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Abstract. The toolkit for high-order neutrino-radiation hydrodynamics (thornado) is being
developed for simulations of core-collapse supernovae (CCSNe) and related problems. Current
capabilities in thornado include solvers for the Euler equations — in non-relativistic and special
relativistic limits — and the two-moment model of neutrino transport. The spatial discretization
in thornado is based on the discontinuous Galerkin (DG) method, which is receiving increased
attention from the computational astrophysics community. In this paper, we provide an overview
of the numerical methods for the Euler equations in thornado, and present some encouraging
preliminary numerical results from a set of basic tests in one and two spatial dimensions.

1. Introduction
Along with solvers for neutrino transport and gravity, the hydrodynamics solver constitutes a
major component of core-collapse supernova (CCSN) simulations. The dynamics of the bounce
shock and associated fluid instabilities, which drive turbulent flows and help shape the explosion,
must be faithfully captured (see, e.g., [23], for a recent review). Essentially, the stellar interior is
modeled as a perfect fluid (thermal conduction and viscosity are not explicitly included) using
the Euler equations, but the models are extended to accommodate a nuclear equation of state.

The discontinuous Galerkin (DG) method [7, 14] appears as an appealing choice to model
fluid flows in CCSNe. DG methods combine elements of spectral and finite volume methods,
and achieve high-order accuracy on a compact stencil. Data is only communicated with nearest
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neighbors, regardless of the formal order of accuracy, which leads to a high computation to
communication ratio, and favorable parallel scalability on heterogeneous architectures has been
demonstrated [17]. They can be used in combination with hp-adaptivity [26], where, in addition
to grid refinement with AMR, the local polynomial degree can be chosen differently, and
independently, in different cells. DG methods can easily be applied to problems involving
curvilinear coordinates, which is beneficial in numerical relativity [36]. Currently, most
hydrodynamics solvers in CCSN codes are based on finite volume methods. Exploring the
utility and performance of DG methods to model CCSNe seems like a worthy exercise by itself.

The toolkit for high-order neutrino-radiation hydrodynamics (thornado) is being developed
to simulate neutrino-radiation hydrodynamics in CCSNe and related applications in nuclear
astrophysics. The spatial discretization of solvers for hyperbolic partial differential equations
in thornado is based on the DG method, while we foresee using a combination of spectral and
continuous finite element methods for solving elliptic equations; e.g., for Newtonian gravity or
relativistic gravity employing the conformal flatness approximation [39]. With these approaches,
we employ high-order discretization techniques based on a common mathematical framework in
all the major model components. Whether the high-order approach will improve accuracy and
efficiency of CCSN models remains to be demonstrated. However, in this paper, we provide an
initial description and encouraging demonstration of the DG method implemented in thornado

to solve the Euler equations. We focus on basic tests in one and two spatial dimensions and
focus, to some extent, on the implementation of limiters in thornado. We note that others
(e.g., [25, 28, 43, 10]) have also investigated the DG method in the context of astrophysical
applications and reported encouraging results. The DG limiting techniques implemented in
thornado are similar to those used by [28], but is supplemented with a troubled-cell indicator
[12] to prevent excessive limiting (e.g., around smooth extrema), and differs from more recent
approaches in the literature (e.g., [15, 9, 43, 35]), which combine the sub-cell resolution of the DG
method with high-order finite-volume techniques to improve the performance of the DG limiting
procedure. While the results with current limiters are encouraging, these latter methods appear
as attractive options for future implementation in thornado.

2. The discontinuous Galerkin method
Excellent books and review articles on the DG method are available (see, e.g., [6, 7, 14, 33] and
references therein), and we will not go into too much detail here. However, we review some
key concepts to introduce notation, and emphasize specific choices for our implementation in
thornado. To this end, we consider a system of conservation laws with sources of the form

∂t
(√

γU
)
+

d∑
i=1

∂i

(√
γ F i(U)

)
=
√
γ S(U), (1)

where U is the evolved state vector, F i are the fluxes, and S is the source vector. We use a
formulation of the equations sufficiently general to accommodate curvilinear spatial coordinates
encoded in the metric γij , giving the squared line element ds

2 = γijdx
idxj , whose determinant

is γ. Henceforth, we will assume that the spatial metric is time-independent. To solve Eq. (1),
the computational domain D ⊂ R

d is divided into a disjoint union T of open elements K, so
that D = ∪K∈TK. We require that each element is a box in the logical coordinates; i.e.,

