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ZUSAMMENFASSUNG

Spétestens seit der Entdeckung des Higgs-Bosons am Large Hadron Collider des CERNSs ist
der Higgs-Sektor des Standardmodells der Teilchenphysik eines der zentralen Forschungsge-
biete der Hochenergiephysik. Durch mogliche Abweichungen von Messungen und theoretis-
chen Vorhersagen innerhalb dieses Sektors erhofft man sich, ein vollstdndigeres Verstandnis
der Quantenfeldtheorien zu erhalten, die verwendet werden, um die Natur zu beschreiben.
Neben immer genauer werdenden Messungen sind daher auch Hochprézisions-Rechnungen
notwendig, um bei Vergleichen von Messung und Vorhersage auf etwaige Abweichungen

sensitiv zu sein.

Der Fokus dieser Arbeit liegt auf prazisen Vorhersagen von Observablen innerhalb des

Higgs-Sektors.

Zum einen werden Studien der Higgsmassen-Berechnung innerhalb der minimalen super-
symmetrischen Erweiterung des Standardmodells vorgestellt, die partielle Dreischleifen-
ergebnisse beinhalten. Dafiir werden verschiedene Berechnungsmethoden vorgestellt, welche
in Kombination eine genaue Vorhersage der Masse des leichten CP-geraden Higgs fiir be-
liebige Parameterkonfigurationen erlauben. Durch die Verwendung der in dieser Arbeit
entwickelten Ergebnisse kann die relative Unsicherheit in der Vorhersage der Masse des
leichten CP-geraden Higgs auf unter 1% reduziert werden. Da zusitzlich alle zugehori-
gen Ergebnisse in ein 6ffentlich zugédngliches Programm implementiert sind, konnen die

Resultate dieser Arbeit in weiteren Studien genutzt werden.

Dartiber hinaus wird die Higgs-Produktion in Kombination mit einem Vektor-Boson am
Large Hadron Collider des CERNs untersucht. Durch die Ausnutzung einer Symmetrie der
involvierten Vektor-Bosonen kann eine besondere Observable definiert werden, durch die
sich ein Grofiteil der Unsicherheiten in sowohl Experiment als auch Vorhersage vermeiden
lasst. Zur Veranschaulichung wird eine Analyse durchgefiihrt, die zum einen die erhohte
Sensitivitdt auf potentielle Abweichungen zwischen Theorie und Experiment zeigt, und
zum anderen Evidenz fiir die Produktion eines Higgs-Bosons in Kombination mit einem
Z-Boson durch Gluonfusion ermdoglicht. Abschliefsend wird der aktuelle Fortschritt einer
Zweischleifenrechnung fiir Higgs-Z-Produktion durch Gluonfusion vorgestellt, der eine
volle Top-Quarkmassen-Abhédngigkeit in den Schleifendiagrammen beinhaltet. Um die
Quarkmassen-Effekte einzubeziehen, werden innovative Rechenmethoden entwickelt und
in ein offentlich zugdngliches Programm implementiert, das breite Anwendung in der

Berechnung von Mehrschleifendiagrammen finden kann.






ABSTRACT

At least since the discovery of the Higgs boson at the Large Hadron Collider at CERN,
the Higgs sector of the Standard Model of particle physics has become one of the central
research areas of high energy physics. Deviations between measurement and theoretical
prediction within this sector have the potential to become a window on the quantum field
theories describing nature. Besides the increasing precision of measurements, high-precision
predictions are required to become sensitive on possible deviations.

The focus of this work is on precise predictions of observables within the Higgs sector.

On the one hand, studies of Higgs mass calculations within the context of the minimal
supersymmetric extension of the Standard Model are presented, which include partial
three-loop contributions. Different kinds of calculational methods are introduced, which,
when combined, yield a reliable prediction of the light CP-even Higgs mass for in principle
arbitrary parameter configurations. Utilizing the results of this work, the relative uncertainty
of the predicted mass of the light CP-even Higgs can be reduced below the 1% level.
Additionally, all corresponding results are implemented in an open-source program, which
allows for further studies.

Moreover, Higgs production in association with a vector boson at the Large Hadron Collider
at CERN is studied. By exploiting a symmetry connecting the final state gauge bosons, a
particular observable can be defined, that leads to the cancellation of various sources of
uncertainty in both measurement and prediction. For illustration, an experimental analysis
for this observable is performed, which demonstrates an increased sensitivity to possible
deviations between measurement and prediction, and, in addition, yields to evidence for the
production of a Higgs boson associated with a Z boson through gluon fusion. Finally, the
recent progress in the calculation of two-loop corrections to Higgs-Z production via gluon
fusion including the full top-quark mass dependence are presented. To include these quark-
mass effects, novel algebraic methods are developed and provided with an implementation
into an open-source program, that can find wide application in the calculation of multi-loop
Feynman diagrams.
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INTRODUCTION

The success of the Standard Model of particle physics (SM)" at describing nature at the
smallest known scales is undoubted. Its last missing piece, the Higgs boson H, was dis-
covered by the ATLAS[2] and CMS[3] collaborations at the Large Hadron Collider (LHC)
in 2012. In light of this discovery, the Higgs sector has become of foremost interest. Until
today all measurements related to this sector are in agreement with SM predictions [4],
thus raising the importance of precision calculations and measurements to enhance the
sensitivity to potential beyond the SM (BSM) physics. This is especially relevant considering
that, despite the success of the SM in describing nature, many puzzling observations remain
which require BSM physics. For example, neutrino oscillations, the baryon asymmetry of the
universe, dark matter and dark energy, and the smallness of the Higgs boson mass cannot be
explained in the framework of the SM. As the Higgs sector is currently the least constrained
part of the SM, potential inconsistencies in predictions that contribute to this sector could
be a valuable hint towards a more complete picture of the underlying principles of BSM
physics.

Several concepts and theories have been proposed to address these open questions, of which
the extensively studied Supersymmetry (SUSY) is one.? Many realizations of SUSY provide a
dark matter candidate, considering that dark matter is particle based, and come with an
explanation for the size of the Higgs boson mass, for example. The primary idea of SUSY
is to relate fermions and bosons by extending the Lorentz symmetry in the only possible
non-trivial way. Among all possible SUSY realizations, the simplest one is the Minimal
Supersymmetric Standard Model (MSSM) [9, 10]. It extends the SM in a minimal way to
incorporate SUSY. As a consequence, each particle of the SM is accompanied by a so-called
superpartner, whose spin is shifted by one half with respect to the SM partner. Additionally,
a second complex Higgs doublet has to be introduced in order to ensure the holomorphicity
of the superpotential. Therefore, the Higgs spectrum consists of five physical Higgs bosons.
For real parameters the spectrum is given by two neutral CP-even h and H bosons,? the
CP-odd A boson, and two charged H + bosons. One particular feature of SUSY is that, even
at tree level, the mass of /1, which could be identified as the SM Higgs, can be predicted.
Thus, the measured mass of the discovered Higgs boson at the LHC can be used as an
additional precision observable to constrain the mass spectrum of potential superpartners
or to test SUSY theories in general. To complement precise measurements of the Higgs mass,
precise predictions are needed in addition. Nonetheless, there has been no experimental

1 For a pedagogical introduction to the SM we refer the reader to Ref. [1], for example.
2 We refer the reader to Refs. [5-8] for an introduction to supersymmetric theories and the MSSM.
3 Note that the Higgs boson of the SM is denoted as H, whereas the SM-like Higgs of the MSSM is denoted as 5.
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evidence for supersymmetric particles so far, which are thus constrained to have masses
above hundreds of GeV [11, 12].

Irrespective of specific extensions of the SM, precise theoretical predictions within the
framework of the SM are currently indispensable to stay competitive to the shrinking
measurement uncertainties and thus be sensitive to possible deviations from the SM. As state-
of-the-art-calculation techniques are pushed to their limits with cutting-edge calculations of
2 — 2 and 2 — 3 scattering processes at the two-loop level, for example, the need of either
conceptual advances within these calculations or novel algebraic approaches to at least ease
computational bottlenecks are inevitable.

In addition, observables that are sensitive to potential BSM physics effects are well suited
to complement both high-precision measurements and predictions. Furthermore, ratios,
in which similar sources of uncertainties cancel, can help to alleviate the requirement of
improved precision. Well-known examples of such observables are Ry, [13] and the p
parameter [14].

Following the aforementioned observations, this thesis is dedicated to calculations, studies,
and automatization of precision calculations in the SM and beyond. In Part I, we focus on
Higgs mass predictions in the MSSM, apply and compare different approaches to Higgs mass
calculations, and derive results, which are based on the calculation of Refs. [15,16], up to the
three-loop level. Afterwards, in Part II, we exploit a symmetry within the Higgs production
associated with a vector boson at the LHC to define and study an observable that is highly
sensitive to New-Physics phenomena. Guided by the latter idea and concerns regarding
precision when trying to expose BSM physics using state-of-the-art analyses, we develop
novel techniques that ease some bottlenecks in cutting-edge higher-order calculations. These
methods are then applied to a proof-of-principle calculation within the context of the

associated production of a Z and a Higgs boson.



Part1

THE LIGHT CP-EVEN HIGGS MASS IN THE MSSM AT THE
THREE-LOOP LEVEL

In this part, we focus on the mass prediction of the light CP-even Higgs / in the
MSSM, which in our studies is identified with the SM-like Higgs boson. Different
computational approaches are compared and numerical studies up to three-loop

accuracy are presented.






HIGGS MASS CALCULATIONS IN THE MSSM

With the discovery of the Higgs boson with a mass of [2,3,17,18]
M;, = (125.10 £ 0.14) GeV, (2.1)

the SM is complete and appears to be a good description of nature around and below
the electroweak scale. However, the SM does not describe gravity and cannot account for
phenomena typically associated with dark matter, for example, or for CP-violation at the
level required to explain the observed baryon anti-baryon asymmetry. SUSY has been an
attractive proposal to address some of the deficits of the SM. As a realization of SUSY, the
the MSSM exhibits a constrained Higgs sector which, for a given set of SUSY parameters,
results in a theoretical prediction of the lightest CP-even Higgs boson mass M;,. Comparison
to the measured mass of the observed Higgs boson as quoted above provides a stringent
constraint of the MSSM. However, at tree level the mass of the lightest CP-even Higgs boson
in the MSSM is bounded by the Z-boson mass, Mz, in the decoupling limit, i.e. M4 > Mz,
where M, is the mass of the CP-odd Higgs boson A:

2.2 g1+ 83

M; ~v 1 cos? 2B = M% cos? 2B < M3, (2.2)

where

5
v = /02 + 03 ~ 246 GeV, tanﬁ:z—z, glz\/;g’, =g (2.3)

g and g’ are the gauge couplings of the SU(2);, and U(1)y, respectively. v, and v, are the
vacuum expectation values (VEV) of the two Higgs doublets (cf. Eq. (2.7)). Without large
radiative corrections to the Higgs mass, a realization of the MSSM in nature could have been
ruled out already.

During the last decades, much effort has been invested in order to calculate radiative
corrections, develop automated code to predict SUSY mass spectra, and to introduce new
calculational approaches for different mass regions of the SUSY spectra. The latter can
be divided into three categories, which will be discussed in more depth in the following
chapters.

On the one hand, there are fixed-order (FO) calculations, where loop corrections to the Higgs
mass are calculated in the full MSSM, and the perturbation series is truncated at a fixed order

of the coupling constants. If the SUSY particles have masses not too far above the electroweak
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scale, the FO calculation typically leads to a reliable value. However, if (some of) the SUSY
particles are very heavy, the perturbative coefficients receive large logarithmic contributions,
which spoil the convergence of the perturbative series. Currently, loop corrections up to the
two-loop level are known in the on-shell scheme [19-34] and up to the three-loop level in
the DR scheme® [15,16,24-27,35—49]. The corresponding FO Higgs pole mass results are
available through implementations into publicly available spectrum generators [22, 50-59].
Spectrum generators are codes that calculate the mass spectrum, couplings, and observables
for a given set of SM and model dependent input parameters. The contributions of this
thesis to the FO approach are discussed in Chap. 3.

On the other hand, there are effective-field-theory (EFT) calculations, which are based on
the assumption that the SUSY particles are very heavy compared to the electroweak scale.
Integrating them out leaves the SM as an EFT. The latter retains the SUSY constraints through
so-called threshold corrections between the MSSM and the SM parameters, which are applied
at some large mass scale. The Higgs pole mass is then calculated from the SM MS parameters
after evolving them down to the electroweak scale through SM renormalization-group
equations (RGEs), thereby resumming contributions which are logarithmic in the ratio of the
SUSY and the electroweak scale. Such kinds of logarithms are denoted as large logarithms
in what follows. This procedure has been implemented through next-to-next-to-leading
logarithmic order (NNLL? or third logarithmic order) in several publicly available pure-
EFT spectrum generators [59—61]. Resummation through fourth logarithmic order (N°LL)
has recently been achieved through the calculation of the three-loop threshold correction
for the quartic coupling A [62], which complemented the available two-loop threshold
corrections [60,61,63-67]. Our contributions to the EFT approach are discussed in Chap. 4.

The FO and the EFT approach have shown that the tree-level Higgs mass given in Eq. (2.2)
indeed receives large radiative corrections. However, in order for the theoretical value of the
light CP-even Higgs mass to be compatible with the observed Higgs mass of M), ~ 125GeV,
the SUSY spectrum requires TeV-scale stops (see Refs. [60,64,68-70], for example). Regarding
uncertainties, it is not clear a priori whether a FO or an EFT approach provides the most
reliable value for the Higgs mass at these mass scales. For this reason, so-called hybrid
approaches have been devised [53, 59, 68,69,71-74]. They combine the virtues of a FO and
an EFT calculation, and lead to a reliable value for the Higgs pole mass at arbitrary SUSY
scales in principle. Comparison to the highest available FO result shows good agreement
up to remarkably large SUSY scales of the order of 5-10TeV [75], in accordance with earlier
comparisons of FO and EFT results [47]. Our contributions to the hybrid approach are
discussed in Chap. 5.

The aim of the first part of this thesis is to study the three-loop corrections obtained
by a FO calculation in Refs. [15,16]. Since the latter were not included in state-of-the-art
spectrum generators before this thesis, we provide an implementation of these terms into

See Subsect. 3.1.2 and references therein for its definition.

2 Any N in shorthand notations like NLL corresponds to a next-to, e.g. NLL means next-to-leading logarithmic

order. In combinations with LO, i.e. leading order, NLO represents next-to-leading order.
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the C++ library Himalaya[47] and use it together with the spectrum generator Flexible-
SUSY (FS) [58, 59]. With the help of Himalaya we are able to elevate the FO, the EFT, and the
hybrid approach to the three-loop level, which is needed in order to reduce the theoretical
uncertainty and be more competitive regarding the measured value of Eq. (2.1).

Before we turn to a more in-depth discussion of the approaches introduced above, we

establish notational details in the following.

Masses denoted by capital letters, such as M,, are meant to be pole masses, whereas masses
denoted by lower case letters, such as m,, are defined to be running masses in a specific
renormalization scheme.

The set of SM MS parameters relevant to our calculation is denoted as

X = {/_\/gf/g3/ﬁ}/ (24)

where A denotes the quartic Higgs coupling, §; the SM top Yukawa coupling, g3 the strong
gauge coupling, and 0 the vacuum expectation value of the Higgs field in the SM.

If SUSY would be an exact symmetry, the superpartners and their corresponding SM particles
would have the same mass. As there are currently no hints for additional particles at the
mass scale of the SM particles, SUSY has to be broken when realized in nature. Without
assuming a specific SUSY breaking mechanism, cf. Refs. [76,77], one is able to parametrize
this breaking by adding terms to the Lagrangian that explicitly break SUSY. For our studies,
the relevant parts of the MSSM Lagrangian read3

MSSM
—L soft-breaking -

1 . _
E (MlBB + Mo, WW + Mggg + hC)

+ (yuAu);; (QiHa) UF + (yaAa);; (Hi1Qi) D;
_|_

_I_

(mé)ij Qi Q; + (m%l)ij a;u; + (mlzD)i]- D7D
(

Here, B, referred to as bino, is the superpartner of the SM B, boson, Wy, referred to as winos,
are the superpartners of the SM W), bosons, and &, referred to as gluino, is the superpartner
of the SM gluon g. M1, M, and mg are the masses of the bino, wino, and gluino, respectively.
(yu)ij and (yq);; are the Yukawa coupling matrices of up-type or down-type quarks in the
MSSM. The trilinear coupling matrices (A, /4);; are soft-breaking parameters in the MSSM.
Note that we are assuming flavor diagonal matrices, i.e. (Y. /aAu/a)ij = 0ijYusaAusa, With 6;;
being the Kronecker symbol and u/d € {u,s,t}/{d,c,b}. Q, U, and D are the superpartner
fields of the quarks, referred to as squarks, containing the SU(2); doublet squarks, the
up-type singlet squarks, and down-type singlet squarks, respectively. Their mass matrices

(m%);j contain the squared soft breaking masses g, fmy,, and mp,; for i € {1,2,3} as

3 For a comprehensive introduction to the MSSM, we refer the reader to Refs. [6-8].
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diagonal elements. Note that all gauge indices are suppressed in Eq.(2.5). By is the soft
bilinear term of the y-parameter of the Higgs potential,

Vitiggs O |u*|Hl* + [u[*|Ha|?, (2.6)

where the two Higgs doublets can be decomposed as

2= [va + (1 — in)]) < s )
Hy=[Vv2 , H, = , . .
1 < _4); ? \% [vu + (472 - 17(2)] (2:7)

¢i, x; are real and ¢;~ are complex scalar fields. v, and v, are the VEVs of the two Higgs
doublets. Since we are interested in studies of M}, only the fields ¢; are considered, which
can be converted into their mass eigenstates & and H at tree level by diagonalizing the
matrix:

Mtree —

sin2p (M% cotp+Mjtanp  —Mj — M} ) | 28)

2 —M2 — M3 M2 tan B+ M3 cot B

At tree level, the running sfermion masses 1117, < m are the eigenvalues of the ith generation

squark mass matrix M, ;,

2 2

M [ ™M tmgt A g Xq

qlr — 2 2 7 (29)
my X, mg +my;; + Ay

with the SUSY breaking parameters mgq;, my;, and my = v,/4y,/+/2 being the running DR’
quark mass. The A; in Eq. (2.9) are electroweak contributions and read

Ay = M2 (I, — e sin® 0) cos2p, (2.10)

Ay = eqM% sin? 6, cos 2B, (2.11)

where I, is the third component of the corresponding quark’s isospin, e, is its electric charge,

and 6, is the weak mixing angle.

For our studies, the relevant set of MSSM parameters, renormalized in the DR’ scheme, read
Y = {yt,g3/ o, mflimfzrxt/ mgl mq}/ (2'12)

with

1/10
2

v, =vsinf, vy =vcosp, my;= H Hmfn , (2.13)
fe{udcs,b} n=1

whereas y; denotes the MSSM top Yukawa coupling, g3 the strong gauge coupling, X; =
Aj — u/ tan B the stop mixing parameter, m; the gluino mass, and m; the average mass of
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all squarks but the stops. Combining the latter squark masses through a geometric mean
is justified since we are only interested in studies where these masses are of comparable
size. A; is the up-type trilinear coupling of the third generation. Note that, due to the SUSY

constraints, Y does not contain a separate parameter for the quartic Higgs coupling.

When mentioning the electroweak scale, we estimate its magnitude by the value of v. It is
used as a representative for SM mass scales such as the top mass 77; = g;/+/2. The SUSY
scale is identified with Mg, which is treated as an input parameter for our calculations. Mg
is also used as a representative for MSSM mass scales such as one of the stop masses m;,,
and we refer to the decoupling limit if Mg > v.

Additionally, we introduce the short hand notations:

K—L x—ﬁ Sy =SINX, Cy = COSX (2.14)
—167_(2/ t—MSI x — s x — . -14
If not stated differently, we follow the SUSY Les Houches Accord (SLHA) standard [78] and

use the subsequent set of SM parameters as input for numerical studies:

_SM(5) 1 _SM(5) _ .

Gom' (Mz) = fmo, @ (Mz) = 01184, Mgz = 911876 GeV,

Gr = 1.1663787 - 107> GeV 2, M, = 510.998902keV, M, = 105.6583715MeV,

M, =1.777GeV, 11,(2GeV) =24MeV, 1i13(2GeV) = 4.75MeV, (2.15)

,(2GeV) = 104MeV,  mM M () =127Gev, w0 (m,) = 418GeV,
M, = 173.34GeV,

where Eczﬁ(S) (Mz) and &EM(S) (Mz) denote the fine-structure and strong coupling in the MS
scheme in the SM with five active quark flavours, and Gr is the Fermi constant. M., M,
M-, and M; denote the pole masses of the electron, muon, and tau lepton as well as top
quark, respectively. The input masses of the up, down, and strange quark are defined in the
MS scheme at the scale 2 GeV. The charm and bottom quark masses are defined in the MS
scheme at their mass scale in the SM with four and five active quark flavours, respectively.
The conversion of the SM input parameters to MSSM DR’ parameters will be discussed in
detail in Subsect. 3.1.3.

The SUSY input parameters are chosen such that the degenerate soft-breaking mass pa-
rameters are all set to Mg. Furthermore, we set y(Mg) = ma(Ms) = Mg, tan B(Ms) = 20,
Ay = X; + p/ tan B, while all other trilinear couplings are set to zero unless otherwise stated.
Ms and X; are left as free parameters. As a notational definition, we refer to the limit
mys = mgz = mg = mg = Ms as the degenerate-mass case.
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In the FO approach, also commonly known as the Feynman-diagrammatic approach, the
prediction of the mass of the CP-even neutral Higgs bosons is based on the calculation of
self-energy and tadpole Feynman diagrams involving contributions from SM particles as
well as their superpartners. Corrections emerging from different sectors, e.g. quantum chro-
modynamics (QCD) or electroweak (EW), can be incorporated order by order in couplings
and, equivalently, additional loops. The Higgs mass matrix M of the CP-even states can thus
be written as

M = Mtree _ (211(;72) 212(;72)> ) (3.1)

Z12(p?) Eaa(p?)

2(p?)

Here, 21-]' are understood as the renormalized self-energy contributions to the Higgs mass
matrix (cf. Ref. [79], for example) and p? is the external momentum. As p? # 0 in general,

we are interested in solving the pole mass equation
0 = det {pzéi]- — M +Re ﬁ(pZ)ij} (3.2)

for p2. Since ¥ itself depends on p?, Eq. (3.2) has to be solved iteratively. In the decoupling
limit and considering only the real part of ﬁ‘.i]-, Eq. (3.2) simplifies to

p? — mi’tree +Zu(p?) =0, (3-3)

where m;"* is given by Eq.(2.2) and is used as an initial value for p?. Solving Eq. (3.3)

iteratively yields an expression for the light CP-even Higgs pole mass
M% — mi,tree _ 211 (m%l,tree) + 2/11 (mi,tree)in (mi,tree) +..., (3‘4)

where the prime indicates the derivative of the self-energy with respect to the momentum
squared. The ellipsis indicates higher-order derivatives and products of self-energies. Usually,
Eq. (3.2) is solved numerically until a fixed point is found with sufficient precision.

Despite the seemingly straightforwardness, the FO approach suffers from unreliable predic-
tions if the splitting between the electroweak and the SUSY scale becomes sizable, leading to
logarithms of the form In(v?/M32) that spoil the convergence of the perturbative expansion.
However, this approach is perfectly suited for SUSY scales which are of the same order as

11
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the electroweak scale and, in addition, FO calculations are an important ingredient in the

calculation of threshold corrections when using an EFT framework (cf. Chap. 4).

In this chapter, which is largely based on Refs. [47,74], we present an implementation of the
three-loop corrections calculated in Refs. [15,16] into the C++ library Himalaya[47]. After
a discussion how some technicalities regarding the results of Refs. [15,16] are handled in
Subsect. 3.1.1, renormalization-scheme changing shifts are derived in Subsect. 3.1.2 that allow
for a conversion to the commonly used DR’ scheme. To provide a consistent analysis of the
three-loop results within the DR’ scheme, which was first done as part of this thesis, we
define the required input parameters in Subsect. 3.1.3. Afterwards, in Sect. 3.2, the numerical
effects including the three-loop corrections are studied by comparing to earlier results and
different codes. Further, deficits of the FO approach are emphasized. One of the central
aspects in Refs. [47,74] is the program Himalaya, which has been developed during this
thesis. This includes the supplementary calculations to the results of Refs. [15,16] presented

in this chapter. The interface to FlexibleSUSY was created in collaboration with A. Voigt.

3.1 HIGGS MASS PREDICTION AT THE THREE-LOOP LEVEL IN THE MSSM

The results for the three-loop O(y}g¢3) corrections, i.e. N°LO, to the Higgs mass in the MSSM
have been obtained in Refs. [15,16] in a Feynman-diagrammatic calculation of the relevant
one- and two-point functions with external Higgs fields in the limit of vanishing external
momenta, i.e. p> = 0. The dependence of these terms on the squark and gluino masses
was approximated through asymptotic expansions, assuming various hierarchies among
the masses of the SUSY particles. The considered approximations are motivated by the
Snowmass Points and Slopes scenarios of Refs. [80,81] and thus split into six cases:

h3) mg~my ~my ~mg,

hs)  mg > my, > my ~mg,

(
(hg) mg>>m; ~m; ~mg,
E (35)

h6) mg > my, > mg > my,,
(héb) mg ~ m;, =~ mg ~ my,,

(ho) mg~mz ~mz > mg.

Note that different expansion depths are obtained for each hierarchy, partly omitting terms
of O(X}). Recently, Ref. [48] provided a calculation of the same three-loop contributions
without an expansion in different mass hierarchies. However, since these formulze are not

publicly available, our work focuses on the results of Refs. [15,16].

The results of Refs. [15, 16], which we refer to as the H3m result in the following, are
implemented in the program H3m. Using H3m requires the user to complement it by Feyn-

Higgs [22,50-53,68,69,82] to include full one-loop and partial two-loop corrections in the
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calculation of the light CP-even Higgs mass. Since FeynHiggs performs its calculations in
the on-shell scheme and H3m uses a modified version of the DR scheme, higher-order effects
of mixed renormalization schemes are implicitly generated during the diagonalization of
the Higgs mass matrix. These terms could potentially lead to large corrections, spoiling the
convergence of the perturbative series. Additionally, due to the restrictive implementation of
the H3m result, it was not considered in state-of-the-art spectrum generators so far. In order
to provide consistency of renormalization schemes, we reimplemented the H3m result into
the library Himalaya and made it accessible with an interface that can be used seamlessly by
spectrum generators. In the following, we describe details regarding the implementation and
the involved renormalization schemes. Afterwards, we study the impact of the three-loop
results using a consistent renormalization scheme and compare to results obtained by

different programs.

In principle one could use the corrections of O(y;g3) to obtain terms of O(y;g3). However, to
provide a consistent result the currently unknown corrections of O(y?y2¢3) would be needed
in addition. Moreover, Ref. [47] showed that the O(y}g3) terms are negligible compared to
the O(y¢g3) corrections. Hence, we do not include terms of O(y}g¢3) in our studies.

3.1.1  Mass hierarchy selection

A particular set of mass parameters typically matches several of the hierarchies mentioned
in Eq. (3.5). Therefore, a criterion to define one of those hierarchies as the most suitable
hierarchy is needed. Ref. [16] suggested a pragmatic definition, namely the comparison
of the various asymptotic expansions to the exact expression at the two-loop level. The
expansion which fits the exact two-loop result best is then selected. Due to instabilities of
this selection, Ref. [47] extended this criterion to also include convergence properties of each
hierarchy in a given parameter point (see also Ref. [83]). Combining both criteria, a smooth
hierarchy selection for a large parameter space can be assured. This selection algorithm is

implemented in the Himalaya library and summarized below.

