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Abstract Using dispersion theory, the electromagnetic
Sigma-to-Lambda transition form factors are expressed as
the product of the pion electromagnetic form factor and the
YA — 7 scattering amplitudes with the latter estimated
from SU(3) chiral perturbation theory including the baryon
decuplet as explicit degrees of freedom. The contribution of
the K K channel is also taken into account and the 7 7—K K
coupled-channel effect is included by means of a two-channel
Muskhelishvili-Omnes representation. It is found that the
electric transition form factor shows a significant shift after
the inclusion of the K K channel, while the magnetic transi-
tion form factor is only weakly affected. However, the K K
effect on the electric form factor is obscured by the undeter-
mined coupling 7 4 in the three-flavor chiral Lagrangian. The
error bands of the Sigma-to-Lambda transition form factors
from the uncertainties of the couplings and low-energy con-
stant in three-flavor chiral perturbation theory are estimated
by a bootstrap sampling method.

1 Introduction

Electromagnetic form factors (EMFFs) give access to the
strong interaction, which provides one of the most notorious
challenges in the Standard Model due to the nonperturba-
tive nature of Quantum Chromodynamics (QCD) at the low
energy scale. On the one hand, the EMFFs can be extracted
from a variety of experimental processes, such as lepton—
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hadron scattering, lepton—antilepton annihilation or radiative
hadron decays. These EMFFs can be measured over a large
energy range. On the other hand, dispersion theory, which
is a powerful nonperturbative approach, allows for a theo-
retical description of the EMFFs. Consequently, the EMFFs
are an ideal bridge between experimental measurements and
theoretical studies of the low-energy strong interaction.

In the last decade, much research effort both in experiment
and theory was focused on the nucleon EMFFs, largely trig-
gered by the so-called proton radius puzzle [1]. For recent
reviews, see e.g. Refs. [2-6]. In the process of unravelling
this puzzle, dispersion theory has played and is playing a cru-
cial role in the theoretical description of the nucleon EMFFs
[7-10]. The dispersion theoretical parametrization of the
nucleon EMFFs, first proposed in the early works [11-13]
and further developed in Refs. [9,14,15], incorporates all
constraints from unitarity, analyticity, and crossing symme-
try, as well as the constraints on the asymptotic behavior
of the form factors from perturbative QCD [16]. The state
of the art of dispersive analyses of the nucleon EMFFs is
reviewed in Ref. [17]. Very recently, all current measure-
ments on electron-proton scattering, electron-positron anni-
hilation, muonic hydrogen spectroscopy, and polarization
measurements from Jefferson Laboratory could be consis-
tently described in a dispersion theoretical analysis of the
nucleon EMFFs [18].

The dispersive prescription of parameterizing the nucleon
EMFFs can also be applied to other hadron states. The first
two straightforward extensions concern the Delta baryon
and the hyperon states, with the former obtained by flip-
ping the spin of one of the quarks inside the nucleon and
the latter by replacing one or several up or down quarks
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with one or more strange quarks. The EMFFs of the Delta
and the hyperons provide complementary information about
the intrinsic structure of the nucleon [19]. The electromag-
netic properties of the Delta baryon have been studied in
detail in Ref. [20]. Recent investigations of the hyperon EM
structure are given in Refs. [19,21-26]. Ref. [19] consid-
ered once-subtracted dispersion relations for the electromag-
netic Sigma-to-Lambda transition form factors (TFFs) and
expressed these in terms of the pion EMFF and the two-pion-
Sigma-Lambda scattering amplitudes. Using an Omnes rep-
resentation, the pion EMFF could be expressed as the Omnes
function of the pion P-wave phase shift which has been well
determined from the Roy-type analyses of the pion-pion scat-
tering amplitude [27]. An improved parameterization of the
pion EMFF is also available, which includes further inelas-
ticities and is applicable at higher energies [28]. Moreover,
the two-pion-Sigma-Lambda scattering amplitudes could be
calculated in a model-independent way by using three-flavor
chiral perturbation theory (ChPT) [21]. Combining these
studies and taking some reasonable values for couplings and
the low-energy constants in three-flavor ChPT, the electro-
magnetic Sigma-to-Lambda TFFs were predicted in Ref. [19]
where the pion rescattering and the role of the explicit inclu-
sion of the decuplet baryons in three-flavor ChPT were also
investigated.

In the present work, we extend the theoretical framework
used in Ref. [19] to explore the effect of the K K inelastic-
ity on the electromagnetic Sigma-to-Lambda transition form
factors. This is performed by considering the two-channel
Muskhelishvili-Omnes representation when introducing the
pion rescattering effects. In principle, one should include
even more inelasticities when implementing the dispersion
theoretical parameterization for the Sigma-to-Lambda TFFs,
as done in our previous work on the nucleon EMFFs [18].
However, it is difficult in the current case due to the poor data
base which is required when constructing reliable inelastici-
ties in the higher energy region, that is above the K K thresh-
old at ~ 1 GeV. Note that the four-pion channel has negligible
effects in the energy region around 1 GeV, see Ref. [29]. Itis
also known that the contribution of the four-pion channel to
the pion and kaon form factors below 1 GeV is a three-loop
effect in ChPT [30] and thus is heavily suppressed.

We remark that the 47 channel was shown to play an
important role starting from 1.4 GeV in the S-wave case
[31]. This is caused by the presence of the nearby scalar res-
onances fo(1370) and f(1500) which were both observed
to have a sizable coupling to four-pion states [32-34]. There
is no evidence, however, for the presence of correspond-
ing 17 isovector states in the energy region of 1...2 GeV
in the P-wave case. Moreover, another experimental find-
ing of these references is that the 47 system likes to cluster
into two resonances in the energy region above 1 GeV [31].
The lowest candidate is supposed to be the pp channel for
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the P-wave isovector problem. From the phenomenological
point of view, the inelasticity around 1 GeV should be satu-
rated to a good approximation by the 77 and K K coupled-
channel treatments in the P-wave case. Moreover, as we will
show later, the effect of K K inelasticity is small. Thus, the
relative ratio between the effects of the K K and four-pion
channel could be enhanced. To investigate this relative ratio,
a sophisticated calculation on the four-pion inelasticity is
needed which goes beyond the present work.

