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Abstract. Several recent applications of numerical relativity techniques are
described. The first is the remarkable evidence of critical phenomena in gen-
eral relativity associated with gravitational collapse of massless fields. We
discuss the two currently known examples of such critical behavior: gravi-
tational collapse of massless scalar field and of axisymmetric gravitational
waves. A second application is discussed, in which numerical relativity tech-
niques are used {o probe the interaction between strong gravitational waves
and black holes. Finally, a numerical approach to computing initial data for
spacetimes that contain two black holes is described. Such initial data may
ultimately serve as a starting point for the computation of the orbital decay
and coalescence of a black hole binary.

1. Introduction

Very near or shortly after the turn of the century, the Laser Interferometer Gravitational-
wave Observatory (LIGO) is expected to detect signals from compact binary star systems
in their final stages of orbital decay and coalescence (1,2]. The theoretical foundation for
making precise predictions of the phase of the orbit during orbital decay, and using such
a prediction to fit observed signals to determine stellar and orbital parameters, is the
subject of intense present-day scrutiny [3, 4], as various speakers at the conference have
attested. In contrast, theoretical predictions of the signals from the coalescence itself, at
least for the coalescence of two black holes, have yet to be made. It seems likely that to
make these predictions the full machinery of numerical relativity will be required, and
then only after further advances have been achieved in supercomputer technology and
additional experience is gained in multidimensional simulations.

Since the development of the cosmic censorship hypothesis [5] over two decades
ago, no definitive theorems have been advanced to prove that singularities will always
be clothed by event horizons. Nonetheless, support for the conjecture is provided by
linear stability analysis of black holes and, with few exceptions, by numerical relativity
calculations of gravitational collapse. The latter refers to the fact that in nearly every
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gravitational collapse calculation in numerical relativity to date, in which the impend-
ing development of a singularity was indicated, an event horizon (and a black hole) has
been shown to form. A notable exception is the computation carried out by Shapiro
and Teukolsky [6] of collapse of a prolate cluster of collisionless matter. This topic is
discussed in some detail by Teukolsky in this volume and will not be addressed further
here except to note that cosmic censorship and modeling sources of gravitational radia-
tion are precisely the types of issues that numerical relativity, in principle, can serve to
address.

Numerical relativity includes, broadly speaking, any large-scale computational ap-
proach to a problem in classical general relativity. It usually refers to calculations of
the complete Einstein equations, although a variety of distinct schemes (e.g., spacelike
341 [7], 2+2, and null-cone [8] decompositions) have been developed to provide numer-
ical solutions. Occasionally, the term is used to refer to multidimensional Newtonian
and post-Newtonian calculations as well, such as Finn’s [9] models of gravitational ra-
diation from rotating stellar core collapse and Nakamura and Oohara’s and Rasio and
Shapiro’s [10] simulations of binary neutron star merger. It encompasses applications
of Regge calculus also [11]. In general, numerical relativity is used to denote numerical
approaches to any problem involving at least two nontrivial dimensions and the solution
of partial differential equations. Numerical relativity has as its goal to provide solutions
of the field equations in circumstances where an analytic approach is not feasible, which
typically means spacetimes that lack a high degree of symmetry or that involve strong,
dynamic, and nonlinear fields. Some common applications include i) modeling sources
of gravitational radiation, #%) nonspherical gravitational collapse and explorations of cos-
mic censorship [6], 4i) inhomogeneous cosmologies, iv) black-hole collisions [12], and v)
strong gravitational wave-black hole interactions.

While this presentation is meant to be partly in the nature of a review, with so
many areas of active research it proved necessary to be somewhat selective in the topics
to be treated. I have opted to narrow the focus considerably and review i) the very
recent discovery of critical phenomena in general relativity, i) numerical models of the
interaction between strong gravitational waves and black holes, and #71) the numerical
construction of initial data for spacetimes containing two black holes (a possible starting
point for the coalescence problem). With the focus of the article thus restricted, this
discussion unavoidably manages to slight the work of many other researchers and we must
instead merely refer the reader to several recent, more-complete, book-length reviews [13,

14].

