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Abstract: With the rapid development of quantum communication technologies, controlled
double-direction cyclic (CDDC) quantum communication has become an important re-
search direction. However, how to choose an appropriate quantum state as a channel
to achieve double-direction cyclic (DDC) quantum communication for multi-particle en-
tangled states remains an unresolved challenge. This study aims to address this issue
by constructing a suitable quantum channel and investigating the DDC quantum com-
munication of two-particle states. Initially, we create a 25-particle entangled state using
Hadamard and controlled-NOT (CNOT) gates, and provide its corresponding quantum
circuit implementation. Based on this entangled state as a quantum channel, we propose
two new four-party CDDC schemes, applied to quantum teleportation (QT) and remote
state preparation (RSP), respectively. In both schemes, each communicating party can
synchronously transmit two different arbitrary two-particle states to the other parties under
supervisory control, achieving controlled quantum cyclic communication in both clockwise
and counterclockwise directions. Additionally, the presented two schemes of four-party
CDDC quantum communication are extended to situations where n > 3 communicating
parties. In each proposed scheme, we provide universal analytical formulas for the local op-
erations of the sender, supervisor, and receiver, demonstrating that the success probability
of each scheme can reach 100%. These schemes only require specific two-particle projective
measurements, single-particle von Neumann measurements, and Pauli gate operations,
all of which can be implemented with current technologies. We have also evaluated the
inherent efficiency, security, and control capabilities of the proposed schemes. In compari-
son to earlier methods, the results demonstrate that our schemes perform exceptionally
well. This study provides a theoretical foundation for bidirectional controlled quantum
communication of multi-particle states, aiming to enhance security and capacity while
meeting the diverse needs of future network scenarios.

Keywords: CDDC; controlled cyclic QT; controlled cyclic RSP; 25-particle entangled state

1. Introduction

Quantum entanglement is essential for quantum communication, as it reveals non-
local correlations between distant subsystems. QT and RSP are prime examples of quantum
entanglement applications, both involving the transfer of quantum states between loca-
tions without the actual physical travel of the particles involved. QT was introduced by
Bennett et al. [1] in 1993. It allows for the secure teleportation of any arbitrary unknown
single-particle state from one location to another using pre-shared entanglement between
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two parties as the quantum channel, with the support of classical communication. Since
then, various QT protocols have been proposed, such as controlled QT [2—-4], bidirectional
QT [5,6], controlled bidirectional QT [7,8], cyclic QT [9,10], and controlled cyclic QT [11-13],
each enhancing aspects like security or communication capacity. Additionally, in 2000,
Lo [14] introduced RSP, which can be viewed as a form of QT. Unlike QT, the prepared
single- or multi-particle state does not need to be owned or measured by the transmitter.
Instead, its coefficients are completely known to the transmitter, but not to the recipient
at all. Therefore, RSP consumes less classical resources at the cost of the target state being
completely transparent to the sender. Since its introduction, RSP has garnered signifi-
cant attention, leading to the development of various enhanced RSP protocols, such as
multicast-based multiparty RSP [15], controlled RSP[16,17], joint RSP[18-22], controlled
joint RSP [23],and bidirectional controlled RSP [24-27], among others. However, these
protocols are limited to one-way or two-way communication only.

In recent years, the development of quantum networks has brought new challenges
and opportunities to the study of quantum communication. Quantum networks are re-
garded as a core infrastructure for achieving distributed quantum computing, ultra-secure
communication, and high-precision quantum sensing. They are also an essential com-
ponent of the future quantum internet [28-30]. Kimble first proposed the concept of the
quantum internet in 2008 [28], emphasizing that quantum networks can enable global
quantum information processing through entanglement distribution. With the continu-
ous progress of technology, significant advancements have been made in the capacity of
quantum networks [29], the computational efficiency of nonlinear Bell inequalities [30],
and the feasibility of quantum repeaters [31]. These studies not only provide important
theoretical and technical support for the design of quantum communication protocols but
also highlight the pivotal role of quantum networks in the future of quantum information
technology [32,33].

To address the demand for multiparty quantum communication in quantum net-
works, Chen et al. [34] proposed a novel cyclic QT scheme in 2017. This scheme utilizes
a six-particle entangled state as the quantum channel to facilitate single-particle state
transmission among multiple participants. Specifically, in this protocol, Alice teleports
a single-particle state to Bob, Bob transmits a single-particle state to Charlie, and Char-
lie simultaneously conveys a single-particle state back to Alice, forming a closed cyclic
communication loop. This scheme was further extended to scenarios involving n (n > 3)
participants, offering a flexible solution for multiparty quantum communication in quan-
tum networks. Peng et al. [13] expanded on Chen’s work, introducing a framework for
cyclic controlled QT where each participant, with the supervisor’s permission, teleports a
state to neighbors. This led to the development of cyclic quantum communication protocols
like controlled cyclic QT [35,36] and cyclic (controlled) RSP [37—40]. These protocols, while
considering cyclic transmission in both directions, have a limitation: adjacent participants
cannot exchange their quantum states, which may not fit real-world applications. More
recently, Jiang et al. [41] proposed a hybrid dual-channel protocol, allowing communica-
tors to transmit both known and unknown single-particle states to two others using RSP
and QT, respectively. This protocol supports both cyclic RSP and QT communication in
both directions, enhancing flexibility. Additionally, from a different viewpoint, adjacent
communicators are able to swap their quantum states, which could significantly enhance
the functionality of future quantum communication networks. Building on this, Sun and
Zhang [42] introduced a DDC controlled RSP protocol for single-particle states, inspired by
the single-particle quantum multicast concept, using a thirteen-particle entangled state as
the quantum channel. The following year, they extended this idea by proposing a four-party
scheme for implementing DDC controlled RSP for arbitrary two-particle states [43]. In
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this scheme, with the supervisor’s approval, each communicator can assist the other two
communicators in preparing their respective two-particle target states simultaneously. In
2023, Peng et al. [44] further advanced the field by proposing a DDC controlled quantum
communication scheme for single-particle states.

Although the existing studies have laid a solid foundation for multiparty quantum
communication, further exploration of more efficient and flexible quantum resources and
protocols is still needed to meet the increasingly complex and diverse demands of future
quantum networks. To address this challenge, this paper proposes a scheme for con-
structing a 25-particle entangled state using Hadamard and CNOT gates as the quantum
channel. Based on this entangled state, we designed DDC controlled QT and RSP pro-
tocols for arbitrary two-particle states. In the four-party scenario, the proposed protocol
allows each communicator to simultaneously transmit two different two-particle states
to the other two communicators, achieving cyclic communication in both clockwise and
counterclockwise directions, significantly enhancing the flexibility and applicability of
the quantum communication protocol. Moreover, the proposed protocol achieves a 100%
success rate, with the required operations consisting only of two-particle projective mea-
surements, single-particle von Neumann measurements, and Pauli gates, all of which can
be implemented with current quantum technologies, ensuring experimental feasibility. We
further extend the four-party protocol to an (1 + 1)-party scenario (n > 3) and propose
a new method for constructing an (8n + 1)-particle entangled state to meet the demands
of multiparty communication in large-scale quantum networks. While Peng et al. have
already proposed a quantum channel and circuit design for single-particle states, the com-
plexity and technical requirements increase significantly when extending the protocol to
two-particle states. Compared to previous research, our work breaks through the limita-
tions of single-particle states and is the first to apply the DDC quantum communication
protocol to two-particle states. By constructing a new quantum channel, we successfully
overcome the technical bottlenecks in two-particle state cyclic communication and pro-
pose a more efficient and scalable quantum communication model. This innovation not
only expands the types of particles and transmission modes in quantum communication
but also provides a solid theoretical foundation for the implementation of multi-particle
quantum communication. Additionally, we provide more precise and practical mathemati-
cal formulas, offering important theoretical support for future research in multi-particle
quantum communication. We also analyze the efficiency, security, and control capabilities
of the scheme, and enhance the stability and flexibility of communication by optimizing
multiparty control mechanisms. This offers solid support for the practical implementation
and use of quantum communication networks. The results of this research will promote the
widespread application of quantum communication technologies in large-scale quantum
networks, further advancing the field of quantum information science.

The rest of this article is structured as follows. In Section 2, we suggest a method for
constructing a multi-particle quantum channel using a 25-particle entangled state as an
example, provide the detailed steps for implementing a four-party DDC controlled QT
scheme of arbitrary unknown two-particle states, and extend this transmission scheme
to (n + 1)-party (n > 3) via an (8n + 1)-particle entangled state as the quantum channel.
Section 3 describes the four-party DDC controlled RSP scheme by introducing auxiliary
12 particles, and promotes it to the scenario with n (n > 3) communicators. Finally,
conclusions are discussed and drawn in Section 4.
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2. Double-Direction Cyclic Controlled Quantum Teleportation of
Arbitrary Two-Particle States

We introduce a four-party DDC-controlled QT scheme with three communica-
tors—Alice, Bob, and Charlie—and a supervisor, David. With the supervisor’s approval,
each communicator can simultaneously teleport two distinct unknown two-particle states
to the other communicators, while also receiving two unknown two-particle states from
them. This setup allows for cyclic controlled QT in both clockwise and counterclockwise
directions. Figure 1 illustrates the relationships among the three communicators and
the controller, emphasizing the quantum states being teleported and the transmission of
control information.
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Figure 1. The relationship between the three communicators and one supervisor. The blue and red
lines with arrows represent the quantum states to be transmitted, while the green straight line with
an arrow represents the transmission of supervisor information.