In the present work, the K K inelasticity is implemented
using SU(3) ChPT. The inclusion of the K K channel allows
one to construct the Sigma-to-Lambda transition form fac-
tors up to 1 GeV precisely. In addition, the estimation of the
theoretical uncertainties is improved by using the bootstrap
approach [35].

The paper is organized as follows: In Sect. 2 we intro-
duce the dispersion theoretical description of the electromag-
netic Sigma-to-Lambda transition form factors and present
the coupled-channel Muskhelishvili-Omnes representation
for the inclusion of the K K inelasticity. Numerical results
are collected in Sect. 3. The paper closes with a summary.
Some technicalities are relegated to the appendix.

2 Formalism

Here, we discuss the basic formalism underlying our calcu-
lations. We first write down once-subtracted dispersion rela-
tions for the electric and magnetic Sigma-to-Lambda transi-
tion form factor and then discuss in detail their various ingre-
dients, namely the vector form factor of the pion and the kaon
and the amplitudes for 94 > 77 and %A — KK, in
order.

2.1 Dispersion relations for the Sigma-to-Lambda TFFs

The electromagnetic Sigma-to-Lambda TFFs are defined as
in Refs. [19,21],

(2pH1i*1A(p))
=ci(p) ((y“ + w q“) Fi(1)

ioh"q,
—— F>@) Ju(p), (1)
ma =+ mso
with 1 = (p’ — p)?> = ¢> the four-momentum transfer

squared. The scalar functions Fi(z) and F>(t) are called the
Dirac and Pauli transition form factors, respectively. One
also writes the electric and magnetic Sachs transition form
factors, given by the following linear combinations,

Ge(t)=Fi()+ Fa (1),

(ma +mxo)?
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Gu() = Fi(1) + F2(1), ) %0 /K | /K 3.
with the normalizations F1(0) = Gg(0) = 0 and F>(0) = Im ~ «/\m‘ 1

Gm(0) = k ~ 1.98. Here, « is estimated from the exper- \\
imental width of the decay =° — Ay, see Ref. [19] for n - /k - / K n

details. Unlike the nucleon case where one constructs dis-
persion relations for F and F, [17], we work with the elec-
tric and magnetic Sachs form factors, i.e. Gg and Gy, for
the Sigma-to-Lambda TFFs as in Ref. [19] since the Sigma-
to-Lambda TFFs are of pure isovector type and the helicity
decomposition used in Ref. [19] can easier be applied to the
Sachs FFs.

In order to apply the spectral decomposition to estimate
the imaginary part Im G g7, we consider the matrix element
of the electromagnetic current Eq. (1) in the time-like region
(t > 0), which is obtained via crossing symmetry,

01*12%p3) A(pa))
= e i(ps) ( <y“ + M (ps + pm) Fi(0)

. v
St A Fz(t)> u(ps) 3)
mp + msyo

where p3 and py4 are the momenta of the £° and A cre-
ated by the electromagnetic current, respectively. The four-
momentum transfer squared in the time-like region is then
t = (p3+ p4)2. With the 77 and K K inelasticities taken
into account as depicted in Fig. 1, the unitarity relations for
the Sigma-to-Lambda TFFs read [19,24,36,37],

1.
Edlscunit Ge/m(t)
1

RN
x <q,3, ) Y 0 TETy 06 (1 — 4m2)
+2q3 (1) FY @0 TEK (1) 6 (z - 4M%() ) , @)
where
G0 = \/)»(Mzzz/l(;?’lyzr/l(v 1) )

is the center-of-mass momentum of the 777/K K two-body
continuum with A(x, y, z) = x2+y2+2z2 —2(xy + yz +2x)
the Killén function. F. j:/ x (¢) is the vector-isovector form fac-
tor (J = I = 1) of the pion/kaon and 77" (t) and Ty,™ (¢) are
two independent reduced P-wave £°A — Tt~ ampli-
tudes in the helicity basis. Similarly, Tlf K(t) and TA{; K@)
denote the corresponding reduced amplitudes for YA —
K+tK~(K°K?). Then the once-subtracted dispersion rela-
tions for the Sigma-to-Lambda TFFs are written as,

Fig. 1 The spectral decomposition of the matrix element of the elec-
tromagnetic current j, in Eq. (3)

t
Ge/m(@®)=Gg/m0) + —

foo d[/discunit GE/M(t/)
2mi 4

M2 't —t—ie)

+GEm @), (6)
where the last term G*g‘/"ﬂ‘f}(t) denotes the contribution of the
anomalous cut which is non-zero when there exists an anoma-
lous threshold in the involved processes [24,38—41]. This
does happen when the K K channel is taken into account, see
Appendix A for detailed discussions and the explicit expres-
sions of the anomalous part. Next, we need to consider the
various factors contributing to Eq. (6).

2.2 The £°A-77 and £°A-K K amplitudes in the
two-channel Muskhelishvili-Omnes representation

We start with the four-point amplitudes %A — 7+~ and
»%A — K*TK~. Note that the matrix element Eq. (3), and
also the four-point function %A — 77, can be written in
the general form v, (—p;, A)Tuso(p;, o) when one works
in the center-of-mass frame and chooses the z-axis along
the direction of motion of the $°. Here, o and A are the
helicities of the £° and A baryons, respectively. Due to parity
invariance, there are only two non-vanishing terms, o = A =
+1/2 and 0 = —A = +1/2. Concerning the matrix element
Eq. (3), all components except for ;© = 3 vanish in the case
ofoc = A =+41/2, thatis,

1\ - 1
<0|j3|2° (pz, 5) A (—pz, 5)>
= 0a(=pz +1/2)7 us (pz, +1/2)G (). 7

For 0 = —A = +1/2, only components related to u = 1, 2
survive:

0j'1x° Na(p. -t
-] pZ’ 2 sz 2

= Oa(=pe, =1/ us(pe, +1/2)Gu @), ®)
and the matrix element for u© = 2 differs from u = 1 only
by a factor i. Equations (7) and (8) show that Tg in the

imaginary part of G is only related to the amplitude com-
ponent MZA=77/KK (412 41/2) while Ty comes from

@ Springer
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Fig. 2 The four-pointfunctionzz — %9 A including two-pion rescat-

tering. The hatched circle is the part containing only left-hand cuts and
a polynomial

