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Abstract: With the rapid development of quantum communication technologies, controlled

double-direction cyclic (CDDC) quantum communication has become an important re-

search direction. However, how to choose an appropriate quantum state as a channel

to achieve double-direction cyclic (DDC) quantum communication for multi-particle en-

tangled states remains an unresolved challenge. This study aims to address this issue

by constructing a suitable quantum channel and investigating the DDC quantum com-

munication of two-particle states. Initially, we create a 25-particle entangled state using

Hadamard and controlled-NOT (CNOT) gates, and provide its corresponding quantum

circuit implementation. Based on this entangled state as a quantum channel, we propose

two new four-party CDDC schemes, applied to quantum teleportation (QT) and remote

state preparation (RSP), respectively. In both schemes, each communicating party can

synchronously transmit two different arbitrary two-particle states to the other parties under

supervisory control, achieving controlled quantum cyclic communication in both clockwise

and counterclockwise directions. Additionally, the presented two schemes of four-party

CDDC quantum communication are extended to situations where n > 3 communicating

parties. In each proposed scheme, we provide universal analytical formulas for the local op-

erations of the sender, supervisor, and receiver, demonstrating that the success probability

of each scheme can reach 100%. These schemes only require specific two-particle projective

measurements, single-particle von Neumann measurements, and Pauli gate operations,

all of which can be implemented with current technologies. We have also evaluated the

inherent efficiency, security, and control capabilities of the proposed schemes. In compari-

son to earlier methods, the results demonstrate that our schemes perform exceptionally

well. This study provides a theoretical foundation for bidirectional controlled quantum

communication of multi-particle states, aiming to enhance security and capacity while

meeting the diverse needs of future network scenarios.

Keywords: CDDC; controlled cyclic QT; controlled cyclic RSP; 25-particle entangled state

1. Introduction

Quantum entanglement is essential for quantum communication, as it reveals non-

local correlations between distant subsystems. QT and RSP are prime examples of quantum

entanglement applications, both involving the transfer of quantum states between loca-

tions without the actual physical travel of the particles involved. QT was introduced by

Bennett et al. [1] in 1993. It allows for the secure teleportation of any arbitrary unknown

single-particle state from one location to another using pre-shared entanglement between
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two parties as the quantum channel, with the support of classical communication. Since

then, various QT protocols have been proposed, such as controlled QT [2–4], bidirectional

QT [5,6], controlled bidirectional QT [7,8], cyclic QT [9,10], and controlled cyclic QT [11–13],

each enhancing aspects like security or communication capacity. Additionally, in 2000,

Lo [14] introduced RSP, which can be viewed as a form of QT. Unlike QT, the prepared

single- or multi-particle state does not need to be owned or measured by the transmitter.

Instead, its coefficients are completely known to the transmitter, but not to the recipient

at all. Therefore, RSP consumes less classical resources at the cost of the target state being

completely transparent to the sender. Since its introduction, RSP has garnered signifi-

cant attention, leading to the development of various enhanced RSP protocols, such as

multicast-based multiparty RSP [15], controlled RSP[16,17], joint RSP[18–22], controlled

joint RSP [23],and bidirectional controlled RSP [24–27], among others. However, these

protocols are limited to one-way or two-way communication only.

In recent years, the development of quantum networks has brought new challenges

and opportunities to the study of quantum communication. Quantum networks are re-

garded as a core infrastructure for achieving distributed quantum computing, ultra-secure

communication, and high-precision quantum sensing. They are also an essential com-

ponent of the future quantum internet [28–30]. Kimble first proposed the concept of the

quantum internet in 2008 [28], emphasizing that quantum networks can enable global

quantum information processing through entanglement distribution. With the continu-

ous progress of technology, significant advancements have been made in the capacity of

quantum networks [29], the computational efficiency of nonlinear Bell inequalities [30],

and the feasibility of quantum repeaters [31]. These studies not only provide important

theoretical and technical support for the design of quantum communication protocols but

also highlight the pivotal role of quantum networks in the future of quantum information

technology [32,33].

To address the demand for multiparty quantum communication in quantum net-

works, Chen et al. [34] proposed a novel cyclic QT scheme in 2017. This scheme utilizes

a six-particle entangled state as the quantum channel to facilitate single-particle state

transmission among multiple participants. Specifically, in this protocol, Alice teleports

a single-particle state to Bob, Bob transmits a single-particle state to Charlie, and Char-

lie simultaneously conveys a single-particle state back to Alice, forming a closed cyclic

communication loop. This scheme was further extended to scenarios involving n (n > 3)

participants, offering a flexible solution for multiparty quantum communication in quan-

tum networks. Peng et al. [13] expanded on Chen’s work, introducing a framework for

cyclic controlled QT where each participant, with the supervisor’s permission, teleports a

state to neighbors. This led to the development of cyclic quantum communication protocols

like controlled cyclic QT [35,36] and cyclic (controlled) RSP [37–40]. These protocols, while

considering cyclic transmission in both directions, have a limitation: adjacent participants

cannot exchange their quantum states, which may not fit real-world applications. More

recently, Jiang et al. [41] proposed a hybrid dual-channel protocol, allowing communica-

tors to transmit both known and unknown single-particle states to two others using RSP

and QT, respectively. This protocol supports both cyclic RSP and QT communication in

both directions, enhancing flexibility. Additionally, from a different viewpoint, adjacent

communicators are able to swap their quantum states, which could significantly enhance

the functionality of future quantum communication networks. Building on this, Sun and

Zhang [42] introduced a DDC controlled RSP protocol for single-particle states, inspired by

the single-particle quantum multicast concept, using a thirteen-particle entangled state as

the quantum channel. The following year, they extended this idea by proposing a four-party

scheme for implementing DDC controlled RSP for arbitrary two-particle states [43]. In
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this scheme, with the supervisor’s approval, each communicator can assist the other two

communicators in preparing their respective two-particle target states simultaneously. In

2023, Peng et al. [44] further advanced the field by proposing a DDC controlled quantum

communication scheme for single-particle states.

Although the existing studies have laid a solid foundation for multiparty quantum

communication, further exploration of more efficient and flexible quantum resources and

protocols is still needed to meet the increasingly complex and diverse demands of future

quantum networks. To address this challenge, this paper proposes a scheme for con-

structing a 25-particle entangled state using Hadamard and CNOT gates as the quantum

channel. Based on this entangled state, we designed DDC controlled QT and RSP pro-

tocols for arbitrary two-particle states. In the four-party scenario, the proposed protocol

allows each communicator to simultaneously transmit two different two-particle states

to the other two communicators, achieving cyclic communication in both clockwise and

counterclockwise directions, significantly enhancing the flexibility and applicability of

the quantum communication protocol. Moreover, the proposed protocol achieves a 100%

success rate, with the required operations consisting only of two-particle projective mea-

surements, single-particle von Neumann measurements, and Pauli gates, all of which can

be implemented with current quantum technologies, ensuring experimental feasibility. We

further extend the four-party protocol to an (n + 1)-party scenario (n > 3) and propose

a new method for constructing an (8n + 1)-particle entangled state to meet the demands

of multiparty communication in large-scale quantum networks. While Peng et al. have

already proposed a quantum channel and circuit design for single-particle states, the com-

plexity and technical requirements increase significantly when extending the protocol to

two-particle states. Compared to previous research, our work breaks through the limita-

tions of single-particle states and is the first to apply the DDC quantum communication

protocol to two-particle states. By constructing a new quantum channel, we successfully

overcome the technical bottlenecks in two-particle state cyclic communication and pro-

pose a more efficient and scalable quantum communication model. This innovation not

only expands the types of particles and transmission modes in quantum communication

but also provides a solid theoretical foundation for the implementation of multi-particle

quantum communication. Additionally, we provide more precise and practical mathemati-

cal formulas, offering important theoretical support for future research in multi-particle

quantum communication. We also analyze the efficiency, security, and control capabilities

of the scheme, and enhance the stability and flexibility of communication by optimizing

multiparty control mechanisms. This offers solid support for the practical implementation

and use of quantum communication networks. The results of this research will promote the

widespread application of quantum communication technologies in large-scale quantum

networks, further advancing the field of quantum information science.

The rest of this article is structured as follows. In Section 2, we suggest a method for

constructing a multi-particle quantum channel using a 25-particle entangled state as an

example, provide the detailed steps for implementing a four-party DDC controlled QT

scheme of arbitrary unknown two-particle states, and extend this transmission scheme

to (n + 1)-party (n > 3) via an (8n + 1)-particle entangled state as the quantum channel.

Section 3 describes the four-party DDC controlled RSP scheme by introducing auxiliary

12 particles, and promotes it to the scenario with n (n > 3) communicators. Finally,

conclusions are discussed and drawn in Section 4.
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2. Double-Direction Cyclic Controlled Quantum Teleportation of
Arbitrary Two-Particle States

We introduce a four-party DDC-controlled QT scheme with three communica-

tors—Alice, Bob, and Charlie—and a supervisor, David. With the supervisor’s approval,

each communicator can simultaneously teleport two distinct unknown two-particle states

to the other communicators, while also receiving two unknown two-particle states from

them. This setup allows for cyclic controlled QT in both clockwise and counterclockwise

directions. Figure 1 illustrates the relationships among the three communicators and

the controller, emphasizing the quantum states being teleported and the transmission of

control information.

Figure 1. The relationship between the three communicators and one supervisor. The blue and red

lines with arrows represent the quantum states to be transmitted, while the green straight line with

an arrow represents the transmission of supervisor information.

The detailed description of this scheme is provided in Section 2.2, and we extend the

scheme to a general case involving multiple communicators, with the specific protocol

and corresponding quantum circuit diagram presented in Section 2.3. To implement the

proposed scheme, a 25-particle entangled state is required as the quantum channel, and the

specific steps for constructing this quantum channel are detailed in Section 2.1.

2.1. Construction of the Quantum Channel

To implement the four-party DDC controlled QT scheme, we begin by constructing a

25-particle maximally entangled state to serve as the quantum channel. In Yu’s protocol [15],

an eight-particle maximally entangled state, denoted as |φ8
1⟩, is used for the quantum

multicast of two-particle states. Building on this eight-particle maximally entangled state,

we extend it to a 25-particle maximally entangled state to fulfil the requirements for four-

party controlled QT. Specifically, the quantum channel state is expressed as

|G⟩1,2,··· ,25 =
1√
2
(|φ8

1⟩12···8|φ8
1⟩9,10,··· ,16|φ8

1⟩17,18,··· ,24|0⟩25

+ |φ8
2⟩12···8|φ8

2⟩9,10,··· ,16|φ8
2⟩17,18,··· ,24|1⟩25),

(1)

where |φ8
1⟩ and |φ8

2⟩ are the eight-particle maximally entangled states, the explicit forms of

which are provided in Appendix A as Equations (A1) and (A2).
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Figure 2 shows the quantum circuit used to create the 25-particle maximally

entangled state.

H

H

H

H

H

H

H

H

H

H

H

H

H

Figure 2. The quantum circuit for constructing the 25-qubit entangled channel, where H represents

the Hadamard gate operation, and the solid black “·” and “⊕” together form a CNOT operation. The

Hadamard gate is used to transform the qubit into a superposition state, while the CNOT gate is

used to create entanglement between two qubits.

