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Abstract
We investigate quantum circuits for graph representation learning, and propose equivariant quantum graph circuits
(EQGCs), as a class of parameterized quantum circuits with strong relational inductive bias for learning over graph-
structured data. Conceptually, EQGCs serve as a unifying framework for quantum graph representation learning, allowing us
to define several interesting subclasses subsuming existing proposals. In terms of the representation power, we prove that the
subclasses of interest are universal approximators for functions over the bounded graph domain. This theoretical perspective
on quantum graph machine learning methods opens many directions for further work, and could lead to models with
capabilities beyond those of classical approaches. We also provide experimental evidence, and observe that the performance
of EQGCs scales well with the depth of the model.

Keywords Quantum machine learning · Graph representation learning · Machine learning theory · Model expressivity

1 Introduction

In recent years, the field of quantum computing has made
significant steps towards practical usefulness, which has
sparked increasing interest in many areas, including ma-
chine learning (Perdomo-Ortiz et al. 2018; Benedetti et al.
2019). The growing field of quantum machine learning has
since led to proposals for quantum analogs of many types
of classical models, such as convolutional neural net-
works (Cong et al. 2019) and graph neural networks (Verdon
et al. 2019).

Many existing quantum machine learning approaches
rely on the assumption that the exponentially large Hilbert
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space spanned by possible quantum states will lead to an
advantage compared to classical methods. This, however, is
far from being clear: encoding useful quantum states effi-
ciently and measuring them accurately are challenges that
make straightforward speed-ups difficult (Aaronson 2015).
Furthermore, since existing quantum devices are very lim-
ited, empirical benchmarks are often impossible at the
scales where quantum methods might lead to a real advan-
tage. Due to these difficulties, theoretical analysis plays
a fundamental role, and recent works focusing on character-
izing the capabilities and limitations of potential quantum
models have shown significant results (Schuld et al. 2021;
Liu et al. 2021; Kübler et al. 2021; Goto et al. 2021).

The goal of this paper is to establish a framework for
learning functions over graphs using quantum methods and
to study its theoretical properties. Graphs play a key role in
modern machine learning, and are used to encode various
forms of relational data, such as knowledge graphs (Bordes
et al. 2011), social networks (Zhang and Chen 2018), and
importantly also molecules (Wu et al. 2018), which are
a particularly promising application domain of quantum
computing due to their inherent quantum properties.

Graph neural networks (GNNs) (Kipf and Welling 2017;
Veličković et al. 2018) are prominent models for classi-
cal relational learning, as they encode desirable properties
such as permutation invariance (resp., equivariance) rela-
tive to graph nodes, enabling a strong relational inductive
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bias (Battaglia et al. 2018). While broadly applied, the
expressive power of prominent GNN architectures, such as
message-passing neural networks (MPNNs) (Gilmer et al.
2017), is shown to be upper bounded by the 1-dimensional
Weisfeiler-Lehman graph isomorphism test (Xu et al. 2019;
Morris et al. 2019). This limitation motivated a large body
of work aiming at more expressive models, including higher-
order models (Morris et al. 2019; Maron et al. 2019a), as
well as extensions of MPNNs with unique node identi-
fiers (Loukas 2020), or with random node features (Sato
et al. 2021; Abboud et al. 2021).

In this paper, we investigate quantum analogs of GNNs
and make the following contributions:

• We define criteria for quantum circuits to respect the
invariances of the graph domain, leading to equivariant
quantum graph circuits (EQGCs) (Section 4).

• We define equivariant hamiltonian quantum graph
circuits (EH-QGCs) and equivariantly diagonalizable
unitary quantum graph circuits (EDU-QGCs) as spe-
cial subclasses, and relate these classes to existing pro-
posals, providing a unifying perspective for quantum
graph representation learning (Section 4.2).

• We characterize the expressive power of EH-QGCs
and EDU-QGCs, proving that they are universal
approximators functions defined over arbitrarily large
bounded graph domains. This result is achieved by
showing a correspondence between EDU-QGCs and
MPNNs enhanced with random node initialization
which are universal approximators over bounded graphs
(Abboud et al. 2021). Differently, our model does not
require any extraneous randomization, and the result
follows from the model properties (Section 5).

• We experimentally show that even simple EDU-QGCs
go beyond the capabilities of popular GNNs, by empir-
ically verifying that they can discern graph pairs, which
are indiscernible by standard MPNNs (Section 6).

This paper is based on work done for the MSc disser-
tation of the first author at the University of Oxford, first
published in ICML 2022. This version includes extended
details of all proofs and constructions.

The rest of this paper is organized as follows. We first
discuss related work in the field of quantum machine
learning in Section 2, then give an overview of important
methods and results in graph representation learning that
we build on in Section 3. After these preliminaries, we
present our proposed framework and discuss important
subclasses in Section 4, show our theoretical results on
model expressivity in Section 5 and provide empirical
evaluation in Section 6. We finish with a discussion of our
results and possible further directions in Section 7.

2 Related work

The field of quantum machine learning includes a wide
range of approaches. Early work had partial successes in
speeding up important linear algebra subroutines (Harrow
et al. 2009), but these methods usually came with caveats
(e.g., requirements of the input being easy to prepare or
being sparse, or approximate knowledge of the final state
being sufficient) that made them hard to apply to large prob-
lem classes in practice (Aaronson 2015). Recent approaches
tend to use quantum circuits to mimic or replace larger
parts of classical techniques: quantum kernels use a quan-
tum computer to implement a fixed kernel function in a
classical learning algorithm (Schuld and Killoran 2019; Liu
et al. 2021), while parameterized quantum circuits (PQCs)
use tunable quantum circuits as machine learning models in
a manner similar to neural networks (Perdomo-Ortiz et al.
2018; Benedetti et al. 2019). Lacking the possibility of stan-
dard backpropagation, there are alternative ways of calcula-
ting gradients (Schuld et al. 2019), and gradient-free opti-
mization methods are also used (Ostaszewski et al. 2021).
In this paper, we focus on PQCs.

There is also a growing body of work on the capabilities
and limitations of such models. Ciliberto et al. (2018) and
Kübler et al. (2021) give rigorous results about when we
can and cannot expect the inductive bias quantum of kernels
to give them an advantage over classical methods; Servedio
and Gortler (2004) and Liu et al. (2021) demonstrate
carefully chosen function classes that quantum kernels can
provably learn more efficiently than any classical learner.
PQCs have been harder to reason about due to their non-
convex nature, but there have been important steps in
showing conditions under which certain PQCs are universal
function approximators over vector spaces (Schuld et al.
2021; Goto et al. 2021), similarly to multi-layer perceptrons
in the classical world (Hornik et al. 1989). There has been
also rigorous work on the PAC-learnability of the output
distributions of local quantum circuits (Hinsche et al. 2021).

For learning functions over graphs, the literature is
sparse: there are some proposals supported by small-scale
experiments, but there is generally a lack of formal justifi-
cation for the particular model choices. In particular, we
are not aware of any theoretical work on the capabilities
of these models. We propose a framework unifying PQC
models that build a circuit for each example graph in a
structurally appropriate way when running inference, such
as Verdon et al. (2019), Zheng et al. (2021), and Henry
et al. (2021). Such PQCs are also used as a building block
by Ai et al. (2022), who apply them to subgraphs, thereby
requiring fewer qubits and enabling scaling to larger graphs.
We discuss considerations for these, and investigate their
expressive power.
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There are also other approaches that we do not cover,
such as using edges primarily in classical pre- or post-
processing steps of a PQC (Chen et al. 2021), or running
a PQC for each node independently and using the connec-
tivity only to formulate the error terms calculated from the
measurements (Beer et al. 2021).

3 Graph neural networks

GNNs can be dated back to earlier works of Scarselli et al.
and Gori et al. and are designed to have a graph-based
inductive bias: the functions they learn should be invariant
to the ordering of the nodes or edges of the graph, since the
ordering is just a matter of representation and not a property
of the graph. This includes invariant functions that output a
single value that should be unchanged on permuting nodes,
and equivariant functions that output a representation for
each node, and this output is reordered consistently as the
input is shuffled (Hamilton 2020).

Formally, a function f is invariant over graphs if,
for isomorphic graphs G,H it holds that f (G)= f (H); a
function f mapping a graph G with vertices V (G) to vectors
x ∈ R

aV (G)a is equivariant if, for every permutation π of
V (G), it holds that f (Gπ ) = f (G)π .

Message-passing neural networks (MPNNs) (Gilmer
et al. 2017) are a popular and highly effective class of
GNNs that iteratively update the representations of each
node based on their local neighborhoods. In an MPNN, each
node v is assigned some initial state vector h(0)

v based on
its features. This is iteratively updated based on the current
state of its neighbors N (v) and its own state, as follows:

h(k+1)
v = UPD(k)

(
h(k)

v , AGG(k)
({{h(k)

u a u ∈ N (v)}})
)
,

where {{·}} denotes a multiset, and AGGk(·) and UPD(k)(·) are
differentiable functions.

