λγ 3u1/2,�

= (m� + mΛ)2 − s

2pz
,

E2 ≡ v̄1/2,Λγ μ(p4 − p3)μu1/2,�

v̄1/2,Λγ 3u1/2,�

= −2pc.m. cos θ ,

M1 ≡ v̄−1/2,Λu1/2,�(mΛ + m�)

v̄−1/2,Λγ 1u1/2,�

= 0 ,

M2 ≡ v̄−1/2,Λγ μ(p4 − p3)μu1/2,�

v̄−1/2,Λγ 1u1/2,�

= −2pc.m. sin θ , (55)
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where s = (p1 + p2)
2 = (p3 + p4)

2 is the center-
of-mass energy. pz and pc.m. denote the modulus of the
three-dimensional center-of-mass momenta of the �Λ̄ and
ππ/K K̄ two-body systems, respectively, i.e. pc.m. = qπ/K .
The equations (55) are calculated in the center-of-mass frame
with the pz the modulus of the three-momentum along the
direction of the z-axis and θ is the scattering angle of π or K .
Substitute Eqs. (51), (52), (53), (54) into Eqs. (14),(15),(16),
(17), we obtain PE

0,π , PM
0,π , K E

π and KM
π for the ππ inelas-

ticity,

PE
0,π = PE

� + PE
�∗ , (56)

PE
� = 3

2

π∫
0

dθ sin θ cos θ
DF√
3F2

Φ

E2

pc.m.

= − 2√
3

DF

F2
Φ

,

PE
�∗ = 3

2

π∫
0

dθ sin θ cos θ

( −hA

2
√

2Fπ

)2 1√
3

(
t − u

12m2
�∗

E1

pc.m.

+ E2

pc.m.

1

12m2
�∗

(−2m2
�∗ − 2m�∗(m� + mΛ) + m2

�

+ m2
Λ + s − 6M2

π )

)

= h2
A

24
√

3F2
Φ

(mΛ + m�∗)(m� + m�∗)

m2
�∗

+ O(M2
π , s) .

K E
π = K E

� + K E
�∗ ,

K E
� = 3

2

π∫
0

dθ sin θ cos θ
DF√
3F2

Φ

×
(

E1

pc.m.

m� (m� − mΛ)

(
1

t − m2
�

− 1

u − m2
�

)

+ E2

pc.m.

m� (m� + mΛ)

(
1

t − m2
�

+ 1

u − m2
�

))
,

K E
�∗ = 3

2

π∫
0

dθ sin θ cos θ

( −hA

2
√

2Fπ

)2 1√
3

×
(

+ F(s)

m� + mΛ

E1

pc.m.

(
1

u − m2
�∗

− 1

t − m2
�∗

)

+ E2

pc.m.

(
1

u − m2
�∗

+ 1

t − m2
�∗

)
G(s)

2

)
, (57)

where

F(s) =
(
m� + mΛ

2
+ m�∗

)
H1(s)

+
(
m� + mΛ

2
− m�∗

)
H2 ,

G(s) = H1(s) + H2 ,

H1(s) = m2
� + m2

Λ − s

2

− (m2
Λ + m2

�∗ − M2
π )(m2

� + m2
�∗ − M2

π )

4m2
�∗

,

H2 = 1

3

(
mΛ + m2

Λ + m2
�∗ − M2

π

2m�∗

)

×
(
m� + m2

� + m2
�∗ − M2

π

2m�∗

)
.

PM
0,π = PM

� + PM
NLO − KM

�∗,low ,

PM
� = 3

4

π∫
0

dθ sin θ sin θ
DF√
3F2

Φ

M2

pc.m.

= − 2√
3

DF

F2
Φ

,

PM
NLO = 3

4

π∫
0

dθ sin θ sin θ

(
b10

1

F2
Φ

4√
3

)
(m� + mΛ)

2

−M2

pc.m.

= 4√
3

b10

F2
Φ

(mΛ + m�) . (58)

KM
π = KM

� + KM
�∗ ,

KM
� = 3

4

π∫
0

dθ sin θ sin θ
DF√
3F2

Φ

M2

pc.m.

× m� (m� + mΛ)

(
1

t − m2
�

+ 1

u − m2
�

)
,

KM
�∗ = 3

4

π∫
0

dθ sin θ sin θ

( −hA

2
√

2Fπ

)2 1√
3

×
(

+ M2

pc.m.