MZA_’””/KIZ(—H/Z —1/2). Then we define the reduced
amplitudes Tg,p as [19,42]

ME/&—)ﬂﬂ/KI?(t’ 9’ _’_1/2’ +1/2)
= 54 (=po. +1/2)7%us (pz, +1/2)q2/x To' X (1)} 0)
+ other partial waves with J # 1, ©)]
j\/t):/i—n'n'!/KI%(t7 9, +1/2, _1/2)
= —V20A(=pe, =1/2y us (P2, +1/ a2k Ty * )] 4 0)
+ other partial waves with J # 1, (10)

where dl1 /241 /270(9) is the Wigner d-matrix. Finally, we
obtain

7%
3 T ' ME/T_)””/KK(I,G,-FI/Z,-F]/Z)
== [ d6 sinf — 3 s0,
2 J VA(=pz, +1/2) Y us (pz, +1/2) gk
(11)
/%
b g - -
3 YA—-nn/KK [,0, 1 2’_] 2
szdesine_M 0212 G (12)
4 VA(=pz, —1/2) v us(ps, +1/2) qn/x

As done in Ref, [19], the pion rescattering effect can be
introduced into Tg/py via the Muskhelishvili-Omnes equa-
tion that is shown in Fig. 2. With the inclusion of the K K
channel, the two-channel Muskhelishvili-Omnes representa-
tion reads [43-46]

T () = Kem (@) + TER @)
am? t'(t' —t —ie)

o Im2~'()IK /
+ (1) (PO,E/Mo)_]’T/ d [m<’>1E/M<’>>

(13)

with T = (T, v2Tx) . Po = (Pox. V2Pox)" and K =
(Kr, V2K K)T.l 2(¢t) is the two-dimension Omn&s matrix
for the P-wave isovector 77—K K coupled-channel system.
T"g‘/"ﬁ(t) again indicates the anomalous contribution and its
explicit formula is given in Appendix. A. The K,k denotes

UK = (K.0(t' —4M2), \/EKKO(I/—4M12<))T is implicit in the
integrand [Im2~' (+")]K(¢').

@ Springer

the part of the © A — w7/ K K amplitude that only contains
the left-hand cut (LHC) and Py is the remainder which is
purely polynomial. Therefore, K,k and Py /g are given
by

KEg(t)

T
3 ) MP (1 0 +1/2,4+1/2)
=— [ df sinf — 3
2 / vA(=pz, +1/2) Y3 us (p;, +1/2) qnyk

PEW

df sinf — 3 cosf ,
A(=pz, +1/2) v us(pz, +1/2) qr/x

N W

/” MEOE(; 1172, 4+1/2)
0

15)

with ME/&—)]T]T/KIZ(Z" ) = MPole | pqeontact The mag-
netic parts are derived equivalently from Eq. (12),

Kp @)

MPOe(; 9 4172, —1/2)

T
3
— /dQ sinf — I sinf ,
4 ; UA(=pz, =1/ v us(pz, +1/2) qn/k

(16)
rM)

T
3 contact(y 9, +1/2, —1/2
Z*/dQSiHQ_ M ('1'+/’ /2 sinf .
4 ; UA(=pz, =1/ vy us(pz, +1/2) qr/k

(7)

All the reduced amplitudes K/ and Py »,/k are calculated
up to next-to-leading order (NLO) within the framework
of the three-flavor baryon ChPT that includes the decuplet
baryon as explicit degrees of freedom. Their explicit expres-
sions are derived in detail in Appendix B.

2.3 The P-wave Omnes matrix and v, K vector form
factors

In this subsection, we derive the P-wave isovector Omnes
matrix and solve for the pion and kaon EMFFs in the coupled-
channel formalism. £2 satisfies the unitarity relation [46]

im mj (18)

L o 1y
-disc £2;; = (1))}, %,, 52
2i
where
1 2 2 2 2
$(1) = diag (Unqﬂe(t —AM2), ok g2 0(t — 4MK)> (19)

with

aM?
ok (1) =\ 1 = ;’/ K (20)
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is the diagonal phase space matrix. The J = I = 1 n7-K K
coupled-channel 7 -matrix t{ is parameterized as

2i8]

ne-’r — 1 .
1 2i0'nq2 gelw
— e
t = _ 2i(y-38]) _ | @n
gei? ne T 71
2iUKq?(

where g and ¢ are the modulus and phase of the P-wave
isovector tr — K K scattering amplitude, respectively. The
inelasticity 7 is defined by

1(0) = /1 — 40,0k (4rqx)28260(t — 4M3). (22)

Then we can write the dispersion relation for the Omnes
matrix £ as

o dz disc £2;;(z)

23
2ri Jam2 @3)

20 = 3.5 7—t—i€e
The analytic solution of the integral equation Eq. (23) was
given in Ref. [47] for the single-channel problem. However,
there are no known analytic solutions for two or more chan-
nel cases where one has to construct the solutions numeri-
cally, either by an iterative procedure [48] or a discretization
method [31]. Here, we adopt the iterative approach to solve
the P-wave 77—K K coupled-channel Omnés matrix. Sub-
stituting Eq. (18) into Eq. (23), one obtains a two-dimensional
system of integral equations

1 o0 1 .
Renh=—P [ mxi@)

4M2 z—t

1 © Imya(z) -
Re x2(t) = —P dZL
T 4M2 z—t
where
imyi(@) = Re [4)fi Zy | +Re [(h] 202
Imy>(z) = Re [(fll)§121)(1:| +Re [(ﬁl)ézszz] ’ (25)

and P denotes the principal value. Searching for solutions
of £2(t) is equivalent to searching for two independent solu-
tions of the integral equation set for the two-dimensional
array (x1, x2)! . Using the iterative procedure, one can obtain
a series of solutions (x, x3)7 starting with various initial
inputs x1(t) = 1, x2(t) = A, where A is a real parameter.
Note that the iterative process is linear and the results of the
iteration is therefore a linear function of A [48]. Then the
solution family {( Xf‘, X%)T} contains only two linearly inde-
pendent members. Here, we take the same convention as Ref.
[46] to construct two independent solutions, (§211, £221) T and
(212, 22)7, that satisfy the normalizations

£211(0) = £222(0) =1 and £212(0) = £22;(0) =0,

from two arbitrary solutions ( Xf\ t )(2A )T and ()(1 , XZZ)T.

