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Abstract: The effect of finite coupling corrections to the Langevin diffusion coefficients on a moving heavy quark
in the Super Yang-Mills plasma was investigated. These corrections are related to curvature squared corrections in
the corresponding gravity  sector.  We compared the  results  of  both  longitudinal  and perpendicular  Langevin diffu-
sion coefficients with those for  =4 Super Yang-Mills plasma. It was observed that the curvature-squared correc-
tions  influence  the  Langevin  diffusion  coefficients,  and  the  corrections  for  both  Langevin  diffusion  coefficients
demonstrate the dependence on the velocity of the moving heavy quark and the specifics of the higher derivative cor-
rection.  In  addition,  we  conducted  calculations  for  the  Langevin  diffusion  coefficients  of  a  moving  heavy  quark
within the Gauss-Bonnet background.
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I.  INTRODUCTION

The heavy ion collision (HIC) experiments at  the re-
lativistic heavy ion collider (RHIC) and large hadron col-
lider (LHC) are hypothesized to create approximately the
most  perfect  fluid,  namely  quark  gluon  plasma  (QGP)
[1−4].  This  provides  a  novel  approach  for  studying  the
physics of quantum chromodynamics (QCD) at a strongly
coupled  regime.  Given  that  the  properties  of  a  strongly
coupled  system cannot  be  reliably  calculated  directly  by
perturbative techniques, one has to resort to some nonper-
turbative approaches to address the associated challenges.

AdS/CFT  correspondence  [5−7] is  a  promising   ap-
proach to deal with these problems in QCD in a strongly
coupled  scenario  which  cannot  be  handled  properly  by
perturbative  methods  [8, 9]. Concerning  the  gravity   sec-
tor,  it  has  been  suggested  that  an  external  quark  on  the
gauge theory side is related to a string which has a single
endpoint at  the  boundary  and  extends  down  to  the  hori-
zon of  an AdS black hole  [10, 11]. Moreover,  the diffu-
sion of heavy quarks in a strongly coupled plasma can be
understood  as  the  fluctuation  correlations  of  the  trailing

string. The study of the stochastic nature of a heavy quark
in a holography was proposed in [12, 13]. Subsequently,
the stochastic motion was formulated as a Langevin pro-
cess [14, 15]. Given that the heavy quarks in HIC experi-
ments  are  relativistic  in  many  cases,  the  relativistic
Langevin equation was studied in [16] as well as in non-
conformal frameworks in [17, 18], aiming at the multiple
scales of QCD.
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Methods  in  AdS/CFT  relate  a  4-dimensional 
super Yang-Mills (SYM) theory to a type-IIB string the-
ory  on  the  ,  and  string  theory  contains  higher
derivative  corrections  to  classical  gravity  from  stringy

 or  quantum effects    corrections.  It  is  natural  to
conduct  computations  for  finite  't  Hooft  coupling  of
gauge  theory  corresponding  to  studying  the  effect  of
higher derivative corrections on computations in  classic-
al  Einstein  gravity.  The  leading  order  correction  in 
arises from stringy  corrections  to  the  low  energy   effect-
ive  action  of  type-IIB  supergravity    [19],  and  such
corrections to the ratio of shear viscosity to entropy dens-
ity  of  a  gauge  field,  ,  were  calculated  in  [20,  21].  It
was  found  in  [22]  that  the  universal  low  bound  on 
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and  causality  can  be  violated  given  general    correc-
tions  to  the  gravitational  action  in  GB  gravity  [22−28].
For instance, in [25], the authors studied the ratio  in a
5-dimensional  setting,  and  in  [28],  the  authors  studied
this ratio in the solution of RN-AdS black branes, finding
that  the    bound  is  violated  and  the  Maxwell  charge
slightly  reduces  the  deviation.  Likewise,  in  [25], the  au-
thors studied the ratio   in a 5-dimensional setting, and
in [28], the authors discovered that the   bound is viol-
ated and the presence of Maxwell charge slightly reduces
the deviation in the RN-AdS black brane solution. Motiv-
ated by these vast string landscapes, the effect of high de-
rivative  curvature    or    corrections on  different   as-
pects  of  the  properties  of  QGP  was  studied  in  [29−35].
Besides,  in  [36−39],  the  authors  studied  curvature-cubic
 corrections to  .
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One  of  the  significant  applications  of  the  AdS/CFT
correspondence is the investigation of jet quenching phe-
nomena  involving  high  transverse  momentum  partons
produced  in  HICs.  It  was  found  in  [40]  that  introducing
 corrections to   yields a substantial increase in the

nuclear  modification  factor  .  The  initial    correc-
tion to the jet quenching parameter was found in [41], fol-
lowed  by  the  jet  quenching  parameter  including    cor-
rections  [42,  43].  The  trailing  string,  which  models  the
drag force on a moving heavy quark, was examined with-
in the framework of higher derivative gravity to investig-
ate the   and   corrections to drag force in [44, 45]. In
this study, we focused on investigating   corrections to
Langevin  diffusion  coefficients  (LGV-coefficients)  that
are related to the fluctuations of the trailing string.