(
1

u − m2
�∗

+ 1

t − m2
�∗

)
G(s)

2

)
. (59)

Note that we subtract a term KM
�∗,low in the polynomial

part of the magnetic amplitude PM
0,π , which denotes the

low-energy limit of the LHC contribution of the decuplet-
exchanged magnetic amplitude. It is proposed to remove the
doubly counted decuplet baryon contribution caused by the
using of the resonance saturation assumption for the estima-
tion of b10 in the present ChPT framework. A similar term
K E

�∗,low should be subtracted in PE
0,π . However, it belongs

to a higher chiral order and is dropped here. Note that PE
NLO

belongs to P1(s) that is beyond the accuracy of Eq. (13) and
is also dropped. Taking the same convention with Ref. [19],
KM

�∗,low is given by

KM
�∗,low = lim

s→0
lim

mΛ→m�

lim
Mπ →0

KM
�∗(s)

= h2
A

24
√

3F2
Φ

(−m2
�∗ + 4m�∗m� − m2

�) (m�∗ + m�)

m2
�∗ (m�∗ − m�)

.
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And similarly, the PE
0,K , PM

0,K , K E
K and KM

K for the K K̄
inelasticity read

PE
0,K = PE

born + PE
�∗ , (60)

with

PE
born = 3

2

π∫
0

dθ sin θ cos θ

(
1

2

(
gA(mΛ + m� + 2mN )

+ gB(mΛ + m� + 2m�)

)
E1

(mΛ + m�)pc.m.

+ gB − gA
2

E2

pc.m.

)

= gA − gB ,

PE
�∗ = 3

2

π∫
0

dθ sin θ cos θ
h2
A

8
√

3F2
Φ

((
1

12m2
�∗

× (mΛ + m�)(t − m2
�∗) + 1

12m2
�∗

(mΛ + m� + 2m�∗)

× (−m2
Λ − m2

� + 2M2
K + 2m2

�∗

+ m�∗(mΛ + m�))

)
E1

(mΛ + m�)pc.m.

+
(

1

12
(1 − t

m2
�∗

) + 1

12m2
�∗

(m2
Λ + m2

� − 2M2
K

− 2m2
�∗ − m�∗(mΛ + m�))

)
E2

pc.m.

)

= h2
A(mΛ + m�∗)(m� + m�∗)

48
√

3F2
Φm

2
�∗

+ O(s, M2
K ) .

K E
K = K E

N + K E
� + K E

�∗ ,

K E
N = 3

2

π∫
0

dθ sin θ cos θ

(
E1

(mΛ + m�)pc.m.

× gA
(mΛ + mN )(m� + mN )(mΛ + m� − 2mN )

2(m2
N − u)

+ E2

pc.m.

1

2

gA(mΛ + mN )(m� + mN )

m2
N − u

)
,

K E
� = 3

2

π∫
0

dθ sin θ cos θ

(
E1

(mΛ + m�)pc.m.

× gB
(mΛ + m�)(m� + m�)(mΛ + m� − 2m�)

2(m2
� − t)

+ E2

pc.m.

1

2

(
− gB(mΛ + m�)(m� + m�)

m2
� − t

))
,

K E
�∗ = 3

2

π∫
0

dθ sin θ cos θ
h2
A

8
√

3F2
Φ

( −F̃(s)

12m2
�∗(m2

�∗ − t)

× E1

(mΛ + m�)pc.m.

+ E2

pc.m.

1

12m2
�∗(m2

�∗ − t)
G̃(s)

)
,

(61)

where

F̃(s) = −M4
K (mΛ + m� + 4m�∗)

+ M2
K (m3

Λ + 8m3
�∗ + 4m2

�∗m� + 3m�∗m2
� + m3

�

+ m2
Λ(3m�∗ + m�) + mΛ(4m2

�∗ − 2m�∗m� + m2
�))

+ (mΛ + m�∗)(m� + m�∗)(m2
Λ(2m�∗ − m�)

+ mΛ(m2
�∗ − m2

�) + m�∗(−4m2
�∗ + 2m2

� + m�∗m�))

− 3m2
�∗(mΛ + 2m�∗ + m�)s ,

G̃(s) = 3m2
�∗s + M4

K + (mΛ + m�∗)(m� + m�∗)

× (m�∗(m�∗ − 2m�) + mΛ(−2m�∗ + m�))

− M2
K (m2

Λ + m2
� + 2m2

�∗ − m�∗(mΛ + m�)) .