K = {x : xi ∈ Ki := (xiL, x
i
H), i = 1, . . . , d }, (2)

with the surface elements denoted ∂Ki = ×j �=iK
j . We let VK denote the proper element volume

VK =

∫
K

dV, where dV =
√
γ

d∏
i=1

dxi. (3)
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We also define as a set x = {x̃i, xi} and Δxi = xiH − xiL.
We let the approximation space for the DG method, Vk, be constructed from the tensor

product of one-dimensional polynomials of maximal degree k. Note that functions in V
k can

be discontinuous across element interfaces. The semi-discrete DG problem is to find Uh ∈ V
k,

which approximates U in Eq. (1), such that for all v ∈ V
k and all K ∈ T

∂t

∫
K

Uh v dV +

d∑
i=1

∫
∂Ki

(√
γ F̂

i
(Uh) v

∣∣
xi
H
−√γ F̂

i
(Uh) v

∣∣
xi
L

)
dx̃i

−
d∑

i=1

∫
K

F i(Uh) ∂iv dV =

∫
K

S(Uh) v dV. (4)

In Eq. (4), F̂
i
(Uh) is a numerical flux approximating the flux on the ith surface of K. The

numerical flux function f i is evaluated using values from both sides of an element interface; i.e.,

F̂
i
(Uh) = f i(Uh(x

i,−, x̃i),Uh(x
i,+, x̃i)), (5)

where superscripts −/+, e.g. in the arguments of Uh, indicate that the function is evaluated to
the immediate left/right of xi. We use the Harten-Lax-van Leer (HLL) flux [13] or the HLLC
flux [37, 22] for all the numerical experiments presented in Section 3.

We provide further details on the DG method to arrive at the equations that are actually
evolved in thornado. We start by introducing some notation, defining the polynomial expansion
for Uh and the quadrature rules used to evaluate the integrals in Eq. (4). Then we provide
explicit expressions for each of the terms in Eq. (4). For simplicity we consider one spatial
dimension (d = 1) and drop indices denoting the spatial dimension. In each element K, we use
a nodal representation of the conserved variables U ; i.e.,

U(x, t) ≈ Uh(x, t) =

N∑
i=1

U i(t) �i(x), where �i(η) =

N∏
j=1
j �=i

η − ηj
ηi − ηj

(6)

are Lagrange polynomials defined on the reference element I = {η : η ∈ (−0.5, 0.5)}, and
constructed to interpolate the node set SN = {ηi}Ni=1 ⊂ I. The spatial coordinate x and the
reference coordinate η are related by the mapping x(η) = xL + (0.5 + η)Δx. Then, for any
ηj ∈ SN , �i(ηj) = δij , so that Uh(x(ηj), t) = U j(t). We introduce numerical quadratures to
evaluate the integrals in Eq. (4). First we define the M -point quadrature QM : C0(I)→ R with

abscissas ŜM = {ηq}Mq=1 and weights {wq}Mq=1, normalized such that
∑M

q=1wq = 1. The M -point
Legendre-Gauss quadrature, which we use, integrates polynomials of degree ≤ 2M − 1 exactly.
Then, if Ph(x) is such a polynomial, we have

1

Δx

∫
K
Ph(x) dx =

∫
I
Ph(η) dη = QM

[
Ph

]
≡

M∑
q=1

wq Ph(ηq). (7)

Note that the interpolation points SN and the quadrature points ŜM generally do not coincide.
However, for the sake of computational efficiency we let M = N and SN = ŜN , which is a
spectral-type nodal collocation DG approximation [2]. Inserting Eq. (6) into Eq. (4), letting
v(x) = �k(x), and using the quadratures defined above, we obtain

∂t

∫
K
Uh v dV ≈ wk

√
γk ∂tUkΔx (8)
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for the time derivative term. For a general metric, the integral in Eq. (8) is approximate since
we use the Legendre-Gauss quadrature rule with the nodal points given by the expansion in
Eq. (6). However, since �i(ηk) = δik, this leads to a diagonal mass matrix, and simplifies the
implementation. Similarly, we obtain∫

K
S(Uh) v dV ≈ wk

√
γk S(Uk)Δx. (9)

for the source term. Finally, the volume term (last term on the left-hand side of Eq. (4)) becomes

∫
K
F (Uh)

∂v

∂x
dV ≈

N∑
q=1

wq
√
γq F (U q)

∂�k
∂η

(ηq). (10)