The detailed description of this scheme is provided in Section 2.2, and we extend the
scheme to a general case involving multiple communicators, with the specific protocol
and corresponding quantum circuit diagram presented in Section 2.3. To implement the
proposed scheme, a 25-particle entangled state is required as the quantum channel, and the
specific steps for constructing this quantum channel are detailed in Section 2.1.

2.1. Construction of the Quantum Channel

To implement the four-party DDC controlled QT scheme, we begin by constructing a
25-particle maximally entangled state to serve as the quantum channel. In Yu’s protocol [15],
an eight-particle maximally entangled state, denoted as |¢?), is used for the quantum
multicast of two-particle states. Building on this eight-particle maximally entangled state,
we extend it to a 25-particle maximally entangled state to fulfil the requirements for four-
party controlled QT. Specifically, the quantum channel state is expressed as

1
G125 = —=( 8>12---8| $ 9,10,--,16 8 17,18, 240)25
| /2 o7 ¢1) |97) | 1)

+ [93)12-895)0,10,-- 16| 93) 17,15, 24]1)25),

where |¢$) and |¢3) are the eight-particle maximally entangled states, the explicit forms of
which are provided in Appendix A as Equations (A1) and (A2).
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Figure 2 shows the quantum circuit used to create the 25-particle maximally
entangled state.
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Figure 2. The quantum circuit for constructing the 25-qubit entangled channel, where H represents
the Hadamard gate operation, and the solid black “-” and “@®” together form a CNOT operation. The
Hadamard gate is used to transform the qubit into a superposition state, while the CNOT gate is
used to create entanglement between two qubits.

The Hadamard gate H and the CNOT gate are represented by the following matrices:

1000
1(1 1 1
H=— , cnor=| 2100 @)
V201 -1 000 1
0010

We begin by preparing the 25-particle maximally entangled state from the initial state,
where all qubits are in the |0) state. The first step is to apply a Hadamard gate H to the
25th qubit, which changes its state from |0) to a superposition state of % (10) +11)). The
quantum state at this stage is

1
G w5 =100---0)12,... 24 ® —=(|0) + [1))o5. 3
[G1)12, 25 = | )12, 24 \@ﬂ )+ 11))25 ®)

Next, we apply 24 CNOT gates, where the 25th qubit serves as the control qubit

and the remaining 24 qubits serve as the target qubits. Each CNOT gate entangles the
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25th qubit with the corresponding target qubit. After these operations, the final quantum
state becomes

1
G o5 = —=(]00---0) +111---1 ... 95, 4
1G2)1,2,.-- 25 ﬁ(l )+ )12, 25 (4)

Subsequently, we proceed with a series of transformations. First, particle 1 passes
through a Hadamard gate, followed by a CNOT operation with particle 1 as the control
and particle 5 as the target. Then, particle 2 undergoes a Hadamard gate, and a CNOT
operation is performed with particle 1 as the control and particle 6 as the target. Particle 3
is next processed with a Hadamard gate, followed by a CNOT operation with particle 3 as
the control and particle 7 as the target. Another CNOT operation is applied with particle 3
as the control and particle 4 as the target. Lastly, particle 4 is subjected to a Hadamard
gate, and a CNOT operation is performed with particle 4 as the control and particle 8 as
the target.

Similarly, we apply the same set of transformations to particles (9,10, ---,16) and
(17,18, -+ ,24). After all these steps, the 25-particle maximally entangled channel, as
shown in Equation (1), is fully constructed.

This construction process provides us with a general method for preparing multi-
particle entangled states. Using this method, we can construct a maximally entangled state
for any number of particles of the form (81 + 1).

2.2. Four-Party DDC Controlled Quantum Teleportation Protocol

In this subsection, we provide a detailed description of the four-party DDC controlled
QT protocol, using the 25-particle entangled state constructed in Section 2.1 as the quantum
channel. As illustrated in Figure 1, The protocol involves four participants: Alice, Bob,
and Charlie as communicators, and David as the supervisor. Alice intends to send the
unknown two-particle state [e1) 4 4, to Bob and [e;) 4, 4, to Charlie. Bob aims to send
|w1)p, g, to Charlie and |wy)p, 5, to Alice. Meanwhile, Charlie plans to teleport [A1) ¢, to
Alice and |)\2>C2CA2 to Bob, all under the supervision of David. These arbitrary unknown
two-particle states can be represented as |e)y ¢ = Y talbr) X%, Where k € {1,2}
corresponds to the different quantum states transmitted, and X € {A, B, C} represents
Alice, Bob, or Charlie as the sender. Here, ji; are the complex coefficients for each quantum
state and |b;) is the two-particle computational basis, with | € {1,2,3,4} corresponding to
|00),101), |10), |11). The coefficients p, v, and g (fork € {1,2},1 € {1,2,3,4}) satisfy the
normalization conditions Z?‘:l lual> =1, Zf‘:l lvg|> =1, and Z?‘:l |7%|> = 1, ensuring the
proper normalization of the quantum states involved. This generalized expression unifies
the representation of all the quantum states used in the protocol, eliminating redundancy
while keeping the clarity of the different states exchanged between Alice, Bob, and Charlie
under the supervisor’s control.

In the preparation phase, the supervisor David needs to prepare a 25-particle maxi-
mally entangled state as depicted in Equation (1), then should retain particle 25 for himself
and allocate particles (1,2,3,4,15,16,21,22), (5,6,9,10,11,12,23,24) and (7,8,13,14,17,
18,19, 20) to Alice, Bob, and Charlie, respectively. This way, David, Alice, Bob, and Charlie
share an entangled quantum system, each participant holding a distinct set of particles. The
entangled state |G) that describes this system is written as a superposition of two terms.
Each term consists of the product of three maximally entangled 8-particle states, one for
each of Alice, Bob, and Charlie. In the first term, David’s qubit is in the state |0), while in
the second term, David’s qubit is in the state |1). Thus, the entire initial quantum system,
combining the individual states |€1), |€2), |w1), |w2), |A1), and |Ay), is described by the
following expression:
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IT) = le1) o, 4,1€2) 4, 4,101) 5,5, [W2) 5,8, A1) c, 6, 1A2) 6, |G) aBECD- ®)

where the bold letters A, B, and C represent the sets of particles A A} ... A}, B{B}...Bg,
and C;C} ... Cg, respectively.

In order to fulfil DDC controlled QT, our protocol sequentially executes the following
steps, as illustrated in Figure 1.

Step 1: Alice, Bob, and Charlie each perform measurements on their respective particle
pairs using a Bell-state measurement basis, resulting in the evolution of a complex multipar-
tite quantum entangled state. Alice measures the particle pairs (A1, A}), (A1, A}), (Aa, AS),
and (A, A}) with the Bell-state measurement basis |Bs) = %[|O,S> + (=1)H1,1D5s)],
where s,t € {0,1}, and @ denotes addition modulo 2. Alice’s measurement results cor-
respond to a superposition of four Bell states, and these measurement outcomes interact
with the system’s entanglement, affecting the final state of the system through the complex
coefficients x;;. After Alice’s measurement, the particle pairs she holds will transform
into the following entangled states: |By) 4, A |Bt) Ay |Buv) a, A, 1Bpq) 4, Ay Each Bell state
corresponds to a measurement outcome |f, h), |f,1®h), |1& f,h),and [1& f,1 & h). These
outcomes, through the complex coefficients x;;, become entangled with Bob and Charlie’s
measurement results, influencing the overall system’s state.

Bob performs Bell-state measurements on the particle pairs (By, B), (B, B}), (Ba, B}),
and (B, B}), the Bell-state basis Bob uses is the same as Alice’s, given by |By) =
%[|O,S> + (=1)![1,1 @ s)]. Bob’s measurement outcomes depend on Alice’s measure-
ments, so the Bell states Bob measures will be entangled with Alice’s results. Bob’s mea-
surement results will form new particle pair entangled states, which are expressed as
|Bfrgr) g, B |Buir) g, B |Buror) B, B, 1Byg)s, B, These measurement outcomes will be entangled
with Alice’s and Charlie’s results through the complex coefficients y;;, thereby affecting the
overall quantum state of the system.

