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Abstract:

We show that the two-anyon system in an oscillator or-Coulomb potential has the
SU(2) or 0(3) symmetry respectively but with the restriction that only even values of the
apgular momenium m are allowed. Using these symnietries we &mmg.wzmnw:v. obtain the
bound state spectrum in both cases. Further, we also show that both om. these problems
are shape invariant and thereby offer a second method for calculating their spectrum

algebraically.
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“I. Introduction ;N/Cﬁ Ay —

Two of the most celebrated problems in quantum mechavics are the Coulomb and the
oscillator potentials. It is well known that the bound state energy eigenvalue spectruin,
in both the cases, has "accidenlal® degeneracies in any dimension n{> 2). The origin of
the momoumgom has also been well understood in termos of the symmetry group [1]. For
example in the case of the oscillator potential in 3(2) dimensions, the symmetry group

is SU(3) (SU(2)) while in the Coulomb case it is 0(4) (0(3)) respectively [1,2].

In last few years, anyons {which are objects in two space dimensions obeying statistics
interpolating between bosons and fermions) have attracted lot of attention [3]. So far
only the two-anyon quanturn spectrum can be computed analytically (and that too in few
cases), and as a result only second virlal coefficient for an anyon gas has been calculated.
Not surprisingly the problems of 2-anyous experiencing an oscillator {3} or Coulomb [4]
potential can be done analytically, and one finds lots of degeneracies in the two spectra.
It is then natural to iaquire if one can find the corresponding symmetry of the 2-anyon
problem in these two cases and fariher if one can obtain the eaergy eigenvalue specirum
using the symmeiry group alone. This is the task ihat we have undertaken in this
paper. In particular we show in SecII tbat for the problemn of 2-anyons experiencing
an 8&584 potential, one can define three generators J, (i = 1,2,3) which commute
with the Hamiltonian and which satisfy the SU(2) algebra. Similarly, for the problem
of two anyons experiencing a Coulomb potential, we show in Sec.Ill that we can define
the Runge-Lenz two-vector (Rz, Ry) which along with the angular momentum satisfy
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the 0(3) algebra. Further more, all the three generators commute with the Hamiltonian.
The nontrivial point in both the cases is that the definition of the angular momentum
operator in the presence of anyons is changed to L = (zpy — ypz) + fia. It may be noted
that the eigenvalues of this operator are in general nof interger valued. Nevertheless
the eigenvalues of the canonical angular momentum operator zp;yp; are still integer
valued. In Sec.IV we show that both E.oZm.Em can be cast in the supersymmetric form
ard the potentials are shape-invariant [5]. Using g.mw shape invariance property, we
immediately deduce the bound state spectrum in the two cases. Finally Sec.V is reserved

for discussion. ~

I, Symmetry of the Two-Anyon Plus Oscillator Problem

The Uamiltonian for the harmonic oscillator problem in two-dimensions is given by

2l
2 2 2 2 =z
20 = Py ¥y 4 Ml () (21
Its energy eigenvalue specirum is

En= (xR0, M=0,14,2, - (223

with the corresponding degeneracy for every n being given by d=(n+1). It is well known
that one can define three generators Ji, Jo, J3 which commute with the above II and

satisy the SU(2) algebra [2]

i, Jj = teisndry i, 5,6 =1,2,3 (2.3)
In particular, the explicit form of Jy, J2, J3 is

1

Ji = Hata—b+) ~(240)
Ja = w?il bra) (2.48)
Iy = L(b*a— 4t (216)
where
_ Mex+ £ Px b= Mg APy (2:5)

F\Lf\ﬁﬁ ﬁ ﬁm.nm/\\mﬂ

Ou using the fact that

it is easily seen that
,Hiv = Aﬂm.ﬁqpﬂfﬂusw (27

From this equation, the spectrum (2.2) and the degeneracy follow by recognizing that
the eigenvalue of JZ is j(j+1)A, and it is (2j+1)-fold degenerate (j is a hal-integer or
interger).