Using Eqs. (8)-(10) in Eq. (4) results in the semi-discrete form

dUk

dt
= − 1

wk
√
γ
k
Δx

{[√
γF̂ �k

∣∣
xH
−√γF̂ �k

∣∣
xL

]
−

N∑
q=1

wq
√
γq F (U q)

∂�k
∂η

(ηq)
}
+ S(Uk). (11)

Eq. (11) comprises a system of ordinary differential equations (ODEs), which are integrated in
time with an ODE solver. In Section 3 we use the optimal third-order strong stability-preserving
Runge-Kutta (SSP-RK3) method from [30]. We assume that the source term S(Uk) is non-stiff
so that the equations can be integrated efficiently with explicit methods. In future applications of
the DG method to model CCSNe we plan to use a combination of implicit and explicit methods
(e.g., IMEX methods [1]) to stably integrate stiff sources due to neutrino-matter interactions.

Limiting of the polynomial representation Uh, to reduce oscillations and prevent unphysical
states, is a critical step in the DG algorithm. We use the TVD-type slope limiter based on
limiting characteristic variables, discussed in [6]. To prevent excessive limiting (e.g., at smooth
extrema), we use the troubled-cell indicator (TCI) of [12]:

IK(G) =

∑
j |GK −G

(j)
K |

maxj |G(j)

K(j) |
, (12)

where G ∈ G ⊆ U . (Here, G consists of the first and last element of U .) In Eq. (12), the sum in
the numerator and the max in the denominator extend over the neighboring elements sharing a

face with the target element K. GK is the cell average in K, G
(j)
K is the cell average computed

by extrapolating the polynomial representation from the neighbor element K(j) into K, and

G
(j)

K(j) is the cell average native to K(j). An element is flagged for limiting if IK(G) > CTCI for

any G ∈ G. To prevent negative mass density and pressure (and superluminal velocity for the
relativistic Euler equations), we follow the approaches in [44, 40, 24].

To summarize the full RK-DG algorithm we let Ū denote the global solution vector containing
all the unknowns in D and F̄ denote the corresponding DG discretization from the right-hand
side of Eq. (11), so that the global ODE system can be written as the dtŪ = F̄ (Ū). The
TVD limiter and the ‘positivity’ limiter preventing unphysical states are denoted by ΛTvd{}
and ΛPos{}, respectively (e.g., application of the TVD limiter is Ū := ΛTvd{Ū}). The general
s-stage Runge-Kutta time stepping algorithm, which includes application of limiters, can then
be written as [7]:

1. Set Ū
(0)

= Ū
n
,
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2. For i = 1, . . . , s compute:

Ū
(i)
= ΛPos

{
ΛTvd

{ i−1∑
j=0

(
αij Ū

(j)
+ βij Δt F̄

(
Ū
(j)) )}}

, (13)

3. Set Ū
n+1

= Ū
(s)
.

The coefficients αij and βij for SSP-RK3 are given in Table 2.1 in [7]. In Eq. (13), for
each stage, the TVD limiter is applied first (for elements where IK > CTCI), followed by
the positivity limiter. The algorithm is subject to two time step restrictions, the stability
condition ΔtTvd and the positivity condition ΔtPos, and we take Δt = minD(ΔtTvd,ΔtPos).
Let (h/|λ|) = mini∈{1,...,d}(Δxi/|λi|), where |λi| is the largest absolute eigenvalue of the flux
Jacobian. Then, assuming Cartesian coordinates (e.g., [7, 44]):

ΔtTvd ≤
1

d

(h/|λ|)
(2k + 1)

and ΔtPos ≤
ŵ1(h/|λ|)

d
, (14)

where ŵ1 is the first quadrature weight of the Gauss-Lobatto quadrature that integrates the cell
average of Uh exactly. For d = k = 2, the effective Courant-Friedrichs-Lewy (CFL) factor is 0.1
for ΔtTvd, while it is 1/12 for ΔtPos. The positivity limiter checks for unphysical states in all the
quadrature points involved in the DG discretization. If any point in an element is flagged as
unphysical, the polynomial representation Uh is damped towards its cell average UK , which is
guaranteed to be physical by the ΔtPos restriction. Note that ΔtPos is a sufficient condition. In
practice, the time step can often be set larger than ΔtPos.