Following Ref. [16], in a first step the Higgs pole mass M}, is calculated at the two-loop
level including O(y} + y#¢3) corrections by using the result of Ref. [24] in the form of the
associated FORTRAN code provided by the authors. We refer to this quantity as MESZ in what
follows. Subsequently, for all hierarchies i that fit the given mass spectrum, Mj, is calculated
again using the expanded expressions of Ref. [16] up to the two-loop level, i.e. O(y{ + yig3),
resulting in M}, ;. The most suited hierarchy is then defined as the value of i for which the
difference

oL = |MPSZ — M, (3.6)

is minimal. However, we found that this criterion alone causes instabilities in the hierarchy

selection in regions where several hierarchies lead to similar values of 67". To refine the
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selection criterion we also take into account the quality of the convergence in the respective
hierarchies, quantified by

n

seony — ]Z; (Mh,i - M;S]l) )2- (3.7)

While Mj, ; includes all available terms of the expansion in mass ratios (and mass differences),
in M,Sj ) the highest terms of the expansion for the mass ratio (and mass difference) j are
dropped. We then define the best hierarchy to be the one which minimizes the quadratic
mean of Egs. (3.6) and (3.7),

5 =/ (62)2 + (5o, (38)

3.1.2  H3m renormalization scheme and its relation to DR’

When calculating higher-order corrections, it is tempting to utilize the MS scheme since its
behaviour is well understood to all orders in perturbation theory. However, shifting the
dimensionality of vector bosons in supersymmetric theories and not adjusting the degrees
of freedom of their corresponding superpartners will break supersymmetry explicitly.
Therefore, Ref. [84] proposed to use a different regularization scheme called dimensional
reduction. Its mathematically consistent formulation was derived in Ref. [85]. In this scheme,
vector bosons are treated four-dimensionally whereas the extra degrees of freedom, emerging
from the analytic continuation of the space-time dimension, are introduced as so-called
e-scalars. Complemented with modified minimal subtraction, this renormalization scheme is
called DR scheme [86]. Since the e-scalar is unphysical, it is appealing to set its mass, ., to
zero. Refs. [87—90] pointed out that if the mass of the e-scalar is set to zero, inconsistencies
arise once renormalization-group running is considered, because m. will become non-
zero and contributes to the running of other parameters. Additionally, they proposed a
modification of the DR scheme that introduces finite shifts in the masses of scalar sparticles.
These shifts lead to a decoupling of m. from all B-functions. This modified DR scheme,
denoted as DR, is most convenient for higher-order calculations in supersymmetric theories.
Note, however, that it is still unproven whether the DR or the DR’ scheme does preserve
supersymmetry to all orders in perturbation theory. Recently, checks up to three-loop order
were presented in Ref. [91] verifying that there are no ambiguities within the calculations

presented in this thesis.

Following the former definitions, the renormalization scheme used in the H3m calculation
slightly differs from the original DR scheme concerning the treatment of the e-scalars. In
practice, an on-schell renormalization condition for the e-scalars is imposed by setting

me = 0. Hence, we denote the latter renormalization scheme as the H3m scheme.
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In order to seamlessly combine the three-loop result in the H3m scheme with existing
lower-order calculations, it is necessary to convert it to the more commonly used DR’
scheme, where m. completely decouples from the particle spectrum. To do that, we need to
reconstruct the mc-terms in the H3m result. This can be done by noting that, up to two-loop
O(ytg3), the analytic form of the corrections to the Higgs mass are identical in the DR, the
DR/, and the H3m scheme for m. = 0.

Since the DR’ result is independent of 1, to all orders in perturbation theory, we can convert
the known two-loop O(y#¢%) DR expression to the DR scheme by shifting the stop masses
according to Refs. [35,90,92]. Expanding the resulting expression to O(y;g3) generates all
me-dependent terms up to this order in the DR scheme. From there, we can convert the
stop masses and m, to the H3m scheme, using the formulee of Ref. [16]. This generates a
non-vanishing term at O(y#g3), which is non-zero even when the on-shell condition m. = 0
is applied. We computed the conversion terms for both the squared light CP-even Higgs
mass and the Higgs mass matrix. For m. = 0 and the squared Higgs mass, this shift reads

) B0y 8355 2 2, ¥ 2
(AMysn o = —a 3 a5 | 6 (14 1sg) mg +10 (1+1sg) mg 4+ (1+ lsa)ma]
t Tt 12 , i=1 (39)
x [ (A3, + ApXP) 21 mf — 203, X} + 4mZ m? X/ In <Z: >] ,
1=

2

with Is, = In (QZ/ mjzc) Q is the renormalization scale and Ay = my — m%z. For the mass

matrix the shift yields

15

m2
t
(AM11) 5, ow = CH2XF {m?l — Zm%m%2 In <m21> — m?z} , (3.10)

t

m2
t
(AM12)y3, 5 = CP‘Xt{ - mg‘l (AtXt + 3’”%2) + ZAfm%m%ZXt In <m21>

(3.11)
+ Atm?ZXt + mg + 3711%1 m}*z — mg} ,
(AM21)y30pr = (AM12)30 5w (3.12)
_ 2 22 2 4 4 2
(AM22)H3mﬁﬁ’ = C{Alz [mfl (At Xt + 4Atmszt — ﬂ’lh) — mfl <2AtXt + mfz)
) (3.13)
3 2 6 2.2 22 m,
ta
with
8K3yfg§0252 2
C= ﬁ&ﬁ — 6(Isg + 1)mg +10(Isg + 1)z + ) (1 + Iz )m7. o . (3.14)
mflmfz 12 i=1
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The indices ij of M;; imply the corresponding matrix entry (cf. Eq. (3.1)). Adding these terms
to the H3m result provides the three-loop Higgs mass corrections in the DR’ scheme. For the

squared Higgs mass and Higgs mass matrix this transformation reads

2 _ap2 2 .,
Mh‘ﬁ/ - Mh’%m + (AMj)y3n bR (3.15)
and
Mij| o = Mij| + (AMij)y0 or s (3-16)
respectively.

We checked that the resulting DR’ expression is renormalization-scale independent by using

the corresponding stop-mass S-functions in the DR’ scheme [92].

3.1.3 Consistent determination of the MSSM DR’ parameters

In our approach, we link the Himalaya library to FlexibleSUSY, which provides us with the
required input parameters. To produce a consistent result, the values of the input parameters
have to be provided at the correct perturbative order to be compatible with the genuine loop
corrections. As an additional free parameter, the scale at which the parameters of the SM
are converted to the MSSM has to be fixed. In order to do this, FlexibleSUSY determines the
. =/ . . .
running DR’ gauge and Yukawa couplings as well as the running vacuum expectation value
of the MSSM along the lines of Ref. [79] by setting the conversion scale to the Z-boson pole

mass My.

The MSSM DR’ gauge couplings g1, g2, and g3 are given in terms of the DR’ parameters
aMSSM( M) and aMSSM(My) in the MSSM as:

47mMSSM Mz
() = |/ 2T o ) (317)
B 47‘[&2/1[1?5M(Mz)
gZ(MZ) - Sil’l@w(Mz) 7 (318)
§3(Mz) = \/4maMSSM(Mz) . (3.19)

The couplings aM5M(Mz) and aM5M(My) are calculated from the corresponding input

parameters as

_SM(5)
Rem (M

nem (Mz) = 3700 : (AZ/I>Z)' (520
_SM(5) M

aMIM(py) = B (M) (3.21)

1— Ang(Mz)’
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where the threshold corrections Aa; (M) have the form given in Eq. (B.1) and (B.2). The DR’
weak mixing angle in the MSSM, 6, is determined at the scale Mz from the Fermi constant
Gr and the Z pole mass via the relation

7T MM

. 2 2
sin“ 0, cos” 6, = , 22
¢ T V2MAGE(1 -4, (5-22)

where
ReZyr(0) ReXzr(M2) 2)
O =p ’ — 4 + oy + 6,7, (3-23)
M2, M2 !
.1 s o |Zzr(MZ) Zwr(Miy) A(2)
p=1— A Ap = Re e A, + AP\ (3-24)

Here, Ty r(p?) denotes the transverse part of the DR -renormalized one-loop self-energy
of the vector boson V in the MSSM. The vertex and box contributions éyp, the two-loop
contributions 5§2) as well as the corrections up to two-loop (Ap(?)) to the p parameter are

taken from Ref. [79].

The DR’ vacuum expectation values of the up- and down-type Higgs doublets are calculated

as
pu(My) = 2my(Mz) sin B(Myz) ’ (3.25)
\/3/58%(1\42) +83(Mz)
0a(My) = 2mz(Mz) cos B(Mz) (3.26)

i \/3/58%(1\42) +g5(Mz)

where tan f(My) is an input parameter and mz (M) is the Z boson DR’ mass in the MSSM,
which is calculated from the Z pole mass at the one-loop level as

mZZ(MZ) = M% + Re Zle(M%) . (3-27)

In order to calculate the Higgs pole mass in the DR’ scheme at the three-loop level O (y? 93),
the DR’ top Yukawa coupling must be extracted from the input parameter M; at the two-loop
level at O(g3). To achieve that, we make use of the known two-loop QCD corrections to the
top Yukawa coupling of Refs. [93—96], as described in the following: We calculate the DR’
Yukawa coupling y; at the scale M from the DR’ top mass n1; and the DR up-type VEV v,
as

mt(Mz)

yi(Mz) = \[zvu(Mz) ,

(3-28)
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where we relate the DR’ top mass to the top pole mass M; at the scale Mz as

mi(Mz) = M; + Re X7 (M?, Mz) + M; [Re YL(M?, Mz) + Re ZR(M?, Mz)

(1),QCD (2),QCD (3-29)
+Amy (Mz) + Am;™ (Mz)} ,

where 27M%(p2, Q) denote the scalar (superscript S), and the left- and right-handed
parts (L,R) of the DR renormalized one-loop top self-energy without QCD contribu-

tions. Amgl)’QCD and Amgz)’QCD are the full one- and two-loop QCD corrections taken from

Refs. [93,94] (cf. Eq. (B.3) and (B.4)).

3.2 NUMERICAL RESULTS INCLUDING N3LO QCD CORRECTIONS

FlexibleSUSY calculates the two CP-even Higgs pole masses M) and My by solving the
pole mass equation, introduced in Eq.(3.2), numerically at the momenta p> = M? and
p? = M?%, respectively. At the one-loop level, FlexibleSUSY contains the full one-loop MSSM
Higgs self energy and tadpole contributions, including electroweak corrections and the
momentum dependence. At the two-loop level the known corrections of O(g3(y{ + y3) +
(y? 4+ v2)® + ¥) [24—27,38] are implemented for p> = 0. For the three-loop level the terms of
O(ytg3) from the Himalaya package, as described in Sect. 3.1, are incorporated. They are
also only known for p? = 0. All contributions are defined in the DR’ scheme by default.
The renormalization scale is chosen to be Q = Mg = NTAN and the ﬁ/parameters that
enter Eq. (3.2) are evolved from My to that scale by using the three-loop renormalization-
group equations of the MSSM [97, 98]. To account for the momentum dependence while
diagonalizing M, the eigenvalues for M; and My are inserted iteratively into Eq. (3.2) until
a fixed point for the Higgs masses is reached with sufficient precision. Note that we are only

interested in Mj,.

3.2.1  Size of three-loop contributions from different sources

The three sources affecting the Higgs pole mass at O(yfg?) in the DR calculation within
FlexibleSUSY+Himalaya (FS+H) are

¢ the one-loop threshold correction of O(g3) to the strong coupling constant,
e the two-loop threshold correction of O(g3) to the top Yukawa coupling,
e the genuine three-loop contribution to the Higgs mass matrix.

In Fig. 1, the impact of these three sources on the Higgs pole mass is shown relative to
the two-loop calculation without these three corrections. The left panel shows the impact
as a function of the SUSY scale Mg, and the right panel as a function of the relative stop

mixing parameter x; for the scenario defined in Chap. 2. We use the two-loop ingredients
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as reference point, i.e. g3 at tree level (g3°), y; at one loop (y;), and the genuine two loop
corrections to My, (M31) as described above, and replace each of them separately by the
ingredients required at three-loop accuracy.

tan 5 =20, X; =0 tan § = 20, Mg = 2 TeV

— . = shift from y}r — y2~

——- shift from g§* — gil

> 10 ..... shift from MPY — MPE 7
3 sum
3. 5t
5 [S]
o 2 — . = shift from y}r — y2~
=1 == 0
= = ——- shift from a?* — ol
2 S S o )
< 0 = = _oH---- shift from MPY — MPL
- -~ - ) 3
[ RN I sum
< = < 4}
= = =P T = <
_5F ~ < L _- SeSi_L-
~ Moo=
‘o —6
.
—10% L ) -8 i i i i i
102 103 10* -3 -2 -1 0 1 2 3
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Figure 1: Impact of different three-loop contributions on the Higgs pole mass My, In the left panel we show
the shift in the Higgs pole mass with respect to M- (yi, ¢9%) as a function of the SUSY scale. In the
right panel we vary the relative stop mixing parameter x;.

First, we observe that the inclusion of the one-loop threshold correction to g3, Eq. (B.2),
(blue dashed line) leads to a significant positive shift of the Higgs pole mass of around
+2.5GeV for Ms ~ 1TeV. For larger SUSY scales the shift increases logarithmically as is to
be expected from the logarithmic terms on the r.h.s. of Eq. (B.2). The inclusion of the full
two-loop QCD corrections to y; (green dash-dotted line) leads to a shift of similar magnitude,
but in the opposite direction. Thus, there is a significant cancellation between the three-loop
contributions from the one-loop threshold correction to gz and the two-loop QCD corrections
to y;. The genuine three-loop contribution to the Higgs pole mass (black dotted line) is again
positive and around 42 GeV for Mg ~ 1TeV. This is consistent with the findings of Ref. [16].
As a result, the sum of these three three-loop effects (red solid line) leads to a net positive

shift of the Higgs mass relative to the two-loop result without all these corrections.

The size of the individual three-loop contributions depends on the relative stop mixing
parameter x;, as can be seen from the right panel of Fig. 1. Between minimal (x; = 0) and
maximal stop mixing (x; ~ ++/6) the size of the individual three-loop contributions changes
by 1-2 GeV. For maximal (minimal) mixing, their impact is maximal (minimal). The direction

of the shift is independent of x;.

Note that the nominal two-loop result of the original Flexib1eSUSY calculation includes by
default the one-loop threshold correction to gz and the SM QCD two-loop contributions to
the top Yukawa coupling [58,71]. This means that the two-loop Higgs mass as evaluated by

the original FlexibleSUSY already incorporates partial three-loop contributions. Hence, the

19



20

FIXED-ORDER APPROACH

two-loop result of the original FlexibleSUSY does not correspond to the zero-line in Fig. 1,
but is rather close to the blue dashed line. This implies that, compared to the two-loop result
of the original FlexibleSUSY, the effect of the remaining O(y{g3) contributions in the Higgs
mass prediction is negative.

3.2.2  Scale dependence of the Higgs pole mass

To estimate the size of the missing higher-order contributions, Fig. 2 shows the renormaliza-
tion scale dependence of the one-, two-, and three-loop Higgs pole masses for the scenario

defined in Chap.2 at x; = 0 as a function of Ms. The one- and two-loop calculations

tan 5 =20, X; =0 tan 5 =20, X; =0
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Figure 2: Variation of the Higgs pole mass when the renormalization scale is varied by a factor two around the
scale at which M, is calculated.

correspond to the original FlexibleSUSY calculation. In the one-loop calculation the thresh-
old corrections to g3 and y; are set to zero, and in the two-loop calculation the one-loop
threshold corrections to g3 and the two-loop QCD corrections to y; are taken into account.
The three-loop result of FlexibleSUSY+Himalaya includes all three-loop contributions at
O(ytg3) as discussed in the previous subsection, i.e. the one-loop threshold correction to g3,
the full two-loop QCD corrections to y;, and the genuine three-loop correction to the Higgs
pole mass from Himalaya. The bands show the corresponding variation of the Higgs pole
mass when the renormalization scale is varied using the three-loop renormalization-group
equations [97-103] for all parameters except for the vacuum expectation values, where
the B-functions are known only up to the two-loop level [104,105]. In FlexibleSUSY and
FlexibleSUSY+Himalaya, the renormalizaion scale is varied in the full MSSM within the in-
terval [Ms/2,2Ms]. The plot shows that the successive inclusion of higher-order corrections
reduces the scale dependence, as expected. In particular, the three-loop corrections to the

Higgs mass reduce the scale dependence by around a factor two, compared to the two-loop
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calculation. Note that the variation of the renormalization scale only serves as an indicator
of the theoretical uncertainty due to missing higher-order effects.

3.2.3 Comparison to other results

In this section, we compare the results obtained with FlexibleSUSY+Himalaya to different
MSSM spectrum generators employing the fixed-order approach. We choose the same
scenario as in Subsect. 3.2.1, where the lightest CP-even Higgs pole mass is calculated at
the scale Q = Mg =, /my 3, The results are shown in Figs. 3-4 and compared against
FlexibleSUSY and FeynHiggs. The blue dashed line corresponds to FlexibleSUsY 2.3.0 at the
two-loop level, which coincides with SOFTSUSY 3.5.1[54,106] by construction. The green dash-
dotted line shows the Higgs mass prediction using FeynHiggs 2.14.3 (FH), which employs
the on-shell scheme, when disabling the option of large logarithms resummation [22, 5053,
68]." FeynHiggs 2.14.3 includes the two-loop contributions of O(g3(yf + v}) + (v? +y2)3).

We consider Fig. 3 first. The left panel shows the Higgs mass prediction as a function of
Ms according to the two codes discussed above, together with the FlexibleSUSY+Himalaya
result (solid red). The stop mixing parameter X; is set to zero. The right panel shows the
difference of these curves to the latter.
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Figure 3: Comparison of Higgs mass predictions between two- and three-loop fixed-order programs as a
function of the SUSY scale for the absolute Higgs pole mass (left) and the difference w.r.t. the three-loop
calculation (right).

The effect of the three-loop O(y}¢3) terms on the fixed-order result is negative compared to

the original Flexib1eSUSY calculation, as discussed in Subsect. 3.2.1, and amounts to a few

We use the SLHA input interface of FeynHiggs, which performs a conversion of the DR’ input parameters to the
on-shell scheme. Resummation is disabled, as it would lead to an inconsistent result in combination with the
DR’ to on-shell conversion of FeynHiggs [69]. We call FeynHiggs with the flags 42420110.
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hundred MeV up to regions of Mg = 1TeV. In addition, the Ms dependence and predicted
Higgs mass are comparable among all three codes up to Ms = 1TeV. At scales above 1TeV,
the result obtained with FeynHiggs starts to deviate from the DR’ calculations. At those SUSY
scales, the fixed-order approach suffers from large logarithmic contributions due to sizable
mass splittings, which spoil the perturbative convergence unless higher logarithmic orders
are included. Note that the behavior of the DR results in the few-TeV region is accidental
and based on implicit higher-order logarithms, as shown in Ref. [71], and one would expect
a similar trend as for the FeynHiggs result in principle.

Fig. 4 shows the three-loop effects as a function of X; with Mg = 2TeV. The figure shows
that, for | X;| < 3Ms, the qualitative features of the discussion above are mostly independent
of the mixing parameter, whereupon the quantitative differences between the fixed-order
results are typically larger for non-zero stop mixing. Additionally, there is an interesting
feature of the DR’ codes, which suffer from tachyonic states introduced by positive values
of X; and large scale splittings between v and Ms. However, this can be circumvented by
inserting the absolute values of the tachyonic running masses into the loop corrections
within FlexibleSUSY. The reason for this behaviour is discussed in Subsect. 3.2.4 in more
detail.
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Figure 4: Comparison of Higgs mass predictions between two- and three-loop fixed-order programs as a function
of the relative stop mixing parameter x; for the absolute Higgs pole mass (left) and the difference w.r.t.
the three-loop calculation (right).

As the three-loop corrections were originally implemented in the H3m code, we now turn to
a comparison of our FlexibleSUSY+Himalaya implementation to H3m. We checked that our
implementation of the O(y}) and O(yg3) terms in Himalaya leads to the same numerical
results as in H3m if the same set of DR’ parameters is used as input. Since the O(y*g3) terms
of Himalaya are derived from their implementation in H3m, they also result in the same
numerical value if the same set of input parameters is given and the same mass hierarchy is

selected. But since Himalaya has a slightly more sophisticated way of choosing this hierarchy
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(see Subsect. 3.1.1), its numerical O(y#g3) contribution does occasionally differ slightly from
the one of H3m. Note that recently a different calculation of the three-loop O(y{¢3) corrections
was presented in Ref. [48]. Since their result is not publicly available, we cannot compare to
those. However, Ref. [48] claims that combining their new calculation with FeynHiggs at the
two-loop level leads to similar numerical values of the light CP-even Higgs mass as obtained
by H3m.

In Fig.5 we compare our results to the three-loop calculation presented in Ref. [107],
assuming the input parameters for the heavy sfermions scenario defined in detail in the
example directory of Ref. [108]. In the left panel the blue circles show the H3m result, including
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Figure 5: Comparison of the lightest Higgs pole mass calculated at the one-, two-, and three-loop level with
FlexibleSUSY and FlexibleSUSY+Himalaya as a function of the SUSY scale for the heavy sfermions
scenario of Ref. [107]. These plots are taken from Ref. [47].

only the terms of O (y#(1 + g3 + ¢%)), where the MSSM DR’ top mass is calculated using the
running and decoupling procedure described in Ref. [107]. The black crosses show the same
result, except that the DR top mass at the SUSY scale is taken from the spectrum generator
FlexibleSUSY+Himalaya. We can reproduce the latter result with FlexibleSUSY+Himalaya if
we take the same terms into account, i.e. O(y#(1+ g3+ &3)), see the dotted red line in Fig. 5.
The small differences between the two results are due to the fact that H3m works with on-shell
electroweak parameters, while FlexibleSUSY+Himalaya uses DR’ parameters. The inclusion
of all one-loop contributions to M;, and the momentum iteration reduces the Higgs mass
by 4-6 GeV, as shown by the red dashed line. Including all two- and three-loop corrections
which are available in FlexibleSUSY+Himalaya, ie. O(g3(yi + v}) + (v7 +v2)> + 8 +vig3),
further reduces the Higgs mass by up to 2GeV, as shown by the red solid line. The right
panel of Fig. 5 shows again our one-, two-, and three-loop predictions obtained with Flex-
ibleSUSY and FlexibleSUSY+Himalaya. Similar to Fig.3, we observe that the higher-order
terms lead to a lower predicted Higgs mass.
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As a final study, we compare the results obtained with FlexibleSUSY+Himalaya to the ones

presented in Figure 1 of Ref. [109]. Our results are shown in Fig. 6. As not all parameters
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Figure 6: Comparison of the lightest Higgs pole mass calculated at the one-, two-, and three-loop level with
FlexibleSUSY and FlexibleSUSY+Himalaya as a function of the lightest stop pole mass for the
benchmark point of Figure 1 of Ref. [109]. This plot is taken from Ref. [47].

in Ref. [109] are fully defined, we need to specify a value for m 4 and the sfermion mixing
parameters other than X;. Hence, we set ma(Ms) = Ms, with Q = Ms =, /m; g, x1(Ms) =
0, u(Ms) = 200 GeV, and all remaining trilinear couplings are selected to be zero. The soft-
breaking mass parameters of the left- and right-handed stops are set equal at the SUSY scale,
i.e. mo3(Ms) = my3(Ms), whereas all other soft-breaking sfermion mass parameters are
set to mf(Mg) = mqg u3(Ms) 4+ 1TeV. The gaugino mass parameters are set to M;(Ms) =
My(Ms) = mg(Ms) = 1.5TeV. Note that the bands around the calculated Higgs mass
values in Fig. 6 show the parametric uncertainty from M; = (173.34 £ 0.98) GeV [110] and
&EM(5) (Mz) = 0.1184 £ 0.0007 [111]. Again, we observe a reduction of M}, towards higher
loop order, thus leading to the opposite conclusion of a heavy SUSY spectrum in this scenario,

given the measured value for the Higgs mass as in Eq. (2.1) (cf. Figure 1 of Ref. [109]).

3.2.4 Tachyonic Higgs bosons

As observed in the previous subsection, in the fixed-order calculation the DR’ masses of
the heavy CP-even, the CP-odd, and the charged Higgs bosons can become tachyonic at the
scale Q = My for x; 2 0. The origin of this behavior is the By parameter, which becomes
negative when performing renormalization-group running to Q = My, as shown in the left
panel of Fig.7. In our scenario, the value of By is fixed at the SUSY scale by the DR’ CP-odd
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Figure 7: Left panel: Renormalization-group running of Bu(Q) for different values of X;. Right panel: Three-
loop fixed-order Higgs pole mass (blue lines) and Bu(Q = Myz) as a function of x; (green dash-dotted
line). These plots are taken from Ref. [74].

Higgs mass m4(Ms) to

1 .
Bu(Ms) = 5 sin[28(Ms)] m%(Ms) ~ 0.05M3%, (3.30)
where we have set tan f(Ms) = 20 and m? (Ms) = M3 in the last step. For such a large

value of tan 3, the one-loop B-function of the By parameter is approximately given by
By ~ 3y (Bu +2puAs) ~ 3xy; (0.05+2x;) M3 (3.31)

From Eq. (3.31) it follows that Bg, is negative for x; < —0.025. Hence, By increases during
the renormalization-group running from Mg down to Mz, which is illustrated by the green
dashed line in the left panel of Fig.7. However, if x; > —0.025 Bp, is positive so that Bu
decreases when running to Mz and changes sign at some low scale Qt,ch, see green dotted
line. The value of the scale Qy,q can be larger than My if x; and/or Mg are large enough,
for example for x; > 0 and Mg > 3TeV. When this happens, the DR’ masses of the heavy
CP-even, the CP-odd, and the charged Higgs bosons are tachyonic at Q = Mz, because

2Bu(Mz)

m <0. (3.32)

my (Mz) ~ miy-(Mz) ~ m (Mz) =
In the right panel of Fig.7 the value of Byu(Mz) is shown as a function of x; as green
dash-dotted line for the scenario with tanf = 20 and Mg = 3TeV. The value for Mg is
increased compared to our other studies for better illustration. In accordance with the
estimate above, By(Myz) is in fact negative for positive values of x;, and the fixed-order
Higgs mass calculation (see blue dashed/dotted lines) involves tachyonic DR masses at the

electroweak scale.
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In some spectrum generators, the occurrence of heavy Higgs tachyons is bypassed by using
the pole masses of the heavy Higgs boson masses in the loop calculations at the low scale
instead of the DR’ masses. In Flexiblesusy, on the other hand, an error is flagged by default
if DR tachyons appear at any scale. Optionally, FlexibleSUSY uses the absolute values of the
tachyonic masses in the loop integrals, which is done for all fixed-order calculations in this
thesis when x; > 0.

In general, the occurrence of these tachyonic states due to higher-order effects appears to
make the approach proposed in Ref. [79] of matching SM and MSSM parameters at the scale
M7z questionable. For SUSY scales above the TeV scale it might thus be advisable to perform
the matching at a larger scale to avoid tachyonic states. To our knowledge, this program
has not been pursued in all generality up to now (see Ref. [107], however). For very large
SUSY scales, the fixed-order approach is bound to fail anyway due to large logarithmic

contributions as encountered in Subsect. 3.2.3.