With the two-channel Muskhelishvili-Omnes representa-
tion, the binary function composed of the vector FFs of the
pion and the kaon fulfills the same unitarity relation Eq. (18).
Then one can solve the pion and kaon vector form factors

< 240 ) _ <911(t) mm) ( F7 (0) ) 26)
V2F{0) — \2a() 200 \V2F{©0))
which are normalized as F7Y O)=1and F 1‘</ 0 =1/2.

To solve the J = I = 1 mn—K K Omnés matrix, the
required input is the P-wave isovector 77—K K scattering
matrix ti, i.e. Equation (21), that is constructed from the 7
P-wave isovector phase shift §!, the modulus g and phase v/
of the P-wave isovector 77 — K K amplitude. The phase
shift & ]1 up to 1.4 GeV was extracted precisely from the Roy-
type analyses of the pion-pion scattering amplitude in Ref.
[27]. We take the same prescription as in Ref. [28] to extrap-

olate it smoothly to reach 7 at infinity. Then 5} (1) is given
by

Oa OS\/;SZMIT9
811(t) _ 3 (@), 2My < < 2Mg, 27
§p(1), 2Mg < Nt < /o,
6f3(t)» \/5 < \/;5
where
87, (1) = cot™ ‘( (M} —1)
= ))
+0.19
«f+«/F
2
af-z(t)=5f1(4M,2()+1.39<%—1>—17(2;/41 1) ,
+
81,(t) = 1 + (81, (t0) — 1) (’:2 +’t°> . (28)

Here, 19 = (1.4 GeV)2, t; = (1.05 GeV)? and 1» =
(10 GeV)2.

The P-wave 7w — KK amplitude up to /I3 =
1.57 GeV is taken from Ref. [49] where the modulus g in
the region of 4M2..4M7 was solved from the Roy-Steiner
equation with the experimental data of P-wave 7w — KK
scattering [50,51] above the K K threshold as input, while the
phase ¥ was fitted to experimental data [50,51]. Note that the
two-channel Muskhelishvili-Omnes representation in terms
of w7 and K K intermediate states should only work well in
the lower energy region [46]. Further, the asymptotic values
of phase shifts in the coupled-channel systems have to satisfy

. I
lim 38/ (t) = nm, (29)

to ensure that the system of integral equations, Eq. (24), has
a unique solution [31,52]. n is the number of channels that

are considered in the formalism. It requires ¢ = 8% o
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9[Gev

1.0 2.0

Vit [GeV]

0.0 05

Fig. 3 The modulus g of the P-wave 7w — K K amplitude given by
Ref. [49]

8 } KE > 27 in Eq. (21). g and 1 are extrapolated smoothly
to 0 and 27 by means of [31]

V() = 27 + (W (ts) — 27) f (é) ,

At A 2
1) =g(t — ], with = —". 30
g(1) g(s)f(t3> fo =1—5p (30)
where the extrapolation point #4 of ¥ should be far away from
1.5 GeV since there is a structure located around 1.5 GeV
in the phase of the P-wave n7 — K K amplitude. Here we

Qo

15 2.0 3.0

Vt [GeV]

1.0

Q19

take the value /74 = 5 GeV for v. Such a structure should
also leave trails in the modulus g. However, only g up to
V2 GeV is estimated in Ref. [49] and a small bump around
1.5 GeV in g is only reflected roughly by several data points
above 1.4 GeV measured by Ref. [50], see Fig. 9 in Ref. [49].
The modulus used in our work is presented in Fig. 3, while
the 8} and ¢ are presented when we show the solved pion
and kaon vector form factors.

The obtained £2 matrix elements are presented in Fig. 4.
The pion and kaon vector form factors calculated from
Eq. (26) are then given in Fig. 5. Clearly, one can see from
Fig. 5 that the phase of ij and F 1‘; are consistent with the
input w phase shift 811 and the phase i of the P-wave
nm — KK scattering amplitude respectively, which is sim-
ilar with the finding for the S-wave case by Ref. [46].

3 Results

Using the reduced amplitudes POI?:/WK and Kf// 1}<w given in
Appendix B and the anomalous expressions presented in
Appendix A, we can now calculate the amplitudes Tg //AI,(] in
Eq. (4) including 777 /K K rescattering effects from Eq. (13).
Finally, we calculate the Sigma-to-Lambda transition form
factors Gg,y from the dispersion relations Eq. (6). Two
issues remain to be clarified. First, we have to fix all the

couplings in the expressions of P(fé%( and K f / 12” . These are

0.20 [
0.15¢
0.10 f
0.05 ¢
0.00 ¢
-0.05

~0.10 |,

Fig. 4 Real (solid line) and imaginary (dashed line) parts of the Omnés matrix elements £2
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6 ' ' ' ' ' 3.0F ' ' i :
5 2.5
2.0
= ,f‘: .
oy 3 [aw
o 1.0
1 0.5
ok ) ) ) - | 0.0} ] ) ) I
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Vit [GeV] Vit [GeV]
30
2.5
2.0
= 2
— 15 g
S i
) A
— 1.0
0.5
0.0, . . . ] . . ]
0.0 0.5 1.0 1.5 2.0 1.0 1.5 2.0
Vit [GeV] Vit [GeV]

Fig. 5 Modulus (left) and phase (right) of the vector pion (upper) and
kaon (lower) form factors given by Eq. (26). The input w7 phase shift
) } (upper) and phase v (lower) of the P-wave isovector tw — K K
amplitude are also presented as the red-dashed lines for comparison.

-0.4

-0.6

-05 00 0.5 1.0 1.5 2.0
t [GeV?

-1.0

Fig. 6 The imaginary (red) and real (blue) part of the electric transition
form factor G g. The dash-dotted, dotted, solid lines denote the results
within the single 77 channel, 77—K K coupled channel without and
with the anomalous contribution scenarios, respectively, when Fgp =
100 MeV, byp = 1.06 GeV~!, hy = 222 and A = 1.5 GeV. The
vertical dashed and solid lines represent respectively the anomalous
threshold (Eq. (36)) and the K K threshold

D, F, Fg for the LO octet-to-octet interactions, /4 for the
LO decuplet-to-octet interaction, and b for the NLO octet-
to-octet interaction. In ChPT, D and F are well constrained
around 0.8 and 0.5, respectively. Here we use D = 0.80,

Note that the asymptotic values of 8} and v are 7w and 27 respectively.
The latter is invisible in the plot since its extrapolation point is set as
5GeV

-10
-1.0

-0.5 0.0 0.5 1.0 1.5 2.0
t [GeV?]