R2

R2

The organization  of  this  paper  is  as  follows.  In  Sec-
tion  II,  we  review the  main  procedures  to  deduce  LGV-
coefficients within the membrane paradigm. Additionally,
we  discuss  numerical  results  of    corrections  to  LGV-
coefficients. In Section III, we study   corrections with
GB gravity to LGV-coefficients, as in Section II. Section
IV is devoted to discussion and conclusions. 

II.  CURVATURE SQUARED CORRECTIONS TO
ADS-SCHWARZSCHILD BLACK BRANE ON
THE LANGEVIN DIFFUSION COEFFICIENT

AdS 5

The  curvature  squared  corrections  to  the  solution  of
the  -Schwarzschild black brane can be described by
the general action [23, 24] 

S =
1

16πG5

∫
d5× √−g×

[
R−Λ+L2

(
c1R2+ c2RµνRµν

+c3RµνρσRµνρσ
)]
,

(1)

G5 = πL3/2N2
cwhere   is a 5-dimensional Newton constant,

R Rµν Rµνρσ

Λ = −12
L2 AdS
ci o(α′)

ci = 0
λ→∞

η

s
=

1
4π

(1−8c3)+O(c2
i )

c3 > 0

 is the Ricci scalar, and   and   are the Ricci and
Riemann tensors, respectively. The negative cosmologic-
al constant   creates an   space with radius L.
The  parameters    are  expected  to  be  of  ,  which
means  that    in  the  limit  of  large  't  Hooft  coupling
( ).  The shear  viscosity  to  entropy ratio  was found
in  [22, 46]  to  be  , and  the  viscos-
ity bound is violated when  .

AdS 5The  black  brane  solution  of  the    space  for  Eq.
(1) is given by [22] 

ds2 = −
Å

r2

L2

ã
f (r)dt2+

Å
r2

L2

ã
dx⃗2+

L2

r2 f (r)
dr2, (2)

where 

f (r) = 1− r4
0

r4
+a+b

r8
0

r8
, (3)

 

a =
2
3

(10c1+2c2+ c3) , b = 2c3. (4)

r→∞
(t, x⃗)

f (rh) = 0 r = rh

rh r0

The boundary of the asymptotically AdS geometry is loc-
ated  at  ,  where r denotes  the  5-dimensional  radial
coordinate,  and   labels the left  4-dimensional space-
time of the gauge theory on the boundary. One can solve

 to find the location of the horizon  , where
 depends on a, b, and  .  The heat bath temperature is

given by 

TR2 =
r0

πL2

Å
1+

1
4

a− 5
4

b
ã
, (5)

r0

TR2

where   depends on both a and b for a fixed temperature
.
According  to  [17,  47,  48],  we  computed  the  LGV-

coefficients of a heavy quark in a squared-curvature cor-
rection background. It is more convenient to conduct the
calculations in a more general form: 

ds2 = gttdt2+giidx2
i +grrdr2. (6)

According to Eq. (2), we have 

gtt = −
Å

r2

L2

ã
f (r), gii =

r2

L2
, grr =

L2

r2 f (r)
. (7)

Holographically,  the  moving  heavy  quark  of  infinite
mass  on  the  boundary  CFT  corresponds  to  the  endpoint
of the trailing string. The string dynamics are captured by
the Nambu-Goto action: 
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S NG = −
1

2πα′

∫
dτdσ

√
−detγαβ, γαβ = gµν∂αXµ∂βXν.