The Hadamard gate H and the CNOT gate are represented by the following matrices:

H =
1√
2

(

1 1

1 −1

)

, CNOT =











1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0











. (2)

We begin by preparing the 25-particle maximally entangled state from the initial state,

where all qubits are in the |0⟩ state. The first step is to apply a Hadamard gate H to the

25th qubit, which changes its state from |0⟩ to a superposition state of 1√
2
(|0⟩+ |1⟩). The

quantum state at this stage is

|G1⟩1,2,··· ,25 = |00 · · · 0⟩1,2,··· ,24 ⊗
1√
2
(|0⟩+ |1⟩)25. (3)

Next, we apply 24 CNOT gates, where the 25th qubit serves as the control qubit

and the remaining 24 qubits serve as the target qubits. Each CNOT gate entangles the
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25th qubit with the corresponding target qubit. After these operations, the final quantum

state becomes

|G2⟩1,2,··· ,25 =
1√
2
(|00 · · · 0⟩+ |11 · · · 1⟩)1,2,··· ,25. (4)

Subsequently, we proceed with a series of transformations. First, particle 1 passes

through a Hadamard gate, followed by a CNOT operation with particle 1 as the control

and particle 5 as the target. Then, particle 2 undergoes a Hadamard gate, and a CNOT

operation is performed with particle 1 as the control and particle 6 as the target. Particle 3

is next processed with a Hadamard gate, followed by a CNOT operation with particle 3 as

the control and particle 7 as the target. Another CNOT operation is applied with particle 3

as the control and particle 4 as the target. Lastly, particle 4 is subjected to a Hadamard

gate, and a CNOT operation is performed with particle 4 as the control and particle 8 as

the target.

Similarly, we apply the same set of transformations to particles (9, 10, · · · , 16) and

(17, 18, · · · , 24). After all these steps, the 25-particle maximally entangled channel, as

shown in Equation (1), is fully constructed.

This construction process provides us with a general method for preparing multi-

particle entangled states. Using this method, we can construct a maximally entangled state

for any number of particles of the form (8n + 1).

2.2. Four-Party DDC Controlled Quantum Teleportation Protocol

In this subsection, we provide a detailed description of the four-party DDC controlled

QT protocol, using the 25-particle entangled state constructed in Section 2.1 as the quantum

channel. As illustrated in Figure 1, The protocol involves four participants: Alice, Bob,

and Charlie as communicators, and David as the supervisor. Alice intends to send the

unknown two-particle state |ϵ1⟩A1 Â1
to Bob and |ϵ2⟩A2 Â2

to Charlie. Bob aims to send

|ω1⟩B1 B̂1
to Charlie and |ω2⟩B2 B̂2

to Alice. Meanwhile, Charlie plans to teleport |λ1⟩C1Ĉ2
to

Alice and |λ2⟩C2Ĉ2
to Bob, all under the supervision of David. These arbitrary unknown

two-particle states can be represented as |ϵk⟩XkX̂k
= ∑

4
l=1 µkl |bl⟩XkX̂k

, where k ∈ {1, 2}
corresponds to the different quantum states transmitted, and X ∈ {A, B, C} represents

Alice, Bob, or Charlie as the sender. Here, µkl are the complex coefficients for each quantum

state and |bl⟩ is the two-particle computational basis, with l ∈ {1, 2, 3, 4} corresponding to

|00⟩, |01⟩, |10⟩, |11⟩. The coefficients µkl , νkl , and γkl (for k ∈ {1, 2}, l ∈ {1, 2, 3, 4}) satisfy the

normalization conditions ∑
4
l=1 |µkl |2 = 1, ∑

4
l=1 |νkl |2 = 1, and ∑

4
l=1 |γkl |2 = 1, ensuring the

proper normalization of the quantum states involved. This generalized expression unifies

the representation of all the quantum states used in the protocol, eliminating redundancy

while keeping the clarity of the different states exchanged between Alice, Bob, and Charlie

under the supervisor’s control.

In the preparation phase, the supervisor David needs to prepare a 25-particle maxi-

mally entangled state as depicted in Equation (1), then should retain particle 25 for himself

and allocate particles (1, 2, 3, 4, 15, 16, 21, 22), (5, 6, 9, 10, 11, 12, 23, 24) and (7, 8, 13, 14, 17,

18, 19, 20) to Alice, Bob, and Charlie, respectively. This way, David, Alice, Bob, and Charlie

share an entangled quantum system, each participant holding a distinct set of particles. The

entangled state |G⟩ that describes this system is written as a superposition of two terms.

Each term consists of the product of three maximally entangled 8-particle states, one for

each of Alice, Bob, and Charlie. In the first term, David’s qubit is in the state |0⟩, while in

the second term, David’s qubit is in the state |1⟩. Thus, the entire initial quantum system,

combining the individual states |ϵ1⟩, |ϵ2⟩, |ω1⟩, |ω2⟩, |λ1⟩, and |λ2⟩, is described by the

following expression:
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|T ⟩ = |ϵ1⟩A1 Â1
|ϵ2⟩A2 Â2

|ω1⟩B1 B̂1
|ω2⟩B2 B̂2

|λ1⟩C1Ĉ1
|λ2⟩C2Ĉ2

|G⟩ABCD. (5)

where the bold letters A, B, and C represent the sets of particles A′
1 A′

2 . . . A′
8, B′

1B′
2 . . . B′

8,

and C′
1C′

2 . . . C′
8, respectively.

In order to fulfil DDC controlled QT, our protocol sequentially executes the following

steps, as illustrated in Figure 1.

Step 1: Alice, Bob, and Charlie each perform measurements on their respective particle

pairs using a Bell-state measurement basis, resulting in the evolution of a complex multipar-

tite quantum entangled state. Alice measures the particle pairs (A1, A′
1), (Â1, A′

2), (A2, A′
3),

and (Â2, A′
4) with the Bell-state measurement basis |Bst⟩ = 1√

2
[|0, s⟩ + (−1)t|1, 1 ⊕ s⟩],

where s, t ∈ {0, 1}, and ⊕ denotes addition modulo 2. Alice’s measurement results cor-

respond to a superposition of four Bell states, and these measurement outcomes interact

with the system’s entanglement, affecting the final state of the system through the complex

coefficients xij. After Alice’s measurement, the particle pairs she holds will transform

into the following entangled states: |B f g⟩A1 A′
1
|Bht⟩Â1 A′

2
|Buv⟩A2 A′

3
|Bpq⟩Â2 A′

4
. Each Bell state

corresponds to a measurement outcome | f , h⟩, | f , 1⊕ h⟩, |1⊕ f , h⟩, and |1⊕ f , 1⊕ h⟩. These

outcomes, through the complex coefficients xij, become entangled with Bob and Charlie’s

measurement results, influencing the overall system’s state.

Bob performs Bell-state measurements on the particle pairs (B1, B′
1), (B̂1, B′

2), (B2, B′
3),

and (B̂2, B′
4), the Bell-state basis Bob uses is the same as Alice’s, given by |Bst⟩ =

1√
2
[|0, s⟩ + (−1)t|1, 1 ⊕ s⟩]. Bob’s measurement outcomes depend on Alice’s measure-

ments, so the Bell states Bob measures will be entangled with Alice’s results. Bob’s mea-

surement results will form new particle pair entangled states, which are expressed as

|B f ′g′⟩B1B′
1
|Bh′t′⟩B̂1B′

2
|Bu′v′⟩B2B′

3
|Bp′q′⟩B̂2B′

4
. These measurement outcomes will be entangled

with Alice’s and Charlie’s results through the complex coefficients yij, thereby affecting the

overall quantum state of the system.

Charlie also measures his four particle pairs (C1, C′
1), (Ĉ1, C′

2), (C2, C′
3), and (Ĉ2, C′

4),

using the same Bell-state basis as Alice and Bob. Charlie’s measurement outcomes will

affect the final quantum state of the system through complex coefficients zij, and these

outcomes will become entangled with the results from Alice and Bob. Charlie’s measure-

ment results are expressed as |B f ′′g′′⟩C1C′
1
|Bh′′t′′⟩Ĉ1C′

2
|Bu′′v′′⟩C2C′

3
|Bp′′q′′⟩Ĉ2C′

4
. Through the

complex coefficients zij, these measurement outcomes entangle with Alice’s and Bob’s

results, ultimately influencing the overall quantum state of the system.

Through Alice, Bob, and Charlie’s Bell-state measurements, the initial quantum state

of the system evolves into a complex tensor product form, consisting of multiple Bell-state

measurement outcomes and the entanglement generated by these measurements. The

measurement results of each participant become entangled with the results of the others,

ultimately forming a complex multipartite quantum entangled state |T ⟩, with the explicit

form given in Equation (A4) of Appendix A.

Generally, Alice transfers the measurement results |B f g⟩A1 A′
1
|Bht⟩Â1 A′

2
and |Buv⟩A2 A′

3

|Bpq⟩Â2 A′
4

to Bob and Charlie, respectively. Bob notifies Charlie and Alice of his measure-

ment results |Bm′n′⟩B1B′
1
|Br′s′⟩B̂1B′

2
and |Bi′ j′⟩B2B′

3
|Bl′k′⟩B̂2B′

4
, respectively. At the same time,

Charlie announces his measurement outcomes A and B to |Bm′′n′′⟩C1C′
1
|Br′′s′′⟩Ĉ1C′

2
and

|Bi′′ j′′⟩C2C′
3
|Bl′′k′′⟩Ĉ2C′

4
to Alice and Bob separately. Then, the measured quantum state |T ′⟩

can be expressed in a concise and structured form, with its explicit expression provided in

Equation (A5) of Appendix A.

Step 2: If the supervisor, David, agrees to communicate, then he should perform a

single-particle Von Neumann measurement on particle D using the computational basis

{|0⟩, |1⟩}. Then, he sends a 1-bit classical message w (w = 0, 1) to Alice, Bob, and Charlie
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over three distinct channels (David–Alice, David–Bob, and David–Charlie), corresponding

to the measurement result |w⟩D.

Step 3: Upon receiving the measurement results from the other participants, Alice,

Bob, and Charlie are required to apply the appropriate unitary operations according to the

results of the measurements in order to reconstruct the original quantum state. The unitary

operations involved in this process can be represented by the following general expression:

U (X) = (1 − w)
[

U(X) ⊗ Û(X)
]

+ w
[

U′(X) ⊗ Û′(X)
]

, (6)

where X ∈ {A′, B′, C′} represents the different participants Alice, Bob, and Charlie, and

its specific form is provided in Equation (A6) of Appendix A. U(X) and Û(X) are the first

set of unitary operations corresponding to participant X, and the specific expressions can

be found in Equation (A6) of Appendix A. U′(X) and Û′(X) are the second set of unitary

operations corresponding to participant X, and the specific expressions can also be found

in Equation (A7) of Appendix A. w is a weighting factor that adjusts the contribution of

the first and second sets of operations based on the measurement results received by each

participant. These unitary operations are applied to the particle groups (A′
5, A′

6, A′
7, A′

8),

(B′
5, B′

6, B′
7, B′

8), and (C′
5, C′

6, C′
7, C′

8), enabling each group to recover their intended original

states. In other words,

U (A)U (B)U (C)(D⟨t|T ′⟩)
= (x11|00⟩+ x12|01⟩+ x13|10⟩+ x14|11⟩)B′

5B′
6

⊗ (z21|00⟩+ z22|01⟩+ z23|10⟩+ z24|11⟩)B′
7B′

8

⊗ (y11|00⟩+ y12|01⟩+ y13|10⟩+ y14|11⟩)C′
5C′

6

⊗ (x21|00⟩+ x22|01⟩+ x23|10⟩+ x24|11⟩)C′
7C′

8

⊗ (z11|00⟩+ z12|01⟩+ z13|10⟩+ z14|11⟩)A′
5 A′

6

⊗ (y21|00⟩+ y22|01⟩+ y23|10⟩+ y24|11⟩)A′
7 A′

8
.