Charlie also measures his four particle pairs (Cy,C}), (C1,Ch), (C2,C4), and (Cy, C),
using the same Bell-state basis as Alice and Bob. Charlie’s measurement outcomes will
affect the final quantum state of the system through complex coefficients z;;, and these
outcomes will become entangled with the results from Alice and Bob. Charlie’s measure-
ment results are expressed as [Bfrgn)c, c| |Bh”t”>él c \Bu//v//>czcé |BP”@”>C2CQ‘ Through the
complex coefficients Zij, these measurement outcomes entangle with Alice’s and Bob’s
results, ultimately influencing the overall quantum state of the system.

Through Alice, Bob, and Charlie’s Bell-state measurements, the initial quantum state
of the system evolves into a complex tensor product form, consisting of multiple Bell-state
measurement outcomes and the entanglement generated by these measurements. The
measurement results of each participant become entangled with the results of the others,
ultimately forming a complex multipartite quantum entangled state |7°), with the explicit
form given in Equation (A4) of Appendix A.

Generally, Alice transfers the measurement results |Byg) 4, A | But) 4, A and |Bup) 4, A
|Bpg) Ay to Bob and Charlie, respectively. Bob notifies Charlie and Alice of his measure-
ment results | B, ) p, ; 1Bys) g, g, and |Biry) g, B, |Br) g, B, respectively. At the same time,
Charlie announces his measurement outcomes A and B to |Bm”n”>clq |Byrsi) e, ¢ and
| Birjir) ey | Byrier) ¢,c; to Alice and Bob separately. Then, the measured quantum state )
can be expressed in a concise and structured form, with its explicit expression provided in
Equation (A5) of Appendix A.

Step 2: If the supervisor, David, agrees to communicate, then he should perform a
single-particle Von Neumann measurement on particle D using the computational basis
{]0),]1) }. Then, he sends a 1-bit classical message w (w = 0, 1) to Alice, Bob, and Charlie
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over three distinct channels (David-Alice, David-Bob, and David-Charlie), corresponding
to the measurement result |w)p.

Step 3: Upon receiving the measurement results from the other participants, Alice,
Bob, and Charlie are required to apply the appropriate unitary operations according to the
results of the measurements in order to reconstruct the original quantum state. The unitary
operations involved in this process can be represented by the following general expression:

U = (1-w)[u® @ a0 4 w[u'® o @', (6)

where X € {A’, B/,C'} represents the different participants Alice, Bob, and Charlie, and
its specific form is provided in Equation (A6) of Appendix A. UX) and UX) are the first
set of unitary operations corresponding to participant X, and the specific expressions can
be found in Equation (A6) of Appendix A. U'X) and "X) are the second set of unitary
operations corresponding to participant X, and the specific expressions can also be found
in Equation (A7) of Appendix A. w is a weighting factor that adjusts the contribution of
the first and second sets of operations based on the measurement results received by each
participant. These unitary operations are applied to the particle groups (Ag, Ay, A}, Ag),
(Bg, Bg, B}, Bg), and (C¢, Cy, C7, Cg ), enabling each group to recover their intended original
states. In other words,

UNUPDUO (p (| T"))
= (x11]00) 4 x12/01) + x13[10) + x14/11)) g pr
® (221|00) + 222/01) + 223|10) + 224[11) ) gy
® (y11100) + y12/01) + y13/10) + y14[11)) iy )
® (x21]00) + x22[01) + x23/10) + x24[11) ) 1 ¢
® (211/00) + 212|01) + 213|10) + 214[11)) z 47
® (y21100) +y22(01) + y23/10) + y24[11)) ar a7 -

From Equation (7), it can be observed that Alice’s state |e7) ALAy has been teleported
to Bob, and |ey) Ay, O Charlie. Bob’s state |w1)p, p has been transferred to Charlie, while
|w2)p, 5, has been sent to Alice. Meanwhile, Charlie’s state [A1) ¢ has been transmitted
to Alice, and [A2), ¢, to Bob.

Additionally, according to Equation (A4) in Appendix A, our scheme has 12 Bell-
state measurements and 1 single-particle von Neumann measurement, yielding a total of
4% x 4% x 4% x 2 = 33,554,432 possible measurement outcomes. For each outcome, the
unitary transformations in Equation (6) are applied to correctly reconstruct the desired
states. As a result, our scheme achieves a success probability of 100%.

2.3. Generalized DDC Controlled Quantum Teleportation Scheme

In this subsection, we extend our four-party scheme of DDC controlled QT to the
scene with n (n > 3) communicators in this subsection. Assume the n communicators can
be denoted as{Nj, Np, - - - , N, }, and they form a closed ring. All communicators initially
share an (8n + 1)-particle maximally entangled state together with the supervisor, Tom.
This state can be written as
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1
G NN Ny = NG ®|§01 NINANSNANS, e, N7 e [O)T
j=1

(®)

+§ |(P2 NIN2N3NNG, NS N7 N& | )|,

where the communicator N]- has eight particles (N ]-1, sz,- -, N]g) foranyj e {1,2,---,n}.
Additionally, the particle T belongs to the supervisor Tom. For j = n, we impose N, > =N}
and N? = = N?, and for j = 1, we impose Nj = N/ and N§ = N§. The symbol ® repre-
sents the tensor product, while A7, A3, and NV, denote the groups of particles NINZ - - - N8,
NIN3---N§,and NiN2 - .- N8, respectively. The entangled states |¢8) and |¢3) are defined
in Equations (A1) and (A2) of Appendix A, respectively.

Consider that Nj intends to teleport two arbitrary unknown two-particle states, |€’) N}
and |€?) Ny, to Nz and Ny, respectively. Each participant N; (j € {2,3,...,n — 1}) aims
to send two arbitrary unknown two-particle states, |¢’ >N]’ and |€2>N/(/, to Nj;1 and N;_

respectively. Finally, N, intends to transmit the state |€") \y to N1 and |€2) Ny to Ny—1, with
the entire process being supervised and controlled by Tom. The relation among these 1 + 1
participants is shown in Figure 3.

Figure 3. The relationship between n communicators and one supervisor. The red and blue straight
lines with arrows represent the quantum states to be transmitted, while the black straight line with
an arrow represents the transmission of supervisor information.

The above 2n arbitrary unknown two-particle states to be teleported can be expressed as

( (N) (N)) (N}
|€/>Njf |00>+ a1y |01>+“13 110) + ay, |11>

(N)) (Nj) (N}) (N)

. f j [ N o
where cornplex coeff1c1ents a,' 4, ,a,,"",and a;,’" satisfy the normalization condition

N/
|a,(d’)|2 + |a k2 \2 + |a k3 |2 + |a ,((4] |> =1 (k = 1,2). The second unknown two-particle
state, |2 >N(, can be expressed in terms of the same form as |€’)y, with its coefficients
j
(Nj) (Nj) (Nj) (N}

denoted as 1121 ,a22 ,a23 ,a24 , which similarly satisfy the normalization condition.
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2 . . (N . o (N
Thus, |€*)y; can be written by replacing a,,'" in |€'), with a,, ' (k = 1,2,3,4). The
i j

complete initial system state can be represented as follows:
W) = @l )n @ €20y © 1G) Nin--n )

In order to complete DDC controlled QT of arbitrary unknown two-particle states
among n + 1 participants, each communicator needs to execute four Bell-state measure-
ments and then inform the two adjacent communicators of the measurement results. After
that, the supervisor Tom makes a single-particle projective measurement on his particle T in
the basis {|0), |1) }, and relays his measurement outcome to all communicators. According
to the outcomes from the two adjacent communicators and the controller, each communica-
tor is able to successfully reconstruct the target two-particle states. For simplicity, we will
omit the detailed discussion on the connections between measurement outcomes, collapsed
states, and their corresponding recovery operations. Since this extended scheme employs
procedures and operations similar to those in the earlier scheme with three communicators
and one supervisor, the success probability of our proposed scheme remains 1.

3. DDC Controlled RSP of Arbitrary Two-Particle States

Based on the quantum channel [1] we constructed, this subsection proposes a four-
party DDC controlled RSP scheme, which can be used for the preparation of arbitrary
two-particle states and further extended to scenarios involving n 4 1 (n > 3) participants.
As the quantum circuit diagram illustrating the relationships among the four participants
is similar to that in Section 2, it is not repeated here.

3.1. Four-Party DDC Controlled RSP Scheme

Assume that Alice wishes to help Bob prepare an arbitrary two-particle state |¢1)
remotely and assist Charlie in preparing |¢,); Bob intends to aid Charlie remotely with the
preparation of |¢;) and also help Alice prepare ;). At the same time, Charlie plans to
help Alice prepare an arbitrary two-particle state |x;) remotely and assist Bob in preparing
|x2), all under the supervision of David. The six arbitrary two-particle states to be prepared
can be written as follows:

4 N 4 -n/
p1) = Y aye®|b), |go) = Y aye®i|by),
1=1 =1

4

4 . i
[p1) =Y bue™b), |yo) =) bye™i|hy), (10)
=1

=1

s s
xa) =Y cuePlby), |x2) =Y cauei|y),
I=1 I=1

where real numbers ay;, by, ci, 01,0}, a7, 4, B, and By (k € {1,2},1 € {1,2,3,4}) satisfy the
conditions £} |ay[? = 1, &, |byl® = 1, =, |cu|® = 1, and 6,,6],a;,a), B, B} € [0,271).
Note that for any k € {1,2} and | € {1,2,3,4}, Alice is completely aware of coefficients ay;,
6;, and 6}, but Bob and Charlie are not aware of them. Similarly, Bob knows the coefficients
by, &1, and a;, but Charlie and Alice do not know about them, and the coefficients cy;, f;,
and f] are known to Charlie but unknown to Alice and Bob.

