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Abstract
We propose a new scheme to prepare macroscopic entanglement between two rotating mirrors
using dissipative atomic reservoir in a double-Laguerre–Gaussian-cavity system. The two-level
atomic system driven by a strong field, acts as a single pathway of Bogoliubov dissipation to push
the two original cavity modes into the desirable entangled state under the near-resonant
conditions. Successively, the photon–photon entanglement can be transferred to mirror–mirror
entanglement through the exchange of orbital angular momentum. In essence, the macroscopic
entanglement is originated from the dissipative atomic reservoir rather than the radiation torque,
thereby it is usually robust against environmental noises. The present scheme provides a feasible
way to realize stable entanglement between spatially separated mirrors with high capacity, which
may find potential applications in remote quantum communications.

1. Introduction

In recent years, the interaction between structured light beams and matter has been paid continuous
attention in quantum optics and quantum information. Particularly, the Laguerre–Gaussian (LG) beam, as a
typical type of structured light, can be obtained by solving the paraxial wave equation in cylindrical
coordinates, possessing a helical wavefront and a doughnut-shaped intensity distribution with a hollow at
the beam center [1, 2]. The LG beam usually carries an orbital angular momentum (OAM) of lℏ per photon
with its phase of eilϕ, where l is topological charge value and ϕ represents azimuthal angle [3]. In experiment,
the typical methods to generate LG light are spatial light modulators [4, 5], spiral phase plate or mirror [6, 7]
and computer-generated holograms [8, 9]. It is demonstrated that the topological charge value l can reach as
high as 1000 by using the spiral phase plate [10]. Interestingly, the LG beams can exert a torque on objects
due to the exchange of OAM [11–13], with which it is possible to trap and cool the rotational mirrors [14].
So far, a large number of quantum optics phenomena have been reported based on the interaction of LG
light with matter, including the vortex light information storage [15], quantum memory [16], spatially
dependent electromagnetically induced transparency [17], transfer of optical vortices via the multi-wave
mixing [18–21], optomechanical induced transparency [22], ground-state cooling [23], the detection of
OAM [24], the generation of higher order sideband [25, 26], and the high-dimensional quantum
entanglement [27–34] etc.

On the other hand, the macroscopic entanglement is of great importance both in verifying the
fundamental quantum theory [35] and realizing realistic applications such as remote quantum
communication, reliable quantum computation, precision measurement and quantum sensing [36, 37] etc.
In experiment, the entanglement between two macroscopic objects is demonstrated by engineering the
dissipation with laser and magnetic fields [38]. The mechanical resonator at the micrometer scale, an ideal
candidate for investigating macroscopic entanglement, has attracted much attention in last years because it
locates at the interface of the quantum-to-classical transition [39–44]. It is explored that the macroscopic
oscillators can be entangled by using the radiation pressure, behind which both the parametric interaction
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and beam splitter interaction are hidden [45]. Successively, various literatures focus on the methods to
entangle two massive, movable cavity mirrors at steady state [46–49]. As a profitable model, the bipartite and
multipartite entanglement between mirrors and cavity modes are also acquired under the effect of radiation
pressure force [50, 51]. Interestingly, it provides a useful way to control the macroscopic entanglement by
atomic coherence effects [52–56], in which the parametric interaction between mechanical oscillators is
established by the coherence-controlled evolution processes. A lot of recent studies show that the hybrid
quantum systems have developed an extensive platform to generate macroscopic entanglement between
distant objects [57–60], which may find potential applications in remote quantum communications.

Notably, in a rotational optomechanical system, Bhattacharya opens up fascinating possibilities, in their
pioneering works, to entangle a LG cavity mode and a rotating mirror [61], or generate entanglement
between the rovibrational modes of a macroscopic mirror using radiation pressure [62]. Motivated by this
device, Chen et al report the macroscopic entanglement between two rotating mirrors through the exchange
of OAM with the same LG cavity [63]. Later, by placing a yttrium iron garnet (YIG) sphere into the LG
cavity, the tripartite entanglement are generated between cavity mode, mirror and magnon [64]. While the
YIG sphere is replaced by a two-level atomic ensemble, the cavity–mirror entanglement and quantum
coherence are enhanced by choosing suitable parameters [65], which is attributed to the fact that the effective
coupling of the parametric interaction is enhanced by injecting the atoms. Nevertheless, the quantum
coherence would be spoiled when the large detuning limit is not satisfied. In addition, they point out that the
quantum coherence are also significantly suppressed by the large atomic decay.

In this paper, we present a different way to establish macroscopic entanglement between two spatially
separate rotating mirror via a single pathway of Bogoliubov dissipation. The main results we find in the
present scheme are listed as follows. First, in dressed-state picture, it is seen that the two original modes
constitute a pair of Bogoliubov modes, one of which mediates into the interaction while the other ‘dark
mode’ is decoupled with the system. When the dissipation process is dominant over the amplification
process, the Bogoliubov mode would evolve into a squeezed vacuum state, causing the generation of
entanglement. This entangled state is successively transferred to two rotating mirrors via the beam splitter
interaction. Obviously, the macroscopic entanglement is essentially originated from dissipation rather than
radiation torque. Second, we find that the optimal macroscopic entanglement can be obtained when the
driving field is nearly resonant with the atomic transition. There exists two extreme cases where the
entanglement is vanished. At the exact resonant condition, the entanglement disappears since the dissipation
rate is negligible when the dressed-state populations are identical. For the large detuning cases, the
entanglement is also significantly suppressed due to the reduction squeezing parameter. Therefore, the best
entanglement is obtained at an appropriate value of driving detuning. Third, we note that the macroscopic
entanglement can be obtained when the damping rates of the atoms are much larger than the cavity losses,
i.e. γ ≫ κ. As a result, the atomic system can be viewed as a reservoir and the treatment of adiabatically
eliminating atomic variables is valid. We extract the atomic contribution of the dissipative reservoir effects
clearly and the quantum noises from atoms are included to calculate the quantum entanglement. Our results
explore that the atomic damping rates have positive effects on macroscopic entanglement, which is
completely different from the schemes in [65]. Finally, comparing with previous schemes [61–65], the
macroscopic entanglement can be simply controlled by the strength and detuning of the driving field on
atoms, which may provide conveniences for experimental implement.