2. Critical behavior in gravitational collapse

Choptuik [15, 16] recently discovered the existence of critical phenomena in general
relativity. The critical behavior is assoclated with spacetimes that come very close to
forming a black hole and those that just manage to do so. Choptuik discovered these
effects by computing the gravitational collapse of spherically-symmetric wavepackets of
massless scalar field ¢(r,t) using a sensitive finite-difference method. The finite difference
code is based upon an adaptive-mesh-refinement algorithm developed by Berger and
Oliger [17] that is particularly well suited to follow the development of very fine spatial
and temporal features. A second example of critical phenomena has been found by
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Abrahams and Evans [18] who considered numerical models of collapse of axisymmetric
gravitational waves. These spacetimes were also computed by using a finite difference
method, but in this case with a modestly-adjustable moving-mesh algorithm and not
with a full adaptive-mesh-refinement scheme.

Some of the characteristics of the critical phenomena seen in these simulations can
be summarized in general terms. Critical phenomena become evident in the simulations
as variations in the properties of spacetimes across a parameter space of spacetimes.
While there are many ways of parameterizing spacetimes, we will restrict attention to
parameter spaces that are each described by a single parameter. We can consider a set
G of many such distinct one-dimensional parameter spaces Gy, of spacetimes Sy[py]. For
each (appropriately defined) parameter space Gy, a critical value p} of the parameter p,
separates the parameter space into a half space G of spacetimes that contain a black hole
and a half space G of spacetimes that do not. In this way, the parameters p; are associ-
ated with variations in the strength of the ensuing gravitational self-interaction. Critical
behavior occurs in a neighborhood of the critical parameter value, when |px — p}| < &,
and hence in spacetimes that are just on either side of the “edge” of forming a black
hole. Certain features of individual spacetimes display variations across a parameter
space that can be considered critical. For example, in G, black-hole mass is found to be
a critically-behaving quantity with a power-law dependence C/|px—p};|# on the separation
of p from p} and with a critical exponent 8. The critical behavior of black-hole mass
is reminiscent of spontaneous magnetization of ferromagnets in statistical physics, and
suggests [18] that black-hole mass plays the réle of order parameter in general relativity.
Near p}, whether a black hole forms or not, the individual spacetimes develop a strong-
field region R that exists during the height of the gravitational self-interaction and within
a small enough neighborhood of the center of the implosion. In this strong-field region
the gravitational field (and any coupled field) develops an oscillatory character, Close
examination of these oscillations has revealed the existence of scaling relations that make
successive oscillations echoes of each other on progressively smaller spatial and temporal
scales.

Choptuik [16] has been able to demonstrate the universality of these critical phe-
nomena in scalar field collapse. (It is likely, but not yet established, that universality is
a feature of axisymmetric gravitational wave collapse as well.) To discuss universality
the more general space G, of many distinct one-parameter spaces Gi, comes into play.
Each Gy contains a critical spacetime Si[pj] associated with a critical parameter value
pi. Universality refers to the fact that, in scalar-field collapse at least, the shape of the
fields in the critical solution Sy[p;] deep in the strong-field region (and hence the scaling
relation) and the value of the critical exponent for black-hole mass both do not depend on
which parameter space, G, of G is examined. In other words the critical phenomena are
generic features independent of the details of the initial data. The critical exponent and
scaling relation may depend, however, on the type of field (e.g., minimally-coupled and
non-minimally-coupled scalar fields, electromagnetic field, gravitational field, etc.) that
induces the collapse and, in a related fashion, on the degree of symmetry (or nontrivial
dimensionality) of the spacetimes, but in ways that are not yet understood. The two
known examples of critical phenomena in gravitational collapse illustrate these issues
and the present rudimentary state of our knowledge.
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2.1. Critical phenomena in massless scalar field collapse

The initial discovery [16] of critical behavior was found by modeling collapse of
spherically-symmetric wavepackets of scalar field. The equation of motion of the scalar

field is
d’mm = (R¢, (1)

and Choptuik considers [15] both minimally-coupled ({ = 0) and non-minimally-coupled
fields. In spherical symmetry, the line element is taken to have the form

ds? = —a?(r,t)dt? + a*(r,t)dr? + r2dQ?, (2)

with o the lapse function and a the radial metric function. This gauge is a generalization
of Schwarzschild coordinates for dynamical spacetimes. The lapse is fixed by adopting
the polar time slicing condition [19] and the spatial coordinate trajectories are fixed to be
normal to the time slices by adopting a vanishing shift vector 87 = 0. Defining auxiliary
variables

2=, =24, (3)

the equations Choptuik solves (in the minimally-coupled case) are

b= (EH)', (4)

a
-4 2. ®
T ©
%’ p 2 mb_ 2rr(®% + I12) = 0, (7)

where a dot and a prime denote 8/9t and 3/8r, respectively. As mentioned before, finite
difference equations are obtained from these partial differential equations and solved by
using an adaptive-mesh-refinement algorithm. The adaptive-mesh-refinement algorithm
dynemically monitors the local truncation errors and maintains a limit on the size of
these errors by producing, as needed, local, nested refinements in the mesh in both space
and time. Hence, any sharp spatial and temporal features that might develop can be
followed with this scheme, whereas they would otherwise become underresolved and lost
in a simulation using a fixed mesh.