3. Preliminary numerical results
In this section we show preliminary numerical results obtained with the DG method implemented
in thornado to solve the non-relativistic and special relativistic Euler equations. We use the
ideal gas equation of state where the pressure p is related to the internal energy density e by
p = (Γ−1)e, and where Γ is the (constant) adiabatic index. Let the d-dimensional computational
domain be D = ×d

i=1[x
i
m, x

i
M], where xim and xiM denote the coordinates of the inner and outer

boundary in the ith coordinate direction, respectively. To limit the scope of this initial study,
we use polynomials of degree k = 2 (except in Section 3.1.4, where we also use k = 1 and k = 3)
combined with SSP-RK3 time stepping, and, unless stated otherwise, run all the tests with a
CFL factor of C = 0.1. We use the HLL Riemann solver when solving the non-relativistic Euler
equations and the HLLC Riemann solver when solving the special relativistic Euler equations.
The purpose of the tests is to gauge the performance of the DG implementation on a set of
benchmarks as an initial measure of its suitability for future CCSN simulations.

3.1. Non-relativistic (NR) hydrodynamics
For the NR Euler equations, the state, flux, and source vectors in Eq. (1) are

U =
(
ρ, ρuj , E

)T
, F i =

(
ρui,Πi

j , (E+p)ui
)T
, and S =

(
0,
1

2
Πik∂jγik−ρ∂jΦ,−ρui∂iΦ

)T
, (15)

where ρ and ui are the mass density and components of the fluid three-velocity, respectively.
The stress tensor is Πi

j = ρuiuj + pδij , and E = e + 1
2ρuiu

i is the fluid (internal plus kinetic)
energy density. The sources are due to curvilinear coordinates and Newtonian gravity.
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3.1.1. Sod shock tube The first test is the classic Riemann problem due to Sod [34], computed
using Cartesian coordinates. The one-dimensional computational domain is D = [0, 1], and a
discontinuity is initially located at x1 = 0.5, separating the left and right states

U L = (1.0,0.0, 2.5)T and UR = (0.125,0.0, 0.25)T,

where the adiabatic index is Γ = 1.4. The test is run with 100 elements until t = 0.2, using
CTCI = 0.03. Results are plotted in the left panels of Figure 1. The DG method captures the main
features of the solution well without introducing noticeable oscillations near the discontinuities
(upper left panel). In the lower left panel we plot locations in the xt-plane of elements flagged
for limiting. Limiting is mainly triggered by the contact discontinuity and the shock.

Figure 1. Upper left panel: numerical solution of Sod’s problem using 100 elements (plusses)
compared with the exact solution (solid lines; from [38]). Upper right panel: numerical solution
of the Sedov-Taylor blast wave using 256 elements (plusses) against the exact solution (solid
lines; from [16]). In the lower panels we plot locations in the xt-plane of elements flagged for
limiting (IK > CTCI) by the Sod (left) and Sedov (right) problems.

3.1.2. Sedov-Taylor blast wave This test, detailed in [29] (see also §99 in [18]), is computed
in spherical polar coordinates with the assumption of spherical symmetry.2 The computational
domain is D = [0, 1.2], and the initial condition consists of a fluid at rest with density ρ = 1.
The adiabatic index is Γ = 1.4, and an amount of thermal energy equal to 1 is released in the

2 In this paper, all tests in spherical polar coordinates are computed with the assumption of spherical symmetry.
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innermost element. We use 256 elements and run until t = 1, using CTCI = 0.03. Again, the DG
method captures the characteristic of the exact solution (cf. upper right panel of Figure 1). The
maximum density in the shock is somewhat lower for the numerical solution than the exact value
(about 5 versus 6). In the lower right panel we map locations of elements flagged for limiting in
the xt-plane. The troubled-cell indicator tracks the shock well (the analytic shock trajectory is
given by the dashed cyan line), but also flags elements at smaller radii with low density.

3.1.3. Shu-Osher shock tube This test from [31] is suitable for measuring the amount of
dissipation in a numerical scheme. The one-dimensional computational domain is D = [−5, 5],
and a discontinuity is placed at x1 = −4, separating the states

U L =
(
3.857143, 10.14185, 0.0, 0.0, 39.16667

)T
and UR =

(
1 + 0.2× sin(5x1),0.0, 2.5

)T
,

where the adiabatic index is Γ = 1.4. The density variations ahead of the Mach=3 shock are
compressed through the shock and result in higher-frequency variations downstream, which can
be difficult to capture with an excessively dissipative scheme.