The remaining part of the present paper is organized as follows. In section 2, we describe the system
model of the double-Laguerre–Gaussian-cavity (DLGC) system. The master equation and
Heisenberg–Langevin equations for the cavity modes and rotating mirrors are derived. In section 3 we
present the physical mechanisms and discuss the numerical results of the remote mirror–mirror
entanglement with two different methods. Finally, the conclusion is given in section 4.

2. Model and equations

The rotational DLGC system under consideration is presented in figure 1(a), in which the system consists of
two fixed mirrors (FM1,2) and two rotational mirrors (RM1,2). We consider that a two-level atomic ensemble
is placed at the cross site of the two cavities. The RMmirrors are mounted on the support points S1,2 and can
rotate around the axis Z1,2, respectively. Without loss of generality, we assume that the fixed mirrors FM1,2

are partially transparent while RM1,2 have perfect reflection. When the LG beams G1,2 with 0 charge are
incident on FM1,2, we only consider the transmitted beams with unchanged 0 charge since the reflected
components do not interact with the atomic ensemble. The two 0 charge beams reflected from the RM1,2 can
get charged to+2l1,2. It has been explored in experiment that LG beams can exert a torque on microscopic
particles, in which the optical vortices are generated [13]. In addition, Bhattacharya and Meystre et al use
OAM transfer from a LG beam to trap and cool the rotational motion of a macroscopic mirror made of a
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Figure 1. (a) Schematic diagram of DLGC system. The system consists of two fixed mirrors (FM1,2) and two rotating mirrors
(RM1,2). A two-level atomic ensemble driven by strong fieldΩ is placed at the intersection of the two cavities. The RMmirrors
are mounted on the support points S1,2 and can rotate around the axis Z1,2, respectively. We assume that the fixed mirrors FM1,2

are partially transparent while RM1,2 have perfect reflection. (b) The energy level structure of the two-level atomic system, in
whichΩ is the Rabi frequency and∆ represents the atomic detuning. The two cavity fields denoted by annihilation operators a1,2
couple to the common atomic transition with different cavity detunings. For∆> 0, the original modes a1,2 are resonant with the
Rabi sidebands and they constitute a Bogoliubov mode c1 to mediate into the interaction. In the other case of∆< 0, c1 is
replaced by the other Bogoliubov mode c2 to interact with the atomic system.

perfectly reflecting spiral phase element [14]. Assuming both RMs have the same massm and radius r0, their
moments of inertia about the axis Z1,2 passing through the center are I1,2 =mr20/2. The RM1,2 oscillate like
two pendulums with angular frequencies ωϕ1,2 . Notably, the RM1,2 act as two harmonic oscillators for the
angular deviations ϕ1,2 ≪ 2π and they have the equilibrium position ϕ10,20 = 0. Apart from the internal spin
angular moment (≪ ℏ), photons in LG beams carry integral OAM numbers ℏl1,2, respectively [2]. Therefore,
when the LG beams are incident on the cavity, they can transfer torques ℏξϕj = cljℏ/Lj( j= 1,2) per photon
to the RM1,2, in which c represents the velocity of light and L1,2 are the length of the two cavities. Then the
mechanical effects of the LG beams interacting with the macroscopic rotating mirrors should be considered.
The Hamiltonians of the DLGC system plus the atomic ensemble are written as (ℏ= 1)

H0 = ω21σ22 −
Ω

2
(σ12e

iω0t +σ21e
−iω0t), (1)

H1 =
2∑

j=1

[
νja

†
j aj +(gjajσ21 + gja

†
j σ12)

]
, (2)

H2 =
2∑

j=1

[
L2zj
2Ij

+
1

2
Ijω

2
ϕj
ϕ2
j − ξϕja

†
j ajϕj + i(εja

†
j e

−iωLj − ε∗j aje
iωLj )

]
, (3)

wherein H0 represents the system Hamiltonian for the two-level atoms driven by a strong field with
frequency ω0 and Rabi frequency Ω. The atomic transition frequency is denoted by ω21.
σlm =

∑N
µ=1 |lµ⟩⟨mµ|(l,m= 1,2) are the projection operators of N independent atoms for l=m and the flip

operators for l ̸=m. H1 describes the free Hamiltonian of the two cavity modes plus the interaction
Hamiltonian between the atoms and cavity modes with coupling constants gj( j= 1,2). aj(a

†
j ) are the

annihilation (creation) operators for the two cavity modes with the frequencies ν j. H2 denotes the free
Hamiltonians of the two rotational cavity mirrors, the interaction between the cavity modes and two rotating
mirrors, the driving Hamiltonian to the cavity modes by the external laser fields with frequencies ωLj and the

amplitudes of |εj|=
√
2Pjκj/ℏωLj , wherein κj are the cavity damping rates and Pj input power of the laser.
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Lzj are the angular momentum of RM about the axis with the commutation relation [Lzj , ϕk]=
−iℏδjk( j,k= 1,2). According to [14], we can define

ϕj =

√
ℏ

2Ijωϕj

(b†j + bj), (4)

Lzj = i

√
ℏIjωϕj

2
(b†j − bj),

in which the annihilation and creation operators for the rotating mirrors are denoted by bj and b†j ,
respectively. Substituting the above expression into equation (3), making a unitary transform with
U=exp(−iH

′
t) and H

′
= ω0(a

†
1a1 + a†2a2 +σ22), we can rewrite the Hamiltonian H0 and H1 as

H̃0 =∆σ22 −
Ω

2
(σ12 +σ21), (5)

H̃1 =
2∑

j=1

[∆cja
†
j aj +(gjajσ21 + gja

†
j σ12)], (6)

H̃2 =
2∑

j=1

[ωϕjb
†
j bj −Gja

†
j aj(b

†
j + bj)+ iεj(a

†
j e

−iδjt − aje
iδjt)], (7)

where∆cj = νj −ω0,∆= ω21 −ω0, δj = ωLj −ω0 are cavity detunings, atomic detunings and driving

detunings, respectively. The coupling parameters Gj are defined as Gj =
clj
Lj

√
ℏ

2Iωϕj
( j= 1,2).