The choice for the aggregate and update functions varies
across approaches (Kipf and Welling 2017; Veličković
et al. 2018; Xu et al. 2019; Li et al. 2016). After several
such layers have been applied, the final node embeddings
are pooled to form a graph embedding vector to predict
properties of entire graphs. The pooling often takes the form
of simple averaging, summing or elementwise maximum.

The expressive power of MPNNs is upper bounded by
the 1-dimensional Weisfeiler-Lehman algorithm (1-WL) for
graph isomorphism testing (Xu et al. 2019; Morris et al.
2019). Considering a pair of 1-WL indistinguishable graphs,
such as those shown in Fig. 1, any MPNN will learn
the exact same representations for these graphs, yielding
the same prediction for both, irrespectively of the target
function to be learned. In particular, this means that MPNNs

Fig. 1 Two graphs indistinguishable by 1-WL: G1 consisting of two
triangles (left), and G2 being a single 6-cycle (right)

cannot learn functions such as counting cycles, or detecting
triangles.

The limitations in the expressive power of GNNs moti-
vated a large body of work. Xu et al. (2019) proposed the
graph isomorphism networks (GINs), as maximally expres-
sive MPNNs, and showed this model is as powerful as
1-WL, owing to its potential of learning injective aggregate-
update functions. To break the expressiveness barrier, some
approaches considered unique node identifiers (Loukas
2020), or random pre-set color features (Dasoulas et al.
2020), and alike, so as to make graphs discernible by cons-
truction (since 1-WL can distinguish graphs with unique
node identifiers), but these approaches suffer in generaliza-
tion. Other approaches are based on higher-order message
passing (Morris et al. 2019), or higher-order tensors (Maron
et al. 2019b; Maron et al. 2019a), and typically have a pro-
hibitive computational complexity, making them less viable
in practice.

Rather recently, MPNNs enhanced with random node
initialization (Sato et al. 2021; Abboud et al. 2021) are
shown to increase the expressivity without incurring a large
computational overhead, and while preserving invariance
properties in expectation. Sato et al. showed that such
randomized MPNNs can detect any fixed substructure (e.g.,
a triangle) with high probability, and Abboud et al. proved
that randomized MPNNs are universal approximators for
functions over bounded graphs, building on an earlier
logical characterization of MPNNs (Barceló et al. 2020).
Intuitively, random node initialization assigns unique
identifiers to different nodes with high probability and the
model becomes robust via more sampling, leading to strong
generalization. However, it is harder to train these models,
since they need to see many different random labelings
to eventually become robust to this variation. The extent
of this effect can be mitigated by using fewer randomized
dimensions (Abboud et al. 2021).

4 Equivariant quantum graph circuits

In this section, we give and describe the class of models we
are considering and formalize the requirement of respecting
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the graph structure in our definition of equivariant quantum
graph circuits. We then discuss two subclasses and their
relation to each other.

4.1 Model setup

Let Gn be the set of graphs up to size n. Consider a graph
G ∈ G

n, with adjacency matrix A ∈ B
n×n and a node

feature vector xi for each node i ∈ {1 . . . n}. We consider a
broad class of models with the following simple structure,
as shown in Fig. 2:

1. For each node with features xi , a quantum state |vi〉 =
|ρ(xi )〉 ∈ C

s is prepared via some fixed feature map
ρ(·). The dimensionality of this state is s = 2q when
using q qubits per node.

2. The node states are composed with the tensor product
to form the product state |v〉 = ⊗n

i=1 |vi〉 ∈ C
sn

.
3. We apply some circuit encoding a unitary matrix

Cθ (A) ∈ C
sn×sn

, dependent on the adjacency matrix
A and tunable parameters θ , to the initial state of the
system.

4. Each node state is measured in the computational
basis, leading to a one-hot binary vector |yi〉 ∈ B

s

for each node. Over the entire system, we measure
any |y〉 = ⊗n

i=1 |yi〉 ∈ B
sn

with probability
P(y) = |〈y|Cθ (A)|v〉|2 as dictated by the Born rule.
This means the probability of any specific measurement
is given by the magnitude of a single element in the final
state vector Cθ (A)|v〉 ∈ C

ns
.

(a) (b) (c) (d)

Fig. 2 Overview of our model setup. (a) A product state is prepared
based on individual nodes, (b) a parameterized circuit C is applied
based on the adjacency matrix A, (c) the nodes states are measured and
(d) aggregated by some classical function g

5. These are aggregated by some permutation-invariant
parameterized classical function gθ ′ to provide a
prediction gθ ′(y).

While this setup rules out certain possibilities such as
using mixed-state quantum computing with mid-circuit mea-
surements, or somehow aggregating the node states inside
the quantum circuit, it still leaves a broad and powerful
framework that subsumes existing methods (as we will dis-
cuss in Section 4.2). We do not consider details of how
to design the classical aggregator gθ ′ — for questions of
expressivity, we will simply assume that it is a univer-
sal approximator over multisets, which is known to be
achievable by combining multi-layer perceptrons with sum
aggregation (Zaheer et al. 2017; Xu et al. 2019). The choice
of the feature map ρ does have to be made upfront, but our
proofs all use simple constructions encoding the data in the
computational basis.

Our focus is instead on the circuit Cθ (A), and how it
should behave in order to interact well with the graph. As
in the case of classical GNNs, we want to make sure the
ordering of nodes and edges does not matter. In our case,
this means that for any input, reordering the nodes and
edges should reorder the probabilities of all measurements
appropriately.

Example 1 With n = 3 nodes represented by a single qubit
each (s = 2), the probability of observing some output
〈y1y2y3| is p = 〈y1y2y3|Cθ (A)|v1v2v3〉. If we cycle the
nodes around to form the input state |v2v3v1〉, and also
use an appropriately reordered adjacency matrix A′, we
should find the probability of the reordered observation
〈y2y3y1|Cθ (A

′)|v2v3v1〉 to be p as well.

This brings us to the definition of equivariant quantum
graph circuits (EQGCs):

Definition 1 Let A ∈ B
n×n be an adjacency matrix,

P ∈ B
n×n a permutation matrix representing a permutation

p over n elements, and P̃ ∈ B
sn×sn

a larger matrix that
reorders the tensor product, mapping any |v1〉|v2〉 . . . |vn〉
with |vi〉 ∈ C

s to |vp(1)〉|vp(2)〉 . . . |vp(n)〉.
An EQGC is an arbitrary parameterized function Cθ (·)

mapping an adjacency matrix A ∈ B
n×n to a unitary

Cθ (A) ∈ C
sn×sn

that behaves equivariantly for all θ :

Cθ (A) = P̃
T
Cθ (P

T AP )P̃ (1)

In the following sections, we will generally leave the
parameter θ , and sometimes also A, as implicit when they
are clear from context.

In accordance to our model setup, an EQGC Cθ (·)
represents a probabilistic model over graphs only when
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combined with a fixed feature map ρ(·) to prepare each
node state, as well as measurement and classical aggregation
gθ ′ at the end of the circuit. Putting these together, we can
formally speak of the capacity of EQGCs in representing
functions.

Definition 2 We say that a (Boolean or real) function f

defined on G
n can be represented by an EQGC Cθ with

error probability ε if there is some feature map ρ and
invariant classical aggregation function gθ , such that for
any input graph G ∈ G

n the model’s output is f (G) with
probability 1 − ε. In the special case, where ε = 0, we
simply say that the function f can be represented by an
EQGC Cθ .

Remark 1 (A note on directedness) Unlike many works
on GNNs, our definition of EQGCs allows us to consider
directed graphs naturally, and this will also be true for
the subclasses we consider later. Of course, we can still
easily operate on undirected data by either adding edges in
both directions, or placing extra restrictions on our models.
For the purposes of expressivity, we will still focus on
classifying graphs in the undirected case, as this is better
explored in previous works on classical methods.

4.2 Subclasses of EQGCs

Note that we cannot and should not aim to use all possible
EQGCs as a model class. If we did, the prediction of our
models on any graph would not restrict their behavior on
other, non-isomorphic graphs in any way. This would not
only make such a class impossible to characterize with a
finite set of parameters θ , but the models would also have
no way to generalize to unseen inputs. Therefore, EQGCs
should be seen as a broad framework, and we investigate
more restricted subclasses that do not have such problems.

We are particularly interested in subclasses that scale
well with the number of nodes in a graph, so in the following
sections we discuss approaches based on uniform single-
node operations and two-node interactions at edges1. All
of the following models are parameterized by identical
operations being applied for each node or for each edge,
ensuring that a single model can efficiently learn about
graphs of various sizes. It is also a useful starting point for
ensuring equivariance, although as we will see, we also have
to make sure that the ordering of these operations does not
affect our results.

1We also considered the case, where Cθ (·) depends only on the graph
size rather than the adjacency matrix, and we report these findings in
Appendix C as they are not central to our main results.