A typical one-parameter space of solutions is generated from initial (Cauchy) data
that takes the scalar field ¢ to have an initial profile

é(r, 0) = ¢0r36—[("—"0)/A]” (8)

and demands, as a condition on II, that the scalar radiation be purely ingoing initially.
There are several parameters in these data, but if ro, A and q are considered fixed, then
¢o serves as a single parameter p characterizing the sequence (i.e., a particular subspace
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Gr). The initial data are completed by solving the slicing condition (6) for « and the
Hamiltonian constraint (7) for a.

The parameter ¢ is monotonically related to the strength of the self-interaction.
For small ¢ the wavepacket implodes, passes through itself and then disperses to infinity,
while for sufficiently large ¢¢ the imploding wavepacket forms a black hole. There exists
along the sequence a critical value, ¢o = @}, at which a black hole first appears and
which separates supercritical (¢o > ¢§) solutions from subcritical (¢o < ¢%) ones. The
solutions of greatest interest are those with parameter values ¢ close to the critical value
#%. In regions of parameter space near ¢, Choptuik has found that the natural variable
for characterizing variations in parameter space is

™ = In|¢o — 43 (9)

Stated another way, critical features in solutions that lie near the critical point tend to
depend linearly on 7, and therefore exponentially on the initial conditions. Additionally,
structures with increasingly finer spatial and temporal scales develop as ¢q — ¢}.

The echoing behavior and scaling relation can best be described in terms of two
alternative variables, X = v/2mr®/a and Y = v/27rI1/a, which are useful because they
are invariant with respect to rescalings of the length and time coordinates (» — «r and
t — kt), and hence to rescaling of the mass of the spacetime. In near-critical solutions
and in the strong-field region, a number of oscillations of the scalar field appear, with
their number being proportional to |r|. It is therefore conjectured that every critical
solution (one from each G) will contain an infinite number of echoes. To describe why
these are echoes and to express the scaling relation, we need logarithmic spatial and
temporal coordinates p and T defined by

p=Inr, (10)
7=In(T"-T), (11)

where r is the proper (areal) radius and T is the proper time of the central observer at
r = 0. The constant T* is the finite accumulation time of the echoes in the precisely
critical solution and is a value that can be determined in near-critical solutions by fitting.
Choptuik finds [16] that an approximate scaling relation holds for the oscillations of the
scalar field:

X(p— A, 7= A)= X(p,7), (12)
Y(p—A,1-D)=Y(p7), (13)

for a particular logarithmic scaling constant A. This makes the oscillations appear as
echoes of one another but on scales progressively finer by a factor e=2. Stated another
way, if we observe the radial profiles of X and Y at some time T4, which gives a small
interval 6T; = T* — T; before T* but is otherwise arbitrary, and again at a second time
T, with the still smaller interval §T, = e~28T; before T*, then a new feature will have
appeared in the later profiles on a finer scale but the new profiles are in fact identical to

the earlier ones upon rescaling radially by a factor e2.
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Figure 1. Evolution of the phase portrait of a near-critical solution of the
minimally-coupled scalar field-gravity equations. Each portrait is the figure
formed by plotting Y(p, ) versus X(p,7) at fixed time 7 with p serving as
curve parameter. Phase portraits at successive times are labeled by their

values of |7|. Echoes in the strong-field region appear as self-similar wraps
about the nearly elliptical “attractor,” whose shape is found to be universal.

The scaling relation is approximate because even in the precisely critical solution
the initial oscillations near the outer edge of the strong-field region contain information
about the initial data. This information is washed out with each echo, making adherence
to the scaling relation progressively tighter. Furthermore, any solution that is near
critical, but not precisely critical, will produce only a finite number of echoes as T* is
approached before it “decides” whether to form a black hole or not.

