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Abstract
We study binary Bose–Einstein condensates subject to synthetic magnetic fields in mutually
parallel or antiparallel directions. Within the mean-field theory, the two types of fields have
been shown to give the same vortex-lattice phase diagram. We develop an improved effective
field theory to study properties of collective modes and ground-state intercomponent
entanglement. Here, we point out the need to introduce renormalized coupling constants for
coarse-grained densities. We show that the low-energy excitation spectra for the two types of
fields are related to each other by suitable rescaling with the renormalized coupling constants.
By calculating the entanglement entropy, we find that for an intercomponent repulsion
(attraction), the two components are more strongly entangled in the case of parallel
(antiparallel) fields, in qualitative agreement with recent studies for a quantum (spin) Hall
regime. We also find that the entanglement spectrum exhibits an anomalous square-root
dispersion relation, which leads to a subleading logarithmic term in the entanglement entropy.
All of these are confirmed by numerical calculations based on the Bogoliubov theory with the
lowest-Landau-level approximation. Finally, we investigate the effects of quantum fluctuations
on the phase diagrams by calculating the correction to the ground-state energy due to
zero-point fluctuations in the Bogoliubov theory. We find that the boundaries between
rhombic-, square-, and rectangular-lattice phases shift appreciably with a decrease in the filling
factor.

Keywords: multicomponent Bose–Einstein condensates, synthetic gauge fields, vortex
lattices, quantum entanglement

(Some figures may appear in colour only in the online journal)

∗ Authors to whom any correspondence should be addressed.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

0953-4075/22/105302+22$33.00 Printed in the UK 1 © 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1361-6455/ac68b6
https://orcid.org/0000-0003-3376-7198
https://orcid.org/0000-0002-5367-1436
mailto:yoshino@cat.phys.s.u-tokyo.ac.jp
mailto:furukawa@rk.phys.keio.ac.jp
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6455/ac68b6&domain=pdf&date_stamp=2022-5-20
https://creativecommons.org/licenses/by/4.0/


J. Phys. B: At. Mol. Opt. Phys. 55 (2022) 105302 T Yoshino et al

1. Introduction

Engineering synthetic gauge fields and observing their phys-
ical effects in ultracold atomic gases have been a subject
of great interest in recent years [1–5]. While atomic gases
are charge neutral, effective gauge fields can be induced by
rotating gases [6, 7] or optically dressing atoms [8]. Atomic
Bose–Einstein condensates (BECs) in synthetic magnetic
fields have close analogy with type-II superconductors in mag-
netic fields. Both real and synthetic magnetic fields induce
quantized vortices in these systems; when vortices prolifer-
ate in high fields, they form a regular lattice pattern owing to
their repulsion, as originally predicted by Abrikosov [9]. The
resulting triangular vortex lattice structure has been observed
experimentally in rapidly rotating BECs [10–12]. A vortex lat-
tice exhibits elliptically polarized oscillations known as the
Tkachenko mode [13–16], which has also been observed in
a trapped BEC [12, 17]. In a uniform system, the Tkachenko
mode has a quadratic dispersion relation at low frequencies
[18–22], and is understood as a Nambu–Goldstone mode asso-
ciated with spontaneously broken U(1) symmetry and mag-
netic translation symmetries [23]. For sufficiently high syn-
thetic magnetic fields, atoms are expected to be in the lowest
Landau level (LLL). A key parameter in this regime is the fill-
ing factor ν :=N/Nv, where N is the number of atoms and
Nv is the number of flux quanta piercing the system. While
the Gross–Pitaevskii (GP) mean-field theory is applicable for
ν � 1 [24], quantum fluctuations become significant as ν is
lowered [18, 20–22, 25]. Theory predicts that when ν is below
a critical value νc, the vortex lattice melts and incompressible
quantum Hall states appear at various integer and fractional
values of ν [6, 26–28]. Estimates of νc vary over νc � 2–6
from exact diagonalization [27, 29, 30] and νc � 5–14 from a
Lindemann criterion [18, 20, 22, 27].

For binary (or pseudospin- 1
2 ) BECs, which are populated

in two hyperfine spin states of the same atomic species,
a richer variety of synthetic gauge fields have been real-
ized, such as a uniform magnetic field by rotation [31],
and spin–orbit couplings [32–34] and pseudospin-dependent
antiparallel magnetic fields [35] by optical dressing tech-
niques. For binary BECs under rotation, GP mean-field calcu-
lations have revealed that five vortex-lattice phases appear as
the ratio of the intercomponent coupling g↑↓ to the intracompo-
nent one g > 0 is varied (see figure 1) [36–39]. Square vortex
lattices (figure 1(d)) have indeed been observed experimen-
tally [31]. Meanwhile, a spin Hall effect due to pseudospin-
dependent Lorentz forces has been observed in binary BECs
in antiparallel magnetic fields [35]. For high antiparallel fields,
theory predicts a rich phase diagram that consists of vortex
lattices and (fractional) quantum spin Hall states [40–42].
Remarkably, within the GP mean-field theory, binary BECs
in antiparallel magnetic fields exhibit the same vortex phase
diagram as those in parallel magnetic fields (i.e., under rota-
tion) [42]. This is because the GP energy functionals as well
as the time-independent GP equations for the two systems
are related to each other through the complex conjugation of
the spin-↓ condensate wave function. It is interesting to fur-
ther investigate similarities and differences between the two

systems. As the systems in parallel and antiparallel magnetic
fields are closely related with bilayer quantum Hall systems
[43] and quantum spin Hall systems [44], respectively, a com-
parative study of these systems can make a link between the
two research fields. Such studies have been conducted on col-
lective modes of vortex lattices [45, 46] and phase diagrams in
a quantum (spin) Hall regime [42, 47–52].

Collective excitation spectra can be different between the
parallel- and antiparallel-field cases as there is no obvious cor-
respondence between the two cases for the time-dependent GP
equations. Keçeli and Oktel [45] have calculated excitation
spectra in binary BECs under rotation by using a hydrody-
namic theory. In a previous work [46], we have conducted
a comparative study of excitation modes in the parallel- and
antiparallel-field cases by means of the Bogoliubov theory and
an effective field theory. All the calculations in these works are
based on the LLL approximation. For both types of fields and
for all the lattice structures in figure 1, it is found that there
appear two distinct modes, one with a quadratic dispersion
relation and the other with a linear dispersion relation at low
energies, which exhibit anisotropy reflecting the symmetry of
each lattice structure. Furthermore, for overlapping triangular
lattices (figure 1(a)), the low-energy spectra for the two types
of fields are found to be related to each other by simple rescal-
ing [46]. This indicates a nontrivial correspondence between
the two types of fields in excitation properties. However, such
rescaling relations do not hold for other lattices, which appears
inconsistent with the effective field theory prediction. A more
refined description of low-energy modes has remained an open
issue.

Numerical studies on the quantum (spin) Hall regime with
ν = O(1) have revealed that binary Bose gases in parallel and
antiparallel synthetic magnetic fields exhibit markedly differ-
ent phase diagrams [42, 47–52]. For parallel fields, product
states of a pair of nearly uncorrelated quantum Hall states
are robust against an intercomponent attraction g↑↓ < 0 and
persist even when |g↑↓| is close to g [52]. Meanwhile, a vari-
ety of spin-singlet quantum Hall states with high intercompo-
nent entanglement emerge for g↑↓ ≈ g [47–51]. For antiparal-
lel fields, (fractional) quantum spin Hall states approximated
by products of quantum Hall states with opposite chiralities
are robust against an intercomponent repulsion g↑↓ > 0 [42].
The phase diagrams for the two types of fields thus exhibit
opposite behavior in view of intercomponent entanglement.
An interpretation of these results has been given in light of
pseudopotential representations of interactions [52]. As there
is no intercomponent entanglement in the GP mean-field the-
ory valid for ν � 1, it is interesting to investigate how the
intercomponent entanglement arises in the two systems as ν
is lowered from the mean-field regime.

In this paper, we present a detailed comparative study of
vortex lattices of binary BECs in parallel and antiparallel fields
concerning ground-state and excitation properties. We first
formulate an improved effective field theory for such vor-
tex lattices, and derive some properties of collective modes
and ground-state intercomponent entanglement. Here, a major
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Figure 1. (Upper panels) Vortex-lattice structures in the ground state of the binary BECs under synthetic magnetic fields described by the
Lagrangian in equation (1) [36–39] (see also references [53–59]). Within the GP mean-field theory, the systems in parallel and antiparallel
fields exhibit the same phase diagrams [42]. Five different structures appear as the interaction ratio g↑↓/g is varied (see figure 10):
(a) overlapping triangular lattices, (b) interlaced triangular lattices, (c) rhombic lattices, (d) square lattices, and (e) rectangular lattices. Black
(grey) circles show the vortex positions of the spin-↑ (↓) component. As shown in (f), each lattice structure is specified by the primitive
vectors a1 = (a, 0) and a2 = b(cos θ, sin θ) as well as the vortex displacement u1a1 + u2a2 in one component relative to the other. The area
of the unit cell is given by (a1 × a2)z = ab sin θ = 2π�2. The angle θ and the aspect ratio b/a vary continuously in the rhombic- and
rectangular-lattice phases, respectively, as shown later in figure 11. (Lower panels) The Brillouin zone for each lattice structure shown
above. The vectors b1 and b2 show the reciprocal primitive vectors, while uppercase letters show high-symmetry points. The excitation
spectra and the single-particle ES presented in figures 3, 4 and 7 are calculated along the dotted arrows.

improvement is the introduction of renormalized coupling con-
stants for coarse-grained densities5. We show that the low-
energy excitation spectra for the two types of fields are related
to each other by suitable rescaling using the renormalized con-
stants. Namely, the rescaling relations proposed in our previ-
ous work [46] must be modified using the renormalized con-
stants. By calculating the entanglement entropy (EE), we find
that for an intercomponent repulsion (attraction), the two com-
ponents are more strongly entangled in the case of parallel
(antiparallel) fields, in qualitative agreement with recent exact
diagonalization results for a quantum (spin) Hall regime [42,
52]. As a by-product, we also find that the entanglement spec-
trum (ES) exhibits an anomalous square-root dispersion rela-
tion, and that the EE exhibits a volume-law scaling with a
subleading logarithmic correction. This anomalous feature of
the ES is associated with the emergence of a long-range inter-
action in terms of the density in the entanglement Hamiltonian.
All these predictions are confirmed by numerical calculations
based on the Bogoliubov theory with the LLL approxima-
tion. Finally, we investigate the effects of quantum fluctuations
on the phase diagrams by calculating the Lee–Huang–Yang
correction, which is a correction to the ground-state energy
due to zero-point fluctuations in the Bogoliubov theory [60].
We find that the boundaries between rhombic-, square-, and
rectangular-lattice phases shift appreciably with a decrease in
ν. Here, the shift occurs more significantly for parallel fields.