Fig. 7 The imaginary (red) and real (blue) part of the magnetic tran-
sition form factor G ys. For notations, see Fig. 6

F = 0.46 [21]. In SU(3) ChPT, Fg can take three different
values at LO, namely F,; = 92.4 MeV, Fx = 113.0 MeV
and F,, = 120.1 MeV [53]. Often, one chooses the aver-
age of these, that is, Fp = (F; + Fx + F;)/3. Here, we
take Fp = 100 £ 10 MeV to cover mainly the 7 and K
contributions. &4 can be determined from the experimental
widths of either X* — Am or £* — Xm. We take the
value hy = 2.3 £ 0.3 [19], here an additional 10% error
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is added to account for the SU(3) flavor symmetry break-
ing effect when applied to the vertices involving a E*. The
low-energy constant b1o was estimated in Ref. [54] based on
the resonance saturation hypothesis as byg = 0.95 GeV ™.
A larger value by = 1.24 GeV~! is used in Ref. [21]. A
very recent determination based on the ChPT fits to lattice
data of the axial-vector currents of the octet baryons gives
bio = 0.76 GeV~! [55]. Taking all these determinations into
account, bjg = (1.0 +0.3) GeV~! is used here. Second, we
introduce an energy cutoff A in the integration along the uni-
tarity cut in Eq. (6) and Eq. (13). We consider two values for
the cutoff, A = 1.5 and 2.0 GeV, to check the sensitivity of
our results to it.

Now we are in the position to present our numerical results
for the electromagnetic Sigma-to-Lambda transition form
factors. First, we present the electric transition form factor
G obtained with the radius-adjusted parameters given in
Ref. [19], i.e. Fp = 100 MeV, bjp = 1.06 GeV~! and
ha = 2.22 where the radius is adjusted to the fourth-order
ChPT result from Ref. [21], in Fig. 6. Note that A = 1.5 GeV
is used in these calculations. The result from the single
channel consideration is also plotted for an intuitive com-
parison. Taking the same parameter values, we find good
agreement with Ref. [19]. After the inclusion of the K K
inelasticity, a logarithmic singularity located at the anoma-
lous threshold 7 = 0.935 GeV in the unphysical area of the
time-like region is introduced into the TFF G g. Moreover,
additional nonzero imaginary parts along the anomalous cut
are produced for the TFFs by Eq. (42) and Eq. (43). This
is similar to the triangle singularity mechanism that leads to
a quasi-state phenomenon in the physical observables [56],
except the anomalous threshold here can not be accessed
directly by the experiments. The imaginary parts of G g in the
space-like region, however, are still zero since the nonzero
contributions from Eq. (42) are exactly canceled by those
from the unitarity integral of Eq. (43).

A similar plot for the magnetic TFF G, is shown in Fig. 7
where there is a cusp-like structure rather than a logarith-
mic singularity in Gg located at the anomalous threshold
since the coefficient f in Eq. (39) which is proportional to
(Y2 — k?) does vanish at the anomalous threshold for G y;.
Note that such cusp-like structure is almost invisible due to
the large scale variation of the magnitude of G ;. With that
set of parameters, a 52% decrease is produced by the K K
channel for Gg atr = —1 GeV2,2 while only a 3% decrease
happens for G ;. One should be aware, however, of the large
difference between the effects of KK channel in G and
G u is the result of the much larger magnitude that G, has
overall than G . The absolute effect of the K K inelasticity

2 Note that G  is overall very small, as is expected due to the vanishing
overall charge of the A and %°.
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in Gy is actually of compatible size as in G (sometimes
even larger).

In Fig. 8, we show the electric transition form factor G g
between the estimation including only the 7 intermediate
state and the 77—K K coupled-channel determination with
errors. Note that the TFFs are real-valued in the space-like
region. The solid curves are calculated again with the radius-
adjusted parameters. The error bands in Fig. 8 are estimated
by the bootstrap sampling over the three-dimensional param-
eter space that is spanned by Fg, b1g and h 4. Note that the
electric form factor is independent of the low-energy con-
stant b1, see the expressions in Appendix B. As in Ref. [19],
the uncertainty in 4 gives the dominant contribution. The
effect on G g introduced by the inclusion of the K K inelas-
ticity is heavily intertwined with the large uncertainties from
the variation of 14 and A. Overall, the role of the cutoff is
a bit more complicated than in the single w7 channel case.
The situation is different for G )y which is displayed in Fig. 9.
The magnetic Sigma-to-Lambda transition form factor G is
almost unchanged after including the K K inelasticity. More-
over, Gy has much larger absolute errors from the bootstrap
method. At r = —1 GeV?, the bootstrap uncertainty from
Fg, ha and by is already of order £1, dominated by the
uncertainty in b1g. As in Ref. [19], we find a very small sen-
sitivity of Gy to the variation of the cutoff A. In addition
to providing valuable insights into the electromagnetic struc-
ture of hyperons, experimental data for the transition form
factors may thus also help to constrain these parameters.

4 Summary

In this paper, we extended the dispersion theoretical deter-
mination of the electromagnetic Sigma-to-Lambda transition
form factors presented in Ref. [19] from the 77 intermediate
state to the 77—K K coupled-channel configuration within
the SU(3) ChPT framework. After including the K K chan-
nel, a shift of the electric Sigma-to-Lambda transition form
factor G is presented, while the magnetic form factor Gy
stays essentially unchanged. At present, the dispersion the-
oretical determination of electromagnetic Sigma-to-Lambda
transition form factors suffers from sizeable uncertainties due
to the poor knowledge of the LEC bjo and coupling /4. The
precise determination of this three-flavor LEC from the future
experiments will be helpful to pin down the hyperon TFFs. In
anext step, it will be of interest to explore the elastic hyperon
electromagnetic form factors based on the theoretical frame-
work that combines dispersion theory and three-flavor chiral
perturbation theory.
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A Unitarity relations and the anomalous pieces