Using the above discussion, we now show as to how the symmetry of the two-
anyons expericncing oscillator potential can be uncovered. The key point of the whole
discussion is the recognition of the fact that the interprolating statistics is a purely
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quanfum mechanical effect, and that velocitics are unchanged cven in the presence of
anyons. In other words even for 2-anyons with oscillator potential, the Hamiltonian (2.1),
the operators a,b aud hence the generators (2.4) remain unchanged when expressed in
terms of coordinates x,y and velocities X,y. On using the fact that for anyons X,y are given
in terms of the momenta p, and p, by (@ =8/7,0 < @ <1 with @ = 0(1) corresponding

to bosons (fermions))

%=p - Lyx# palude

amd rw =Y Y -+ (2-2)

we find that the relative llamilionian for 2-anyons expressing oscillator potential is:

f&un 2
D) (2-9)

N\cfl\c& oy oy lpx- Mrwu»\hf

One can again define the three generators Jy, J:, J3 as in eqs.(2.4) but now 2,b are given

Ty
* S e

M A hy— hIVT) \
(= e, b=

B Jaspe

Remarkably enough the three generators so obtained commute with the Hamiltonian

_,r..u: .r.\rm_cmuf..:omv. u

(2.10)

{2.9) and also satisly the SU(2) algebra (2.3). In facl, after some lengthy but straight-
forward algebra, one can show that relation {2.7), relating H and J2, is also valid in
the presence of anyons. Que may then naively think that the spectrum is the same as
that given by eq.{2.2). This bowever is not the casc. Whereas in the absence of anyous,
Jy equals ZrL (where L is the canonical angular momentum, ie. L = zp, — yp;), in
the presence of anyons it follows from egs.(2.4c) and (2.10) that J; is not the canonical
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apgular momentum but

—~ A\
1= or C L+RaD Bl

Put differently, anyons can be looked upon as bosons with long ranged interaction {0 <
a < 1). Hence the canonical angular momentum is still zpy —ypz = ﬂ.»u«w. Its eigenvalues
Am must not only be integer (so that the corresponding eigenfunciion of Q%M is single
valued) but must also be even (m = 0,+2,44,.....) since hunm is working in a bosonic
basis. As a result, following the discussion of Kretzschmar {6] and using eq.(2.7), the

spectrum of 2-anyons experiencing oscillator potential is given by (0 < « < 1)

T, = VooV XV YRW . n= o, R, E2, . @)

This can be shown to be identical to the known exact spectrum [4]. This argument also
produces the correct aomomo_.unmﬁ for any value of a. In particular again following the
discussion of ref.[6], one finds that for noninteger o the Hilbert-space H can be split
into two subspaces H; and Hz. The Hilbert -space H; contaius eigeniunctions with

eigenvalues of the form (21 + 1 + a)hw { 1 = 0,1,2,....}. For each of these eigenvalues,

there are n+1 eigenfunctions distinguished from each other by the quantum number m

‘Tanging through the interval [0,2n] in twice the integer steps. Hilbert-space 2, on the

other hand, contains eigenfunctions with eigenvalues of the form (2n+1-a)hw with n =
1,2..... For each of these eigenvalues, there are n cigenfunctions which are distinguished
from each other by the quantum number m. This quantum number ranges in twice the
integer steps through the interval [—2n,—2].
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1. Symmetry of the Two-Anyon Plus Coulomb Problem

The Hamiltonian for the Coulomb problem in two dimensions is given by [2]
2

m .,
\gm ,n +f S (3
Its bound state energy eigenvalue spectrum is given by
4
- MO
m5ll = ettt o= © 7 2, (3-2)
2% n4t 3D

and the corresponding degeneracy is (20-+1). Furthermore, it is known that one can define

a Runge- Lenz two-vector (R, Ry) and orbital angular momentum L which together form
the 0(3) algebra, and all these symmetry generators commute with the Hamiltonian of