5 In the formulation of reference [46], the necessity of renormalization was
not transparent. This was because we integrated out the density variables,
before coarse graining, to obtain an effective Lagrangian for phase variables.
In this paper, we keep both the phase and density variables in the Lagrangian,
and perform coarse graining of both the variables simultaneously. The renor-
malization of density–density interactions can naturally be understood in this
formulation. This formulation also allows us to move easily to the operator
formalism, in which ground-state and excitation properties can be studied in
an algebraic manner.

Let us comment on the relation to another recent work of
our own [61] concerning intercomponent ES and EE in binary
BECs in d spatial dimensions in the absence of synthetic gauge
fields. Here we employ effective field theory to show that the
ES exhibits a gapless square-root dispersion relation in the
presence of an intercomponent tunneling (a Rabi coupling)
and a gapped dispersion relation in its absence (see also ref-
erences [62, 63] for related results in two coupled Tomon-
aga–Luttinger liquids). In the present work, in contrast, the
ES exhibits a square-root dispersion relation in the absence
of an intercomponent tunneling in both cases of parallel and
antiparallel fields. This qualitative distinction is related to the
fact that binary BECs in parallel and antiparallel fields have
a higher density of low-energy excitations and thus experi-
ence larger quantum fluctuations than those without synthetic
gauge fields. References [61, 63] and the present paper demon-
strate that a variety of long-range interactions can be emu-
lated in a subsystem of multicomponent BECs that have only
short-range interactions. We also note that the field-theoretical
methods for investigating intercomponent entanglement in the
present paper are closely analogous to those in references
[61–63].

The rest of this paper is organized as follows. In section 2,
we introduce the systems that we study in this paper, and for-
mulate the low-energy effective field theory to analyze exci-
tation spectra, intercomponent entanglement, and correlation
functions. In section 3, we briefly review the Bogoliubov the-
ory with the LLL approximation, which has been adapted
to the present problem in reference [46], and then give the
expressions of the intercomponent ES and EE. In section 4,
we present numerical results based on the Bogoliubov theory.
We confirm the field-theoretical predictions on the excitation
spectra, the intercomponent entanglement, and the fraction of
quantum depletion. Furthermore, we investigate the effects of
quantum fluctuations on the ground-state phase diagrams. In
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section 5, we present a summary of the present study and an
outlook for future studies. In appendices, we describe some
technical details of section 2.

2. Effective field theory

Effective field theory for a vortex lattice in a scalar BEC has
been developed in references [18, 23, 64, 65]. In our pre-
vious work [46], we applied the formulation by Watanabe
and Murayama [23] to binary BECs in parallel and antipar-
allel fields. For parallel fields, this approach was essentially
equivalent to the hydrodynamic theory by Keçeli and Oktel
[45]. Here, we formulate an improved effective field theory
for binary BECs in parallel and antiparallel fields by introduc-
ing renormalized coupling constants ḡαβ for coarse-grained
densities. In doing so, we keep both the phase and density
variables in the Lagrangian, rather than integrating out the
density variables as in reference [46]. We then move to the
operator formalism, and study excitation spectra, intercompo-
nent entanglement, and correlation functions in an algebraic
manner (see references [61–63] for analogous calculations in
different systems).

2.1. Systems

We consider a system of 2D binary (pseudospin- 1
2 ) BECs hav-

ing two hyperfine spin states (labeled by α = ↑, ↓) and subject
to synthetic magnetic fields B↑ and B↓ in mutually parallel or
antiparallel directions. The Lagrangian density of the system
is given by

L =
∑
α=↑,↓

[
ih̄
2

(ψ∗
αψ̇α − ψ̇∗

αψα) − 1
2M

|(−ih̄∇− qAα)ψα|2
]

−
∑

α,β=↑,↓

gαβ

2
|ψα|2|ψβ |2,

(1)
where ψα(r, t) is the bosonic field for the spin-α component
(with r = (x, y) being the 2D coordinate), and M and q are
the mass and the fictitious charge of an atom. This fictitious
charge specifies the coupling strength between atoms and the
synthetic gauge fields. The gauge field Aα(r) for spin-α bosons
is given by

Aα =
Bα

2
ez × r = εα

B
2

(−y, x), (2)

where we assume qB > 0 and ε↑ = ε↓ = 1 (ε↑ = −ε↓ = 1)
for parallel (antiparallel) fields. The number of magnetic
flux quanta piercing each component is given by Nv =
qBA/(2π h̄) = A/(2π�2), where A is the area of the system and
� :=
√

h̄/qB is the magnetic length. In the Lagrangian (1), the
numbers of spin-↑ and ↓ atoms, N↑ and N↓, are separately con-
served. We introduce the total filling factor ν :=N/Nv, where
N :=N↑ + N↓ is the total number of atoms.

We assume a contact interaction between atoms. For sim-
plicity, we set g↑↑ = g↓↓ ≡ g > |g↑↓| and N↑ = N↓ in the fol-
lowing. With these conditions, the system in parallel fields is
invariant under the interchange of the two components, while

the system in antiparallel fields is invariant under time rever-
sal. To apply the LLL approximation, we further assume that
the scale of the interaction energy per atom, |gαβ |n, is much
smaller than the Landau-level spacing h̄ωc. Here, n :=N↑/A =
N↓/A is the average density of ↑ or ↓ atoms, and ωc := qB/M
is the cyclotron frequency.

2.2. Effective field theory

To obtain a low-energy effective field theory description, it is
useful to rewrite the field asψα = e−iθα

√
nα, where nα(r, t) and

θα(r, t) are the density and phase variables, respectively. The
Lagrangian density (1) is rewritten in terms of these variables
as

L =
∑
α

[
h̄nαθ̇α − nα

2M
(h̄∇θα + qAα)2 − h̄2(∇nα)2

8nαM

]

−
∑
α,β

gαβ

2
nαnβ.

(3)

In the presence of vortices, the phase variables {θα(r, t)}
involve singularities. This motivates us to decompose θα into
regular and singular contributions as θα = θreg,α + θsing,α. We
also introduce the displacement uα(r, t) of a vortex from the
equilibrium position. The derivatives of the singular part θsing,α

of the phase can be related to the displacement field uα as
[23, 64]

h̄θ̇sing,α = −qBα

2
(uα × u̇α)z, (4a)

h̄∇θsing,α + qAα = qBαez × uα − qBα

2
εi ju

i
α∇u j

α, (4b)

where εi j is an antisymmetric tensor with εxy = −εyx = +1.
The displacement uα(r, t) also results in a change in the elastic
energy

∫
d2r Eel(uα, ∂iuα), whose explicit form will be given

in section 2.3. The Lagrangian density can then be expressed
in terms of {θreg,α, uα, nα} as

L =
∑
α

[
h̄nαθ̇reg,α − qBαnα

2
(uα × u̇α)z

− nα

2M

(
h̄∇θreg,α + qBαez × uα −

qBα

2
εi ju

i
α∇u j

α

)2

− h̄2(∇nα)2

8nαM

]
−
∑
α,β

ḡαβ

2
nαnβ − Eel.

(5)
Henceforth, we ignore the term − qBα

2 εi jui
α∇u j

α in the round
brackets as it only gives more than quadratic contributions to
L in terms of ∇θreg,α and uα. We also omit the subscript ‘reg’
in θreg,α.

In the effective Lagrangian density (5), we have introduced
renormalized coupling constants ḡαβ with ḡ↑↑ = ḡ↓↓ ≡ ḡ and
ḡ↑↓ = ḡ↓↑. The necessity of this renormalization has been over-
looked in previous studies [45, 46] and can be explained as
follows. The introduction of the vortex displacement fields
{uα(r, t)} necessarily involves the coarse graining of the the-
ory. Namely, we smooth out details within the scale of the
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Figure 2. Renormalization factors β := ḡ/g (black) and
β↑↓ := ḡ↑↓/g↑↓ (green) for the intracomponent and intercomponent
coupling constants. These factors are calculated using equation (83)
for the mean-field vortex lattice structure for each g↑↓/g, and take
the same values for parallel and antiparallel fields. We set Nv = 972,
with which a sufficient convergence to the thermodynamic limit is
achieved. For overlapping triangular lattices (−1 < g↑↓/g < 0), we
have β = β↑↓ and thus the two curves overlap; the value
β = β↑↓ = 1.1596 in this region coincides with the renormalization
factor obtained for a scalar BEC [7, 18, 66]. Vertical dashed lines
indicate the transition points in the mean-field phase diagram [36].

lattice constants and instead focus on the physics at larger
scales. Therefore, the density variable nα(r, t) should now be
understood as the density averaged over the unit cell contain-
ing r. The renormalized coupling constants ḡαβ can then be
introduced through the relation

∫
u.c.

d2r′ gαβ|ψα(r′, t)|2|ψβ(r′, t)|2 = 2π�2ḡαβnα(r, t)nβ(r, t),

(6)
where |ψα|2 and nα are the original and coarse-grained densi-
ties of the spin-α atoms, respectively, and the integration on
the left-hand side is taken over the unit cell (with the area
2π�2) that contains r. As explained later in this section and
in section 4.1, the renormalized constants ḡαβ for describ-
ing the low-energy physics can be determined by calculat-
ing the contribution of each interaction term to the mean-field
ground-state energy. As seen in equation (6), a positive (neg-
ative) correlation between the density fluctuations |ψα|2 − nα

and |ψβ|2 − nβ leads to an enhanced (reduced) renormalized
coupling |ḡαβ| > |gαβ| (|ḡαβ| < |gαβ|). In particular, the intra-
component coupling g is always enhanced by the renormal-
ization while the intercomponent repulsion g↑↓ > 0 (attraction
g↑↓ < 0) is reduced (enhanced) by the renormalization owing
to the separation (overlap) of vortices between the two com-
ponents; this can be confirmed in figure 2 below. For a rotat-
ing scalar BEC with a repulsive coupling g > 0, a similar
renormalization with ḡ/g = 1.1596 has been discussed in ref-
erences [7, 18, 66]. At high filling factors ν � 1 and for
not too large a number of vortices Nv, we can assume that
the condensates are only weakly depleted; we therefore have
|nα(r, t) − n| � n for the coarse-grained density nα.