The atomic relaxation, the cavity losses and the intrinsic damping rates of rotating mirrors are taken the
forms as

Laρ=
γ

2
(2σ12ρσ21 −σ21σ12ρ− ρσ21σ12), (8)

Lcρ=
∑
j=1,2

κj

2
(2ajρa

†
j − ρa†j aj − a†j ajρ), (9)

Lbρ=
∑
j=1,2

γϕj

2
(2bjρb

†
j − ρb†j bj − b†j bjρ). (10)

To obtain the reduced master equation of cavity modes, as proposed in [66], we resort to the dressed
atomic picture by diagonalizing the Hamiltonian H̃0 under the conditions of |Ω| ≫ γ,κj,gj. The dressed
atomic states are expressed in terms of bare states as [67]

|1̃⟩= cosθ|1⟩− sinθ|2⟩, (11)

|2̃⟩= sinθ|1⟩+ cosθ|2⟩,

in which cosθ =
√

1
2 +

d
2
√
1+d2

and sinθ =
√

1
2 −

d
2
√
1+d2

with normalized detuning d= ∆
Ω . The dressed

states |1̃⟩ and |2̃⟩ have their eigenvalues λ1,2 =
1
2 (∆∓ Ω̃) with Ω̃ =

√
∆2 +Ω2, respectively. Now the system

Hamiltonian of H̃0 is rewritten in the dressed-state picture as Hd =
∑

jλjσ̃j̃j( j= 1,2). By transforming the
bare atomic relaxation term (8) into the dressed-state picture and neglecting the quantized mods
temporarily, the steady-state populations of the dressed states Nj = ⟨σ̃j̃j⟩( j= 1,2) are obtained as

N1 =
Ncos4 θ

cos4 θ+ sin4 θ
, N2 =

N sin4 θ

cos4 θ+ sin4 θ
. (12)

Clearly, for∆= 0, we have sinθ = cosθ = 1
2 and N1 = N2 =

N
2 , namely, the populations of the two dressed

states are identical at the exact resonant condition. For∆ ̸= 0, we have N1 > N2 (or N1 < N2) when∆> 0
(or∆< 0). The equilibrium is broken and then the dissipative atomic reservoir effect is possible [68].
Making a further unitary transformation with U

′
= exp(−iHdt) on the Hamiltonian H̃1, the effective

Hamiltonian is derived as

Heff = (g1 cos
2 θa1 − g2 sin

2 θa†2)σ2̃1̃ +H.c., (13)
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in which we take the conditions of∆c1 =−∆c2 = Ω̃, i.e. the cavities are tuned to be resonant with the Rabi
sidebands. If the cavity detunings are tuned to be comparable to or larger than the level spacing Ω̃, the
effective Hamiltonian is no longer valid. Under the good-cavity limit of γ ≫ κj(j= 1,2), the atomic variable
can be adiabatically eliminated using the standard quantum optics techniques [69, 70]

ρ̇c =−iTra[Heff,ρc] +Lcρc. (14)

Finally, the reduced master equation of the cavity modes takes the form

ρ̇c = A1(a1ρca
†
1 − ρca

†
1a1)+A2(a2ρca

†
2 − ρca

†
2a2) (15)

+B1(a
†
1ρca1 − ρca1a

†
1)+B2(a

†
2ρca2 − ρca2a

†
2)

−C1(a1ρca2 − ρca2a1)−C2(a2ρca1 − ρca1a2)

−C1(a
†
2ρca

†
1 − ρca

†
1a

†
2)−C2(a

†
1ρca

†
2 − ρca

†
1a

†
2)+H.c.,

where the parameters are Aj = (nj + 1)κj +Njξj, Bj = njκj +N3−jξj, and Cj = Nj
√
ξ1ξ2 (j= 1,2) with the

coefficients ξ1 = 2g21 cos
4 θ/(γ+ γc), ξ2 = 2g22 sin

4 θ/(γ+ γc), γc = γ sin2 2θ/2. Here nj represent the mean
thermal photon number of the cavities.

In present scheme, we focus on investigating macroscopic entanglement between two rotating mirrors.
To do so, we make use of reduced master equation (15) and the Hamiltonian H̃2 to obtain the dynamics
equation as

ȧ1 =−(κa1 − iω1)a1 +χa†2 + ε1e
−iδ1t + F1,

ȧ2 =−(κa2 − iω2)a2 −χa†1 + ε2e
−iδ2t + F2, (16)

ḃj =−(γϕj + iωϕj)bj + iGja
†
j aj +

√
2γϕjFbj .