Note that the Pascalutsa prescription of the spin-3/2 particle
will bring an ambiguity in the PE

�∗ and PE
�∗ while it keeps

K E
�∗ and K E

�∗ consistent with the interaction between the
decuplet and octet states listed in Eq. (44), see Ref. [19]
for the details. The uncertainties on the TFFs originating
from such ambiguity, however, are negligible when com-
pared with the parameter errors. And we take he same con-
vention with Ref. [19] where the O(M2

π , s) and O(M2
K , s)

terms are dropped in the PE
�∗ and PE

�∗ . Further,

PM
0,K = PM

born + PM
NLO − KM

�∗,low ,

PM
born = 3

4

π∫
0

dθ sin θ sin θ
gB − gA

2

M2

pc.m.

= gA − gB ,

PM
NLO = 3

4

π∫
0

dθ sin θ sin θ

(
b10

1

F2
Φ

2√
3

)
(m� + mΛ)

2

−M2

pc.m.

= 2√
3

b10

F2
Φ

(mΛ + m�) . (62)

KM
K = KM

N + KM
� + KM

�∗ ,

KM
N = 3

4

π∫
0

dθ sin θ sin θ

(
− M2

pc.m.

1

2

×
(
gA(mΛ + mN )(m� + mN )

u − m2
N

))
,

KM
� = 3

4

π∫
0

dθ sin θ sin θ

(
− M2

pc.m.

1

2

×
(

− gB(mΛ + m�)(m� + m�)

t − m2
�

))
,

KM
�∗ = 3

4

π∫
0

dθ sin θ sin θ
h2
A

8
√

3F2
Φ

×
(

+ M2

pc.m.

1

12m2
�∗(m2

�∗ − t)
G̃(s)

)
.

KM
�∗,low = lim

s→0
lim

mΛ→m�

lim
MK→0

KM
�∗(s)
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= h2
A

48
√

3F2
Φ

(−m2
�∗ + 4m�∗m� − m2

�) (m�∗ + m�)

m2
�∗ (m�∗ − m�)

.

(63)

Here, gA and gB are defined as

gA = 1

F2
Φ

(
−D

2
√

3
+ −√

3F

2

)
D − F

2
,

gB = 1

F2
Φ

(
−D

2
√

3
+

√
3F

2

)
D + F

2
.

There are only three different kinds of integration over angle
involved in the K E/M . Expanding u and t in the center-of-
mass frame, one has

t (s, θ) = −1

2
Y (s) + 1

2
κ(s) cos θ,

u(s, θ) = −1

2
Y (s) − 1

2
κ(s) cos θ,

with Y (s) and κ(s) given by Eq. (38). Then three different
integrals are expressed as

A =
∫ π

0
dθ

sin θ cos θ

t − m2
exch

E1

pc.m.

∝
∫ π

0
dθ

cos θ sin θ

t − m2
exch

1

pc.m.

= 4

κ(s)2 − 2Y (s)

κ(s)2 K̃ (s),

B =
∫ π

0
dθ

sin θ cos θ

t − m2
exch

E2

pc.m.

∝
∫ π

0
dθ

cos2 θ sin θ

t − m2
exch

= 4Y (s)

κ(s)2 − 2Y (s)2

κ(s)2 K̃ (s),

C =
∫ π

0
dθ

sin θ sin θ

t − m2
exch

M2

pc.m.

∝
∫ π

0
dθ

sin2 θ sin θ

t − m2
exch

= −2Y (s)

κ(s)2 + Y (s)2 − κ(s)2

κ(s)2 K̃ (s).

For theu cases, there is an extra sign in A. Here we dropped all
irrelevant coefficients of θ -dependent terms. mexch denotes
the mass of exchanged particle, while K̃ (s) is defined as [24]

K̃ (s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
κ(s) log Y (s)+κ(s)

Y (s)−κ(s) , (m� + mΛ)2 ≤ s,

2
|κ(s)| (arctan |κ(s)|

Y (s) ), s0 ≤ s ≤ (m� + mΛ)2,

2
|κ(s)| (arctan |κ(s)|

Y (s) + π), 4M2
π ≤ s ≤ s0,

with s0 = m2
�+m2

Λ+2M2
π −2m2

exch. Finally, Mπ is replaced
by MK when calculating the expressions for the K K̄ channel.