Because the displacement fields {uα} involve the mass term
−u2

α in equation (5), one may safely integrate them out in the
discussion of low-energy dynamics. Instead of performing the
integration directly, it is useful to derive the Euler–Lagrange
equations for {uα}:

uα − εα�
2ez ×∇θα − εα

ωc
ez × u̇α

+
�2

nh̄ωc

[
∂Eel

∂uα
− ∂ j

(
∂Eel

∂
(
∂ juα

))] = 0,
(7)

where we have made the approximation nα ≈ n. We can
ignore the third and fourth terms on the left-hand side in
the LLL approximation with h̄ω, Eel/n � h̄ωc, where ω is
the frequency of our concern. Introducing u± :=u↑ ± u↓ and
θ± := θ↑ ± θ↓, we can rewrite equation (7) as

u± =

{
�2ez ×∇θ± (parallel fields);

�2ez ×∇θ∓ (antiparallel fields).
(8)

These relations indicate that the (anti)symmetric move-
ment of vortices is coupled to the (anti)symmetric compo-
nent of the phase variables for parallel fields, while they
are coupled in a crossed manner for antiparallel fields.
By substituting equation (8) into equation (5), we obtain
the effective Lagrangian in terms of θ± and their conjugate
momenta h̄n± = h̄(n↑ ± n↓)/2. The Hamiltonian density is
then obtained as

H =
∑
ν=±

[
ḡνn2

ν +
h̄2(∇nν)2

4nM

]
+ Eel, ḡ± := ḡ ± ḡ↑↓, (9)

where Eel is expressed in terms of the phase variables θ± by
using equation (8). The theory can be quantized by requiring
the canonical commutation relations

[θν(r), nν′(r
′)] = iδνν′δ(r − r′) (ν, ν ′ = ±). (10)

In the present coarse-grained description, the mean-field
ground state corresponds to the uniform state with n+(r) = n,
n−(r) = 0, and ∇θ±(r) = 0. Therefore, using equation (9), we
obtain the mean-field ground-state energy density as

EMF
GS

A
= ḡ+n2 = (ḡ + ḡ↑↓)n

2 =
1
2

∑
α,β

ḡαβn2. (11)

In contrast, the same energy density obtained by the micro-
scopic calculation (the first term of equation (67) shown later)
has the form EMF

GS /A = (βg + β↑↓g↑↓)n2, where β and β↑↓ are
dimensionless constants that depend on the lattice structure.
The renormalized coupling constants are thus determined as
ḡ = βg and ḡ↑↓ = β↑↓g↑↓.

2.3. Elastic energy

The expression of the elastic energy density Eel has been deter-
mined in references [45, 46], and we summarize it in the fol-
lowing. We first note that the elastic energy must be invari-
ant under a constant change in uα(r, t), i.e., translation of
the lattices. Therefore, to the leading order in the derivative

5
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expansion, Eel should be a function of ∂iu+ (i = x, y) and u−,
resulting in the decomposition

Eel = E (+)
el (∂iu+) + E (−)

el (u−) + E (+−)
el (∂iu+, u−). (12)

To express E (+)
el , it is useful to introduce

w1 := ∂xux
+ − ∂yuy

+, w2 := ∂yux
+ + ∂xuy

+. (13)

On the basis of a symmetry consideration, each term in
equation (12) can be expressed as

E (+)
el (∂iu+) =

gn2

2

(
C1w1

2 + C2w2
2 + C3w1w2

)
, (14a)

E (−)
el (u−) =

gn2

2�2

[
D1
(
ux
−
)2

+ D2
(
uy
−
)2

+ D3ux
−uy

−

]
,

(14b)

E (+−)
el (∂iu+, u−) =

gn2

2�
F1

(
w1uy

− + w2ux
−
)
. (14c)

For each of the vortex-lattice structures in figures 1(a)–(e), the
dimensionless elastic constants {C1, C2, C3, D1, D2, D3, F1}
satisfy

(a) C1 = C2 ≡ C > 0, D1 = D2 ≡ D > 0, C3 = D3 = F1 = 0;

(b) C1 = C2 ≡ C > 0, D1 = D2 ≡ D > 0, C3 = D3 = 0, F1 �= 0;

(c) C1, C2, D1, D2 > 0, C3, D3 �= 0, F1 = 0;

(d) C1, C2 > 0, D1 = D2 ≡ D > 0, C3 = D3 = F1 = 0;

(e) C1, C2 > 0, D1, D2 > 0, C3 = D3 = F1 = 0.

(15)
Keçeli and Oktel [45] have determined the constants

{C1, C2, C3, D1, D2, D3} by calculating a change in the mean-
field energy under deformation of vortex lattices. In our previ-
ous work [46], we have pointed out the presence of the F1 term
for interlaced triangular vortex lattices (b), which was missed
in reference [45]. For ν � 1, the elastic constants should be
the same for the two types of fields because of the exact cor-
respondence of the GP energy functionals [42]. In section 4.2,
we will determine all the elastic constants above as a function
of g↑↓/g by using the data of the excitation spectra.

2.4. Diagonalization of the effective Hamiltonian

We are now in a position to calculate the energy spectrum of
the Hamiltonian H =

∫
d2rH, where the Hamiltonian density

H is given by equation (9). We perform Fourier expansions

θν(r) =
1√
A

∑
k

θk,ν eik·r, (16a)

nν(r) =
1√
A

∑
k

nk,ν eik·r (ν = ±), (16b)

where the Fourier components satisfy

[θk,ν , n−k′,ν′ ] = iδνν′δkk′ , (17a)

θ†k,ν = θ−k,ν , n†
k,ν = n−k,ν (ν, ν ′ = ±). (17b)

We note that the k = 0 component n0,± of the densities is
related to the atom numbers as n0,± = (N↑ ± N↓)/(2

√
A). The

Hamiltonian H is then expressed as

H =
n
2

∑
k

(
θ−k,+ θ−k,−

)( Γ±(k) ±iΓ(k)
∓iΓ(k) Γ∓(k)

)(
θk,+

θk,−

)

+
1

2n

∑
k

∑
ν=±

ek,νn−k,νnk,ν ,

(18)
where6

ek,ν := 2ḡνn +
h̄2k2

2M
, (19a)

Γ+(k) := gn�4
[
C1
(
2kxky

)2
+ C2

(
k2

x − k2
y

)2

− C3(2kxky)
(
k2

x − k2
y

) ]
, (19b)

Γ−(k) := gn�2
(
D1k2

y + D2k2
x − D3kxky

)
, (19c)

Γ(k) :=
1
2

gn�3F1
[
(2kxky)kx + (k2

x − k2
y )ky

]
. (19d)

In equation (18), the upper and lower signs correspond to the
cases of parallel and antiparallel fields, respectively7.

It is useful to decompose the Hamiltonian (18) into the
zero-mode (k = 0) and oscillator-mode (k �= 0) parts. First,
the zero-mode part is given by

Hzero =
∑
ν=±

ḡνn2
0,ν =

ḡ+

4A
N2 +

ḡ−
4A

(N↑ − N↓)2. (20)

Thus, the zero-mode energy is specified by the atom num-
bers N↑ and N↓. In our setting of balanced population
N↑ = N↓, the zero-mode state is given by the product
state |N↑ = N/2〉 |N↓ = N/2〉, which has no intercomponent
entanglement.

Next, we discuss the oscillator-mode part Hosc of the Hamil-
tonian (18). To treat this part, we perform canonical transfor-
mations in two steps. The first transformation reads

θ̃k,+ = r−1
k θk,+, θ̃k,− = rkθk,−, (21a)

ñk,+ = rknk,+, ñk,− = r−1
k nk,−, (21b)

where rk := (ek,+/ek,−)1/4. Then, Hosc is rewritten as

Hosc =
n
2

∑
k�=0

(
θ̃−k,+ θ̃−k,−

)
M(k)

(
θ̃k,+

θ̃k,−

)

+
1
2n

∑
k �=0

∑
ν=±

ekñ−k,ν ñk,ν ,

(22)

6 We slightly change the definitions of Γ±(k) and Γ(k) from reference [46] by
dividing them by n so that they have the dimension of energy.
7 The same sign rule applies to equations (23), (24), (27), (32), (34), (35), (43),
(44), (51), (56), (A.5) and (A.6) below.
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where ek :=
√

ek,+ek,−. Here, the 2 × 2 matrix M(k) is given
by

M(k) :=

(
r2

kΓ±(k) ±iΓ(k)
∓iΓ(k) r−2

k Γ∓(k)

)

= Γ0(k)I ∓ Γ(k)σy + Γz(k)σz,

(23)

where I is the identity matrix, (σx , σy, σz) are the Pauli matri-
ces, and

Γ0(k) :=
1
2

[
r2

kΓ±(k) + r−2
k Γ∓(k)

]
, (24a)

Γz(k) :=
1
2

[
r2

kΓ±(k) − r−2
k Γ∓(k)

]
. (24b)

We then perform the second canonical transformation using
the unitary matrix U(k) as(

θ̃k,+

θ̃k,−

)
= U(k)

(
θ̄k,1

θ̄k,2

)
,

(
ñk,+

ñk,−

)
= U(k)

(
n̄k,1

n̄k,2

)
. (25)

We note that the second term of equation (22) is invariant under
this transformation if U(−k)tU(k) = I for all k �= 0. It is there-
fore useful to choose U(k) in such a way as to diagonalize the
Hermitian matrix M(k) as

U−1(k)M(k)U(k) =

(
mk,1 0

0 mk,2

)
, (26a)

U(k) = eiχkσx/2 =

(
cos(χk/2) i sin(χk/2)
i sin(χk/2) cos(χk/2)

)
,

(26b)

where8

mk, j :=Γ0(k) + (−1) j−1Λ(k) ( j = 1, 2), (27a)

Λ(k)(cos χk, sin χk) := (Γz(k),Γ(k)) . (27b)

In terms of the new set of canonical variables, the Hamiltonian
(22) is further rewritten as

Hosc =
1
2

∑
k �=0

∑
j=1,2

(
nmk, jθ̄−k, jθ̄k, j +

ek

n
n̄−k, jn̄k, j

)
. (28)

Here, θ̄k, j and n̄k, j satisfy [θ̄k, j, n̄−k′ , j ′] = iδ j j ′δkk′ (k, k′ �=
0; j, j ′ = 1, 2) as the transformations in equations (21) and
(25) leave the commutation relations unchanged. Finally,
introducing the (bogolon) annihilation and creation operators

γk, j :=
1√
2

(√
nζk, jθ̄k, j +

in̄k, j√
nζk, j

)
, (29a)

γ†
k, j :=

1√
2

(√
nζk, jθ̄−k, j −

in̄−k, j√
nζk, j

)
(k �= 0; j = 1, 2),

(29b)

8 Since Γz(k) = Γz(−k) and Γ(−k) = −Γ(k), we find χ−k = −χk and
thus U(−k)t = U(k)† = U(k)−1; therefore, the aforementioned condition
U(−k)tU(k) = I is met.

with ζk, j := (mk, j/ek)1/4, we can diagonalize the Hamiltonian
(28) as

Hosc =
∑
k�=0

∑
j=1,2

E j(k)

(
γ†

k, jγk, j +
1
2

)
, (30a)

E j(k) :=
√

mk, jek. (30b)

The ground state |0osc〉 of this Hamiltonian is specified by the
condition that γk,± |0osc〉 = 0 for all k �= 0.