These echoing properties are illustrated in Figure 1 by plotting, for a particular
near-critical solution, the parametric relationship that can be formed between Y(p,7)
and X(p, 7) at fixed time 7 with the radial coordinate p serving as curve parameter. This
produces a phase portrait of the solution at fixed times. The phase portraits at successive
times are shown labeled by their values of |7|. As T — T'* a series of oscillations appear,
each evident as a loop about X =Y = 0. The fact that the loops are self-similar, nearly
identically overlapping each other and producing something analogous to an attractor,
illustrates the echoing property and the existence of the scaling relation. The value of
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Figure 2. Illustration of the power-law dependence of black-hole mass versus
critical separation in parameter space for scalar field collapse. The figure plots
In Mgy versus In(¢o — ¢3). Data from three separate one-parameter spaces
are displayed, providing evidence of the universality of the critical behavior of
black-hole mass. The slope is the value of the critical exponent, in this case
estimated to be ~ 0.37.

A in the scaling relation is found to be A ~ 3.4. Both A and the profiles, X(p,7) and
Y(p,7), (and hence the shape of the attractor) are found to be universal, or independent
of the family of initial data. Weak dependence on the coupling constant { may exist [15].

Equally intriguing behavior is found in one-parameter sequences of solutions from
the half-spaces Gj that contain black holes. For the initial data discussed previously,
these correspond to ¢o — ¢ from above. The masses of these black holes have been
shown to fit a power law

Mgy = Cldo — 45°, (14)

with a critical exponent, 8 ~ 0.37 (see Figure 2). The power-law behavior of Mpy is also
found to be universal, or independent of the family of initial data, and once again only
weak dependence exists, if any, on the coupling constant {. The immediate conjecture
is that a black hole first appears along any sequence at p = p* with infinitesimal mass.
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Because of the drastic change in scale with each successive echo (e~2 ~1/30), the
scaling relation probably would not have been discovered without the resolving power
afforded by Choptuik’s implementation of the Berger-Oliger algorithm. In some of the
models Choptuik has computed, the adaptive-mesh-refinement scheme has provided local
resolution equivalent to a single uniform grid of 10° zones. This has allowed Choptuik to
probe points in parameter space with critical separations as small as [(p—p*)/p*| < 10713,

2.2. Critical phenomena in azisymmetric gravitational-wave collapse

Abrahams and Evans [18] have recently found a second example of critical phenomena in
general relativity that occurs as axisymmetric gravitational wavepackets collapse. These
spacetimes are quite distinct physically from Choptuik’s spherically-symmetric models
of scalar field collapse in two ways: they are source-free, TH = 0, and have less sym-
metry (one instead of two Killing vectors). Of course, they also necessarily involve a
dynamical degree of freedom of the gravitational field. Several numerical models from
a one-parameter family of initial data were discussed at the conference and described
elsewhere [20]. While the sequence had a critical parameter value, these particular mod-
els each had parameter values far from critical and served merely to show that collapse
of gravitational wavepackets would either form a black hole or lead to dispersal of the
packet following implosion. In this paper it is now possible to describe the properties
of near-critical solutions and to show [18] the existence of critical phenomena similar to
that seen in scalar field collapse.

Abrahams and Evans [18] compute axisymmetric, asymptotically-flat vacuum
spacetimes using the 341 formalism [7). The coordinates are fixed by adopting the
maximal time-slicing condition and the quasi-isotropic spatial gauge. Allowing only one
dynamical degree of freedom, the line element takes the form

ds? = —a?dt? + ¢*[e?3(dr + Brdt)?

+r2e2/3(df + F0dt)? + e~/ sin? Gdip?), (15)

where a is the lapse function, 8" and §° are shift vector components, ¢ is the conformal
factor, and 7 is the even-parity “dynamical” metric function. Maximal slicing results
from the condition K*; = 0 on the extrinsic curvature K* j. Abrahams and Evans compute
numerical solutions of the following equations:

8.4 = Dg[A] — ¢5(D" Dy + 2D¥ Dyar)

+ad®(R', + 2R*,) + % [ra,ﬂ" — Os (%)] , (16)
0.K*, = Dglk*,] — ¢°D*Dyax + ad®R,, (17)

KT KT 1
6:( 0> =Dﬂ [&J_%¢6Dnga+—a¢6Rro
r r

r

(18)