Note however that for the sake of making our analysis
feasible, our model classes are not closely tied to realiza-
tions in quantum gates. We consider arbitrary Hamiltonian
and unitary operators which can be approximated with a
universal gate set to any required accuracy, but this might
require very deep circuits. Due to this as well as the number
of qubits required that we derive in Theorem 2, we do not
expect our specific constructions to be practically realized in
near-term hardware — rather, their primary value is in char-
acterizing the capabilities of a broad class of models, and
we leave more practical parameterizations for future work.

4.2.1 Parameterization by Hamiltonians

Operations on the quantum states of nodes or pairs of
nodes can be easily represented as unitaries, but these are
tricky to parameterize directly: e.g., a linear combination
of unitaries is not unitary generally. One alternative is to
use the fact that any unitary U can be expressed using its
Hamiltonian H , a Hermitian matrix of the same size such
that U = exp(−iH ). We can let the Hamiltonian depend
linearly on the adjacency matrix, with Hermitian operators
applied based on the structure of the graph:

Definition 3 An equivariant hamiltonian quantum graph
circuit (EH-QGC) is an EQGC given by a composition of
finitely many layers Cθ (A) = Lθ1(A) ◦ · · · ◦ Lθk

(A), with
each Lθj

for 1 ≤ j ≤ k given as:

Lθ (A) = exp

⎛
⎝−i

⎛
⎝ ∑

Ajk=1

H
(edge)
j,k +

n∑
i=1

H
(node)
i

⎞
⎠

⎞
⎠ , (2)

where the parameter set θ = (H (edge), H (node)) is comprised
of two Hermitian matrices2 over one- and two-node
state, and the indexing H

(edge)
j,k , H

(node)
v refers to the same

operators applied at the specified node(s) — i.e., one
EH-QGC layer is fully specified by a single one-node
Hamiltonian and a single two-node Hamiltonian.

This means that if the graph is permuted, the operators
will be applied at changed positions appropriately. There is
also no sequential ordering of operations in a summation, so
the model is equivariant. For example, H

(node)
3 = I ⊗ I ⊗

Ĥ
(node) ⊗ I in the case of n = 4 nodes.
EH-QGCs is closely related to the approach taken by

Verdon et al. (2019) for their quantum graph convolutional
neural network (QGCNN) model as well as the parameter-
ized quantum evolution kernel of Henry et al. (2021). They
both define operations in terms of Hamiltonians based on

2Technically θ should be considered to cover the upper triangular
half of each matrix, since the second half follows from the Hermitian
property.
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the graph structure. The difference is that for any given
learning tasks, they consider a restricted class of models
with hand-picked Hermitians, and leave only scalar weights
multiplying these as learnable parameters. This helps for
efficiently compiling small circuits, and allows better scal-
ing to a larger number of qubits per node (which should be
possible on future hardware). If we consider the full set of
possible choices for these QGCNNs models, we get exactly
our set of EH-QGCs as defined above. For our purposes,
working with the broader class of arbitrary Hamiltonians
lends itself better to theoretical analysis, and we leave it to
future work to investigate circuit classes with better scaling
in the number of qubits.

4.2.2 Parameterization by commuting unitaries

A similar, but more direct approach would be to consider
two-node unitaries instead of Hamiltonians and apply a
single learned unitary for each edge of the graph. As before,
this ensures the number of operations scales linearly with
the number of edges in a graph. This is also the approach
taken by Zheng et al. (2021), but we need to add extra
conditions that they do not consider to ensure equivariance.

Specifically, we need to enforce that the order we
apply these unitaries in does not matter. This gives us the
following commutativity condition for a two-node unitary
U :

(3)

If the graphs are undirected, we should ensure the fol-
lowing to make sure the direction of the edge representation
does not affect our predictions:

(4)

In the case of directed graphs, Eq. 4 need not apply,
but Eq. 3 is also not sufficient in itself, since we need
to consider cases where the unitary might be applied in
different directions. Specifically, we need to ensure the
following extra conditions:

(5)

(6)

(7)

Equation 5 ensures commutativity of directed edges to
the same target, Eq. 6 of edges from the same source, and
Eq. 7 of 2 cycles between two nodes.

Of course, such a directed unitary can also be used for
directed graphs by applying it in both directions: in fact,
if Eq. 7 is satisfied, this composition itself satisfies the
undirected Eq. 4:

(8)

It is not clear whether we can parameterize the space
of all such commuting unitaries, but we can focus on a
subclass.

Definition 4 An equivariantly diagonalizable unitary
(EDU) is a unitary that can be expressed in the form U =
(V † ⊗ V †)D(V ⊗ V ) for a unitary V ∈ C

s×s and diagonal
unitary D ∈ C

s2×s2
.

Note that all unitaries can be diagonalized in the form
U = P †DP for some other unitary P and diagonal unitary
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D. The above is simply the case when P decomposes as V ⊗
V for one single-node unitary V . All EDUs satisfy the given
commutativity conditions. Using the facts that I ⊗D is still
a diagonal matrix and that diagonal matrices commute, we
can see that equivariantly diagonalizable unitaries satisfy
Eq. 3:

(9)

The directed versions (Eqs. 5, 6 and 7) are similar, since
V ⊗ V and V † ⊗ V † commute with the swap, and then
analogous derivations apply.

Furthermore, a square matrix is unitary if and only if
all of its eigenvalues (the diagonal elements of D) have
absolute value 1. We can therefore parameterize these
unitaries by combining arbitrary single-node unitaries V

with diagonal matrices D of unit modulus numbers3.
This allows us to parameterize the following class of

EQGCs:

Definition 5 An equivariantly diagonalizable unitary
quantum graph circuit (EDU-QGC) is an EQGC expressed
as a composition of node layers Lnode and edge layers Ledge

given as follows on a graph with node and edge sets (V, E):

Lnode = V ⊗aVa (10)

Ledge =
∏

(j,k)∈E
Ujk (11)

3To add the inductive bias of undirected graphs, we can set D|e1e2〉 =
D|e2e1〉 for any computational basis vectors |e1〉, |e2〉, approximately
halving the number of free parameters.

In short, we either apply the same single-node unitary
to all nodes, or we apply the same EDU appropriately for
each edge. Since both types of layers are equivariant by
construction, so is their composition, hence EDU-QGCs are
a valid EQGC class.

It can be shown that EDU-QGCs are a subclass of the
Hamiltonian-based EH-QGCs discussed in Section 4.2.1.
This is particularly useful for investigating questions of
expressivity: we also get a result about the expressivity
of EH-QGCs by showing the existence of EDU-QGC
constructions representing some function.

Theorem 1 Any EDU-QGC can be expressed as an EH-
QGC.

To show this result, we consider node layers and edge
layers separately and show that both can be represented by
one or more EH-QGC layers. We first prove the case for
node layers, then diagonal edge layers; finally, we build on
these two to prove the case for all edge layers, completing
the proof. The details are provided in Appendix A.

5 Expressivity results

In this section, we analyze the expressivity of the EQGCs
discussed in Section 4.2: Hamiltonian-based EH-QGCs and
EDU-QGCs defined using commuting unitaries.

Quantum circuits operate differently from MPNNs and
other popular GNN architectures, so one might hope that
they are more expressive. Since current classical methods
with high expressivity are either computationally expensive
(like higher-order GNNs) or require a large number of
training samples to converge (like GNNs with random node
initialization), this could in principle lead to a form of
quantum advantage with sufficiently large-scale quantum
computers.

We first show that EDU-QGCs subsume MPNNs: a class
of MPNNs, including maximally expressive architectures,
can be “simulated” by a suitable EDU-QGC configuration.
We then prove that they are in fact universal models
for arbitrary functions on bounded-size graphs, building
on prior results regarding randomized MPNNs. Since we
have proven EDU-QGCs to be a subclass of EH-QGCs in
Theorem 1, the results immediately follow for EH-QGCs as
well.

5.1 SimulatingMPNNs

Recall that MPNNs are defined via aggregate and combine
functions in Eq. 3. In this section, we focus on MPNNs
where the aggregation is of the form AGG(k)({{hi}}) = ∑

i hi ,
which includes many common architectures.
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Remark 2 We consider MPNNs node states with real
numbers represented in fixed-point arithmetic. Although
GNNs tend to be defined with uncountable real vector state
spaces, these can be approximated with a finite set if the
data is from a bounded set.

We show that EDU-QGCs can simulate MPNNs with
sum aggregation in the following sense:

Theorem 2 Any (Boolean or real) function over graphs that
can be represented by an MPNN with sum aggregation, can
also be represented by an EDU-QGC.

We prove this result by giving an explicit construction
to simulate an arbitrary MPNN with sum aggregation,
detailed in Appendix B.1. In particular, our construction for
Theorem 2 implies that for an MPNN with k layers with
an embedding dimensionality of w, with a fixed-point real
representation of b bits per real number, this EDU-QGC
needs (2k + 1)wb qubits per node.