(7)

From Equation (7), it can be observed that Alice’s state |ϵ1⟩A′
1 Â1

has been teleported

to Bob, and |ϵ2⟩A′
2 Â2

to Charlie. Bob’s state |ω1⟩B1 B̂1
has been transferred to Charlie, while

|ω2⟩B2 B̂2
has been sent to Alice. Meanwhile, Charlie’s state |λ1⟩C1Ĉ1

has been transmitted

to Alice, and |λ2⟩C2Ĉ2
to Bob.

Additionally, according to Equation (A4) in Appendix A, our scheme has 12 Bell-

state measurements and 1 single-particle von Neumann measurement, yielding a total of

44 × 44 × 44 × 2 = 33, 554, 432 possible measurement outcomes. For each outcome, the

unitary transformations in Equation (6) are applied to correctly reconstruct the desired

states. As a result, our scheme achieves a success probability of 100%.

2.3. Generalized DDC Controlled Quantum Teleportation Scheme

In this subsection, we extend our four-party scheme of DDC controlled QT to the

scene with n (n > 3) communicators in this subsection. Assume the n communicators can

be denoted as{N1, N2, · · · , Nn}, and they form a closed ring. All communicators initially

share an (8n + 1)-particle maximally entangled state together with the supervisor, Tom.

This state can be written as
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|G⟩N1N2···Nn
=

1√
2

[

n
⊗

j=1

|φ8
1⟩N1

j N2
j N3

j N4
j N5

j+1 N6
j+1 N7

j−1 N8
j−1

|0⟩T

+
n
⊗

j=1

|φ8
2⟩N1

j N2
j N3

j N4
j N5

j+1 N6
j+1 N7

j−1 N8
j−1

|1⟩T

]

,

(8)

where the communicator Nj has eight particles (N1
j , N2

j , · · · , N8
j ) for any j ∈ {1, 2, · · · , n}.

Additionally, the particle T belongs to the supervisor Tom. For j = n, we impose N5
n+1 = N5

1

and N6
n+1 = N6

1 , and for j = 1, we impose N7
0 = N7

n and N8
0 = N8

n . The symbol
⊗

repre-

sents the tensor product, while N1, N2, and Nn denote the groups of particles N1
1 N2

1 · · · N8
1 ,

N1
2 N2

2 · · · N8
2 , and N1

n N2
n · · · N8

n , respectively. The entangled states |φ8
1⟩ and |φ8

2⟩ are defined

in Equations (A1) and (A2) of Appendix A, respectively.

Consider that N1 intends to teleport two arbitrary unknown two-particle states, |ϵ′⟩N′
1

and |ϵ2⟩N′′
1

, to N2 and Nn, respectively. Each participant Nj (j ∈ {2, 3, . . . , n − 1}) aims

to send two arbitrary unknown two-particle states, |ϵ′⟩N′
j

and |ϵ2⟩N′′
j
, to Nj+1 and Nj−1,

respectively. Finally, Nn intends to transmit the state |ϵ′⟩N′
n

to N1 and |ϵ2⟩N′′
n

to Nn−1, with

the entire process being supervised and controlled by Tom. The relation among these n + 1

participants is shown in Figure 3.

Figure 3. The relationship between n communicators and one supervisor. The red and blue straight

lines with arrows represent the quantum states to be transmitted, while the black straight line with

an arrow represents the transmission of supervisor information.

The above 2n arbitrary unknown two-particle states to be teleported can be expressed as

|ϵ′⟩N′
j
= a

(N′
j )

11 |00⟩+ a
(N′

j )

12 |01⟩+ a
(N′

j )

13 |10⟩+ a
(N′

j )

14 |11⟩

where complex coefficients a
(N′

j )

k1 , a
(N′

j )

k2 , a
(N′

j )

k3 , and a
(N′

j )

k4 satisfy the normalization condition

|a(N′
j )

k1 |2 + |a(N′
j )

k2 |2 + |a(N′
j )

k3 |2 + |a(N′
j )

k4 |2 = 1 (k = 1, 2). The second unknown two-particle

state, |ϵ2⟩N′
j
, can be expressed in terms of the same form as |ϵ′⟩N′

j
, with its coefficients

denoted as a
(N′

j )

21 , a
(N′

j )

22 , a
(N′

j )

23 , a
(N′

j )

24 , which similarly satisfy the normalization condition.
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Thus, |ϵ2⟩N′
j

can be written by replacing a
(N′

j )

1k in |ϵ′⟩N′
j

with a
(N′

j )

2k (k = 1, 2, 3, 4). The

complete initial system state can be represented as follows:

|W⟩ = ⊗n
j=1|ϵ′⟩N′

j
⊗n

j=1 |ϵ2⟩N′′
j
⊗ |G⟩N1N2···Nn

. (9)

In order to complete DDC controlled QT of arbitrary unknown two-particle states

among n + 1 participants, each communicator needs to execute four Bell-state measure-

ments and then inform the two adjacent communicators of the measurement results. After

that, the supervisor Tom makes a single-particle projective measurement on his particle T in

the basis {|0⟩, |1⟩}, and relays his measurement outcome to all communicators. According

to the outcomes from the two adjacent communicators and the controller, each communica-

tor is able to successfully reconstruct the target two-particle states. For simplicity, we will

omit the detailed discussion on the connections between measurement outcomes, collapsed

states, and their corresponding recovery operations. Since this extended scheme employs

procedures and operations similar to those in the earlier scheme with three communicators

and one supervisor, the success probability of our proposed scheme remains 1.

3. DDC Controlled RSP of Arbitrary Two-Particle States

Based on the quantum channel [1] we constructed, this subsection proposes a four-

party DDC controlled RSP scheme, which can be used for the preparation of arbitrary

two-particle states and further extended to scenarios involving n + 1 (n > 3) participants.

As the quantum circuit diagram illustrating the relationships among the four participants

is similar to that in Section 2, it is not repeated here.

3.1. Four-Party DDC Controlled RSP Scheme

Assume that Alice wishes to help Bob prepare an arbitrary two-particle state |ϕ1⟩
remotely and assist Charlie in preparing |ϕ2⟩; Bob intends to aid Charlie remotely with the

preparation of |ψ1⟩ and also help Alice prepare |ψ2⟩. At the same time, Charlie plans to

help Alice prepare an arbitrary two-particle state |χ1⟩ remotely and assist Bob in preparing

|χ2⟩, all under the supervision of David. The six arbitrary two-particle states to be prepared

can be written as follows:

|ϕ1⟩ =
4

∑
l=1

a1le
iθl |bl⟩, |ϕ2⟩ =

4

∑
l=1

a2le
iθ′l |bl⟩,

|ψ1⟩ =
4

∑
l=1

b1le
iαl |bl⟩, |ψ2⟩ =

4

∑
l=1

b2le
iα′l |bl⟩,

|χ1⟩ =
4

∑
l=1

c1le
iβl |bl⟩, |χ2⟩ =

4

∑
l=1

c2le
iβ′l |bl⟩,

(10)

where real numbers akl , bkl , ckl , θl , θ′l , αl , α′l , βl , and β′
l (k ∈ {1, 2}, l ∈ {1, 2, 3, 4}) satisfy the

conditions Σ4
l=1|akl |2 = 1, Σ4

l=1|bkl |2 = 1, Σ4
l=1|ckl |2 = 1, and θl , θ′l , αl , α′l , βl , β′

l ∈ [0, 2π).

Note that for any k ∈ {1, 2} and l ∈ {1, 2, 3, 4}, Alice is completely aware of coefficients akl ,

θl , and θ′l , but Bob and Charlie are not aware of them. Similarly, Bob knows the coefficients

bkl , αl , and α′l , but Charlie and Alice do not know about them, and the coefficients ckl , βl ,

and β′
l are known to Charlie but unknown to Alice and Bob.

Similar to Section 2.2, a 25-particle maximally entangled channel is pre-shared among

three communicators—Alice, Bob, and Charlie—and the supervisor David.

To achieve the quantum task of four-party DDC-controlled RSP, the following steps

must be performed:
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Step 1: Three communicators, Alice, Bob, and Charlie, introduce three auxiliary

particles (Ā1, Ā2, Ā3, Ā4), (B̄1, B̄2, B̄3, B̄4), and (C̄1, C̄2, C̄3, C̄4), respectively. In this way, the

initial system state of 37 particles can be represented as

|T⟩ = |G⟩ABCD|0000⟩
Ā
|0000⟩

B̄
|0000⟩

C̄
, (11)

where the bold letters A, B, and C represent the sets of particles A′
1 A′

2 . . . A′
8, B′

1B′
2 . . . B′

8,

and C′
1C′

2 . . . C′
8, respectively. Similarly, Ā, B̄, and C̄ represent the sets of particles

Ā1 Ā2 Ā3 Ā4), B̄1B̄2B̄3B̄4, and C̄1C̄2C̄3C̄4, respectively.

Then, Alice carries out the CNOT operation CXY on qubit pairs (A′
1, Ā1), (A′

2, Ā2),

(A′
3, Ā3), and (A′

4, Ā4), respectively, where CXY|uv⟩XY = |u⟩X |u ⊕ v⟩Y. That is, qubits

A′
1, A′

2, A′
3, A′

4 serve as controlling qubits and auxiliary qubits Ā1, Ā2, Ā3, Ā4 function as

target qubits. After Bob and Charlie also perform similar operations, the state |T⟩ shown in

Equation (11) will change to

|T′⟩ = 1√
2

3
⊗

j=1

|φ12
1 ⟩Pj

⊗ |0⟩D +
1√
2

3
⊗

j=1

|φ12
2 ⟩Pj

⊗ |1⟩D, (12)

where the P1,P2,P3 are defined as follows: P1 = A′
1 A′

2 Ā1 Ā2 A′
3 A′

4 Ā3 Ā4B′
5B′

6C′
7C′

8,

P2 = B′
1B′

2B̄1B̄2B′
3B′

4B̄3B̄4C′
5C′

6 A′
7 A′

8, and P3 = C′
1C′

2C̄1C̄2C′
3C′

4C̄3C̄4 A′
5 A′

6B′
7B′

8. The de-

tailed forms of |φ12
1 ⟩ and |φ12

2 ⟩ are provided in Appendix A as Equations (A8) and (A9),

respectively. For brevity, their explicit expressions are deferred to the appendix.