Similar to Section 2.2, a 25-particle maximally entangled channel is pre-shared among
three communicators—Alice, Bob, and Charlie—and the supervisor David.

To achieve the quantum task of four-party DDC-controlled RSP, the following steps
must be performed:
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Step 1: Three communicators, Alice, Bob, and Charlie, introduce three auxiliary
particles (Aq, Ay, A3, Ay), (B1, By, B3, By), and (Cy, Gy, C3, Cy), respectively. In this way, the
initial system state of 37 particles can be represented as

|T) = |G)acp|0000) 5 |0000)5]0000) ¢, (11)

where the bold letters A, B, and C represent the sets of particles A] A} ... Ag, B{B) ... Bg,
and C|C}...C§, respectively. Similarly, A, B, and C represent the sets of particles
A1AA3Ay), B1ByBsBy, and C1CC3Cy, respectively.

Then, Alice carries out the CNOT operation Cxy on qubit pairs (A}, A1), (A}, Az),
(A4, A3), and (A), Ay), respectively, where Cxy|uv)xy = |u)x|u @ v)y. That is, qubits
A}, A}, AL, A} serve as controlling qubits and auxiliary qubits Aj, Ay, A3, A4 function as
target qubits. After Bob and Charlie also perform similar operations, the state | T) shown in
Equation (11) will change to

IT") = ®|¢ P, ®[0)p + —= ®|¢ )P ®[1)p (12)

where the P, Py, P; are defined as follows: P; = AjA,A1A,ALA A3 A4BLBLCLCE,
732 = BiBéBl BzBéB&B:;B;lCéCéA;Aé, and Pg, = C{ C§6162CéC£C3C4A/5A/63;Bé. The de-
tailed forms of |p12) and |p3?) are provided in Appendix A as Equations (A8) and (A9),
respectively. For brevity, their explicit expressions are deferred to the appendix.

Step 2: Alice performs two projective measurements on (A}, A3) and (A}, A}) with
the measurement basis {|e,,|u,v = 0,1} and {|p4|p, g9 = 0,1}, respectively. These mea-
surement bases are defined as weighted combinations of the standard two-qubit basis states
(100),01), 10), |11)), where the coefficients and phase factors depend on the measurement
indices. For the first type of measurement basis, the general expression is

|€uv> = ay 2u+v+l|00> + (_1) e ai 2u+v+14(— ‘01>

(13)
+ (=1)"a1 pyto142(-1)¢|10) + (— )5114 2u—o|11),

where u,v € {0,1}, and the coefficients a; j are participant-specific weights that determine
the contribution of each basis state. Similarly, the second type of measurement basis,
denoted as |{}y), has a structure analogous to |€,,). The differences lie in the replacement
of indices u, v with p, g, and the coefficients a,  are replaced by a, ;. Additionally, logical
operations such as 1 @ g and p ® g modify the relative phases of the basis states.

Bob and Charlie use similar measurement bases. For Bob, the first and second types of
bases are denoted as |€/, ,) and |{ ;, q/> following the same structure but with coefficients by x
and b, x, respectively. Charlie, on the other hand, uses the bases |eu//v,/> and |§ ;’,, »), where
the coefficients are ¢ and cp. The indices u,v,u’, 7', u”,v",p,q,v',q',p",q" € {0,1}
represent binary measurement outcomes. These indices determine the specific coefficients
and phase factors in the measurement bases, encoding the results of the measurements.
After completing the measurements, the results are exchanged among the participants.
Alice sends her outcomes |€,,) to Bob and |{,;) to Charlie. Bob shares |e/, ,) with Charlie
and \@ , ,) with Alice. Similarly, Charlie transfers |e]}, ,) to Alice and \g;j,, q,,> to Bob.

Step 3: After receiving the measurement results, Alice measures her particle pairs
(Aq, Az) and (A3, Ay) using a feedforward measurement strategy. For (A1, A;), she con-

structs the measurement basis {|ws(f v)> |s,t = 0,1}, where each state is expressed as
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> — %[ —192u+v+1|00> ( 1)S+f =10 o414 (— |01> 14)
+(=1)% =10 vy 142(— D4(10) + (— 1)te_i94—2u7v‘11>],

where u,v € {0,1} and s,t € {0,1}. Here, the coefficients e introduce phase adjust-
ments for each basis state, and the terms (—1)™f, (=1)%, and (—1) account for relative
phase differences. Similarly, for the second pair of qubits (A3, Ay), she constructs the
measurement basis {|g >|m r = 0,1}, which follows a similar structure to |wst )>. Specif-
ically, in this case, the indices u, v and s, t are replaced by p, g and m, , respectively. The
corresponding phase factors 8, are adjusted accordingly to reflect the changes in indices.
This unified structure ensures symmetry and consistency in the measurement bases for
different qubit pairs.

Bob and Charlie follow a similar measurement process to Alice. Bob measures his
particle pairs (By, By) and (B3, By), constructing the bases {|w i >\s’ t' = 0,1} and
{ \G m r/ > |m’, " = 0,1}, where the structure of the states mirrors Alice’s, but with participant-
specific phase parameters ay. Smularly, Charlie measures his particle pairs (C1, C;) and
(Cs,Cy4) using the bases {|w(u o >|s” t” =0,1} and {|¢ (pe )>|m”,r” = 0,1}, where the

phase parameters B are spieéiflc to Charlie. Subsequegtlry, each correspondent of the
three correspondents needs to send his/her outcomes to the other two correspondents,
respectively. Alice sends her outcomes |ws(t” U)> to Bob and |g£,’frq )> to Charlie. Bob shares
|w i )> with Charlie and |§1(1f/lj,/)> with Alice. Similarly, Charlie shares |(IJS(,L/’;/U”)> to Alice
(r"q")

m//r//
participants can synchronize their operations for the subsequent steps in the protocol.

and |¢ ) to Bob. This mutual sharing of measurement outcomes ensures that all three

By applying the six sets of measurement bases described above, the quantum state
|T") introduced in Equation (12) can be rewritten in a detailed expanded form. The full
mathematical expression of |T”) is provided in Appendix A as Equation (A10).

Step 4: If supervisor David agrees to help the three communicators, he performs a
single-particle von Neumann measurement on his particle D in the {|0), |1) } basis. He then
informs the communicators of his measurement result, denoted as |d)p (d = 0, 1).

Step 5: After hearing the classic messages corresponding to the measurement results,
each of the three communicators needs to perform an appropriate unitary transformation
to restore their respective target states. In detail, after receiving Charlie’s measurement

_(u'"0")

/) .
result |e u,,v,,>cl cyl@gn )¢, ¢, Bob’s measurement result |C , ,) BB, |g ) 8,5, and David’s

m'r!
measurement result |d)p, Alice selects the unitary operatlon

(1 . d) I:o'lgsl//,sl/) ® US/,leat/,/Sl,@t”)] [ (1;// 0) ® U(L: @v// u//):|

® [o" (m m') o (1@m or' 1om’ @r)HU(Fi ®9'.9") oo ((p ®q')q, p’q’)]

+ d[ (1@5// s//) ® (1$S/l@t// S”@t”)][ ( 0) ® (u”@v” u//)} (15)
m’@l,m’) (m @r’,l@m’@r/) (v eaq A') (q 0)
®[0A,7 ®‘7Ag ][UA,7 ®(7A,8 ]

to reconstruct the original quantum states |x) aLaL ® 2] AL AL where (1) = |0) (i @ j| +
(-D)i1Y{(1@i@j| (i,j = 0,1) are Pauli gate operations. After receiving the classical
measurement results, Bob and Charlie perform the appropriate unitary transformations to
recover their respective target quantum states. The transformation structure for Bob and
Charlie is identical to that of Alice. Specifically Bob’s operation can be derived by replacing
the parameters AL, A}, A7, Aj in Alice’s transformation formula with B, B, B, B, and sub-

i t//

stituting the measurement parameters s”, ", u”, 9", p’,q',m’,v' with s, t,u, v, p", 9", m",v".
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Similarly, Charlie’s operation can be obtained by replacing A%, A}, A7, Ag with Cf, Cg, Cf, Cg,

and substituting s”,

0" 0, g, ml oy with ' E !, Y, p, g, m, r. Therefore, it is unneces-
sary to explicitly write out Bob’s and Charlie’s formulas; their operations can be deduced
directly from Alice’s formula by applying the appropriate substitutions.