We run this test to t = 1.8 using 200 elements. In the two upper panels of Figure 2 we plot
the density for various values of the troubled-cell indicator threshold CTCI; 0.0 (full limiting,
green), 0.03 (magenta), 0.3 (red), and 3.0 (blue). Larger CTCI implies less limiting. The results
are compared with a reference solution computed with 2048 elements. With full limiting, the
scheme is unable to capture the density variations behind the shock (cf. upper right panel in
Figure 2). This is expected since the TVD-type limiter clips extrema. The results improve when
the troubled-cell indicator is used. When CTCI = 0.03, the variations are better resolved, but the
amplitudes are much reduced relative to the reference solution. With CTCI = 3.0, the variations
are well resolved and the amplitudes are comparable to the reference. In the lower panels of
Figure 2 we plot locations in the xt-plane of elements flagged for limiting by the troubled-cell
indicator: CTCI = 0.03 (left), CTCI = 0.3 (middle), and CTCI = 3.0 (right). With CTCI = 0.03,
limiting is triggered in a wide region around the shock and around the peaks of the three leftmost
density variations in the upper left panel in Figure 2. With CTCI = 3.0, limiting is only triggered
in the shock.

3.1.4. Isentropic vortex This test from [32] is included to verify the accuracy of the DG method
implemented in thornado. The periodic computational domain is given by D = [−5, 5]× [−5, 5].
The initial density and pressure are given by ρ0 =

(
1− (Γ−1)β2

(8πΓ) exp
(
1−r2

) )1/(Γ−1)
and P0 = ρΓ,

where r =
√
(x1)2 + (x2)2, while the velocity components are v10 = 1− x2β

2π exp
(
(1− r2)/2

)
and

v20 = 1 + x1β
2π exp

(
(1 − r2)/2

)
. The strength of the vortex is set to β = 5, and we use Γ = 1.4.

We evolve this test until t = tf = 10, when the vortex has returned to its initial position.
In Figure 3 we plot the density error measured in the infinity norm L∞ = maxD |ρ(x, tf ) −

ρ0(x)| versus number of cells the x1-dimension for various configurations. We ran with spatial
resolutions of 25 × 25, 50 × 50, 100 × 100, and 200 × 200. In the first set of runs, we ran
without any limiting and varied the polynomial degree k: k = 1 (solid red), k = 2 (solid black),
and k = 3 (solid green). We observe the expected order of accuracy for k = 1 and k = 2
(second- and third-order accuracy, respectively; cf. dotted reference lines). For k = 3, the order
of accuracy is close to fourth-order for the lower resolutions, but tends to third-order as the
resolution increases, presumably due to the use of third-order time stepping. (Note that we ran
the k = 3 case with a CFL factor of 1/14; cf. Eq. (14).) In the second set of runs, we kept k = 2
and ran with limiting turned on. We ran one set with CTCI = 0.03 (dashed magenta) and one
set with CTCI = 0.1 (dashed cyan). When CTCI = 0.03, the limiter is activated for the lowest
resolution run and significantly reduces the accuracy of the method. For all the other runs, the
limiter is not activated, and the results are identical to the runs with the limiter turned off.
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Figure 2. Results for the Shu-Osher shock tube problem computed with 200 elements. The
upper panels show the mass density at t = 1.8 for various values of the troubled-cell indicator
threshold CTCI, compared with a high-resolution (2048 elements) reference solution. In the lower
panels we show elements flagged for limiting in the xt-plane for various values of CTCI.

Figure 3. Convergence results for the
Isentropic Vortex: L∞ error norm versus
number of elements in the x1-dimension.

3.1.5. Kelvin-Helmholtz (KH) instability This hy-
drodynamic instability is of significant astrophys-
ical relevance — including during the explosion
phase of CCSNe — and may occur in the interface
separating fluids in relative motion. We compute
this problem on the unit square D = [0, 1]× [0, 1],
imposing periodic boundary conditions, and with
initial conditions and single-mode perturbations
taken from [21]. We use 2562 elements and evolve
until t = 3.0, well into the nonlinear regime. Re-
sults are displayed in Figure 4. We have computed
two models, one with CTCI = 0.06 (left panels) and
one without limiting (CTCI →∞; right panels).

Early on (t = 1.5), the results from the two runs
are practically indistinguishable, show no sign of
developing secondary billows, and agree visually
with results presented in [21]. When t = 2.4,
the run with CTCI = 0.06 has started to develop

secondary billows within the coiled-up interface separating dense (white) and less dense (black)
fluids, while the model with no limiting has not. See Figure 5 for the spatial distribution of
elements flagged for limiting at t = 2.4. When t = 3.0, these secondary instabilities appear
to have largely destroyed the coil structure for the model with limiting, while the coils remain
intact in the model without limiting (although secondary billows have started to form in this
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Figure 4. Mass density from the KH instability at various times, computed with 2562 elements:
t = 1.5 (top panels), t = 2.4 (middle panels), and t = 3.0 (bottom panels). Results for
CTCI = 0.06 and CTCI →∞ (no limiting) are shown in the left and right panels, respectively.

model at this time). As discussed in more detail by [21], the development of the secondary
billows may be an artifact of numerical perturbations and diffusion, which is delayed when the
resolution is increased. Our results are consistent with this in the sense that the less diffusive
model develops secondary billows later.

