
Simulation of a high-average power free-electron laser oscillator

H. P. Freund*
Science Applications International Corporation, McLean, Virginia 22102, USA

M. Shinn and S. V. Benson
Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA

(Received 7 November 2006; published 8 March 2007)

In this paper, we compare the 10 kW-Upgrade experiment at the Thomas Jefferson National Accelerator
Facility in Newport News, VA, with numerical simulations using the MEDUSA code. MEDUSA is a three-
dimensional FEL simulation code that is capable of treating both amplifiers and oscillators in both the
steady-state and time-dependent regimes. MEDUSA employs a Gaussian modal expansion, and treats
oscillators by decomposing the modal representation at the exit of the wiggler into the vacuum Gaussian
modes of the resonator and then analytically determining the propagation of these vacuum resonator
modes through the resonator back to the entrance of the wiggler in synchronism with the next electron
bunch. The bunch length in the experiment is of the order of 380– 420 fsec FWHM. The experiment
operates at a wavelength of about 1.6 microns and the wiggler is 30 periods in length; hence, the slippage
time is about 160 fsec. Because of this, slippage is important, and must be included in the simulation. The
observed single pass gain is 65%–75% and, given the experimental uncertainties, this is in good
agreement with the simulation. Multipass simulations including the cavity detuning yield an output
power of 12.4 kW, which is also in good agreement with the experiment.
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I. INTRODUCTION

Work is presently under way at the Thomas Jefferson
National Accelerator Facility in Newport News, VA
(henceforth referred to as Jefferson Laboratory) on what
is referred to as the 10 kW-Upgrade experiment [1]. The
facility is undergoing continual upgrades; in particular, a
new permanent magnet wiggler has been installed that will
permit operation at wavelengths as short as 0.9 micron. At
the intended power levels, thermal distortions in cavity
mirrors can alter mode quality and negatively impact per-
formance; hence, it is important to predict the character
and magnitude of the distortions and to be able to model
their effect on FEL performance. To this end, we are
engaged in a program to addresses these key issues by
developing modeling and simulation tools that can treat
mirror distortions. For this purpose, we will use the
MEDUSA code [2,3], which is a three-dimensional FEL
simulation code that is capable of treating both amplifiers
and oscillators in both the steady-state and time-dependent
regimes. MEDUSA employs a Gaussian modal expansion,
and treats oscillators by decomposing the modal represen-
tation at the exit of the wiggler into the vacuum Gaussian
modes of the resonator and then analytically determining
the propagation of these vacuum resonator modes through
the resonator back to the entrance of the wiggler in syn-
chronism with the next electron bunch. Knowledge of the
power loading on the mirrors allows us to model the mode

distortions using Zernike polynomials [4], and this tech-
nique will be incorporated into MEDUSA.

In this paper, we report on the progress to date in this
activity. The first step is to compare MEDUSA predictions
with the observed performance of the experiment at low
duty factor where mirror distortions are unimportant. We
then go on to determine the effects of the so-called first
order properties, which include changes in the Rayleigh
range and shifts in the position of the mode waist. Higher-
order distortions such as coma, astigmatism, and spherical
aberration, collectively known as higher-order aberrations,
will be incorporated in the future.

The organization of the paper is as follows. In Sec. II we
discuss the formulation used in MEDUSA. A description of
the experiment is given in Sec. III, and of the numerical
results in Sec. IV. The present study is limited to a com-
parison of the single pass gain as observed in the experi-
ment and found in simulation. A more complete
examination of the time evolution of the oscillator from
pass to pass will be presented in a future paper. A summary
and discussion is given in Sec. V.

II. THE NUMERICAL FORMULATION

The MEDUSA simulation code [2,3] employs a three-
dimensional formulation that includes the slippage of the
radiation relative to the electron beam. MEDUSA can model
both helical and planar wiggler geometry and treats the
electromagnetic field as a superposition of either Gauss-
Hermite or Gauss-Laguerre modes in the slowly varying
amplitude approximation. For the purposes of this study,
we employ the Gauss-Hermite modes where*Electronic address: henry.p.freund@saic.com
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where the average is over the initial beam parameters
(denoted by the subscript 0) in ponderomotive phase
( 0), energy (�0), and phase space (x0; y0; px0; py0), �0

and �� denote the average beam energy and the energy
spread, and �r and �p describe the initial phase space
parameters. The spot size and radius of curvature for
each harmonic component are given by
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These equations constitute the source-dependent expan-
sion [5], which is a self-consistent adaptive eigenmode
representation that tracks the optical guiding of the mode
based upon the interaction with the electron beam. The
field equations are integrated simultaneously with the com-
plete three-dimensional Lorentz force equations for an
ensemble of electrons. No wiggler-average orbit approxi-
mation is used so that the spatial step size must be small
enough to resolve the wiggler motion.