We now discuss the single-particle spectrum E j(k) ( j =
1, 2) in the long-wavelength limit k� � 1. In this limit, we

can make the approximation rk ≈ r0 =
(
ḡ+/ḡ−

)1/4
and ek ≈

e0 = 2(ḡ+ḡ−)1/2n. SinceΓ+(k) = O(k4),Γ−(k) = O(k2), and
Γ(k) = O(k3) as seen in equation (19), we can approximate
mk, j in equation (27) as

mk,1 ≈ r∓2
0 Γ−(k), mk,2 ≈ r±2

0

[
Γ+(k) − Γ(k)2

Γ−(k)

]
. (31)

By parametrizing the wave vector as (kx , ky) = k(cosϕ, sinϕ),
mk, j can also be expressed as

mk,1 ≈ r∓2
0 gnD(ϕ)(k�)2, mk,2 ≈ r±2

0 gnC(ϕ)(k�)4, (32)

where

C(ϕ) :=C1 sin2(2ϕ) + C2 cos2(2ϕ)

− C3 sin(2ϕ) cos(2ϕ) − C4 sin2(3ϕ), (33a)

D(ϕ) :=D1 sin2(ϕ) + D2 cos2(ϕ) − D3 sin(ϕ) cos(ϕ),

(33b)

with C4 :=F2
1/4D1. We then obtain the low-energy spectrum

as

E j(k) ≈ √
mk, je0 ≈

√
2gn(k�) j f j(ϕ) ( j = 1, 2), (34)

where the dependence on the angle ϕ is expressed by the
dimensionless functions

f1(ϕ) =
√

ḡ∓D(ϕ)/g, f2(ϕ) =
√

ḡ±C(ϕ)/g. (35)

We thus find that low-energy modes with linear and quadratic
dispersion relations emerge with anisotropy that depends on
the lattice structure. Furthermore, the low-energy dispersion
relations for parallel (P) and antiparallel (AP) fields are related
by proper rescaling as follows:

EP
1 (k)/

√
ḡ− = EAP

1 (k)/
√

ḡ+, (36a)

EP
2 (k)/

√
ḡ+ = EAP

2 (k)/
√

ḡ−. (36b)

Using the dimensionless functions f j(ϕ) ( j = 1, 2) for the two
types of fields, these relations can also be written as

f P
1(ϕ)

√
g

ḡ−
= f AP

1 (ϕ)
√

g
ḡ+

=
√

D(ϕ), (37a)

f P
2(ϕ)

√
g

ḡ+
= f AP

2 (ϕ)
√

g
ḡ−

=
√

C(ϕ). (37b)
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In section 4.2, we will confirm these relations through the
numerical calculations by the Bogoliubov theory for all the
five vortex-lattice structures in figures 1(a)–(e). While simi-
lar rescaling relations are also discussed in reference [46], the
importance of using the renormalized coupling constants ḡ±
is overlooked there. Without the renormalization, the rescal-
ing relations in equations (36) and (37) are satisfied only
for overlapping vortex lattices where β = β↑↓, as confirmed
numerically in reference [46].

2.5. Intercomponent entanglement

We now calculate the reduced density matrix (RDM) ρ↑ for
the spin-↑ component, which is defined by starting from the
ground state |0zero〉 ⊗ |0osc〉 of the total system and tranc-
ing out the degrees of freedom in the spin-↓ component. We
then discuss the properties of the intercomponent entangle-
ment. Because of the decoupling of the zero and oscillator
modes, the RDM takes the form of ρ↑ = ρzero

↑ ⊗ ρosc
↑ . As the

zero-mode ground state |N↑ = N/2〉 |N↓ = N/2〉 is a product
state, there is no intercomponent entanglement in the zero-
mode part; the RDM in this part is given simply by ρzero

↑ =
|N↑ = N/2〉 〈N↑ = N/2|. Below we consider the oscillator-
mode part ρosc

↑ .
For ρosc

↑ , we introduce the following Gaussian ansatz
[61–63, 67–69]:

ρosc
↑ =

1
Zosc

e
e−Hosc

e , Zosc
e = Tr e−Hosc

e , (38a)

Hosc
e =

1
2

∑
k �=0

(
nFkθ−k,↑θk,↑ +

Gk

n
n−k,↑nk,↑

)
, (38b)

where Fk and Gk are positive dimensionless coefficients to
be determined later and we assume Fk = F−k and Gk = G−k

for convenience. By introducing annihilation and creation
operators as

ηk =
1√
2

[
√

n

(
Fk

Gk

)1/4

θk,↑ +
i√
n

(
Gk

Fk

)1/4

nk,↑

]
,

(39a)

η†k =
1√
2

[
√

n

(
Fk

Gk

)1/4

θ−k,↑ −
i√
n

(
Gk

Fk

)1/4

n−k,↑

]

(k �= 0), (39b)

the entanglement Hamiltonian Hosc
e in equation (38) is diago-

nalized as

Hosc
e =

∑
k �=0

ξk

(
η†kηk +

1
2

)
, (40)

where ξk :=
√

FkGk is the single-particle ES.
The single-particle ES ξk and the coefficients Fk and Gk can

be determined in the following way [61]. Using the relations

in equation (39) and the Bose distribution function

Tr
(
η†kηkρ

osc
↑

)
=

1
eξk − 1

≡ fB(ξk), (41)

we obtain the phase and density correlators as

Tr
(
θ−k,↑θk,↑ρ

osc
↑
)
=

1
n

(
Gk

Fk

)1/2[
fB(ξk) +

1
2

]
, (42a)

Tr
(
n−k,↑nk,↑ρ

osc
↑
)
= n

(
Fk

Gk

)1/2[
fB(ξk) +

1
2

]
. (42b)

We can then determine fB(ξk) and Fk/Gk by requiring these
correlators to be equal to the same correlators calculated for
the oscillator ground state |0osc〉 of the total system. Details
of this calculation are described in appendix A. In the long-
wavelength limit k� � 1, we obtain

ξk ≈ c(ϕ)
√

k�, Fk ≈ F(ϕ)(k�)2, Gk ≈ G(ϕ)
k�

, (43)

where the dependences on the angle ϕ are expressed by the
dimensionless functions

c(ϕ) = 4

[
ḡ∓C(ϕ)
ḡ±D(ϕ)

]1/4

, (44a)

F(ϕ) = 4

√
2gC(ϕ)

ḡ±
, G(ϕ) = 2

√
2ḡ∓

gD(ϕ)
. (44b)

We find that the ES shows a gapless square-root dispersion
relation with anisotropy that depends on the lattice structure.
Furthermore, similarly to the case of excitation spectra (see
equation (36)), the single-particle ES ξP

k for parallel (P) fields
and that ξAP

k for antiparallel (AP) fields are related by suitable
rescaling as

(
ḡ+

ḡ−

)1/4

ξP
k =

(
ḡ−
ḡ+

)1/4

ξAP
k . (45)

Using the dimensionless functions c(ϕ) for the two types of
fields, this relation can also be written as

(
ḡ+

ḡ−

)1/4

cP(ϕ) =

(
ḡ−
ḡ+

)1/4

cAP(ϕ) = 4

[
C(ϕ)
D(ϕ)

]1/4

. (46)

The entanglement Hamiltonian is given in the long-
wavelength limit by Hosc

e in equation (38) with Fk and Gk in
equation (43). Using the fields θ↑(r) and n↑(r) in real space, it
can be expressed as

He =

∫
d2r
∫

d2r′
[

n�2

2
UF(r − r′)∇θ↑(r) · ∇θ↑(r′)

+
1

2n
UG(r − r′)n↑(r)n↑(r′)

]
,

(47)

where we introduce the interaction potentials

8
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UF(r − r′) =
1
A

∑
k

F(ϕ)eik·(r−r′), (48a)

UG(r − r′) = lim
α→0+

1
A

∑
k �=0

G(ϕ)
k�

e−αk+ik·(r−r′). (48b)

Here, we use the convergence factor e−αk to regularize the infi-
nite sum for UG(r − r′). For simplicity, we consider the case
of overlapping triangular lattices, in which C(ϕ) and D(ϕ)
(and thus F(ϕ) and G(ϕ) as well) are constant; see (a) in
equation (15). In this case, the potentials in equation (48) are
calculated as

UF(r − r′) = Fδ(r − r′), (49a)

UG(r − r′) =
G

2π�|r − r′| . (49b)

For the calculation of UG(r − r′), we refer the reader to
appendix A of reference [61]. We note that θ↑(r) is the reg-
ular part of the superfluid phase of the spin-↑ component, and
that its gradient is related to the regular part of the super-
fluid velocity, vs,↑(r) = − h̄

M∇θ↑(r). Therefore, the entangle-
ment Hamiltonian (47) has a short-range interaction in terms
of the superfluid velocity vs,↑(r) and a long-range one in terms
of the density n↑(r). If the density-density interaction were
short-ranged, the ES would show a phonon mode with a lin-
ear dispersion relation. Therefore, the anomalous square-root
dispersion relation in equation (43) is closely related with the
presence of a long-range interaction in He.

Using the single-particle ES ξk in equation (43), we can cal-
culate the intercomponent EE Se. For simplicity, we assume
that ξk is isotropic, i.e., c(ϕ) is constant, as in the case of over-
lapping triangular lattices; however, we expect that the result
holds qualitatively for all the lattice structures. With this sim-
plification, the EE is calculated as (see appendix B of reference
[61] for the derivation)

Se =
σA
c4�2

− 1
2

ln

√
A

2πc2 �
+ O(1)

=
2πσNv

c4
− 1

4
ln

Nv

2πc4
+ O(1).

(50)

Here, the leading contribution is given by the first term, which
is proportional to the area A with a non-universal coefficient σ
that depends, e.g., on the choice of the high-momentum cutoff.
Besides, there is a subleading logarithmic term with the univer-
sal coefficient (equal to−1/2 when written as a function of the
linear system size

√
A), which is determined through a careful

examination of small-k contributions and therefore originates
from the Nambu–Goldstone modes. The intercomponent EE
per flux in the thermodynamic limit is calculated as

lim
Nv→∞

Se

Nv
=

2πσ
c4

=
πσḡ±D
128ḡ∓C

. (51)

Because of the factor ḡ±/ḡ∓ in equation (51), when the inter-
component interaction g↑↓ is repulsive (attractive), the inter-
component EE is expected to be larger for the case of paral-
lel (antiparallel) fields. We note that the above calculation of

the intercomponent EE Se is simple yet approximate as it is
based on the single-particle ES ξk for long wavelengths. In
section. 4.3, we will present numerical results on Se based on
the Bogoliubov theory, in which ξk over the full Brillouin zone
is taken into account, and confirm the consistency with the
field-theoretical predictions.

2.6. Intracomponent correlation functions

Here we calculate some intracomponent correlation func-
tions, and discuss their connections with the (long-wavelength)
entanglement Hamiltonian He obtained in the preceding
section. Let 〈O〉 denote the expectation value of an operator
O with respect to the ground state |0zero〉 ⊗ |0osc〉 of the total
system. If O acts only on the spin-↑ component, 〈O〉 should be
equal to Tr

(
Oe−He

)
/Tr e−He as far as long-distance proper-

ties are concerned. Our purpose here is to investigate how the
unusual long-range interactions in He manifest themselves in
the correlation properties of the system.