For simplicity, we define κa1 = κ1 − (N2 −N1)ξ1, κa2 = κ2 +(N2 −N1)ξ2, ωj = Gj⟨bj + b†j ⟩( j= 1,2),
χ= C1 −C2. Fj are noise operators including the cavity losses and the atomic contribution part. Fbj
represent the mechanical noise operators coupling to the rotating mirrors from the thermal environment.
Without loss of generality, we have vanishing mean ⟨Fx(t)⟩= 0 and the nonzero second order correlation
terms ⟨Fx(t)Fy(t ′)⟩= 2Dxyδ(t− t ′) as

⟨Fj(t)F†j (t
′)⟩= 2Ajδ(t− t ′), ⟨F†j (t)Fj(t

′)⟩= 2Bjδ(t− t ′), (17)

⟨F1(t)F2(t ′)⟩= 2C1δ(t− t ′), ⟨F2(t)F1(t ′)⟩= 2C2δ(t− t ′),

⟨F†bj(t
′)Fbj(t)⟩= nϕjδ(t− t ′), ⟨Fbj(t)F

†
bj
(t ′)⟩= (nϕj + 1)δ(t− t ′),

wherein nϕj = [exp
ℏωϕj

/kBTj
− 1]−1 is the mean occupation number, kB is the Boltzmann constant and T j the

environmental temperature of the mechanical resonator.
According to equation (16), by defining aj = ãje−iδjt, we can neglect the the highly oscillating terms for

δ1 + δ2 ≫ 1 and then the steady-state solutions for ⟨ãj⟩ and ⟨bj⟩ are derived as

⟨ãj⟩=
εj

κaj − i(δj +ωj)
,

⟨bj⟩=
(ωϕj + iγϕj)Gj

γ2
ϕj
+ω2

ϕj

⟨a†j aj⟩. (18)

The equation for the intracavity mean photon numbers is given by

Iaj [κ
2
aj +(δj + ηjIaj)

2] = |εj|2, (19)

in which we define ηj = 2ωϕjGj/(γ
2
ϕj
+ω2

ϕj
), Iaj = ⟨a†j aj⟩= ⟨ã†j ãj⟩. It is clear that the two rotating mirrors will

exhibit optical bistable behavior and experience strong nonlinearities, which can be controlled by the
detuning and strength of the driving field on atoms.

To explore the macroscopic entanglement between two rotating mirrors, we can linearize the
equation (16) around the semiclassical state corresponding to a working point in the stable range, i.e.
ô= ⟨ôs⟩+ δô. The steady state solutions ⟨ôs⟩ are given in equation (18) and δô represents the quantum
fluctuation around the mean value. Furthermore, we introduce the slowly varying fluctuation operators
δaj = δãje−iδjt and bj = b̃je

−iωϕj
t. By dropping the high-frequency oscillating terms exp[−i(δ1 + δ2)t] at

5



New J. Phys. 24 (2023) 123044 F Wang et al

δj = ωϕj , the corresponding linear quantum Langevin equations for the quantum fluctuations are obtained
as

δȧ1 =−(κa1 − iω1)δa1 +χδa†2 + ĩg1δb̃1 + F1, (20)

δȧ2 =−(κa2 − iω2)δa2 −χδa†1 + ĩg2δb̃2 + F2,

δ
˙̃bj =−γϕjδb̃j + ĩg∗j δaj + F̃bj ,

wherein F̃bj =
√
2γϕjFbje

iωϕj
t, g̃j = Gj⟨ãj⟩( j= 1,2). Then the quantum entanglement between the two

mirrors can be calculated and discussed according to the above equations, which will be presented in the
following section.

3. Analysis and discussion

In this section, we would like to elucidate the mechanism for the generation of rotational optomechanical
entanglement. Next, the numerical results of mirror–mirror entanglement are presented by nonadiabatical
eliminating and adiabatical eliminating of cavities, respectively. The possible experimental parameters are
briefly discussed in the last subsection.

3.1. Physical mechanism analysis
3.1.1. Dissipation of cavity fields in light of Bogoliubov modes
In order to describe the internal mechanisms for the generation of quantum entanglement more clearly, we
define a pair of Bogoliubov modes in equation (13) for the cavity fields: c1 = a1 cosh r− a†2 sinh r,
c2 = a2 cosh r− a†1 sinh r with the squeezing parameter tanh r= tan2 θ for∆> 0 and tanh r= cot2 θ for
∆< 0. The interaction between the dressed atoms and the Bogoliubov mode is shown in figure 1(b).
Correspondingly, the system Hamiltonian of equation (13) is simply rewritten as

H̃eff = Geff(c1σ2̃1̃ +σ1̃2̃c
†
1) for ∆> 0, (21)

H̃eff =−Geff(c
†
2σ2̃1̃ +σ1̃2̃c2) for ∆< 0,

where the effective coupling constant Geff = g
√
|cos2θ| by assuming g1 = g2 = g. Note that only the

collective mode c1 (or c2) mediates into the interaction while the other mode c2 (or c1) is decoupled with the
system for the two cases. This is termed as a single pathway of Bogoliubov dissipation, which can lead to the
occurrence of quantum entanglement [66, 68]. Under the adiabatic elimination conditions of γ ≫ κ1,2, we
can obtain the atomic contribution part of the reduced master equation for the Bogoliubov mode c1,2 as

ρ̇c1 =A1(2c1ρc
†
1 − c†1c1ρ− ρc†1c1)+B1(2c

†
1ρc1 − c1c

†
1ρ− ρc1c

†
1) for ∆> 0, (22)

ρ̇c2 =A2(2c2ρc
†
2 − c†2c2ρ− ρc†2c2)+B2(2c

†
2ρc2 − c2c

†
2ρ− ρc2c

†
2) for ∆< 0,

in whichA1 = B2 = 2G2
effN1/Γ andA2 = B1 = 2G2

effN2/Γ with Γ = γ
2 +

γ
4 sin

2 2θ. It is seen that theA terms
represent the dissipation and the B terms denote the excitation of Bogouliubov modes, respectively. When
dissipation rateR=A−B ≫ κ, the Bogoliubov mode c1 (or c2) will evolve into the squeezed vacuum state
while the other mode c2 (or c1) is decoupled with the system. Generally, the larger the dissipation rate is, the
stronger the entanglement will be. For∆= 0, we have N1 = N2 andR= 0, leading to the absence of
quantum entanglement, which is verified by the following numerical calculations. However, when the
normalized detuning d deviates slightly away from the resonant conditions, we haveR≫ κ in the positive
(∆> 0) and negative frequency regions (∆< 0) due to N1 ̸= N2, thus resulting in the appearance of
entanglement. For example, at d= 0.3, we have N1/N= 0.77, N2/N= 0.23 andR= 1.7γ ≫ κ, meaning
that the adiabatical elimination of atomic variables and the single-pathway dissipation of Bogoliubov are
valid. On the other hand, the entanglement is simultaneously determined by the squeezing parameter r.
When d is increased, the squeezing parameter r is inversely decreased accompanying by the increasing of the
dissipation rateR. For example, the squeezing parameter (tanh r= tan2 θ) is r= 1.15 at d= 0.1, r= 0.41 at
d= 0.5, and r= 0.17 at d= 1. As a consequence, the best entanglement appears at the near-resonant
conditions when the dissipation rate and the squeezing parameter r have a compatible value.