Since MPNNs with sum aggregation (e.g., GINs) can
represent any function learnable by any MPNN (Xu et al.
2019), we obtain the following corollary to Theorem 2:

Corollary 2.1 Any (Boolean or real) function that can be
represented by any MPNN can also be represented by some
EDU-QGC.

5.2 Universal approximation

We build on results about randomization in classical
MPNNs, discussed in Section 3 (Sato et al. 2021; Abboud
et al. 2021), to show that our quantum models are universal.

We simulate classical models that randomize some part
of the node state by putting some qubits into the uniform
superposition over all bitstrings, then operating in the com-
putational basis. Unlike in the classical case, where this ran-
domization had to be explicitly added to extend model capa-
city, we can do this without modifying our model definition
— our results apply to EDU-QGCs and their superclasses.
Analogously to the universality of MPNNs with random
features, this allows us to prove the following theorem:

Theorem 3 For any real function f defined over Gn, and
any ε > 0, an EDU-QGC can represent f with an error
probability ε.

We cannot directly rely on the results of either Abboud
et al. (2021) or Sato et al. (2021): although our theorem
is analogous to that of Abboud et al., they used MPNNs
extended with readouts at each layer, which our quantum
models cannot simulate. Sato et al. used MPNNs without
readouts, but did not quite prove such a claim of universality.

Therefore, we give a novel MPNN construction that is
partially inspired by Sato et al., but relies solely on the
results of Xu et al. (2019), and use it to show Theorem 3.

Briefly, we use the fact that for bounded-size graphs
individualized by random node features, a GIN can in
principle assign final node states that injectively depend on
the isomorphism class of each node’s connected component.
These node embeddings can be pooled to give a unique
graph embedding for each isomorphism class of bounded
graphs, which an MLP can map to any desired results. All
of this can be simulated on an EDU-QGC, hence they are
universal models. The details are given in Appendix B.2.

6 Empirical evaluation

While our primary focus is theoretical, and it is challenging
to execute experiments large enough to give interesting
results, we performed two small experiments as well. We
first look at a very restricted EDU-QGC model and observe
that it can the graphs G1 and G2 with nontrivial probability
(which is beyond the capabilities of MPNNs), and also
reason about this simple case analytically. After this, we
construct a small classification dataset of cycle graphs
in a way that MPNNs could achieve no more than 50%
accuracy, and we successfully train deeper EDU-QGCs to
high performance.

6.1 Testing expressivity beyond 1-WL

We performed a simple experiment to verify that EDU-
QGC models can give different outputs for graphs that are
indistinguishable by deterministic classical MPNNs. As our
inputs, we used the two graphs G1 and G2 shown in Fig. 1
without node features (i.e., fixed initial node states in our
quantum circuit), the simplest example where MPNNs fail.
Our models should identify which graph is input. Using a
single qubit per node, we expect our accuracy to be better
than 50%, but far from perfect.

Experimental setup To keep the experiment as simple as
possible, we used a very simple subset of EDU-QGCs
parameterized by a single variable α, similar to instanta-
neous quantum polynomial circuits (Bremner et al. 2016):

• Each node state |vi〉 is initialized as the |+〉 = H |0〉 =
1√
2
(|0〉 + |1〉) state on one-node qubit (q = 1). By

H = 1√
2

(
1 1
1 −1

)
we denote the Hadamard gate.

• We apply an edge layer as given by Eq. 11, with a
CZ(α) = diag(1, 1, 1, exp(−iα)) gate as the applied
unitary acting on two neighboring node-qubits.

• We apply a node layer with an H gate at each node.
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• After a single measurement, we measure k nodes as
a |1〉 state and 6 − k as |0〉. For each value of k, the
aggregator gα(·) can map this to a different prediction.

Using ZX-diagram notation (Coecke and Kissinger
2018), Fig. 3 (top) shows the circuits we get for our choice
of C in the case of G1 and G2. The probabilities of observing
k |1〉s for each graph and all possible values of k as
a function of our single parameter α are also shown in
Fig. 3 (bottom).

We find that as α gets near ±π , the distributions of
the number of |1〉s measured do differ, and an accuracy
of 0.625 is achievable with a single measurement shot
(and an arbitrarily low error rate can be achieved with
a sufficiently high number of measurements). This would
naturally get better as we increase the number of qubits
used, but this already shows an expressivity exceeding that
of deterministic MPNNs.

6.1.1 Theoretical analysis of the experiment

In an effort to better understand the power of such circuits,
we focused on analyzing the most well-behaved special
case of the above EDU-QGC, with CZ(π) rotations and
were able to analytically derive the observed measurement
probabilities of this simple IQP circuit for any graph
consisting of cycles.

Using the ZX-calculus, we show that applying it to any
n-cycle graph results in a uniform distribution over certain
measurement outcomes, give a simple algorithm to check
for a given n-length bitstring whether it is one of these
possible outcomes, and prove that the number of measured
|1〉s always has the same parity as the size n of the graph.

With α = π , the α-boxes representing the CZ-gates
in Fig. 3 turn into simple Hadamard. So for any specific
bitstring |b1 . . . bn〉, we can get the probability of measuring
it by simplifying the following scalar:

where the numerical term comes from normalizing each
CZ-gate with a factor of

√
2.

We can substitute the appropriate white and gray spiders
for the |+〉, |0〉 and |1〉 states to apply ZX-calculus
techniques (Coecke and Kissinger 2018): a white spider
with phase 0 for the |+〉 state, and gray spiders with 0 and
π phases respectively for |0〉 and |1〉. All of these need to be
normalized with a factor of 1√

2
. Due to the Hadamard gates,

Fig. 3 The two circuits in the experiment in top-to-bottom ZX-
diagram notation, with the α-box between white spiders representing a
CZ(α) gate (a standard ZX-calculus shorthand (Coecke and Kissinger

2018)), followed by probabilities of observing given number of |1〉s as
a function of α ∈ [−π, π] for each circuit. The two distributions differ
most visibly when α is near ±π
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these all turn into white spiders that can be fused together,
so this is equal to a simple trace calculation:

where αi = 0 if bi = 0 and π if bi = 1.
This can be simplified step by step. Firstly, as long as

there are any spiders with αi = 0 and two distinct neighbors
(i.e., there are at least 3 nodes in total), we can remove them
and fuse their neighbors:

(12)

After repeating this, we get one of two outcomes. Firstly,
we might end up with one of 3 possible circuits with that
still have some αi = 0 but less than 3 nodes, which we can
evaluate by direct calculation of their matrices:

(13)

Or all the remaining spiders have αi = π , we can
repeatedly eliminate them in groups of 4:

(14)

On repeating this, we end up with 0 to 3 nodes with
αi = π , which we can evaluate directly:

(15)

Observe that during the simplifications, we only intro-
duced phases with an absolute value of 1, which do not
affect measurement probabilities. Furthermore, we always
decreased the number of nodes involved by 2 or 4, hence the
parity is unchanged. This means for odd n, we will always
end up with one of the odd-cycle base cases with a trace of
0 or ±√

2, while for even n, we get to the even-cycle base
cases with traces of 0 or 2.

Page 10 of 206   



Quantum Machine Intelligence (2023) 5:6

Combining with the initial coefficient of
( 1√

2

)n and

taking squared norms, we get that for odd n, each bitstring
is observed with probability 0 or 1

2n−1 (so half of all possible
bitstrings are observed), while with even n, each bitstring is
observed with probability 0 or 1

2n−2 (so we see only a quarter
of all bitstrings).

Furthermore, to check which bitstrings are observed, we
can summarize the ZX-diagram simplification as a simple
algorithm acting on cyclic bitstrings (where the first and last
bits are considered adjacent):

• As long as there is a 0 in the bitstring and the length of
the bitstring is more than 2, remove the zero along with
its two neighbors, and replace them with the XOR of
the neighbors.

• If you end up with just |00〉, the state has a positive
probability to be observed. If you end up with |0〉 or
|01〉, it has 0 probability.

• When there are only |1〉s remaining, if the number of
these is 2 mod 4, the input has 0 probability to be
observed, otherwise positive.

This shows us why the observed number of |1〉s always
has the same parity as n: at each step, both the parity of
|1〉s and the parity of the bitstring’s length is unchanged.
The only even-length base case with an odd number of ones
is |01〉, which corresponds to states with 0 probability; and
similarly the only odd-length base case with an even number
of ones is |0〉, which has the same outcome.

We can also derive the specific probabilities observed in
the experiment. It’s easy to see from this that in the case of a
triangle, the observable states are |001〉, |010〉, |100〉, |111〉.
This allows us to calculate the probabilities observed for
the case of two triangles. For the 6-cycle, the observable
states are |000000〉, six rotations of |000101〉, six rotations
of |001111〉, and three rotations of |101101〉, giving the
expected probabilities as well.

6.2 Synthetic dataset of cycle graphs

We created a synthetic dataset of 6- to 10-node graphs
consisting of either a single cycle, or two cycles. The single-
cycle graphs were oversampled to create two equally sized
classes for a binary classification task. Eight-cycle graphs
were reserved for evaluation, while all others were used for
training.