Step 2: Alice performs two projective measurements on (A′
1, A′

2) and (A′
3, A′

4) with

the measurement basis {|ϵuv|u, v = 0, 1} and {|ζpq|p, q = 0, 1}, respectively. These mea-

surement bases are defined as weighted combinations of the standard two-qubit basis states

(|00⟩, |01⟩, |10⟩, |11⟩), where the coefficients and phase factors depend on the measurement

indices. For the first type of measurement basis, the general expression is

|ϵuv⟩ = a1,2u+v+1|00⟩+ (−1)u+va1,2u+v+1+(−1)v |01⟩
+ (−1)ua1,2u+v+1+2(−1)u |10⟩+ (−1)va1,4−2u−v|11⟩,

(13)

where u, v ∈ {0, 1}, and the coefficients a1,k are participant-specific weights that determine

the contribution of each basis state. Similarly, the second type of measurement basis,

denoted as |ζpq⟩, has a structure analogous to |ϵuv⟩. The differences lie in the replacement

of indices u, v with p, q, and the coefficients a1,k are replaced by a2,k. Additionally, logical

operations such as 1 ⊕ q and p ⊕ q modify the relative phases of the basis states.

Bob and Charlie use similar measurement bases. For Bob, the first and second types of

bases are denoted as |ϵ′u′v′⟩ and |ζ ′p′q′⟩, following the same structure but with coefficients b1,k

and b2,k, respectively. Charlie, on the other hand, uses the bases |ϵ′′u′′v′′⟩ and |ζ ′′p′′q′′⟩, where

the coefficients are c1,k and c2,k. The indices u, v, u′, v′, u′′, v′′, p, q, p′, q′, p′′, q′′ ∈ {0, 1}
represent binary measurement outcomes. These indices determine the specific coefficients

and phase factors in the measurement bases, encoding the results of the measurements.

After completing the measurements, the results are exchanged among the participants.

Alice sends her outcomes |ϵuv⟩ to Bob and |ζpq⟩ to Charlie. Bob shares |ϵ′u′v′⟩ with Charlie

and |ζ ′p′q′⟩ with Alice. Similarly, Charlie transfers |ϵ′′u′′v′′⟩ to Alice and |ζ ′′p′′q′′⟩ to Bob.

Step 3: After receiving the measurement results, Alice measures her particle pairs

(Ā1, Ā2) and (Ā3, Ā4) using a feedforward measurement strategy. For (Ā1, Ā2), she con-

structs the measurement basis {|ω(uv)
st ⟩|s, t = 0, 1}, where each state is expressed as



Entropy 2025, 27, 292 12 of 26

|ω(uv)
st ⟩ = 1

2
[e−iθ2u+v+1 |00⟩+ (−1)s+te−iθ2u+v+1+(−1)v |01⟩

+ (−1)se−iθ2u+v+1+2(−1)u |10⟩+ (−1)te−iθ4−2u−v |11⟩],
(14)

where u, v ∈ {0, 1} and s, t ∈ {0, 1}. Here, the coefficients e−iθn introduce phase adjust-

ments for each basis state, and the terms (−1)s+t, (−1)s, and (−1)t account for relative

phase differences. Similarly, for the second pair of qubits (Ā3, Ā4), she constructs the

measurement basis {|ς(pq)
mr ⟩|m, r = 0, 1}, which follows a similar structure to |ω(uv)

st ⟩. Specif-

ically, in this case, the indices u, v and s, t are replaced by p, q and m, r, respectively. The

corresponding phase factors θn are adjusted accordingly to reflect the changes in indices.

This unified structure ensures symmetry and consistency in the measurement bases for

different qubit pairs.

Bob and Charlie follow a similar measurement process to Alice. Bob measures his

particle pairs (B̄1, B̄2) and (B̄3, B̄4), constructing the bases {|ω̂(u′v′)
s′t′ ⟩|s′, t′ = 0, 1} and

{|ς̂(p′q′)
m′r′ ⟩|m′, r′ = 0, 1}, where the structure of the states mirrors Alice’s, but with participant-

specific phase parameters αk. Similarly, Charlie measures his particle pairs (C̄1, C̄2) and

(C̄3, C̄4) using the bases {|ω̄(u′′v′′)
s′′t′′ ⟩|s′′, t′′ = 0, 1} and {|ς̄(p′′q′′)

m′′r′′ ⟩|m′′, r′′ = 0, 1}, where the

phase parameters βk are specific to Charlie. Subsequently, each correspondent of the

three correspondents needs to send his/her outcomes to the other two correspondents,

respectively. Alice sends her outcomes |ω(uv)
st ⟩ to Bob and |ς(pq)

mr ⟩ to Charlie. Bob shares

|ω̂(u′v′)
s′t′ ⟩ with Charlie and |ς̂(p′q′)

m′r′ ⟩ with Alice. Similarly, Charlie shares |ω̄(u′′v′′)
s′′t′′ ⟩ to Alice

and |ς̄(p′′q′′)
m′′r′′ ⟩ to Bob. This mutual sharing of measurement outcomes ensures that all three

participants can synchronize their operations for the subsequent steps in the protocol.

By applying the six sets of measurement bases described above, the quantum state

|T′⟩ introduced in Equation (12) can be rewritten in a detailed expanded form. The full

mathematical expression of |T′⟩ is provided in Appendix A as Equation (A10).

Step 4: If supervisor David agrees to help the three communicators, he performs a

single-particle von Neumann measurement on his particle D in the {|0⟩, |1⟩} basis. He then

informs the communicators of his measurement result, denoted as |d⟩D (d = 0, 1).

Step 5: After hearing the classic messages corresponding to the measurement results,

each of the three communicators needs to perform an appropriate unitary transformation

to restore their respective target states. In detail, after receiving Charlie’s measurement

result |ϵ′′u′′v′′⟩C′
1C′

2
|ω̄(u′′v′′)

s′′t′′ ⟩C̄1C̄2
, Bob’s measurement result |ζ ′p′q′⟩B′

3B′
4
|ς̂(p′q′)

m′r′ ⟩B̄3 B̄4
and David’s

measurement result |d⟩D, Alice selects the unitary operation

(1 − d)[σ
(s′′ ,s′′)
A′

5
⊗ σ

(s′′⊕t′′ ,s′′⊕t′′)
A′

6
][σ

(u′′ ,0)
A′

5
⊗ σ

(u′′⊕v′′ ,u′′)
A′

6
]

⊗ [σ
(m′ ,m′)
A′

7
⊕ σ

(1⊕m′⊕r′ ,1⊕m′⊕r′)
A′

8
][σ

(p′⊕q′ ,q′)
A′

7
⊕ σ

((p′⊕q′)q′ ,p′q′)
A′

8
]

+ d[σ
(1⊕s′′ ,s′′)
A′

5
⊗ σ

(1⊕s′′⊕t′′ ,s′′⊕t′′)
A′

6
][σ

(u′′ ,0)
A′

5
⊗ σ

(u′′⊕v′′ ,u′′)
A′

6
]

⊗ [σ
m′⊕1,m′)
A′

7
⊗ σ

(m′⊕r′ ,1⊕m′⊕r′)
A′

8
][σ

(p′⊕q′ ,q′)
A′

7
⊗ σ

(q′ ,0)
A′

8
]

(15)

to reconstruct the original quantum states |χ1⟩A′
5 A′

6
⊗ |ψ2⟩A′

7 A′
8
, where σ(i,j) = |0⟩⟨i ⊕ j|+

(−1)i|1⟩⟨1 ⊕ i ⊕ j| (i, j = 0, 1) are Pauli gate operations. After receiving the classical

measurement results, Bob and Charlie perform the appropriate unitary transformations to

recover their respective target quantum states. The transformation structure for Bob and

Charlie is identical to that of Alice. Specifically Bob’s operation can be derived by replacing

the parameters A′
5, A′

6, A′
7, A′

8 in Alice’s transformation formula with B′
5, B′

6, B′
7, B′

8, and sub-

stituting the measurement parameters s′′, t′′, u′′, v′′, p′, q′, m′, r′ with s, t, u, v, p′′, q′′, m′′, r′′.
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Similarly, Charlie’s operation can be obtained by replacing A′
5, A′

6, A′
7, A′

8 with C′
5, C′

6, C′
7, C′

8,

and substituting s′′, t′′, u′′, v′′, p′, q′, m′, r′ with s′, t′, u′, v′, p, q, m, r. Therefore, it is unneces-

sary to explicitly write out Bob’s and Charlie’s formulas; their operations can be deduced

directly from Alice’s formula by applying the appropriate substitutions.

According to the above derivation, it is evident that the four-party DDC controlled

RSP of arbitrary two-particle states is always achievable, ensuring that the total success

probability of our scheme is 100%.

3.2. Generalized DDC Controlled RSP Scheme

To address the diverse requirements of future quantum communication networks, it is

essential to generalize the four-party DDC controlled RSP scheme for arbitrary two-particle

states to accommodate n (n > 3) communication parties. Consider n correspondents

N1, N2, · · · , Nn, who pre-share an (8n + 1)-particle maximally entangled state with the

supervisor, Tom, as described in Equation (11). Specifically, each eight-particle group

(N1
j , N2

j , · · · , N8
j ) is assigned to the correspondent Nj (j = 1, 2, · · · , n), while the single

particle T is held by Tom. In this scheme, N1 assists N2 in remotely preparing an arbitrary

two-particle state |φ1
N1
⟩ and helps Nn prepare |φ2

N1
⟩. Similarly, Nj (j = 2, 3, · · · , n − 1) aids

Nj+1 in preparing the state |φ1
Nj
⟩ and Nj−1 in preparing |φ2

Nj
⟩. Meanwhile, Nn assists N1 in

preparing |φ1
Nn
⟩ and helps Nn−1 prepare |φ2

Nn
⟩, all under the supervision of Tom. The 2n

arbitrary two-particle states can be mathematically described using the following general

form. The first state, |φ1
Nj
⟩, for each correspondent Nj, is expressed as

|φ1
Nj
⟩ = a

(j)
11 eiθ

j
1 |00⟩+ a

(j)
12 eiθ

j
2 |01⟩+ a

(j)
13 eiθ

j
3 |10⟩+ a

(j)
14 eiθ

j
4 |11⟩, (16)

where the coefficients a
(j)
1k (k = 1, 2, 3, 4) satisfy the normalization condition ∑

4
k=1 |a

(j)
1k |2 = 1,

and the phase parameters θ
j
k ∈ [0, 2π). Similarly, the second state, |φ2

Nj
⟩, is represented

with the same structure, substituting a
(j)
1k with a

(j)
2k and θ

j
k with θ̂

j
k.

In order to complete the quantum task, each correspondent Nw (w = 1, 2, · · · , n) in-

troduces four auxiliary particles (N̂1
w, N̂2

w, N̂3
w, N̂4

w), initialized in the state |0000⟩N̂1
w N̂2

w N̂3
w N̂4

w
.

Subsequently, four CNOT gate operations are performed on the particle pairs (N1
w, N̂1

w),

(N2
w, N̂2

w), (N3
w, N̂3

w) and (N4
w, N̂4

w), where the particles N1
w, N2

w, N3
w, N4

w act as control parti-

cles, and the auxiliary particles N̂1
w, N̂2

w, N̂3
w, N̂4

w serve as targets. After these operations, the

entangled channel in Equation (8) transforms into

|H⟩ = 1√
2

[

n
⊗

j=1

|φ12
1 ⟩N1

j N2
j N̂1

j N̂2
j N3

j N4
j N̂3

j N̂4
j N5

j+1 N6
j+1 N7

j−1 N8
j−1

|0⟩T

+
n
⊗

j=1

|φ12
2 ⟩N1

j N2
j N̂1

j N̂2
j N3

j N4
j N̂3

j N̂4
j N5

j+1 N6
j+1 N7

j−1 N8
j−1

|1⟩T

]

,

(17)

where |φ12
1 ⟩ and |φ12

2 ⟩ are the same as Equations (A8) and (A9) in Appendix A, respectively.