3.1.2. Entangled state transfer from cavity fields to rotating mirrors
Next, we would like to clarify the frequency arrangement of the present system. As shown in figure 2(a), on
the one hand, the cavity fields a1,2 are tuned to be resonant with the sidebands, i.e. νj = ω0 ± Ω̃. For the
cavity detunings∆c1 =−∆c1 = Ω̃, we have νj −∆cj = ω0. On the other hand, it is seen that the frequencies
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Figure 2. (a) The demonstration of frequency arrangement for the cavity modes, rotating mirrors and driving fields. It is seen that
the frequencies for the drive fields satisfy the relations of ωLj −ωϕj

= ω0. The two cavity modes are tuned to be resonant with the

red sideband and blue sideband νj = ω± Ω̃, respectively. (b) Schematic demonstration for the rotating mirror-mirror
entanglement in the case of∆> 0. The two original modes a1,2 constitute a pair of Bogoliubov modes c1,2 to mediate into the
interaction with dressed atoms. For∆< 0, the collective mode c1 is replaced by c2 as shown in equation (21). When the
dissipation coefficient is larger than the gain coefficient,A> B, the collective mode c1 will evolve into a squeezed vacuum state
while the mode c2 (not shown) is decoupled with the system, giving rise to the entanglement between two modes a1,2.
Successively, the entangled state is transferred to the macroscopic mirrors via transfer and cooling processes at δj = ωϕj

( j= 1,2).

of the rotating mirrors ωϕj and the frequencies of driving fields on cavities ωLj( j= 1,2) satisfy the relations
of ωLj −ωϕj = ω0. Due to the driving detunings δj = ωLj −ω0, we have the relations of δj = ωϕj , giving rise to
that the high-frequency oscillating terms exp[−i(δ1 + δ2)] in equation (20) should be dropped. Obviously,
these terms with the form of g̃j(δajδbj + δa†j δb

†
j ) describing parametric amplification are absent while the

terms of g̃j(δajδb
†
j + δa†j δbj)( j= 1,2) being responsible for quantum state transfer are existent [71]. In

addition, as shown in figure 2(b), the internal physical mechanisms for the generation of macroscopic
entanglement are depicted in detail. For∆> 0, two original modes a1,2 constitute a pair of collective modes
c1,2, in which the ‘bright mode’ c1 would dissipate into the atomic reservoir forR> 0 while the other ‘dark
mode’ c2 (not shown) is decoupled with the system. As a result, the bipartite photon–photon entanglement is
essentially established by the atomic reservoir effects and then it is transferred to two macroscopic rotating
mirrors at δj = ωϕj via the two transfer processes aj ↭ bj. Finally, it is worthwhile to point out that the
present system is completely different from the previous schemes proposed in [65]. In their works, the
two-level atomic ensemble or magnon is placed into the cavity to enhance the cavity–mirror entanglement or
to realize the tripartite entanglement based on the parametric interaction.

3.2. Rotating mirror–mirror entanglement without adiabatic elimination of cavities
In the first of place, we assume that the cavity modes are not adiabatically eliminated. To numerically
calculate the quantum correlations between the two rotating mirrors, two pairs of quadrature operators are
defined as δxj = (δaj + δa†j )/

√
2, δpj =−i(δaj − δa†j )/

√
2, δϕj = (δb̃j + δb̃†j )/

√
2, δLj =−i(δb̃j − δb̃†j )/

√
2.

Then we can write the dynamical equations of quantum fluctuations in a concise form

˙⃗u=Mu⃗(t)+ F⃗(t), (23)

where u⃗(t) = (δx1, δp1, δx2, δp2, δϕ1, δL1, δϕ2, δL2)T, F⃗(t) = (Fx1 ,Fp1 ,Fx2 ,Fp2 ,Fϕ1 ,FL1 ,Fϕ2 ,FL2)
T. The

corresponding composite noise operators are written as Fxj = (Fj + F†j )/
√
2, Fpj =−i(Fj − F†j )/

√
2,

Fϕj = (F̃bj + F̃†bj)/
√
2, FLj =−i(F̃bj − F̃†bj)/

√
2. The drift matrixM takes the form

−κa1 −ω1 χ 0 −µ1 µ2 0 0
ω1 −κa1 0 −χ µ2 −µ1 0 0
−χ 0 −κa2 −ω2 0 0 −µ3 µ4

0 χ ω2 −κa2 0 0 µ4 −µ3

−µ1 µ2 0 0 −γϕ1 0 0 0
µ2 −µ1 0 0 0 −γϕ1 0 0
0 0 −µ3 µ4 0 0 −γϕ2 0
0 0 µ4 −µ3 0 0 0 −γϕ2


, (24)

where in µ1 = Img̃1, µ2 = Reg̃1, µ3 = Img̃2, µ4 = Reg̃2. Generally, the system would be stable if the real parts
of all eigenvalues ofM are negative, which can be judged based on numerical calculation in the present
scheme [72]. Throughout this paper, we always guarantee that the system is stable via choosing appropriate
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Table 1. The possible experimental parameters.