(3.1). In particular the generators of the 0{3) group are

PR
Rym [ =Ly gyl + 2Re X | (3:3a)
x 4 N 4,&\ -
e zwi 2AE PR
- ‘N -
Ry = 3 ﬁr,ﬂHLq{Han 2 e ¥ (33D
3, M -1 b
L = xby =t 3-30)
Here,-E representsthe bound state energy eigenvalue corresponding to H as given by
eq.(3.1). Using the commutation relations (2.6) it is easily checked that (J? = RZ+ B2 +
L?) ; )
. et < o w2 (34
2T b

From this relaton, we again obtain the eigenvalue spectrum (3.2) with the right degener-
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acy of (2n+1), by recognizing that the group is 0(3) and that the cigenvalues of J* are

7 + 1)4% with j = 0,1,2,......

The stratagy for obtaining the symmetry of the 2-anyon problem with the Coulomb
potential is now identical to that in the last section. On recognizing the fact that the
velocities X,y are unchanged, even in the prescace of anyons,and further that in terms of
momenta they are given by eq.(2.8), we see that the relative Hamiltonian for 2-anyons

experiencing Coulomb potential 1s given by

2
« fo S e :
A e L Rk
One finds that the modified generators given by
N i L.l.,?ocnul +.f&kvf+M\»m uru_ (3-60)
WX(NTN\;L\ Ly CPy 9 52

2 E
Fx 246 Y 3, ¢
SRS By r (e Sy 25 | Grew

mfw u/ﬂu\l

> l{/DA I..W.
= Xy +ﬁxw )- &2% f = L 4R (3-¢2)

A
commute with the new H of eq.(3.5) and that m\n_ m< and L also satisfy the 0(3) algebra.
As before one finds that (J* = .Wm + WN + wuv

4 B 7 :
e M _ m!*u\?\ -7)
2¢ 4

As in the osciilator case. one has to remember that L is the canonical angular
momenturn whose eigenvalue t must be twice integer since one is working in the bosonic
basis. Following ref.[6], it then follows that the energy cigenvalues of the Coulomb
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potential are given by
4
ME
2 !
2R Dty 57\

For fractional value of af# 1/2) the total Hilbert space H can again be split into two

- -

w= o, £2,43 (3.%)

subspaces /{| and H where by definition 4 is spanned by all eigenfunctions with n > 0
while /y is spanned by all cigenfunctions with n 2 0. For a given positive eigenvalue
o, we have 2 +1or GNHC degenerate cigenfunctions depending on whether n is even or
odd. These different ecigenfunclions are distinquished from each other by the quanium
number m which ranges in twice the integer steps through the interval  [0,0] or [0,n-1]
depending on if n is even or odd. Similarly for a given negative value of 'n, we have gor
254 degenerate levels depending on if | n | is even or odd. These are distinguished from
each other by the value of mie. ~|n|<m < —2o0r—(| n|~1) < m < -2 depending
on whether n is even or odd. In the special case of semions (@ = 1/2), we see ihat
the energy eigenvalues are the same in both subspaces H, and H,. The noﬂ@%on&uw
cigenfunctions however differ by their quantum numaber n. As a result the degeneracy
is increased to o+1 for any n( = 0,1,2.....), and there are level crossings at a = 1/2 for

every value of n (except n = 0).

IV. Shape Invariance of the Two-Anyon Potentials

We shall first show that the problem of two-anyons plus a Coulomb or oscillator
potential can be cast in a supersynunetric form and that the partner potentials are
infact shape invariant. We then deduce the spectrum of two-anyons with a Coulomb or
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oscillator potential by making use of the fact that both problems have shape invaraint

potentials.