To ensure the closed-loop structure of the indices, for j = n, we define N5
n+1 = N5

1 and

N6
n+1 = N6

1 , while for j = 1, we define N7
j−1 = N7

n and N8
j−1 = N8

n . The symbol
⊗

represents the tensor product, and the particle T belongs to the supervisor. Second, each

correspondent Nw implements four projective measurements on particle pairs (N1
w, N̂1

w),
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(N2
w, N̂2

w), (N3
w, N̂3

w), and (N4
w, N̂4

w). Specifically, for the first particle pair (N1
w, N̂1

w), the

measurement basis is defined as

|ϵkj⟩ = a
(w)
1,2k+j+1|00⟩+ (−1)k+ja

(w)

1,2k+j+1+(−1)j |01⟩

+ (−1)ka
(w)

1,2k+j+1+2(−1)k |10⟩+ (−1)ja
(w)
1,4−2k−j|11⟩,

(18)

where k, j ∈ {0, 1}. The coefficients a
(w)
1,n represent participant-specific weights that con-

tribute to the basis states. For the second particle pair (N2
w, N̂2

w), the basis follows a similar

structure to |ϵkj⟩, but with adjusted indices and coefficients. Specifically, the indices k, j are

replaced with h, l, and the coefficients a
(w)
1,n are replaced by a

(w)
2,n . For the third particle pair

(N3
w, N̂3

w), the measurement basis is given as

|ω(kj)
st ⟩ = 1

2
[e
−iθw

2k+j+1 |00⟩+ (−1)s+te
−iθw

2k+j+1+(−1)j |01⟩

+ (−1)se
−iθw

2k+j+1+2(−1)k |10⟩+ (−1)te
−iθw

4−2k−j |11⟩],
(19)

where s, t ∈ {0, 1}, and e−iθw
n introduces specific phase adjustments for each basis state.

For the fourth particle pair (N4
w, N̂4

w), the measurement basis shares the same structure

as |ω(kj)
st ⟩, but with indices k, j, s, t replaced by h, l, m, r, respectively. Similarly, the phase

parameters θw
n are replaced with θ̂w

n . Third, the supervisor Tom measures his particle T

using the measurement operation |d⟩T⟨d| (d ∈ {0, 1}) and announces the measurement

result |d⟩T to all correspondents. Based on these results, all participants can reconstruct the

target two-particle states. For simplicity, the intermediate measurement results, collapsed

states, and corresponding recovery unitary operations are omitted here. Since the proposed

extended scheme is similar in steps and operations to the four-party controlled bidirectional

cyclic scheme for RSP presented in the previous section, the success probability of this

extended scheme is 1.

4. Discussion and Conclusions

To the best of our knowledge, DDC quantum communication has been explored only

in a few studies [41,42,44,45], which mainly address the mixed communication of single-

particle states, RSP of single-particle states with real coefficients, and the remote preparation

of dual-particle states with real coefficients. In conventional controlled schemes, a fixed

set of measurement outcomes from the sender and supervisor is used to determine the

necessary recovery transformations for the receiver. These approaches typically present the

relationship between the measurement results and the corresponding recovery operations

in a way that can be cumbersome, especially when extending to multiparty communication

scenarios. The reliance on this rigid structure can hinder the scalability and generalizability

of the schemes, making it less efficient for applications involving more complex quantum

networks or multiparty communication. Unlike the schemes in the four references men-

tioned above, our scheme provides general analytical formulas applicable to dual-particle

states, describing the unitary transformations performed by the sender, supervisor, and

receiver. This overcomes the limitations of existing schemes, such as their weak reasoning

ability and complex expressions, which are not ideal for future multi-particle quantum

communication. Additionally, our scheme differs from the ones in the four references in

the following ways: the scheme in Section 2 is novel and has not been previously reported,

and in Section 3, we explore DDC controlled RSP for dual-particle states with complex

coefficients, offering a more general and broader application potential than the scheme in

reference [45]. This extension not only increases the applicability of the scheme but also

enables it to handle more complex quantum communication network applications.
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Intrinsic efficiency (IE) is an important metric for assessing the effectiveness of quan-

tum communication protocols. It is defined as [13,46]

ω =
qt

bc + qc
, (20)

where qt is the number of qubits being transmitted, qc denotes the number of qubits in

the quantum channel, and bc refers to the classical bits transferred. Through systematic

optimization of channel utilization, our protocols achieve superior efficiency compared to

existing schemes, as detailed in Table 1.

Table 1. Comparison of IE for DDC quantum communication schemes.

Scheme qt qc + bc ω ω∞

Ref. [44] (Single-particle) 6 13+15 3/14 ≈ 0.214 –

Ref. [44] (Multiparty) 2n (4n + 1) + 5n 2n/(9n + 1) 2/9 ≈ 0.222

the schemes in Section 2.2 12 25+15 3/10 = 0.3 –

the schemes in Section 2.3 4n (8n + 1) + 5n 4n/(13n + 1) 4/13 ≈ 0.308

As demonstrated in Table 1,the two-particle scheme in Section 2.2 of our paper achieves

a 40% improvement in IE compared to the single-particle scheme. The generalized scheme

in Section 2.3 of our paper exhibits particularly noteworthy characteristics, approaching an

asymptotic efficiency of ω∞ = 4/13 as n → ∞. This represents a 38% improvement over the

corresponding single-particle state schemes, while maintaining linear scaling of resource

requirements. The efficiency gains originate from optimized entanglement distribution

strategies and reduced classical communication overhead through deterministic operator

relationships. Further extension to complex Hilbert spaces yields additional protocol

variants for complex-coefficient states. Specifically, the IEs of our protocols in Sections

3.1 and 3.2 are ω = 3
16 and ω = 4n

21n+1 , respectively. These results not only confirm

that our framework improves upon existing real-coefficient implementations but also

enable new capabilities for handling more sophisticated quantum states, further expanding

the applicability of our approach. handling more sophisticated quantum states, further

expanding the applicability of our approach.

Next, We briefly address the security of our protocols, which relies entirely on the

secure pre-sharing of entanglement among the authorized participants. This refers to

the security of the entangled resource during the distribution process. By using well-

established and comprehensive inspection strategies [47,48] for other similar quantum

tasks, any external malicious attack or internal deception is easily detectable. For simplicity,

we omit further discussion on this. Therefore, we can conclude that our protocols are fully

secure. Additionally, since all our schemes are controlled, it ensures that no communicator

can reconstruct the desired states without the supervisor’s consent, thereby providing

an extra layer of security. The security analysis is consistent with previous findings on

entanglement robustness in noisy environments. As demonstrated by Hu [49], the deco-

herence characteristics of multipartite entangled states directly determine their viability

as quantum channels. Our protocol relies on pre-shared entanglement resources, which

aligns with their conclusions about entanglement persistence under controlled conditions.

Furthermore, as shown by Jung et al. [50], the choice of entanglement structure plays a

key role in the robustness of quantum teleportation through noisy channels. This further

reinforces the reliability of the entanglement resources we depend on in practical quantum

communication scenarios.
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Taking the scheme outlined in Section 3.1 as an example, we examine the control

power [45,51,52] of the supervisor David [38,42]. Suppose Alice’s measurement outcomes

are |ϵ00⟩A′
1 A′

2
|ω(00)

01 ⟩A′
1 A′

2
and |ζ01⟩A′

3 A′
4
|ς(01)

00 ⟩A′
3 A′

4
, Bob’s results are |ϵ′00⟩B′

1B′
2
|ω̂(00)

10 ⟩B′
1B′

2
and

|ζ ′00⟩B′
3B′

4
|ς̂(00)

00 ⟩B′
3B′

4
, and Charlie’s outcomes are |ϵ′′10⟩C′

1C′
2
|ω̄(10)

00 ⟩C′
1C′

2
and |ζ ′′00⟩C′

7C′
8
|ς̄00

01⟩C′
7C′

8
.

Based on Equation (A5) from Appendix A, it can be deduced that the entire system state

will collapse into

1

256
√

2
{(a11eiθ1 |00⟩ − a12eiθ2 |01⟩+ a13eiθ3 |10⟩ − a14eiθ4 |11⟩)B′

5B′
6

⊗ (a22eiθ2 |00⟩+ a21eiθ1 |01⟩ − a24eiθ4 |10⟩ − a23eiθ3 |11⟩)C′
7C′

8

⊗ (b11eiα1 |00⟩ − b12eiα2 |01⟩ − b13eiα3 |10⟩+ b14eiα4 |11⟩)C′
5C′

6

⊗ (b21eiα1 |00⟩ − b22eiα2 |01⟩+ b23eiα3 |10⟩ − b24eiα4 |11⟩)A′
7 A′

8

⊗ (c13eiβ3 |00⟩ − c14eiβ4 |01⟩ − c11eiβ1 |10⟩+ c12eiβ2 |11⟩)A′
5 A′

6

⊗ (c21eiβ1 |00⟩+ c22eiβ2 |01⟩+ c23eiβ3 |10⟩+ c24eiβ4 |11⟩)B′
7B′

8
|0⟩D

+ (a11eiθ1 |11⟩+ a12eiθ2 |10⟩ − a13eiθ3 |01⟩ − a14eiθ4 |00⟩)B′
5B′

6

⊗ (a22eiθ2 |11⟩ − a21eiθ1 |10⟩+ a24eiθ4 |01⟩ − a23eiθ3 |00⟩)C′
7C′

8

⊗ (b11eiα1 |11⟩+ b12eiα2 |10⟩+ b13eiα3 |01⟩+ b14eiα4 |00⟩)C′
5C′

6

⊗ (b21eiα1 |11⟩+ b22eiα2 |10⟩ − b23eiα3 |01⟩ − b24eiα4 |00⟩)A′
7 A′

8

⊗ (c13eiβ3 |11⟩+ c14eiβ4 |10⟩+ c11eiβ1 |01⟩+ c12eiβ2 |00⟩)A′
5 A′

6

⊗ (c21eiβ1 |11⟩ − c22eiβ2 |10⟩ − c23eiβ3 |01⟩+ c24eiβ4 |00⟩)B′
7B′

8
|1⟩D.

(21)

After that, Alice, Bob, and Charlie implement suitable unitary operations:

Utot = [σ
(0,0)
B′

5
⊗ σ

(1,1)
B′

6
]⊗ [σ

(1,1)
C′

7
⊗ σ

(0,1)
C′

8
]⊗ [σ

(1,1)
C′

5
⊗ σ

(1,1)
C′

6
]

⊗ [σ
(0,0)
A′

7
⊗ σ

(1,1)
A′

8
]⊗ [σ

(1,0)
A′

5
⊗ σ

(1,1)
A′

6
]⊗ [σ

(0,0)
B′

7
⊗ σ

(0,0)
B′

8
]⊗ σ

(0,0)
D ,

(22)

and then the combined state in Equation (22) transforms into

|F⟩B′
5B′

6C′
7C′

8C′
5C′

6 A′
7 A′

8 A′
5 A′

6B′
7B′

8D

=
1

256
√

2
(|ϕ1⟩B′

5B′
6
|ϕ2⟩C′

7C′
8
|ψ1⟩C′

5C′
6
|ψ2⟩A′

7 A′
8
|χ1⟩A′

5 A′
6
|χ2⟩B′

7B′
8
|0⟩D

− |ϕ′
1⟩B′

5B′
6
|ϕ′

2⟩C′
7C′

8
|ψ′

1⟩C′
5C′

6
|ψ′

2⟩A′
7 A′

8
|χ′

1⟩A′
5 A′

6
|χ′

2⟩B′
7B′

8
|1⟩D

(23)

where |ϕk⟩, |ψk⟩, and |χk⟩ (k = 0, 1) are the same as shown in Equation (10), and Alice’s

state |ϕ′
1⟩ can be expressed as

|ϕ′
1⟩ = a11eiθ1 |11⟩ − a12eiθ2 |10⟩ − a13eiθ3 |01⟩+ a14eiθ4 |00⟩.