Owing to the gapless ES ξk, we can approximate the
Bose distribution function (41) as fB(ξk) ≈ ξ−1

k = (FkGk)−1/2

for sufficiently small k. Then, in the long-wavelength limit,
equation (42) gives

〈θ−k,↑θk,↑〉 ≈
1

nFk
≈ 1

nF(ϕ)k2�2
, (52a)

〈n−k,↑nk,↑〉 ≈
n

Gk
≈ nk�

G(ϕ)
(k �= 0), (52b)

where we use equation (43). Therefore, the phase and den-
sity fluctuations are directly related to the coefficients Fk

and Gk, respectively, in the entanglement Hamiltonian (38).
Equation (52) indicates that in the long-wavelength limit k →
0, the phase fluctuation diverges and the density fluctuation is
suppressed. From the viewpoint of the entanglement Hamilto-
nian, suppression of the density fluctuation is a consequence
of the long-range interaction in terms of the density. The
enhanced phase fluctuation in the long-wavelength limit leads
to a quasi-long-range order in the one-particle density matrix,
as we explain in the following.

The one-particle density matrix plays a key role in the
characterization of the Bose–Einstein condensation [70–72].
To analyze its behavior in our course-grained description,
we introduce the modified bosonic field ψ̃↑ = e−iθ↑√n↑.
As θ↑(r) is the regular part of the superfluid phase and
n↑(r) is the course-grained density, ψ̃(r) is expected to vary
slowly over space. We consider the modified one-particle
density matrix

〈ψ̃↑(r)†ψ̃↑(0)〉 =
〈√

n↑(r)ei(θ↑(r)−θ↑(0))
√

n↑(0)
〉

, (53)

which describes the slowly varying component of the ordi-
nary one-particle density matrix. Its long-distance behavior is
determined dominantly by the phase fluctuation as seen in the
small-k behavior of equation (52). Here we again consider the
case of overlapping triangular lattices where F(ϕ) is constant.
By using equation (52), the phase correlation function in real

9
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space is obtained as (see appendix B for the derivation)

〈[
θ↑(r) − θ↑(0)

]2〉
=

2
A

∑
k �=0

e−αk [1 − cos (k · r)] 〈θ−k,↑θk,↑〉

≈ 1
πnF�2

ln
r

2α
(r � α),

(54)
where we introduce the same convergence factor e−αk as
before to regularize the infinite sum. The modified one-particle
density matrix is then obtained as

〈ψ̃↑(r)†ψ̃↑(0)〉 ≈ n exp

{
−1

2

〈[
θ↑(r) − θ↑(0)

]2〉}

≈ n
( r

2α

)− 1
2πnF�2 .

(55)

We thus have a quasi-long-range order in the one-particle
density matrix.

For a finite system of area A, the particle density n0 of
the condensate can be evaluated from the one-particle density
matrix (55) at the large separation r =

√
A/2. The density n′ of

the depletion is then given by n′ = n − n0. Assuming n′ � n
as required for the Bogoliubov theory and the present effective
theory, the fraction of depletion is estimated as

n′

n
≈ 1

2

〈[
θ↑(r) − θ↑(0)

]2〉∣∣∣∣
r=

√
A/2

≈ 1
2πnF�2

ln

√
A

4α
=

1
2ν

(
ḡ±

2gC

)1/2

ln

√
A

4α
.

(56)

where we use equation (44) and ν = 2nA/Nv = 4πn�2. For
fixed ν, the fraction of quantum depletion of the conden-
sate increases logarithmically as a function of the number
of vortices Nv = A/(2π�2). Furthermore, for an intercompo-
nent repulsion (attraction), it is larger for the case of paral-
lel (antiparallel) fields, indicating larger quantum fluctuations.
This behavior is in accord with the larger intercomponent
EE given in equation (51). We note that a quasi-long-range
order in the one-particle density matrix and a logarithmic
increase of the fraction of depletion as in equations (55) and
(56) have also been discussed for a vortex lattice in a scalar
BEC [18, 20–22].

3. Bogoliubov theory

The Bogoliubov theory with the LLL approximation has been
formulated for a scalar BEC in references [18, 21, 22]. In ref-
erence [46], we have applied this theory to the present problem
of binary BECs in parallel and antiparallel magnetic fields. In
sections 3.1 and 3.2, we summarize the formulation of refer-
ence [46]. In particular, we give an expression of the ground-
state energy (equation (67)) in which a quantum correction due
to zero-point fluctuations is included. In section 3.3, we use
this formulation to derive expressions of the intercomponent
ES and EE. Numerical results based on this formulation will
be presented in section 4.

3.1. LLL magnetic Bloch states and Hamiltonian

We employ the LLL magnetic Bloch states {Ψkα(r)} [22,
73–75] as a convenient single-particle basis for describing vor-
tex lattices. The expressions of these states are shown in refer-
ence [46], and we summarize their main features in the follow-
ing. Let a1 and a2 be the primitive vectors of a vortex lattice,
and let Kα be the pseudomomentum operator for a spin-α atom
in a synthetic magnetic field Bα (α = ↑, ↓). As expected for a
‘Bloch state’, Ψkα(r) is an eigenstate of the magnetic transla-
tion e−iKα·a j/ h̄ with an eigenvalue e−ik·a j ( j = 1, 2). By taking
Nv discrete wave vectors k consistent with the boundary con-
ditions of the system, {Ψkα(r)} form a complete orthogonal
basis of the LLL manifold9. Notably, Ψkα(r) has a periodic
pattern of zeros at [74]

r = n1a1 + n2a2 +
1
2

(a1 + a2) − εα�
2ez × k, n1, n2 ∈ Z.

(57)
Therefore, Ψkα(r) represents a vortex lattice with primitive
vectors a1 and a2 for any k, and the locations of vortices (zeros)
can be shifted by varying k. Vortex lattices of binary BECs
in figure 1 are obtained when spin-α bosons condense into
Ψqα ,α(r), where the wave vectors q↑ and q↓ are chosen in a
way consistent with the displacement u1a1 + u2a2 between the
components.

In the LLL approximation, the kinetic energy of each par-
ticle stays constant, and therefore we can focus on the interac-
tion Hamiltonian Hint. Using the LLL magnetic Bloch states
{Ψkα(r)} as the basis, it is represented as

Hint =
1
2

∑
α,β

∑
k1,k2,k3,k4

Vαβ(k1, k2, k3, k4)b†
k1α

b†
k2β

bk3βbk4α,

(58)
where bkα is a bosonic annihilation operator for the state
Ψkα(r) and

Vαβ(k1, k2, k3, k4)

= gαβ

∫
d2rΨ∗

k1α
(r)Ψ∗

k2β
(r)Ψk3β(r)Ψk4α(r).

(59)

The expression of the interaction matrix element
Vαβ(k1, k2, k3, k4) that is convenient for numerical
calculations is given in reference [46].

3.2. Bogoliubov approximation

We now apply the Bogoliubov approximation [18, 21, 22, 70],
assuming that the condensation occurs at the wave vector qα

in the spin-α component. To this end, it is useful to introduce

b̃kα := bqα+k,α, (60a)

Ṽαβ(k1, k2, k3, k4) :=Vαβ(qα+ k1, qβ+ k2, qβ + k3, qα+ k4).

(60b)

9 In numerical calculations presented later, we set k = n1
Nv1

b1 +
n2

Nv2
b2 with

nj ∈ {0, 1, . . . , Nv j − 1} and Nv1Nv2 = Nv. Here, b1 and b2 are the reciprocal
primitive vectors as shown in figure 1.
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By substituting

b̃0α � b̃†
0α �

√
Nα −

∑
k �=0

b̃†
kαb̃kα (61)

in equation (58) and retaining terms up to the second order in
b̃kα and b̃†

kα (k �= 0), we obtain the Bogoliubov Hamiltonian

Hint =
1
2

∑
α,β

NαNβṼαβ(0, 0, 0, 0) − 1
2

∑
k �=0

J(k)

+
1
2

∑
k �=0

(
b̃†

k↑, b̃†
k↓, b̃−k,↑, b̃−k,↓

)
M(k)

⎛
⎜⎜⎜⎝

b̃k↑
b̃k↓

b̃†
−k,↑

b̃†
−k,↓

⎞
⎟⎟⎟⎠ ,

(62)
where

J(k) :=
∑
α,β

Nβ

[
Ṽαβ(k, 0, 0, k) − Ṽαβ(0, 0, 0, 0)

]

+
∑
α

NαṼαα(k, 0, k, 0),
(63)

and the expression of the 4 × 4 matrix M(k) is shown in
reference [46].

To diagonalize equation (62), we perform the Bogoliubov
transformation ⎛

⎜⎜⎜⎝
b̃k↑
b̃k↓

b̃†
−k,↑

b̃†
−k,↓

⎞
⎟⎟⎟⎠ = W(k)

⎛
⎜⎜⎝

γk,1

γk,2

γ†
−k,1

γ†
−k,2

⎞
⎟⎟⎠ , (64a)

W(k) =

(
U(k) V∗(−k)
V(k) U∗(−k)

)
. (64b)

Here, the paraunitary matrix W(k) is chosen to satisfy

τ3M(k)W(k)

= W(k) diag(E1(k), E2(k),−E1(−k),−E2(−k)),
(65)

where τ 3 := diag(1, 1,−1,−1). Namely, W(k) and E j(k) ( j =
1, 2) are obtained by solving the right eigenvalue problem of
τ3M(k). Equation (62) is then diagonalized as

Hint =
1
2

∑
α,β

NαNβ Ṽαβ(0, 0, 0, 0) − 1
2

∑
k �=0

J(k)

+
∑
k �=0

∑
j=1,2

E j(k)

(
γ†

k jγk j +
1
2

)
.

(66)

We thus find that the Bogoliubov excitations (bogolons) are
created by γ†

k j ( j = 1, 2) and have the dispersion relations
{E j(k)}.

The ground state of equation (66) is given by the bogolon
vacuum |0〉, which is specified by the condition that γk j |0〉 = 0
for all k �= 0 and j = 1, 2. The ground-state energy EGS (scaled

by the interaction energy scale gn2A) is therefore given by

EGS

gn2A
=

1
2

∑
α,β

A
g

Ṽαβ(0, 0, 0, 0)

+
1

gnνNv

∑
k�=0

[∑
j

E j(k) − J(k)

]

=
1
2

∑
α,β

A
g

Ṽαβ(0, 0, 0, 0)

+
1

2πgnν

∫
BZ

d2k�2

[∑
j

E j(k) − J(k)

]
.

(67)

Here, in the final expression, we take the thermodynamic
limit Nv →∞ so that the sum is replaced by the inte-
gral over the Brillouin zone as 1

Nv

∑
k �=0 → 1

|b1×b2|
∫

d2k =
1

2π

∫
BZd2k �2; this integral is convergent as the integrand is

finite over the entire Brillouin zone. The first term on the
right-hand side of equation (67) corresponds to the mean-field
ground-state energy, which has been analyzed by Mueller and
Ho [36]. The other term gives a quantum correction and is
inversely proportional to the filling factor ν. In section 4.5,
we numerically calculate equation (67), and discuss how the
quantum correction affects the ground-state phase diagrams.