We trained EDU-QGC models of various depths with a
single qubit per node on this dataset. Each node state was
initialized as |+〉 = 1√

2
(|0〉 + |1〉), then an equal number

k ∈ {1, . . . , 14} general node and edge layers were applied
alternatingly. After measurement, the fraction of observed
|1〉s was used to predict the input’s class through a learnable
nonlinearity. Exact probabilities of possible outcomes were
calculated, and the Adam optimizer was used to minimize

the expected binary cross-entropy loss for 100 epochs, with
an initial learning rate of 0.01 and an exponential learning
rate decay with coefficient of 0.99 applied at each epoch.

Results are shown in Fig. 4. We report the one-sample
accuracy (the average probability of a correct prediction
across the dataset), and the highest achievable many-sample
accuracy (the fraction of the dataset where a model was right
with at least 50% probability). Importantly, we observe a
consistent benefit from increasing depth, in contrast with the
oversmoothing problems of GNNs (Li et al. 2018). We also
did not experience any issues with the near-zero gradients
or “barren plateaus” that make it challenging to optimize
many PQC models (McClean et al. 2018), although we have
not investigated whether this would hold with the noisy
gradients one would get in a real quantum experiment as
opposed to our exact classical simulation.

Interestingly, the model performs better on the evaluation
set than the training set. This is due to the fact that it is hard
for the model to reliably correctly classify 9- and 10-node
graphs containing two cycles when these contain subgraphs
that are in the one-cycle class. For example, the model
associates a high number of measured |1〉s with single-cycle
graphs, then a 6-cycle will lead to many |1〉s. Since a disjoint
union of a 6-cycle and a 3-cycle contains this subgraph, it
will also have a relatively high fraction of |1〉s, leading to
an incorrect prediction. Clearly, this would not be an issue if
more qubits per node could be used (which may be feasible
in future): the size of a cycle could be encoded exactly in the
larger set of possible observations, and this could be easily
aggregated invariantly to count the number of cycles. Note
also that one of 10 runs with was dropped as an outlier in the
case of 4 layers. Through some unlucky initialization, the
model failed to learn anything and stayed at 50% accuracy
in this single run.

6.2.1 Effective parameter count

The model was able to fit this dataset with a very small
number of parameters: after accounting for redundancy, the
model contains only 6 real-valued degrees of freedom for
each pair of node and edge layers:

• The node layer is given by an arbitrary single-qubit
unitary, which can be given by 3 Euler-angle rotations
of the Bloch sphere.

• The edge layer can involve an arbitrary equivariantly
diagonalizable unitary (V ⊗ V )D(V † ⊗ V †) as given
in Definition 4. However, the V is redundant when
surrounded by two-node layers applying single-node
unitaries U1, U2 everywhere: modifying these to be
V × U1 and U2 × V † respectively would have the
same effect. Hence it suffices to consider the diagonal
unitary D, which applies some phase in each of the
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Fig. 4 Accuracies of EDU-QGC models on the synthetic cycles
dataset. The many-sample accuracy bound is calculated as the fraction
of examples in the dataset where the model was correct with more than

50% accuracy. Results are based on an average of 10 runs, with the
shaded region representing standard deviation

|00〉, |01〉, |10〉 and |11〉 cases. To satisfy the undirected
graph constraint of Eq. 4, the phases for |01〉 and |10〉
need to be the same. This leaves us with 3 real parame-
ters for each of the phases.

Note that in order to have an efficient implementation,
we implemented edge layers as just diagonal unitaries over
two nodes. This is justified by the above argument regarding
their redundancy for all layers except the last, which is not
surrounded by node layers — in this case it could slightly
affect the performance of the model in principle.

7 Conclusions, discussions, and outlook

In this paper, we proposed equivariant quantum graph cir-
cuits, a general framework of quantum machine learning
methods for graph-based machine learning, and explored
possible architectures within that framework. Two sub-
classes, EH-QGCs and EDU-QGCs, were proven to have
desirable theoretical properties: they are universal for func-
tions defined up to a fixed graph size, just like random-
ized MPNNs. Our experiments were small-scale due to the
computational difficulties of simulating quantum comput-
ers classically, but they did confirm that the distinguishing
power of our quantum methods exceeds that of deterministic
MPNNs.

By defining the framework of EQGCs and their
subclasses, many questions can be raised that we did
not explore in this paper. EDU-QGCs and EH-QGCs
have important limitations: using arbitrary node-level
Hamiltonians or unitaries allowed us to show expressivity
results, but they are not feasible to scale to a large number
of qubits per node, since the space of parameters grows
exponentially. Perhaps a small number of qubits will already

turn out to be useful, but EQGC classes with better scalabi-
lity to large node states should also be investigated.

There are also design choices beyond the EQGC
framework that might be interesting. For example, rather
than measuring only at the end of the circuit, mid-circuit
measurements and quantum-classical computation might
offer possibilities that we have not analyzed.

Ultimately, the biggest questions in the field of quantum
computing are about quantum advantage: what useful tasks
can we expect quantum computers to speed up, and what
kind of hardware do these applications require? Recent
work on the theoretical capabilities of quantum machine
learning architectures is already contributing to this: it
has been shown that we can carefully engineer artificial
problems that provably favor quantum methods (Kübler
et al. 2021; Arute et al. 2019; Liu et al. 2021), but this is
yet to be seen for practically significant problem classes. At
the same time, there are convincing arguments that quantum
computers will be useful for computational chemistry tasks
such as simulating molecular dynamics, where EQGCs
could be useful, which is a direction worth exploring.

Appendix A. Proof of Theorem 1

To prove that EDU-QGCs are a subclass of EH-QGCs, we
initially consider EDU-QGC node layers and EDU-QGC
edge layers separately and show that both can be represented
by (one or more) EH-QGC layers, and afterwards combine
these layers to show EH-QGCs can represent any EDU-
QGC.

The proof is structured as follows: we first prove the
case for node layers (Lemma 3.1), then diagonal edge layers
(Lemma 3.2); and, finally, we build on these two to prove
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the case for all edge layers (Lemma 3.3), completing the
proof of Theorem 1.

Lemma 3.1 Any node layer Lnode = V ⊗aVa (as defined in
Eq. 10) can be expressed as an EH-QGC layer.

Proof Let aVa = n and let R be the Hamiltonian for V .
Then, H = R⊗n = ∑

v∈VRv is an appropriate EH-QGC
Hamiltonian (of the form defined in Eq. 2). We can easily
show H is then the Hamiltonian for the EDU-QGC layer
V ⊗n:

exp(−iH ) =
∞∑

k=0

(−iH )k

k!

=
∞∑

k=0

(−i)k(R⊗n)k

k!

=
∞∑

k=0

((−iR)k)⊗n

k!

=
( ∞∑

k=0

((−iR)k)

k!
)⊗n

= exp(−iR)⊗n

= V ⊗n

Lemma 3.2 Any diagonal edge layer Ldiag = ∏
(j,k)∈E

Djk , with a diagonal unitary applied for each edge, can be
expressed as an EH-QGC layer.

Proof A diagonal unitary D has a diagonal Hamiltonian
R, where Djj = exp(−iRjj ). Using the fact that
exp(A) exp(B) = exp(A + B) for commuting matrices A

and B, and that all diagonal matrices commute, we will
derive that applying the Hamiltonian R for each edge at the
same time has the effect of applying the unitary D for each.

Consider two edges {(v1, u1), (v2, u2)}. The overall
unitary we apply, with implicit identities on all other nodes,
is

Dv2u2Dv1u1 = exp(−iRv2u2) exp(−iRv1u1)

= exp(−i(Rv2u2 + Rv1u1))

This generalizes easily to n nodes: the Hamiltonian of the
overall unitary is

∑
(j,k)∈ERjk as required.

Lemma 3.3 Any edge layer Ledge = ∏
(j,k)∈E U jk (as

defined in Eq. 11), with any equivariantly diagonizable
unitary U , can be expressed as an EH-QGC layer.

Proof This relies on Lemmas 3.1 and 3.2. We can show
that a layer of equivariantly diagonalizable unitaries can

be expressed as a layer of diagonal unitaries sandwiched
between two layers of single-node unitaries. Each of these
can be represented as an EH-QGC layer by the previous
lemmas, therefore giving us a 3-layer EH-QGC construction
for this statement.

Consider an equivariantly diagonalizable unitary U =
(V † ⊗ V †)D(V ⊗ V ) applied for each edge in a layer∏

(j,k)∈E U jk . From the perspective of each node involved
in edges, this decomposes as follows:

• a single-node unitary V

• some number of two-node diagonal matrices separated
by V † × V = I , which can be ignored

• a single-node unitary V †

For nodes that are not part of any edge, we have the identity
matrix that can be written as V † × V . So we can rewrite the
layer:
∏

(j,k)∈E
U jk =

(
(V †)⊗n

)( ∏
(j,k)∈E

Djk

)(
V ⊗n

)

This is of the 3-layer form we discussed, proving the
lemma.