Let us start from the single channel case. The unitarity rela-
tions for the X-to-A TFFs G g/ (in the followings we drop
the index E /M) within the single w7 channel assumption
read [19,24]

1 . 1 Vi
EdISCunit G([) = an EnFﬂ . (31)
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where ¥, = anqn with o and ¢ defined by Eq. (20) and

Eq. (5) respectively, and g = +/7//2. Moving tothe 7 7—K K

coupled-channel case, one first considers the vector pion and

kaon form factors; they satisfy the unitarity relations [46,57],
1

Tdisc F'()=t*xF", F' =(F), fFV) (32)
i

Similarly, the 2°A — 77 and 2°A — KK P-wave ampli-

tudes fulfill the unitarity relations

(T, V2T%)" . (33)

The key information that the above two equations provide us
is the relative ratio between the 777 and K K channels in the
J = I =1 coupled-channel problem. Then with the single-
77 unitarity relations at hand already, that is, Eq. (31), one
can easily extend to the two-channel case:

1 : S _
Tdmc T¢) =t,"XT, T=
i

1. 1
Zdlscunit G(t) = 7TTEFV*

=5 L (7. V2Tx). (E” 0) (f;;)

1 2
= o (T S FY* 6 (t —4Mﬂ)
+2TK2KF,¥*9<t—4M,2<)>. (34)

That becomes Eq. (4) after substituting the identity g =
V/to /2. Recalling that all the left-hand cut (LHC) part of
T isincluded in K, then T — K only contains the right-hand
cut (RHC) and its unitarity relation is given by Eq. (33) for
the two-channel assumption. One can also write [46]

%disc 27'(T-K =-[me"'|K, (35)
which leads to Eq (13).

Whenm$, +m?% —2M}? > 2mZ, . and A(m?%, mg, ., M7?)
< 0 with M; = M, (MK) for the process XA — nw
(XA — KK), the LHC and RHC will overlap, leading to
the non-zero anomalous terms Ganom and Tapom in Eq. (4)
and Eq. (13), respectively [24,38-41]. This indeed happens
in the proton exchange diagram for the process ¥A — K K.
Such anomalous contributions are estimated by the dispersive
integrals of the discontinuity along the cut that connects the
anomalous threshold to the starting point of the RHC (the
physical threshold of the two-body intermediate state). The
anomalous threshold 7_ is defined by [39]

1
_= E(mzz +m%‘ +2M,2( —m%,)

1
_ 2m_2<(mz2 — M2)(m% — M%)
N

+x1/2(m%,mﬁv,M,%)x”z(mi,m%wM%)). (36)

@ Springer

Numerically, t— = 0.935 GeV located at the real axis of ¢
just below the K K threshold. To go further, one first has to
derive the discontinuity along the anomalous cut for the TFFs
G and the scattering amplitudes T. After implementing the
partial-wave projection, namely the integration in Eq. (14)
and Eq. (16), one obtains

Y
Ky = 13 log rre + remainder, 37
K Y —«
where
Y = —(m% +m’ +2Mz —t —2m%),
K =22, my, m%)ok (). (38)

f 1is the coefficient of the logarithm which is a smooth func-
tion over the transferred momentum square ¢ without any
cut. The anomalous threshold is generated by the logarithm
function. As illustrated in Refs. [24,39], the discontinuity of
Ky along the anomalous cut reads

f 2

1
—disc Ky == . 39
2 anom HN K2 (—)»(l, mZE7 m%‘))l/ZO’K ( )

Note that the argument of /7 is defined in the range of [0, 1)
in the present work. Regarding T, one can rewrite Eq. (35)
into

1 1
57 disCanom 27/ (T = K) = - [Imsz—l] S discanom K
1 l

_(o-1¢+5) Ly
=(27t°X 2_d1scan0m K,
l

where we replace (— [Im®2~']) with (2 7't]*X) in the sec-
ondline since [Im2~'] , = [Im227'],, = Obelow the K K
threshold.? Finally, the discontinuity of the TFFs G along the
anomalous cut can be read off straightforwardly in terms of
that of T,

1 1 1 T
z—idlscanom G = Y ((t{*) ‘z—idlscamm (T — K)) F"*

1

_ . ’
= 5 ((t{*) 22 t}*Z)EdlscanomK> FV*

11
= — —(discanom K)T ZTF"*.

247 2i (40)

3 This replacement is necessary since [ImSl*]] is solved numerically
in our calculation and [Im.Q*1 ] = [Im.Q*1 ]22
the unphysical region. The combined quantity Q‘lt}* ¥ can be simpli-
fied analytically when multiplied to discapom K. Then it turns out that
the products Sl_lti* and X discanom K, respectively, are finite along
the anomalous cut. Moreover, the identity — [ImSZ*l] = Sl*lt%*E is
checked numerically and does hold near the K K threshold.

= 0 always holds in
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012 Lagrangian is important to reproduce the correct G g/ (0) 4
0.10 and reasonable electric and magnetic transition radii, (ré)
and (r%,,) [19]. We use the same Lagragians as in Ref. [19].
0.08 To be specific, the relevant interaction part of the leading
= order (LO) chiral Lagrangian that contains both the octet and
S 006 decuplet states as active degrees of freedom for the reactions

0.00

Fig. 10 The absolute values of the scalar triangle loop function
Co (mzz, m%‘, s, M12<, mi,, MIZ{) calculated numerically using Feynman
parameters (solid black line) as well as dispersively with (dashed red
line) and without the anomalous contribution (dot-dashed blue line).
Note that the solid black and the dashed red line coincide

Substituting Eq. (39) into the above equation, one obtains

L G = S Fg (41)
—disc = — .
2i o 24 (—A(t, mg, m%))3/2

Then we arrive at the expressions for G anom and Tanom. They
are

I AN
Ganom(0) = 5 | = = i =
—f () FL*(t (x))

(=r(t'(x), m%, m?%))32

(42)

B toftdl(x) 1
Tanom(l)—g(f);/o det’(x)——t

5 (27't}*2) Ldiscanom K
't —t —ie)

; (43)

with #/(x) = (1 —x) t_ +x 4M7.

To cross-check whether this prescription is correct, we
present the calculation of a scalar triangle loop function
Co(mzz, m%‘, s, M12<, m%v, M12() in Fig. 10. The exact agree-
ment is achieved only when the anomalous contribution is
taken into account.