(23 - 3K@,) [a, (ér-) - aKr"’J ,
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O = BT0,m + B°0sm + 9s8° — B cot 8 + a), (19)
1 ) (- on fi i
o=l (o Joronkes) g
AP Low (0Py — T g2k ki 21
f(mﬁ):—zmﬁ Fn-y K, (21)
r, (%) — 866° = a(2) — 3K*,), (22)
r8,8° + 85 (ﬂ_> - zaﬂ (23)
T T
where
, . Ky 2
K'K% =2)° — 6AK*, + 6(K*,)? + 2 ( . ) , (24)

and where the transport operator Dg is defined by
1 2 or 1 . o
Dglu] = r—za,[r Bu] + m@g[sm 66°ul). (25)

In these equations, A = K, +2K*%,, K*; = ¢SK*;, Dy is the spatial covariant derivative,
RY; is the spatial Ricci tensor, A = ¢2e"/3, B = ¢2e~2/3 o) = B1/? and A(a) and A(z)
are the three- and two- dlmensmna,l flat-space La.placxans, respectively. The analytlc
properties of this gauge have been dlscussed previously [21, 22, 19, 23] and the reader is
referred to these sources for more details on the coordinates, boundary conditions and
asymptotic properties of the gauge. Similarly, portions of the finite difference method
have been described elsewhere [21, 22] and will not be elaborated here.

To find Cauchy data for the gravitational field, the freely-specifiable fields, 7 and
KT'g, are taken to have the form of a linear ingoing gravitational wavepacket possessing
quadrupolar (£ = 2) angular dependence. The general linear £ = 2 solution is described
by a quadrupole moment I(v) of arbitrary profile in advanced time v (or retarded time
u). The linear solution involves the quadrupole moment I(v), its first two derivatives,
IM(v) = dI(v)/dv and I®)(v), and its integrals, I(-D(v) = J dv'I(v’) and I(-2)(v).
Expressions for 7 and K"y that are consistent with this solution have been found:

NN (CANI
'I'] = ('r— — 27-_2) sin 0, (26)
Ky PR (6] I ICDN |
" (,7 T8 g g Jein2? 0

However, since a wavepacket of finite amplitude confined within a finite radius will
generate a finite mass, these Cauchy data will be at least slightly nonlinear, depending
on the initial amplitude and radius. So to find proper data, the exact Hamiltonian and
momentum constraints are solved for ¢, A, and K¥,, subject to the choice above of 7
and K7y. Not surprisingly, nearly-linear Cauchy data are found still to generate ingoing
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Figure 3. Power-law dependence of black-hole mass versus critical separation
in parameter space for axisymmetric gravitational-wave collapse. Remarkably,
the value of the critical exponent in this case, ~ 0.37, is indistinguishable from
that of scalar field collapse.

solutions. To complete the specification of data, the form of I(v) must be given. A
wavepacket with polynomial radial dependence of the form I(-2)(v) = ax,L5[1—(v/ L)),
for [v| = |[r —ro| < L at t = 0, is chosen. Here, «, is a constant but a is an amplitude
parameter, L is a width parameter, and 7o is a centering parameter. Each of these might
serve as useful parameters of spaces G. Initially, L and ro have been fixed while a
has been chosen to parametrize the Cauchy data and therefore the solutions. Since in
the limit @ — 0 the mass of the wavepacket is MJre*r = a2 /(27), a useful alternative
strength parameter is ©(a) = 27 M,/L ~ a®. A wavepacket with © <« 1 only weakly
self-interacts [20], escaping to infinity virtually unaffected, while a black hole forms in
an evolution where ©® 2 1, with Mpy — M, as ® — oco. The critical value along the
sequence is found [18] to be @* ~ (.80 (a* ~~ 0.93).

Like in the scalar field case, supercritical collapse of gravitational wavepackets is
found to generate black-hole masses, Mpy, that are well described by a power law

MBH ~ C’(a — a*)ﬁ. (28)

Quite remarkably, the critical exponent value obtained for gravitational wavepacket col-
lapse is also 8 ~ 0.37 and is presently indistinguishable from that seen in scalar field
collapse (the estimated numerical uncertainties place the value between 0.35 and 0.39).
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Figure 4. Scaling property of a near-critical solution of axisymmetric
gravitational-wave collapse. Radial profiles of the metric function % (along
6 = 7/2) plotted at four times corresponding to alternate maxima of the cen-
tral value of the lapse function, .. The upper panel depicts all four profiles
(labeled sequentially n = 0 — 3) plotted versus p = Inr. The two lower panels
illustrate scaling by overlapping profiles that are shifted by p — p' = p + nA
with A ~ 0.6. Profiles n = 0,1,2 are plotted in the bottom panel and
n =1,2,3 in the middle panel.