Given these, we can prove the result:

Proof of Theorem 1 Putting together Lemmas 3.1 and 3.3
completes the proof: both types of EDU-QGC layers given
by Eqs. 10 and 11 can be represented by one or more EH-
QGC layers, so a sequence of EH-QGC layers can represent
any EDU-QGC.

Appendix B. Proofs of expressivity results

B.1. Proof of Theorem 2: SimulatingMPNNs

We give an explicit construction to simulate an arbitrary
MPNN with sum aggregation, i.e., an arbitrary MPNN
where the aggregation is of the form:

AGG(k)({{hi}}) =
∑

i

hi .

The node states will be conceptually split into registers
representing fixed-point real numbers in two’s complement
in the computational basis. We first need to establish that
we can perform addition on these registers using unitary
transformations.

Lemma 3.4 Consider two-node states with two registers
each, storing unsigned integers: |a1, a2〉 ⊗ |b1, b2〉, with
ai, bi ∈ {0, . . . , 2b − 1} for some b. Let U map |a1, b1〉 ⊗
|a2, b2〉 to |a1, b1 + a2〉 ⊗ |a2, b2 + a1〉, with standard
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overflowing addition. Then, U is an equivariantly diag-
onalizable unitary and satisfies the undirected symmetry
condition in Eq. 4.

Proof Let Sa be a single-node unitary that increments
integers encoded in the computational basis by a. Note
that Sa = Sa

1. Diagonalize S1 as V †DV , then Sa =
(V †DV )a = V †DaV .

Now U can be represented by applying V to the second
register of each node, conditionally applying D to the
second register of each node some number of times depen-
ding on the value of the first register, and finally applying
V † to the second registers. The controlled application of
a diagonal matrix is still diagonal, so this decomposition
diagonalizes U equivariantly with (I ⊗ V )⊗2.

The undirected symmetry Eq. 4 can be seen easily from
the definition of U : swapping a1 with a2 and b1 with b2

results in swapping the values in the output.

Lemma 3.5 Consider two-node states with two regis-
ters each, storing fixed-point unitaries in two’s comple-
ment: |a1, a2〉 ⊗ |b1, b2〉, with ai, bi ∈ {(−2b−1 + 1) ×
2−k, . . . , 2b−1 × 2−k} for some b, k. Let U map |a1, b1〉 ⊗
|a2, b2〉 to |a1, b1 + a2〉⊗|a2, b2 + a1〉, with standard over-
flowing addition. Then, U is an equivariantly diagonaliz-
able unitary.

Proof As far as the bit-level operations are concerned, this
is exactly the same as Lemma 3.4: with two’s complement,
standard overflowing addition of unsigned integers can
represent addition of signed integers, and fixed-point reals
are essentially integers interpreted with a multiplication
of 2−k .

Having established Lemma 3.5, we are ready to prove the
result:

Proof of Theorem 2 Let M be an MPNN with k layers and
width w, where the initial states are h1 . . .hn. We define
an EDU-QGC C which computes the same final node
embeddings as M , based on M’s iterated message-passing
and node update procedure.

In the following, we conceptually divide the qubits for
each node v into (k+1)×w registers h(0,0)

v , . . . , h(k,w−1)
v of

b qubits each, and k × w registers a
(1,0)
v , . . . , a

(k,w−1)
v of b

qubits each. This is a total of (k+1)w×b+kw×b = (2k+
1)wb qubits as expected. The s

(0)
v registers are initialized to

the initial MPNN node states hv , and all other qubits are set
to |0〉.

Then, for each MPNN layer, we first simulate its
message-passing phase with two-node unitaries for all
edges, and afterwards, we simulate the update functions
with single-node unitaries. Specifically, for the k-th

message-passing layer of M , we apply a unitary U(k) for
each edge (v, u) that should have the effect of adding
the value of h(k−1,i)

v to a
(k,i)
u and vice versa for each

i ∈ {0 . . . w − 1}. This results in the a
(k,·)
v registers

eventually storing the sum of their neighbors’ states from
the previous layer, which simulates the sum aggregation.
This is an equivariantly diagonalizable unitary acting well
on undirected graphs by Lemma 3.5, so applying it for each
edge is a valid EDU-QGC layer.

For the k-th update layer, a unitary is applied to each
node that XORs the result of the MPNN’s update function,
UPDATE(k)(h(k−1,·)

v , a
(k)
v ) onto the set of registers h(k,·)

v ,
which are until this point still initialized to all zeros. This
is a permutation and therefore a unitary, so applying it for
each node is a valid EDU-QGC layer.

At the end of the circuit, we measure all qubits, which
will include the final node states h(k,·)

v . We can classically
aggregate in the same way the MPNN pools its results to
give our prediction. This will match the MPNN’s output for
all inputs with 0 error probability.

B.2. Proof of Theorem 3: universality result

We show that EDU-QGCs are universal approximators for
(real and Boolean) functions over bounded graph domains,
by showing EDU-QGCs can simulate MPNNs extended
with random node initialization.

B.2.1. From Boolean to real-valued functions

We will prove Theorem 3 by first looking at the case of
Boolean-valued functions over graphs, and show that the
case for real functions follows by the same argument as
Abboud et al. (2021).

Lemma 3.6 For any Boolean function f defined over Gn,
and any ε > 0, there is an EDU-QGC that calculates f (G)

with probability (1 − ε) for any graph G.

Let us start by showing how Theorem 3 follows from
Lemma 3.6:

Proof of Theorem 3 given Lemma 3.6 Consider the outputs
of any real-valued function f over graphs of size n

expressed in binary decimal form, in the form of zeros and
ones assigned to different positions. Since there is a finite
number of such graphs, there is a finite number k of different
decimal places where the result differs for any two graphs.
For each of these, a binary classifier can be represented by
EDU-QGCs by Lemma 3.6 that gives the correct prediction
with probability 1 − ε

k
.

Say the i-th binary classifier predicts an output Fi(G) ∈
{0, 1} for any bounded-size graph G that represents the bit at
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position ki ∈ Z of the desired real-number output. Running
these “next to each other” is also a valid EDU-QGC, and
their results can then be combined by an MLP to calculate
the real output:

F(G) =
( ∑

i

Fi(G) × 2ki
) + C

By the union bound, the total probability of any classifier
making a mistake is ε, so with probability (1 − ε)

our prediction can be as accurate as allowed by our
representation of real numbers.

B.2.2. Individualizing graphs

Abboud et al. (2021) prove their results about the power
of MPNNs as follows: say a graph is individualized if all
nodes are extended with unique features. They construct
MPNNs that accurately model any function from a large
class assuming the input graph is individualized. And for
any graph of n nodes and arbitrarily small desired error rate
ε, if we randomize some node features appropriately, the
result will be individualized with probability at least (1−ε).

In the case of EDU-QGCs, if we assume some part of
all node states is initialized to all |0〉s, we can have the first
EDU-QGC layer apply a unitary on all nodes consisting of
Hadamard gates on the appropriate qubits. This maps them
to the uniform superposition over all bitstrings. If we then
use the construction from Theorem 2 that acts classically on
the computational basis, and then measure the results, we
get the same result as running the MPNN with a randomized
initial state. The following lemma bounds the number of
qubits required for this:

Lemma 3.7 Putting n sets of b ≥ 2 log(n)+log(1/ε) qubits
each in the uniform superposition and measuring them leads
to n unique bitstrings with probability at least (1 − ε).

Proof We are effectively just randomizing b classical bits
uniformly. If we randomize b individual bits of node state
uniformly at random, each pair of nodes would get the same
label with just 2−b probability. This applies for each of the
n(n − 1)/2 < n2 pairs of nodes, so by the union bound, the
total probability of any match is at most 2−bn2. This is less
than ε if b ≥ 2 log(n) + log(1/ε) bits are randomized.

B.2.3. Achieving universality

As noted in Section 5.2, we cannot directly rely on the
results of either Abboud et al. (2021) or Sato et al. (2021),
and instead give a novel MPNN construction that is partially
inspired by Sato et al., but rely solely on the results of Xu
et al. (2019) about their graph isomorphism networks.

We essentially rely on the following about graph isomor-
phism networks which follows directly from Corollary 6 of
Xu et al.:

Lemma 3.8 Let X be a countable set of vectors, and let
Pk(X ) be the set of multisets of elements of X with size at
most k. The aggregate-update function of GINs applied to
inputs from (X × Pk(X )) (representing a node’s previous
state and the multiset of its neighbors’ previous states) can
learn injective functions over such an input space.