References

1. R. Pohl et al., The size of the proton. Nature 466, 213–216 (2010).
https://doi.org/10.1038/nature09250

2. A. Denig, G. Salme, Nucleon electromagnetic form factors in the
timelike region. Prog. Part. Nucl. Phys. 68, 113–157 (2013). https://
doi.org/10.1016/j.ppnp.2012.09.005. arXiv:1210.4689

3. S. Pacetti, R. Baldini Ferroli, E. Tomasi-Gustafsson, Proton elec-
tromagnetic form factors: basic notions, present achievements and
future perspectives. Phys. Rept. 550–551, 1–103 (2015). https://
doi.org/10.1016/j.physrep.2014.09.005

4. V. Punjabi, C.F. Perdrisat, M.K. Jones, E.J. Brash, C.E. Carlson,
The structure of the nucleon: elastic electromagnetic form fac-
tors. Eur. Phys. J. A 51, 79 (2015). https://doi.org/10.1140/epja/
i2015-15079-x. arXiv:1503.01452

5. C. Peset, A. Pineda, O. Tomalak, The proton radius (puzzle?) and
its relatives. Prog. Part. Nucl. Phys. 121, 103901 (2021). https://
doi.org/10.1016/j.ppnp.2021.103901. arXiv:2106.00695

6. H. Gao, M. Vanderhaeghen, The proton charge radius. Rev.
Mod. Phys. 94(1), 015002 (2022). https://doi.org/10.1103/
RevModPhys.94.015002. arXiv:2105.00571

7. I.T. Lorenz, H.-W. Hammer, U.-G. Meißner, The size of
the proton—closing in on the radius puzzle. Eur. Phys. J.
A 48, 151 (2012). https://doi.org/10.1140/epja/i2012-12151-1.
arXiv:1205.6628

8. I.T. Lorenz, U.-G. Meißner, H.-W. Hammer, Y.-B. Dong, Theoret-
ical constraints and systematic effects in the determination of the
proton form factors. Phys. Rev. D 91(1), 014023 (2015). https://
doi.org/10.1103/PhysRevD.91.014023. arXiv:1411.1704

9. M. Hoferichter, B. Kubis, J. Ruiz de Elvira, H.-W. Hammer, U.-G.
Meißner, On the ππ continuum in the nucleon form factors and the
proton radius puzzle. Eur. Phys. J. A 52(11), 331 (2016). https://
doi.org/10.1140/epja/i2016-16331-7. arXiv:1609.06722

10. Y.-H. Lin, H.-W. Hammer, U.-G. Meißner, High-precision deter-
mination of the electric and magnetic radius of the proton. Phys.
Lett. B 816, 136254 (2021). https://doi.org/10.1016/j.physletb.
2021.136254. arXiv:2102.11642

11. G.F. Chew, R. Karplus, S. Gasiorowicz, F. Zachariasen, Electro-
magnetic structure of the nucleon in local-field theory. Phys. Rev.
110(1), 265 (1958). https://doi.org/10.1103/PhysRev.110.265

12. P. Federbush, M.L. Goldberger, S.B. Treiman, Electromagnetic
structure of the nucleon. Phys. Rev. 112, 642–665 (1958). https://
doi.org/10.1103/PhysRev.112.642

13. G. Höhler, E. Pietarinen, I. Sabba-Stefanescu, F. Borkowski, G.G.
Simon, V.H. Walther, R.D. Wendling, Analysis of electromagnetic
nucleon form-factors. Nucl. Phys. B 114, 505–534 (1976). https://
doi.org/10.1016/0550-3213(76)90449-1

14. P. Mergell, U.-G. Meißner, D. Drechsel, Dispersion theo-
retical analysis of the nucleon electromagnetic form-factors.
Nucl. Phys. A 596, 367–396 (1996). https://doi.org/10.1016/
0375-9474(95)00339-8. arXiv:hep-ph/9506375

15. M.A. Belushkin, H.-W. Hammer, U.-G. Meißner, Dispersion anal-
ysis of the nucleon form-factors including meson continua. Phys.
Rev. C 75, 035202 (2007). https://doi.org/10.1103/PhysRevC.75.
035202. arXiv:hep-ph/0608337

16. G.P. Lepage, S.J. Brodsky, Exclusive processes in perturbative
quantum chromodynamics. Phys. Rev. D 22, 2157 (1980). https://
doi.org/10.1103/PhysRevD.22.2157

17. Y.-H. Lin, H.-W. Hammer, U.-G. Meißner, Dispersion-theoretical
analysis of the electromagnetic form factors of the nucleon: past,
present and future. Eur. Phys. J. A 57, 255 (2021). https://doi.org/
10.1140/epja/s10050-021-00562-0. arXiv:2106.06357

18. Y.-H. Lin, H.-W. Hammer, U.-G. Meißner, New insights into
the Nucleon’s electromagnetic structure. Phys. Rev. Lett. 128(5),