Number Parameter Description Value

1 L Cavity length 0.245mm
2 λ Laser wavelength 810 nm
3 ωϕ1,2 Rotating mirror frequencies ∼MHz
4 m Rotating mirror mass 100 ng
5 r0 Rotating mirror radius 10µm
6 γ Spontaneous decay rate of atom 2π × 5 MHz
7 κ1,2 Decay rates of cavity modes 2π × 0.5 MHz
8 Q Quality factor of rotating mirrors 106 ∼ 107

9 g1,2 Coupling constants ∼MHz

Figure 3. The logarithmic negativity EN is plotted as a function of the normalized detuning d and the cavity quality factor Q for
l1 = l2 = 40, ωϕ1

= 2π× 1 MHz and ωϕ2
= 2π× 10 MHz. The other parameters are chosen as those in table 1.

system parameters. When the stability conditions are fulfilled, the steady-state Lyapunov equation is given
by [50]

MV+MVT =−D, (25)

in which D denotes the diffusion matrix and V is a 8× 8 covariance matrix (CM) with the matrix elements
of Vij =

1
2 [⟨ui(∞)uj(∞)⟩+ ⟨uj(∞)ui(∞)⟩]. The CM of two modes is taken the form as

V=

(
V1 V3

VT
3 V2

)
, (26)

wherein the matrix V1, V2 and V3 are the 2× 2 submatrices. The diffusion matrix D are defined as
Dijδ(t− t ′) = ⟨Fi(t)Fj(t ′)+ Fj(t ′)Fi(t)⟩/2 and the nonzero diffusion coefficients are D11 = D22 = A1 +B1,
D33 = D44 = A2 +B2, D55 = D66 = γϕ1(2nϕ1 + 1), D77 = D88 = γϕ2(2nϕ2 + 1), D13 = D31 =−D24 =
−D42 = C1 +C2.

Once the CM of the system is achieved, one can calculate the degree of the mirror-mirror entanglement.
We adopt a reliable logarithmic negativity criterion to study continuous variable quantum entanglement for
Gaussian states [73, 74]. The definition of EN is given by

EN =max [0,− ln2Λ], (27)

where Λ = 2−1/2[Σ−
√
Σ2 − 4detV]1/2 with Σ= detV1 + detV2 − 2detV3.

In the following numerical calculations, the possible experimental parameters are listed in table 1 as
proposed in [14, 61, 62]. In figure 3, the evolution of logarithmic negativity EN is plotted versus the
normalized detuning d and quality factor Q of cavities by choosing the OAM as l1 = l2 = 40. The angular
frequencies of rotating mirrors are ωϕ1 = 2π× 1 MHz and ωϕ2 = 2π× 10MHz. The cavity-atom coupling
constants are always set as g1 = g2 = 2π× 8.8MHz. It is found that the entanglement first increases to a
maximal value and then decreases slowly to zero in the positive frequency region. At this time, the
entanglement disappears in the negative frequency domain because the stability condition is not satisfied
when ωϕ1 < ωϕ2 . On the contrary, the stability condition would be satisfied in the region of d< 0 for
ωϕ1 > ωϕ2 . Specially, at d= 0, as shown in equation (22), the gain coefficients Bj are equal to the absorption
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Figure 4. The logarithmic negativity EN is plotted as a function of the angular frequency ratio rϕ for two cases: (a)l1 = l2;
(b) l1 ̸= l2; We choose the parameters as ωϕ2

= 2π× 10 MHz, d= 0.012, P1 = P2 = 100mW, Q= 1× 107 (solid line), 2× 107

(dashed line), 3× 107 (dotted line), respectively. The other parameters are chosen as those in table 1.

Figure 5. (a) The dependence of logarithmic negativity EN on the input power P1 = P2 = P by choosing different quality factor
Q1 = Q2 = 2× 106 (solid line); 4× 106 (dashed line); 6× 106 (dotted line). (b) The evolution of logarithmic negativity EN
versus input power by choosing different masses of rotating mirrorsm1 = m2 = m= 50 ng (solid line), 75 ng (dashed line),
100 ng (dotted line). The OAM is chosen as l1 = l2 = 40 and the other parameters are the same as those in table 1.

coefficientsAj( j= 1,2) for N1 = N2, yielding the disappearance of mirror–mirror entanglement together
with the single-pathway dissipation. Differently, with the increasing of normalized detuning d, the best
entanglement happens at an appropriate value of d. Besides, we notice that the entanglement is remarkably
enhanced and the entanglement region becomes wide with high quality factor Q.

In figure 4, the logarithmic negativity EN is plotted as a function of the angular frequency ratio of
rϕ = ωϕ1/ωϕ2 for two cases: (a) l1 = l2 = 40; (b) l1 = 40, l2 = 46 by choosing different quality factor
Q= 1× 107 (solid line), Q= 2× 107 (dashed line), Q= 3× 107 (dotted line), respectively. The normalized
detuning d is chosen as d= 0.012 and the input powers are P1 = P2 = 100 mW. From these figures, it is found
that the variation trend of EN is similar to that in figure 3. Notably, at rϕ = 1, the entanglement vanishes for
l1 = l2 while occurs for l1 ̸= l2, which can be attributed to that there is no exchange of total orbital angular
moment between the cavity modes and rotating mirrors since the system is totally symmetrical [63]. Such a
balance is broken for l1 ̸= l2, leading to the generation of quantum entanglement at rϕ = 1.

Next, we plot the entanglement evolution of EN versus the input power P= P1 = P2. The other
parameters are chosen as l1 = l2 = 40, ωϕ1 = 2π× 10MHz, ωϕ2 = 2π× 6MHz. In figure 5(a), logarithmic
negativity EN is plotted by choosing different quality factor Q= 2× 106 (solid line), 4× 106 (dashed line),
6× 106 (dotted line) and the influence of the rotating mirror masses on quantum entanglement is shown in
figure 5(b) by choosingm1 =m2 =m= 50 ng (solid line), 75 ng (dashed line), 100 ng (dotted line) for
Q= 2× 106, respectively. As seen from figure 5(a), we have Pth = 274mW at Q= 2× 106, Pth = 135mW at
Q= 4× 106 and Pth = 91mW at Q= 6× 106. Obviously, the larger the quality factor is, the smaller the
threshold power Pth will be. From figure 5(b), the threshold power Pth is changed from 136mW, 205mW to
271mW when the mirror masses are increased from 50 ng to 100ng, demonstrating that the macroscopic
quantum effects are modified by the system parameters including mirror massm, cavity length L and the
mirror radius r0 etc.