From this result, we build up to MPNNs that can
injectively encode the connected subgraph of each node
into their final states if the initial features are unique. To
formalize this, we need the following auxiliary definition:

Definition 6 For a graph G with initial node features hv for
each node v, a node u in G and k ∈ Z

+, define

T (G, u, l) =

⎧⎪⎨
⎪⎩

{{hu}} if k = 0(
hu, {{T (G, v, k − 1) if k > 0

a v ∈ N (u)}})

where N (u) represents the set of neighbors of a node u.
Following Sato et al., we call this a level-k tree, and

it represents total information propagated to a node in k

message-passing steps.

We show that GINs with k layers can injectively encode
the level-k tree of a node:

Lemma 3.9 Let GINθ (G)v represent the final node
features of node v in a graph G after applying a graph
isomorphism network with parameters θ . There is some
configuration θ∗ of a k-layer GIN such that for any
nodes v1, v2 in degree-bounded graphs G1, G2 respectively,
with initial node features chosen from a countable space,
if T (G1, v1, k) 
= T (G2, v2, k) then GINθ∗(G1)v1 
=
GINθ∗(G2)v2 .

Proof By induction. The base case k = 1 follows directly
from Lemma 3.8. The inductive step follows from the
same claim, since the outputs of a GIN layer applied to
a countable input space still form a countable space: the
set of bounded-size multisets from a countable space is
still countable, and so is any image of this set under some
function.

Furthermore, we show that the level-n tree of a node in
a graph of n nodes identifies the isomorphism class of the
node’s connected component:

Lemma 3.10 Let G1, G2 be two non-isomorphic graphs
with node sets V1, V2 of size n with node feature vectors hv
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unique within each graph, and take any v1 ∈ V1, v2 ∈ V2.
Then, the following statements hold:

• If the graphs G1 and G2 are connected, then
T (G1, v1, n) 
= T (G2, v2, n)

• If the graphs G1 and G2 are not connected, then
T (G′

1, v1, n) 
= T (G′
2, v2, n), where G′

1 and G′
2 are the

induced connected components of v1 and v2 in G1 and
G2, respectively, representing the isomorphism classes.

Proof We first prove the case where the graphs are
connected. Let {v1, . . . , vn} be the unique node feature
vectors in G1. Note that all of these will appear in
T (G1, v1, n), because the features of any nodes at distance
d from v1 will appear in T (G1, v1, d) by induction, and a
connected graph of n nodes has a diameter at most (n − 1).
Therefore, if G2 contains a different set of unique node
features, we get T (G1, v1, n) 
= T (G2, v2, n) immediately.

Otherwise for each i, we can denote v
(1)
i as the node

in G1 with feature vector vi , and v
(2)
i as the node in G2

with the same vector. These are unique by the uniqueness
of feature vectors. From T (G1, v1, n), we can extract the
sets N1(vi ) = {hu a u ∈ N (v

(1)
i )}, i.e., the features of

nodes adjacent to the node with the feature vector vi . This
also follows by induction: T (G1, v1, k) recursively includes
a tuple (hu, {{T (G1, w, k − d − 1) a w ∈ N (u)}}) for any u

at d ≤ k − 1 steps from v1, and T (G1, w, k − d − 1) gives
us hw for any k, d . Similarly, from T (G2, v2, n), we can
extract N2(vi ) = {hu a u ∈ N (v

(2)
i )}. If T (G1, v1, n) =

T (G1, v2, n), then N1(vi ) = N2(vi ) for all i, which gives
an isomorphism between G1 and G2: the nodes v

(1)
i and v

(2)
i

are in correspondence.
This can be extended to the case for disconnected graphs

because T (G, v, n) = T (C, v, n) for a any graph G with
a node v in a connected component C, and then the same
derivation applies.

These results finally allow us to prove Lemma 3.6 and
thereby also complete the proof of Theorem 3:

Proof of Lemma 3.6 We start by initializing a sufficient
number of qubits of each node to |+〉 such that with
probability (1 − ε), observing all n initial node states leads
to n unique measurements. By Lemma 3.7, �2 log(n) +
log(1/ε) quits suffice. We apply an n-layer GIN to this
input, which our EDU-QGC can simulate by Theorem
2. By combining Lemmas 3.9 and 3.10, with appropriate
parameterization the GIN, the final node states will be an
injective function of the node’s connected component.

Since there is a finite number of such graphs, the set of
the GIN’s outputs is bounded, so an MLP applied to the
node state can turn this into a vector of indicator variables
for each isomorphism class within some required accuracy:

let an indicator I
(v)
C , part of the node state for node v, be

between 1 − 1
3n

and 1 if the v’s component is isomorphic
to a graph C (without regard for the random features) and
between 0 and 1

3n
otherwise. Since the update function in the

GIN architecture is an MLP, this computation can be built
into its final layer, which our EDU-QGC can simulate.

We can then pool the node states by summing them into
graph-level indicators: for each isomorphism class C of at
most n-node graphs, the pooled embedding will contain a
summed value NC encoding the number of nodes whose
connected component is in that isomorphism class. For
each IC , the total error is at most 1

3 , so graphs with a
different multiset of connected components will be mapped
to different vectors. Since the set of graphs of size n is finite,
the space of these vectors is bounded, and we can apply
an MLP to these values to learn any Boolean function over
bounded graphs. If we construct an MLP with accuracy of
0.4, the output is always more than 0.6 if the correct answer
is 1 and always less than 0.4 if the correct answer is 0.
This can be mapped to discrete values in {0, 1} with perfect
accuracy via a continuous function easily representable by
further MLP layers. Therefore, the output of the model will
be exactly correct as long as observing the |+〉 states leads
to a unique initial state for each node, which has probability
at least (1 − ε) as required.

Appendix C. Characterising equivariant
unitaries

While investigating the behavior of EQGCs, we have
considered what happens if we restrict Cθ (·) to only depend
on the graph size rather than the adjacency matrix. In this
case, for each n it must apply a unitary that treats each node
the same. These unitaries are of interest because they could
be considered PQCs with an inductive bias for learning
functions over sets rather than graphs, and they are also the
unitaries that any EQGC must assign if given a graph that is
either empty or complete.

Definition 7 Let EUn
s be the subset of Csn×sn

correspond-
ing to equivariant unitaries over n nodes of dimensionality
s, i.e., unitaries that satisfy Eq. 1 in place of Cθ (·).

These are the matrices that could serve as the value of
Cθ (n) in an EQGC that did not depend on the adjacency
matrix A. In this appendix, we prove upper and lower
bounds on the dimensionality of this set, and show some
necessary and some sufficient conditions for an sn × sn

matrix to be in EUn
s . We show that the dimensionality of EUn

s

grows without a bound in n. This implies that contrary to the
closely related invariant and equivariant networks studied
by Maron et al. (2019b), even for our restricted EQGCs, no
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finite parameterization could achieve all allowed unitaries
for arbitrarily high n.

We focus on the case s = 2, but also discuss how one
would generalize our results to larger node states.

C.1. An upper bound: equivariant linear layers

The unitarity constraint is tricky to analyze, so in this section
we will focus on a superset of EUn

s with simpler structure:

Definition 8 Let EUn,+
s be the subset of Csn×sn

correspond-
ing to arbitrary complex matrices that satisfy Eq. 1 in place
of Cθ (·).

First let us consider the case when s = 2, so each
node is assigned a single qubit which is in a superposition
of |0〉 and |1〉, and the action of any matrix L in EUn,+

2
can be represented as mapping bitstrings of length n (i.e.,
computational basis vectors in C

2n
) to linear combinations

of such bitstrings. The general case for s > 2 is conceptually
analogous, but this is easier to state and prove clearly.

Theorem 4 A matrix L ∈ C
2n×2n

is in EUn,+
2 if and

only if it can be expressed by weights wijk ∈ C for 0 ≤
i ≤ n, 0 ≤ j ≤ i and 0 ≤ k ≤ n − i as follows:
for computational basis states |ψ〉, |θ〉, 〈θ |L|ψ〉 = wijk

if the bitstring representing |ψ〉 contains |1〉s in i different
positions, the bitstring representing |θ〉 contains j |1〉s at
positions where |ψ〉 had |1〉s and k |1〉s at positions where
|ψ〉 had |0〉s.

Example 2 For n = 3,

L|100〉 = w100|000〉 +
w101

(|001〉 + |010〉) +
w102|011〉 +
w110|100〉 +
w111

(|101〉 + |110〉) +
w112|111〉 (16)

This shows that 〈001|L|100〉 = 〈010|L|100〉 = w101 since
〈001| and 〈010| both contain one 〈1| in a position where
|100〉 has a |0〉, and no 〈1| where |100〉 has a |1〉; and
〈101|L|100〉 = 〈110|L|100〉 = w111, because they both
contain one 〈1| for the |0〉s in |100〉 and one 〈1| for the single
|1〉 in |100〉. The other inner products involving |100〉 all
differ in how many 〈1|s meet |1〉s and |0〉s, so they can be
chosen independently of each other. (Note however that they
are not independent of other values of the matrix L such as
those in the vectors L|001〉 and L|010〉, as we will see in
the proof.)