Figure 3 shows the power-law behavior of black-hole mass found for gravitational-wave
collapse. The mass Mpy refers to the mass 4/ A.n/167 associated with the area of the
apparent horizon Aap, and this is determined at a time At = 27 /w{=? (where w{=? is
the real part of the lowest-order £ = 2 quasinormal mode frequency) after the apparent
horizon first appears.

Tentative evidence is also observed for a scaling relation on the gravitational field in
the strong-field region R. The gravitational field is observed to oscillate on progressively
finer spatial and temporal scales, This behavior is evident in examining radial profiles
of  (along the equatorial plane § = 7/2) as displayed in Figure 4. As can be seen, 7
exhibits an echoing in p = Inr of the form

1(p — A,ta) > 1(p, tas1). (29)

The times ¢, are found, in this case, by using the central value of the lapse function
a(t,r = 0) as a diagnostic to determine the completion of successive oscillations. Once
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again a single value of A is found to describe the scaling of the echoes. However, in this
case, the scaling constant is A 2~ 0.6 and it therefore implies a radial scale ratio e® ~ 1.8
which differs considerably from the corresponding value of e® ~ 30 (A =~ 3.4) in scalar-
field collapse. This result appears to be robust, having been obtained in simulations
with several different resolutions. It is fortunate the scale ratio is much less extreme
in this case, since it was obtained using a 2+1 finite difference code without the use of
adaptive mesh refinement. Existing 241 and proposed 3+1 computations cannot come
close to the resolution afforded by adaptive mesh refinement in 1+1, so extension of the
adaptive-mesh-refinement scheme to 2D and 3D will be well worthwhile.

2.3. Tentative conclusions

The results obtained so far are suggestive of critical phenomena, but it is fair to ask how
close the association really is to standard critical phenomena. Answering this question
will likely require the construction of analytic models and more simulations of additional
physically-distinct spacetimes with different symmetries and sources. We have seen so
far two remarkably similar values of the critical exponent § and two quite different
values for the logarithmic scaling factor A. The differences may be attributable to the
different dimensionalities (or number of Killing vectors) of these two physical models.
Do these two physical models then represent different universality classes, despite the
nearly identical values of 7 The appearance of black holes in only those solutions with
p > p*, and the reasonable conjecture that a hole of infinitesimal mass appears at p = p*,
suggests that Mpy plays the role of order parameter for these critical phenomena, like
spontaneous magnetization M does for ferromagnets below the Curie temperature and
like |p — pc| does for liquid-gas transitions in the co-existence region. To the extent that
Mpy can be regarded as the order parameter, it is interesting to note that the critical
exponent (=~ 0.37) lies in a range typically observed for B in other critical systems [24].
Choptuik [16] has shown that details inherent in the original data are “washed out”
within R in near-critical evolutions. Information may be steadily lost with each echo
as 7 — 0 and T — T™* and the rate of loss per echo may depend on the value of A.
It seems likely that an analogue of the correlation length ¢ in statistical systems is the
ratio of the radii of the outer edge of the scaling region, rumayx, and the inner edge, r,,
of the innermost echo: i.e., ¢ ~ Tmax/rn ~ €™®. This brings in the scaling variable A,
and as p — p* an ever-larger region (in terms of the scale r,,) becomes “correlated” with
self-similar echoes and ¢ — oo.

3. Interaction of black hole spacetimes and gravitational waves

A group of researchers, who are based at or have ties to the US NSF National Cen-
ter for Supercomputing Applications at the University of Illinois (hereafter called the
Illinois group), have recently described [25] numerical models of black-hole spacetimes
that interact with finite-amplitude gravitational waves. These are axisymmetric models
computed with the Illinois group’s new two-dimensional numerical relativity code. This
finite difference code also evolves vacuum spacetimes on spacelike time slices by using
the 3+1 form of the Einstein equations [7]. The equations for the gravitational field are
similar, but not identical to those given in section 2.2.
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Figure 5. Extracted waveform (solid curve) that is emitted following interac-
tion of a gravitational wave and a black hole. This wave represents a mild but
finite amplitude disturbance of the black hole. The normal mode fit (dashed
curve) of the waveform is shown to compare well at late times.