3.3 CONCLUSIONS

In this chapter we have presented a consistent inclusion of the O(y{g3) corrections to the
light CP-even Higgs mass in the MSSM using the DR scheme. We reimplemented these
contributions including renormalization-scheme changing shifts in the Himalaya library to
make them accessible to state-of-the-art spectrum generators. Including all relevant three-
loop contributions of O(y}g3), the mass of the light CP-even Higgs gets negatively shifted
by approximately 1 GeV compared to a two-loop DR’ calculation. The genuine three-loop
corrections lead to an overall positive shift, whereas the two-loop threshold correction in
the top Yukawa coupling leads to a reduction of the Higgs mass prediction by about 2 GeV,
depending on the value of the stop masses and stop mixing. To indicate the remaining
theory uncertainty due to higher-order effects, we have varied the renormalization scale by
a factor of two. The results show that the inclusion of the three-loop contributions reduces
the scale uncertainty of the Higgs mass by around a factor of two. Thus, the inclusion of
the three-loop terms implemented in the Himalaya library leads to an overall improvement

compared to a two-loop prediction.

For SUSY masses above the TeV scale the fixed-order approach suffers from large logarithmic
contributions. Furthermore, such sizable scale splittings lead to running tachyonic masses
in the Higgs sector of the MSSM for positive values of X;, when following the prescription
of [79]. To obtain a prediction of the light CP-even Higgs mass, which is comparable to the
measurement of 125 GeV [2,3,17,18], SUSY spectra in the TeV range are required, however.
This observation is in accordance with the literature [60, 62,64, 68—70]. Therefore, we will
focus on different approaches in the next chapters, which directly address the issues of
the fixed-order approach for large scale splittings between v and Ms. Additionally, we
will apply proper uncertainty estimates to quantitatively compare the validity in different
parameter regions of these methods.
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Besides the FO approach, one can also employ EFT methods to calculate the SM-like Higgs
boson mass in the MSSM. One of their benefits is that these techniques allow the resummation
of large logarithmic contributions. These logarithms are only taken into account up to a
specific order when evaluating the Higgs mass in the FO approach. However, without
including higher-dimensional operators in the effective Lagrangian, contributions that are
suppressed by the heavy scale, i.e. terms of O(v?/M3), are not captured. The basic idea is
thus to introduce the SM as the low-energy EFT of the MSSM. Therefore, the SUSY particles
are integrated out from the full theory at specific mass scales. In the simplest case, which
we are interested in, all SUSY particles are chosen to have the mass Mg = /T, 11T, - The SM
Higgs self-coupling A is determined at Mg by applying relations that translate the SM to the
MSSM. That is

3= (8> +8&”)

1 Cog + AA, (4.1)

where A\ summarizes generic higher-order corrections to A which are usually denoted
as threshold corrections. The logarithms occurring in A are resummed by evolving the
Higgs self-coupling between the low- and high-energy scale, using renormalization-group
equations. As several SM parameters are involved in this running, the corresponding system
of coupled differential equations is usually solved numerically with boundary values at the
scales M; and M. Afterwards, the mass of the SM Higgs can be calculated as

M} = Ao*. (4.2)

The aforementioned approach has already been studied up to the two-loop level in Refs. [60,
61,63-66]. The first three-loop study has been provided in Ref. [62], which also includes
the calculation of the three-loop threshold correction to the Higgs self-coupling including
O(ytg3), as part of this thesis.

We start this chapter, which is largely based on Ref. [62], by introducing the deficits of the
FO approach concerning large mass splittings and the benefits of the EFT approach in such
scenarios more formally in Sect. 4.1. Afterwards, in Sect. 4.2, we derive a third approach,
which can be interpreted as the perturbative version of the EFT approach, and summarize the
ingredients required for N°LL resummation. In Sect. 4.3, we derive the threshold corrections
to the Higgs self-coupling at the three-loop level employing the results of Refs. [15, 16].
Finally, numerical studies of the EFT approach including N°LL resummation are presented
and compared to FO calculations in Sect. 4.4. D. Ochoa provided the building blocks of the
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calculation presented in this chapter, which were revised in the course of this thesis. As
a central result of Ref. [62], the latter ingredients were combined with the H3m result and
implemented into Himalaya in order to perform the studies presented in Ref. [62] as part
of this thesis. The numerical studies were performed together with R. V. Harlander and A.

Voigt.

4.1 RENORMALIZATION-GROUP IMPROVEMENT

Before we turn to an improved treatment of large logarithms in Higgs mass calculations
in the MSSM, we describe the explicit problem of the fixed-order approach concerning
large scale splittings, which was already illustrated in Subsect. 3.2.3, more formally. The
calculational formalism and notational details are introduced, in addition. Note that we only

focus on contributions with powers of y; and gs.

In the Standard Model, the pole mass of the Higgs boson can be expressed as a series
expansion in terms of the SM couplings and logarithms. The dominant terms in the expansion
are those that involve the strong and the top Yukawa coupling. In the following, we consider
only corrections to the tree-level Higgs mass of the form O(g;g3") with n > 0, in which
case the pole mass of the Higgs boson can be expressed in terms of MS parameters as

oo n+l1
=0%(Qr) |A(Qr) +x51(Q1) Y ZK" 23" (Qr) CsM )l-p , (4-3)
n=0p=0
where
) 2 5252
ha=In<t, =82, (4-4)

with Q; being the renormalization scale. The cé’;f ) are pure numbers. Up to three-loop order

(n = 2), the non-logarithmic coefficients read [43, 112, 113]

0,0 1,0
CgM) _CéM) =0,
2,0 1888 7424 1024 1 512 1 1024_. /1 (4.5)
B = I e e - R () 28 (5) - e ()
where

52:%—1_64493..., 73 = 1.20206.. .,

Lis

1 (4.6)
> —=0.582241..., Li (2> = 0.517479. .. .

N[ =



4.1 RENORMALIZATION-GROUP IMPROVEMENT

The logarithmic coefficients (p # 0) can be obtained from the renormalization-group
invariance of M? and the RGEs of the parameters,

Q-5%(Q) = Bx(X(Q)), (4.7)

with ¥; € X and Q being an arbitrary scale. The terms in the SM B-functions, which are

relevant for our discussion, read [43]

~7xk33 — 26x°33 + O(x°),

=
o
w

Il

4166
Bg = —Gi [8xg§ + 108Kk2g4 — <64oz;3 — 3> g8+ O(x )} (4.8)

33
ﬁ;—\ = —th |:12 + 64Kg_3 =+ 8 (3 — 16€3> Kzg_g — 166163K3gg + O(K4):| .
In the MSSM one can write an analogous expression for the light CP-even Higgs boson mass

in terms of the MSSM parameters Y. Neglecting sub-leading terms of O(v?/M3), one obtains

an expansion in the decoupling limit, which reads

oo n+l
Mj; = M5 cos? 2B + 10 (Qp)y; (Qr 5?3 2 2 K" g3 (Qs CMSSM( Q)1 ut’ (4.9)
n=0 p=0
with
2 2,12
Lyt = lnm*%, my = ytz - (4.10)

(n,p)

The coefficients cy,isy, have been calculated analytically through n = 1 and can be extracted
from Refs. [24,35-37]. The result for n = 2 is contained in the H3m result by Ref. [15, 16],
which was calculated neglecting contributions of O(v?*/M3), in terms of mass hierarchies.
The coefficients cgégl)\d contain logarithmic contributions of the form I;s = In(m;/Ms), which
spoil the convergence properties of Eq. (4.9) if Mg > m; regardless of the choice of Q;. These
type of logarithms are called large logarithms when a sizable scale splitting between the SM
and its superpartners is apparent. The impact of these logarithms on M}, is shown in the
previous chapter explicitly, for example. Note that one usually evolves the running MSSM
parameters perturbatively in addition, see, e.g., Ref. [79]. However, the further usage of RGEs
does not change the discussion about the problems of a fixed-order calculation for large

scale splittings introduced above.

In a fixed-order calculation, the perturbative expansion is truncated at finite order in «.
Keeping terms through order kN, we denote this result as

M%,FO,N(Qt) . (4.11)
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Eq. (4.11) with N = 3 is essential for the extraction of the three-loop correction of A as shown
in Sect. 4.3.

In addition to the fixed-order approach there exists a different technique called EFT ap-
proach [63]. The idea of the EFT calculation consists of two steps. First, heavy (i.e. SUSY)
particles are integrated out and are thus decoupled from the SM. As a result, one obtains
relations between the parameters of the effective theory (the SM) and the full theory (the
MSSM) of the form

%(Q) = fi(Y(Q), Q). (4.12)

In particular, one obtains a relation between A and the MSSM parameters, which means that
the Higgs mass in the SM, given by Eq. (4.3), is fixed in terms of the parameters Y. The f;
in Eq. (4.12) are known as perturbative expansions, neglecting terms of O(v?/M3%). They
depend explicitly on the renormalization scale Qg in the form of In(Qgs/Ms). Therefore, if
Eq. (4.12) is employed at the scale Qs ~ Mg, no large logarithms appear in the matching.
For our purpose, the relevant threshold corrections of Eq. (4.12) take the form

- M2
A= U—ZZ cos? 2B + Kyfsfg(A)\)y? + szfggs‘é(A}\)y;;gg + K3yfg§s‘é(A}\)y;;g§ +0(x4),

(4.13)
gt = yisp (1 + kg3 (DY) g2 + K785 (Ayt)gs + O(K4>) ,

o=v+0O(x),

where the perturbative coefficients (Ay;) can be found in Refs. [62, 64,93, 94]. Explicit
expressions for these threshold corrections are given in Subsect. 4.3.2 for the degenerate-
mass case. Their dependence on the renormalization scale Q, indicated in Eq. (4.12), is

suppressed here.

Secondly, we apply RGEs to resum logarithmic contributions. Therefore, it is convenient
to introduce two scales as boundary conditions, Qs and Q;, which are chosen such that
large logarithms do not occur. Starting with numerical values of Y(Qs ~ M) obtained by a
spectrum generator, Eq. (4.12) is used to provide numerical values for the MS SM parameters
%i(Qg). Afterwards, one solves the SM MS RGEs of Eq. (4.7) numerically to evolve the %;(Qs)
down to Q¢ ~ M;. In solving the RGEs numerically, one effectively resums large logarithms
of the form /;s. This is in contrast to the fixed-order calculation, where these large logarithms
appear explicitly in M2 up to a fixed order. The %;(Q;) are then inserted into Eq.(4.3) in
order to calculate M7 up to terms of O(v?/M3). We denote this result as

MIZZ,EFT(Qf/ Qs)- (4.14)

The only fixed-order logarithms involved in this result are of the form In(Qgs/Ms) from
Eq. (4.12), and In(Q; /) from Eq.(4.3). They can be made small by choosing Qs ~ Mg
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and Q; ~ M;, respectively. Due to the improvement regarding the used RGEs, we denote
this procedure as renormalization-group improvement. The renormalization-group improved
Higgs mass calculation produces reliable results for sizable scale splittings, where terms
of O(v*/M3) can be neglected. However, for scenarios in which M is of the same order
as v, the fixed-order approach, which usually includes these contributions of O(v?/M3), is
preferable.

4.2 RE-EXPANDING THE EFT CALCULATION AND INGREDIENTS FOR N3LL ACCURACY

The perturbative version of the EFT approach described in Sect. 4.1 would be to start with
Eq. (4.3) and first set the scale at which the matching to the MSSM is performed to Qg ~ Ms.
It would be more convenient, however, to perform RGE running within the SM to Qs but
for our calculations this is not required. By setting the renormalization scale to Qg, large

logarithms of the form In(Q%/1i;?) are generated:

o n+l 2\ P
M} = 22(Qs) |1(Qs) +x7H(Q5) 1 1 K& (Qs)elid) In (ﬁi) ] 415)
n=0 p=0 t

Subsequently, one expresses the %;(Qs) by the Y(Qg) through Eq. (4.12). This last step only
introduces small logarithms of the form In(Qgs/Ms). Re-expanding in x and keeping terms

through order «N this result is denoted as

M%,EFT,N(QS) . (4.16)

Obviously, the following formal relation applies:

Mizz,EFT(QSr QS) = M%,EFT,N(QS) + O(KNH) (4.17)

if the same order of the threshold corrections, the same values for Y(Qg), and the same

SM expression for M? are used in deriving the results on both sides of this equation. Note,

however, that M? ... \; does not profit from renormalization-group improvement. We also
have
2 2
Mh,FO,N(QS) = Mh,EFT,N(QS) ’ (4.18)

with the fixed-order result of Eq. (4.11), when expanding in x to O (k") and setting Q; = Qs.
This relation is used in the next section to extract the three-loop threshold correction for the
quartic Higgs coupling A(Qs).

In this chapter we aim for a calculation of the light CP-even Higgs pole mass of the
MSSM in the decoupling limit including the fixed-order through O(y{g¢3) (N°LO), as well as
resummation in gfg3" through fourth logarithmic order (N°LL), while neglecting all terms

of O(v*/M3). This calculation requires to include
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the four-loop B-function for A to order x*g
o the three-loop B-function for g to order K>3,

e the two-loop B-function for g3 to order kg3,

o the three-loop threshold correction for A to order x°g}g3,

e the two-loop threshold correction for g to order ¥*§:g3,

e the one-loop threshold correction for g3 to order xg3,

4

¢ the three-loop SM contributions to the Higgs mass, Eq. (4.3), to order x°§}%3 .

Note that our identification of the logarithmic order refers to the required order of the -

function of the SM-Higgs self-coupling A. Specifically, our N"LL terms involve the B-function
to O(g/83")-
Until recently, all of the necessary expressions were known, except for the three-loop

threshold correction for A to O(g{g3). The latter was calculated in Ref. [62] as a part of this
thesis. In the next section, we show details of this derivation utilizing the H3m result.

43 EXTRACTION OF THE HIGGS SELF-COUPLING AT O(yig3)

This section describes how we use the formalism introduced in Sect. 4.1 and 4.2 to calculate
the three-loop contributions to A at O(y{g3).

4.3.1  Extraction procedure

Using Egs. (4.3), (4-5), (4-8), (4.13), and setting Q; = Qgs, the three-loop result for M%,EFT,B(QS)
including terms up to O(y#g3) can be written in the following form:

M%,EFT,?: (QS ) = M%,EFT,Z (QS )
+ P0ylgdsh {368 13+ [80 +96(Ag3) 2 +192(Ay:) gé} 12,

1028
— 6423+ —— +32(Ags) g +256(Ayi) 2 (4.19)

—36(Ayi)% — 24(Ay)g It

+32(Ay1) g — 42(Ay1)% — 12(Ay1) gt + (AN s + c20) }

where Ig; = ln(Qg/ m?) and, as before, the Qs dependence of y:, g3, Ay:, Ags, and AA
is suppressed. Until recently, the only unknown term on the rh.s. of Eq.(4.19) was the

three-loop threshold correction for the quartic Higgs coupling (AA) which we calculate

yigs
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in the following. Assuming that the three-loop fixed-order result Ml%,Fos(QS) is known, we
can insert (4.19) into Eq. (4.18) and solve for the unknown threshold correction:

Ml%,FO,?)(QS) - Mﬁ,EFT,Ci(QS) = KSU2V§X§S%(A/\)%§§ . (4.20)

(A/\)y;lgé =0

Note that all large logarithms Is; cancel on the lLh.s. of Eq.(4.20). Thus, we may write
Eq. (4.20) as

K302]/?8§5?3(A/\>y;1g§ = Ml%,FO,B(QS) - Mﬁ,EFT,2<QS) - AM%,3(QS> ’ (4.21)

where

AM; 5(Qs) = 0%y gss} [32(Ayt)g§ —42(Ayr)5 —12(Ayn) g + 20 (4.22)

The threshold correction (AA).4 obtained in this way is defined in the MS scheme and

expressed in terms of the MSSM DR’ parameters y; and g3, in accordance with Eq. (4.13).

Inverting the threshold corrections for y; and g3,

g3 = 35 {1 - x3(8ga) @ — K284 [ (Aga) gt — 3(8ga)%] + O }

_ P - ) s (4.23)
viss = & {1 k&3(Ayr) @ — 284 [ (Ayi) gt — 2(888) 2 (B — (Bye)2| + O() |,

it can also be expressed in terms of SM MS parameters according to

- M 3 4 4
A= 5—22 cos® 2B + Kgf(A)\)g-? + ng;*gg(m)g.?g.% + K3gfg§(A/\)g_%g-g +O(x), (4-24)

8t Y’
(AA)gigz = (AA) a2 —4(AA) 1 (DY) 2, (4-25)
(AN)gtgs = (AA)yzgs + (04) gt

and

(M)pst = = (A)ypg; (20080 + 4(Aw)g

(4.26)

+(A) (100802 — 4(ap0) + 8(Av)g (Bo)g) '
Eq. (4.20) shows how the three-loop threshold correction for the quartic Higgs coupling can
be extracted from the three-loop fixed-order result for the MSSM Higgs mass. The latter has
been calculated in Refs. [15,16] in the form of a set of expansions around various limiting
cases for the SUSY masses (cf. Eq. (3.5)). In all of the different expansions, terms of O(v?/M3)
have been neglected. Since the H3m result was obtained in a scheme that differs from the
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commonly used DR’ scheme, the shift presented in Eq. (3.9) has to be applied to Eq. (4.20) in

order to receive a consistent result.

With Eq. (4.20) we are able to extract the three-loop threshold correction for the quartic
Higgs coupling expressed in terms of the H3m hierarchies defined in Eq. (3.5) taken from
Ref. [16]. We denote this result as (AAH3m)y?g

invariance, we can improve on the logarithmic part of (AAH3m)y;; g by replacing their hierarchy

4 in what follows. Using renormalization-group

dependence with general MSSM particle masses. This can be done by deriving logarithmic

terms of the form In(Q?/M3) by requiring that

d

R Te)

(M3 102(Q) + AME5(Q) + K0Py (Q)g4(Q)sH(AMQ) gt | = 0+ O(*), (4:27)
with AMﬁ,3 from Eq. (4.22), and using the three-loop MSSM B-functions [97, 98]. We refer
to the corresponding threshold correction, which includes the exact mass dependence of
the logarithmic terms, reconstructed in this way as (A)\EFT)yggg~ Note that only the non-
logarithmic term of the fixed-order three-loop result of Ref. [16] enters this result. Of course,
expanding (AAEFT)y;ng in terms of the H3m hierarchies up to the appropriate orders, we

1+ as defined above.

recover (A/\H3m)y;; gl

4.3.2  Result in the degenerate-mass case

Since we have made the x; dependence explicit in our result and we neglect all but the

. . 2 2 o o . .
leading terms in y; o mj, we can set my = mj, = Mg in our expressions.

Using the degenerate-mass limit, the expression for (A)\)y? gt 18 simple enough to be quoted
here. In this case, the threshold corrections for the top Yukawa coupling, defined by Eq. (4.13),
are given by

4
(Ayt)g§ =73 (—1+Iss+xt), (4-28)
2099 — 1748lss + 37212 —416 + 321
(Aye)gs = e 2+ ZJ; 2, (4-29)

where Iss = In(Q%/M?2) and the one-loop threshold correction of the strong coupling,

1
(Ag3)g2 = 5 2ss, (4.30)
is used. Following Eq. (4.22), this leads to a subtraction term

2 (2243 — 2228155 + 7081%;)
9

AM;5(Qs) = 170y 355 | —

(4.31)
2(—1312+736lss) x;  224x7

9 3

e’ |
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with cgif) from Eq. (4.5). Using the h3 hierarchy of H3m, where all SUSY masses are assumed

to be of comparable size and the expansion is performed in the mass differences, the H3m

result for the degenerate-mass case reads

Mj o5 o™ %K%zyfggsg [ — 1246 — 2132155 + 1326135 — 50413 — 192673
-
+ 2161553
+ x¢ (—2776 + 400155 — 1464135 + 1908(3) (4-32)

+ x7 (3678 — 6155 + 126135 — 148573)
+x7 (2722 + 20155 + 108135 — 225925) | + O(x})

Note that in the expansion of the h3 hierarchy, higher orders of x; are not included in the
H3m result. The shift to convert from the H3m to the DR’ scheme as defined by Eq. (3.9) is

(AM%)H%HW, = 16K3U2y‘tlg§s§ (1+1Iss) (6 —6x? + x‘f) . (4-33)

Combining Egs. (4.31)—(4.33) according to Eq. (4.20), we obtain

1
(AM(Qs)) et = ﬁ{wsz — 27832155 + 1485613 — 403213

— 1540873 + 172815503 — 272

+ x; [7616lgs — 1171213¢ + 32(—940 + 477(3)) (4.34)

+ x7 [28848 — 2640155 + 1008135 — 1188075]
+ x7 [16015s + 864135 + 8(2722 — 2259(3) | } + O(x})

for the threshold correction in terms of DR’ parameters.

If one re-expresses the one- and two-loop corrections in terms of SM MS parameters, the
following shift must be added to Eq. (4.34) in the degenerate-mass case,

1
(6A(Qs)) et = 55 [26916155 — 18816135 — 590413

— x; (—3744 + 14016155 + 1881613)

) ) (4-35)
— x7 (29652 — 5424155 — 993615s)
—x} (—6768 — 13152155 — 268813) } +0O(x).
To obtain Eq. (4.35) we used the threshold corrections
2 X
(AA)ys = —6lss +6x; — - (4.36)
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and
4
(AA) 2 = —5{4 [6lss + 3135 +6 (1 +Iss) x¢ — (3 + 6lss) x7 — (14 2Iss) 7] + xf} (437)

in accordance with Eq. (4.23), (4.25), and (4.26).

4.3.3 Extraction uncertainty

In order to combine the three-loop threshold correction of (A/\)y? ¢4 With existing EFT codes
such as HSSUSY [59] or SusyHD [60], where the one- and two-loop corrections are expressed in
terms of SM MS parameters, we extended the functionality of Himalaya to provide (AAger) yigh
by implementing Eq. (4.20), including the conversion from the H3m to the DR scheme. In
addition, we included the shift of Eq. (4.26) that converts the parameters in the threshold

correction from the DR’ to the MS scheme.

When using the H3m result for the extraction of (AA)y%gé, it is important to provide an
uncertainty estimate due to missing higher-order terms regarding the expansions of Eq. (3.5).
We employ two largely complementary ways to estimate this uncertainty, referring to the
expansion and the x; uncertainty, respectively.

Concerning the expansion uncertainty, we proceed as follows. As described in Subsect. 4.3.1,
within the DR’ scheme, there are two possible extractions of the threshold correction for
the quartic Higgs coupling. Both of them use the hierarchy expansions of H3m for the non-
logarithmic terms. However, while (A/\,.Bm)y;;
terms, (A)\EFT)y;}g
group invariance. We thus use the difference of (A/\EFT)y;; gt to (A/\H3m)y? gt at the scale

g4 uses these expansions also for the logarithmic

. contains their exact mass dependence, derived from renormalization-

Qs as an uncertainty estimate regarding the hierarchy expansion of the non-logarithmic

contribution:
Oexp = K3yfg§s% (A/\H3m)y?g§ - (A/\EFT)y?gg . (4.38)

For the x; uncertainty, on the other hand, we consider the conversion term (52\)%1 o defined
in Eq. (4.26), whose mass dependence is known exactly. Since the main source of uncertainty
occurs for large mixing, we determine the highest power 1max of x; taken into account in
the specific H3m hierarchy, and use the size of the terms of order x} with 1y, <n <4in
the non-logarithmic part of (5)‘)%‘3’% as uncertainty estimate, labeled J,,. Note that powers
higher than x} cannot appear in (A/\)y? g when the result is expressed in terms of the MSSM
top Yukawa coupling. The reason is that the one-loop correction (AA) 44 contains no terms
with x7>%, and up to the three-loop level the involved (s)quarks, gluons, and gluinos do
not introduce any additional x;-dependence. To be specific, let us again consider the limit

of degenerate MSSM mass parameters. In this case, H3m uses the h3 hierarchy defined in
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Eq. (3.5), which includes only terms through x} though. The uncertainty is thus estimated
with the help of the non-logarithmic terms of order x} in (6A) 1, given by

5735
Oy = 7K3y?8§5;§ xf (4-39)

We combine these two uncertainties linearly and define the total uncertainty due to the

hierarchy expansions as

0 (KBy?ggsé(AAEFT)y?gé) = Ox; + dexp- (4-40)

Note that for cases in which Jy, = 0, 5exp still serves as an estimate for the uncertainty

regarding the expansions of the H3m result.

After the derivation of (AAEFT)y;; o and the definition of its uncertainty, all ingredients for
a consistent calculation of the light CP-even Higgs mass including N°LL corrections are
known. Therefore, we close this chapter by discussing the impact of (A)\EFT)y;; - by including
it into the EFT code HSSUSY, which then fulfills all requirements introduced in Sect. 4.2. In

the following we will only use (A)\EFT)% ¢4 for the determination of (AA) gt

4.4 NUMERICAL RESULTS INCLUDING N3LL QCD CORRECTIONS

To study the numerical impact of the three-loop threshold correction (AA) gigs on the value
of the light CP-even MSSM Higgs mass, we link Himalaya to HSSUSY, a spectrum generator
from the FlexibleSusy package that follows the EFT approach outlined in Sect. 4.1. It assumes
a high-scale MSSM scenario, where the quartic Higgs coupling of the SM is evaluated at
the SUSY scale Qs = Mg by the matching to the MSSM. The scenario assumes that all
SUSY particles have masses around Ms and the SM is the appropriate EFT below that
scale. In the original version of HSSUSY, the quartic Higgs coupling is determined using
the two-loop expressions of O(33(37 + 32)> + (37 + 37)° + 32(32 + §2)?) from Refs. [64,65]",
thereby ignoring terms of O(v?/M3). The known three- and four-loop SM MS B-functions of
Refs. [101,103,113-117] are used to evolve the SM parameters to the electroweak scale, where
the gauge and Yukawa couplings as well as the Higgs VEV are extracted from the known low-
energy observables at full one-loop level plus the known two- and three-loop QCD corrections
of Refs. [118-121]. The Higgs pole mass is calculated by default at the scale Q; = M;
at the full one-loop level with additional two-, three-, and four-loop SM corrections of
O(5(8t +8y) + (87 +85)° +8%), O(8) + 8785+ 8/33), and O($;83) from Refs. [112,113,122].
Thus, by including (AA) gigt In the calculation, HSSUSY provides a resummed Higgs mass
prediction in the decoupling limit of the MSSM through NLO+N°LL at O(§+g3), including
the full NLO+NLL and the NNLO+NNLL result at O(g3(g# + §f) + (87 + §2)° + 32).

1 We thank Thomas Kwasnitza for making the two-loop y; corrections in HSSUSY publicly available.
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Figure 8: Comparison of the three-loop HSSUSY (EFT) calculation with lower order EFT and fixed-order MSSM
calculations from the FlexibleSUSY package as a function of the SUSY scale.