According to the above derivation, it is evident that the four-party DDC controlled
RSP of arbitrary two-particle states is always achievable, ensuring that the total success

probability of our scheme is 100%.

3.2. Generalized DDC Controlled RSP Scheme

To address the diverse requirements of future quantum communication networks, it is
essential to generalize the four-party DDC controlled RSP scheme for arbitrary two-particle
states to accommodate n (n > 3) communication parties. Consider n correspondents
N1, Ny, - - -, Ny, who pre-share an (81 + 1)-particle maximally entangled state with the
supervisor, Tom, as described in Equation (11). Specifically, each eight-particle group
(N]-l, sz,- -, Njg) is assigned to the correspondent Nj (j = 1,2,---,n), while the single
particle T is held by Tom. In this scheme, N; assists N, in remotely preparing an arbitrary
two-particle state |(p}\]l> and helps N, prepare \go%\h). Similarly, N; (j = 2,3, -+ ,n — 1) aids
Nj 1 in preparing the state |(p}\lj> and N;_1 in preparing |<p12\]]_>. Meanwhile, N, assists Ny in
preparing |¢}, ) and helps N,,_1 prepare |¢3, ), all under the supervision of Tom. The 21
arbitrary two-particle states can be mathematically described using the following general
form. The first state, \go}\]]), for each correspondent N;, is expressed as

|ok) = a6 100) + ah)e®]01) + a{e®[10) + alle®i |11), (16)
where the coefficients ag]];) (k =1,2,3,4) satisfy the normalization condition 2%21 |a8{) |2 =1,

and the phase parameters 6] € [0,27). Similarly, the second state, |(p12\]j), is represented

with the same structure, substituting a( ) with ag() and Gi with é{;.

In order to complete the quantum task each correspondent N, (w = 1,2,--- ,n) in-
troduces four auxiliary particles (N1, N2, N3, N2), initialized in the state |0000> R KBRS, N4
Subsequently, four CNOT gate operations are performed on the particle pairs (Nw, N1 )
(N2,N2), (N3,N3) and (N4, N4), where the particles N1, N2, N3, N2 act as control parti-
cles, and the auxiliary particles N}, N2, N3, N2 serve as targets. After these operations, the
entangled channel in Equation (8) transforms into

1

‘H>:ﬁ §|¢1 NINININENPNANPNAND (NP N7 NP 0)r

(17)

+®|€92 NIN2NIRZNPNIRPRAND, N6 N7 NE |1>T ‘
j=1

where |¢}2) and |p}?) are the same as Equations (A8) and (A9) in Appendix A respectively.
To ensure the closed-loop structure of the indices, for j = n, we define N, +1 = N? and
N6 = le while for j = 1, we define N]7 = N/ and N]g_l = N&. The symbol ®
represents the tensor product, and the particle T belongs to the supervisor. Second, each
correspondent N, implements four projective measurements on particle pairs (N}, N3,),
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(N2,N2), (N3,N32), and (N3, Ni). Specifically, for the first particle pair (N2, NY), the
measurement basis is defined as

) = 8158 121100) + (<) aly L lon) 0
+ (DR 100+ (<D)af 1),

where k,j € {0,1}. The coefficients a%‘;) represent participant-specific weights that con-
tribute to the basis states. For the second particle pair (N2, N2), the basis follows a similar
structure to |ey;), but with adjusted indices and coefficients. Specifically, the indices k, j are
replaced with £, I, and the coefficients agﬁ) are replaced by agﬁl). For the third particle pair

(N3,N3), the measurement basis is given as

|w(kj)> _ %[e_iegu"*f“lom + (_1)S+te_i9;‘;(+]'+l+(*l)f ‘Ol}

st

(19)

Ay

4 (_1)587192k+j+1+2(—1)k 110) + (_1>te*i92}72k71‘|11>},

where s,t € {0,1}, and e ™ introduces specific phase adjustments for each basis state.
For the fourth particle pair (N2, N2), the measurement basis shares the same structure
as |ws(fj ) ), but with indices k, j, s, t replaced by h,1,m, r, respectively. Similarly, the phase
parameters 0¥ are replaced with §%. Third, the supervisor Tom measures his particle T
using the measurement operation |d)7(d| (d € {0,1}) and announces the measurement
result |d) to all correspondents. Based on these results, all participants can reconstruct the
target two-particle states. For simplicity, the intermediate measurement results, collapsed
states, and corresponding recovery unitary operations are omitted here. Since the proposed
extended scheme is similar in steps and operations to the four-party controlled bidirectional
cyclic scheme for RSP presented in the previous section, the success probability of this
extended scheme is 1.

4. Discussion and Conclusions

To the best of our knowledge, DDC quantum communication has been explored only
in a few studies [41,42,44,45], which mainly address the mixed communication of single-
particle states, RSP of single-particle states with real coefficients, and the remote preparation
of dual-particle states with real coefficients. In conventional controlled schemes, a fixed
set of measurement outcomes from the sender and supervisor is used to determine the
necessary recovery transformations for the receiver. These approaches typically present the
relationship between the measurement results and the corresponding recovery operations
in a way that can be cumbersome, especially when extending to multiparty communication
scenarios. The reliance on this rigid structure can hinder the scalability and generalizability
of the schemes, making it less efficient for applications involving more complex quantum
networks or multiparty communication. Unlike the schemes in the four references men-
tioned above, our scheme provides general analytical formulas applicable to dual-particle
states, describing the unitary transformations performed by the sender, supervisor, and
receiver. This overcomes the limitations of existing schemes, such as their weak reasoning
ability and complex expressions, which are not ideal for future multi-particle quantum
communication. Additionally, our scheme differs from the ones in the four references in
the following ways: the scheme in Section 2 is novel and has not been previously reported,
and in Section 3, we explore DDC controlled RSP for dual-particle states with complex
coefficients, offering a more general and broader application potential than the scheme in
reference [45]. This extension not only increases the applicability of the scheme but also
enables it to handle more complex quantum communication network applications.
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Intrinsic efficiency (IE) is an important metric for assessing the effectiveness of quan-
tum communication protocols. It is defined as [13,46]

qt

w = , (20)
be + qc

where g; is the number of qubits being transmitted, g, denotes the number of qubits in

the quantum channel, and b, refers to the classical bits transferred. Through systematic

optimization of channel utilization, our protocols achieve superior efficiency compared to

existing schemes, as detailed in Table 1.

Table 1. Comparison of IE for DDC quantum communication schemes.

Scheme qt qc+ b, w Woo
Ref. [44] (Single-particle) 6 13+15 3/14 ~ 0.214 -

Ref. [44] (Multiparty) 2n (4n+1)+5n 2n/(9n+1) 2/9 ~0.222
the schemes in Section 2.2 12 25+15 3/10=0.3 -

the schemes in Section 2.3 4n (8n+1)+5n 4n/(13n+1) 4/13 ~ 0.308

As demonstrated in Table 1,the two-particle scheme in Section 2.2 of our paper achieves
a 40% improvement in IE compared to the single-particle scheme. The generalized scheme
in Section 2.3 of our paper exhibits particularly noteworthy characteristics, approaching an
asymptotic efficiency of we = 4/13 as n — co. This represents a 38% improvement over the
corresponding single-particle state schemes, while maintaining linear scaling of resource
requirements. The efficiency gains originate from optimized entanglement distribution
strategies and reduced classical communication overhead through deterministic operator
relationships. Further extension to complex Hilbert spaces yields additional protocol
variants for complex-coefficient states. Specifically, the IEs of our protocols in Sections
3.1 and 3.2 are w = % and w = 21‘}1%, respectively. These results not only confirm
that our framework improves upon existing real-coefficient implementations but also
enable new capabilities for handling more sophisticated quantum states, further expanding
the applicability of our approach. handling more sophisticated quantum states, further
expanding the applicability of our approach.