The density plot of logarithmic negativity EN versus the OAM l and the normalized detuning d is shown
in figure 6(a) and the two-dimensional curves are plotted in figure 6(b) by setting l= l1 = l2. The parameters
are chosen as ωϕ1 = 2π× 10MHz, ωϕ2 = 2π× 6MHz, γ = 2π× 20MHz, Q= 2× 107 and the mirror
masses are chosen asm1 =m2 = 50 ng. As shown in figure 6(a), when the absolute value of |d| is increased,
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Figure 6. The logarithmic negativity EN is plotted as a function of the OAM l1 = l2 = l and the normalized detuning d. The other
parameters are chosen as those in table 1.

Figure 7. The evolution of logarithmic negativity EN versus κ/γ by choosing different OAM numbers l= 200 (solid line), 300
(dashed line), 400 (dotted line), 500 (dash dotted line) with l1 = l2 = l, the normalized detuning d=−0.014,m= 10 ng,
Q1 = Q2 = 2× 107, r1 = r2 = 5µm. The other parameters are chosen as those in table 1.

the entanglement appears and the region for EN > 0 becomes wide. To show this characteristic more clearly,
the two-dimensional curves of the logarithmic negativity EN are plotted in figure 6(b) by choosing different
normalized detuning d. It is seen that the best entanglement appears at an appropriate value of l, which can
be used to detect topological charge value via the measurement of quantum entanglement.

Figure 7 shows the evolution of logarithmic negativity EN as a function of κ/γ by choosing different
OAM numbers of l for κ1 = κ2 = κ. It is clear that the good entanglement is obtained under the conditions
of γ ≫ κ. With the increasing of κ/γ, the values of logarithmic negativity EN are monotonously decreased to
zero at a specific value of κ/γ. By changing l from 200 to 500, the entanglement disappears at κ/γ = 0.2,
0.088, 0.05, 0.03, respectively. When the cavity losses are comparable to the atomic damping rates, the
entanglement would be vanished, which is different from the results presented in [65]. What’s more, the
effects of thermal noise on quantum entanglement are also discussed in figure 8. The parameters are the
same as those in figure 6(b) except for d=−0.014. As shown in figures 8(a) and (b), we find that the
entanglement is relatively robust against environmental noise although it becomes worse as the thermal
occupation numbers of nϕ1,2 and n1,2 increase.

3.3. Rotating mirror–mirror entanglement with adiabatic elimination of cavities
Usually, the damping rates of the rotating mirrors are much smaller than the cavity losses, i.e. γϕ ≪ κj. Then
we derive the fluctuations dynamical equations for the two rotating mirrors by adiabatically eliminating
cavities as

δ
˙̃b1 =−α1δb̃1 +β1δb̃

†
2 + F ′

b1 , (28)

δ
˙̃b2 =−α2δb̃2 −β2δb̃

†
1 + F ′

b2 ,
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Figure 8. (a) The evolution of logarithmic negativity EN versus the orbital momentum angular l by choosing different phonon
numbers of nϕ1,2 in (a) and different thermal photon numbers of n in (b). The other parameters are the same as those in
figure 6(b).

where the parameters α1 = γϕ1 − |̃g1|2(κa2 − ĩg2)/Θ∗, α2 = γϕ2 − |̃g2|2(κa1 − iω1)/Θ, β1 = β∗
2 = g̃1g̃2ξ12/Θ∗

withΘ= (κa1 − iω1)(κa2 + iω2)+ ξ212, ξ12 = ξ1 − ξ2. The noise operators are given by

F ′
b1 =−u11F

†
1 − u12F2 +

√
2γϕ1 F̃b1 (29)

F ′
b2 = u21F1 − u22F

†
2 +

√
2γϕ2 F̃b2 ,

in which we have the coefficients u11 =−ĩg1(κa2 − iω2)/Θ
∗, u12 = ĩg1ξ12/Θ∗, u21 = ĩg2ξ12/Θ and

u22 =−ĩg2(κa1 − iω1)/Θ. From the equation (28), it is seen that the parametric interaction is hidden behind
the effective Hamiltonian of the two rotating mirrors. This can be used to explain the physical origin of the
remote mirror–mirror entanglement. It is worthwhile to point out that the parametric interaction arises
from the two-photon process in dissipative atomic reservoir effects rather than the exchange of OAM.
Interestingly, as show in equation (29), we find that the dissipation effects of the present system are
determined by the following four factors: the atomic decay rate γ, the thermal noise of the mechanical
oscillators γϕj , the cavity dissipation κj and the coherent-controlled dissipative atomic reservoir effect. Being
different from the previous work [52–54], we find that the dissipative atomic reservoir plays an important
role in generating rotating mirror–mirror entanglement, which may find potential applications in remote
quantum communications.

In order to verify the validity of the adiabatic elimination approach, we follow the same procedure as in
the preceding subsection to investigate the mirror–mirror entanglement with the same criterion. The
dynamical equations of the quantum fluctuations of the rotating mirrors are written in a concise form as

˙⃗
u ′(t) =M ′u⃗ ′(t)+ F⃗ ′(t), (30)

in which the column vectors u⃗ ′(t) = (δϕ1, δL1, δϕ2, δL2)T, F⃗ ′(t) = (F ′
ϕ1
,F ′

L1 ,F
′
ϕ2
,F ′

L2)
T and the drift matrix

M
′
is derived as

M ′ =


−α11 α12 β11 β12
−α12 −α11 β12 −β11
−β22 −β21 −α22 α21

−β21 β22 −α21 −α22

 , (31)

where α11 = Reα1, α22 = Reα2, α12 = Imα1, α21 = Imα2, β11 = Reβ1, β22 = Reβ2, β12 = Imβ1 and
β21 = Imβ2. The quadrature noise operators are defined as F ′

ϕj
= (Fb ′

j
+ F†b ′

j
)/
√
2 and F ′

Lj = (Fb ′
j
− F†b ′

j
)/
√
2i.