In Fig. 8 the effect of (AA) gt on the pure EFT calculation of HSSUSY is shown as a function
of the SUSY scale M; for the scenario defined in Chap. 2. The upper row shows a scenario
with vanishing stop mixing, x:(Qs) = 0, the lower row shows one with maximal stop
mixing, x;(Qs) = —+/6. The left column of Fig. 8 displays the value of the calculated SM-like
Higgs boson mass for these two scenarios. The blue dashed line and the blue solid line
show the two- and three-loop fixed-order calculations of FlexibleSUSY 2.3.0 and Flexib-
leSUSY 2.3.0+Himalaya 2.0.1, respectively. The black dotted, dashed, and red solid line
depict the EFT calculations of HSSUSY with A(Qs) calculated at the one-, two-, and three-loop
level, respectively. Here, AAL and AA%L denote all available one- and two-loop corrections,
respectively, and AA3L = (A)) gt For comparison, the orange horizontal band shows the
current experimental value for the Higgs mass, see Eq. (2.1). As was already observed for
example in Refs. [59,70,71], we find that in the range Mg > 1TeV the fixed-order and the
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EFT calculations deviate by several GeV. This is to be expected, because the EFT calculation
resums the large logarithmic corrections in contrast to the fixed-order calculation and the
terms of O(v?/ M%) become negligible for Mg being above a few TeV [59, 69, 72,74].2

As the black dashed and solid red line are hardly distinguishable in these plots, we show the
shift relative to the one- and two-loop calculations of HSSUSY in the right column of Fig.8.
The gray band in the lower right panel of Fig.8 corresponds to the theoretical uncertainty
on the result due to the hierarchy expansions of the H3m result, evaluated according to
Eq. (4.40). It amounts to more than 100% of the central shift for maximal mixing. For x; = 0,
this uncertainty is zero, see Eq. (4.39), because we also set Qs = Ms. This is consistent with
the fact that in this case, the degenerate-mass limit of the H3m result is exact. The red band
shows the EFT uncertainty as defined in Refs. [60, 64,70], estimating effects from missing
terms of O(v?/M3). We see that the impact of (AA) gigt 18 largely negative with respect to
the two-loop threshold correction, AA%L, and may reduce the Higgs mass by up to 0.6 GeV
for maximal mixing when considering all values in the grey uncertainty band. For zero stop

mixing, the shift is significantly smaller (< 20 MeV).

tan 8 = 20, Mg = 5 TeV tan 8 = 20, Mg = 5 TeV
2
----- AN HSSUSY
130 s ——- AN?LHSSUSY
2z 0 +6(ANgrr)
O
~
125 3 Ir
2
~ f.g 0.5F
< 120 0 s
= = o
——- M?'Fs S ) Se—o LTS
. =~
— M}t Fs+H [
usk s AN HSSUSY = sl
——- AL HSSUSY ?
—— ANl HSSUSY
110 i 1 i —1 i i i
—4 -2 0 2 4 —4 -2 0 2 4
X,/Mg X,/Mg

Figure 9: Comparison of the three-loop HSSUSY (EFT) calculation with lower order EFT and fixed-order MSSM
calculations from the FlexibleSUSY package as a function of the relative stop mixing.

In Fig.9, the Higgs mass prediction is shown as a function of the relative stop-mixing
parameter x; for the scenario defined in Chap. 2 with Ms = 5TeV, where both the fixed-
order and the EFT approach can accommodate for the experimentally observed value of My,
Eq.(2.1), as long as |x;| is sufficiently large. The right panel shows again the difference of
the three-loop calculation of HSSUSY with respect to the one- and two-loop calculations. In
accordance with Fig. 8, we find that the shift induced by including (AA) gigt is negative by
trend, and below about 200 MeV for x; > —2. Below that value, the effects could be of order

2 The magnitude of the terms of O(v?/M3) is discussed quantitatively in Subsect. 5.2.1.
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1GeV, but the uncertainty of our approximation grows to about 100% in this case, because
the x} term is not included in the hierarchy expansion of the H3m result for this scenario.

To estimate the maximal effect that (AA) gigh can have on the Higgs mass prediction, the blue
band of Fig. 10 shows the variation of Mj; when the SUSY mass parameters mg3, my3, mpg3,
and myg are varied simultaneously and independently within the interval [Ms/ V2, V/2Ms]
as a function of Mg, including the uncertainty 6((AAger) g gg)-B The hatched region marks
the range of SUSY scales where the lightest running stop mass is below 1TeV for at least
one of the scanned points. In this case, the EFT may not be applicable. For zero stop mixing
(left panel), we find that (AA) gigh can have an effect up to ~ —150 MeV for Mg > 1TeV. In
the region where m; > 1TeV, the correction reduces to —130 MeV at most. The three-loop
correction decreases for larger SUSY scales, mainly due to the fact that the SM couplings
become smaller. For maximal stop mixing, x; = —/6, the effect of the three-loop correction
is significantly larger, and can reach —1.25GeV for m; 2 1TeV. The correction becomes

particularly large when the soft-breaking stop-mass parameters mg 3 and my; 3 become small.

200 2
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Figure 10: Variation of My, when the SUSY mass parameters are varied within the interval [Ms /\/2,v/2Ms)]
in HSSUSY. The left panel shows X¢ = 0 and the right panel X; = —~/6Ms. The blue band shows the
maximal variation of My, when the three-loop correction (A\) gigh + 5((AAerr) Y gé) is included, with

respect to the two-loop calculation. In the hatched region there is mz (Ms) < 1TeV for at least one of
the scanned parameter points.

3 The choice of the interval [Ms/+/2,/2Mjs] ensures that for all scanned points there exists a suitable mass

hierarchy which fits the parameter point with a moderate uncertainty (AAger) gg- In the scanned parameter
region, the most frequently chosen hierarchy is h3.
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4.5 CONCLUSIONS

In this chapter, we have introduced an alternative method to the FO approach to calculate
the light CP-even Higgs mass in the MSSM, namely the EFT approach. The improvement
employing renormalization-group equations leads to a resummation of large logarithms,
which is desirable when sizable scale splittings between v and Mg arise. However, for
regions in which contributions of O(v?/ M%) become significant, the EFT approach turns
out to be unreliable.

To provide a study in this framework including N®LL resummation, we derived a result for
the quartic Higgs coupling from the known three-loop corrections to the light CP-even Higgs
mass of Refs. [15,16]. The latter is provided both in terms of DR and MS parameters through
its implementation into the public Himalaya library. This should facilitate its inclusion
into spectrum generators which implement the EFT approach. In addition, an uncertainty
estimate is provided to account for missing higher order terms in the mass-hierarchy

expansions.

Combining Himalaya and HSSUSY, our numerical analysis shows that the three-loop cor-
rection tends to be negative and may decrease the predicted Higgs pole mass by up to
0.6 GeV for maximal stop mixing. In scenarios with zero stop mixing, the shift is signifi-
cantly smaller, dropping to about —25MeV for SUSY mass parameters of around 1 TeV. For
non-degenerate spectra with m; 2 1TeV, the three-loop correction can be of the same size
and reach up to —1.25GeV for low stop masses in scenarios where a suitable mass hierarchy
exists. In scenarios where no such hierarchy exists, the correction may be significantly larger,
accompanied by a large expansion uncertainty. Due to the minor impact of the three-loop
contribution of O(y}¢%) on the Higgs mass and its uncertainty, importance is raised towards
the inclusion of the missing electroweak contributions at the two-loop level, which have not
yet been calculated.

Although the EFT approach yields reliable results for multi-TeV scales, missing terms of
O(v?/ M%) could be important at intermediate scales between a few hundred GeV and the
low TeV range. However, at these scales the FO approach tends to become inaccurate as well.
In order to account for a reliable prediction of the light CP-even Higgs mass at arbitrary
scales, the so-called hybrid approach has been developed in Refs. [53,68]. It combines the
virtues of both the FO and the EFT approach. To overcome the deficits of the EFT and the FO
approach, we provide a prescription to elevate the hybrid approach to the three-loop level

in the next chapter.
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As seen in the previous chapters, the FO approach, on the one hand, yields reliable results if
the masses of the SM and MSSM particles are of comparable size, and the EFT approach, on
the other hand, yields reliable results if the mass splitting between the SM particles and their
SUSY partners becomes sizable. However, it is unclear which of both approaches is the most
suited one for intermediate SUSY scales ranging from a few hundred GeV up to a few TeV.
Therefore, Refs. [53,68] proposed a combined approach, which includes both contributions
of O(v?/M?3) and renormalization-group improvement. In practice, such a combination
is tedious as one has to provide full perturbative control over all required intermediate
pieces. However, if applied properly, one achieves a prediction for the light CP-even Higgs
mass, which is in principle reliable for arbitrary mass splittings within the theory. In this
chapter, we only focus on the simplest mass hierarchy, where the mass spectrum of the SUSY
particles is given at a common scale Ms.

In Sect. 5.1, we summarize different combination approaches known in the literature and
outline our procedure to obtain a result including N*LO and N®LL contributions, where
we incorporate full one-loop, O(yig3 + y°) two-loop, and O(y}¢4) three-loop corrections.
Afterwards, in Sect. 5.2, we study the numerical impact of our hybrid approach, quantize the
magnitude of the O(v?/ M%) terms, and provide an uncertainty estimate. The required parts
for a proper combination are implemented into the Himalaya library. This chapter is largely
based on Ref. [74], where the way to combine the available results has been developed
in the course of this thesis. This includes the implementation of the required parts into
Himalaya, which are essential for all presented studies in this chapter. In collaboration with

R. V. Harlander and A. Voigt, we studied the numerical impact of our combined result.

5.1 COMBINATION APPROACHES

So far, two approaches to combine FO and EFT results in the context of the light CP-even
Higgs mass have been pursued in the literature:

¢ Subtraction approach: In this approach, the squared Higgs pole mass is written as
(M) = (MJO)” — (M) + (M}, (5.1)

where (M}©)? denotes the fixed-order result, (M,lfgs)2 are the large logarithmic fixed-

order corrections, and (M}®)? are the resummed logarithmic corrections.
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An advantage of this approach is that existing fixed-order results can be used and
different effective theories can be considered in a straightforward way. The generaliza-
tion of this approach to models beyond the MSSM is non-trivial, because it requires
model-specific FO and EFT loop calculations.

This approach is implemented into FeynHiggs at the two-loop level, see for example [53,
68,69].

* FlexibleEFTHiggs approach [59,71,72]: The matching condition in this approach reads
(M)* = (M2, (5:2)

where M;M denotes the Higgs pole mass as a function of SM MS parameters, and
MMSM is the Higgs pole mass calculated in the MSSM in the DR’ scheme. The MS and
DR’ parameters appearing in Eq. (5.2) depend on the renormalization scale Qg, which
is set close to the SUSY scale. In this way, the SM quartic Higgs coupling is determined
in the MS scheme at the scale Qg, which is then evolved down to the electroweak scale
using SM RGEs in order to evaluate the Higgs pole mass from it.

Due to the simplicity of the matching condition (5.2), this approach can be generalized
to other models in a rather straightforward way. However, the extension of this
approach to the two-loop level is non-trivial with regards to the proper cancellation of

potentially large logarithmic corrections in the matching.

The FlexibleEFTHiggs approach is implemented at one-loop level into FlexibleSUSY [59,
71], and at two-loop level into SARAH/SPheno [72]."

In this thesis, we adopt a hybrid scheme that is similar to the subtraction approach of
Eq. (5.1). However, we work in the DR’ scheme and include three-loop QCD corrections,
when combining the FO and EFT results. In our framework, the light CP-even Higgs pole
mass is calculated as

(M) = (M) + 4, 53)
where M} denotes the three-loop EFT result of Flexiblesusy/HSSUSY+Himalaya [62] pre-
sented in Chap. 4. It resums large logarithms of O(y{¢3) to N°LL, while others are resummed
to NNLL. Its fixed-order expansion would reproduce the full fixed-order result in the limit
v?/ M2 — 0, including the known two-loop corrections in the gaugeless limit and the three-
loop terms of O(y}tg%) from Himalaya[15,16,47]. A, supplies the terms that are suppressed
by powers of v?/ M2 as Mg > v at fixed order up to the two-loop level, i.e. at O(y? + y£g3)
for the two-loop part. We separate A, into a tree-level plus one-loop and a two-loop part,

Ay = AT AZL (5-4)

Note that in the implementation of the FlexibleEFTHiggs approach in SARAH/SPheno, large higher-order logarith-
mic corrections are induced at the matching scale. As a result, SARAH/SPheno resums large logarithms only up
to (including) the leading-logarithmic level.



5.2 NUMERICAL RESULTS INCLUDING N3LO+N3LL QCD CORRECTIONS

The first term on the r.h.s. of Eq. (5.4) is extracted from the FlexibleEFTHiggs result imple-
mented in FlexibleSUSY and the second term from the two-loop contributions implemented
into the Himalaya library, as described in what follows. The tree-level and one-loop contri-
bution AL is obtained by taking the difference between the one-loop FlexibleEFTHiggs
result MjFT and the one-loop pure EFT result obtained from HSSUSY as

AL = [(MEFT)? = (M gy )

Due to the structure of the FlexibleEFTHiggs calculation, this difference contains all tree-
level and one-loop SUSY contributions of higher order in v?/ M2, and formally two-loop
non-logarithmic electroweak SUSY terms (see below). In particular, large logarithmic cor-
rections as well as two-loop non-electroweak SUSY contributions are absent. The two-loop
contribution A2l is obtained by

AY = A%?L(y?‘géw?) N A%?L(y?gﬁw?) <M (5-6)
The terms on the r.h.s. of Eq.(5.6) represent the difference between the two-loop fixed-
order contribution O(y{g3 + y?) calculated with Himalaya, and the same two-loop FO
contribution where all O(v?/M3) terms are neglected. This difference thus contains all two-
loop O(v*/M3) terms at O(y$g3 +y?). Large logarithmic as well as non-electroweak three-
loop corrections of order (v?/M3)? are absent. To ensure this cancellation, the momentum
iteration for the first term on the rh.s. of Eq.(5.6) is only performed once as shown in
Eq. (3.4), whereas the second term on the r.h.s. of Eq. (5.6) is derived as in Sect. 4.2.

5.2 NUMERICAL RESULTS INCLUDING N3LO+N3LL QCD CORRECTIONS

Following the prescription of the previous section, we present numerical studies for our
hybrid approach in this section. First, we investigate the size of terms of O(v?*/M3) in
Subsect. 5.2.1 as a function of the SUSY scale Mg, which is followed by the definition of our
uncertainty estimate in Subsect. 5.2.2. Afterwards, in Subsect. 5.2.3-5.2.2, we discuss our

hybrid approach in comparison to a pure FO and EFT calculation.

5.2.1  Size of the O(v?/ M2) terms

The main advantage of the hybrid approach is the inclusion of O(v?/M3) terms into the
EFT result. To estimate at which scales these terms A, can be neglected, we study their effect
on the Higgs pole mass as a function of the SUSY scale in this section. For convenience we
define the (non-squared) contribution of these terms as

By = A4 A2, 57)

45



46 HYBRID APPROACH

AOL+IL _ [(MEFT)Z +AOL+1L}1/2
v v

_ 1/2
A2 = [(MEFT)Z 4 AOLHIL +A%L] _ [(MEFT)Z +A2L+1L}

_ MEFT

7

(5.8)

1/2
. (5.9)

Setting the input to the scenario defined in Chap. 2, we find that the O(v?/M3) terms can
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Figure 11: Size of the O(v?/ M32) terms as a function of Ms for different stop-mixing parameters X;. The

data of these plots is taken from Ref. [74].

be sizable below Ms < 0.5TeV, while they are small as long as Mg 2 1TeV, see Fig. 11.

Specifically, we find for Mg 2 1TeV

1A,| < 0.10GeV,
1A,| < 0.15GeV,
|A,| <0.25GeV.

xt=0
xt:—\/éi
xt:\/g

(5.10)
(5.11)
(5.12)



5.2 NUMERICAL RESULTS INCLUDING N3LO+N3LL QCD CORRECTIONS

Other values of tan p lead to similar observations.

The sign and the order of magnitude of these results are in agreement with the contribution
of higher-dimensional operators as presented in Ref. [65]. Since the remaining uncertainty
on the light CP-even Higgs pole mass is dominated by the uncertainty induced by the
extraction of the running top Yukawa coupling, which has been estimated to be between
0.2-0.6 GeV [60, 65,70, 115], we conclude that for Mg > 1TeV the O(v?/ M%) terms are
negligible and the EFT approach leads to a more precise value of the Higgs pole mass than
the fixed-order result. This confirms the transition region of ngual = 1.0-1.3 TeV estimated

in Ref. [70].

5.2.2  Uncertainty estimate

We estimate the uncertainty of the hybrid result conservatively by taking the minimum
uncertainty of the FO and EFT results for each parameter point:

AM® = min {AMC, AMEFT) | (5.13)

The uncertainty of the three-loop fixed-order calculation, AM}©, is estimated by:

¢ variation of the renormalization scale Qg at which the Higgs pole mass is calculated
(A(Qs) M),

* in-/exclusion of the two-loop threshold correction for the strong gauge coupling g3 in
the MSSM [96, 123, 124] (A(33)M£O),

Thus, AM}© yields

AMEO _ A(QS)MEO + A(g3)M£O, (5.14)
with
A(QS)MFO _ max MFO o MFO M , .1
Qs€[Ms/2,2Ms] | h (QS) " ( S) o)
AEIMEC = | MIC(gh) — MEC (531 - (5.16)

The uncertainty of the three-loop EFT calculation, AM}'T, is estimated by:

e variation of the renormalization scale Q; at which the Higgs pole mass is calculated
(A(Qt)MEFT)’

e variation of the renormalization scale Qg at which the MSSM is matched to the SM
(A(QS)MEFT)/

* in-/exclusion of the four-loop QCD threshold correction for the SM top Yukawa
coupling [125] (AW™) MEFT),
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e estimation of the effect of O(v?/ M%) terms from the quartic Higgs coupling along the
lines of Refs. [60,64,70] (A®*/M3) MEFT) 2

Hence, by combining these sources of uncertainty linearly AM}" yields

AMEFT — A(Qt)MEFT + A(QS)MEFT + A(y?M)MEFT + A(Z’Z/Mé)MEFT, (5.17)

with
A(Q0) pEFT MEFT — MEFT(M)| 18
" Qe[z\rfllr:e/iz)sz,] [M;(Q) i (M) (5.18)
AQs) MEFT — 05GeV, (5.19)
SPIMET = [T - MO (520
A(UZ/M@MEFT _ ‘MEFT . MEFT<UZ/M§)‘ ) (5.21)

The matching-scale uncertainty A(QS)MEF T has been estimated in Ref. [60, 64, 70]. It was
found that for scenarios as those considered here, the uncertainty does not exceed 0.5 GeV
for Mg 2 1TeV. Rather than extending the procedure of Ref. [60,64,70] to NLL which would
involve the logarithmic terms at N*LO, we conservatively associate this maximal value of

0.5GeV to the matching-scale uncertainty, independently of Ms.

5.2.3 Convergence for high SUSY scales

Convergence properties of our hybrid result to the pure FO or EFT calculation, depending
on the scale Mg, can be used as a check for our calculation. Therefore, in Fig. 12, we compare
the hybrid result defined in Eq. (5.3) (red solid line) with the three-loop DR’ fixed-order
calculation MEO of FlexibleSusy+Himalaya [47] (blue dashed line) and the three-loop EFT
result M} of HSSUSY+Himalaya [62] (black dash-dotted line), which resums large logarithms
through N3LO. The red band indicates our uncertainty estimate as defined in Sect. 5.2.2.
Note that we only include O(y? + y}¢3) contributions at the two-loop level.

Since A, — 0 for Mg — oo, the hybrid curve converges towards the EFT curve in this limit.
Note that in the scenario with x; = —/6 for values of Mg below ~ 600GeV, no suitable
mass hierarchy is available in Himalaya. The three-loop fixed-order contribution is set to
zero in this case, which means that the EFT curve and the hybrid calculation is formally
consistent only at the two-loop level for lower scales. On the other hand, for Mg — Mz one
may expect the hybrid curve to converge towards the three-loop fixed-order curve. However,
we find a finite offset at low energies of up to ~ 0.5GeV for x; = 0 and ~ 1.5GeV for
x; = —+/6. This offset results from higher order O(v?/M?2) terms, which are not suppressed
in the low Mg region. The origin of these will be investigated in the following subsection.

2 MPFT (0% /M32) of Eq. (5.21) is obtained by scaling the individual terms in the one-loop threshold correction AA'L
for the quartic coupling by factors of the order (14 0?/M3).
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Figure 12: Comparison of the three-loop FO, EFT, and hybrid results as functions of Mg. The red band shows
our uncertainty estimate. The data of these plots is taken from Ref. [74].

In Fig.13 a comparison of the hybrid results with the three-loop FO and EFT results is
shown as a function of x; for the degenerate-mass scenario with tan 8 = 20 and Mg = 3TeV,
where the MSSM value of the Higgs pole mass can be in agreement with the experimentally
measured value. As our derivation of the A, terms from above suggests, we find agreement
of the hybrid result with the EFT within 0.5GeV for such a large SUSY scale. The largest
deviations of 0.5GeV occur in the region |x;| > 3, while in the region |x;| < 3 the deviation
is smaller than 0.1 GeV. However, the latter region suffers from a problematic feature of
the fixed-order calculation, which is the occurrence of tachyonic DR’ masses of the heavy
CP-even, the CP-odd, and the charged Higgs bosons at the electroweak scale for x; > 0 as
already discussed in Chap. 3. The kink at ~ x; = 0 of the FO curve is due to the replacement
of the tachyonic running masses by their absolut values, which leads to a discontinuous
transition.
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Figure 13: Comparison of the three-loop FO, EFT, and hybrid results as functions of X¢/Mg. The red band
shows our uncertainty estimate. The data of these plots is taken from Ref. [74].

Our combined uncertainty as defined by Eq. (5.13) is shown as the red band in Figures 12-13.
In the studied scenario, the uncertainty is nearly constant and around AMZyb ~ 1GeV. Very
rarely it happens that the central value of the approach (EFT or FO) that determines the
hybrid uncertainty through Eq.(5.13) is not itself contained in the resulting uncertainty
band. In this case, we widen the band correspondingly.

As shown in Fig. 12, for SUSY scales below 1-2 TeV, the fixed-order uncertainty defined by
Eq. (5.14) is the smaller of the two on the r.h.s. of Eq. (5.13). Due to the occurrence of large
logarithmic loop corrections, AM}© becomes larger when Mg is increased and reaches about
AM;P ~ 1GeV for Mg ~ 1TeV. A larger uncertainty of up to AM}° ~ 1.5GeV occurs only
for x; = —v/6 around Mg ~ 0.6 TeV, where a hierarchy switch occurs in the three-loop

fixed-order result of Himalaya.

The EFT uncertainty as defined by Eq. (5.17) is composed as follows. A(Q) M is approxi-
mately independent of the SUSY scale and amounts to about 0.2 GeV whereas the uncertainty
A(V?M)MEFT from the extraction of the SM top Yukawa coupling amounts to approximately
0.1 GeV and increases slightly with the SUSY scale. For SUSY scales above 1-2TeV, the total
uncertainty of the EFT calculation AM}*T is dominated by these two contributions and
A(Qs) MEFT, while amounting to slightly less than 1GeV. In contrast, A®*/M3) MEFT is negligi-
ble at these scales. This is in agreement with the results from Subsect. 5.2.1, where it was
found that the O(v?/M3) terms are below 0.25GeV for Mg > 1TeV. Finally, we find that
the extraction uncertainty |dx, + dexp| of the three-loop threshold correction A introduced
in the previous chapter is below 2 MeV for the degenerate-mass scenarios considered here
with Mg 2 1TeV, and is thus negligible.
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equal

Quite generally, the SUSY scale M¢" ™, where both the FO and the EFT calculation have the

same uncertainty, is between Mg 2 1-2TeV, which is in agreement with the findings in
Refs. [70,126].

5.2.4 Convergence for low SUSY scales

As described in Refs. [59,71], the FlexibleEFTHiggs calculation implemented in FlexibleSUSY
since version 2.0.0 includes all one-loop contributions and resums all large logarithmic
corrections at the next-to-leading logarithmic level. When compared to the one-loop fixed-
order DR’ result of Flexiblesusy, one finds splendid agreement in the limit Mg — My if
tanf — 1 and x; = 0, corresponding to scenarios where incomplete higher-order effects
gathered by both calculations, e.g. through momentum iteration, are small. The first row
in Tab. 1 shows a scenario with tan 8 = 3, Ms = Mz, and x; = 0, where both results agree
within 5MeV (0.01%). When increasing tan 8, the two-loop differences between the two

Table 1: Comparison of the one-loop FlexibleEFTHiggs and n-loop fixed-order DR’ Higgs pole mass with

FlexibleSUSY.
n o tanp Ms x MEEFT M (MIEFT — MFS)
1 3 Mz 0 57584GeV  57590GeV  —0.005GeV
1 20 Mz 0 88725GeV  88.636GeV  +0.089GeV
1 20 M; 0 95612GeV  95999GeV  —0.387GeV
1 20 200GeV 0 96733GeV  97.378GeV  —0.645GeV
1 20 500GeV 0 105489GeV 107.059GeV ~ —1570GeV
2 20 500GeV 0 105489GeV 105411GeV  —0.078GeV

Higgs mass values become more sizable, increasing to 0.089 GeV (0.1%) for tan g = 20, see
the second row of Tab. 1. There are several sources of such tan f-dependent higher-order
terms in both calculations: In the fixed-order calculation, for example, an iteration over
the squared momentum p? is used to find the solution of Eq. (3.2). This iteration leads to
higher-order SUSY contributions of O(y/y}'v?>/M2) (n 4+ m > 6) which increase with tan g,
for example, due to the increasing bottom Yukawa coupling y;. In the FlexibleEFTHiggs
approach such terms are absent because p>-terms are taken into account only at the one-loop
level, and thus no momentum iteration needs to be performed. However, in the Flexible-
EFTHiggs calculation other tan f-dependent higher-order terms are generated. These arise,
for example, by inserting the one-loop threshold corrections for the MSSM DR’ electroweak
gauge couplings g1 and ¢» into the tree-level term mi’tree on the rh.s. of Eq.(5.2) in order to
express the quartic Higgs coupling of the SM in terms of SM MS gauge couplings:

(MMSSM)2 mi,tree AL (ssM)2 (5.22)

3,20 2 2 4
2uee _ 2 (3811 83) o 32, 2\ /2 v v
m>e = o BT [1 + <5g1 +87 ) (c25 — 1)4’”%4 +0 | (5.23)
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Since the tree-level MSSM DR Higgs mass m{r® initially depends on g2, g3, and cyg, the
insertion of the threshold corrections generates two-loop terms, which are of electroweak
order (’)(g?g?c%’[;vz /m?%) and depend on tan . Note that these are just two of several
possible sources for incomplete higher-order tan f-dependent terms by which the two

formally one-loop approximations differ.

When the SUSY scale is increased to Ms = M; (third row in Tab. 1), renormalization-group
effects arise, because the scale at which the running couplings are extracted (Q = M) is no
longer identical to the scale where the Higgs pole mass is calculated (Q = Ms = M;). While
in FlexibleEFTHiggs the SM RGEs are used to evolve the running couplings from My — M;,
the fixed-order calculation uses MSSM RGEs. This increases the difference between the
two results to —0.387 GeV (—0.4%) in our example. For larger SUSY scales, this difference
increases further, as shown in the fourth and fifth rows of Tab. 1 for Mg = 200 GeV and
Mg = 500 GeV, respectively. For these scales, logarithmic corrections of the form In(Mg/M;)
occur, which get resummed in the FlexibleEFTHiggs calculation, but not in the fixed-order
one. In the latter, the inclusion of two-loop corrections must account for this difference. In
fact, when two-loop corrections are included in the fixed-order calculation, see the bottom
row of Tab. 1, the difference is reduced again to —0.078 GeV (—0.07%).

This analysis shows that one cannot expect perfect agreement between the FlexibleEFTHiggs
and the fixed-order results at low SUSY scales Mg < 200 GeV, even though both calculations
are formally consistent at their respective accuracy level. Since the FlexibleEFTHiggs result is
part of our hybrid scheme defined in Eq. (5.3)—(5.6), the described deviation translates into a
non-convergence of szb towards the three-loop fixed-order result at low SUSY scales in
Fig.12.

5.3 CONCLUSIONS

In this chapter, we presented a hybrid calculation of the light CP-even Higgs pole mass in
the MSSM by combining FO and EFT results in the DR’ scheme up to three-loop accuracy. To
be exact, beyond the relevant two-loop FO corrections and the corresponding resummation
of large logarithms through NNLL, our result includes the three-loop FO corrections and
the resummation through N°LL w.r.t. the strong coupling. This hybrid result is in principle
reliable at arbitrary SUSY scales.