3.1.6. Liska-Wendroff implosion This test from [19] is computed on a 2D domain D =
[0, 0.3] × [0, 0.3] with reflecting boundary conditions using 2562 elements. Below the line
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x2 = 0.15− x1, we initially set U =
(
0.125,0.0, 0.35

)T
, while U =

(
1.0,0.0, 2.5

)T
elsewhere.

Figure 5. Distribution of elements flagged
for limiting in the KH test at t = 2.4.

Results for t = 0.045 and t = 2.5, with CTCI =
0.6, are displayed in Figure 6 (left and right panels,
respectively), which agree qualitatively with [19],
who compared the results of eight different schemes
for this problem. When t = 0.045, a shock wave
propagates towards the origin of D, while a contact
discontinuity is trailing the shock (cf. density
contours), and a rarefaction wave is spreading in
the opposite directions. When t = 2.5, a complex
flow pattern with multiple shocks has emerged due
to multiple reflections off the boundaries. The
initial symmetry about the x1 = x2 diagonal is
maintained, and the results from thornado agree
qualitatively with the unsplit schemes in [19]. In
the right panel of Figure 6, the chatacteristic “jet”
has formed and propagates along the diagonal,
similar to that displayed by CLAW and WENO
in [19].

3.1.7. Liska-Wendroff explosion This test, also from [19], is computed on the domain D =
[0, 1.5] × [0, 1.5] with reflecting inner boundaries and outflow outer boundaries using 2562

elements. Inside the radius r =
√
(x1)2 + (x2)2 = 0.4, we initially set U =

(
1.0,0.0, 2.5

)T
, while

U =
(
0.125,0.0, 0.25

)T
elsewhere. We did not apply any smoothing to the initial discontinuity.

Results for t = 3.2, obtained with CTCI = 0.1, are displayed in Figure 7, which agree
qualitatively with results in [19]. Initially, this test is similar to the Sod shock tube in cylindrical
geometry: a shock and a contact discontinuity propagate in the positive radial direction,
while a rarefaction wave propagates toward the origin. Later, the initial shock leaves the
computational domain, while an instability (resembling Richtmeyr-Meshkov) develops in the
contact discontinuity. A second shock emerges from the origin of the computational domain and
runs through the contact discontinuity, which has developed a complex structure (see density
contours in Figure 7). The second shock is located around r = 1.2 at t = 3.2. In the right panel

Figure 6. Plots for the Liska-Wendroff implosion problem at t = 0.045 (left) and t = 2.5 (right),
intended to match Figures 4.10 and 4.11 in [19]. The color map shows the pressure distribution,
black contours show the mass density, while arrows indicate the velocity.
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we plot the distribution of elements flagged for limiting by the troubled-cell indicator at t = 3.2.
Limiting is mainly focused on elements around the shock and the contact discontinuity.

Figure 7. Plots for the Liska-Wendroff Explosion problem at t = 3.2. In the left panel,
intended to match panels in Figure 4.12 in [19], the color map shows the pressure distribution,
black contours show the mass density, while arrows indicate the velocity. In the right panel we
plot the distribution of elements flagged for limiting t = 3.2.

3.1.8. Standing accretion shock (SAS) This test is of immediate relevance to simulation of
CCSNe. The initial conditions, described in detail in [3], have been used by many to study the
standing accretion shock instability (SASI) and CCSN explosion dynamics. We follow closely
the description in [3] to initialize this test. We use spherical polar coordinates, let D = [0.2, 2.0],
and Γ = 4/3. The gravitational potential is given by the point-mass formula with GM = 0.5.
A stationary shock is placed at a radius RSh = 1. Ahead of the shock, the flow is essentially
in free-fall towards the shock with a constant Mach number of 100. The mass accretion rate is
held fixed at the outer boundary to Ṁ = 4π. Below the shock, r ∈ [0.2, 1], the settling solution
is obtained by solving Bernoulli’s equation. Matter flows through the inner boundary, and the
density and pressure in boundary elements are set by extrapolating from D assuming ρ ∝ r−3