(8)

γαβ gµν Xµwhere    is  the  induced  metric,  and   and   are  the
branes metric and target space coordinates.

xp(xp =

x,y,z)

Given a moving heavy quark with a constant velocity
v  on  the  boundary  along  the  chosen  direction 

, one can choose to compute in static gauge for the
string world-sheet with the usual parametrization, 

t = τ, r = σ, x = vt+ ξ(r), (9)

where ξ is the profile of the string in the bulk. The world-
sheet metric is deduced to be 

γαβ =

(
gtt + v2gpp gppvξ′

gppvξ′ grr +gppξ
′2

)
, (10)

and the corresponding action is 

S NG = −
1

2πα′

∫
dtdr
»
−(gttgrr +gttgppξ′2+gppgrrv2). (11)

gpp

xp

πξ

Note  that    is  the  corresponding  metric  component  in
the   direction. It is evident that the radial conjugate mo-
mentum   is conserved for the simple motion: 

πξ =
δS
δξ
= − 1

2πα′
gttgppξ

′

2
√
−(gttgrr +gttgppξ′2+gppgrrv2)

. (12)

ξ′It is easy to find   from Eq. (12) as 

ξ′ =

 
−gttgrr −gppgrrv2

gttgxx(1+ gttgxx
C2 )

, (13)

C ≡ 2πα′πξwhere  . The world-sheet of the string has a ho-

rc

γαα(rc) = 0
rc

rizon that turns out to be the same with critical point   at
which both numerator and denominator change their sign.
By inserting Eq. (7) into  , one can identify the
critical point   as 

rc =
4

 
r4

0

√
1−4b (a− v2+1)+ r4

0

2(a− v2+1)
. (14)

TwsOne can also find the effective temperature   of the
world-sheet  horizon  by  diagonalizing  the  world-sheet
metric expressed  by  Eq.  (10).  One  can  change   coordin-
ates  to  diagonalize  the  induced  metric  via  the  following
reparametrization: 

dτ→ dτ− γαβ
γαα

dσ. (15)

hαβThe diagonal induced world-sheet metric   is given by 

hαβ =

Ñ
gtt +gppv2

gttgppgrr

gttgpp+
(
2πα′πξ

)2

é
. (16)

Following the usual  procedure,  the  effective world sheet
temperature reads 

T 2
ws =

1
16π2

(
h′αα
(
hββ
)′)∣∣∣∣

rc

=
1

16π2

ñ
(gtt + v2gpp)′

Å
gttgpp+ v2(gpp|rc )

2

gttgppguu

ã′ô2 ∣∣∣∣
r=rc

=
1

16π2

∣∣∣∣∣g
′2
tt − v4g

′2
pp

gttgpp

∣∣∣∣∣
∣∣∣∣

r=rc

=
1

16π2

∣∣∣∣ 1
gttgrr

(gttgpp)′
Å

gtt

gpp

ã′∣∣∣∣ ∣∣∣∣
r=rc

. (17)

T ws
R2

By inserting Eq. (14) into Eq. (17), one has the effective
world sheet temperature  :

 

T ws
R2 =

1
4π

 ∣∣∣∣Å8br8
0

r9
c
− 4r4

0

r5
c

ãÅ
4r3

c

Å
a+

br8
0

r8
c
− r4

0

r4
c
+1
ã
+ r4

c

Å
4r4

0

r5
c
− 8br8

0

r9
c

ãã∣∣∣∣. (18)

a→ 0, b→ 0In  the  conformal  limit,  where  , the   back-
ground solution reduces to AdS-BH, and the world-sheet
temperature expressed by Eq. (18) is simply related to the
bulk temperature: 

lim
a→0,b→0

T ws
R2 =

TSYM√
γv
, (19)

γv γv = 1/
√

1− v2 TSYMwhere   is the Lorentz factor   and   is
the bulk temperature in the conformal limit.

Considering  the  fluctuation  in  the  classical  trailing
string, one has
 

t = τ, r = σ, xp = vt+ ξ(σ)+δxp(τ,σ), (20)
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δxp(τ,σ)
xp

where  the  fluctuation  takes  the  form    along  and
transverse to the direction of  . A simple expression for
the quadratic action in the world sheet embedding fluctu-
ations that capture fluctuations of heavy quark reads 

S 2 = −
1

2πα′

∫
dτdσ

Hαβ

2

Å
N[r]∂αδxp∂βδxp

+
∑
i,p

gii∂αδxi∂βδxi

ã
,

N(r) ≡ gttgpp+C2

gtt +gppv2
,

Hαβ =
√
−det(h)hαβ, (21)

hαβwhere    is  the  inverse  of  the  diagonalized  induced
world-sheet  metric.  Please refer  to  [12, 17, 47, 49]  for  a
detailed  proof.  For  an  arbitrary  massless  fluctuation  ϕ
with an action, we have 

S 2 = −1/2
∫

dxdr
√−gQ(r)gαβ∂α∂βϕ. (22)

Taking  advantage  of  the  membrane  paradigm  [50],  one
can  directly  obtain  the  transport  coefficient  associated
with the retarded Green’s function form given by Eq. (22)
without solving the motion equation as 

χR = − lim
kµ→0

ℑGR(ω, k⃗)
ω

= Q(rh), (23)

where Q  is  the only effective coupling of the fluctuation
and the metric dependence drops out in the 2-dimension-
al world sheet black hole horizon.