The size of terms of O(v?/M3) was estimated by comparing our hybrid calculation with the
EFT calculation. We find that these terms are smaller than 0.25GeV as long as Mg 2 1 TeV,
which is the region where the degenerate-mass scenarios can be compatible with the
experimental value for the Higgs mass [64]. Combining this with the fact that for Mg 2 1.0-
1.3TeV the EFT calculation has a smaller uncertainty than the FO calculation (see also
Ref. [70,126]), we conclude that an EFT calculation provides an excellent approximation in
the MSSM for degenerate-mass scenarios, when neglecting terms of O(v?/M32).



5.3 CONCLUSIONS

The estimated uncertainty of our hybrid result is below 1GeV in most of the relevant
parameter space. Since we use the three-loop results of Ref. [15,16] for the FO Higgs mass,
which are based on approximations in various SUSY mass hierarchies, the uncertainty
becomes a bit larger in specific regions of the SUSY parameter space, where none of the
available approximations matches. The same holds for split SUSY spectra, where the EFT

results used in our calculation become inaccurate.

Overall, we have studied the FO, the EFT, and the hybrid approach and discussed their
benefits and drawbacks concerning different parameter regions in the previous three chap-
ters. Using the implementation of all required parts into the Himalaya library, which has
been accomplished as part of this thesis, we were able to elevate all three approaches to the
three-loop level in the DR’ scheme. In addition, Himalaya facilitates the inclusion of these

three-loop contributions into spectrum generators.
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Part II

HIGGS STRAHLUNG IN THE STANDARD MODEL AND
BEYOND

This part is focused on the Higgs-Strahlung process at the LHC. It is one of
the four most relevant production channels of the Higgs at the LHC and, in
addition, provides unique features that could help detecting potential New-
Physics phenomena. Specifically, we exploit a relation between the final state
gauge bosons to study a particular observable based on ratios of inclusive and
differential production cross sections. Further, we discuss recent progress in the
inclusion of quark-mass effects to a process that can be found exclusively in

Higgs production associated with a Z boson using novel algebraic techniques.






MEASUREMENT AND THEORY PREDICTION OF VH PRODUCTION

The relevance of Higgs production associated with a vector boson V, where V € {Z, W*},
was first described in Ref. [127]. This process is also commonly denoted as Higgs Strahlung.
Although it has a lower cross section at hadron colliders compared to other Higgs production
channels like gluon fusion (g¢ — H, cf.[128]), its additional final state particles originating
from the decay of the associated vector boson are able to yield clean signatures in a detector.
The discovery of the Higgs-Strahlung process has been achieved in combination with the
discovery of the Higgs boson decaying into a pair of bottom quarks[129,130]. The latter
yields a perfect agreement with SM predictions within the given uncertainties. Although the
Higgs boson decays prevalently into bottom quarks [131], its signature is contaminated by
the dominating background of gg — bb events and only the unstable vector bosons allowed
for a discovery. The V boson decays that are of foremost interest can be categorized into
three channels:

* (-lepton channel: Z — vv,
* 1-lepton channel: W — (v,
* 2-lepton channel: Z — ¢/,

where /¢ denotes a charged lepton and v a neutrino. The leptonic decay modes lead to
clean signatures that can be efficiently triggered on, while rejecting most of the mutli-jet
backgrounds. Already at the Tevatron the CDF and DO collaborations reported an excess
of events in VH associated production in the mass range of 120-135GeV, with a global
significance of 3.1c [132], just four days before the Higgs boson was discovered at the
LHC [2, 3]. Further evidence for VH production was announced by ATLAS and CMS in

Refs. [133,134] before its discovery was announced in Refs. [129, 130].

From the theoretical perspective, representative types of Feynman diagrams for VH produc-
tion in the SM are depicted in Fig. 14. One distinguishes between the Drell-Yan (DY) type

v

qa Y

A

Figure 14: Representative Feynman diagrams for V H production at hadron colliders. The first diagram from
the left depicts the DY process, the second and third the gluon-initiated non-DY ZH production, and the
fourth the non-DY initial bb ZH production.
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processes (left diagram of Fig. 14) and non-DY type processes (second, third, and fourth
diagram from the left of Fig. 14), where the latter type only exist for ZH production. Note
that the gluon-initiated process is already loop induced. The inclusive cross section of VH
production is thus decomposed as:

oM = o + ooy (6.1)

where, by definition, the DY component can be factorized as

dF
O'DY = /dq ov(q % + AO’EW , (6.2)
with oy being the production cross section of a V boson via the DY process and I is the
decay rate of V to the VH final state. In Egs. (6.1) and (6.2), the electroweak corrections AUEW
are understood to be fully attributed to o5, i.e. oYH |, does not receive any electroweak

corrections by definition.

At LO in perturbation theory, one can relate the DY-like terms for WH and ZH production
by changing external parameters like the gauge boson mass, the gauge coupling, or the
parton distribution function (PDF), all of which can be determined independently through
other processes. The effect of higher orders on this similarity between the DY components
is studied in Chap. 7. In addition, it is plausible that any New Physics respects the gauge
symmetry between the W and the Z boson, and thus preserves the relation between the DY-
components for WH and ZH production. For example, in a general 2-Higgs-Doublet-Model
(2HDM), whose Higgs sector is comparable to the MSSM, the ratio of the DY components for
WH and ZH production is the same as in the SM.

In the non-DY term of Eq. (6.1) (¢Y1 ) the dominant contribution in the SM is due to the
gluon-initiated process ¢¢ — ZH, denoted by 0g,. The latter is well-defined considering
QCD only since it is separately finite and gauge invariant to all orders of perturbation
theory. Despite the fact that in the SM the bb-initiated contributions, denoted by ¢y, are tiny
compared to 05 or oy, they may become important in BSM theories. Note that in 0y the
bb-DY component is not included. None of the non-DY processes have a correspondence in

WH production in the SM. Therefore, we assume o4

v = 0 throughout this thesis.

The current theoretical precision is quite different for the two components of Eq. (6.1). While
oyl is known through NNLO QCD [135-140], i.e. O(a2), and results at threshold are even
known up to N®LO QCD[141, 142], the current theory prediction for the total inclusive
cross section of 0y, is based on the full LO calculation, which is also of O(a?)[143, 144].
At this order, 0g¢ amounts to about 6% of the total ZH cross section for My = 125GeV in
proton-proton (pp) collisions at a center of mass energy /s = 13 TeV. A full calculation of
the relevant NLO corrections, i.e. O(a2), is not yet available, but in Chap. 8 we present recent
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progress on the inclusion of quark-mass effects. However, assuming that it depends only
weakly on the top-quark mass, the NLO K-factor,

oNLO(M; — o0, M, = 0)
oMy — 00, My =0)

(6.3)

has been found to be of the order of two, which increases the gluon-induced contribution to
the total cross section accordingly [145, 146]. Higher-order terms in 1/M; were evaluated
in Ref. [147], but their validity is restricted to an invariant mass Mzy of the ZH system of
Mz < 2M;. Concerning differential distributions, the amplitudes for 2- and 3-parton final
states including the full quark-mass dependence have been merged in order to obtain a
reliable prediction at large transverse momenta of the Higgs boson [148,149].

For associated ZH production, additional contributions to the DY process at O(a?) exist,
where a Z boson couples to a closed top- or bottom-quark loop. Their impact on the inclusive
cross section is below 1% [150]. The extra non-DY component 5, which is known up to

O(a?) in massless QCD [151], is about three orders of magnitude smaller compared to o

For o¥1, also electroweak corrections are known [152-154], while they are unavailable for any
non-DY contribution in the SM at the time of this writing. As a consequence, the estimated
theoretical accuracy due to scale variation for the DY-like component is at the sub-percent
level, while it reaches up to about 25% for og, at NLO. Including NLL resummation, this
reduces to about 7% [146]. The PDF uncertainties are at the 2% and 4% level for the DY and the
0¢¢ component, respectively, employing the PDFALHC15_100 [155] PDF sets. Implementations
including NNLO with parton shower matching have been presented in Refs. [156, 157].

For illustration, Fig. 15 depicts the DY and non-DY contributions in the SM for ZH production

Vs=13TeV, Mpy =125GeV, M;=173GeV, PDF4LHC15_nnlo_160
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Figure 15: Transverse-momentum (left) and invariant-mass distribution (right) of ZH production at the LHC
in the SM divided into their contributions.
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including up to O(a?) corrections as distributions of transverse momentum of the Higgs,

pIT{, and invariant mass of the ZH system Mzp. The latter two are defined as:

pi = pfsing,

where p* is the four-momentum of particle x and the polar angle 6 is defined as in Ref. [133].
Fig. 15 is obtained by utilizing MCFM[140, 158, 159] for the DY and vh@nnlo [160,161] for the

M2, = (pz + pH>2 ,

non-DY component. Note that only LO QCD contributions for ¢ are included.

To set the contribution of WH and ZH production into perspective, Fig. 16 shows the same
kinematical distributions as Fig. 15, but compares the complete differential cross section, i.e.
the combination of DY and non-DY components, of the different final state vector bosons.
The results are obtained with MCFM at O(a2). Adding the W H and W~ H results into
approximately twice the contribution of ZH production. Additionally, the similarity of

the DY components is evident, whereas the non-DY components in ZH production are

subleading, but visible around the top-quark threshold.
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Figure 16: Comparison of complete VH contributions to transverse momentum (left) and invariant mass
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HIGGS-STRAHLUNG AS A PROBE FOR NEW PHYSICS

As already pointed out in the previous chapter, the DY processes in VH production provide
many similarities, whereas the non-DY-type contributions are exclusively present for the
ZH final state. This raises the question if there is a way of exploiting the symmetry of
DY induced production to be sensitive to any non-DY processes, which might hint to

New-Physics phenomena.*

Within this chapter, we try to answer this question by simulating a state-of-the-art analysis
used in the discovery of the H — bb decay. In Sect. 7.1 we start by motivating a particular
ratio and present the effect of different extensions of the SM on the latter. Afterwards, in
Sect. 7.2, a modified ratio is defined, that allows for an extraction of any non-DY type contri-
butions by relating measured quantities to theoretical predictions. In Sect. 7.3 more focus is
given to possible sources of theoretical uncertainties, which leads to a rough uncertainty
estimate. This insight is followed in Sect. 7.4 by mimicking the analysis performed in the
H — bb discovery to estimate the significance of any non-DY contributions. These findings
are then projected to the High-Luminosity-LHC (HL-LHC). The studies of this chapter are
based on Ref. [163], to which A. Papaefstathiou provided the Monte-Carlo simulation. Here,

we present an updated analysis using the results recently published in Ref. [129].

7.1 MOTIVATION

The gluon-initiated component reveals some interesting features which makes it particularly
suited as a probe for New Physics. First of all, it is loop induced, which introduces a peculiar
sensitivity to currently unknown particles that might couple the initial-state gluons to the ZH
final state. Secondly, the dominant contribution in the SM is due to top-quark loops, which
lead to a characteristic threshold structure in various kinematical distributions of the cross
section. The application of appropriate cuts thus allows for enriching the ZH production
with gluon-initiated events, as pointed out in Ref. [164]. Through the box diagrams of Fig. 14
the cross section also receives a dependence on the top Yukawa coupling, which is amplified
by the fact that the box diagrams interfere destructively with the triangle diagrams of Fig. 14.
Another interesting feature which appears in many BSM models are s-channel contributions
due to additional Higgs bosons [165]. They either add to the triangle-component of g, or

We note that, at the level of the actual DY process of virtual V production, pp — V*, the symmetry between
V = W and V = Z has been used before as an alternative way to measure the W-boson mass at hadron
colliders [162].
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they occur in the non-DY-type process 0;,;. Many of such New-Physics effects on 0y, as well
as 05 can be investigated with the help of the program vh@nnlo [160,161].

Deviations from the SM, like modified Yukawa couplings, new colored particles, or an
extended Higgs sector, are thus likely to manifest themselves in the ZH final state through
the gluon- or bb-initiated component of the cross section. Apart from direct measurements,
these effects could be enhanced if one considers a suitable observable. An appropriate choice
might be given by the ratio

ZH doH /dx
ZH
Rov(x) = doZ /dx

S|

REY (7.1)

o5
for a distribution in a specific kinematic variable x. For illustration, Fig. 17 shows the impact
of New Physics (a non-SM-Yukawa coupling in this case) on Eq. (7.1) for x = p}!. Indeed,

this observable exhibits a significant dependence on New-Physics effects. Note that the local
minimum at p ~ 230GeV for y; = 2y g is an effect from the box-triangle interference. As
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Figure 17: The pH spectrum (left) of the Higgs boson produced through the gg- and bb-processes for different
values of the top and bottom Yukawa couplings and their impact on REY (right).

input for all numerical studies, we set

Vs =13TeV, My = 125GeV, M; =173GeV, (7.2)

and use the PDF4LHC15_mc PDF sets [155] with as(Myz) = 0.118 unless otherwise stated.

In addition to p¥, we find that the invariant mass Mzy of the ZH system is particularly
well suited, since it reveals distinct features that allow to identify various New-Physics
models, especially when normalized to the DY-like ZH contribution. Examples for modified
Yukawa couplings are shown in Fig. 18, which include the effect of both ¢y, and ¢y, the

latter of which becomes relevant in scenarios with enhanced bottom Yukawa coupling.



7.2 EXTRACTION OF NON-DRELL-YAN CONTRIBUTIONS FROM DATA

Experimentally, the invariant mass for the Mz system may be difficult to access, and other
observables such as the p& spectrum may be more advantageous. However, the general idea
of Eq. (7.1) is independent of the choice of x and the optimal observable is best determined
within an experimental analysis where all the systematic uncertainties are available.
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Figure 18: The invariant mass spectrum (left) of the Higgs boson produced through the gg- and bb-processes
for different values of the top and bottom Yukawa couplings and their impact on RE! (right).

As already pointed out in Ref. [164], the contribution of g, to the total cross section

is typically rather small in the kinematical region below the top-quark threshold. The

distribution above 2M;, on the other hand, distinctly reflects the impact of New Physics.

Specifically, this region crucially depends on the top Yukawa coupling, as shown in Fig. 18.

In addition, new heavy particles which contribute to the effective ggZH coupling might also
reveal extra threshold structures in Eq. (7.1) as a function of the invariant mass, as shown
using the example of a vector-like top-quark partner T in the left panel of Fig. 19. Additional
Higgs bosons which contribute through s-channel exchange lead to further features in this
spectrum, see the right panel of Fig. 18, which shows RZ for a 2HDM.2 The peak structure
is dominated by the bb — ZH process in this case (see also Refs. [161,163]).

7.2 EXTRACTION OF NON-DRELL-YAN CONTRIBUTIONS FROM DATA

The high accuracy to which the DY component is known theoretically suggests a simple
comparison of the experimentally determined ZH rate to the theoretical prediction of its DY
component in order to extract the non-DY part:

oH ot
non-DY — RZH 1= -1 ( )
o ZH DY oZH 73

DY by

2 Details of the implementation of these models can be found in Ref. [161] and the references therein.
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Figure 19: Impact on RE of a vector-like top partner T for different mixing angles (left) and a pseudoscalar
Higgs boson of the 2HDM (right).

with the DY-like cross section, (f%f{l, taken from theory, and the full ZH cross section o4

from experiment. Such an experiment/theory comparison suffers from potential systematic
uncertainties though, due to detector simulation, unfolding, and the like.

Here, we propose to analyze the data from Higgs Strahlung by making use of a very specific
feature for this process which has been alluded to in Chap. 6, namely, the similarity between
the ZH and the WH process. For this purpose, we define the double ratio

O'ZH/(TWH B RZIW

ZH | sWH — TZW °
Oby /O Rpy

RRY = (7.4)

Obviously, if all quantities are evaluated theoretically, it is R4Y = R, cf. Eq. (7.1). Here,
however, we suggest to take the numerator RV = ¢#1 /¢"H of the double ratio in Eq. (7.4)
from measured data. Despite the different final states for ZH and WH production, we expect
that a number of systematic experimental uncertainties cancel, in particular if the parameters
of the analyses for ZH and WH are aligned as much as possible. We focus more on these
uncertainties in Sect.7.4.

The denominator of Eq. (7.4), on the other hand, referred to as the DY ratio in what follows,
can be calculated within the SM with rather high precision, as will be discussed in Sect.7.3.
In addition, it can hardly be affected by any New-Physics effects, because of the strong
theoretical and experimental constraints on the electroweak gauge couplings (cf. Refs. [4,
131,166-168]).

We note that the comparison of WH to ZH as a probe for New Physics has been first
suggested in Ref. [165], where the 2HDM was considered as an example at the level of
total cross sections, partly with boosted topology. Here, we provide a much more elaborate

investigation of that proposal, on the basis of differential quantities and including an
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estimate of the expected experimental uncertainty through the analysis of a simulated event
sample.

7.3 THEORY PREDICTION AND SOURCES OF UNCERTAINTY OF THE DRELL-YAN RATIO

Before turning to the details of a full analysis, we study different contributions to the
theory prediction of R3Y and their corresponding uncertainties in this section. Hence, we
compare different orders in perturbation theory for QCD, electroweak, and initial photon
contributions and their impact on RZY’ for the fully inclusive as well as the fiducial cross
section. In addition, scale variations are used to estimate missing higher-order corrections.

The studied processes can be summarized as follows:
* pp— ZH — {1~ +bb,
 pp - W H — (7, + b,
 pp > WTH — Ty, + b,

where only the DY part for pp — ZH is included. We define the fiducial cross section

according to the cuts proposed in Ref. [131], namely
pl} > 15GeV, e <25, pr > 15GeV, 75GeV < my; < 105GeV, (7.5)

where pf. and 7, are the transverse momentum and rapidity of a charged lepton, respectively.
pt is the transverse momentum of the neutrino associated with W*H production and my is
the invariant mass of a charged lepton pair. The cut on my, only applies to ZH production,
of course. As we also consider the decay of the Higgs boson into a pair of b quarks, all jets
are clustered according to the anti-kr jet algorithm [169] with distance parameter R = 0.4.
The two jets emerging from the b quark pair have to satisfy the cuts
b-jet

pr > 25GeV, [Mpjet| < 2.5. (7.6)

Note that the clustering of jets is only considered in studies with MCFM since jet-clustering

algorithms are not implemented in HAWK [153, 170, 171].

The renormalization (Qr) and factorization scale (Qr) are equally chosen to the invariant
mass of the VH system for MCFM and to the sum of the pole masses of My and Mg for HAWK:

MCFM: Q= Qr = Qr = Myy, HAWK : Q= Qr = Qr = My + Mg (7.7)

QCD CONTRIBUTIONS. To quantify the higher-order QCD effects to RZy for both the
total and the differential cross section we utilize MCFM. As PDFs we choose the NNPDF30 [172]
sets with as(Mz) = 0.118 and consider all contributions up to NNLO, i.e. O(a2). The final
state leptons are selected as electrons and their corresponding neutrino.
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At the level of the total cross section, R4y receives corrections of only 0.2% at NLO, while
the NNLO corrections on top of that are at the per-mill level. This is quite remarkable as the
NLO corrections on the numerator and denominator in that ratio amount to 16%. The NNLO
corrections amount to less than 1% on top of that.

As a function of Myy, the NLO corrections on the DY-ratio are at or below the 1% level
without jet clustering, as shown in Fig. 20. Including NNLO contributions, the impact on the
DY-ratio is below the 1% level in relation to the NLO result. This holds for both the fully
inclusive as well as the fiducial cross section. Therefore, we neglect the NNLO corrections
to the DY process in the following and estimate the uncertainty due to uncalculated QCD

corrections to be less than 1% for the NLO prediction.

ZH/W+H, QCD corrections ZH/W~H, QCD corrections
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Figure 20: QCD corrections to the ratio RZY for (left) W = W+ and (right) W = W~ as a function of the
VH invariant mass. The lines in the upper parts of the plots show the LO, NLO, and NNLO QCD result.
The lower parts show the ratio of the NLO to the LO result.

Applying jet clustering with the anti-kt algorithm, the discussion from above does not
change qualitatively. Comparing NNLO and NLO QCD corrections results to a comparable
impact on RZY as without jet clustering, see Fig. 21. Note that the total cross section remains
unaffected by employing the anti-kr algorithm. As we give just a rough estimate on the
theoretical uncertainty incorporating QCD corrections, we do not include the effect of jet

clustering in our uncertainty estimate and postpone it to a more comprehensive analysis.

PDF uncertainties for the QCD contributions and scale variations have been estimated in
Ref. [163], resulting in uncertainties that are almost constant over the studied invariant mass
spectrum and below 1% at NLO, when the scales Qr = Qr were varied by a factor of two.
This low uncertainty is due to cancellations within RZY when assuming that the individual
uncertainties are fully correlated between the ZH and the WH process. This assumption is
justified from the identical form of the DY-like QCD corrections.
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Figure 21: Effects of jet clustering for QCD corrections to the ratio RZY for (left) W = W+ and (right)
W = W~ as a function of the VH invariant mass. The lines in the upper parts of the plots show the
NLO and NNLO QCD result. The lower parts show the ratio of the NNLO to the NLO result.

ELECTROWEAK CONTRIBUTIONS. Due to the different electric charge of W and Z
bosons and their different decay patterns, one may expect a larger sensitivity of the ratio

REY to electroweak corrections in comparison to the QCD effects. Indeed, employing HAWK to
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Figure 22: Electroweak corrections to the ratio RZY for (left) W = W and (right) W = W~ as a function of
the VH invariant mass. The lines in the upper parts of the plots show the LO, NLO electroweak result.
The lower parts show the ratio of NLO to LO.

study these effects, we find that they amount up to about 5% on RZY without considering
recombination of final-state leptons, see Fig.22. Compared to the QCD corrections, the
electroweak effects on RZY show a stronger dependence on Myyy, albeit in a continuous and
monotonous way.
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INCOMING PHOTON CORRECTIONS. An additional electroweak contribution is due
to photon-induced processes, yq — qVH, referred to as ¢, in what follows. Although o,
amounts to at most about 7% to the inclusive VH production cross section, its effect on the
My distribution of the ZH / WH ratio reaches the 20% level at Myy = 600 GeV, as illustrated
in Fig. 23 using the LUXqed17_plus_PDF4LHC15 PDF set[173]. Recent theoretical progress in
the determination of the photon PDFs[173] allows us to neglect this source of uncertainty
in our analysis, because the uncertainty on ¢, has been reduced significantly [174]. The
inclusion of both NLO EW and photon-induced corrections is usually performed by adding
correction factors 6y, x € {EW, v} to the tree-level DY cross section oy as op(1 + dgw +
) [153]. 4, is understood to be the correction factor for photon-induced contributions. A
variation of the electroweak factorization scale by a factor of two around the central value of

My + My changes dgw + 6, by less than 4% and would thus be invisible in Fig. 22 and 23.
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Figure 23: Incoming photon corrections to the ratio RZY for (left) W = W™ and (right) W = W~ as a
function of the VH invariant mass. The lines in the upper parts of the plots show the LO and LO
with incoming -y corrections. The lower parts show the ratio of photon-induced corrections to the LO
contribution.

7.4 NUMERICAL RESULTS

In this section, we study the double ratio defined in Eq.(7.4) and provide a rough estimate
of the uncertainty on R4V by combining the theoretical uncertainty on RZY with the
experimental one on R through

<5R§W>2 B (51{5@)2 . <5RZW>2 8)
Rﬁw Rl%l\/{v th RZW exp’




7.4 NUMERICAL RESULTS

where the subscripts indicate that the first term is obtained through a theoretical calculation
and the second through an experimental measurement. The quadratic sum of theoretical
and experimental uncertainties is justified by the low level of correlation between the two.
We assume total integrated luminosities for pp collisions at /s = 13 TeV of (a) £ = 36.1fb?,
(b) £ = 300fb~!, and (c) £ = 3000fb~!, corresponding to (a) the ATLAS luminosity un-
derlying the analysis of Ref. [133], (b) the end of LHC run3, and (c) the future HL-LHC
run.

We begin by outlining the details of our event simulation and their respective analysis in
Subsect. 7.4.1. In Subsect.7.4.2 and 7.4.3 we study the impact of our analysis on Rﬁw and
estimate the experimental uncertainty of Eq. (7.8). Afterwards, in Subsect. 7.4.4 and 7.4.5, we
turn to a quantitative study of RZ" including rough uncertainty estimates for Eq. (7.8) and

provide a significance to detect the gluon-initiated ZH production process.

7.4.1  Outline of the simulation and analysis

We construct a hadron-level simulation, including decays of the vector bosons and the Higgs

boson. As in Subsect. 7.3, we consider leptonic decays of the vector bosons,
Wt — €+1/g, W~ — {1, Z =00 p (7.9)

where ¢ € {¢, u}, and Higgs boson decays to bb pairs. The parton-level events for signal and
backgrounds are generated at NLO QCD using MadGraph5_aMC@NLO [175, 176] for all samples,
except for gluon-induced ZH production which is generated at leading order. To take into
account the NLO QCD corrections on g¢ — ZH, we apply a global K-factor of K = 2[145,147].
For all samples, we employ the PDF4LHC15_nlo_mc PDF set[155]. Parton showering as well
as hadronization and modeling of the underlying event is performed within the general-
purpose Monte-Carlo event generator HERWIG 7[177,178]. Since electroweak corrections

largely cancel in the double ratio R%", they can be neglected in our event simulation.

As background processes we consider pp — tf, pp — W*bb, pp — Zbb and single top pro-
duction. In this simplified phenomenological analysis, we do not consider any backgrounds
of jets emerging from u, d, and s quarks, or gluons, which are mis-identified as b-jets, nor
those coming from mis-identified leptons. These events are expected to be sub-dominant
with respect to the irreducible backgrounds, as is indeed the case in Ref. [133], for example.
To approximately take into account the NNLO corrections on the pp — tf background, we
apply a global K-factor of K = 1.2[179].

Jets are reconstructed employing the anti-k7 algorithm, implemented in the FastJet pack-
age [180, 181] with distance parameter R = 0.4. The jet transverse momentum is required to
be larger than 20 GeV for central jets, i.e. |57| < 2.5, and larger than 30 GeV for forward jets, i.e.
2.5 < |n| < 5. Selected central jets are labeled as b-tagged if a b-hadron is found within the

jet. A b-tagging efficiency of 70% is considered, flat over the transverse momentum of the
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jets, to reproduce the efficiency of the experimental b-tagging algorithm of Ref. [133]. The
leading b-jet is required to have a transverse momentum larger than 45 GeV. The missing
transverse energy, ETS, is taken as the negative sum of transverse momenta of all visible
particles. Electrons and muons are subject to isolation criteria by requiring the scalar sum of
the transverse momenta of tracks in R = 0.2 around them to be less than one tenth of their

transverse momentum:

Z pgl_'acks <01 pg (7.10)
R<0.2

The 13 TeV ATLAS analysis of Ref. [133] considered three event selections, corresponding to
the Z — v7, the W — /v, and the Z — ¢/ channels. In our analysis, we only consider the 1-
and 2-lepton channel. All selections require exactly two b-tagged central jets, used to define
the invariant mass M,;. For the W — (v selections, events with more than three central and

forward jets are discarded.

In order to suppress top-quark-related background in the W — fv analysis, we set a cut (see
below) on the reconstructed top-quark mass .. The latter is calculated as follows. First,
the neutrino four-momentum is reconstructed by assuming that its transverse component is

equal to the missing transverse momentum, py = EM$, and then the quadratic equation
0\2 2
(p" +p")? = My (7.11)

is solved for the z-component py. Afterwards, the two resulting solutions are used to
construct two possible W four-momenta.3 These two W four-momenta are then combined
with the four-momentum of one of the b-jet candidates, and out of those combinations the
one with an invariant mass mp closest to the top mass of M; = 173 GeV is selected. A cut
on 1y, combined with an additional cut on the invariant mass of the bb system reduces
the background originating from V + bb signatures that emerge from tf and single top

productions significantly [133].
Further requirements on the 1- and 2-lepton channels are as follows:

Z =l
Exactly two same-flavor leptons with pr > 7GeV and |77| < 2.5, of which at least one
has pr > 25GeV are required. Due to charge misidentification of electrons, only for
muons an opposite charge is mandatory. The invariant mass of the two leptons is
restricted to 81 GeV < my; < 101 GeV and the transverse momentum of the Z needs to
be larger than 150 GeV.