The second state, |ϕ′
2⟩, has a similar structure to |ϕ′

1⟩ but is derived by replacing the

coefficients a1j with a2j for j = 1, 2, 3, 4, while keeping the phase factors θj unchanged and

preserving the same sign pattern. For Bob and Charlie, their states share a similar structure

with |ϕ′
k⟩ and can be derived by substituting coefficients and phase factors. Specifically,

Bob’s states |ψ′
k⟩ can be obtained by replacing Alice’s coefficients aij with bij and the phase

factors θj with αj, resulting in |ψ′
1⟩ and |ψ′

2⟩. Similarly, Charlie’s states |χ′
k⟩ are derived by

substituting aij with cij and θj with β j, yielding |χ′
1⟩ and |χ′

2⟩. To avoid lengthy formulaic

descriptions, the explicit expressions for Bob’s and Charlie’s states are omitted here.
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If the supervisor David does not grant permission, the state of the system after mea-

surements by Alice, Bob, and Charlie collapses into a mixed state. This mixed state can be

represented using a density operator:

ρB′C′A′ = trD(ρB′C′A′D) = trD(|F⟩⟨F|) = 1

131072

[

|Φ1⟩⟨Φ1|+ |Φ2⟩⟨Φ2|
]

,

where

|Φ1⟩ = |ϕ1⟩B′
5B′

6
⊗ |ϕ2⟩C′

7C′
8
⊗ |ψ1⟩C′

5C′
6
⊗ |ψ2⟩A′

7 A′
8
⊗ |χ1⟩A′

5 A′
6
⊗ |χ2⟩B′

7B′
8
.

The state |Φ2⟩ shares a similar structure to |Φ1⟩. Specifically, |Φ2⟩ is obtained by replacing

the states |ϕk⟩, |ψk⟩, and |χk⟩ in |Φ1⟩ with their primed counterparts |ϕ′
k⟩, |ψ′

k⟩, and |χ′
k⟩,

respectively. The density matrix ρB′C′A′ = ρB′
5B′

6C′
7C′

8C′
5C′

6 A′
7 A′

8 A′
5 A′

6B′
7B′

8
is composed of two

orthogonal states, |Φ1⟩ and |Φ2⟩, combined through their outer products. Here, trD(·)
denotes the partial trace over particle D. In this way, we are able to calculate the aver-

age fidelity of the composite state shared among the three communicators and deduce

David’s control capability as follows (for the detailed calculation process, please refer to

Appendix B):

f ABC =
1

131072
[1 + (

1

6
)6]

and

PD = 1 − f ABC = 1 − 1

131072
[1 + (

1

6
)6],

respectively.

As highlighted in reference [52], the supervisor’s control power must satisfy the

following condition:

P ≥ 2N − 1

2N + 1
,

where N represents the number of qubits being teleported. It can be readily verified that

the control power achieved by David in Section 3.1 fulfils PD > (212 − 1)/(212 + 1). This

demonstrates that, from the supervisor’s perspective, the protocol described in Section 3.1

is both reasonable and feasible.

Turning our attention to the feasibility of the proposed schemes, it is evident that their

implementation involves fundamental quantum operations, including Bell-state measure-

ments, single-particle measurements, and the application of quantum gates such as the

Hadamard gate, CNOT gate, and Pauli gates. These operations have been successfully

realized across a variety of experimental quantum platforms, including the cavity QED

system [53], ion trap system [54], and optical systems [55], among others. Given the matu-

rity of these technologies, the protocols proposed in this work are experimentally viable

and can be implemented with current advancements in quantum technology.

In summary, in this work, we constructed a 25-particle entangled state based on

Hadamard and CNOT gates to serve as a quantum channel, and on this basis, proposed

two novel four-party CDDC schemes tailored for QT and RSP. In the QT scheme, under

the controller’s authorization, three communicators each transmit two arbitrary unknown

two-particle states to the other two communicators. In this process, each communica-

tor performs only four Bell-state measurements, while, with the controller’s approval, a

single-particle Z-basis measurement is performed to achieve bidirectional transmission of

the two unknown two-particle states. The receivers can deterministically reconstruct the

target states by selecting the corresponding unitary operations based on the measurement

outcomes. For the RSP scenario, under the supervision of the controller, each communi-

cator, with the assistance of the other communicators, can prepare two different arbitrary

two-particle states. To accomplish this, each communicator introduces four auxiliary qubits
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and performs four CNOT gate operations, and then, by combining a feedforward strategy,

cleverly constructs different measurement bases to perform two two-particle measurements.

Subsequently, the controller measures their particle in the Z-basis, after which each receiver

perfectly recovers the target state by applying the appropriate Pauli operations based on

the measurement results of the other three participants. Both schemes achieve a theoretical

success rate of 100%. Furthermore, we have extended the two proposed four-party CDDC

quantum communication schemes to the case of n communicators and one supervisor, i.e.,

an n + 1 party scenario, where n is greater than 3. Since the extended scheme follows a

similar procedure and operational approach as the previous schemes—wherein each com-

municator, under supervisory control, can simultaneously transmit two different arbitrary

two-particle states to the other parties, thereby achieving controlled quantum cyclic com-

munication in both clockwise and counterclockwise directions and ultimately realizing a

100% success rate—we provide a general mathematical formulation for bidirectional cyclic

quantum communication with multi-particle states applicable to each scheme. This offers

a scalable operational framework for multi-particle bidirectional cyclic communication.

Moreover, we evaluated the inherent efficiency, security, and controllability of the proposed

schemes. Compared with previous studies, our schemes are efficient, controllable, secure,

and experimentally feasible. With the continuous advancement of quantum technologies,

the schemes proposed in this study can be further expanded to meet more complex com-

munication requirements. Through innovations in communication protocols, mathematical

formulations, and the extension of the schemes, this research provides theoretical and

technical support for the ongoing development of multi-particle quantum communica-

tion, aiming to enhance security, capacity, and meet the diverse needs of future quantum

network scenarios.
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Appendix A. Detailed Derivation of the Relevant Equations

In this appendix, we provide the explicit forms of the eight-particle maximally en-

tangled states |φ8
1⟩ and |φ8

2⟩, which are used in Section 2.1 to construct the 25-particle

maximally entangled quantum channel state for the implementation of the four-party DDC

controlled QT scheme. These states are critical components in extending Yu’s protocol [15]



Entropy 2025, 27, 292 19 of 26

to the 25-particle maximally entangled state framework. The explicit expressions for |φ8
1⟩

and |φ8
2⟩ are as follows:

|φ8
1⟩ =

1

4
(|00000000⟩+ |00010001⟩+ |00100010⟩ − |00110011⟩

+ |01000100⟩+ |01010101⟩+ |01100110⟩ − |01110111⟩
+ |10001000⟩+ |10011001⟩+ |10101010⟩ − |10111011⟩
+ |11001100⟩+ |11011101⟩+ |11101110⟩ − |11111111⟩)

(A1)

and

|φ8
2⟩ =

1

4
(|00001111⟩ − |00011110⟩ − |00101101⟩ − |00111100⟩

− |01001011⟩+ |01011010⟩+ |01101001⟩+ |01111000⟩
− |10000111⟩+ |10010110⟩+ |10100101⟩+ |10110100⟩
+ |11000011⟩ − |11010010⟩ − |11100001⟩ − |11110000⟩).

(A2)

Suppose Alice intends to simultaneously send the unknown two-particle state |ϵ1⟩A1 Â1

to Bob and the unknown two-particle state |ϵ2⟩A2 Â2
to Charlie. At the same time, Bob

plans to transmit the unknown two-particle state |ω1⟩B1 B̂1
to Charlie and the unknown

two-particle state |ω2⟩B2 B̂2
to Alice. Additionally, Charlie aims to teleport the unknown

two-particle state |λ1⟩C1Ĉ1
to Alice and the unknown two-particle state |λ2⟩C2Ĉ2

to Bob,

all under the supervision of David. These arbitrary unknown two-particle states can be

expressed as

|ϵk⟩XkX̂k
=

4

∑
i=1

xki|j1 j2⟩XkX̂k
, k ∈ {1, 2}, X ∈ {A, B, C},

where xki are the corresponding coefficients, and j1, j2 ∈ {0, 1} represent the quantum bit

states. Specifically, the general mathematical expressions for the six quantum states are

|ϵ1⟩A1 Â1
= (x11|00⟩+ x12|01⟩+ x13|10⟩+ x14|11⟩)A1 Â1

,

|ϵ2⟩A2 Â2
= (x21|00⟩+ x22|01⟩+ x23|10⟩+ x24|11⟩)A2 Â2

,

|ω1⟩B1 B̂1
= (y11|00⟩+ y12|01⟩+ y13|10⟩+ y14|11⟩)B1 B̂1

,

|ω2⟩B2 B̂2
= (y21|00⟩+ y22|01⟩+ y23|10⟩+ y24|11⟩)B2 B̂2

,

|λ1⟩C1Ĉ1
= (z11|00⟩+ z12|01⟩+ z13|10⟩+ z14|11⟩)C1Ĉ1

,

|λ2⟩C2Ĉ2
= (z21|00⟩+ z22|01⟩+ z23|10⟩+ z24|11⟩)C2Ĉ2

.