Gsym

For  sufficiently  large  times,  the  temporal  correlation
functions  of  the  random  force  operator  on  a  Brownian
particle are proportional to Dirac delta distributions, with
the proportionality  factors  defining  the  Langevin   diffu-
sion  coefficients.  The  noise  term  is  determined  by  the
symmetrized  real-time correlation  functions  of  the   ran-
dom forces over the statistical ensemble. Then, the LGV-
coefficient can be defined in terms of the symmetric cor-
relator   [12] as 

κd = lim
ω→0

Gd
sym(ω)

= −coth
ω

2Tws
lim
ω→0

(ℑGd
R(ω))

= −2Tws lim
ω→0

ℑGd
R(ω)
ω

= 2Twsχ
d
R

= 2TwsQd(rc). (24)

d = (⊥,∥) ω→ 0
Gd

sym(ω) = coth
ω

2T
ℑGd

R(ω)
where  . The second step requires the   lim-
it of   [13], and the third step re-
quires Eq.  (23).  Comparing  Eqs.  (21)  and  (22),  one   ob-
tains 

Q⊥ =
1

2πα
gkk

∣∣∣∣
r=rc

,

Q∥ =
1

2πα
lim
r→rc

N(r) =
1

2πα
(gttgpp)′

gpp

Å
gtt

gpp

ã′ ∣∣∣∣
r=rc

. (25)

N(rc) =
0
0Given  that  ,  the  L’Hopital’s rule  must  be   ap-

plied  to  calculate  the  limit.  One  can  also  insert  Eq.  (25)
into Eq. (24), which yields 

κ⊥ =
1
πα′

gkk |r=rc Tws, κ∥ =
1
πα′

(gttgpp)′

gpp

Å
gtt

gpp

ã′ ∣∣∣∣
r=rc

Tws. (26)

In  our  case,  one  can  also  insert  the  metric  given  by
Eq. (7) into Eq. (26), obtaining 

κ⊥ =

√
λ

π
r2

c T ws
R2 , (27)

and 

κ∥ =
r2

c

√
λ
(
br8

0 − (a+1)r8
c

)
πr4

0

(
2br4

0 − r4
c

) T ws
R2 , (28)

α′ =
L2

√
λ
=

1√
λ

where we used the fact that  .

a→ 0 b→ 0
In  the  conformal  limit,  one  can  obtain  well-known

results [12, 13] by taking limits of both   and  , 

κSYM
⊥ =

√
λπT 3

SYMγ
1/2
v , κSYM

∥ =
√
λπT 3

SYMγ
5/2
v . (29)

α→ 0 β→ 0
One can check that Eqs. (27) and (28) reduce to these res-
ults by taking the limit for   and  .

R2

TR2 < TSYM TR2 > TSYM

R2 κ⊥ κ∥

The effects from   corrections to the classical   trail-
ing  string,  which  models  the  drag  force  on  a  moving
heavy quark in SYM plasma, were studied in [45] for two
distinct  scenarios:    and  .  Following
this  convention,  we  found  it  convenient  to  explore  the
curvature  squared  corrections  on  the  fluctuations  of  the
trailing  string  that  is  related  to  LGV-coefficients.  More
precisely, we investigated the   corrections to   and 
by evaluating Eqs. (27) and (28) using two distinct sets of
values for the parameters a and b.

R2

κ⊥ κ∥

Figure 1 demonstrates the impact of   corrections on
LGV-coefficients  for    and   normalized  by  the  SYM
result  expressed  by  Eq.  (29),  with  two  scenarios  at  the
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TR2 = TSYM

R2

a = −0.0005 b = +0.0006
TR2 < TSYM R2

κ⊥ κ∥

R2 N = 4
a = −0.0005 b = −0.0007

TR2 > TSYM vc

κ⊥ κ∥
v > vc κ⊥ κ∥ v > vc

same  heat  bath  temperature  ( ).  Plots  (a)  in
Fig. 1 show   corrections on LGV-coefficients at fixed
small values of   and   correspond-
ing to  . It is clear from these plots that the 
corrections to both   and   increase monotonically with
the  moving  velocity  of  the  heavy  quark,  and  corrections
to the LGV-coefficients are larger than those of the SYM
case at all velocities. However, note also that this type of
 corrections can be smaller than   SYM results in

plots (b) in Fig. 1 for   and   corres-
ponding to  . In this case, a critical velocity ( )
exists such that the corrections increase both   and   if

 while corrections decrease both   and   if  .