W — lv:
Exactly one lepton with pr > 25GeV and || < 2.5 is required. The transverse

momentum of the W boson has to be greater than 150 GeV and the transverse missing

3 In the case of a negative discriminant in the quadratic equation, the EIT‘rliss vector is rescaled such that the

discriminant becomes zero. The rescaling factor on the two EF'® vector components is chosen to be the same.
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energy is enforced to be ERsS > 30 GeV in the electron sub-channel. Finally, cuts on the
invariant mass of the bb system and the reconstructed top mass are set to m,; > 75GeV
or myp < 225GeV.

The events passing the selection cuts are subject to a dijet-mass analysis, following closely that
of Ref. [133], where the boosted-decision-tree discriminant (labeled BDTyy in Ref. [133]) of
the multivariate analysis is replaced by the invariant mass of the b-tagged jets. This results
in ten signal regions, shown in the second and third rows of Tab. 12 in Ref. [133]. In our

analysis, only signal regions with p¥ > 150 GeV are included. We have further applied the

requirement 110 GeV < m,;, < 140 GeV, which efficiently selects events containing H — bb.

The expected number of events predicted by the Monte-Carlo level analysis at the selection
level are similar to those of Ref. [133].

7.4.2 Impact of the hadron-level analysis on the Drell-Yan ratio

To estimate the impact of the hadron-level analysis on the DY ratio defined in Eq. (7.1), Fig. 24
compares the hadron-level prediction of the ratio RZY after analysis cuts to the parton-level
prediction. The parton-level prediction is obtained from the truth-level W and Higgs boson
momenta, whereas the hadron-level curve is constructed through the combination of the
reconstructed four-momenta of the W boson and the Higgs boson. For the W boson, a
random choice is made between the two solutions for the z-component of the neutrino
momentum. Fig. 24 shows that this ratio is only moderately affected by the analysis and can
be thus calculated fairly reliably within perturbation theory for the inclusive cross section. It
is conceivable that the analysis could be modified appropriately to preserve more closely
the parton-level form of RZY.

0~5 T T T T

—— Analysis level

——=- Parton level (NLO)
04F 4

0.3 4
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Figure 24: Comparison of the hadron-level to the parton-level analysis on REY. The data is taken from [163].
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7.4.3 Calculation of experimental uncertainties

The experimental ratio R is evaluated from

dN41 dNM - leflég

dNWH - dN’ —dNf,

R = (7.12)

where dNX and ngig, with X € {/, ¢l}, represent the total number of events and the
number of background events per bin, with an Xbb final state, respectively. The uncertainty
due to background subtraction will be included in the estimate of the overall systematic
uncertainty. The statistical uncertainty on R?V originating from the expected total number
of collected event samples is given by

(SRZW 2 IR 2 i ORZW 2 s
<sz>stat.: <a(dNM)) §(dN ) + (8(dN”)> 5(dN) ’ (713)

If we assume the expected number of events in each bin to be large enough, then dN* is
Gaussian-distributed with uncertainty §(dN*X) = vdNX, yielding:

<5RZW>2 B AN . dN?

(7.14)

We define the systematic uncertainty on R?" to include all uncertainties that contribute to
its experimental measurement. A precise determination of these systematics would require
a comprehensive experimental analysis that takes into account all the correlations between
the different contributing components. In this work, however, we content ourselves with
an estimate of the uncertainty derived from the separate ZH and WH signal strengths
of Eq.(7.15), presented in the ATLAS analysis of Ref. [129] which uses the same cuts as
Ref. [133]:

pazi = 1201033 (stat) T34 (syst.),

(7.15)
. 0.38

pw = 1.08107 (stat.) o3y (syst.) .

The systematic uncertainty of these results includes all sources of experimental nature,
related to the background- and signal-Monte-Carlo simulation and data-driven estimates,
and to the finite size of the simulated samples.

We assume that the (symmetrized) systematic uncertainties (& ‘uVH)Syst, can be propagated
directly to the experimental ratio defined by Eq. (7.12), and thus to the double ratio by

<5Rg~

2
RZN ) = (5VZH>§yst. + (5VWH)§yst. —2paw (JVZ}{)SYS’[.((S,MVVH)S}IS’L
R syst.

(7.16)
= 0.046 +0.130 — 0.155 pz,
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where pzy parameterizes the correlation of the systematic uncertainties between ZH and
WH production. In the next section, we present results for R4" assuming different values of
pzw and luminosities for integrated quantities.

7.4.4 Semi-inclusive results

Tab. 2 shows the results for no correlation (pzv = 0), 50% correlation (pzv = 0.5), and

full correlation (pzy = 1) for different luminosities and kinematic regions.* The statistical

Table 2: Numerical results for the double ratio RZN and the associated statistical and systematic uncertainties,
obtained by mimicking the analysis of Ref. [133]. We assume that restricting My does not effect the
systematic uncertainty.

stat. (£/fb 1) syst. (pzw)
RV | 36.1 300 3000 0 0.5 1

all My | 149 | £090 =£0.31 =£0.10 | £0.63 £0.47 =£0.22
restricted Myy | 1.55 | £1.08 +£038 +0.12 | £0.63 +£0.47 =+0.22

uncertainty is evaluated for three values of the integrated luminosity (£ = 36.1, 300, and
3000 fb~1). From the hadron-level selection described in Subsect. 7.4.1, it has been found that
the analysis of Ref. [133] favors events with Myy 2 350 GeV. Furthermore, we find that, in
the present analysis, the gluon-induced ZH production process contributes substantially
up to Myy ~ 650 GeV. Therefore, we also present results where the events are restricted to
350GeV < My < 650GeV in the second line of Tab. 2. Note that only the signal regions
with p¥ > 150 GeV are included. Beyond enhancing the g¢ — ZH process contribution, this
also ensures that the 1-lepton and 2-lepton analyses select similar phase space regions so
as to facilitate the cancellation of systematic uncertainties in the ratio. Due to the present
rudimentary treatment of systematic uncertainties, these are only considered inclusively,
and thus assumed unchanged by this restriction on the Myy range. Future experimental
analyses, which exhibit information on the correlations between systematics, should be able
to provide a more differential estimation.

As expected, at luminosities that are projected for the HL-LHC (3000 fb~1) the statistical
uncertainty decreases significantly. Further studies on the correlation of systematics and
a more tailored analysis would help to decrease the systematic uncertainty as well. The
restriction on the invariant mass of the VH system only affects the statistical uncertainty
mildly.

An earlier version of these results, based on lower statistics of our simulation, has been presented in Ref. [182]
and with full statistics in [163].
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From the numbers of Tab.2, one may evaluate the significance s to which the non-DY
component can be observed through

7H ZN ' '
b KR JORE R+ KR "

For £ = 3000fb ™!, we thus find that the gluon-initiated component for ZH production as
predicted by the SM gives only a 2.2¢ effect for the restricted Myy sample assuming full
correlation of the systematic uncertainties between ZH and WH production. In case the
systematic uncertainties can be decreased down to half the current value, the significance
increases to 3.40. Note that these projected significances are slightly improved in comparison
to Ref. [163] due to the reduced systematic uncertainty of Ref. [129]. Considering the fact
that New-Physics models typically enhance the gluon-initiated component, a dedicated
experimental analysis which is tailored to isolate this component and optimized for the
ZH /WH ratio measurement therefore seems appealing.

Let us close this section by comparing these results to the direct extraction of the non-
DY component from R as sketched at the beginning of Sect.7.2. In this case and for
L = 3000fb", the statistical and systematic uncertainty is given by

(6rZY) =014 (RE 1)  and  (6RE]) =RE! Gum)yy .,  (19)

stat. syst.

respectively, if we follow the analogous reasoning as above. Using our central value for
the double ratio in the restricted-Myy region for RZY, this leads to a signal significance
of 1.60. Assuming that the systematic uncertainty can be reduced by a factor of two, the
significance for RE # 1 increases to 3c. Comparing this to RZ", we find that the direct
measurement of RZ is competitive as long as the correlation between the systematic ZH
and WH uncertainties is smaller than about 85%, i.e. roughly the value of pzy where the
correlation term in Eq. (7.16) cancels (5yWH)syst. At this point it is important to keep in
mind that, as argued at the beginning of Sect. 7.2, we also expect significant contributions
to the uncertainty from the theoretical input to RZ, while they should be negligible for
RZH. This means that already a significantly lower ZH/WH correlation should lead to an
improved extraction of the non-DY contribution by using the double ratio RZ".

7.4.5 Differential results

In this section, we turn to differential results of R4V using the Myy distribution. Fig. 25a

demonstrates how an experimental measurement would look like, assuming that a gluon-
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initiated ZH production exists in the measurement at the level of the SM prediction. The
double ratio R%" is then given by:

ZH

dN
RV =1+ 5 (7.19)
dNZ

Fig. 25a also shows the theoretical parton-level distribution as blue dashes, where no cuts are
applied. The theoretical prediction and experimental expectation are in good agreement in
this range of invariant masses of the VH system. Note that the ATLAS analysis of Ref. [133]
was not constructed to detect the gg — ZH component. It is thus conceivable that an analysis
can be devised to increase its contribution to the total ZH production with respect to the

parton-level prediction. Fig. 25b shows the resulting fractional uncertainties originating from

Vs =13TeV, L =3000fb~!
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Figure 25: (a): Hadron-level result of the differential double ratio RZY in comparison to the parton-level
result. The size of the uncertainty bars indicates the total theoretical and statistical uncertainty as given
by Eq. (7.8). (b): Theoretical uncertainty (upper panel) and experimental uncertainty (lower panel) as
defined by Eq. (7.8). The data is taken from [163].

theory or data statistics as a function of the VH-system’s invariant mass. The upper panel
shows the theoretical uncertainty, i.e. the first term in Eq. (7.8), obtained by considering the
scale and PDF variations after applying the hadron-level analysis. In the lower panel, the
error bars show the total uncertainty as dictated by Eq. (7.8), i.e. the combination of the
theoretical and statistical uncertainties for an integrated luminosity of £ = 3000 b1, but
excluding experimental systematic uncertainties. We refrain from assessing the latter as
their differential behavior would be challenging to predict at this stage. It is evident that the
statistical uncertainty originating from the equivalent data sample size for an integrated
luminosity of £ = 3000 fb~!, dNX, dominates over the theoretical uncertainty.
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7.5 CONCLUSIONS

In this chapter, we investigated New-Physics effects in the gluon-initiated Higgs-Strahlung
process and demonstrated that the ZH invariant mass distribution provides a particularly
sensitive probe for physics beyond the SM. While the invariant-mass distribution below the
tf threshold, Mzy < 2M;, remains rather unperturbed and thus may serve as a gauge for
the experimental data, all New-Physics effects studied here can be clearly identified, and to
a large extent even distinguished, by the kinematic region above that threshold. Recall that
the low-Mzy region is also under fairly good theoretical control due to existing higher-order
perturbative calculations in the large-M; limit[147].

Mimicking the phenomenological analysis of Ref. [133] at the hadronic level, we find that
the SM 0, component can be established at the ~ 3.40-level at the HL-LHC by comparing
the experimental data to the theory prediction for the ratio of DY-like ZH production to WH
production in the one- and two-lepton channels. We found that the estimate of systematic
uncertainties becomes the limiting factor for the measurement, highlighting the importance
of a detailed investigation of systematic effects, and potentially an optimization of the
experimental analysis towards the extraction of this ratio from data. However, including the
zero-lepton channel and optimizing the current analyses for the g¢ — ZH process would

most likely allow to reveal an O(50)-level signal.

Nonetheless, in order to uniquely establish New-Physics effects from this method, the
theoretical control of the g¢ — ZH component needs to be increased further, for example
by including SM top-mass effects at NLO QCD. Therefore, the next chapter is dedicated to
achieve progress on incorporating quark-mass effects at NLO QCD for gluon-induced ZH
production. Additionally, novel algebraic techniques and their implementation are presented,
which ease the computational complexity of comparable calculations.



TOWARDS QUARK-MASS EFFECTS IN GLUON-INDUCED ZH
PRODUCTION AT NLO QCD

The two-loop QCD corrections to the gluon-induced ZH production have been calculated in
Refs. [145,147] in the limit of an infinitly heavy top-quark mass while setting the bottom-
quark mass to zero. Using these approximations, it was shown that the two-loop results
enhance the gluon-initiated process by roughly 100% and lead to a K-factor of K ~ 2[145,
147]. However, following the analysis of the previous chapter, these approximations are not
sufficient if one tries to search for New-Physics effects using the double ratio defined in
Eq. (7.4) due to theoretical uncertainties. Therefore, we summarize the progress achieved
within this thesis in the calculation of the NLO QCD, i.e. O(ag), corrections incorporating

quark-mass effects in this chapter.

For a full NLO QCD calculation, which is part of the hadronic N3LO calculation, real and

virtual corrections that contribute to O(a2) are needed. Thus, the required ingredients are:

1. Leading-order (one-loop) amplitude A1y (as) with a gg initial state, where A, depicts

the amplitude at n-loop level,

2. Interference of the one-loop amplitude with its virtual corrections at the two-loop

level,

Aip(as) - Az (a2), (8.1)

3. Real corrections at the one-loop level with 47, q¢, §g, and gg initial states.

Within the scope of this thesis, we only focus on virtual contributions and exclude any
one-particle-reducible two-loop subgraphs. At the current stage, we do not aim for a
complete result including renormalization and the calculation of master integrals, but rather
concentrate on the reduction of integrals occurring in the amplitude to a set of master

integrals (cf. Sect. 8.5) by keeping intermediate steps as general as possible.

The remainder of this chapter is structured as follows. We start by summarizing the setup of
the calculation followed by a brief interlude of finite-field-interpolation techniques, which
have been developed during this thesis and are essential for this calculation. This chapter is
closed with an overview of recent progress, which includes an almost complete reduction to
a set of master integrals. We stress again that the results obtained in this chapter are still
incomplete at the time of this writing and that we only aim to provide a proof-of-principle
study concerning the reduction of Feynman integrals of comparable complexity using

functional-interpolation techniques over finite fields.
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8.1 FEYNMAN DIAGRAMS AND GAUGE CHOICE

The LO contribution to gluon-induced ZH production is already loop induced and, in a

general Rz gauge, three classes of Feynman diagrams, shown in Fig. 26, contribute. On the

(a) (b)

9 999999999999099999.

Y
N

qa y

9 99999999999999998 “————®----------—--- H
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Figure 26: The three classes of Feynman diagrams that contribute to the LO amplitude of gluon-induced ZH
production. Fig. 26a and Fig. 26b differ by the intermediate particle, which can be a virtual Z boson, Z*,
or a Goldstone boson ¢z. The loop mediator is a quark labeled g.

one hand, there are one-particle reducible diagrams (Fig. 26a and 26b), in which a triangle
quark loop mediates between the incoming gluons and either a virtual Z boson, Z*, or a
neutral Goldstone boson ¢z. On the other hand, different types of box-quark loops (Fig. 26¢)
contribute in addition. Since diagrams like Fig.26b and 26c involve the quark Yukawa
coupling, only heavy quarks have to be considered for these contributions. For diagrams
like Fig.26a one also needs to only contemplate third-generation quarks due to Furry’s
theorem [183], which leads to a cancellation of the vector coupling in the sum of diagrams.
Additionally, the axial-vector coupling vanishes when summing over mass-degenerate

isospin doublets.

To further simplify the calculation, as done e.g. in Ref. [145], one can utilize the consequence
of the Landau-Yang theorem [184, 185], which forbids the decay of a massive spin-1 vector
particle into two massless spin-1 vector particles. More precisely, the vertex function V
describing Fig. 26a,

M1

YHitiaks —




8.1 FEYNMAN DIAGRAMS AND GAUGE CHOICE

vanishes to all orders in perturbation theory, when contracted with its corresponding
polarization vectors. Thus, by noting that the sum over the polarization modes of the Z
boson is the same as its propagator in Landau gauge, ¢z = 0, all contributions of diagrams
like Fig. 26a vanish. For internal gluons, emerging at the two-loop level, we use the Feynman
gauge, o = 1.

The virtual NLO QCD contributions of interest for this work are two-loop diagrams based

on Fig. 26. A few representative diagrams of the latter are depicted in Fig. 27. To generate all

J \999999999999999094 Z G 99999099099099999.9 Z
oz (\J’rf“
q4 A 5 C®-------- N
G 99999999999999994 H G 990999999999999994 H
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Figure 27: Representative Feynman diagrams that contribute to the two-loop virtual corrections of gluon-
induced ZH production.

possible diagrams, we utilize the qgraf package [186]. The latter does not only generate all
Feynman diagrams, but also calculates the required symmetry factors and signs associated
with closed fermion loops. Removing diagrams that involve Z propagators, the number
of diagrams generated by qgraf at the one-loop level is eleven and increases to 188 at the

two-loop level only considering contributions of O(as) and O(a?), respectively.

After all Feynman diagrams have been obtained, the Feynman rules have to be inserted. We
employ the tool q2e [187,188] for this task. g2e splits the diagrams into a QCD-color factor,
which will be later processed by the FORM[189] package color[190], and a part dependent on
the momenta. Since the color factorization is impossible for diagrams that contain four-gluon
vertices, we use the well known technique of introducing an auxiliary scalar particle ¢." The
Feynman rule of the four-gluon vertex can be constructed by the sum

1 For the Feynman rules of o we refer to App. A.
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which obviously increases the number of Feynman diagrams, but the color factor can be
factorized. Note that in the 188 diagrams at the two-loop level additional contributions due
to the o particle are already included.

8.2 AMPLITUDE AND TENSOR REDUCTION

To write down the generic form of the amplitude for the gluon-induced ZH production, we
choose the gluon momenta, q’f ! and qu, as well as the momentum of the Z boson, qé‘S, as
incoming. Their polarization vectors are labeled as €, (41), ezz (92), and €, (g3) for the two

gluons and the Z boson, respectively. The amplitude of interest can be written as

iA = e, (q1)e), (q2)eu (q3)07 Y L THIeH, (8.4)
q

where we sum over the color indices a,b = 1,...,8, and quark flavors q. I, = j:% is the third
component of the weak isospin of the quark g and 7#1#2#3 is a polarization tensor, which
will be derived below. The kinematic invariants of this process are defined as

s=(m+q)?, t=@m+qg), wu=(@+qp)? z=4¢, h=(@@+qp+p), 65
where z = M% and h = M%{. In addition, momentum conservation leads to the identity
s+t+u=z+h. (8.6)

As already mentioned in Sect. 8.1, as a consequence of charge-conjugation invariance, the
Z boson couples only axially to the internal quark loops. As a result, any contribution
from a mass-degenerate weak isodoublet of quarks vanishes. Thus, we consider only third
generation quarks, namely the top and bottom quark. Their mass is labeled as M, with

q € {t,b}.

The polarization tensor is uniquely defined by the external vector bosons and can be
decomposed into a basis of Lorentz structures and scalar form factors. Note, however,
that there exist further methods in the literature like Ref. [191], for example, which use

projections onto physical helicity states.

For three external vector bosons, of which one contributes only with an axial coupling, and
one scalar, we can specify four different kinds of Lorentz structures as building blocks for
the polarization tensor 7 #1#2#3,

elibaati | olittjgheiifads q;‘femmnqm, qffqzleﬂm%%%, (8.7)
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where the indices 7, j,k,1,m,n,0,p € {1,2,3} are mapped such that the Levi-Civita symbol
does not vanish. Note that we use the shorthand notation

61”11112‘13 — evwaq1,yq2,pq3,a (88)

0123

with €% = +1. All possible non-zero index combinations lead to three terms for the

first, three terms for the second, 27 terms for the third, and 27 terms for the fourth Lorentz

structure of Eq. (8.7). These 60 structures are accompanied with scalar form factors ay, . . ., deo.

However, one can exploit symmetry relations between these a; = d;(t,u,z,h, Mf/) to further
reduce the size of the form-factor basis. To remove redundancies, we first utilize the Schouten
identity in four dimensions,

g*Berdrl — ¢ (8.9)

and re-combine the coefficients of the remaining Lorentz structures, which are linear

combinations of 4; and kinematic invariants, to new form factors labeled a; afterwards.

Applying Eq. (8.9) iteratively leads to the following decomposition of the polarization tensor
T Hpalis.
THHES = gy (F,u)el 2P0 L gy (F,10)eM112M% 4 gy (#u)eMhalst 1 gy (1, 1) glH2elsnts

el (a1, u)q! +%uwﬁ+wmw%1
as(t,u)qy' +ag(t,u)qy']
a10 ff“)lh +an(tu)gy' +an(tu)gs']
tu)gh” + ans(t, u)qh’)

)35° + ais (¢, 1)q5°]

as
+ el2Hamas
+ el2Hanis

+ eiN%2 [ay5(t,u) gl + ay

(
( (
a16(t, u)qh> + a17(
( 17+ axo(t,u)g5’]
(

9
g (o (1, )T 4 a1 et

4 ‘12
_|_ €V1V3q1q3 7 t, u
7 (8.10)

-+ €M1H3QM3 a

— o — o/ o/

+axs(t, )y gy el
+ gh et 19T [y, (t, u)q)” + ans(t, u)qh]
+ 4528 g (t,u)gh' + ax(t,u)q5']

1
+ ang (t, u)qh' gy € M92T 4 ang (t, u)qh> gy el 1920

Note that we have suppressed the dependence of the a; on the squared masses of the Z

boson, the Higgs boson, and the quark.

In addition, we impose Bose symmetry for the incoming gluons,

THk2Hs — TH2b1 , (8.11)

14292
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which reveals the following set of identities for the remaining form factors:

ap(t,u) = —ay(u,t), az(t,u) = —asz(u,t),

ag(t,u) = —aq(u,t), a3(t,u) = —ag(u,t),

aa(t,u) = —as(u,t), ays5(t,u) = —ay(u,t),

ar6(t, u) = a1 (u,t), a7 (t,u) = ap(u,t), (8.12)
ag(t, u) = app(u,t), ao(t,u) = ag(u,t),

ax(t,u) = ag(u,t), axp(t,u) = —an(u,t),

ax3(t,u) = —ans(u,t), ane(t,u) = —any(u,t),

ary(t,u) = —aps(u,t), ax(t,u) = —ang(u,t)

Hence, the total number of form factors reduces to 16, including permutations of ¢ and u.

Finally, by employing gauge invariance with respect to the gluons,

01,060, (02)€105 (93) THIH = €, (41) G260 (43) T2 = 0, (8.13)

we can establish a minimal basis of form factors for our calculation. The additional con-

straints given by Eq. (8.13) can be summarized as:

t, —t

ag(t,u) = 2a3(:'u) , ag(t,u) = —2a2(s ) —|—a7(t,u)ZT,

t —t
ag(t,u) = _2a3( /) , ay (t,u) = au(t,u)z ,

s s

ay(u, t) Z—u zZ—u (8.14)
a3(t,u) = ZT —ay(u,t) . a16(t, u) = app(u, t) _
t

alg(t, Ll) = 2(13(5,11) .

For convenience, we relabel the physical form factors occurring in Eq. (8.14) as follows,

a(t,u)
s

2

= filbw), a;=—fo, an=fs, 22 =f, (8.15)

where we have dropped the t and u dependence of f, 34 for simplicity. The remaining a;
that do not contribute to Eq. (8.13) due to transversality conditions for the vector bosons,

g€ (q) =q2-€"(q2) = q3- €(q3) =0, (8.16)
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are relabeled as a; = f;. Hence, the polarization tensor has the decomposition
s s
Tkl — [,eﬂmzﬂzqz _ P‘leuzusqlqz] tu) — [,eumzmm . P‘Zeﬂlmﬁhfh} ut
5 1 filtu) = |3 i A t)

[ ! z—t v
+ qé1+sq5”} €M% (g (b, u) + g3 fa(t 1))

+ |g5" + Z;quﬂ MY [, fo (1, 1) + g3 f3(u, 1)]

[S
+ Eeﬂlﬂzm% _ qgleyzﬂyh% + q’fze”””qm + gmﬂzemtilfh%] f4(u, t)

+ it et T2 fo(t, 1) — gh2el 1N f5 (u, t)
+ g M fy (1 1) + gl2eMan o (u, t) (8.17)
+ gl et £ (1, u) + gh2e 1IN fio (u, t)
+gh? [eM2nA3 £y, (b 1) — B2 £ (4, 1)]
gl e o110
i qﬂlqﬂzeﬂsqwz%fz (t,u) — qquﬂzeu3q1qzqsf24(u, t)
+ gl gh2 et e fos (t,u) — ghqht e N9 fos (u, 1)
(tu) —

1
+ qmqﬂseyzqwz&/afzs tu Vz }36141&71512113f28(u, t) ’

where gauge invariance and Bose symmetry with respect to the gluons is manifest. Eq. (8.17)
is in accordance with the findings of Ref. [143], but includes additional terms which were

dropped in the latter due to the transversality conditions for the vector bosons.

In order to compute the form factors that contribute to the cross section, f; 4, we need to
construct projectors to isolate each f;. In full generality, a form factor f; can be obtained by

applying a projector p; ;.. ,, with n Lorentz indices as

fi = Pipeeqes THH, (8.18)

where T is given by

Tt = Y gt (8.19)
j
and t;-‘ 11" is a generic Lorentz structure accompanied by the corresponding form factor fj-

The projectors p; ;... can be obtained with
pjfﬂl---?"n Etk/,“l/ Hn ]k ’ (8.20)

where the matrix tj; is defined as

tjk = t]‘%lll""yn tr (8.21)

M1 Pn
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For our calculation, we have to obtain projectors for the four physical form factors f; 4.
Therefore, we start by calculating the matrix ¢ for all 22 structures given in Eq. (8.17). The
entries of {j are rational functions in the kinematic invariants defined in Eq. (8.5). Using
the t; basis of Eq. (8.17) as defined by Eq. (8.19), we find that fip and f»3 result to zero after
contracting with any ¢#; thus being removed from ¢j. Additionally, the structures of fs, foa,
and f»5 can only be used to project to a combination of these three Lorentz structures. Since
we are not interested in any of the latter, we remove them from ¢; as well. Finally, for
the inversion of tj, we only need to consider the remaining 13 t;, namely #1,_9141521,22-
Note that we have suppressed the Lorentz indicies of the t; in this paragraph. We get a
total amount of 169 nonzero entries of tﬁ(l, which are calculated by utilizing finite-field-
interpolation techniques combined with the rational-reconstruction method (cf. Subsect. 8.5.3
and Subsect. 8.5.4). Instead of using explicit projectors for f; 4, we pursue a more general

approach, in which just one projector (py, ,;,) with generic coefficients (c;) is used:

9
Purpaps = Z thk,mmm + C14t14,‘u1y2y3 + C15t15,y1y2‘u3 + 21 t21,‘u1‘uzyg + 622t22,y1 Uo3 - (8'22)
k=1
Therefore, we only get one expression for the whole amplitude containing the full set of
relevant Feynman integrals. The explicit results can be found in App. B.2.

Considering only QCD corrections, the form factors themselves can be written as a perturba-

tive series in the strong coupling constant a5 as
filtu) = asAfiE (8 u) + aZA P (Eu) + O(a), (8.23)

where A fi”L( t,u) is the n-loop correction to the form factor f;.

In addition to the isolation of the form factors, we also have to consider the color structure
of the amplitude. As already shown in Eq. (8.4), the only color tensor with two indices in
the adjoint representation is the Kronecker symbol §?. This factor can be projected out by

b 5ab

P =N (8.24)

where N4 = N2 — 1 = 8 is the dimension of the adjoint representation.
Both projectors, py, i, and p*, have been implemented in a FORM-code.