Time dependence is typically treated numerically in two
ways in FEL simulation codes. One method employs a
SVEA in z only combined with a field representation that
is an ensemble of discrete harmonics; in effect an explicit
Fourier decomposition. The other method uses an SVEA in
both z and t [6–9]. These two techniques have been shown
to be formally equivalent [10]. As described above,
MEDUSA can simulate the time dependence using either
technique although, in most cases, the second technique is

computationally preferred. In practice, therefore, the sec-
ond technique is used in MEDUSA to simulate time depen-
dence and the harmonic decomposition is used to include
higher harmonics in the time-dependent simulation.
However, we leave a discussion of harmonic generation
in the Jefferson Laboratory experiment for a future work.

III. THE JEFFERSON LABORATORY
EXPERIMENT

The Jefferson Lab IR-Upgrade FEL operates an energy
recovery accelerator with a high power FEL wiggler and
resonator. The nominal experimental parameters are shown
in Table I. The electron beam consists of a core distribution
and a halo distribution. The charge, emittance, and peak
current shown in the table are of that core beam. The
wiggler is very well characterized and is essentially ideal.
The wiggler is gap tunable with the field variable from 1.3
to 8.25 kG so that the wiggler K varies between 0.5 and 3.0.
The optical resonator is nearly concentric, and consists of a
high reflector at the upstream end and a transmissive
element at the downstream end that out-couples approxi-
mately 10% of the power. The Rayleigh range can be
varied in the experiment by changing the radius of curva-
ture of the high reflector. However, the cavity is slightly
astigmatic and can lead to a difference between the
Rayleigh range in the two axes. The measured gain at
1:6 �m is �70
 5�%.

For this study, the experiment was run at a low duty
factor where the power loading on the mirrors can be kept
small in order to minimize distortion. Thus, the accelerator
was run in pulsed mode for 1 msec at a repetition rate of
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60 Hz. The efficiency for this mode of operation was
�1:6
 0:1�% as calculated on the basis of the full beam
charge. If only the core current is used, then the efficiency
would increase to about 2.7%. This gives a scaling of the
output power with an average current of 1:8 kW=mA on
the basis of the full bunch charge, or 3:1 kW=mA using the
core alone (79 pC). This power scaling with average cur-
rent is observed to be independent of the average current
when mirror distortion is not present.

Observe that the normalized emittances and beam di-
mensions shown in the table refer to the wiggle plane and
the plane transverse to the wiggler plane, respectively. In
addition, the Twiss-� parameter shown corresponds to a
beam that is focused to a waist near the center of the
wiggler, and this may be varied in the experiment by
adjusting the magnetic transport line. The estimate of the
Rayleigh range and the location of the mode waist contain
some uncertainty, and the values given are the best estimate
at the present time. The uncertainty in the Rayleigh range
is about 
30 cm. We also note that the mode waist is
located about 15 cm downstream from the wiggler center
with an uncertainty of about
5 cm. This will be shown to
have important consequences for the single pass gain.

The actual beam in the experiment exhibits a compli-
cated distribution including both a core and a halo. The
phase space distribution is not Gaussian, and the temporal
shape of the pulse is complex and is not well matched by a
Gaussian temporal profile. The total beam pulse contains

about 135 pC, while the core contains about 79 pC. As a
result there is an uncertainty in the microscopic experi-
mental beam parameters that is not presently quantifiable,
and this will affect the comparison with the simulation. In
order to perform the simulations, however, we must make
certain assumptions about the beam properties. To this end,
we employ a Gaussian phase space distribution model in
the simulation corresponding to the core alone. In addition,
the temporal shape of the electron pulse is assumed in
simulation to be parabolic, and the bunch length given in
Table I refers to the full width of the parabola. Note that the
bunch charge is given by Q � �2=3�Ipeak�bunch for a para-
bolic pulse shape, and that this corresponds to the 79 pC
charge for the core beam. The validity of these assumptions
will rest on the details of the comparison between the
experiment and the simulation results.