Using equation (64), we can calculate the following corre-
lators in the ground state:

〈0| b̃†
k,αb̃k,α |0〉 =

∑
j

|Vα, j(−k)|2, (68a)

〈0| b̃−k,αb̃†
−k,α |0〉 =

∑
j

|Uα, j(−k)|2, (68b)

〈0| b̃−k,αb̃k,α |0〉 =
∑

j

Uα, j(−k)V∗
α, j(−k), (68c)

〈0| b̃†
k,αb̃†

−k,α |0〉 =
∑

j

U∗
α, j(−k)Vα, j(−k). (68d)

Here, we have nonzero ‘anomalous’ correlators in
equations (68c) and (68d) as the particle numbers N↑ and N↓
are not conserved in the Bogoliubov Hamiltonian (62). Using
equations (68a) and (68b), we can further calculate the fraction
of depletion n′/n, which is equal for the two components, as

n′

n
=

1
Nα

∑
k �=0

〈0| b̃†
k,αb̃k,α |0〉

=
2

νNv

∑
k �=0

∑
j=1,2

|Vα, j(−k)|2 (α = ↑, ↓).

(69)

As discussed in section 2.6 (see equation (56)), this quantity
is expected to diverge logarithmically as a function of Nv. We
will confirm this behavior numerically in section 4.4. This
diverging behavior comes from the divergence of |Vα,2(−k)|2
for k → 0 in equation (69). We note that the Bogoliubov the-
ory should be applied under the condition of weak depletion
n′/n � 1; this condition is satisfied in typical experiments of
ultracold atomic gases, where Nv is at most of the order of
100 [12].

11
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3.3. Intercomponent entanglement

For the RDM ρ↑ for the spin-↑ component, we introduce the
following Gaussian ansatz [62, 63, 67, 68]:

ρ↑ =
1
Ze

e−He , Ze = Tr e−He , (70a)

He =
1
2

∑
k �=0

(
b̃†

k,↑, b̃−k,↑

)
Me(k)

(
b̃k,↑

b̃†
−k,↑

)
, (70b)

with

Me(k) =

(
hk −λk

−λ∗
−k h−k

)
, λk = λ−k. (71)

By performing a Bogoliubov transformation(
b̃k↑

b̃†
−k,↑

)
= We(k)

(
ηk

η†−k

)
, (72a)

We(k) =

(
cosh θk e−iφk sinh θk

eiφk sinh θk cosh θk

)
(72b)

with

cosh 2θk =
hk + h−k

2h̃k
, e−iφk sinh 2θk =

λk

h̃k
, (73a)

h̃k =

√
1
4

(hk + h−k)2 − |λk|2, (73b)

the entanglement Hamiltonian in He in equation (70) is diag-
onalized as

He =
1
2

∑
k �=0

(
ξkη

†
kηk + ξ−kη−kη

†
−k

)

=
∑
k �=0

ξk

(
η†kηk +

1
2

)
,

(74)

where

ξk := h̃k +
hk − h−k

2
(75)

is the single-particle ES.
Using the relation (72) and the Bose distribution functions

Tr
(
η†kηkρ↑

)
=

1
eξk − 1

= fB(ξk), (76a)

Tr
(
η−kη

†
−kρ↑

)
= 1 + fB(ξ−k) = − fB(−ξ−k), (76b)

we obtain

Tr
(

b̃†
k,↑b̃k,↑ρ↑

)
= fB(ξk)cosh2 θk − fB(−ξ−k)sinh2 θk,

(77a)

Tr
(

b̃−k,↑b̃
†
−k,↑ρ↑

)
= − fB(−ξ−k)cosh2 θk + fB(ξk)sinh2 θk,

(77b)

2 Tr
(

b̃−k,↑b̃k,↑ρ↑

)
= [ fB(ξk) − fB(−ξ−k)] e−iφk sinh (2θk) .

(77c)

We require these to be equal to the correlators (68) with respect
to the Bogoliubov ground state. We can then express fB(ξk)
in terms of the correlators (68) in the following way. First, by
taking the sum and the difference of equations (77a) and (77b),
we have

〈b̃†
k↑b̃k↑〉+ 〈b̃−k,↑b̃

†
−k,↑〉 = [ fB(ξk) − fB(−ξ−k)] cosh (2θk) ,

(78a)

〈b̃†
k↑b̃k↑〉 − 〈b̃−k,↑b̃

†
−k,↑〉 = fB(ξk) + fB(−ξ−k), (78b)

where we take the shorthand notation 〈·〉 := 〈0| · |0〉. Next,
using equations (77c) and (78a), we have

fB(ξk) − fB(−ξ−k)

=

√(
〈b̃†

k↑b̃k↑〉+ 〈b̃−k,↑b̃
†
−k,↑〉

)2
− 4
∣∣∣〈b̃−k,↑b̃k↑〉

∣∣∣2.
(79)

Lastly, using equations (78b) and (79), we obtain

fB(ξk) =
1
2

(
〈b̃†

k↑b̃k↑〉 − 〈b̃−k,↑b̃
†
−k,↑〉

)

+

√
1
4

(
〈b̃†

k↑b̃k↑〉+ 〈b̃−k,↑b̃
†
−k,↑〉

)2
−
∣∣∣〈b̃−k,↑b̃k↑〉

∣∣∣2,

(80)

from which we can calculate the single-particle ES ξk =
ln
[
1 + fB(ξk)−1

]
.

We can further use equation (80) to calculate the intercom-
ponent EE as

Se =
∑
k�=0

{− fB(ξk) ln fB(ξk) + [1 + fB(ξk)] ln [1 + fB(ξk)]} .

(81)
As discussed in section 2.5 (see equation (50)), Se is
expected to show a volume-law behavior with a sublead-
ing logarithmic correction. The EE per flux quantum in
the thermodynamic limit is then expressed in the integral
form

lim
Nv→∞

Se

Nv
=

1
2π

∫
BZ

d2k �2 {− fB(ξk) ln fB(ξk)

+ [1 + fB(ξk)] ln [1 + fB(ξk)]} .
(82)

We note that the correlators (68) are independent of ν once
the lattice structure is fixed. Therefore, the EE per flux quan-
tum in equation (82) is also independent of ν in a similar
manner. In section 4.3, we will calculate the EE per flux
quantum by assuming the structure in the mean-field ground
state.

4. Numerical results

In this section, we present numerical results that are obtained
using the Bogoliubov theory of section 3. In this formu-
lation, one starts from the lattice structure with the primi-
tive vectors a1 and a2 and the displacement parameters u1

12
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Figure 3. Bogoliubov excitation spectra {E j(k)} (in units of gn) for different values of g↑↓/g corresponding to the lattice structures (a)–(e)
shown in figure 1. In each panel, both results for parallel (blue) and antiparallel (red) magnetic fields are shown. Calculations are done along
the dotted arrows in the lower panels of figure 1.

and u2 (see figure 1(f)). In the GP mean-field theory, these
parameters are determined so as to minimize the mean-field
ground-state energy (the first term on the right-hand side
of equation (67)) for a fixed magnetic length �. As demon-
strated by Mueller and Ho [36], this mean-field analysis gives
a rich phase diagram that consists of five different vortex-
lattice phases as shown in figure 1. In sections 4.1–4.4, we
analyze renormalized coupling constants, excitation spectra,
intercomponent entanglement, and the fraction of depletion,
respectively, using the Bogoliubov theory based on the mean-
field vortex lattice structures. Therefore, the results in these
sections correspond to the case of ν = ∞. As we lower the
filling factor ν, quantum fluctuations are expected to affect
the vortex lattice structures and the ground-state phase dia-
grams. In section 4.5, we investigate how quantum fluctua-
tions affect the ground-state phase diagrams for parallel and
antiparallel fields by calculating a quantum correction to the
ground-state energy (i.e., the term proportional to ν−1 in
equation (67)).

4.1. Renormalized coupling constants

We first determine the renormalized coupling constants ḡαβ
or equivalently, the renormalization factors βαβ := ḡαβ/gαβ

that are introduced in section 2.2. Comparing the mean-field
ground-state energy (the first term of equation (67)) with the

corresponding field-theoretical expression (11), we find

ḡαβ = βαβgαβ = AVαβ(qα, qβ , qβ , qα)

= Agαβ

∫
d2r|Ψqα ,α(r)|2|Ψqβ ,β(r)|2.

(83)

This expression can also be obtained by substituting the con-
densate wave function

√
NαΨqα ,α(r) intoψα(r) in equation (6).

As seen in this expression, ḡαβ is determined from the contri-
bution of each interaction term to the mean-field ground-state
energy.

Figure 2 shows the renormalization factors β := β↑↑ = β↓↓
and β↑↓ = β↓↑ calculated for the mean-field vortex lattice
structures. For overlapping triangular, interlaced triangular,
and square lattices, β and β↑↓ do not depend on g↑↓/g as the
lattice structures remain unchanged in the concerned regions.
For rhombic and rectangular lattices, in contrast, β and β↑↓
do depend on g↑↓/g as the inner angle θ and the aspect
ratio b/a continuously vary for the former and latter lattices,
respectively.

We have argued in section 2.2 that the intracomponent cou-
pling is always enhanced by the renormalization. We indeed
find β > 1 in all the regions in figure 2. We have also
argued that the intercomponent repulsion g↑↓ > 0 (attraction
g↑↓ < 0) is reduced (enhanced) by the renormalization owing

13
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Figure 4. Rescaled Bogoliubov excitation spectra for the five cases (a)–(e) shown in figure 3. Blue curves show EP
1(k)/(

√
gḡ−n) and

EP
2 (k)/(

√
gḡ+n) for parallel (P) fields while red curves show EAP

1 (k)/(
√

gḡ+n) and EAP
2 (k)/(

√
gḡ−n) for antiparallel (AP) fields. Here,

EP/AP
j (k) with j = 1 and 2 correspond to the upper and lower excitation bands, respectively. We can confirm that the blue and red curves

overlap at sufficiently low energies around the Γ point, which indicates the rescaling relations in equation (36).

to the displacement (overlap) of vortices between the com-
ponents. In figure 2, we indeed find β↑↓ < 1 (β↑↓ > 1) for
g↑↓ > 0 (g↑↓ < 0). Furthermore, β (β↑↓) monotonically
increases (decreases) as a function of g↑↓/g for g↑↓ > 0. This
reflects the fact that with increasing g↑↓/g, vortices in different
components tend to repel more strongly with each other at the
cost of increasing the intracomponent interaction energy.

4.2. Excitation spectrum and elastic constants

As explained in section 3.2 (see equation (65)), the excita-
tion spectrum E j(k) ( j = 1, 2) can be obtained by numeri-
cally calculating the right eigenvalues of the 4 × 4 matrix
τ3M(k). Figure 3 presents spectra obtained in this way for
all the lattice structures (a)–(e) shown in figure 1 and for
both parallel and antiparallel fields. In reference [46],10 we
discuss various unique features of these spectra such as lin-
ear and quadratic dispersion relations at low energies and the

10 There are errors in the scales of some figures in reference [46]. Specifically,
the numerical data for the vertical axes in figures 2, 4, and 5 should be multi-
plied by 1/4, 1/

(
2
√

2
)

, and 1/8, respectively. These errors are unrelated to
the issue of renormalization discussed in the present paper. As our understand-
ing of the rescaling relations is now updated from reference [46], figures 3, 5,
and 6 of the present paper could be seen as improved versions of these figures.

emergence of line and point nodes at high energies that are
related to a fractional translation symmetry. Here, we aim
to demonstrate the rescaling relations in equations (36) and
(37) which are predicted by the low-energy effective field the-
ory. In reference [46], the unrenormalized coupling constants
gαβ are used for the rescaling, which leads to an incorrect
conclusion that the rescaling relations hold only for over-
lapping triangular lattices. Using the renormalized coupling
constants obtained in section 4.1, we can demonstrate the
rescaling relations for all the five structures (a)–(e) shown in
figure 1.