Utilizing the procedures described in the next sections, inserting explicit expressions for
ci, and choosing unitary gauge, we find agreement with the result of Ref. [143] for T#1/2H3
at the one-loop level. Note that due to the usage of Eq.(8.9) in four dimensions terms
proportional to €, which arise in d = 4 — 2e dimensions, might not be captured by the tensor
decomposition of Ref. [143]. However, the set of integrals over loop momenta, which we are
aiming for, should remain unaffected. We have checked this by using all 60 possible Lorentz
structures of Eq. (8.7) as a basis in d dimensions, constructed projectors, and extracted the
integrals from the amplitude.
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8.3 TREATMENT OF 75

As we utilize dimensional regularization [192, 193] in our calculation to perform the analytic
continuation of the SM to a non-integer number d = 4 — 2¢ of space-time dimensions, we

have to take care of genuinely four-dimensional objects, like the Levi-Civita symbol,
Cpapapspia 1 e = 41, (8.25)

and the fifth Dirac matrix s,

. i
VVﬂ%%wwzimwmmWW“WW“- (8.26)

To deal with these objects in d dimensions, we need to define a prescription. In the literature
quite a few approaches have been suggested [194], to which we refer the reader. Our focus is
based on the prescription developed in Refs. [195-198], where we will treat the Levi-Civita
symbol merely as a symbol with d-dimensional indices. In this scheme, also referred to as
the Larin scheme, the axial-vector matrix is continued enforcing a specific order of the two
Dirac matrices by

i

YuYs = 3!614;11;42#3')’”1')”12')’113 . (8.27)

As an alternative one can also use

i
v5 = @6141}42#31447”17}127%7}[4 , (8.28)

when the axial-vector matrix is replaced by its symmetric Hermitian counterpart[199]

1
ww%ihﬂrﬂwﬁ- (8.29)

Both replacements lead in our calculation to products of two Levi-Civita symbols, which are

evaluated in terms of the d-dimensional metric tensor g}, as

M1 M1 M 251
8us  &ue 8ur  Sus
H2 H2 H2 "o
8us  8ue 8ur  Sus (8.30)
Ms M3 M3 _p3| " -3
8us  8ue 8ur  Sus
Ha Ha Ha M4
8us  8ue 8ur  Sus

6;“#2”3#46745!4%7”8 —

We have implemented both prescriptions, Eq.(8.27) and Eq. (8.28) with Eq. (8.29), into a
FORM-code following the steps summarized in Ref. [194]. In practice, traces in which a 5

occurs will be rewritten as

Ir (’)/Vl’YVZ e 7#75) ’ (8.31)
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using the cyclicity of the trace, and either Eq. (8.27) or Eq. (8.28) with Eq. (8.29) are used
to replace 75. Afterwards, d-dimensional trace identities for the Dirac matrices are used
followed by an evaluation of products of Levi-Civita symbols as given by Eq. (8.30). We have
checked that our implementation yields the same result for both replacements.

Note that the prescription discussed above comes with a caveat, namely the violation
of the axial Ward identity. However, the latter can be addressed by including additional
renormalization factors that restore this identity as studied in Ref. [197], for example. Since
we only present preliminary results in this chapter, we do not cover a proper renormalization

in the our calculation and focus on the reduction to master integrals in Sect. 8.5 instead.

8.4 TOPOLOGIES

As a next step, all occurring Feynman diagrams are mapped onto a smaller number of
generic user-defined topologies with the tool exp [187,188]. The required topologies by exp
are depicted in Fig. 28, where we do not distinguish different mass distributions at this
point. exp outputs FORM files, which are further processed with a modified version of the
FORM code originating from MINCER [200] and MATAD [201] to evaluate traces of Dirac matrices,
where, in addition, 75 is treated as described in Sect. 8.3.

After all traces have been evaluated, four-momentum conservation has to be inserted, the
tensor reduction has to be performed, and the scalar Feynman integrals have to be rewritten
in a form that is suitable for further processing. This procedure has to be performed for
each topology. Note that our setup is partly based on code developed in Ref. [202] and
modified to be applicable to 2 — 2 scattering processes. To express occurring integrals over
loop momenta to a commonly used notation, we want to rewrite them as scalar functions of

the form

Fidsd (b M} Aah) = [ 5o 6:32)

llr"'rlL Plul st PZIN ’
where L is the number of loops, id is an identifier that specifies the topology, and the inverse
propagators Py,..., Py are given by P, = k? — M? + i0 in Minkowski space. We denote
the set of integrals with the same id as an integral family. M; denotes the mass of the it
propagating particle with momentum k;, of which the latter is a linear combination of loop

momenta /; and external momenta g;. Each integral measure is defined as

1=/ (zdil)d- (8:33)

The scalar function F depends on the space-time dimension d, the set of masses {M,}, the

set of external momenta {g;}, and the propagator powers {a;} that take integer values.
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Figure 28: The 24 required topologies for gg¢ — ZH by exp at the two-loop level. The upper left incoming line
carries momentum qy, the lower left incoming line qo, and the upper right incoming line q3.

For a given value of L and number of external momenta E, N can be calculated by

(L+1)

L
N=EL+——F—, (8.34)

which is the number of possible scalar products involving at least one loop momentum.

These scalar products are used internally to express any occurring numerator structure in
terms of functions F. For our two-loop calculation, we have L = 2 and E = 3, which leads to
N = 9. Seven of the nine propagators are determined by the momentum flowing through
the lines of each topology and the mass distribution. The remaining two are fixed as scalar
products of external and loop momenta that are linearly independent with respect to the
propagators dictated by the respective topology. We have automatized this procedure by
first assigning a momentum flow through each line of a topology that respects momentum

conservation at each vertex. Afterwards, the two extra propagators have to be specified. Any
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possible scalar product is thus considered and tested whether it fulfills the criterion to be
linearly independent with respect to the already fixed ones.

After all propagators have been fixed, FORM code is generated that includes specific re-
placement rules obtained by considering all kinds of scalar products completed to squares.
These rules can then map any occurring numerator structure to functions F by raising and
lowering the propagator powers a;. Finally, all functions F are gathered as a list which can
be further processed by different approaches. Here, we only focus on integration-by-parts

(IBP) reductions introduced in the next section.

85 REDUCTION TO MASTER INTEGRALS

After expressing amplitudes as a sum of scalar integrals, usually a huge number of integrals
has to be computed. For the two-loop contributions of gluon-induced ZH productions,
roughly 15000 scalar integrals occur in the amplitude. Luckily, not all of these integrals are
linearly independent and they can thus be reduced to a smaller number of so-called master
integrals.

In Subsect. 8.5.1 integration-by-parts identities are introduced, which are used for the
reduction of single integral families to a set of master integrals. Subsect. 8.5.2 discusses
so-called sector relations, which, in addition, can be used to identify integral relations
among different integral families. However, when performed fully algebraically, the IBP
approach tends to become unfeasible for cutting edge calculations. Therefore, in Subsect. 8.5.3
and Subsect. 8.5.4, novel techniques developed within this thesis and partly published in
Ref. [203] are presented, which perform the reduction fully numerically over so-called finite
fields multiple times and process these evaluations by functional-interpolation algorithms.
Their benefits over conventional approaches, several optimizations, and hybrid algorithms
are discussed in Subsect. 8.5.5. These techniques are applied in Subsect. 8.5.6 to reduce the

two-loop integrals occurring in the amplitude of gg — ZH.

8.5.1 Integration-by-parts identities

In 1981, Chetyrkin and Tkachov [204,205] observed that by inserting the scalar product of
a derivative with respect to a loop momentum and another momentum into Eq. (8.32) the

corresponding integral vanishes in dimensional regularization:

d (., 1
i\ T a0 | =0, 8.
/11 I ally <q] Plﬂl . Pﬁ]]\}) ( 35)

.....
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where 17;‘ can either be another loop momentum or an external momentum. These identities
can be used to derive relations among integrals of different sets of {4;} within the same
integral family by explicitly evaluating the derivative,

0=Y c.F(id;d, {g;}, {M:}, {al™}). (8.36)

The coefficients in these relations, c,, are in general rational functions in d, { M;}, and {g;}.
For a given integral family, this leads in total to L(L + E) of such identities that are denoted
as IBP identities or relations.

After all relations for a given integral family are found, one is able to express the scalar
integrals occurring in an amplitude by a smaller subset of linearly independent integrals.
This procedure is called reduction and the elements of the set of linearly independent
integrals are known as master integrals. Since there is no unique definition of the term
master integral, a reduction algorithm has to specify some kind of order among the different
integrals. Usually, one chooses an order in which the master integrals are the easiest ones to
evaluate. Note, in addition, that the number of master integrals is finite [206]. Therefore, the

master integrals build a basis for a finite dimensional vector space of scalar integrals.

Currently, two different procedures employing IBP identities for a reduction to master inte-
grals exist in the literature. One of these two methods tries to find recursion relations, which
express an integral by easier integrals. This strategy has been successfully applied to contri-
butions for massless propagator-type diagrams [200,205,207], massive tadpoles [201,208], and
on-shell propagators [120,209,210] at the three-loop level. Usually, such recursion relations
have to be found manually, which makes them less attractive for sufficiently complicated
calculations. However, once these recursions are found, the reduction is straightforward.
A general algorithm to find these relations has been published in Refs. [211,212], which,
unfortunately, tends to become slow for complicated cases. Additionally, even if recursion

relations can be found, their application can often become slow due to their complexity.

A different approach was presented by Laporta in 2001 [213]. By inserting different integer
values of g; in the Eq. (8.36), one obtains a homogenous system of equations of integrals.
One can solve this system by Gaussian elimination and since it is homogenous, all integrals
are expressed by master integrals. As straightforward this algorithm might seem, one major
drawback is that one has to build huge systems of equations for state-of-the-art calculations,
which become expensive to solve both in terms of memory and runtime. Within this thesis,
we address this drawback by interpolation techniques (cf. Subsect. 8.5.5). There exist several
public implementations of the Laporta algorithm, AIR[214], FIRE [215-218], Reduze [219,220],
and Kira[221,222]. As the IBP relations are linear, the solution strategies thus only involve
addition, subtraction, multiplication, and division. Additionally, the coefficients of the
master integrals are rational functions in d, {M;}, and {g;}. This feature is of particular
interest as will be discussed in Subsect. 8.5.5 in more detail.
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For more details on IBP reductions, we refer the reader to Refs. [223,224] for a general

overview.

8.5.2  Sector relations

In addition to relations among integrals belonging to the same integral family, there also

exist relations among integrals of different integral families, which are called sector relations.

The sector S of a scalar integral given in the form of Eq. (8.32) is represented as the index set
of positive a;, i.e. {ila; > 0}. A subset of the latter represents a different sector, that is called
a subsector of S. One can interpret the concept of a sector and subsector also graphically,
in which one draws a generic diagram for the sector S, where its subsector is obtained by
shrinking its missing propagator to a point. Additionally, integral families that are related

just by crossing of external legs can be identified.

For illustration, let us consider the full sectors of two integral families shown on the
left-hand side of Fig.29. The subsector S; = {1,2,3,4,5} of family F; and the subsector

V)

w

/ -

/

F 6

I

wut

Figure 29: Sector relations between the two integral families F; and F,. The red lines denote propagators not
present in the considered subsectots.

S» = {2,3,4,5,7} of family F, have isomorphic graphs, see right hand side of Fig. 29.
Therefore, any integral belonging to S; of family F; can always be expressed as a linear
combination of integrals belonging to sector Sy and family F, and subsectors of S, or vice

versa. These types of mappings are called sector relations.

Sector relations can help to relate master integrals belonging to different integral families,
thus reducing the total number of master integrals. Further, the total number of integrals
that have to be reduced in the first place can also be decreased. A particular application are
Feynman integrals that belong to mirrored topologies, which can be mapped to each other.

We utilize the tool Reduze 2 [220] for the detection of sector relations and apply them as
FORM identities in our calculation.
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8.5.3 Interpolation of multivariate rational functions over finite fields

As the complexity of state-of-the-art multi-loop calculations pushes conventional computer
algebra systems (CAS) like Fermat [225] to their limits, a different approach that is actively
studied in Computer Science since decades, attracted the attention of physicist in the last
years [203,226—229]. It is known under the name of functional interpolation, where the main
goal is to interpolate the function of interest, i.e. getting a functional prescription from a set
of numerical data, also called probes, rather than performing all steps algebraically with a
CAS. Usually, no knowledge is provided from the function of interest, which is thus called
black box. The evaluation of the black box can be easily parallelized since, in practice, each
probe can be computed independently. In the context of IBP reductions this method was
proposed in Ref. [226] and further applied to scattering amplitudes in Ref. [227], where
the occurring functions are multivariate rational functions in kinematic invariants and the

space-time dimension d with numerical coefficients in Q.

Rather than over Q, functional interpolations are usually performed over so-called finite
fields, i.e. fields Z, with characteristic p, where p is a prime. Hence, all calculations are
carried out with module p avoiding number swell and reducing the memory footprint. The
multiplicative inverse in Z, is unique and can be determined using the Extended Euclidean

Algorithm [230].

Since the performance of these interpolations is crucially dependent on the used algorithms,
in this section we present a new algorithm developed within this thesis and partly published
in Ref. [203], that is capable of interpolating sparse, i.e. functions where the majority of
monomial coefficients is zero, and dense functions, i.e. functions where the majority of
monomial coefficients is non-zero, requiring a minimal number of black-box probes. Our

algorithm is based on Ref. [231].

To fix the notation, we start by defining multivariate polynomials as follows. Given a set of n
variables Z = (z3,...,z,) and an n-dimensional multi-index « = («[1],...,a[n]) containing

integers w[i] > 0, we define a monomial Z* as

Z% = Hz‘;m (8.37)

d= itx[i] : (8.38)

A polynomial f, which is an element in the polynomial ring Z,[Z] of variables Z, is defined

as

f@) =) ez, (8.39)
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where T is the number of non-zero terms. The coefficients Cq; are elements of Z, correspond-
ing to different multi-indices «;.

Rational functions can be constructed by combining two polynomials. Given two polyno-
mials P,Q € Z,[Z], we define a rational function f € Z,(Z), where Z,(Z) is the field of
rational functions in the variables Z, as the ratio of P and Q:

P(2) _ Ly naZ®

f(2) = oG Z]'T; 12P (8.40)

The T (Tq) non-zero coefficients n,, (dg;) are elements in the field Z, corresponding to

multi-indices «; (B;).

In order to provide a unique normalization of Eq.(8.40), we define the lowest degree
coefficient in the denominator to be equal to one. If several monomials contribute to the
lowest degree dmin, we choose to define that coefficient of the monomial Z* to be equal to
one, whose multi-index « is the smallest in a colexicographical order, e.g.

(1,1,0) < (1,0,1) < (0,1,1), (8.41)

ford = 2.

Our algorithm for multivariate rational-function interpolation is based on Ref. [231], which
performs only a univariate interpolation of an auxiliary rational function, whose monomial
coefficients are multivariate polynomials and are thus processed by multivariate polynomial
interpolation [232—239].> Note that there are further algorithms worth mentioning [240-246],

but none of them fulfills our performance goal.

In order to build the auxiliary rational function f of a rational function f(z,...,z,), one

starts by introducing a homogenization variable t as [247]

f(t2) = f(tza, ..., tzn). (8.42)

f can be interpreted as a univariate rational function in f, whose monomial coefficients are
multivariate polynomials in Z. In addition, we can set one of the z; to one and obtain its
functional dependence by homogenizing with respect to the corresponding power of ¢, after
the interpolation of the remaining monomials in z; was successful.

Due to potentially missing constants, which are needed for normalization, and cancellations
in t, we cannot ensure that an unambiguous normalization can be found for arbitrary
rational functions f . Therefore, as proposed in Ref. [231], a variable shift s = (s, .. .,Sn) is
introduced such that

A

f(t2) = fZ) = f(tZ+5) = f(t+51,tzp + 50, ..., tzy +50), (8.43)

2 For a review of polynomial interpolation techniques, we refer the reader to Ref. [203], for example.
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where we have set z; = 1. Applying 3 as in Eq. (8.43) should lead to a constant term in the
numerator or denominator, i.e. the coefficient of «[i] = 0V i or B[i] = 0V is non-zero, which
can be used as a unique normalization. Ref. [231] proposed to shift all occurring variables
by random s;. However, this prescription will lead to a much denser function f that has to
be interpolated.

Therefore, in Ref. [203], we made the proposal to first scan different combinations of possible
shifts 5’ and choose the one, which shifts only a minimal subset of variables, but leads to a
constant term in either numerator or denominator. The additional probes needed for this
scan are in most cases negligible compared to the full interpolation.

As already outlined above, the general idea is to first interpolate only a rational function
univariately in t and then proceed with multivariate polynomial interpolation for each
coefficient of monomials in t. This is done as follows. In the first run, we fix a randomized

set 7! of values, ' = {1,y21,¥31,...,yn1}, that is called anchor points3 to replace the z;.

Then, we use randomized values for t and interpolate the t dependence using Thiele’s

interpolation formula [249], which expresses f as a continued fraction

N A
T(t) =bo+ (t—t1) [ b1+ (t —t2) <b2+(t—t3) <-~+t;I\fN> > ,  (8.44)

where t1,...,tNy1 are distinct elements in Z,. The coefficients by, ..., by can be obtained
recursively by numerical evaluations of the rational function f at t1, ...,y for the chosen
values of z; as

bi = bi,i/ (845)
tiy1 —tj
bio = f(ti+1) . (8.47)

The termination criterion is reached if one finds the agreement

T(t) = f(ti+ 51, tiya1 +52, -, tiYn1 +5u) - (8.48)

N

f is now a function of ¢+ with numerical coefficients, which themselves are multivariate
polynomials in z;, evaluated at i! and incorporating effects of the used shift 5. Note that
zeros can occur in the denominators of Eq. (8.46) by randomizing the values of ¢ with a
probability bounded by the Zippel-Schwartz lemma (cf. Eq. (8.52)) [232,250]. In addition,
Eq. (8.44) is not the only method for rational function interpolation. One can also utilize the
Extended Euclidean Algorithm as shown in Refs. [230,251].

Additional probes are evaluated as combinations of powers of these anchor points to utilize the structure of
shifted Vandermonde systems (cf. Refs. [203,233,235,248]).
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Ref. [231] proposes a sparse approach in which the univariate interpolation of f in tis
calculated densely and the multivariate polynomial interpolation is only performed for
the highest degree of t at first. Note that the latter is unaffected by the shift 5. Afterwards,
one proceeds with the next-to-highest degree by using the stored coefficients obtained by
Eqg. (8.44) and numerically subtracts the effects of s originating from the higher degrees in ¢.
If the stored values are not sufficient to complete the polynomial interpolation, new dense
interpolations in ¢ are performed. This procedure will be applied until the lowest non-zero
degree is reached by decreasing the degree of t and proceeding as described above.

There are two major disadvantages of this algorithm. First, Eq. (8.44) does not scale optimally
in the number of black-box probes required to terminate. Secondly, if the rational function
is not sparse, a huge number of avoidable black-box probes is requested. These two points
could be avoided by:

1. Interpolating all coefficients of degrees of ¢ simultaneously and thus partly densely,
i.e. including effects of s;

2. Removing already interpolated multivariate polynomials from the interpolation in ¢
by subtracting their evaluations from additional black-box probes. This procedure is
similar to the pruning technique invented in Refs. [237,238] for multivariate polynomial
interpolation.

To illustrate the benefits of these modifications, let us first assume a dense case. A multivari-
ate polynomial with 7 variables of only degree i, i.e. the coefficient of #, has T; non-zero
coefficients, where T; can be calculated by

7;.:<”,+1>_<”J,”_1> for i>0. (8.49)
i i—1

Thus, lower values of i lead to a lower value of T; and therefore require less black-box probes
for the interpolation than higher degrees. Since we are currently assuming a completely
dense case, even the effect of 5’ does not alter the total number of required probes. Guided
by this observation, for each obtained probe, our proposal is now the following;:

1. Build a system of equations as

Yo ()E — F() L duf (70 = F&) oy ()0 = L nosE, 50
! ] ] !
where the subscripts s and u denote the solved and unsolved coefficients, respectively,
after one interpolation with Eq. (8.44) is performed. The polynomials 7, ;(Z) and d, ;(Z)
with x € {s,u} are built by monomials defined by Eq. (8.40) and fulfill Eq. (8.38) such
that their degree is equal to i. Note that at least one usage of Thiele’s interpolation
formula is required to determine the occurring degrees of numerator and denominator
in t. The coefficient of either d;o or n,9, known after the first interpolation with

Eq. (8.44), will serve as normalization and is thus set to one;
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2. Solve the system of Eq. (8.50) if possible and interpolate all polynomial coefficients
ny,i(Z) and d, ;(Z) including the effects of s;

3. Whenever one polynomial in either numerator or denominator is interpolated success-
tully, decrease the size of the system of equations defined in Eq. (8.50) by inserting
values i for the already interpolated functions n;,(Z) or d;;(Z) and setting the corre-
sponding n, ; or d,, ; to zero;

4. When all interpolations terminated, remove the effect of the shift § from 7, ;(Z) and
d;i(Z) degree by degree starting from the highest occurring degree in numerator and
denominator, respectively.

Using this prescription, no avoidable probes are requested for dense rational functions and
one needs exactly one probe for each monomial. However, for sparse functions this approach
generates a huge number of unneeded probes, which is also not optimal. Therefore, we
propose a small modification by basically combining the benefits of both dense and sparse
prescriptions to a hybrid algorithm that scales at most with the maximum number of

possible non-zero terms but, in addition, exploits the sparsity of rational functions.

In practice, the main modifications are with regards to point 2, 3, and 4 of the algorithm

mentioned above and are as follows:

2. Solve the system of Eq. (8.50) if possible and interpolate all polynomial coefficients
nui(Z) and d, ;(Z) including the effects of §. For illustration, we only focus on the
numerator in the following, since the procedure is analogous for the denominator.
Let dyymax be the maximum degree of the numerator. If n 4, .. (Z) can be interpolated
with less probes than the next lower degree, abort the interpolation of the latter and
redo it from scratch by removing the effects of § originating from n, 4, (Z) and using
stored values. If additional probes are requested, subtract the effect of s from the
result obtained by solving Eq. (8.50). Proceed in the same manner with all remaining
polynomials;

3. Whenever one polynomial in either numerator or denominator is interpolated success-
fully, decrease the size of the system of equations defined in Eq. (8.50) by inserting
values j/ for the already interpolated functions n;,(Z) or d; ;(Z) and setting the corre-
sponding 1, ; or d,; to zero. If a polynomial is interpolated without the effects of 5,
the latter have to be added to Eq. (8.50) to provide consistent results;

4. After all interpolations terminated, remove the effect of the shift § from all remaining

polynomials that are interpolated including effects of s.

This algorithm cures the problem of requiring avoidable black-box probes for dense and
sparse functions, but comes with additional computational work, that has to be done in
exchange, by starting some interpolations from scratch. However, we observe that the

computational effort of the interpolation is usually only a fraction of the time spent to
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evaluate the required black-box probes. Hence, reducing the required number of the latter
seems to be more important for our applications.

We have implemented this hybrid algorithm in the publicly available general purpose multi-
variate rational-function reconstruction? library FireFly in combination with a multivariate
polynomial-interpolation algorithm, which is based on the sparse/dense racing prescription
of Ref. [236]. To our knowledge, FireFly is the first open-source implementation of multi-
variate rational-function interpolation. A different approach, assuming dense functions, is

implemented in the code of Ref. [229], however.

As the interpolation is performed over finite fields, there is a non-zero chance that the
interpolated function is incorrect. One source of potential errors is the interpolation of
multivariate polynomials. Zippel proved that if the anchor points are chosen uniformly
randomly from a field Z, the probability that the interpolation of a black box f with n
variables, degree D, and non-zero terms T fails is less than [233]

nD*T?
: (8.51)
p
It is based on the Zippel-Schwartz lemma [232, 250]
~ D
Prlf(#) =0l < g7+ (8.52)

which provides a bound on the probability (Pr) that a polynomial f of total degree D
evaluates to zero when selecting i/ independently and uniformly randomly from a subset S
of a field IF. The Zippel-Schwartz lemma provides an estimate of the probability of hitting
zeroes in Eq. (8.46) in addition.

8.5.4 Rational reconstruction

After a successful interpolation over a finite field, we need to promote the monomial
coefficients back to the field of rational numbers Q. Generally, there is no inversion of the
mapping from rational numbers to elements in a finite field, but one can use a method called
rational reconstruction (RR). This method is based on the Extended Euclidean Algorithm [230]
and the first algorithm to perform this task was described by Wang in 1981 [252].

This RR algorithm leads to a guess for a rational number a = n/d from its image e,
e=a mod m, (8.53)

where 7, d, and m > e > 0 are integers. The algorithm will succeed if |n|, |d| < v/m/2 and
the value of a is then unique [253]. However, the successful application of Wang'’s algorithm
does not guarantee that a is the correct number in Q, because the unique guess can differ

4 See Subsect. 8.5.4 for a definition of the term reconstruction.
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for different moduli m. Additionally, the strict bound of v/m/2 could lead to failures of the
RR when one restricts m to be a machine-size integer, i.e. a 64-bit integer on modern CPUs.

Both problems can be solved by the Chinese Remainder Theorem (CRT) [230]. This theorem
states that for a set of coprime moduli m; > 1 and images ¢; = a mod m;, there exists one

and only one integer 0 < x < mj - my - - - my such that

x=e; mod my,

XxX=e mod my, (G.50)
-54

x=¢, mod my,

and the remainder of the Euclidean divisor of x by m; is ¢; for every i. In the context of
functional interpolations over finite fields this leads to a possible combination of multiple
interpolations over fields of coprime characteristic, from which we determine a new x that
fulfills the definition from Eq. (8.54) and apply the RR to x with the module mq - my - - - my.
When Wang’s algorithm results to the same number a in two consecutive prime fields after
applying the CRT, we assume its guess as correct. We proceed for any monomial coefficient
with this strategy until we obtain a guess for each of them. Afterwards, the whole function
will be evaluated at randomized points and compared to the corresponding black-box
probes. When both results coincide, we terminate the interpolation and RR and return the
obtained result.

Note that the algorithm by Wang is not optimal for arbitrary n and d, because it will
only succeed if both |n| and |d| are smaller than \/m/2. In Ref. [254] it was observed that
the successful guess of the rational number comes together with a huge quotient in the
Euclidean Algorithm. Ref. [254] modifies Wang’s algorithm to be sensitive to these cases
and it is called Maximal Quotient Rational Reconstruction. It comes with the caveat, that it
can only be proven to return a unique solution if |n||d| < y/m/3, but performs much better

in the average case, because large quotients from random input are rare.

To benefit from the advantages of both algorithms, we proposed in Ref. [203] to race them,
i.e. run both algorithms sequentially and consider a guess for a, when either of the two
succeeded.

The algorithms presented in this subsection are implemented as part of this thesis in the
FireFly library[203]. The major part of the development has been done in the course of
this thesis, while F. Lange implemented some parts of the interface to Kira. In a physical
context FireFly has been successfully applied to calculate the results presented in Ref. [255],
which were not obtainable with conventional methods. Further calculations have been
completed using similar interpolation techniques implemented in private codes and should

be mentioned here [256—264].
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In the next subsection, we discuss how IBP reductions can benefit from the techniques
implemented in the FireFly library in combination with the reduction program Kira. Note

that the general prescriptions are in principle independent of the reduction program.

8.5.5 Integration-by-parts reductions over finite fields

The usage of finite fields as part of the Laporta algorithm has already been proposed in
2008 by Kauers [265]. Here, one replaces all occurring variables by elements in finite fields
and solves the system of equations generated by Eq.(8.36) numerically. In general, this
approach is orders of magnitude faster than solving the system algebraically. One of the first
applications of this observation was realized in Ref. [266] by first performing the forward
elimination over finite fields and removing linearly dependent equations before the actual
algebraic reduction. When also performing the back substitution, the master integrals can
be identified in addition and one is also able to select only those equations that suffice to

reduce a requested subset of integrals. The latter procedure is implemented in Kira[221].