For further clarity, consider representing the following
EQSCs with such weights:

Example 3 (CZ(α)-gates between all pairs of nodes) Con-
sider a circuit L consisting of controlled Z-rotations with a
parameter α applied between each pair of qubits. For com-
putational basis states |e1〉, |e2〉, this only applies phases,
therefore we have a diagonal matrix and 〈e1|L|e2〉 = 0 if
|e1〉 
= |e2〉. The phase applied is e−iα for each pair of
qubits that are both set to one, so if the input contains i ones
then we get a phase of e−i(i−1)α/2 in total. Therefore L is
represented by wijk = e−i(i−1)α/2 if j = i, k = 0 and 0
otherwise.

Example 4 (Arbitrary single-qubit unitaries applied every-

where) Let U = ( u0,0 u0,1

u1,0 u1,1

)
. Then, for x, y ∈ {0, 1},

we have 〈x|U |y〉 = ux,y . Suppose we apply this unitary
to all n qubits. Then, for two computational basis states
|e1〉, |e2〉, 〈e1|U⊗n|e2〉 is of the form ua

0,0×ub
0,1×uc

1,0×ud
1,1,

where a and d are the number of overlapping |0〉s and |1〉s
respectively in the bitstring representation of |e1〉, |e2〉, b is
the number of positions where |e1〉 contains a |0〉 and |e2〉
contains a |1〉, and c is the same in the other direction.

This lets us express the wijk parameters representing
U⊗n from inner products of computational basis states
〈e1|U |e2〉 and expressing a, b, c, d as above:

• d , the number of overlapping ones, is just j .
• c, the number of ones in 〈e1| meeting zeros in |e2〉, is

just k.
• We can get b, the number of zeros in 〈e1| meeting ones

in |e2〉 as i − j , subtracting the overlapping ones from
the number of ones in the input.

• We can get a, the number of overlapping zeros as
(n− i)−k, getting the number of zeros in |e2〉 as (n− i)

and then subtracting the k positions where 〈e1| has a
one.

So we get that U⊗n is represented by wijk = un−i−k
0,0 ×

u
i−j

0,1 × uk
1,0 × u

j

1,1.

We will prove this theorem through two simple lemmas.

Lemma 4.1 Any matrix L ∈ EUn,+
2 is entirely char-

acterized by its output on |s0〉 = |00 . . . 00〉, |s1〉 =
|00 . . . 01〉, . . . , |sn−1〉 = |01 . . . 11〉, |sn〉 = |11 . . . 11〉.

Proof Consider any the computational basis vector |e〉 ∈
C

2n
. This corresponds to some string of zeros and ones.

Then, for the |si〉 containing the same number of zeros and
ones, there is some permutation of indices P̃ ∈ C

2n×2n

such that |e〉 = P̃ |si〉 and therefore L|e〉 = LP̃ |si〉.
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Multiplying by P̃
T

gives P̃
T
L|e〉 = P̃

T
LP̃ |si〉 = L|si〉

by equivariance, so L|e〉 = P̃L|si〉. So knowing L|si〉 for
each |si〉 determines L|e〉 for all computational basis vector,
hence determining it entirely.

Lemma 4.2 We must have 〈e1|L|si〉 = 〈e2|L|si〉
for computational basis vectors |e1〉, |e2〉 which can be
transformed to each other by permuting over indices that
have the same value (0 or 1) in |si〉.

Proof Consider the permutation of indices P̃ that turns |e1〉
to |e2〉. Note that P̃ |si〉 = |si〉 by the given premise, so

by equivariance we have 〈e1|L|si〉 = 〈e1|P̃ T
LP̃ |si〉 =

〈e1|P̃ T
L|si〉 = 〈e2|L|si〉.

Proof of Theorem 4 Lemma 4.2 showed that L|si〉
expressed in the computational basis will have the same
weight for any basis vector with j ones where |si〉 had ones,
and k ones where |si〉 had zeros. Denote this weight wijk .
By Lemma 4.1, these parameters uniquely characterize the
equivariant linear layer.

This proves the theorem in the forward direction: any
matrix in EUn,+

2 can be characterized by weights wijk . Now
we show the other direction, that any linear transformation
characterized by an arbitrary choice of wijk satisfies Eq. 1
and therefore is in EUn,+

2 . Consider an arbitrary L ∈ C
2n×2n

given in this form. It suffices to show that it behaves
correctly with respect to swap permutations and input states
in the computational basis: more complex permutations can
be built by composing swaps, and more complex states by
linear combinations of basis states. For any bitstring input
|e〉, we can have two kinds of swaps:

• In the first case, we swap two indices with the same
digit in the bitstring (both |0〉 or |1〉). The input to L is
unchanged, and equivariance is respected because the
same coefficients from wijk are multiplying pairs of
output vectors that should be swapped.

• In the second case, the digits at the two indices differ.
The inputs passed to L on the two sides of the equation
are different, and equivariance is ensured by the number
of overlapping |1〉s changing in a way that the wijk

coefficients get swapped consistently.

As a consequence, we can easily see that the dimension-
ality of the set EUn,+

2 is unbounded in terms of n, as opposed
to the equivariant layers studied by Maron et al. (2019b), so
we cannot hope to uniformly parameterize the entire space
for unbounded n.

Corollary 4.1 The dimensionality of the set EUn,+
2 with a

single qubit per node over n nodes is:

n∑
i=0

(i + 1)(n − i + 1) = 1

6
n(n + 1)(n + 5)

Proof The left-hand side follows from the above by
considering the number of (i, j, k) triples with 0 ≤ i ≤ n,
0 ≤ j ≤ i, 0 ≤ k ≤ n − i. We get the closed form
on the right using the formula for pyramid numbers and
simplifying.

C.1.1. Generalizing to larger node states

An analogous result holds for EUn,+
s with s > 2. Say we

have s possible node basis states {|0〉, . . . , |s − 1〉}. In this
case, a single matrix element 〈θ |L|ψ〉 for computational
basis states |ψ〉, |θ〉 is depends on the entire set of how many
|i〉 appear in |ψ〉 in positions where |θ〉 contains a |j〉, for
all i, j ∈ {0 . . . s − 1}.

To prove this, similarly to Lemma 4.1, we can show that
it suffices to specify L|ψ〉 for each distribution of input
node states; and similarly to Lemma 4.2, we can show that
〈θ |L|ψ〉 is invariant to changing 〈θ | in a way that does not
change the number of any 〈i| to |j〉 “matches” as described
above.

C.1.2. Implications for EUn
s

Corollary C.1 has implications for our original set of
equivariant unitaries EUn

s — it gives an upper bound for the
dimensionality of the set.

C.2. A lower bound: diagonal equivariant unitaries

To see whether the size of the space of EQSCs grows with
the size of the set, we can investigate a more restricted
space as a lower bound: diagonal unitaries satisfying the
equivariance condition in Eq. 1.

A general diagonal unitary can apply an arbitrary
phase to each computational basis state independently. The
equivariance condition restricts us to applying the same
phase for inputs that could be transformed to each other
by permuting the indices, i.e., inputs that contain the same
distribution of node states (the same number of |0〉s and |1〉s
when using one qubit per node). This gives a lower bound
of n + 1 on the dimensionality of equivariant unitaries over
sets of size n using a single qubit per node, which is still
unbounded in n. More generally, for n nodes with s possible
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states each, the lower bound is the number of unique s-
tuples of nonnegative integers that sum to n, which is given
by

(
n+s−1
s−1

)
. This is also a lower bound on the dimensionality

of EUn
s .

C.3. Comparison with classical invariant/equivariant
graph networks

In their paper on invariant and equivariant graph networks,
Maron et al. (2019b) ask similar questions to character-
ize and implement classical equivariant/invariant models
operating on tensors representing relational data. While the
questions we investigate were partly inspired by them, and
our data can also be seen as high-order tensors, there are
significant differences in our setting.

Most importantly, the order of k the tensors they dealt
with was fixed and independent of the size n of the input
graph, while the size of the tensors along each of those k

dimensions depended n. For example, their input included
the adjacency matrix, a tensor in R

n2
. For EQGCs, this is the

other way around. Adding more nodes means working with
a larger tensor product, but each dimension is of a fixed size
s. For example, with a single qubit per node, our state is in
C

2n
. This matters for the notion of equivariance/invariance:

applying a permutation p brings the element at an index
(i1, i2, . . . , in) to (ip(1), ip(2), . . . , ip(n)) for us, instead of
(p(i1), p(i2), . . . , p(in)) as in the previous work.

Finally, there are a few more obvious differences: due to
the quantum context, we are working with complex numbers
rather than reals, and we are interested in the extra condition
of unitarity rather than arbitrary linear layers.

Code availability For the implementation of the two experi-
ments, see the following repository: https://github.com/pmernyei/
eqgc-experiments.

Declarations

Conflict of interest This work was performed as part of an MSc
research project, with no funding involved. The authors have no
financial or non-financial competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Aaronson S (2015) Read the fine print. Nat Phys 11(4):291–293
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