Figure 4 displays rescaled excitation spectra for the five
cases (a)–(e) in figure 3. Here, ḡ± := ḡ ± ḡ↑↓ = βg ± β↑↓g↑↓
are used for the rescaling, where the renormalization factors β
and β↑↓ are shown in figure 2. We can confirm that the rescal-
ing relations in equation (36) hold at sufficiently low energies
around the Γ point. Interestingly, in figures 4(a) and (b), the
rescaling relations hold approximately up to high energies,
which is beyond the scope of effective field theory. At low
energies, the spectra in figure 3 can be fit well by linear and
quadratic dispersion relations

E j(k) =
√

2gn(k�) j f j(ϕ) ( j = 1, 2), (84)
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Figure 5. Dimensionless functions f P/AP
2 (ϕ) (left) and f P/AP

1 (ϕ) (right) for parallel (P; blue) and antiparallel (AP; red) fields for the same
cases (a)–(e) as in figures 3 and 4. These functions express the anisotropy of the low-energy spectra as in equation (84), and they are
calculated from the {E j(k)} along a circular path k = k(cosϕ, sinϕ) with k = 0.001a/�2 and ϕ ∈ [0, 2π). With proper rescaling as in
equation (37), the curves for parallel and antiparallel fields are found to agree perfectly up to numerical precision. Specifically, in the left
panels, f P

2(ϕ)
√

g/ḡ+ and f AP
2 (ϕ)

√
g/ḡ− give the common function

√
C(ϕ) (black). In the right panels, f P

1(ϕ)
√

g/ḡ− and f AP
1 (ϕ)

√
g/ḡ+

give the common function
√

D(ϕ) (black).

where the wave vector is parametrized as k = k(cosϕ, sinϕ)
and { f j(ϕ)} are dimensionless functions that characterize the
anisotropy of the spectrum. Figure 5 shows the functions
{ f j(ϕ)} obtained numerically for the same cases as in figures 3
and 4. We find that with proper rescaling as in equation (37),
the curves for parallel and antiparallel fields coincide perfectly
up to numerical precision, giving the functions

√
C(ϕ) and√

D(ϕ) that are related to the elastic constants.
By comparing the obtained

√
C(ϕ) and

√
D(ϕ) with the

analytical expressions in equation (33), we can determine the
dimensionless elastic constants {Ci} and {Di}. Figure 6 shows
the determined elastic constants as functions of g↑↓/g, which
are common for parallel and antiparallel fields. In our previ-
ous work [46], we obtained different elastic constants for the
two types of fields as we missed the necessity of using the
renormalized coupling constants in relating the spectra to the
elastic constants. Figure 6 is essentially consistent with the

elastic constants determined by a different method by Keçeli
and Oktel [45] except that the constant C4 for interlaced
triangular lattices (b) was overlooked in reference [45].

4.3. Intercomponent entanglement spectrum and entropy

Here we present numerical results on the intercomponent ES
and EE in the Bogoliubov ground state. Calculations are based
on the formulation in section 3.3. The obtained results are
compared with the field-theoretical results in section 2.5.

The left panels of figure 7 display the single-particle ES ξk
for the same cases as in figures 3–5. Around the Γ point, ξk
can be well fitted by the square-root dispersion relation

ξk = c(ϕ)
√

k� (85)

for k = k(cosϕ, sinϕ), where c(ϕ) is a dimensionless func-
tion that expresses the anisotropy. The right panels of figure 7
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Figure 6. Dimensionless elastic constants Ci (i = 1, 2, 3, 4) (left) and Di (i = 1, 2, 3) (right) for the lattice structures (a)–(e) shown in
figure 1. These constants are obtained by fitting the numerically obtained functions

√
C(ϕ) and

√
D(ϕ) (common for parallel and antiparallel

fields as shown in figure 5) using equation (33). See equation (15) for the symmetry constraints on the constants. Vertical dashed lines
indicate the transition points in the mean-field ground state.

show the function c(ϕ) determined from the data of ξk along
a circular path around the Γ point. With proper rescaling, the
curves for parallel and antiparallel fields are found to coincide
perfectly up to numerical precision; furthermore, the rescaled
curves are found to agree accurately with 4[C(ϕ)/D(ϕ)]1/2

(not shown), where
√

C(ϕ) and
√

D(ϕ) are shown in figure 5.
Thus, we can confirm the rescaling relation for the entangle-
ment spectra in equation (46).

In the left panels of figure 7, we also find that ξk diverges
at some high-symmetry points and along lines in the Brillouin
zone. For square (d) and rectangular (e) lattices in antiparal-
lel fields, in particular, divergence occurs along the edges of
the Brillouin zone. In our previous work [46] (see appendix
D therein), it has been found that at the M1 and M2 points for
rhombic, square and rectangular lattices and for both paral-
lel and antiparallel fields, the Bogoliubov Hamiltonian matrix
M(k) has the structure in which the spin-↑ and ↓ components
are decoupled. Therefore, ξk naturally diverges at these points.
However, we have not been able to find such a simple structure

of M(k) along the edges of the Brillouin zone for square (d)
and rectangular (e) lattices in antiparallel fields.

Figure 8(a) shows the intercomponent EE per flux quan-
tum as a function of the ratio g↑↓/g for parallel (blue) and
antiparallel (red) fields. We find that for repulsive (attractive)
g↑↓, the EE tends to be larger for parallel (antiparallel) fields,
in consistency with the field-theoretical result in section 2.5
(see equation (51)). This behavior is in qualitative agreement
with the exact diagonalization results in a quantum (spin) Hall
regime with ν = O(1) [42, 52], in which product states of
nearly uncorrelated quantum Hall states are found to be robust
for an intercomponent attraction (repulsion) in the case of
parallel (antiparallel) fields.

In figure 8(b), we examine the scaling of the intercompo-
nent EE Se as a function of Nv. As seen in this figure, the
dominant part of the scaling is given by a volume-law behav-
ior α1Nv; such a volume-law contribution is standard for an
extensive cut as discussed here, and has also been found else-
where [62, 63, 76–78]. In agreement with the field-theoretical
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Figure 7. (Left panels) Single-particle ES ξ
P/AP
k for parallel (P; blue) and antiparallel (AP; red) fields for the same cases (a)–(e) as in

figures 3–5. Calculations are based on equation (80) and done along the paths indicated by dotted arrows shown in the lower panels of
figure 1. The spectra ξk show divergence at some high-symmetry points and along lines in the first Brillouin zone. In (d) and (e), in
particular, divergence occurs along the edges of the Brillouin zone for antiparallel fields, and thus the value of ξk is not shown along the
paths R → M1 and R → M2. (Right panels) Dimensionless functions cP/AP(ϕ) that express the anisotropy of the ES around the Γ point as in
equation (85). These are calculated from ξ

P/AP
k along a circular path k = k(cosϕ, sinϕ) with k = 0.001a/�2 and ϕ ∈ [0, 2π). With proper

rescaling, the curves for parallel and antiparallel fields coincide perfectly up to numerical precision, confirming the rescaling relation in
equation (46). Namely, (ḡ+/ḡ−)1/4cP(ϕ) and (ḡ−/ḡ+)1/4cAP(ϕ) share the same curves shown in black.

result in equation (50), we find that the data are well fitted by
the form Se = α1Nv − α2 ln Nv + α3 and that the coefficient
α2 obtained by the fitting is close to 1/4.

4.4. Fraction of depletion

Figure 9 shows numerical results on the fraction of depletion
n′/n (scaled by ν−1). As seen in figure 9(a), for an intercompo-
nent repulsion (attraction), this quantity tends to be larger for
parallel (antiparallel) fields, indicating stronger quantum fluc-
tuations. This is in agreement with the field-theoretical result
in equation (56). At the transition point between interlaced tri-
angular and rhombic lattices, the fraction of depletion changes
discontinuously owing to a discontinuous change in the lat-
tice structure. Meanwhile, the fraction of depletion diverges at

both the transition points between rhombic, square, and rect-
angular lattices; this seems to be related to rapid changes in the
inner angle and the aspect ratio in the mean-field ground state
as shown in figure 11. In figure 9(b), we examine the scaling of
νn′/n as a function of Nv. The data are well fitted by the log-
arithmic form νn′/n = γ1 ln Nv + γ2, in agreement with the
field-theoretical result in equation (56).

4.5. Ground-state phase diagrams

Here we analyze how quantum fluctuations affect the ground-
state phase diagrams for parallel and antiparallel fields. The
GP mean-field analyses [36–39] have led to the five types of
lattice structures that depend on g↑↓/g as shown in figure 1.
We assume that the same types of structures appear in the
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Figure 8. (a) Intercomponent EE per flux quantum, Se/Nv, as a function of g↑↓/g for parallel (blue) and antiparallel (red) fields for
Nv = 972. This is calculated from numerically obtained ξk using equation (81). Vertical dashed lines indicate the transition points.
(b) Intercomponent EE Se versus Nv for g↑↓/g = 0.75. A fit to the form Se = α1Nv − α2 ln Nv + α3 gives (α1,α2,α3) =
(0.560, 0.236,−0.70) for parallel fields and (α1,α2,α3) = (0.130, 0.243,−0.06) for antiparallel fields.

Figure 9. (a) Fraction of depletion n′/n (scaled by ν−1) as a function of g↑↓/g for parallel (blue) and antiparallel (red) fields for Nv = 52

(dotted), 112 (dashed), and 192 (solid). The calculations are based on equation (69). Vertical dashed lines indicate the transition points.
(b) νn′/n versus Nv for g↑↓/g = 0.75. A fit to the form νn′/n = γ1 ln Nv + γ2 gives (γ1, γ2) = (1.91,−1.53) for parallel fields and
(γ1, γ2) = (1.09,−0.40) for antiparallel fields.

Figure 10. (a) Ground-state energy (equation (67)) as a function of g↑↓/g. The mean-field energy (black and grey) is appreciably changed by
a quantum correction, as shown for both parallel (blue and purple) and antiparallel (red and brown) fields for ν = 20. The mean-field energy
for the square lattices, Esqu

MF/(gn2 A) = 1.180 34 + 0.834 627g↑↓/g, is subtracted to emphasize the changes due to quantum fluctuations.
Vertical dashed lines indicate the transition points, and alternating colors correspond to different phases. In particular, the transition points
between rhombic-, square- and rectangular lattices shift appreciably owing to quantum corrections. In contrast, the transition point
g↑↓/g = 0 between overlapping and interlaced triangular lattices remain unchanged by quantum corrections. (b) Enlarged view of (a) around
the transition point between interlaced triangular and rhombic lattices, which also shows small shifts due to quantum corrections.

presence of quantum fluctuations as well, and examine a
quantum correction to the ground-state energy.