B The reduced amplitudes K,k and Py r/k

The four-point amplitudes My, 7 k(1. 0) are calcu-
lated up to next-to leading order within the framework of
SU(3) chiral perturbation theory. It turns out that the explicit
inclusion of the decuplet baryon in the three-flavor ChPT

of interest is given by [21,58]

D - F _
Lylio = 5 (By"yslu. BY) + = (By" ysluy. BY)

1 - _
+ _hAfadeng (TapzcuZdBce + Becu:ibTalZc) ’

2V2
(44)
and the relevant NLO Lagrangian reads [59,60]
£ = LBl u"). 0 B 45
8 — z 10( {[M s U ]7GMU })7 ( )

where (---) denotes a flavor trace. The chirally covariant
derivatives are defined by

DMB :=93"B + [T'*, B] (46)
with
r, = % (uT (0 —i(vp +aw) u

tu (8, — i(vy — ap) zﬁ) . (47)
Here, v and « are external sources and u? = U =

exp(i®/Fgp) with the Goldstone bosons encoded in the
matrix

7'+ 0 N2rt o V2K
o=| V2rno -+ zn V2K | (48)
V2K~ V2K~

The octet baryons also make up a 3 x 3 matrix in the flavor
space that is given by

1 50 1 +
sz +‘/6A 1 f 1 ’
o 50 -2 A
/6

(49)

Finally, 7, is a totally symmetric flavor tensor that denotes
the decuplet baryons,

1
Ty =AY, Tip=—= A%,

/3

1 0 _
Tiyp=—4A"Tn=A",

V3

4 Here, the normalization of electromagnetic Sigma-to-Lambda TFFs
is estimated with the unsubtract dispersion relations, see Ref. [19] for
more details.
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Fig. 11 Pictorial representation of the bare input of the four-point
amplitude 77r — £°A obtained up to NLO

K.
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7~

< - /,/,E
2 Sk
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Fig. 12 Pictorial representation of the bare input of the four-point
amplitude K K — %A obtained up to NLO

1 1 o 1

T3 = ﬁ T Tz = % z T3 = % =,
Ti33 = AE T3z = N Tz3=£2. (50)

The amplitudes My, 7, kg are described as a Born term
in the LO plus a contact term in the NLO within the three-
flavor ChPT, see Fig. 11 and Fig. 12.

From above Lagrangians, one obtains the X-exchange
Born term for £°(p1) + A(p2) — 7~ (p3) + 7 (pa),

iMs =i(Mi+ My)

. DF [_
iM = NeTs (vAV“V5P3,MS>:—,;VVV5P4,M2),

—DF
. = " v
iMy = —ﬁ %<v4y V5P4, S5+ uY yspa,uuz>, (51

with Sg—, = i((p1 — pO)*yu+mz)/(t —m3,) and Sg+ \, =
i((p1 — p)Pyu +ms)/(u — mé) the propagator of the
exchanged X in the 7- and u-channel respectively. And the
> *-exchange Born term,

iMsx =i(Mi+ My)
—ha )2— v /wt<—1> B
= _— v A e uy,
(2«/§Fq) A8uv P34 \/§ Saf Py UL

—ha )2 - Vo4 HA (_1> B
+ -1 abe (=2 :
(2\/§Fq) vA( )guvp4 u «/’3’ SapP3US
(52)

with the spin-3/2 Rarita-Schwinger propagator [61]

1
WY gtV

o
A (py= Y Pa T p‘””"( .

p2 _ m2
1
- Fyayﬁpppx(g“ﬁ gVhg 4 gV ght g’“))
2 php”
3Im?2 p2

(Y* pa +m)
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+3m

i
= (88" g + """ ¢PP)aup pp .

andt = (p; — p4)2, u=(p— p3)2. Here, m denotes the
mass of the exchanged spin-3/2 resonance. The NLO contact
term for the reaction £°(p1) + A(p2) — 7~ (p3) + 71 (pa)
is given by

1 4 1

= b _— —

MNLO ( 10 Fé \/5) )
X ((ME +ma) (—0ay"(ps — p3)uus)

+(u—t)t7Au):> . (53)

The corresponding expressions for the £°(p1) + A(p2) —
K_(P3) + K+([74) (MZOA%KOIEO = _MZO/EHK'*'K_ in
the isospin limit) read

i Myorm = i(My + M + Mzg~) ,

1 (- —-JV3F\D-F
F3 \2/3 2 2
X (z‘my“ysm,,tSp,uy”ysps,um:) ,
1 (-D 3F\ D+F
iMi=— | —=+ V3F
Fz\2v3 2 2

X (1_1/1)/“7/5173,;;58.[)’”V5P4,uu):) 5

) —ha )2_ o, —1 8
iMgs = —==—) v4(+1) YA (—) us .
(ZﬁF(p A 8uv P34y 8apPyUs

73
1 2 1
MnLo = (blqu%\/g) 5

X ((mz +ma) (—0ay* (ps — p3pus) + u — t)ﬁAuz) ,
(54)

with S, 4 = i((p1 — p3)*vu +mp)/(u —m3) and Sz, =
i((p1 — p)Hy +mg)/(t — m%) the propagator of the
exchanged proton and E baryon, respectively. To proceed,
it is helpful to introduce the following equivalents,

Vi, Ay (p1 — p)uttip s Vij2au12,z(ma + my)

El = ~ 3 — 3
V12, AV U125 U1/2,AY°U1/2,5
_(mx+mp)?—s
2p, '
V12,47 (Pa — p3)pttiy2,s
E2 = i 3 — = —2pcm. cosb ,
U1/2,AY°U1/2,%
M= v71/2_,AM1/2,21(mA +myx) —0.
V_1/2,AY U125
3] I3 —
M2 = D=2y (pa — p3)uttij2s = Dpep sinf . (55)

U_12,4Y U125
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where s = (p1 + p2)2 = (p3 + p4)2 is the center-
of-mass energy. p, and p.p. denote the modulus of the
three-dimensional center-of-mass momenta of the ¥ A and
/K K two-body systems, respectively, i.e. pe.m. = ¢ /K-
The equations (55) are calculated in the center-of-mass frame
with the p, the modulus of the three-momentum along the
direction of the z-axis and 6 is the scattering angle of 7 or K.
Substitute Egs. (51) (52), (53), (54) into Egs. (14),(15),(16),
(17), we obtain P0 PM  KE and K for the 77 inelas-

0,7°
ticity,
Py, = P§ + Pf. (56)
s 3 . DF E2 2 DF
Py =~ [ dfsinb cosé?—2 =———,
2 F(p Pc.m. «/§ Fg

—hy )2 1 (t—u El
2\/§Fn \/§ 12”1%* Pc.m.
E2 1

pcm 12]’}’!2*

(— ZmE* —2myx(my +my) —i—mz

+m% +s —6M§)>

By (ma+ms)(ms +mzs)
24y/3F3 m%.
KE=KE+KE.,

+OM2,5) .