The initial data for these models consist of a single black hole superimposed with a
time-symmetric gravitational wave (e.g., a Brill wave [26]). The spatial part of the line
element takes the form

ds? = W* [e™(dn® + d6?) + sin® 6 d¢?], (30)

where 7 is a logarithmic radial coordinate. The function (7, 8) is arbitrary up to sat-
isfying appropriate boundary conditions and ¥(,6) is determined by the Hamiltonian
constraint. For ¢ = 0 and with an appropriate boundary condition, ¥ becomes the con-
formal factor for the Schwarzschild solution in isotropic coordinates. When g # 0 the
solution of the Hamiltonian constraint for ¥(7, §), along with q(7, §), corresponds to the
superposition of a gravitational wave and a single black hole. Specification of the initial
data is completed by assuming time symmetry so that K;; = 0. The Brill wave is taken
to have the form

q = Af(8) (e—[(n+no)/al’ + e—[(n—no)/v]’) , (31)

with parameters 4, 7o and o specifying the amplitude, range and radial width, respec-
tively. Brill waves with angular dependence f(8) = sin™ 8, for several (even) values of n,
have been examined.

The Illinois group describe several simulations with varying initial Brill wave am-
plitudes and with n = 4. Low amplitude Brill waves are shown to excite the fundamental
! =2 and | = 4 quasi-normal modes of the black hole. The demonstration of an accu-
rate fit by the quasi-normal modes to the late-time behavior of the waveform in these
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Figure 6. Extracted waveform (solid curve) that is emitted following the
interaction between a strong gravitational wave and a black hole. Here the
black hole is significantly disturbed by the wave and grows in mass as part
of the wave crosses the horizon. The waveform of Figure 5 is overlapped for
comparison.

calculations provides an important verification of the code (see Figure 5). A spacetime
initially containing a high amplitude Brill wave has also been computed. In this model,
the mass associated with the apparent horizon is only 0.59 of the total mass on the
initial slice and the initial apparent horizon is observed to be highly distorted. Nev-
ertheless, the gravitational waves shown emerging from the vicinity of the hole quickly
develop damped-oscillatory behavior similar to that of quasi-normal modes (Figure 6).
The waveform is no longer described well by the quasi-normal modes because the black
hole mass grows significantly during the time the waves are being emitted as a significant
fraction of the Brill wave is swallowed by the hole. It is as if the initial wave excites
oscillations in a bell (the black hole) whose resonance properties are rapidly changing on
a time scale of the fundamental oscillation.

In these simulations, the gravitational radiation signal is extracted from data that
are available at a finite radius on the spacelike slices. Typically, the fields at distances of
15— 30M from the hole are used to construct a gauge-invariant variable that determines
an estimate of the asymptotic waveform. As a check, these researchers also use this
boundary data, and data interpolated onto a future-directed null cone, for an integration
of the Zerilli equation. The numerically computed Zerilli function, evaluated at larger
radii, provides a useful check on the gauge-invariant determination of the waveform.

The intention is to next use this code to compute the head-on collision of two black-
holes. This problem was originally studied by Smarr and Eppley [12] over a decade ago,
but with less sophisticated techniques and computers. These limitations made it difficult
to gauge the accuracy of those calculations. Apart from confirming the previous work,
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accurate computation of the axisymmetric collision problem is viewed as a necessary
prelude to any attempt to calculate in three dimensions the orbital decay and coalescence
of a black-hole binary.

4. Three-dimensional initial data for two black hole collisions

With construction begun on the US Laser Interferometer Gravitational-wave Observa-
tory (LIGO), increasing attention must be devoted to the theoretical task of modeling
the orbital decay, coalescence, and gravitational radiation signal of black hole binaries.
Before a dynamical evolution can be attempted, initial data must be constructed for the
two black holes that satisfies the constraint equations. One means of generating such
initial data sets has now been successfully demonstrated [27, 28] that uses the conformal
and transverse-traceless decomposition of the constraint equations [7]. This is a con-
formal imaging procedure that extends Misner’s [29] original calculation, of initial data
on two asymptotically-flat sheets for a time-symmetric configuration of multiple black
holes, to include non-time-symmetric configurations of holes with linear and angular
momenta (30, 31, 32].