κ⊥ κ∥

κ∥
κ⊥

κL ≥ κT
TR2 > TSYM TR2 < TSYM

As a result,  we conclude that the finite coupling cor-
rections  affect  both    and   on  a  moving  quark  in  the
strongly-coupled  plasma  and  depend  on  the  details  of
curvature squared corrections. The LGV-coefficients can
be  larger  or  smaller  than  those  in  the  infinite-coupling
case. However, at a fixed velocity, the corrected   is al-
ways at  least as large as the corrected  .  Moreover,  the
universal  relation    reported  in  [17]  always  holds
when   and  . Our findings are simil-
ar to the case of drag force on a moving heavy quark re-
ported in [45].
 

III.  GAUSS-BONNET GRAVITY BACKGROUND

c2 = −4c1 c1 = c3 = λGB/2

The  Gauss-Bonnet  (GB)  gravity  [51]  is  one  of  the
most  interesting  theories  of  gravity  with  curvature
squared correction  in  five  dimensions.  The  exact   solu-
tions and  thermodynamic  properties  of  the  GB   back-
ground were discussed in [52−54]. One can also consider
the GB gravity as a special case of the general action de-
scribed  by  Eq.  (1)  where    and  .
This yields an action defined as
 

S =
1

16πG5

∫
d5x
√−g×

ï
R−Λ+L2 λGB

2
(
R2−4RµνRµν

+RµνρσRµνρσ
)ò
. (30)

λGBThe  dimensionless  Gauss-Bonnet  coupling  constant 
can  be  constrained  by  causality  [23]  and  the  positive
boundary energy density on the boundary [55] satisfies 

− 7
36
< λGB ≤

9
100
. (31)

A black hole solution in this  case is  known analytic-
ally [52]: 

ds2 = −n
r2

L2
fGB(r)dt2+

r2

L2
dx⃗2+

L2

r2 fGB(r)
dr2, (32)

where 

fGB(r) =
1

2λGB

Ä
1−
√

1−4λGB(1− r4
+/r4)

ä
,

n =
1
2

Ä
1+
√

1−4λGB

ä
. (33)

r→∞
The  boundary  of  the  metric  expressed  by  Eq.  (32)  is
placed  at  .  We  set  the  positive  parameter  n  such
that  the  speed  of  light  of  the  boundary  gauge  theory  is
unity. As a result, we have 

fGB(r −→∞) =
1
n
. (34)

The heat bath temperature of the black hole is given by 

TGB =

√
nr+
πL2
, (35)

 

κ⊥ κ∥Fig. 1.    (color online) Corrections to transverse LGV-coefficients   and longitudinal LGV-coefficients   as a function of the velo-
city of the heavy quark, normalized by the respective conformal limit.
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r+ λGBwhere   depends on   for a fixed Hawking temperat-
ure.

Using a general form of metric, one has
 

gtt(r) = −n
r2

L2
fGB(r), gii(r) =

r2

L2
, grr(r) =

L2

r2 fGB(r)
.

(36)

AdS 5

rc
GB

In  our  analysis,  we  set  the  -radius  to  be  unity  for
convenience.  Using  the  same  procedures  as  before,  we
can easily find the critical value   where the numerator
and denominator change sign at the same value,
 

rc
GB =

√
n(r+)

(n(n− v2)+λGBv4)
1
4
. (37)

T ws
GB

The  world-sheet  temperature  of  GB  gravity  of  a  quark
feel is denoted as   and expressed as
 

T ws
GB =

1
2π

ñ∣∣∣∣∣ −4nλGB(r+)8+2n(rc
GB)4r4

+K
λGB(rc

GB)2
(
(−1+4λGB) (rc

GB)4−4λGBr4
+

) ∣∣∣∣∣
ô1/2

,

K =

ñ
−1+4λGB+

 
1+λGB

Å
−4+

4r4
+

(rc
GB)4

ãô
.