and E ∝ r−4, while the momentum components are held fixed to their initial values.
We use 256 elements and run the tests until t = 100 (> 5 dynamical times [3]). Results are

shown in Figure 8. In the first test we show results from an unperturbed run to gauge the ability
of the DG method to maintain the initial state. In the upper left panel we compare the initial
state (dashed lines) with the solution at t = 100. Except for a slight shift (∼ 1%) in the position
of the shock, the initial and final states are indistinguishable on the plot. Also, there are no
oscillations visible in the numerical results. In the upper right panel we show elements flagged
for limiting in the rt-plane (we set CTCI = 0.03 in this run), which illustrates how limiting is
confined to the shock. In the second test we placed a shell with thickness 0.2 and density three
times higher than the ambient density ahead of the shock to induce a strong radial perturbation
(similar to [3]; see their Figure 4). The initial condition is stable against radial perturbations.
In the lower panel in Figure 8 we plot the pressure deviation below the shock, defined as

δp = (p− p̄)/p̄, where p̄ = p0(r0/r)
4, (16)

and p0 and r0 are the pressure and radius at the inner boundary. As the shell falls through the
shock, the strong perturbation results in an interesting pattern of waves propagating inside the
shocked cavity, and oscillations of the shock position. The configuration eventually settles down
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Figure 8. Results from the SAS test using 256 elements. In the upper left panel we plot the
mass density (blue) and velocity (red) versus radius for the initial condition (dashed lines) and
for t = 100 (solid lines) from an unperturbed run. In the upper right panel we show elements
flagged for limiting in the rt-plane. In the bottom panel we show results from a perturbed
model, where we plot the relative deviation of the pressure below the shock; cf. Eq. (16).

to a configuration that is close to the initial condition (although the position of the shock is
slightly larger than that of the initial state.)

3.1.9. Yahil-Lattimer collapse The final test of the NR hydrodynamics in thornado involves
self-gravity and is due to [41, 42]. It models the self-similar collapse of a polytropic star;
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i.e., p = κρΓ, where κ is the polytropic constant. This test is also of immediate relevance to
CCSN simulations. In [41, 42], self-similar solutions to the gravitational collapse problem were
constructed for 6/5 ≤ Γ < 4/3. The solutions smoothly connect an homologously collapsing
subsonic inner core (velocity proportional to radius) to a supersonically collapsing outer core
in near free-fall (u ∝ r−1/2). With two dimensional parameters in the model (the gravitational

Figure 9. Results from the Yahil-Lattimer collapse test using 256 elements. Results
obtained with thornado (dashed black) are compared with the reference solution from Yahil
[42] (solid red). The mass density (left panel) and velocity (right panel) are plotted versus
radius. We compare the solutions at select central densities during collapse, approximately
[1010, 1011, 1012, 1013, 1014] g cm−3, which correspond to (−t) = [51.0, 15.0, 5.0, 1.5, 0.5] ms.

constant G and the polytropic constant κ), the dimensionless similarity variable is

X = κ−1/2G(Γ−1)/2 r (−t)Γ−2, (17)

where the origin of time is the moment of infinite central density. All the hydrodynamic variables
can be expressed as a function of X, and the time-dependent Euler equations can be recast as a
system of ODEs (see [42] for details). To construct a reference to compare with our numerical
results we have solved the ODEs given in [42] to obtain these self-similar solutions.

We show results for a model with Γ = 1.30. We use spherical polar coordinates, and let
D = [0, 1× 105] km, which is covered with 256 elements. The Newtonian gravitational potential
is obtained by solving Poisson’s equation using a third-order accurate continuous finite element
method (e.g., [4]). We use a geometric grid to resolve the mass distribution as the star collapses
and the central density increases from about 109 g cm−3 to about 1014 g cm−3. The size of
the innermost element is set to 1 km while the size of the last element is about 3 × 103 km.
We specify the polytropic constant by setting a reference pressure p = 6 × 1027 erg cm−3 for
ρ = 7× 109 g cm−3 (reasonable values for a massive star in the pre-collapse stage). We also set
the collapse time to (−t) = 150 ms. Results comparing the mass density and velocity of Yahil’s
reference solution to those obtained with thornado using CTCI = 0.03 are plotted in Figure 9.
The agreement of the mass density and velocity profiles is excellent throughout collapse.