123

https://doi.org/10.1038/nature09250
https://doi.org/10.1016/j.ppnp.2012.09.005
https://doi.org/10.1016/j.ppnp.2012.09.005
http://arxiv.org/abs/1210.4689
https://doi.org/10.1016/j.physrep.2014.09.005
https://doi.org/10.1016/j.physrep.2014.09.005
https://doi.org/10.1140/epja/i2015-15079-x
https://doi.org/10.1140/epja/i2015-15079-x
http://arxiv.org/abs/1503.01452
https://doi.org/10.1016/j.ppnp.2021.103901
https://doi.org/10.1016/j.ppnp.2021.103901
http://arxiv.org/abs/2106.00695
https://doi.org/10.1103/RevModPhys.94.015002
https://doi.org/10.1103/RevModPhys.94.015002
http://arxiv.org/abs/2105.00571
https://doi.org/10.1140/epja/i2012-12151-1
http://arxiv.org/abs/1205.6628
https://doi.org/10.1103/PhysRevD.91.014023
https://doi.org/10.1103/PhysRevD.91.014023
http://arxiv.org/abs/1411.1704
https://doi.org/10.1140/epja/i2016-16331-7
https://doi.org/10.1140/epja/i2016-16331-7
http://arxiv.org/abs/1609.06722
https://doi.org/10.1016/j.physletb.2021.136254
https://doi.org/10.1016/j.physletb.2021.136254
http://arxiv.org/abs/2102.11642
https://doi.org/10.1103/PhysRev.110.265
https://doi.org/10.1103/PhysRev.112.642
https://doi.org/10.1103/PhysRev.112.642
https://doi.org/10.1016/0550-3213(76)90449-1
https://doi.org/10.1016/0550-3213(76)90449-1
https://doi.org/10.1016/0375-9474(95)00339-8
https://doi.org/10.1016/0375-9474(95)00339-8
http://arxiv.org/abs/hep-ph/9506375
https://doi.org/10.1103/PhysRevC.75.035202
https://doi.org/10.1103/PhysRevC.75.035202
http://arxiv.org/abs/hep-ph/0608337
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1140/epja/s10050-021-00562-0
https://doi.org/10.1140/epja/s10050-021-00562-0
http://arxiv.org/abs/2106.06357


   54 Page 16 of 17 Eur. Phys. J. A            (2023) 59:54 

052002 (2022). https://doi.org/10.1103/PhysRevLett.128.052002.
arXiv:2109.12961

19. C. Granados, S. Leupold, E. Perotti, The electromagnetic Sigma-
to-Lambda hyperon transition form factors at low energies.
Eur. Phys. J. A 53(6), 117 (2017). https://doi.org/10.1140/epja/
i2017-12324-4. arXiv:1701.09130

20. V. Pascalutsa, M. Vanderhaeghen, S.N. Yang, Electromag-
netic excitation of the Delta(1232)-resonance. Phys. Rept. 437,
125–232 (2007). https://doi.org/10.1016/j.physrep.2006.09.006.
arXiv:hep-ph/0609004

21. B. Kubis, U.-G. Meißner, Baryon form-factors in chiral perturba-
tion theory. Eur. Phys. J. C 18, 747–756 (2001). https://doi.org/10.
1007/s100520100570. arXiv:hep-ph/0010283

22. J. Haidenbauer, U.-G. Meißner, The electromagnetic form fac-
tors of the Λ in the timelike region. Phys. Lett. B 761,
456–461 (2016). https://doi.org/10.1016/j.physletb.2016.08.067.
arXiv:1608.02766

23. J.M. Alarcón, A.N. Hille Blin, M.J. Vicente Vacas, C. Weiss,
Peripheral transverse densities of the baryon octet from chi-
ral effective field theory and dispersion analysis. Nucl. Phys. A
964, 18–54 (2017). https://doi.org/10.1016/j.nuclphysa.2017.05.
002. arXiv:1703.04534

24. O. Junker, S. Leupold, E. Perotti, T. Vitos, Electromagnetic form
factors of the transition from the spin-3/2 � to the Λ hyperon. Phys.
Rev. C 101(1), 015206 (2020). https://doi.org/10.1103/PhysRevC.
101.015206. arXiv:1910.07396

25. J. Haidenbauer, U.-G. Meißner, L.-Y. Dai, Hyperon electro-
magnetic form factors in the timelike region. Phys. Rev. D
103(1), 014028 (2021). https://doi.org/10.1103/PhysRevD.103.
014028. arXiv:2011.06857

26. M. Irshad, D. Liu, X. Zhou, G. Huang, Electromagnetic form fac-
tors of � hyperons. Symmetry 14(1), 69 (2022). https://doi.org/10.
3390/sym14010069
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