3

EZE/deschost 5
0

) 1 1
m _
4 l‘—m22 u—mz2
E2 1 1

my (mx +my) 5+ 5 ,
Pc.m. t—my, u—msy

3 ha \? 1
KE == /d@sin@ cos@( A ) —
T J 2W2F,) V3

F(s) E1 1 1
x|+ 2 2
Mg +Mp Pem. \U — My [ — M5y

E2 1 1 G(s
+ —+ R ©) e
pc.m. u— mz* t— mz* 2

+

where

F(s) = (W +m2*) Hi(s)

+ (w _m2*> Hy,

G(s) = Hi(s) + Ha,

ms. +m K
H(s) = ==
_ (my +m3 — M)+ m3, — M7)
5 ,
4m2*
2 2 2
= & (e T 20
3 2m>3*
2 2 2
X m2+m2+m2*—Mﬂ>
2mz*
M M M M
Poz =Py + Pyio — Kz jow »
T
pY 3 f Josing smo PF M2 2 DF
- sin @ sin = ———,
T4 3F3 Pem. V3 F}
0
3 [ 1 —M2
Pllo=3 /desina sin@ <b102f> w
0 pc.m.

4 byo

= ma+m 58
ﬁFz( A =) (58)
M _
kY =k¥ + k¥,
T

3 DF M2
K¥ = /d951n0 sin 0

4 f q%pcm

sz(m):+mA)< . 2>,
my, ”_mz

s
3
K%:Z fdésm@ sm@( )
0

M 1 G()
(e () D) @

Note that we subtract a term K é/[* low 1D the polynomial
part of the magnetic amplitude Po , which denotes the
low-energy limit of the LHC contribution of the decuplet-
exchanged magnetic amplitude. It is proposed to remove the
doubly counted decuplet baryon contribution caused by the
using of the resonance saturation assumption for the estima-
tion of b1g in the present ChPT framework. A similar term
K g,ﬁ’low should be subtracted in P(fn. However, it belongs
to a higher chiral order and is dropped here. Note that PI\?LO
belongs to P;(s) that is beyond the accuracy of Eq. (13) and
is also dropped. Taking the same convention with Ref. [19],
K. | is given by

KM = 11m lim lim Ky« (s
", low —0 ma—ms M;—0 E*( )

Ry (—mk. +dmsemy —mL) (msx +my)

T 24V3F2

my, (mx+ —my)
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And similarly, the P(fK, PéVIK, Ky L and K IA(’[ for the KK

inelasticity read

E
POK Pborn+PE*f
with
3 b g
Ptf)m = 3 /de sin 6 cos@( (gA(mA +my +2mpy)
0
El
+gpmpa+my +2mg) | ————
(ma +mzx)pem.
— E2
4 88— 84 )
2 Pc.m.
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1
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(61)

where

F(s) = =My (ma +mx +4mg-)
+ Mz (m3 + 8my. + dmEams + 3mgmy + my,
+m?% Bmgs +ms) +ma(dmye — 2mgemy +m%y))
+ (mp 4+ mgs)(my +mge)(m% (2mgs — myx)
+mA(mé* — m%:) + mg*(—4m25* + 2m22 + mgxmy))
—3mE(ma + 2mze +my)s

G(s) = 3m25*s + M?( + (mp +mgx)(my + mgx)

X (mg=(mg+ — 2ms) + ma(=2mg- + my))

— Mlz((ma +m22 +2m25* —mgs(my +my)) .

Note that the Pascalutsa prescription of the spin-3/2 particle
will bring an ambiguity in the P , and PH* while it keeps
K ‘25* and KE g+ consistent with the interaction between the
decuplet and octet states listed in Eq. (44), see Ref. [19]
for the details. The uncertainties on the TFFs originating
from such ambiguity, however, are negligible when com-
pared with the parameter errors. And we take he same con-
vention with Ref. [19] where the O(M s) and O(M 2 K))
terms are dropped in the P and PH* Further

M _ oM M M
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(63)

Here, g4 and gp are defined as

R —D+—ﬁF D—F
gA—Fé e 5 5
1 (-D V3F\ D+ F

T\ 2 2

There are only three different kinds of integration over angle
involved in the K /M Expanding u and ¢ in the center-of-
mass frame, one has

1 1
t(s,0) = —EY(S) + EK(S) cos 6,

u(s,0) = —%Y(s) — %K(S) cos 6,

with Y (s) and «(s) given by Eq. (38). Then three different
integrals are expressed as

T sinfcosf® El T cosOsinf 1
A= d9—2 x d@—z—
0 [ = Mexep Pem. 0 [ = Mgy Pem.
4 2Y(s) ~
= K (s),

k()2 Kk(s)?

T sinfcosf E2 T cos?@sind
0 I —mMeen Pem. 0 I —mgen
4y 2Y(s)? -

IO (N

k()2 Kk(s)?

T sin@sinf M2 T sin2fsind

C = d9—2 I d9—2

0 I — Mgy Pem. 0 I —meen

_S2Y(s) | Y(9)P —k(9)?
T k(s)? + k(s)? K(s)-

For the u cases, there is an extra signin A. Here we dropped all
irrelevant coefficients of 6-dependent terms. mexch denotes
the mass of exchanged particle, while K (s) is defined as [24]

1 Y (s)+«(s) 2
oA IOETOR (ms +mp)° <,
K(s) = IKZY)I (arctan —';ii))'), 5o <5 < (mg +my)?,
ey (aretan ol ), 4MZ <s <,

with sp = m22 —I—m%‘ +2M]27 —Zmzxch. Finally, M, is replaced

by Mk when calculating the expressions for the K K channel.
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