Next, We briefly address the security of our protocols, which relies entirely on the
secure pre-sharing of entanglement among the authorized participants. This refers to
the security of the entangled resource during the distribution process. By using well-
established and comprehensive inspection strategies [47,48] for other similar quantum
tasks, any external malicious attack or internal deception is easily detectable. For simplicity,
we omit further discussion on this. Therefore, we can conclude that our protocols are fully
secure. Additionally, since all our schemes are controlled, it ensures that no communicator
can reconstruct the desired states without the supervisor’s consent, thereby providing
an extra layer of security. The security analysis is consistent with previous findings on
entanglement robustness in noisy environments. As demonstrated by Hu [49], the deco-
herence characteristics of multipartite entangled states directly determine their viability
as quantum channels. Our protocol relies on pre-shared entanglement resources, which
aligns with their conclusions about entanglement persistence under controlled conditions.
Furthermore, as shown by Jung et al. [50], the choice of entanglement structure plays a
key role in the robustness of quantum teleportation through noisy channels. This further
reinforces the reliability of the entanglement resources we depend on in practical quantum
communication scenarios.
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Taking the scheme outlined in Section 3.1 as an example, we examine the control
power [45,51,52] of the supervisor David [38,42]. Suppose Alice’s measurement outcomes
are |€00>A’1A; |w(()(1]0)>AgA’2 and |C01>A'3A5}|€§)%1)>A3Agr Bob’s results are ‘660>B§B§ |@§8°)>333§ and
1C00) BB, |C(()%O)> 8, and Charlie’s outcomes are |€’1’0>C{C£ \a‘J(g(l)O))qCé and |€(/)/0>C§C§; |§_8?>C§C§'
Based on Equation (A5) from Appendix A, it can be deduced that the entire system state
will collapse into

1 0, i0 0 0
—_ 00) — 2101 3110) — Ya111)) pr o
256\@{(11116 00) — a12¢"2[01) + a13¢"2[10) — a14e™[11)) pr s
X (ﬂzzeiez |00 + ll216191 |01
blle”xl ‘00

a24ei94|10> — a3é’ 3|11>>C’C’
b126"®2|01) — by3e'3|10) 4 by4e'™ 1))

b21€1(00) — bpe'*2[01) + bp3e*3[10) — byge™[11)) 1 o1
)) AL

))B;

621€i‘Bl |00 + 02261ﬁ2|01 + ng€iﬁ3|10> + g€ iPa |11 !B, |0> 1)

) )~
)~ )
) )
c13¢2|00) — c146P4]01) — c116%1[10) + c12¢P2[11)) 41 4
) )
111 71(11) + a12e2(10) — a13¢'%|01) — a14¢’ 4|00>)B’B’
) — ) ) —
)
)
)
)

a22€i92|11 a21e’91|10 —0—a24ei94|01 a3’ 3|00 )C/C’

bnei"‘l ‘11 + blze“"z |10 + b13€m3 |01 + b14€m4 |OO
b1 [11) + bope'®2 |10

— b23€m3 |01 A A

e rn e T e e e T rn e e

®
&
&
+
X
® ) ) Mee
® ) ) — by4e™4|00)) 4
@ (c13¢'P3|11) 4 c14€P4|10) 4 c11€P1|01) + c10eP? |OO>)
® ) ) ))B

216P1[11) — 20'P2]10) — c23¢P3(01) + co4eP|00 B,|1>

After that, Alice, Bob, and Charlie implement suitable unitary operations:

Usor = [0 (0 Vg ‘7(1 e [og (1 Ve 0(0 Ve [a@” ® Uq’l)]

(22)
11 11 0,0
® o <7 >®a;, No| ;, >®ag, No| ;, >®alg, N ee9,
and then the combined state in Equation (22) transforms into
| ) BLBL.CLCLCLCL AL AL ALAL BLBLD
1
= m(\ﬁbﬁBng|4’2>C§Cg|1P1>cgcg|1/’2>A’7Ag\Xl)AgAg|X2>B§Bé|O>D (23)

— 1) By [92) oy [91) crcr [W2) a ag 1) agar IX2) By 8y 1) D

where |¢¢), |¥k), and |xi) (k = 0,1) are the same as shown in Equation (10), and Alice’s
state |¢]) can be expressed as

|p1) = a11€1[11) — a12e™2|10) — a13¢%|01) + a14¢'(00).

The second state, |¢}), has a similar structure to |¢;) but is derived by replacing the
coefficients ay; with ay; for j = 1,2,3, 4, while keeping the phase factors 6; unchanged and
preserving the same sign pattern. For Bob and Charlie, their states share a similar structure
with |¢;) and can be derived by substituting coefficients and phase factors. Specifically,
Bob’s states |;) can be obtained by replacing Alice’s coefficients a;; with b;; and the phase
factors 0; with a;, resulting in [¢7) and [¢p5). Similarly, Charlie’s states |} ) are derived by
substituting a;; with ¢;; and 6; with B;, yielding [x/) and [x5). To avoid lengthy formulaic
descriptions, the explicit expressions for Bob’s and Charlie’s states are omitted here.
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If the supervisor David does not grant permission, the state of the system after mea-
surements by Alice, Bob, and Charlie collapses into a mixed state. This mixed state can be
represented using a density operator:

1
pwen = tro(pweran) = tro(|F)(FI) = goams | 190 (1] + [@2) (2,

where

1) = |¢1) B, @ [92) s, @ [$1) ey @ [W2) aray, @ [X1) azay, © 1X2) BBy

The state |®;) shares a similar structure to |®1). Specifically, |®;) is obtained by replacing
the states |¢x), [(k), and | xx) in |®1) with their primed counterparts |¢;), [¢;), and [x;),
respectively. The density matrix ppcrar = Pppcrcicicr ALALALALB By 1S composed of two
orthogonal states, |®;) and |®;), combined through their outer products. Here, trp(-)
denotes the partial trace over particle D. In this way, we are able to calculate the aver-
age fidelity of the composite state shared among the three communicators and deduce
David’s control capability as follows (for the detailed calculation process, please refer to

Appendix B):
Fasc = e[l + (2)F
ABC ™ 131072 6
and 1 1
Pp=1—fppc=1- W[l—k (5)611
respectively.

As highlighted in reference [52], the supervisor’s control power must satisfy the

following condition:

P> 21
2N 41
where N represents the number of qubits being teleported. It can be readily verified that
the control power achieved by David in Section 3.1 fulfils Pp > (2!2 —1)/(2'? +1). This
demonstrates that, from the supervisor’s perspective, the protocol described in Section 3.1
is both reasonable and feasible.

Turning our attention to the feasibility of the proposed schemes, it is evident that their
implementation involves fundamental quantum operations, including Bell-state measure-
ments, single-particle measurements, and the application of quantum gates such as the
Hadamard gate, CNOT gate, and Pauli gates. These operations have been successfully
realized across a variety of experimental quantum platforms, including the cavity QED
system [53], ion trap system [54], and optical systems [55], among others. Given the matu-
rity of these technologies, the protocols proposed in this work are experimentally viable
and can be implemented with current advancements in quantum technology.

In summary, in this work, we constructed a 25-particle entangled state based on
Hadamard and CNOT gates to serve as a quantum channel, and on this basis, proposed
two novel four-party CDDC schemes tailored for QT and RSP. In the QT scheme, under
the controller’s authorization, three communicators each transmit two arbitrary unknown
two-particle states to the other two communicators. In this process, each communica-
tor performs only four Bell-state measurements, while, with the controller’s approval, a
single-particle Z-basis measurement is performed to achieve bidirectional transmission of
the two unknown two-particle states. The receivers can deterministically reconstruct the
target states by selecting the corresponding unitary operations based on the measurement
outcomes. For the RSP scenario, under the supervision of the controller, each communi-
cator, with the assistance of the other communicators, can prepare two different arbitrary
two-particle states. To accomplish this, each communicator introduces four auxiliary qubits
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and performs four CNOT gate operations, and then, by combining a feedforward strategy,
cleverly constructs different measurement bases to perform two two-particle measurements.
Subsequently, the controller measures their particle in the Z-basis, after which each receiver
perfectly recovers the target state by applying the appropriate Pauli operations based on
the measurement results of the other three participants. Both schemes achieve a theoretical
success rate of 100%. Furthermore, we have extended the two proposed four-party CDDC
quantum communication schemes to the case of 7 communicators and one supervisor, i.e.,
an n + 1 party scenario, where 7 is greater than 3. Since the extended scheme follows a
similar procedure and operational approach as the previous schemes—wherein each com-
municator, under supervisory control, can simultaneously transmit two different arbitrary
two-particle states to the other parties, thereby achieving controlled quantum cyclic com-
munication in both clockwise and counterclockwise directions and ultimately realizing a
100% success rate—we provide a general mathematical formulation for bidirectional cyclic
quantum communication with multi-particle states applicable to each scheme. This offers
a scalable operational framework for multi-particle bidirectional cyclic communication.
Moreover, we evaluated the inherent efficiency, security, and controllability of the proposed
schemes. Compared with previous studies, our schemes are efficient, controllable, secure,
and experimentally feasible. With the continuous advancement of quantum technologies,
the schemes proposed in this study can be further expanded to meet more complex com-
munication requirements. Through innovations in communication protocols, mathematical
formulations, and the extension of the schemes, this research provides theoretical and
technical support for the ongoing development of multi-particle quantum communica-
tion, aiming to enhance security, capacity, and meet the diverse needs of future quantum
network scenarios.
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Appendix A. Detailed Derivation of the Relevant Equations

In this appendix, we provide the explicit forms of the eight-particle maximally en-
tangled states |¢}) and |¢3), which are used in Section 2.1 to construct the 25-particle
maximally entangled quantum channel state for the implementation of the four-party DDC
controlled QT scheme. These states are critical components in extending Yu’s protocol [15]



Entropy 2025, 27,292

19 of 26

to the 25-particle maximally entangled state framework. The explicit expressions for |¢%)
and |@8) are as follows:

1
|91) = 7 (100000000) + |00010001) + 00100010) — 00110011)

+101000100) 4 [01010101) + |01100110) — [01110111) (A1)
+10001000) + |10011001) + 10101010 — |10111011)
+[11001100) 4 [11011101) + [11101110) — [11111111))

and
1
|<p§> = Z(|00001111> —]00011110) — |00101101) — |00111100)

—101001011) +-[01011010) +- |01101001) 4 |01111000) (A2)
— |10000111) + {10010110) + |10100101) + |10110100)
+ [11000011) — [11010010) — |11100001) — |11110000)).