IV. NUMERICAL RESULTS

Our first goal is to determine whether MEDUSA is in
substantial agreement with the experiment when distortion
is absent or minimal. This is the case when the experiment
operates at low average powers (i.e., low duty factors),
where a single pass gain of the order of 65%–75% is
measured for a peak current of 310 A and a bunch length
of 380 fsec.

Observe that the cavity detuning is not relevant to a
discussion of the single pass gain since we are assuming
optimal synchronism between the radiation and the elec-
tron beam for these simulation runs. A discussion of the
cavity detuning within the context of multipass simulations
will follow the discussion of the single pass gain.

A. Single pass gain

Before proceeding to a full time-dependent simulation
of the experiment, we begin with a steady-state simulation
to optimize the gain with respect to the focusing of the
electron beam in the wiggler. We start by studying the gain
spectrum for a matched beam in a two-plane focusing
wiggler. Note that in this case the Twiss parameters shown
in Table I are not used. The gain spectrum for this case is
shown in Fig. 1, and we observe that the single pass gain is
about 190%. However, it is well known that the optimum
performance is found when the electron beam is matched
to the optical mode rather than the wiggler. To study this,
we use a flat-pole-face wiggler model corresponding to the
Jefferson Laboratory wiggler and adjust the Twiss parame-
ters to yield an electron beam that is focused to a waist near
the wiggler center. If we now assume that the optical mode
waist coincides with the wiggler center, and optimize the
electron beam focusing, then we find the maximum single
pass gain corresponds to the Twiss parameters shown in
Table I, and the gain spectrum for this case is shown in
Fig. 2. Observe that the single pass gain for an optimally
focused beam in the steady-state regime is about 420% for
the nominal parameters. The evolution of the power, opti-

TABLE I. Nominal experimental parameters for operation at
1:6 �m.

Electron beam
Energy 115 MeV
Peak current 310–370 A
Average current 4.4 mA
Normalized emittance 9 mm-mrad=7 mm-mrad
Energy spread 0.35%
Bunch length 380–420 fsec
Bunch charge 79 pC
Initial beam dimensions 257 microns=212 microns
Twiss-� parameter 1.25
Repetition rate 37.425 MHz
Wiggler
Amplitude 3.746 kG
Period 5.5 cm
Length 30 periods=1:65 m
Optical mode
Wavelength 1.57 microns
Rayleigh range 1.5 (
 0:30) m
Location of mode waist 1.03 (
 0:05) m
Out-coupling fraction 10%
Cavity length � 32 m
Optical performance
Single pass gain 70%
 5%
Average output power � 13 kW (at 3:1 kW=mA)
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cal spot size and x- and y-dimensions of the electron beam
for this optimal case are shown in Fig. 3. Here we note that
(1) substantial optical guiding occurs in this high-gain
regime so that the evolution of the mode waist is not
symmetric about the wiggler center, and (2) the optimal
electron beam waist is located slightly upstream from the
wiggler center.

The parameters shown in Table I are the nominal ex-
perimental parameters, and we note again that the optical
waist is located about 15 cm downstream from the wiggler
center. The experiment was optimized by focusing the
electron beam to a waist near the center of the wiggler,
which provides an optimal match to the resonator mode.
This was also found in simulation, and is obtained for a
Twiss-� parameter of 1.25 in simulation. The single pass
gain found using MEDUSA operating in steady-state mode
for these parameters is of the order of 400%. However, the
slippage time through the wiggler for this experiment is of
the order of 160 fsec, which is a substantial fraction of the
bunch length. Hence, slippage is important and can be
expected to substantially reduce the single pass gain with
respect to steady-state predictions.

The slippage of the electromagnetic pulse through the
wiggler is illustrated in Fig. 4 where we plot the pulse
shapes at the entrance and exit from the wiggler in the
small-signal regime. It is evident from the figure that, while
the pulse is assumed symmetric at the entrance to the
wiggler, it has slipped by at least half the total pulse length
over the course of the wiggler. Amplification of the peak
power over the pulse has shrunk from the value of 400%
found in steady-state simulation to just over 100% when
slippage is included. However, in the time-dependent
simulation, gain must be calculated based on the overall
energy of the pulse, not the peak power. To this end, we
plot the amplification of the total pulse energy through the
wiggler in Fig. 5. The incident energy is 2.53 nJ and the
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energy at the output is 4.68 nJ yielding a single pass gain of
about 84%. Given the uncertainties in the measured pa-
rameters, this represents reasonable agreement with the
experiment. For example, there is a 20% uncertainty in
the measurement of the Rayleigh range that would result in
a reduction of the predicted gain to 73%.