3.2. Special relativistic (SR) hydrodynamics
Here we show results from solving the SR Euler equations in Cartesian coordinates with
thornado. In this case the state, flux, and source vectors in Eq. (1) are

U =
(
ρW, ρhW 2uj , τ

)T
, F i =

(
ρWui,Πi

j , ρ(hW − 1)Wui
)T
, and S = 0, (18)
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whereW is the Lorentz factor, h = 1+(e+p)/ρ is the specific enthalpy, τ = ρW (hW−1)−p, and
Πi

j = ρhW 2uiuj+pδij . To recover primitive from conserved variables we have implemented the
procedure for analytic equations of state detailed in Appendix D in [27]. We solve two Riemann
problems and compare the numerical results with exact solutions obtained with the solver from
[20]. Let the primitive state vector be V =

(
ρ,u, p

)T
. In the first problem (Riemann problem 1),

taken from [22], we use Γ = 4/3 and

V L =
(
1.0, 0.9, 0.0, 0.0, 1.0

)T
and V R =

(
1.0, 0.0, 0.0, 0.0, 10.0

)T
,

while in the second problem (Riemann problem 2), also from [22], we use Γ = 5/3, and let

V L =
(
1.0,0.0, 103

)T
and V R =

(
1.0,0.0, 10−2

)T
.

In both problems, the computational domain is D = [0, 1], the discontinuity is initially located
at x1 = 0.5, and the solutions are integrated to t = 0.4. Results are plotted in Figure 10.

Figure 10. Results from solving the SR Euler equations with thornado. Riemann problem 1
(left panels) was solved using 100 elements, while Riemann problem 2 (right panels) was solved
using 400 elements. The numerical and exact solutions are plotted with plusses and solid lines,
respectively. In the lower panels we plot xt-plane locations of elements flagged for limiting

Again, the main features of the exact solution are captured with the DG method implemented
in thornado. For Riemann problem 1, we observe some oscillations in the density profile
between the leftmost shock and the contact discontinuity located around x1 = 0.6. For Riemann
problem 2, the maximum density in the thin density shell between the shock and the contact
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discontinuity is significantly lower for the numerical solution than the exact solution. This is
due to a combination of limited spatial resolution and the action of the slope limiter. We used
CTCI = 0.03 in both tests in this section, and we plot locations in the xt-plane of elements
flagged for limiting in Figure 10. The troubled-cell indicator tracks the discontinuities well for
both Riemann problems. We have found the agreement with the exact solution to improve for
larger values of CTCI, but at the expense of somewhat more oscillatory results.

4. Summary and outlook
We have presented preliminary algorithm details and numerical results for solvers of the non-
relativistic and special relativistic Euler equations of gas dynamics as implemented in the toolkit
for high-order neutrino-radiation hydrodynamics (thornado). The spatial discretization is
based on the DG method and the ODEs resulting from this discretization are integrated in time
using SSP-RK methods. We employ a spectral-type nodal collocation DG approximation based
on Legendre-Gauss points for interpolation and numerical quadrature evaluation [2]. This choice
simplifies expressions for the semi-discretized equations, especially when applied to problems
involving curvilinear coordinates encoded in a metric (e.g., in numerical relativity). Results
from a suite of tests in one and two spatial dimensions — including problems with strong shocks
— demonstrate reliable performance of the implementation. The accuracy of thornado on three
shock tests (Sod shock tube [34], Sedov-Taylor blast wave [29], and Shu-Osher shock tube [31]) is
qualitatively similar to that of the well-established CCSN simulation code Chimera [5], which
is based on the PPM finite volume method [8]. Two tests in spherical symmetry (standing
accretion shock [3] and Yahil-Lattimer collapse [41, 42]) demonstrate the DG method’s ability
to handle conditions relevant to CCSN simulations. We will present a more in-depth analysis of
the performance of thornado on these (and related) problems in a future study.

The performance of the DG algorithm is sensitive to limiting of the polynomial representation.
The combination of a TVD-type limiter (e.g., [6]) and the troubled-cell indicator of [12] seems to
give satisfactory results for a range of problems. However, in our experience, the optimal value
for the indicator threshold CTCI seems to vary with the specific problem, and further investigation
is needed to determine if there exists an optimal value suitable for CCSN simulations. Along
these lines of investigation, it would also be interesting to explore and compare the use of the a
posteriori subcell limiting approach in [9, 11] with our current approach.

Ongoing and planned near-future work within thornado include coupling to solvers for two-
moment neutrino transport, extensions to accommodate nuclear equations of state, general
relativity within the conformal flatness approximation, and deployment within an adaptive mesh
refinement framework. We hope to report on progress in these directions in the near future.
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