Counsider for example the 2-anyon harmonic oscillator Hamiltonian of eq.(2.1). On

substituting the ansatz

A
Wiz, = 1L ROuE (41
% :

in the Schrodinger equation for this mwum:onmgﬁ it is easily shown that R satisfies the

equation

/W/MNGS = RO (420>
where
Vo R AT oz lema) = LR
Mg TN X s (4.2%)

2 ]

Let us now consider the operator

v
A=k 4 Owgxixz)kR +,_Mu o “%3)

,,N\} Afe /ﬁM\q IS
Using (4.3), we find that the two supersymmetric partoer polentials are [7]
/(/@|H 7+?H /H/,luﬂ/gn/;.__nX/.T/v )
+ e 2 2 /5>+eﬁ+h \ A+Wv#\r
bnt M??le,ﬂ w.p.t\\ﬁaw_wl).)&:?l«x:.% 5w <142 .
T ZM AR 2 = B
M
(4-57)

Now, notice that the two potentials Hg and Hp are shape invariant ie. [5]
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He{|m+a|) = Hp{| m+ a| +1)2%w (4.6)

In the notation of ref.[5], we find for this problem that
0o =\ 4o\ P a, = Vvt o) A

Rla) = G —G) 2R (L)
Thus, the cnergy cigenvalues of Hg are given by:
2 D . .
B, =2 RO = 2wR0; w=0,12,.- (4.2)
=\

Hence, the energy eigenvalues of A (i.e. 2-anyons plus oscillator Hamiltonian) are given
by
ﬂﬁﬂ@nﬁ(«/f/.fx/.,#%«,oo " (4-9)

This is the exact answer [3].
Let us now show that the 2-anyon with a Coulomb interaction Hamiltonian is
also shape invariant and deduce its spectrum. On substifuting the ansatz (4.1) io the

Schrodinger equation for the Coulomb Hamiltonian (3.1), it is easily shown that R sat-

isfies equation (4.2a) where A is now given by

A v2. 42 2 il =
O S G L ks (4-10)
20 o N\Cn\,ﬂﬁ
Let us Consider the operator
11

2
7|h.|¢/ A mfﬁ\fx/uf,m.ulf +uu\s e

T s
2 2 n 2R (W4 430
One immediately find, that the two supersymmetric partner potentials are
N &
/|/.,mv|.||| 7+7 - Wy e = (412)
2% (AL A 5D
2 4 \ R
/\v/ﬂm 77..4” R |L|H +n/5)+k/+wvvﬁ/§+k/+lu oh - W.q,.
2N AR 2 S
b 2%
- .«C...Mn — : ANT.’WV
2R (At +3)
Clearly Hp and Hp are shape invariant potentials j.e. mb.
\Pf
Mowmtel4E) = W Om <l 42) +
ﬂﬂ = fw# = PRl QUANEIRIEY
e 46
2% (\on < A2 St
In the notation of ref{5], we have for this problem that:
o W T g I I N A (4150
4
Me \ | .
Rapy= ———( == — —= (las®)
' 2% N Al ay
Thus the energy eigenvalues of Hg are given by {(n=0,1,2,....)
4
e O _ Re \ \ -
g =2 ROK= HJ = 1r/
N <=\ 245 L a0 5T (Wt a2 YLD
(416D

and the energy eigenvalues of &, (i.e. the 2-anyon Hamiltonian plus a Coulomb interaction
are given by [4]

L
T ke = (17

2% (A Ay

a~—

which is again the exact answer.
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¥ .Discussion

In this paper we have shown that the 2-anyon system in a Coulomb or an Oscillator
potential has the 0(3) or SU(2) symmetries respectively. Using these symmetries, we
have been able to obtain algebraically the bound state spectrum in the two cases. The
real nontrivial question is if this discussion can be genealized 1o the case of n-anyons
and if one can algebraically oblain the noBﬂmH bound state spectrum of D-anyons in
an the oscillator potential. Such a step would be very mep: as the complete spectrum
is still unknown. Further it would enable us 1o calculate the n’th virial coefficient of an

anyou gas. We hope to atlack this problem in the pear future. ™~
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