The procedure involves solving the vacuum Hamiltonian and momentum con-
straints of 341 gravity using the conformal transformations of York [7] to bootstrap
into a simultaneous solution. For initial data we take the spatial metric v;; to be con-
formally flat, 4;; = ¥*y;; = U4 f,; where fij is the flat three-metric, and the time slice to
be maximal K = K*; = 0. The remaining part of the physical extrinsic curvature Kj; is
then conforma,lly related to the trace-free conformal background extrinsic curvature /i,-j
by K;; = Y2 4,;. The Hamiltonian and momentum constraints then become

- 1 = =
V3P = —E‘I/_-,A,'jAU, (32)

D; A% =, (33)

where D_,- and V? are flat-space differential operators. In order for the solutions of these
equations to represent black holes, certain boundary conditions have to be assumed.
First, boundary conditions are imposed that are consistent with the spacelike slices
being asymptotically flat. Second, in order for the source-free equations to describe black
holes, the hypersurface must be topologically nontrivial, with each black hole connected
to another asymptotically-flat sheet through a throat or Einstein-Rosen bridge. This is
the effect of the inner boundary condition used in the work described in the preceding
section for one black hole. Here, each black hole on the top sheet may connect to a
separate bottom sheet or all of the holes may be connected to the same bottom sheet.
The latter approach, with a two-sheeted manifold, has been adopted since it provides an
isometry between physical fields on the top and bottom sheets. This isometry implies
unique boundary conditions that can be imposed on each of the throats and eliminates
the need to include the bottom sheet in the computational domain.

The procedure starts with solutions of the momentum constraint [31] for a single
black hole, which have specified (physical) linear and angular momenta:

- 3
Aﬁ. = ﬁ[P,-nj + Pini — (fij — n-‘nj)Pk"k]
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fifj = %(ek;msmnknj + exjmS™nFn;). (35)
The former expression adopts one of two possible isometry conditions (here the negative
isometry), which is seemingly most useful physically. The physical linear and angular
momenta are given by P* and Sk, which are not affected by conformal mapping and
therefore are not dependent on the solution of the Hamiltonian constraint. These data
for /i,-_,- are isometric for one hole only. A superposition of two or more such solutions
is a solution of the momentum constraint, but does not satisfy the isometry condition.
Kulkarni, Shepley and York [32] have shown how higher-order corrections to (34) and
(35) can be added, through a method of images for tensors, to construct a solution of
t1e rnomentum constraint that is inversion symmetric through each hole. This process is
rapidly convergent, but analytically nearly intractable. Fortunately, Cook [27] has found
a recursive procedure that can be used numerically to generate a discrete solution (i.e.,
on a computational mesh) to arbitrarily high precision.

Once an inversion-symmetric solution of the momentum constraint is known, the
ponlinear Hamiltonian constraint can be solved for ¥ by employing an asymptotically-
flat boundary condition ¥ — 1 as 7 — oo and isometry boundary conditions on each of
the throats. The conformal factor is then used to “dress” A;; and obtain the physical
extrinsic curvature.

Cook [27] has solved these equations for two black hole initial data, subject to the
restriction of axisymmetry, for a variety of different black hole linear momenta (aligned
along the symmetry axis) and angular momenta (spin axes aligned along the symmetry
axis). These results were obtained with two separate finite difference codes, one using
Cadez coordinates [33] and one using bispherical coordinates, in order to confirm his
results and gauge their precision. In new work, Cook, Choptuik, Dubal, Klasky, Matzner
and Oliveira [28] have generalized these results to three dimensions and obtained initial
data for two black holes with truly arbitrary linear and angular momenta and masses.
Cook and Abrahams [34] have examined these data sets to determine some of the physical
properties that are evident on the initial slice, such as asymptotic mass, linear momentum
and angular momentum, and areas of apparent horizons.

5. Conclusions

The examples cited here should make evident that numerical relativity has reached a
level of sophistication where it is possible both to discover previously unknown physical
effects and to state certain results with numerical precision. Even in the interaction of
strong gravitational waves with black holes, where we have not yet been surprised with
a violation of our physical intuition, the results probe a regime that is far from what
we might calculate analytically. Each such solution, where the black hole is strongly
perturbed yet fails to produce a naked singularity, lends weight to the notion of relatively
generic adherence to the cosmic censorship hypothesis. Finally, the first forays have
begun toward designing algorithms and writing codes for three-dimensional numerical
relativity calculations. This comes at an opportune time as there are increasing hopes
that we will enter the era of gravitational-wave astronomy at the end of the 1990s.
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