(38)

Asserting Eq. (36) to Eqs. (17), (28), and (27), we ob-
tain the longitudinal  and perpendicular LGV-coefficients
as
 

κ⊥GB =

√
λ

π
(rc

GB)2T ws
GB (39)

and
 

κ∥GB = −
−2
√
λλGB(rc

GB)4r4
++ (rc

GB)8K
2πλGB(rc

GB)2r4
+

T ws
GB. (40)

λGB→ 0

One can check that Eqs. (39) and (40) reduce to the res-
ults in the conformal limit given by Eq. (29) by taking the
limit of  .

R2

N = 4
TGB = TSYM

κ⊥ κ∥
λGB

κ⊥ κ∥
λGB κ⊥

κ∥ κ∥ ≥ κ⊥

By  employing  GB  gravity,  we  now  discuss  the 
corrections  on  the  LGV-coefficients,  normalized  by  the
limits given in Eq. (29) for  SYM, with two scenari-
os at  the same heat  bath temperature ( ).  Plots
(a) and (b) in Fig. 2 depict   and   respectively as func-
tions of  moving velocity  and  .  It  is  evident  that  both
 and   are independent of the values of moving velo-

city and  . Note that the correction behaviors to   and
  are  notably  similar,  and  the  universal  relation 

identified in [17] also holds in the context of GB gravity.

λGB = 0
N = 4 λGB > 0

κ⊥ κ∥

λGB

λGB < 0 κ⊥ κ∥
N = 4

κ⊥ κ∥
λGB

κ⊥
κ∥

It  was found that  the results  concerning LGV-coeffi-
cients in GB gravity when   reduce to those of the
case  corresponding  to    SYM.  For  ,  Fig.  2
demonstrates  that  the  corrections  to    and    become
monotonically  stronger  with  increasing  velocity  of  the
moving  heavy  quark  or  increasing  .  Conversely,  for

,    and    for  a  moving  heavy  quark  under  GB
gravity  become  less  than  those  in  the   SYM case.
Furthermore, the corrections to   and   increase mono-
tonically  with  the  absolute  value  of    and  with  the
growing velocity  of  the  moving  heavy  quark.  We   con-
clude  that  the  finite  coupling  corrections  affect  both 
and   on a moving quark in the strongly-coupled plasma
and depend  on  the  details  of  curvature  squared   correc-
tions. The LGV-coefficients can be larger or smaller than
those in the infinite-coupling case. 

IV.  SUMMARY

Using classical  gravity to understand a quantum sys-
tem is  one  of  the  most  profound  discoveries  of   contem-
porary theoretical physics. The majority of computations,

 

κ⊥ κ∥
λGB

Fig. 2.    (color online) Corrections to the transverse LGV-coefficients  (left panel) and longitudinal LGV-coefficients   (right panel)
as functions of both velocity and  , normalized by the respective conformal limit.

Qi Zhou, Ben-Wei Zhang Chin. Phys. C 49, 014105 (2025)

014105-6



Nc

achieved through classical two-derivative gravity calcula-
tions,  hold  strict  validity  within  the  context  of  a  large  't
Hooft  coupling λ  and  the  limit  of  color  number  .  The
modification  of  quenched  jets  provides  one  of  the  most
effective  tools  for  constraining  properties  of  the  QGP
produced in heavy ion collisions. In this study, we invest-
igated finite  coupling  corrections  to  heavy  quark   diffu-
sion.

R2

R2

κ⊥ κ∥
κL κT

We  examined  the  influences  from  curvature-squared
corrections  on  the  AdS  black  brane  metric  to  LGV-

coefficients with both a more general   gravity and GB
gravity.  Our  investigation  revealed  that  finite  coupling
corrections  can  indeed  impact  the    and    values  of  a
moving  heavy  quark.  Both    and    can  be  larger  or

κL ≥ κT
κL κT

κL κT

N = 4
R4

smaller than the values in the infinite coupling case, and
the specific correction behaviors depend on the details of
higher  derivative  gravity.  We  confirmed  the  persistence
of  the  universal  relation    across all  cases  we   ex-
amined.  Both  corrected    and    values can  either   in-
crease or decrease in comparison with those in the infin-
ite coupling scenario in GB background. Our findings re-
garding  curvature  squared  corrections  to    and 
closely resemble the features obtained for  the drag force
on  a  moving  heavy  quark  discussed  in  [45].  Finally,  we
must emphasize that  we did not  predict  the effects  of fi-
nite  't  Hooft  correction  to    SYM,  given  that  the
leading correction in gauge theory emerges at order  .
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