The lowest order mirror distortions involve variations in
both the location of the optical waist and the Rayleigh
range. In order to study the effects of these distortions, we
(1) varied the position of the optical waist while holding
the Rayleigh range fixed at 1.5 m, and (2) varied the
Rayleigh range for an optical waist that is located at the
wiggler center and 30 cm downstream from the wiggler
center. These results are shown in Figs. 6 and 7, respec-
tively. Figure 6 indicates that, for these parameters, the
FEL gain is maximized when the optical waist is located
about 20 cm upstream from the wiggler center, in contrast
to the actual location that is 15 cm downstream from the

wiggler center. Observe that we show the gain variation
with Rayleigh range in Fig. 7 for an optical waist that is
wiggler-centered and shifted downstream from the wiggler
center by 30 cm. However, the optical waist is located
15 cm downstream from the wiggler center, and the actual
location was used in the simulations shown in Figs. 4–6.
We chose to use the larger displacement in Fig. 7 to better
illustrate the performance sensitivity to these parameters,
and the actual variation with Rayleigh range in the experi-
ment is between these two lines. It is clear from Fig. 7 that
the single pass gain would be larger if the Rayleigh range
were smaller, and the optimal Rayleigh range found in
simulation varies from about 0.5 m for a wiggler-centered
resonator mode to 0.6 m when the mode waist is located
30 cm downstream from the wiggler center.

The effect of variations in the Rayleigh range can be
explained in terms of the overlap between the optical mode
and the electron beam. In order to illustrate this, we study
the time-dependent regime and consider the temporal slice
that has the highest output power for three choices of the
initial Rayleigh range that specifies the vacuum resonator
mode: 0.08, 0.5, and 2.0 m.

In Fig. 8 we show the evolution of the power (blue),
optical spot size (red), and rms beam radius (green) with
position through the wiggler in the steady-state regime
where we initialize the optical mode for the vacuum reso-
nator mode with a wavelength of 1.57 microns, a Rayleigh
range of 0.5 m, and whose waist coincides with the wiggler
center. Observe, as before, the gain of about 275% is
substantial, and that optical guiding plays a substantial
role since the optical mode differs substantially from the
vacuum mode and has a smaller spot size at the wiggler
exit. While the electron beam is focused to a waist near the
wiggler center, this case corresponds to an optimal overlap
between the optical mode and the electron beam where the
filling factor (i.e., the ratio of the electron beam cross
sectional area to that of the optical mode) is near unity.
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If the Rayleigh range is larger than this optimal value,
then the spot size of the optical mode can be substantially
larger than the electron beam resulting in a filling factor
that is much less than unity and a much-degraded interac-
tion. This is illustrated in Fig. 9 where we plot the evolution
of the power, optical mode spot size, and the rms beam
radius for a Rayleigh range of 2.0 m. The gain in this case
has been reduced to about 157% and, while there is still
some optical guiding, this guiding is much reduced.

If we now consider the opposite limit where the
Rayleigh range for the vacuum resonator mode is very
short, then we find that the filling factor can be near unity
in the vicinity of the wiggler center, but that the optical
mode expands rapidly away from the wiggler center and
the filling factor is much less than unity over the bulk of the
wiggler. This is shown in Fig. 10 where we plot the
evolution of the power (blue), optical mode spot size
(red), and rms electron beam radius (green) for a
Rayleigh range of 0.08 m. In this case, the gain is about
71% and the optical guiding is further reduced relative to
either of the two previously discussed cases.

As a result, the optimal value for the single pass gain is
obtained when the vacuum Rayleigh range of the resonator
is chosen so that the optical mode is ‘‘well matched’’ to the
electron beam. This optimal choice will depend on all of
the parameters of the system; in particular, on the magni-
tude of the gain and corresponding optical guiding that, in
turn, will depend on the beam and wiggler parameters.
Further, the optimal Rayleigh range may be short in com-
parison with many conventional resonator designs. The
advantages that accrue from using a short Rayleigh range
resonator was first pointed out by Colson and his collabo-
rators [11], and include a relatively large spot size on the
resonator mirrors that can reduce mirror loading and the
associated mirror distortions. However, the results shown
in Figs. 6 and 7 indicate that, were mirror distortions to
either decrease the Rayleigh range or shift the mode waist
upstream, then the single pass gain and FEL performance
may actually be enhanced. Whether such an effect can
actually be allowed for in the design of a high power
FEL oscillator is currently under consideration.