Figure 10 shows the mean-field ground-state energy as well
as those with quantum corrections for parallel and antiparallel
fields, where the filling factor is ν = 20. Here, the energies for
rhombic and rectangular lattices are minimized with respect
to the inner angle θ and the aspect ratio b/a, respectively.
As seen in figure 10(a), the transition points between rhom-
bic, square and rectangular lattices shift appreciably owing

to quantum corrections; the shift occurs more significantly
for parallel fields. In contrast, the transition point g↑↓/g = 0
between overlapping and interlaced triangular lattices remains
unchanged by quantum corrections. While the shift of the tran-
sition point between interlaced triangular and rhombic lattices
is not clearly seen in figure 10(a), the shift indeed occurs as
seen in the enlarged plot in figure 10(b).

Figures 11(a) and (b) show the inner angle θ of rhom-
bic lattices and the aspect ratio b/a of rectangular lattices,
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Figure 11. (a) The inner angle θ of rhombic lattices and (b) the aspect ratio b/a of rectangular lattices, plotted against g↑↓/g. The mean-field
results (black) [36] are changed appreciably by quantum corrections, as shown both for parallel (blue) and antiparallel (red) fields. Insets
show the definitions of θ and b/a.

respectively, which are obtained through the one-parameter
minimization of the ground-state energy (67). In the mean-
field results, both the inner angle θ and the aspect ratio
b/a show rapid changes near the transition points to square
lattices [46]. In these regimes, the systems are expected to be
highly susceptible to quantum fluctuations. Indeed, changes
in θ and b/a are enhanced in these regimes, which explains
the large shifts of the transition points as demonstrated in
figure 10(a).

5. Summary and outlook

In this paper, we have presented a detailed comparative study
of vortex lattices of binary BECs in parallel and antiparal-
lel synthetic magnetic fields. Within the GP mean-field the-
ory valid for high filling factors ν � 1, the two types of
fields are known to lead to the same phase diagram that con-
sists of a variety of vortex lattices [36–39, 42]. We have
formulated an improved effective field theory for such vor-
tex lattices by introducing renormalized coupling constants
for coarse-grained densities, and studied properties of collec-
tive modes and ground-state intercomponent entanglement.
We have also performed numerical calculations based on
the Bogoliubov theory with the LLL approximation to con-
firm the field-theoretical predictions. We have shown that the
low-energy excitation spectra for the two types of fields are
related to each other by suitable rescaling using the renormal-
ized coupling constants (equations (36) and (37) and figures 4
and 5). By calculating the intercomponent EE in the ground
state, we have found that for an intercomponent repulsion
(attraction), the two components are more strongly entan-
gled in the case of parallel (antiparallel) fields (equation (51)
and figure 8(a)), in qualitative agreement with recent numer-
ical results for a quantum (spin) Hall regime [42, 52]. As
a by-product, we have also found that the ES exhibits an
anomalous square-root dispersion relation (equation (43) and
figure 7), and that the EE exhibits a volume-law scaling fol-
lowed by a subleading logarithmic term (equation (50) and
figure 8(b)). Finally, we have investigated the effects of quan-
tum fluctuations on the phase diagrams by calculating the cor-
rection to the ground-state energy due to zero-point fluctua-
tions in the Bogoliubov theory (equation (67) and figure 10).

We have found that the boundaries between rhombic-, square-,
and rectangular-lattice phases shift appreciably with a decrease
in ν.

We have found a similarity between the regimes of high
(ν � 1) and low (ν = O(1)) filling factors in the behavior of
intercomponent entanglement. It will be interesting to investi-
gate how the two regimes are connected by applying sophisti-
cated numerical methods such as a variational wave function
[22] and the infinite density matrix renormalization group [51].
Furthermore, the similarity between the two regimes suggests
that the behavior of intercomponent entanglement does not
depend on the details of the systems and can be universal for a
wide range of Hamiltonians. In fact, it has been found in lattice
models that two coupled bosonic Laughlin states with opposite
chiralities (i.e., fractional quantum spin Hall states [44]) are
more robust against an intercomponent repulsion than the ones
with the same chirality [79]. The stability of fractional quan-
tum spin Hall states against an intercomponent repulsion has
also been discussed in fermionic models [80–83]. Compara-
tive investigation of multicomponent systems in gauge fields
with different symmetries as in the present study will be a
useful approach for exploring universal features of interacting
topological states of matter.
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Appendix A. Entanglement spectrum and
entanglement Hamiltonian

Here we describe details of the calculation of the ES ξk and
the coefficients Fk and Gk in the entanglement Hamiltonian in
section 2.5.

For preparation, we calculate the phase and density correla-
tors in the oscillator ground state |0osc〉 of the total system. By
using equations (21), (25), and (29), the phase and the density
of the spin-↑ component are expressed in terms of the bogolon
operators as

θk,↑ =
1
2

(
rk, r−1

k

)
U(k)

(
θ̄k,1

θ̄k,2

)
=

1
2

∑
j=1,2

Rk, jθ̄k, j

=
1

2
√

2n

∑
j=1,2

Rk, jζ
−1
k, j

(
γk, j + γ†

−k, j

)
, (A.1a)

nk,↑ =
(
r−1

k , rk
)

U(k)

(
n̄k,1

n̄k,2

)
=
∑
j=1,2

Rk,3− jn̄k, j

=
1
i

√
n
2

∑
j=1,2

Rk,3− jζk, j

(
γk, j − γ†

−k, j

)
. (A.1b)

Here we introduce

Rk,1 := rk cos
χk

2
+ ir−1

k sin
χk

2
, (A.2a)

Rk,2 := r−1
k cos

χk

2
+ irk sin

χk

2
, (A.2b)

which satisfy R−k, j = R∗
k, j ( j = 1, 2). As |0osc〉 is the vacuum

for bogolons, i.e., γk,± |0osc〉 = 0 for all k �= 0, the correlators
of the operators in equation (A.1) are calculated as

〈0osc| θ−k,↑θk,↑ |0osc〉

=
1

8n

∑
j=1,2

|Rk, j|2ζ−2
k, j

=
1

8nζk,1ζk,2

(
|Rk,1|2

ζk,2

ζk,1
+ |Rk,2|2

ζk,1

ζk,2

)
,

(A.3a)

〈0osc| n−k,↑nk,↑ |0osc〉

=
n
2

∑
j=1,2

|Rk,3− j|2ζ2
k, j

=
nζk,1ζk,2

2

(
|Rk,1|2

ζk,2

ζk,1
+ |Rk,2|2

ζk,1

ζk,2

)
.

(A.3b)

We now require that the correlators (42) obtained from the
Gaussian ansatz (38) be equal to the ones (A.3) obtained for
the oscillator ground state |0osc〉. We then find

fB(ξk) +
1
2
=
√
〈0osc| θ−k,↑θk,↑ |0osc〉 〈0osc| n−k,↑nk,↑ |0osc〉

=
1
4

(
|Rk,1|2

ζk,2

ζk,1
+ |Rk,2|2

ζk,1

ζk,2

)
, (A.4a)

√
Fk

Gk
=

1
n

√
〈0osc| n−k,↑nk,↑ |0osc〉
〈0osc| θ−k,↑θk,↑ |0osc〉 = 2ζk,1ζk,2.

(A.4b)

In the long-wavelength limit k� � 1, we have

ζk,1 ≈
[

gD(ϕ)
2ḡ±

]1/4√
k�, ζk,2 ≈

[
gC(ϕ)
2ḡ∓

]1/4

k�,

cos χk ≈ ∓1,

|Rk,1|2 = r2
k

1 + cos χk

2
+ r−2

k
1 − cos χk

2
≈ r∓2

0 =

√
ḡ∓
ḡ±

,

|Rk,2|2 = r−2
k

1 + cos χk

2
+ r2

k
1 − cosχk

2
≈ r±2

0 =

√
ḡ±
ḡ∓

,

(A.5)
where equation (32) is used. Then, fB(ξk) and

√
Fk/Gk in

equation (A.4) are calculated as

fB(ξk) ≈ 1
4

[
ḡ±D(ϕ)
ḡ∓C(ϕ)

]1/4

(k�)−1/2, (A.6a)

√
Fk

Gk
≈
[

4g2C(ϕ)D(ϕ)
ḡ+ḡ−

]1/4

(k�)3/2, (A.6b)

from which we obtain equation (43).

Appendix B. Phase correlation function

Here we describe the derivation of the phase correlation func-
tion (54). Using equation (52), this correlation function is
expressed as

〈
[
θ↑(r) − θ↑(0)

]2〉 ≈ 2
nF�2

[G(0;α) − G(r;α)] . (B.1)

Here, G(r; α) is Green’s function for the 2D Poisson equation

G(r;α) =
1
A

∑
k�=0

1
k2

e−αk+ik·r =
1
A

∑
k �=0

1
k2

e−αk+ikr cos θ, (B.2)

where we express the wave vector k in terms of the polar coor-
dinate (k, θ) with θ being the angle relative to r. Although the
logarithmic behavior of Green’s function for the 2D Poisson
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equation is known, we derive it within the present regulariza-
tion scheme using the convergence factor e−αk.

By differentiating equation (B.2) with respect to r, we have

− ∂

∂r
G(r;α) =

1
A

∑
k �=0

−i cos θ
k

e−αk+ikr cos θ

=
1

(2π)2

∫ 2π

0
dθ
∫ ∞

0
dk(−i cos θ)e−k(α−ir cos θ)

=
1

(2π)2

∫ 2π

0
dθ

−i cos θ
α− ir cos θ

.

(B.3)
With a change of the integration variable as z = eiθ, the last
integral in equation (B.3) can be written as a contour integral
along the unit circle:

− ∂

∂r
G(r;α) =

1
(2π)2

∮
dz
iz

z2 + 1
r(z2 + 1) + 2iαz

=
1

(2π)2ir

∮
dz

z2 + 1
z(z − z+)(z − z−)

,

(B.4)

where z± = i(−α±
√

r2 + α2)/r are the locations of poles.
Since |z+| < 1 < |z−|, the integral picks up the residues at z =
0 and z+, leading to

− ∂

∂r
G(r;α) =

1
2πr

[
1

z+z−
+

z2
+ + 1

z+(z+ − z−)

]

=
1

2πr

(
1 − α√

r2 + α2

)
.

(B.5)

Therefore, G(0; α) − G(r; α) in equation (B.1) can be calcu-
lated as

G(0;α) − G(r;α)

=
1

2π
lim

a0→0

∫ r

a0

dr′
(

1
r′
− α

r′
√

r′2 + α2

)

=
1

2π
lim

a0→0

(
ln

r
a0

+ arsinh
α

r
− arsinh

α

a0

)

=
1

2π

(
ln

r
2α

+ arsinh
α

r

)
.

(B.6)

By substituting this into equation (B.1) and taking the limit
r � α, we obtain equation (54).
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