Suppose Alice intends to simultaneously send the unknown two-particle state |e1) Ay
to Bob and the unknown two-particle state |e;) A4, to Charlie. At the same time, Bob
plans to transmit the unknown two-particle state |wy) g, 5, to Charlie and the unknown
two-particle state |w;)p 5 to Alice. Additionally, Charlie aims to teleport the unknown
two-particle state [A1)¢ ¢, to Alice and the unknown two-particle state |A2)c ¢, to Bob,
all under the supervision of David. These arbitrary unknown two-particle states can be
expressed as

‘Ek Xka Zxkl ]1]2 Xka k S {1/2}r X € {Ar B/ C}/

where xj; are the corresponding coefficients, and i, j» € {0, 1} represent the quantum bit
states. Specifically, the general mathematical expressions for the six quantum states are

€1) 4,4, = (x11]00) + x12|01) + x13[10) + x14[11)) 4,
1€2) 4,4, = (x21]00) + x22|01) + x23]10) + x24[11)) 4, 4,

lw1)p, 5, = (¥11]00) +y12|01) +y13[10) + y14[11)) 5 5 (A3)
|w2) g, 5, = (Y21100) + ¥22|01) + y23[10) + y24|11) ),

A1) e, e, = (211]00) + z12|01) + 213[10) + 214|11>)(:1c1

[A2)c,e, = (221]00) + 222|01) + 223[10) + z24[11)) ¢, -

The measurement outcomes of Alice, Bob, and Charlie become mutually entangled,
leading to the formation of the multipartite quantum entangled state | 7"), which is explicitly
expressed as follows:

1 1 1
IT) = 256\@{ g;,:()w;;:(]|Bfg>AlAg|th&>,§1,qu|Buz:>AzA'3|qu>AzAg1

Flf gt ) - G, p,0,0,%)crc
1 1
+ 2 2 |[7”f’g’>BlBi|Bh’t’>élB£|Bu’v’>BzBé|[)’p’q’>}?;2351
f’,g’,h’,t’:() u’,v’,p’,q’:O
Ff 8 e - G000 y) ayay
1 1

+ Z Z |Bf//g//>clci |lgh//t//>(’flczé‘BM//U//>C2C:/3|lgp//q//>(:2c‘/L
f,/rg///h,/rt//:() ulllvllrp//’q//:()
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]—'(f”,h”,g”,f”/z)A/SAg'g( g ZB/B/}|0>

1 1 1
256\@{ Ztl " ; O|Bfg>A1A;|Bht>A1A§|Buv>A2Ag|qu>A2A;

h
“F'(f,h,gt, x)

1 1

+ ) Z Byrgr) b5y | Birer) g, gy | Burer) By | Bprgr) 8,31
.8 W F=0u'o,p’ g’ =0

9=
G'(u,p,v,q,x )c;cg

FHE N e G WY 0 y)
1 1
+ Z Z |Bf”g//>clci |Bh//t//>c"1cé|Bu//z]//>c2(jé|Br)//q//>c'\2CA/1
f//,g//,h//,t//:() u”,v”,p”,q”:()
(A4)

F/ (f//, h//, g//, t///Z)AéAg . g/(u//, p//’ 'U//, q,//Z)B;Bé } |1>D/
where

F(fh g t,x) = xu1lf,h) + (1) x12| £, 1B h) 4+ (—1)8x13/1 6 f,h) + (—1)8xp4[1 6 f, 1 @ h).

F(fohgtx) =x111® f,1&h) + (—1)'x12|1 & f,h) + (=1)8x13|f, 1@ h) + (—=1)8H xyy|f, ).

G, p,0,q,%) = (—1)*Pxy |u, p) + (=1)*0EP)Hx00 1,1 @ p)
+ (_1)v+(169u)px23|1 ®u, P> + (_1)(1®11)(169p)+v+qx24‘1 Du,1@ P>/

G'(u,p,0,q,x) = (1)1 x 1@ u, 1@ p) + (1) 18P Hxp[1 @ u, p)
+ (=1)7 8P x5 1, 1@ p) 4 (—1) P g |u, p).

The quantum state after Alice, Bob, and Charlie share their respective measurement
outcomes can be described as the post-measurement entangled state |7”), which is ex-
pressed explicitly as follows:

1

T") = NG [F(f,h, xt,8)pp © G(u,p,x, 8 ey, @ Hf, Wyt 8 )erer

D100, 0,0 4 g © T 20, s, © K, p", 20", ) gy ] 10

1
~ 7 [F(l Sf1ohxt,g)pp @G(LEu1®p, X8 q)c, (A5)

®HA®f,1eh,yt,8)ac @ lleu,1ep,y,7,q) s 4,
©I0E /1@ 21", 8") gy @K1 U, 18", 2,0",q" gy | L,
where
F(f,h,x,t,8) =xnlf, h) + (=1 x2|f, 1@ h) + (=1)8x33[1® f, h) + (=) a1 @ f, 10 h),
G(u,p,x,8,q) =(=1)"xalu,p) + (=1)* 08P+ x0|u, 1@ p) 4 (—1)7T(1EWPx,g
1@ u,p)+ (—1)1EWAETH0 11 B u, 1@ p)

H(f' 1y, t,¢") = yulf 0 + (1) 'yl f 100 + (~1)8 yiz|1 0 £, 1)
+ (=18 yulie fL1en)
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1 i 11 1
K", p",z,9",q4")

16,0, y,7,4") =(=1)"Pyn |, p') + (1) OSP4Ty il 1 @ p'y + (—1)7 FAE0
L@, p) + (—1) @A+ 1 @il 1 )

](f/// Wz t//,g//) :le‘f”/ h//> + (—1)t//212|f",1 ® h//> + (_1)g”213|1 @f”,h”>
+ (_1)g”+t”214|1 @f//,l @ h//>

s

=(-1)""? 221|u//, p//> + (_1)u”(169p”)+q”222’u//,1 ® PH> + (_1)v”+(1€Bu”)p”Zz3
|1 ®u’ p//> + (_1)(1EBu”)(1@p”)+v”+q”zz4|1 ou' 16 PN>

In the main text, we discussed the unitary operations required to reconstruct the target
quantum states in this protocol. Specifically, after receiving all the measurement outcomes,
Alice, Bob, and Charlie are expected to carry out the appropriate unitary operations based
on their measurement outcomes in order to restore the original quantum states. These
operations can be represented in a unified manner as follows:

U = (1-w) U @ 4] +w[u'™® o '™,

where X € {A’,B/,C'} represent the different participants Alice, Bob, and Charlie. The
specific forms of UX), IX), U'(X), and U'X) are as follows:

A

U = (1 - w)[UW) @ UD] + w[u'@) @ 04,
U = (1 —w)[U®) @ U®)) +w[u'®) o 0'#)), (A6)
UC) = (1-w)[u®) 0] +wu'®) o ).

The unitary matrices uX, X, u’X and U’ X are defined as follows:

u®) = 100)(f, h| + (=1)|01) {f, 1 & ]
+ (=1)8110)(1 @ £, h| + (=18 1) (1@ f, 1@ h,
at®) = (=1)"?|00) (u, p| + (—1)“0€P)H)01) (u,1 & p|
+ (=) TIEP10) (1 @ u, p| + (1) PO 1 @ w1 @ p),
ut®) = 100)(f, 1|+ (D) |01y (f, 1 1|
+ (=D 0V (1 f 1)+ (~1)EH ) A @ f,1a 1),
atA) = (=1)*% |00) (', p'| + (=1)* P 01) (', 1 @0 p'|
+ (—)HE 0y L@, p| 4 (1) 1SS ) e 1@ p,
utA) = joo) (", 1] + (1) |01) (f", 1 @ 1|
+ (=D 0@ 0| + (-1 1) 1@ 7 1e K,
at) = (=1)*"" 00y (u”, p"| + (—1)"" =P 01) (u”, 1 @ p"|
+ (=) 0y L@, p| + (—1) MDA 1 1 g u” 1@ p),
u'®) =001 f,1 @ k| + (—1)'01)(1 & f, k|
+ (=1)310)(f, 1 & h| + (1) 11)(f, B,
() = (=1)®=0EP|100) (1 @ u,1 @ p| + (—1)1EIPH01) (1 & u, p|
+ (=1)P O 10) (u, 1 @ p| + (—1)"P ML) (u, p),
U =jo0Y1@ 1@k |+ (-1 |o1) (1@ £, K|
+ (DS 0) (1@ | + (—1)S ) (1),
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') = (=)@ 100y (1 ', 1@ p'| + (-1) ISP+ o1y 1 @ o, p|
+ (=) OO0y (', 1@ p |+ (D)W 10 (', |,
u' =jo0y1e f,1@h"| + (1) [01) (1 & £, 1|
+ (=D 0) (7, 1@ | + (1) ) (7, n,
') = (=)@ 110y 1 o u”, 1@ p"| + (=1) &P+ 01y (1 @ u”, p|