B. Multipass simulations and cavity detuning

In view of the agreement between the measured and
simulated single pass gain, we felt confident to proceed
to multipass simulations [3] to study cavity detuning and to
compare the average output power between measurements
and simulations. Before proceeding to a discussion of the
results, it is important to restate the assumptions regarding
the pulse shape used in the simulation. The detailed micro-
structure of the beam contains a great deal of experimental
uncertainty, and it is clear that neither the phase space
distribution nor the temporal pulse shape is well charac-
terized by Gaussian distributions. The simulation uses an
idealized model in which the phase space distribution is
assumed to be Gaussian and the initial (i.e., at the entrance
to the wiggler) electron pulse shape is assumed to be
parabolic. The electromagnetic pulse is also assumed to
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be parabolic at the entrance to the wiggler at the start of the
first pass. MEDUSA takes the electron bunch and propagates
that through the wiggler along with the electromagnetic
pulse. The electron and electromagnetic pulse shapes are
integrated self-consistently along the wiggler including
pulse slippage between the electrons and the light. In
multipass simulations, the electromagnetic pulse at the
output from the wiggler is then fed back into the entrance
of the wiggler for the next pass. The synchronism between
the ‘‘recycled’’ electromagnetic pulse (which is no longer
parabolic) and the ‘‘fresh’’ electron bunch is adjusted to
account for the cavity length, and this is how the cavity
detuning in simulated [3]. Thus, MEDUSA treats the evolu-
tion of the shape of the electromagnetic pulse from pass to
pass.

The specific parameters that we use for the multipass
simulations correspond to a Rayleigh range of 0.75 m and
an optical mode waist located at the center of the wiggler.
The computational requirements for multipass runs are
extremely heavy, so that we perform a scan in cavity length
at 1-micron intervals over about an 8-micron range. The
results are shown in Fig. 11 where we plot the average
output power versus cavity detuning. As shown in the
figure, simulations predict a full width tuning range of
about 6–8 microns, which is in substantial agreement
with the experiment. Further, there is a sharp peak over a
tuning range of about 2 microns with a maximum output
power in simulation is 12.4 kW. Since the power based on
the core beam scales as 3:1 kW=mA and the average
current for this core beam is 4.4 mA, the corresponding
experimental output power is 13.6 kW. In view of (1) the
idealized assumptions made for the electron beam (i.e.,
core beam with a Gaussian phase space distribution with a
parabolic pulse shape), and (2) the scan in cavity length is
fairly coarse, and (3) there will be some variation due to
choices for the Rayleigh range and location of the optical
mode waist, this represents reasonable agreement between
the simulation and the experiment.

V. SUMMARY AND DISCUSSION

In this paper we report on the initial work involved in a
study of the effect of mirror distortions on the performance
of a high power FEL oscillator using the MEDUSA simula-
tion code. To this end, we first undertook to validate
MEDUSA for low power (and duty factor) operation where
mirror distortion was small. In this case, MEDUSA predicted
a single pass gain of 84%, which is in reasonable agree-
ment with the measured range of 65%–75% given the
experimental uncertainties in the Rayleigh range, location
of the optical waist, astigmatism in the resonator, and
uncertainties related to the electron beam distribution.
Experimentally, one derives the mode waist and position
from the radii of curvatures (ROC) of the cavity mirrors.
Repeated measurements set this uncertainty at 
5 cm. In
turn, this creates a 20% uncertainty in the value of the
Rayleigh range, but a relatively small (
 5 cm) change in
the waist position. There are also uncertainties associated
with the electron beam parameters, especially those asso-
ciated with the longitudinal distribution. Simulations in-
dicate that the predicted gain is very sensitive to
uncertainties of this magnitude. For example, a 20% un-
certainty in the Rayleigh range and a
5 cm uncertainty in
the optical waist position can lead to a variation in the
predicted gain of between 71%–96%. As a consequence,
the simulation is in substantial agreement with the experi-
ment. Given the agreement between the simulation and
experiment, we then undertook to investigate the variation
in performance versus the Rayleigh range and the location
of the optical waist. We found that the small signal gain
would be substantially larger for much smaller Rayleigh
ranges and for an optical waist located upstream from the
wiggler center. Multipass simulations are also in substan-
tial agreement with measured values for the output power
and for the cavity tuning range.

Future work will involve the inclusion of higher-order
mirror perturbations mentioned earlier, as well as valida-
tion of the harmonic generation predictions of MEDUSA.
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