(A3)

The measurement outcomes of Alice, Bob, and Charlie become mutually entangled,

leading to the formation of the multipartite quantum entangled state |T ⟩, which is explicitly

expressed as follows:

|T ⟩ = 1

256
√

2

{

1

∑
f ,g,h,t=0

1

∑
u,v,p,q=0

|B f g⟩A1 A′
1
|Bht⟩Â1 A′

2
|Buv⟩A2 A′

3
|Bpq⟩Â2 A′

4

· F ( f , h, g, t, x)B′
5B′

6
· G(u, p, v, q, x)C′

7C′
8

+
1

∑
f ′ ,g′ ,h′ ,t′=0

1

∑
u′ ,v′ ,p′ ,q′=0

|B f ′g′⟩B1B′
1
|Bh′t′⟩B̂1B′

2
|Bu′v′⟩B2B′

3
|Bp′q′⟩B̂2B′

4

· F ( f ′, h′, g′, t′, y)C′
5C′

6
· G(u′, p′, v′, q′, y)A′

7 A′
8

+
1

∑
f ′′ ,g′′ ,h′′ ,t′′=0

1

∑
u′′ ,v′′ ,p′′ ,q′′=0

|B f ′′g′′⟩C1C′
1
|Bh′′t′′⟩Ĉ1C′

2
|Bu′′v′′⟩C2C′

3
|Bp′′q′′⟩Ĉ2C′

4
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· F ( f ′′, h′′, g′′, t′′, z)A′
5 A′

6
· G(u′′, p′′, v′′, q′′, z)B′

7B′
8

}

|0⟩D

− 1

256
√

2

{

1

∑
f ,g,h,t=0

1

∑
u,v,p,q=0

|B f g⟩A1 A′
1
|Bht⟩Â1 A′

2
|Buv⟩A2 A′

3
|Bpq⟩Â2 A′

4

· F ′( f , h, g, t, x)B′
5B′

6
· G ′(u, p, v, q, x)C′

7C′
8

+
1

∑
f ′ ,g′ ,h′ ,t′=0

1

∑
u′ ,v′ ,p′ ,q′=0

|B f ′g′⟩B1B′
1
|Bh′t′⟩B̂1B′

2
|Bu′v′⟩B2B′

3
|Bp′q′⟩B̂2B′

4

· F ′( f ′, h′, g′, t′, y)C′
5C′

6
· G ′(u′, p′, v′, q′, y)A′

7 A′
8

+
1

∑
f ′′ ,g′′ ,h′′ ,t′′=0

1

∑
u′′ ,v′′ ,p′′ ,q′′=0

|B f ′′g′′⟩C1C′
1
|Bh′′t′′⟩Ĉ1C′

2
|Bu′′v′′⟩C2C′

3
|Bp′′q′′⟩Ĉ2C′

4

· F ′( f ′′, h′′, g′′, t′′, z)A′
5 A′

6
· G ′(u′′, p′′, v′′, q′′, z)B′

7B′
8

}

|1⟩D,

(A4)

where

F ( f , h, g, t, x) = x11| f , h⟩+ (−1)tx12| f , 1 ⊕ h⟩+ (−1)gx13|1 ⊕ f , h⟩+ (−1)g+tx14|1 ⊕ f , 1 ⊕ h⟩.

F ′( f , h, g, t, x) = x11|1 ⊕ f , 1 ⊕ h⟩+ (−1)tx12|1 ⊕ f , h⟩+ (−1)gx13| f , 1 ⊕ h⟩+ (−1)g+tx14| f , h⟩.

G(u, p, v, q, x) = (−1)upx21|u, p⟩+ (−1)u(1⊕p)+qx22|u, 1 ⊕ p⟩
+ (−1)v+(1⊕u)px23|1 ⊕ u, p⟩+ (−1)(1⊕u)(1⊕p)+v+qx24|1 ⊕ u, 1 ⊕ p⟩,

G ′(u, p, v, q, x) = (−1)(1⊕u)(1⊕p)x21|1 ⊕ u, 1 ⊕ p⟩+ (−1)(1⊕u)p+qx22|1 ⊕ u, p⟩
+ (−1)v+u(1⊕p)x23|u, 1 ⊕ p⟩+ (−1)up+v+qx24|u, p⟩.

The quantum state after Alice, Bob, and Charlie share their respective measurement

outcomes can be described as the post-measurement entangled state |T ′⟩, which is ex-

pressed explicitly as follows:

|T ′⟩ = 1√
2

[

F( f , h, x, t, g)B′
5B′

6
⊗ G(u, p, x, g, q)C′

7C′
8
⊗ H( f ′, h′, y, t′, g′)C′

5C′
6

⊗ I(u′, p′, y, v′, q′)A′
7 A′

8
⊗ J( f ′′, h′′, z, t′′, g′′)A′

5 A′
6
⊗ K(u′′, p′′, z, v′′, q′′)B′

7B′
8

]

|0⟩D

− 1√
2

[

F(1 ⊕ f , 1 ⊕ h, x, t, g)B′
5B′

6
⊗ G(1 ⊕ u, 1 ⊕ p, x, g, q)C′

7C′
8

⊗ H(1 ⊕ f ′, 1 ⊕ h′, y, t′, g′)C′
5C′

6
⊗ I(1 ⊕ u′, 1 ⊕ p′, y, v′, q′)A′

7 A′
8

⊗ J(1 ⊕ f ′′, 1 ⊕ h′′, z, t′′, g′′)A′
5 A′

6
⊗ K(1 ⊕ u′′, 1 ⊕ p′′, z, v′′, q′′)B′

7B′
8

]

|1⟩D,

(A5)

where

F( f , h, x, t, g) =x11| f , h⟩+ (−1)tx12| f , 1 ⊕ h⟩+ (−1)gx13|1 ⊕ f , h⟩+ (−1)g+tx14|1 ⊕ f , 1 ⊕ h⟩,

G(u, p, x, g, q) =(−1)upx21|u, p⟩+ (−1)u(1⊕p)+gx22|u, 1 ⊕ p⟩+ (−1)v+(1⊕u)px23

|1 ⊕ u, p⟩+ (−1)(1⊕u)(1⊕p)+v+qx24|1 ⊕ u, 1 ⊕ p⟩

H( f ′, h′, y, t′, g′) = y11| f ′, h′⟩+ (−1)t′y12| f ′, 1 ⊕ h′⟩+ (−1)g′y13|1 ⊕ f ′, h′⟩
+ (−1)g′+t′y14|1 ⊕ f ′, 1 ⊕ h′⟩
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I(u′, p′, y, v′, q′) =(−1)u′p′y21|u′, p′⟩+ (−1)u′(1⊕p′)+q′y22|u′, 1 ⊕ p′⟩+ (−1)v′+(1⊕u′)p′y23

|1 ⊕ u′, p′⟩+ (−1)(1⊕u′)(1⊕p′)+v′+q′y24|1 ⊕ u′, 1 ⊕ p′⟩

J( f ′′, h′′, z, t′′, g′′) =z11| f ′′, h′′⟩+ (−1)t′′z12| f ′′, 1 ⊕ h′′⟩+ (−1)g′′z13|1 ⊕ f ′′, h′′⟩
+ (−1)g′′+t′′z14|1 ⊕ f ′′, 1 ⊕ h′′⟩

K(u′′, p′′, z, v′′, q′′) =(−1)u′′p′′z21|u′′, p′′⟩+ (−1)u′′(1⊕p′′)+q′′z22|u′′, 1 ⊕ p′′⟩+ (−1)v′′+(1⊕u′′)p′′z23

|1 ⊕ u′′, p′′⟩+ (−1)(1⊕u′′)(1⊕p′′)+v′′+q′′z24|1 ⊕ u′′, 1 ⊕ p′′⟩
In the main text, we discussed the unitary operations required to reconstruct the target

quantum states in this protocol. Specifically, after receiving all the measurement outcomes,

Alice, Bob, and Charlie are expected to carry out the appropriate unitary operations based

on their measurement outcomes in order to restore the original quantum states. These

operations can be represented in a unified manner as follows:

U (X) = (1 − w)
[

U(X) ⊗ Û(X)
]

+ w
[

U′(X) ⊗ Û′(X)
]

,

where X ∈ {A′, B′, C′} represent the different participants Alice, Bob, and Charlie. The

specific forms of U(X), Û(X), U′(X), and Û′(X) are as follows:

U (A′) = (1 − w)[U(A′) ⊗ Û(A)] + w[U′(A′) ⊗ Û′(A′)],

U (B′) = (1 − w)[U(B′) ⊗ Û(B′)] + w[U′(B′) ⊗ Û′(B′)],

U (C′) = (1 − w)[U(C′) ⊗ Û(C′)] + w[U′(C′) ⊗ Ü′(C′)].

(A6)

The unitary matrices UX , ÛX , U′X and Û′X are defined as follows:

U(B′) = |00⟩⟨ f , h|+ (−1)t|01⟩⟨ f , 1 ⊕ h|
+ (−1)g|10⟩⟨1 ⊕ f , h|+ (−1)g+t|11⟩⟨1 ⊕ f , 1 ⊕ h|,

Û(C′) = (−1)up|00⟩⟨u, p|+ (−1)u(1⊗p)+q|01⟩⟨u, 1 ⊕ p|
+ (−1)v+(1⊕u)p|10⟩⟨1 ⊕ u, p|+ (−1)(1⊕u)(1⊕p)+v+q|11⟩⟨1 ⊕ u, 1 ⊕ p|,

U(C′) = |00⟩⟨ f ′, h′|+ (−1)t′ |01⟩⟨ f ′, 1 ⊕ h′|
+ (−1)g′ |10⟩⟨1 ⊕ f ′, h′|+ (−1)g′+t′ |11⟩⟨1 ⊕ f ′, 1 ⊕ h′|,

Û(A′) = (−1)u′p′ |00⟩⟨u′, p′|+ (−1)u′(1⊗p′)+q′ |01⟩⟨u′, 1 ⊕ p′|
+ (−1)v′+(1⊕u′)p′ |10⟩⟨1 ⊕ u′, p′|+ (−1)(1⊕u′)(1⊕p′)+v′+q′ |11⟩⟨1 ⊕ u′, 1 ⊕ p′|,

U(A′) = |00⟩⟨ f ′′, h′′|+ (−1)t′′ |01⟩⟨ f ′′, 1 ⊕ h′′|
+ (−1)g′′ |10⟩⟨1 ⊕ f ′′, h′′|+ (−1)g′′+t′′ |11⟩⟨1 ⊕ f ′′, 1 ⊕ h′′|,

Û(B′) = (−1)u′′p′′ |00⟩⟨u′′, p′′|+ (−1)u′′(1⊗p′′)+q′′ |01⟩⟨u′′, 1 ⊕ p′′|
+ (−1)v′′+(1⊕u′′)p′′ |10⟩⟨1 ⊕ u′′, p′′|+ (−1)(1⊕u′′)(1⊕p′′)+v′′+q′′ |11⟩⟨1 ⊕ u′′, 1 ⊕ p′′|,

U′(B′) = |00⟩⟨1 ⊕ f , 1 ⊕ h|+ (−1)t|01⟩⟨1 ⊕ f , h|
+ (−1)g|10⟩⟨ f , 1 ⊕ h|+ (−1)g+t|11⟩⟨ f , h|,

Û′(C′) = (−1)(1⊕u)(1⊕p)|00⟩⟨1 ⊕ u, 1 ⊕ p|+ (−1)(1⊕u)p+q|01⟩⟨1 ⊕ u, p|
+ (−1)v+u(1⊕p)|10⟩⟨u, 1 ⊕ p|+ (−1)up+v+q|11⟩⟨u, p|,

U′(C′) = |00⟩⟨1 ⊕ f ′, 1 ⊕ h′|+ (−1)t′ |01⟩⟨1 ⊕ f ′, h′|
+ (−1)g′ |10⟩⟨ f ′, 1 ⊕ h′|+ (−1)g′+t′ |11⟩⟨ f ′, h′|,
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Û′(A′) = (−1)(1⊕u′)(1⊕p′)|00⟩⟨1 ⊕ u′, 1 ⊕ p′|+ (−1)(1⊗u′)p′+q′ |01⟩⟨1 ⊕ u′, p′|
+ (−1)v′+u′(1⊕p′)|10⟩⟨u′, 1 ⊕ p′|+ (−1)u′p′+v′+q′ |10⟩⟨u′, p′|,

U′(A′) = |00⟩⟨1 ⊕ f ′′, 1 ⊕ h′′|+ (−1)t′′ |01⟩⟨1 ⊕ f ′′, h′′|
+ (−1)g′′ |10⟩⟨ f ′′, 1 ⊕ h′′|+ (−1)g′′+t′′ |11⟩⟨ f ′′, h′′|,

Û′(B′) = (−1)(1⊕u′′)(1⊕p′′)|10⟩⟨1 ⊕ u′′, 1 ⊕ p′′|+ (−1)(1⊗u′′)p′′+q′′ |01⟩⟨1 ⊕ u′′, p′′|
+ (−1)v′′+u′′(1⊕p′′)|10⟩⟨u′′, 1 ⊕ p′′|+ (−1)u′′p′′+v′′+q′′ |11⟩⟨u′′, p′′|.