1" 11

+ (_1)0"+11/’(1@p’/)|10> <u//,1 @ PN| + (_1)u p +v”+q”|11><u//, PN‘-

(A7)

In the main text, by performing CNOT operations on the respective particle groups, we
obtained the quantum state |T”) in Equation (14), which is expressed as a superposition of
two types of 12-particle maximally entangled states, |¢12) and |@2?). For clarity and further
analysis, the explicit forms of these two entangled states are provided below:

1
|p1%) = ;(/000000000000) + 000001010001} + 000010100010) — [000011110011)

+1010100000100) + [010101010101) + 010110100110) — 010111110111)  (5g)
+ 101000001000) + [101001011001) + [101010101010) — [101011111011)
+[111100001100) + [111101011101) + [111110101110) — [111111111111)

1
|¢3%) = ;(000000001111) — |000001011110) — 000010101101) — [000011111100)

—(010100001011) + [010101011010) + [010110101001) + 010111111000) (g
— [101000000111) + [101001010110) + [101010100101) + [101011110100)
+(111100000011) — [111101010010) — [111110100001) — [111111110000).

In Equation (12) of the main text, the quantum state |T") was introduced in its basic
form. This state is obtained through a series of measurements performed by Alice, Bob,
and Charlie on their respective particle pairs, followed by the exchange of measurement
results among them. Each participant constructs measurement bases specific to their role,
and the resulting states form the components of the expanded |T’). By applying the above
six sets of measurement bases, the quantum state |T’) can be explicitly expanded into a
detailed mathematical form. The following equation presents the full structure of |T’),
accompanied by the definitions of the functions F, F/, G, and G’. These functions encode
the weight distributions and phase adjustments of the basis states.

! (uo)
T — . .
) = 256\@{ ). |€uv>A’1A§|Wst ) A Ay -F(u,v,s,t,@,a)BéBé

u,v,s,t=0

© Y (G asalot) a4, G(pa,mr0,0)cc,
p.q,m,r=0

1,0

® Z |€;/v/>BIB/ d]s(/l/:f’v)>Blgz 'F(M/,U/,S/, tl;a,b>clcl

u' ol s =0 172 5%6

/ AP'q) IR, (A10)

® Y |Gy )ml oy VBas, - G(P g m 1 b) a4y

g ' =0

",

(03] Z |€Z"U”>C1Cé |(IJS(/17t//U >Clc_2 . F(M”, UN/ S/// t”; ﬁ/ C)AgAg

w o s H1=0
® T [Gpcclemi e, G m 1" B,c) gy 110)

p'q" 1 C5C, S 1C5Cy p.,q,m,r;p, BLB, D

p//,q//,m//,r//:()
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1 o)y .
* 256\/5{ u,v;:O |€uv>A%A/2|wSt >A1A2 Fu,vst; e’a)BéBé
® ), \Cpq)AgA;\Gsfﬂ)>A3A4'G’(qu,m,r;@a)c;cg
p,q,m,r=0

1.,
® ), lew s Cffs(f:/v%léz'F'(M'f?//s'rt’%b)cgcg
u' o' s =0
/ A(P'1) " ol gl
® Y Cg)msl Sy 2aia, G (P a1, b) g ay
vgm’ ¥ =0

(u//v//)

(24 Z |€Z”ZJH>C1C§ |(Ds”t” >Cch ' F/ (1/[//, U//r SH/ t//; ﬁr C)Aé—Ag
W ol =0

11 1
® ) |Cyedac i e, G0 g m" "3 B, c)B, B, } 1o,

i 1l —
p".q" ,m" " =0

where u,v,s,t,p,q,m,r € {0,1} and the functions are defined as follows:

F(u/ 0,5, t/ 6/ a) = al,2M+U+lei92“+v+] |00> + (_1)u+v+s+tﬂ1,2u+v+1+(—1)v
o2uror14(-1)? |01) + (_1)H+Su1,2u+v+1+2(71)” e2uror142(-1) |10)

+ (=1)"M a1 4y pe™-200|11),

F'(u,0,5,£;0,8) = a1 gy 1€ P204041 [11) 4 (=) 0H gy o Caye
o O2utot1(-1)° 10) + (_1)u+s+1a1 2u+v+1+2(_1)uei92u+v+1+2(71)“ |01)
+ (_1)v+ta1,472ufv€i9472u7v |00>/

Similarly, F(u,v,s,t;60,b) and F(u,v,s,t;6,c) can be obtained by simply replacing a in
F(u,v,s,t;0,a) with b and ¢, respectively. The expression for G(p, q,m,r;0,a) is structurally
similar to F(u,v,s,t;0,a). It can be be derived by replacing u,v,s,t in F(u,v,s,t;6,a)
with p,q,m,r and substituting the coefficients a; ; with a,;. Likewise, the form of
G'(p,q,m,r;6,a) is analogous to F'(u,v,s,t;0,a). This can be achieved by replacing u,v, s, t
in F'(u,v,s,t;0,a) with p,q,m, r, and substituting a, y with a, . Similarly, G(p,q,m,r;6,b)
and G(p,q,m,r;0,c) can be obtained by simply replacing a in G(p, q,m,r;6,a) with b and
c, respectively.

Appendix B. Detailed Fidelity Derivation

The fidelity of the combined state shared by the three communicators can be expressed as

1 2
fasc = (elpwerarle) = 31072 +22 T 11 {F)((k)} / (A11)
Xe{A,B,C} k=12

where |0) = |¢1)[P2) |P1)[¥2)|x1)|x2), and X € {A, B, C} represent the three communica-
tors (Alice, Bob, and Charlie), and k = 1,2 correspond to the two states for each participant.
The function F)((k) is defined asF)((k) = Xj1Xk4 COS(01 — 6y) — X X3 cOs(02 — 03), where x;;
are the coefficients and 6; are the phase factors specific to each communicator. For Alice
(X = A), the coefficients and phase factors are x;; = a;; and 6; = 0;, respectively. For Bob
(X = B), they are x;; = b;; and 0; = a;, and for Charlie (X = C), they are x;; = ¢;; and

To compute the average fidelity of the joint state shared among the three communi-
cators, we represent the coefficients j, bkj and Ckj (k=1,2;j =1,2,3,4) using spherical
parameterizations as follows:
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a1 = cos By, ayp, = sin Uy cos Oy, ayz = sin ¥ sin 0 cos g, apy = sin Yy sindy sing;, (Al2)

where the corresponding coefficients by; and ¢; for Bob and Charlie take on the same struc-
tural form but are defined by their respective angular parameters (93,3, €3, . .., U6, 06, €6)-
Here, 0,0 € [0, 7] and ¢, € [0,27] forall k € {1,2,3,4,5,6}.

By substituting these spherical coordinates into the general fidelity expression previ-
ously defined, the average fidelity of the composite state shared by the three communicators
can be expressed as a function of these angular parameters. This formulation naturally
encapsulates the contributions of all participants (Alice, Bob, and Charlie) while maintain-
ing the inherent symmetry of the system. The explicit relationships between the angular
parameters and the fidelity ensure that the optimization of fidelity becomes a geometric
problem in the parameter space, reflecting the interplay between amplitudes and phases
encoded in the states.

For clarity and conciseness, the detailed intermediate derivations are omitted here but
follow directly from substituting the parameterized coefficients into the fidelity equation.
This approach highlights the role of the angular parameters in determining the fidelity and
provides a compact representation suitable for further analysis or optimization in quantum
communication protocols. Therefore, the average fidelity of the composite state shared by
the three communicators can be expressed as

1+22 J] H[I)((k)r ) (A13)

-
XG{A,B,C} k—1,2

where the integral term I)((k )

I(k) 1 2w pmm opmo o p2w p21m L2 P21 ) 219 -
= — s sin
R A A A A A A L

[xklxk4 COS(Gl — 94) — Xj2Xk3 COS(GZ — 93)}2 dﬁkd§kd€kd91d92d93d94.

is expressed as

Here, I)((k) corresponds to the contributions from each communicator, where X = A, B,C
represent Alice, Bob, and Charlie, respectively, and k = 1,2 denotes the two states for each
participant. The coefficients and phase parameters differ for each communicator: for Alice
(X = A), xjj = a;;,0; = 0j; for Bob (X = B), x;; = b;j,0; = aj; and for Charlie (X = C),
xi]' = Cij/ 9] = ,8]

By substituting Equation (A12) into Equation (A13), this average fidelity and David’s
control power are

ijs

— 1 1.6
and 1 1
Pp=1-fypc=1- WUJF (6)6]/
respectively.
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