According to Lyapunov equation, we can calculate the quantum correlations between two mirrors
numerically. Notably, the nonzero diffusion coefficients can be calculated based on equation (29). For
simplicity, the cumbersome expression of the diffusion matrix is not presented here.

In figure 9, we plot the logarithmic negativity EN versus the input power and OAM for adiabatical and
nonadiabatical elimination cases. The parameters are chosen as ωϕ1 = 2π× 10 MHz, ωϕ2 = 2π× 6 MHz,
d=−0.014, γ = 2π× 20 MHz,m1 =m2 = 50 ng, Q1 = Q2 = 2× 107, κ1 = κ2 = 2π× 0.5 MHz and the
other parameters are the same as those in table 1. It is seen that the results of adiabatical elimination cases are
in well agreement with the nonadiabatical elimination cases when the condition of γϕ ≪ κa is satisfied,
indicating that both methods are valid for calculating the quantum entanglement.
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Figure 9. (a) Plots of logarithmic negativity EN versus input power P with l1 = l2 = l= 40. (b) The evolution of logarithmic
negativity EN versus the OAM l1 = l2 = l with P1 = P2 = 100 mW for adiabatical elimination (solid line) and nonadiabatical
elimination (dashed line) cases. The parameters are chosen as ωϕ1

= 2π× 10 MHz, ωϕ2
= 2π× 6 MHz, d=−0.014,

γ = 2π× 20 MHz,m1 = m2 = 50 ng, Q1 = Q2 = 2× 107, κ1 = κ2 = 0.1γ and the other parameters are the same as those in
table 1.

3.4. Experimental implementations
Let us discuss the feasibility of the present scheme based on the current experiments. In the present scheme,
the parameters of the DLGC system are chosen as proposed in previous works [14, 26, 61, 62]: L= 0.245mm,
ωϕ1,2 are of the order MHz, r0 = 10µm,m= 100 ng, γ/2π = 5 MHz, κ1,2/2π = 0.5MHz. The cavity-atom
coupling constants g1/2π = g2/2π = g/2π = 8.8MHz [55] and we consider the atomic ensemble with
N∼ 104 atoms [75]. In experiment, the high-l LG modes can be realized via spiral phase elements and the
azimuthal structure of light can be modified via reflection or transmission from the spiral phase elements
[10]. It is demonstrated that high precision and low mass (sub-µg) of mirrors can be fabricated and the LG
beams with a topological charge value as high as 1000 [10]. With the development of nanotechnology, the
suitable spiral phase elements for the implementation of present scheme is possible to create [14, 76].
Besides, the mechanical oscillators has been experimentally reported with high quality factors (Q∼ 108), low
effective mass (m∼ 37 pg) and high frequency (a few MHz) [77], which implies that the present scheme is
feasible in experiment with current technology.

Before ending this section, we would like to emphasis the main differences between the present scheme
and previous works. In the first of place, in our work, we find that the entanglement is essentially originated
from the dissipative atomic reservoir and the transfer processes between cavity modes and mirrors. This is in
contrast with previous schemes [64, 65], wherein the hybrid entanglement happens based on the parametric
interaction under appropriate conditions, without which not only the tripartite entanglement but also the
bipartite entanglement is impossible to realize. Specifically, in [65], the two-level atoms are injected into the
cavity to enhance the cavity-mirror entanglement by choosing proper parameters rather than to prepare
entanglement. Secondly, in our work, the single-pathway dissipation rateR=A−B and the squeezing
parameter r combine to induce the mirror-mirror entanglement at the near-resonant conditions.
Consequently, the conditions to generate entanglement are also distinct from those in [65], where the
entanglement and quantum coherence are acquired, as expected, on the large detuning limit with
low-excitation atoms. In addition, since the atomic damping rate is harmful for the quantum coherence, they
consider a situation where the atomic decay rate γ is smaller than the cavity loss κ and the quantum noises of
the atomic variables are neglected. Nevertheless, in the dissipative atomic reservoir scheme, the atomic
variables are adiabatically eliminated under the condition of γ ≫ κ and the quantum noises from atoms are
useful for the generation entanglement. In other words, we provide an interesting way to utilize the atomic
noises instead of to combat them for preparing entanglement. Thirdly, being different from the
coherent-controlled evolution processes [52–56], the macroscopic entanglement arising from dissipation, in
principle, can exist for a long enough time and it is usually robust against environmental noises. Last but not
least, we explore that the optimal entanglement is acquired at a specific topological charge value of l, which
may find potential applications to detect topological charge via the measurement of the mirror–mirror
entanglement.

4. Conclusion

In summary, the macroscopic entanglement between two rotating mirrors are theoretically investigated
based on the atomic reservoir effects in a DLGC system. It is found out that the microscopic photon–photon
entanglement prepared by a single pathway of Bogoliubov dissipation can be transferred to two macroscopic
rotating mirrors at proper frequency conditions. We explore that the optimal entanglement is obtained when
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the driving field is nearly resonant with the atomic transition and the stable entanglement is possible to
obtain when the atomic decay rates are larger than the cavity losses. Finally, it turns out that two different
methods with or without adiabatically elimination of cavities to calculate the mirror–mirror entanglement
are equivalent. The present scheme provides a way to establish macroscopic entanglement between the
mirrors without direct interaction, which may be useful for the long-distance quantum communications and
quantum sensing technology.
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