(A7)

In the main text, by performing CNOT operations on the respective particle groups, we

obtained the quantum state |T′⟩ in Equation (14), which is expressed as a superposition of

two types of 12-particle maximally entangled states, |φ12
1 ⟩ and |φ12

2 ⟩. For clarity and further

analysis, the explicit forms of these two entangled states are provided below:

|φ12
1 ⟩ = 1

4
(|000000000000⟩+ |000001010001⟩+ |000010100010⟩ − |000011110011⟩

+ |010100000100⟩+ |010101010101⟩+ |010110100110⟩ − |010111110111⟩
+ |101000001000⟩+ |101001011001⟩+ |101010101010⟩ − |101011111011⟩
+ |111100001100⟩+ |111101011101⟩+ |111110101110⟩ − |111111111111⟩

(A8)

|φ12
2 ⟩ = 1

4
(|000000001111⟩ − |000001011110⟩ − |000010101101⟩ − |000011111100⟩

− |010100001011⟩+ |010101011010⟩+ |010110101001⟩+ |010111111000⟩
− |101000000111⟩+ |101001010110⟩+ |101010100101⟩+ |101011110100⟩
+ |111100000011⟩ − |111101010010⟩ − |111110100001⟩ − |111111110000⟩.

(A9)

In Equation (12) of the main text, the quantum state |T′⟩ was introduced in its basic

form. This state is obtained through a series of measurements performed by Alice, Bob,

and Charlie on their respective particle pairs, followed by the exchange of measurement

results among them. Each participant constructs measurement bases specific to their role,

and the resulting states form the components of the expanded |T′⟩. By applying the above

six sets of measurement bases, the quantum state |T′⟩ can be explicitly expanded into a

detailed mathematical form. The following equation presents the full structure of |T′⟩,
accompanied by the definitions of the functions F, F′, G, and G′. These functions encode

the weight distributions and phase adjustments of the basis states.

|T′⟩ = 1

256
√

2

{

∑
u,v,s,t=0

|ϵuv⟩A′
1 A′

2
|ω(uv)

st ⟩Ā1 Ā2
· F(u, v, s, t; θ, a)B′

5B′
6

⊗ ∑
p,q,m,r=0

|ζpq⟩A′
3 A′

4
|ς(pq)

mr ⟩Ā3 Ā4
· G(p, q, m, r; θ, a)C′

7C′
8

⊗ ∑
u′ ,v′ ,s′ ,t′=0

|ϵ′u′v′⟩B′
1B′

2
|ω̂(u′v′)

s′t′ ⟩B̄1 B̄2
· F(u′, v′, s′, t′; α, b)C′

5C′
6

⊗ ∑
p′ ,q′ ,m′ ,r′=0

|ζ ′p′q′⟩B′
3B′

4
|ς̂(p′q′)

m′r′ ⟩B̄3 B̄4
· G(p′, q′, m′, r′; α, b)A′

7 A′
8

⊗ ∑
u′′ ,v′′ ,s′′ ,t′′=0

|ϵ′′u′′v′′⟩C′
1C′

2
|ω̄(u′′v′′)

s′′t′′ ⟩C̄1C̄2
· F(u′′, v′′, s′′, t′′; β, c)A′

5 A′
6

⊗ ∑
p′′ ,q′′ ,m′′ ,r′′=0

|ζ ′′p′′q′′⟩C′
3C′

4
|ς̄(p′′q′′)

m′′r′′ ⟩C̄3C̄4
· G(p′′, q′′, m′′, r′′; β, c)B′

7B′
8

}

|0⟩D

(A10)
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+
1

256
√

2

{

∑
u,v,s,t=0

|ϵuv⟩A′
1 A′

2
|ω(uv)

st ⟩Ā1 Ā2
· F′(u, v, s, t; θ, a)B′

5B′
6

⊗ ∑
p,q,m,r=0

|ζpq⟩A′
3 A′

4
|ς(pq)

mr ⟩Ā3 Ā4
· G′(p, q, m, r; θ, a)C′

7C′
8

⊗ ∑
u′ ,v′ ,s′ ,t′=0

|ϵ′u′v′⟩B′
1B′

2
|ω̂(u′v′)

s′t′ ⟩B̄1 B̄2
· F′(u′, v′, s′, t′; α, b)C′

5C′
6

⊗ ∑
p′ ,q′ ,m′ ,r′=0

|ζ ′p′q′⟩B′
3B′

4
|ς̂(p′q′)

m′r′ ⟩B̄3 B̄4
· G′(p′, q′, m′, r′; α, b)A′

7 A′
8

⊗ ∑
u′′ ,v′′ ,s′′ ,t′′=0

|ϵ′′u′′v′′⟩C′
1C′

2
|ω̄(u′′v′′)

s′′t′′ ⟩C̄1C̄2
· F′(u′′, v′′, s′′, t′′; β, c)A′

5 A′
6

⊗ ∑
p′′ ,q′′ ,m′′ ,r′′=0

|ζ ′′p′′q′′⟩C′
3C′

4
|ς̄(p′′q′′)

m′′r′′ ⟩C̄3C̄4
· G′(p′′, q′′, m′′, r′′; β, c)B′

7B′
8

}

|1⟩D,

where u, v, s, t, p, q, m, r ∈ {0, 1} and the functions are defined as follows:

F(u, v, s, t; θ, a) = a1,2u+v+1eiθ2u+v+1 |00⟩+ (−1)u+v+s+ta1,2u+v+1+(−1)v

eiθ2u+v+1+(−1)v |01⟩+ (−1)u+sa1,2u+v+1+2(−1)u eiθ2u+v+1+2(−1)u |10⟩
+ (−1)v+ta1,4−2u−veiθ4−2u−v |11⟩,

F′(u, v, s, t; θ, a) = a1,2u+v+1eiθ2u+v+1 |11⟩+ (−1)u+v+s+t+1a1,2u+v+1+(−1)v

eiθ2u+v+1+(−1)v |10⟩+ (−1)u+s+1a1,2u+v+1+2(−1)u eiθ2u+v+1+2(−1)u |01⟩
+ (−1)v+ta1,4−2u−veiθ4−2u−v |00⟩,

Similarly, F(u, v, s, t; θ, b) and F(u, v, s, t; θ, c) can be obtained by simply replacing a in

F(u, v, s, t; θ, a) with b and c, respectively. The expression for G(p, q, m, r; θ, a) is structurally

similar to F(u, v, s, t; θ, a). It can be be derived by replacing u, v, s, t in F(u, v, s, t; θ, a)

with p, q, m, r and substituting the coefficients a1,k with a2,k. Likewise, the form of

G′(p, q, m, r; θ, a) is analogous to F′(u, v, s, t; θ, a). This can be achieved by replacing u, v, s, t

in F′(u, v, s, t; θ, a) with p, q, m, r, and substituting a1,k with a2,k. Similarly, G(p, q, m, r; θ, b)

and G(p, q, m, r; θ, c) can be obtained by simply replacing a in G(p, q, m, r; θ, a) with b and

c, respectively.

Appendix B. Detailed Fidelity Derivation

The fidelity of the combined state shared by the three communicators can be expressed as

fABC = ⟨ϱ|ρB′C′A′ |ϱ⟩ = 1

131072







1 + 212 ∏
X∈{A,B,C}

∏
k=1,2

[

F
(k)
X

]2







, (A11)

where |ϱ⟩ = |ϕ1⟩|ϕ2⟩|ψ1⟩|ψ2⟩|χ1⟩|χ2⟩, and X ∈ {A, B, C} represent the three communica-

tors (Alice, Bob, and Charlie), and k = 1, 2 correspond to the two states for each participant.

The function F
(k)
X is defined asF

(k)
X = xk1xk4 cos(θ1 − θ4)− xk2xk3 cos(θ2 − θ3), where xij

are the coefficients and θj are the phase factors specific to each communicator. For Alice

(X = A), the coefficients and phase factors are xij = aij and θj = θj, respectively. For Bob

(X = B), they are xij = bij and θj = αj, and for Charlie (X = C), they are xij = cij and

θj = β j.

To compute the average fidelity of the joint state shared among the three communi-

cators, we represent the coefficients akj, bkj and ckj (k = 1, 2; j = 1, 2, 3, 4) using spherical

parameterizations as follows:
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ak1 = cos ϑk, ak2 = sin ϑk cos δk, ak3 = sin ϑk sin δk cos εk, ak4 = sin ϑk sin δk sin εk, (A12)

where the corresponding coefficients bkj and ckj for Bob and Charlie take on the same struc-

tural form but are defined by their respective angular parameters (ϑ3, δ3, ε3, . . . , ϑ6, δ6, ε6).

Here, ϑk, δk ∈ [0, π] and εk ∈ [0, 2π] for all k ∈ {1, 2, 3, 4, 5, 6}.

By substituting these spherical coordinates into the general fidelity expression previ-

ously defined, the average fidelity of the composite state shared by the three communicators

can be expressed as a function of these angular parameters. This formulation naturally

encapsulates the contributions of all participants (Alice, Bob, and Charlie) while maintain-

ing the inherent symmetry of the system. The explicit relationships between the angular

parameters and the fidelity ensure that the optimization of fidelity becomes a geometric

problem in the parameter space, reflecting the interplay between amplitudes and phases

encoded in the states.

For clarity and conciseness, the detailed intermediate derivations are omitted here but

follow directly from substituting the parameterized coefficients into the fidelity equation.

This approach highlights the role of the angular parameters in determining the fidelity and

provides a compact representation suitable for further analysis or optimization in quantum

communication protocols. Therefore, the average fidelity of the composite state shared by

the three communicators can be expressed as

f ABC =
1

131072







1 + 212 ∏
X∈{A,B,C}

∏
k=1,2

[

I (k)
X

]2







, (A13)

where the integral term I (k)
X is expressed as

I (k)
X =

1

25π6

∫ 2π

0

∫ π

0

∫ π

0

∫ 2π

0

∫ 2π

0

∫ 2π

0

∫ 2π

0
sin2 ϑk sin δk

[xk1xk4 cos(θ1 − θ4)− xk2xk3 cos(θ2 − θ3)]
2 dϑkdδkdεkdθ1dθ2dθ3dθ4.

Here, I (k)
X corresponds to the contributions from each communicator, where X = A, B, C

represent Alice, Bob, and Charlie, respectively, and k = 1, 2 denotes the two states for each

participant. The coefficients and phase parameters differ for each communicator: for Alice

(X = A), xij = aij, θj = θj; for Bob (X = B), xij = bij, θj = αj; and for Charlie (X = C),

xij = cij, θj = β j.

By substituting Equation (A12) into Equation (A13), this average fidelity and David’s

control power are

f ABC =
1

131072
[1 + (

1

6
)6]

and

PD = 1 − f ABC = 1 − 1

131072
[1 + (

1

6
)6],

respectively.
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