In 2014 von Manteuffel and Schabinger proposed in Ref. [226] that one should be able
to solve the IBP system several times over finite fields and use the results to interpolate
the master integral coefficients in principle. In 2016, they presented the first IBP reduction
completed only with finite-field interpolation techniques in Ref. [256]. Recently, three more
calculations were concluded [260,261,263]. All of them are one-scale problems and, thus,
one variable problems. In January 2019 FIRE6 was published as first public implementation
of the Laporta algorithm using interpolation techniques over a finite field [218]. However,
it is currently bound to handle at most two scales. The first application to multivariate
reductions of, in principle, arbitrarily many variables was presented in Ref. [203] as part of
this thesis. A first step towards a full multivariate calculation using interpolation techniques
has been performed in Ref. [267]. A combined approach of interpolation and algebraic
results within the IBP reduction context has been presented in Ref. [268].

For our work, we combine the interpolation and reconstruction techniques of the FireFly
library with the IBP reduction code Kira. The latter provides us with an already built-
in solver pyRed, which is used to solve the system of equations over a finite field. This
procedure is performed multiple times over different prime fields, where we extract the
numerical values provided by pyRed and feed them to FireFly in order to perform the
interpolation and rational reconstruction. Additionally, two integral selections are performed.
After the forward elimination not all of the initially required linearly independent equations
are needed anymore for the back substitution in general. Therefore, we only select those
equations that are required for the reduction of the requested integrals. The same selection is
also performed in the algebraic calculation with Kira. The second selection only accepts the
coefficients of the master integrals for the requested integrals. In a conventional approach,
where all computational tasks are performed algebraically, the latter selection does not

provide any benefit as the reduction is already completed at this point. However, in our
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interpolation approach, this additional selection allows us to omit the interpolation of

potentially difficult rational functions that are not required to get the desired result[203].

To illustrate the benefits of the rational-function-interpolation technique for IBP reductions,

we consider the topology depicted in Fig. 30, which appears to be the most difficult topology

for single top production at the two-loop level. We compare runtime and memory usage

@3 =0 Iy —lo+ g3 li + g3 a3 = M}
My My
i —la+qg3—q
ly
lo Mo
@ =0 ¢ —lo qa—l gt =0

Figure 30: A non-planar double box which occurs, e.g., in single top production. Double lines indicate massive

propagators.

of both the conventional fully algebraic approach implemented in Kira 1.2 and Kira 1.2

in combination with the interpolation techniques of FireFly 1.3.4 for different values of s.

The latter is defined as the absolute value of the sum of all negative powers of a topology:

#prop. 1
e= Y, o(5-m)lal,
i=1 2

(8.55)

where 6(x) is the Heaviside step function. Usually, an integral with higher s is regarded

as more difficult than an integral with lower s. The powers a; are the same as defined in

Eq. (8.35). The results are shown in Tab. 3. It is obvious that the interpolation approach is

Table 3: Runtime and memory usage for Kira 1.2 and Kira with FireFly for the reduction of the topology
depicted in Fig. 30. M is set to one. The runtime does not include the creation of the system of equations.
These tests were run on a computer with two Intel Xeon Gold 6138 and 768 GiB of RAM.

Kira 1.2 Kira with FireFly
s | Runtime Memory usage | Runtime CPU time for pyRed Memory usage
4 min 7.6 GiB 1min 21s 99 % 1.2GiB
1h 53 min 33GiB 35min 8s 99 % 4.1GiB
18 h 28 min 102 GiB 5h 39 min 97 % 19GiB

not only faster by factors up to ~ 3, it also uses only a fraction of the memory required by

the conventional approach. In addition, the CPU time is dominated by probing the black

box with pyRed and not by the interpolation itself. This fact motivates two different types of

optimizations:
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1. Decrease the number of operations within the system solver, e.g. by reducing the
overhead that comes with the solution of a system at a given parameter point. This
can be achieved, for example, by solving the system for several points in a vectorized
manner on one thread. However, this runtime improvement comes with the cost of a
larger memory footprint since more systems of equations have to be kept in memory
at the same time. In our studies we observe improvements regarding runtime up to a

factor of ~ 3.

2. In our studies, the forward elimination with pyRed takes almost 90% of the total run-
time for one probe. Thus, performing the forward elimination algebraically with Kira,
which is usually significantly faster than the back substitution, and only calculating
the back substitution numerically can also help by further reducing the black-box
evaluation time [203]. Note, however, that the functions within the system of equa-
tions become larger after the forward elimination. Thus, a fast parser, as for example
implemented in FireFly, that evaluates the occurring functions, is crucial to be com-
petitive. We have studied different IBP reductions up to three scales and could observe
runtime improvements of up to an order of magnitude using this hybrid approach
that combines algebraic and interpolation techniques. However, if the functions that
occur after the forward elimination become too complicated to be parsed reasonably
fast, the proposed hybrid approach becomes slower than calculating both forward
elimination and back substitution numerically.

In the next section, we apply the interpolation techniques introduced in the previous three
subsections to the reduction of the integrals occurring in gluon-induced ZH production at
the two-loop level considering QCD corrections.

8.5.6 Reduction of two-loop integrals for gluon-induced ZH production

After applying sector relations, the required integral families reduce to the topologies T1,
T2b, T2c, T3a, T4a, T4b, T4c, T4d, T7, T8a, T10a, T10c, and T10d as depicted in Fig. 28 for
different mass distributions. The number of integrals to be reduced also decreases to roughly
2000, where redundant integrals that can be obtained by the crossing of the incoming gluons
have already been dropped.

We only aim to reduce the 2000 integrals occurring in the amplitude instead of performing
a full reduction up to given bounds of s, which could be useful for the calculation of
the master integrals. However, this would further complicate the reduction significantly.
Therefore, for each integral family, we pass the list of integrals to Kira and combine it with
FireFly for the reduction. The coefficients of the master integrals are rational functions of
the five scales s, t, h, z, and M, and the space-time dimension d. By setting one scale to
one, whose dependence can be reconstructed by dimensional analysis afterwards, the to be
determined coefficients depend on five variables. A first scan of the auxiliary functions f for
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each integral family revealed maximum degrees around 160, which for five variables would
lead to a dense bound of roughly 1.9 - 10° possible monomials following Eq. (8.49). For this
number even the interpolation technique could possibly become not feasible anymore and
could suffer from probabilistic chances of incorrect interpolations as estimated by Eq. (8.51).
Therefore, we fix the mass of the quark g occurring in the loops by a ratio to the Z mass.
Within the scope of this thesis, we only focus on the top quark and fix M; to

2
Mt2 = 15—82 ~ (19713> Z. (8.56)
Afterwards, we choose z to be the variable that is set to one. Using this ratio the reduction
simplifies significantly by decreasing the possible number of monomials by two orders of
magnitude and thus to be bounded by roughly 6 - 107. Note, however, that the substitution
imposed by Eq. (8.56) leads to larger rational numbers as coefficients of each monomial,
thus requiring more prime fields than without this replacement.

Using Kira in combination with FireFly and the setup described in the previous paragraphs,
we were able to reduce the integral families affiliated with the topologies T1, T2c, T3a, T4a,
T4b, T4c, T4d, T7, T8a, T10a, T10c, and T10d. The most complicated ones are those belonging
to T2b and T2c, where both reductions are of comparable complexity, but differ in the black-
box evaluation time. The most complicated coefficient of the master integrals of T2c has a
maximum degree of 166 in the numerator and 163 in the denominator leading to a dense
bound of almost 6.5 - 107 possible monomials. Fortunately, only 1.2 - 107 of them are non-
zero. In total 1.1 - 108 black-box probes and twelve prime fields were needed to complete
the reduction of this integral family using 80 threads on two Intel Xeon Gold 6138. The
reduction filled 240 GiB of memory and was completed in one and a half month, where each
black-box probe took on average 3.8s. We applied the non-hybrid approach without any
vectorization of black-box probes.

The only missing reduction is currently the one belonging to topology T2b. The maximum
degrees of numerator and denominator are comparable to the one of T2c, but the black-box
probe takes on average 4.7 s and would therefore run considerably longer than T2c. However,

it is conceivable that the reduction of T2b could also be completed, taking additional time.

Since we applied the relation of Eq.(8.56), the full reduction has also to be computed
again for the bottom quark with a suitable replacement of M, or in the limit of M; = 0.
Further, the missing one-particle-reducible two-loop diagrams, the contributions of real
radiation, and the calculation of all master integrals have to be considered. Therefore, a
lot of additional work has to be done in order to receive the result for the cross section
of gluon-induced ZH production at NLO QCD incorporating quark-mass effects. However,
the technical improvements developed within this thesis strongly support the feasibility of
calculations with similar complexity. Additionally, we observed that some kinematical parts

and parts related to the space-time dimension d can possibly be factorized, which would
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lead to much simpler rational functions to be interpolated. We are currently working on an

algorithm for FireFly that detects factorizable polynomials automatically for this purpose.

8.6 CONCLUSIONS AND OUTLOOK

In this chapter, we have presented recent progress on the calculation of NLO QCD contribu-
tions to gluon-induced ZH production, where we are aiming to incorporate full quark-mass
dependence. The computational steps required to obtain the amplitude were summarized
and occurring integrals were prepared for further processing. We achieved an almost com-
plete reduction of the involved Feynman integrals to a set of roughly 500 master integrals
by imposing a relation between the top-quark mass and the Z-boson mass. The reduction
has been computed employing the Kira program in combination with the functional-
interpolation-library FireFly developed within the scope of this thesis. The techniques
and algorithms implemented in FireFly allow to ease the computational bottleneck of
cutting-edge calculations like the one presented in this chapter. Additionally, various other
applications like the calculation of projector coefficients can be achieved efficiently using
the interpolation approach instead of a fully algebraic computation. As further algorithmic
optimizations, e.g. polynomial factorization, promise to make the interpolation technique
even more efficient, we are certain that calculations of similar complexity as gluon-initiated
ZH production can be completed employing the techniques implemented into the FireFly
library.

In order to obtain a complete result at NLO QCD, all master integrals have still to be
evaluated and the missing integral family has to be reduced. In addition, renormalization
has to be performed and the real radiation together with the reducible two-loop subgraphs
have to be evaluated. Fortunately, the latter two parts consist only of one-loop diagrams,

whose integral structure is well-known.

As the current implementation of FireFly into Kira is private, it would be a great benefit if
their combination becomes publicly available. Therefore, we are currently working together
with the Kira authors to provide an open-source code. However, this work is beyond the

scope of this thesis.
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CONVENTIONS AND FEYNMAN RULES

In this appendix, we summarize notational conventions and introduce all momentum space

Feynman rules required in this thesis.

Throughout this work, we use natural units, i.e. i = ¢ = 1. Therefore, masses, momenta,

and energies are expressed in electronvolts (eV) and distances and time in eV~

We define the metric tensor of a four-dimensional Minkowski space-time in the mostly

minus convention, i.e.
¢ =diag(1,-1,-1,-1). (A.1)
Hence, scalar products of four-dimensional vectors in Minkowski space are given by

a-b=a,b" =apby—a-b. (A.2)

The Feynman rules required in this thesis are the ones of QCD in Feynman gauge, the
Yukawa coupling of the Higgs boson to a quark, the coupling of the Z boson to a pair of
quarks, the coupling of the neutral Goldstone boson to a quark pair, and the coupling of the
Z to the Higgs boson. For the propagator of the Z boson, we impose Landau gauge. The
mass of the quark is denoted as My, its electric charge in units of the elementary electric
charge as ¢;, and its third component of the isospin as 1. 8, is the weak mixing angle, g is
the coupling constant of the weak interaction, and g3 is the coupling constant of the strong
interaction. The momenta are assumed to be incoming and labeled as p for the propagators.

All used Feynman rules are listed in the following equations:

' B ‘ gw/(sab A

g a, [b 99999998098 b, v = _1p2+iO (A.3)
) 5ab
ghost (C): a----- —----p = 1m (A4)
. (p+ M)l

: —————— = -0 .
L 7 = M2+ 10 (&.5)
o I R 760 = 10"g58p, (A.6)

Sy — Pva/PZ

ZI AAANANNAANAN = el S S S A

a Y U= M2+ 0 (A7)
i

s - = A.

¢z 77110 (A.8)
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In this thesis, all Feynman diagrams have been created with Tikz-Feynman [269].






EXPLICIT FORMULZAZ

In this appendix, we list some formule required by some chapters in this work.

B.1 THRESHOLD CORRECTIONS

The following threshold corrections required in Subsect. 3.1.3 are used to relate the SM input
parameters of gauge couplings and the top quark pole mass to running DR’ parameters. The

terms for the gauge couplings read:

_aem (1 16 m; 40 mg, 1& mg
ADCem(MZ) - 2T <3 ?ln <]\/Iz> — §Zzzlln (MZ> — §lzzlln MZ

%/ is the ith positively charged chargino, and iI; (d;) label the up-(down-)type squarks of
the ith generation. Consequently, &; labels the slepton of the ith generation.

The terms required in the extraction of the top quark mass in the DR’ scheme read:

<1172 12 4

Am(DQED _ % o [( Mgy Sa0, Mgty Sog, My
t - 2 _ 2 2 _ .2 2 _ 2)2
4r my(mg —mg)  m(m; —mg)  2(m; —my)

mi —my  2(mi —m2)?  mi —mg Q?
N ( Mgim? sg, m‘i N m%l ) n <m%l>
my(m? — mz) 2(111%1 —m)> m%l —m3 Q?
R S B R
my(mi —m3)  2(mi —m2)>  mi —m} Q?
m? 2 "2 7
+2(m% t—lmff)Jrz(m%zEmg)_?’ln(Q;)Jrz , (B.3)
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2
AmEZ)/QCD — (Amgl)/QCD> _ AmEZ)/deC . (B4)

In Eq. (B.3), it is Cr = 4/3 and syp,, where 6; is the stop mixing angle given by

X
ms — ms
h f
The two-loop term Amgz)’dec is given in Ref. [93] for general stop, sbottom, and gluino
masses.

B.2 DPROJECTOR COEFFICIENTS

To obtain the form factors fi(t,u),..., fa(t,u)* as defined by Eq. (8.17), the following set of
projector coefficients is used:

11 = 4d; Dy 1A% z(— 4Dpp5°2° + D3 1ALAY, — 4D3p A Ay25°27

+ D51 ALAGs2) (B.6)
c12 = —4d; "Dy 10102z (D330 A, — 4D545%2° + 2Dy 1 A Ay25°27

+ DsaAL A7), (B.7)
c13 = 4d; ' D3 1 D2 3As* (z(Duz +5) — Duzt)?, (B.8)
14 = —4d; 'D7,D} AL s*z(—D1pApAyz — 252) (Do sz Ayz + Dossz), (B.9)
c15 = —4d; 'Dy1A:52{sz[2D1152 (D350t M0z — 2D365z) + De 1AL AL ]

— Ds3ALAG, (B.10)
c1,6 = 4d; ' D3 ,D115°2(D10A1 vz + 252) (D3 7L A%, + DaaBDizAyzsz

— 2D3/83222) , (B.11)
c17 = —4d; ' D3 ,D11Apsz( — D1pApAy: — 252) (2D2p AL AL, + 2D p5°2*

+ D39AAz52) , (B.12)
c18 = 4d; 'D1pDr1 A0z (4D5 1 D2 65°2° + DasAL AL, + 2Dy s AL A sz

— 2D4,5AtZAquzzz) , (B.13)
c19 = 4d; ' D1pDy1A%,2(4D275°2% + DugAL A3, + DssALA2 sz

—2Ds550:00:5°2%) (B.14)
c114 = 2d; ' D12D3 1 Az Ayzs {5z [Dyy AL AL, — 4sz(D3 5z + D310Az0z) ]

+ D3 11ALAL, (B.15)
c115 = 2d; 'D1oD7 1 ALs{s5z[DasgAL AL, + 252(DyoDiz Az + 252) ]

+ D3 11ALAL (B.16)

C
C121 = Alij , (B.17)

1 Note that f1(u,t),..., fa(u,t) can be obtained by the replacement ¢ < u.
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Clo = 21;5 ) (B.18)
Co1 = —4dy ' Dy1 Az [Aust — 2(Auz +5)]

x {sz[sz(4D115z + Dy11A::Auz) + DseALAZ| — DsyALAL Y
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X (DoBtz0uz5z + D315ALA2, — 2D 15°27)
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Cog = —4dy ' D12Dy1 Az [ At — 2(Auz +5) ]

X (4D}1D2,105°2° + Ds,140%, A, 4 Ds15AL AL 5z + 2Ds16A 1Ay 25°27)

x {sz[DsgALAZ, —452(D3120100 + D3gsz)] — DypoALAL}, (B.26)
29 = 2d5 'D12D21A1z{ Dy 10ALA;,

+ 5222 [452 (D516t 00z — D3 5z) + D5 11A%LA%| — 52Ds51,A7 A3
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— DgsszAL NS, + Ds1sAL ALY, (B.27)
cora = 2d5 ' D1 2D} 1 Ao [Aust — 2(Dyz +5) ]
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30 = —2d5 'A% (ApzAuz — 52) 7 (Dapp AL A%, — D520 My25z + 2D5 35727 ,
_ 3
C3,14 = _2d3 1Di1 DZ,BAtzAqu2 [Z (Auz + 5) - Auzt] ’

- Atz
C3,15 = —C3,147A ’
uz
C3,14
321 = 2 AL
uz
C3,14
€320 = —2 A
uz
-1 2 A2 2.2
C41 = 4d4 Ay (2D2,2AtzAuz + 2D2/25 z° + D319AtZAuZSZ) ,
Can = —C Ay
42 = —C41 ,
'y 7 Atz

a3 = —4d; 's[s2(DooArAuz — 2D1152) + D31 ALAL ],
C4u = —4d; ' D1105* (252 — DogBizBiz)

C45 = —C43,

C _ C AMZ

46 = —Ca4a—,
At

a7 = dy 's( — 4Dy 1pALAS, — 8Dy 75°2% + 4D320 M1 A252) ,
cas = 4d; ' Ayz [D3p3AL AL + 52(D3 04Dz Dz +2D50552) |,

C . c Atz
49 = —C48 ’
7 /! Auz
—_9 Auz
C414 = —2C44 A’
tz
_ C44
C415 = >
Ca4

C421 = — >
’ JAYS

(B.29)
(B.30)
(B.31)
(B.32)
(B.33)

(B.34)
(B.35)

(B.36)

(B.37)
(B.38)
(B.39)
(B.40)
(B.41)
(B.42)
(B.43)
(B.44)
(B.45)
(B.46)

(B.47)
(B.48)
(B-49)

(B.50)

(B.51)
(B.52)

(B.53)
(B.54)

(B.55)

(B.56)
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c
Cap0 = Aif , (B.57)
Z

where ¢; j is coefficient j corresponding to t; defined by Eq. (8.22) to obtain the form factor f;.
The denominators dy, . .., ds are given by

d1 = D1,D71D15°2{ D410}, AL,

+ 5222 [452 (D516 Auz — D3gsz) + Ds11A%LA%. ] — Ds125zA3A3. (B.58)
dy = D1,D?1Dy18%2 [ Dt — 2(Auz + )]

x {sz[DsgALAL, — 452(D3p6ArAyz + D3gsz) ] — DyioALAS. }

x {Ds10AL Ay, + 5727 [452(D3 160100z — D3gsz) + Ds11AL AL, ]

- D5,1ZSZA?ZA32} ’ (B59)

4
d3 = _D%lls(AtzAuz — SZ) [SZ (2D3/882 — D4,14AtzAuz) + D3,11A%ZA%12] P (B60)
dy = D7 15”[52(Dap3 AL AL, + DapaAzAyzsz — 2D385°2%) + D3 11ALAS ] (B.61)

Additionally, we use the following auxiliary functions

Dy =d -3, (B.62)
Dip=d—4, (B.63)
Diz=d—5, (B.64)
Dy =d*—7d +12, (B.65)
Do =d* —5d +5, (B.66)
Dos =d* —6d +4, (B.67)
Dy4 = —2d4* +11d — 10, (B.68)
Dos =d> —6d +6, (B.69)
Dog=d*>—7d +8, (B.70)
Doy =d*—5d +6, (B.71)
Dog = d* —8d + 14, (B.72)
Dog = 24> —11d + 14, (B.73)
Dsqg = d*> —7d 410, (B.74)
Doqy = d* —8d+15, (B.75)
Do 1o = 3d> —15d + 16, (B.76)
Doz =2d> —7d +8, (B.77)
D3y = —5d° + 474> — 132d + 100, (B.78)
D3y = d® —12d°> +40d — 35, (B.79)
D33 = 3d® — 31d% 4+ 100d — 100, (B.80)
D34 = d®> —9d* 4+ 25d — 21, (B.81)

D35 = 5d° — 50d% 4 152d — 134, (B.82)
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D36 = d® —10d? + 30d — 25, (B.83)
D37 = —2d° +22d% — 73d + 70, (B.84)
D3g = d® —10d> +30d — 26, (B.85)
Dsg = —d® +4d> +d — 8, (B.86)
D319 = —3d°® +30d> — 91d + 79, (B.87)
D311 = 4d® — 394% 4 116d — 100, (B.88)
D31p = —3d° +31d> — 994 + 96, (B.89)
D313 = 5d° — 50d% + 152d — 134, (B.90)
D34 = d® —10d% +31d — 30, (B.91)
D315 = d® —94° + 254 — 20, (B.92)
D316 = 4d° — 41d% +129d — 122, (B.93)
D317 = d® —11d* +38d — 41, (B.94)
D31 = 2d° — 22d* +73d — 70, (B.95)
D319 = d° — 12d% + 424 — 40, (B.96)
D30 = d® — 11d% + 384 — 40, (B.97)
D3y = d°® —9d° +25d — 20, (B.98)
D3 = d® —3d> — 6d + 16, (B.99)
D33 = d® —7d* + 154 — 10, (B.100)
D34 = —3d° + 244% — 60d + 46, (B.101)
D35 = d® —9d° + 264 — 24, (B.102)
D36 = —3d° + 31d> — 99d + 96, (B.103)
Dyy = d* —84° +124% +32d — 70, (B.104)
Dyp = d* —9d° 4+ 17d% 4 28d — 70, (B.105)
Dy3 = —2d* +274° — 133d° + 2784 — 200, (B.106)
Dy4 = 3d* —394° + 1854% — 380d + 282, (B.107)
Dys = 4d* — 52d° + 241d* — 476d + 338, (B.108)
Dy = —2d* +28d° — 1394° + 286d — 200, (B.109)
Dyy = d* —23d° + 161d% — 424d + 348, (B.110)
Dyg = —3d* +31d°> — 99d° + 88d + 28, (B.111)
Dyg = d* — 12d° + 484%> — 70d + 18, (B.112)
Dy = 4d* — 55d° 4- 272d% — 564d + 400, (B.113)
Dy11 = 4d* — 54d° 4 264d* — 564d + 452, (B.114)
Dy = 2d* — 274% 4+ 1324% — 278d + 213, (B.115)
D413 = d* — 14d® + 71d> — 155d + 123, (B.116)

Dyj4 = d* — 84> + 84> + 524 — 88, (B.117)



Dyy7 = d* — 17d° + 994> — 234d + 190,
Dy = —2d* 4 254° — 112d° 4 218d — 162,
Dy19 = d* — 194° + 124d* — 330d + 302,
D415 = 2d* — 21d° + 72d4* — 86d + 20,
D416 = d* — 11d° 4 394> — 48d + 10,
Dy = d* — 9d° + 174* + 284 — 70,
D4y = d* —12d% 4 50d> — 86d + 52,
Dy = 2d* — 25d° + 116d* — 232d + 160,
Dyp3 = —d* +4d® +31d> — 168d + 188,
Dypy = d* — 6d° — 12d% +112d — 140,
Ds; = d° — 14d* + 844° — 281d° + 496d — 316,
Dsp = d° — 16d* +924° — 2194° + 160d + 60,
Dsj3 = 2d° — 36d* + 2484° — 811d° + 1244d — 700,
Dsy = d° —10d* + 16d° + 116d> — 4324 + 388,
Dss = d° — 14d* + 70d° — 143d + 86d + 30,
Dsg = d° — 26d* + 228d° — 8994% + 1644d — 1140,
Ds; = 2d° — 35d* 4 236d° — 763d° + 1180d — 700,
Dsg = d° — 12d* + 32d° + 984> — 528d + 552,
Dsg = d° — 110d° + 6794 — 1488d + 1080,
Ds1g = d° — 13d* + 624> — 1384* + 1584 — 96,
Ds1q = d° — 12d* 4 20d° + 222d% — 924d + 936,
Ds 1o = d° — 8d* — 234° + 370d> — 1092d + 952,
Ds3 = d° — 12d* +52d° — 1084> + 130d — 88,
Ds14 = d° — 16d* 4 98d° — 285d% 4 390d — 200,
Ds16 = 2d° — 33d* 4+ 2104° — 645d° + 956d — 546,
Ds5 = —3d° + 46d* — 274d° + 790d* — 1096d + 580,
Ds17 = d° — 16d* + 102d° — 3264* + 5164 — 312,
Dsg = 2d° — 31d* + 1864° — 538d° + 748d — 400,
Ds9 = d° — 19d* + 131d° — 4074% 4 5684 — 292,
Dspo = d° — 17d* +123d° — 4694% + 904d — 668,
Dspp = d° — 12d* + 484° — 62d° — 36d + 104,
Dspo = d° — 10d* + 24d° + 464> — 244d + 232,
Dsp3 = d° — 14d* + 72d° — 164d> + 150d — 28,

Dg1 = d® — 17d° + 104d* — 2504° + 41d* 4 684d — 692,

B.2 PROJECTOR COEFFICIENTS

(B.118)
(B.119)
(B.120)
(B.121)
(B.122)
(B.123)
(B.124)
(B.125)
(B.126)
(B.127)
(B.128)

Dgp = d® —18d° +127d* — 4414° 4 767d* — 580d + 100, (B.152
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Dgjs = d® — 21d° + 170d* — 674d° + 13574% — 1264d + 380, (B.153)
Dg4 = —2d° + 35d4° — 2384* + 786d° — 12784 4 904d — 200, (B.154)
Dgs = d® — 14d° + 70d* — 134d° — 14d* + 364d — 344, (B.155)
D7y = d’ —20d® + 166d° — 770d* 4 2294d° — 46084> + 5656d — 3008, (B.156)

and the short-hand notation Ay, = x —y. Note that in D;; the i indicates the maximum
degree of the space-time dimension 4 in the corresponding coefficient.



BIBLIOGRAPHY

[1] M.E. Peskin and D.V. Schroeder, An Introduction to quantum field theory, first ed.,
Addison-Wesley, Reading 1995.

[2] G. Aad et al. [ATLAS Collaboration], Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012)
1,arXiv:1207.7214 [hep-ex].

[3] S. Chatrchyan et al. [CMS Collaboration], Observation of a New Boson at a Mass
of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30,
arXiv:1207.7235 [hep-ex].

[4] G. Aad et al. [ATLAS and CMS Collaborations], Measurements of the Higgs boson
production and decay rates and constraints on its couplings from a combined ATLAS and
CMS analysis of the LHC pp collision data at \/s = 7 and 8 TeV, JHEP 1608 (2016) 045,
arXiv:1606.02266 [hep-ex].

[5] S.P. Martin, A Supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 21 (2010) 1,
hep-ph/9709356.

[6] S. Dawson, The MSSM and why it works, hep-ph/9712464.

[7] A. Djouadi, The Anatomy of electro-weak symmetry breaking. 1I. The Higgs bosons in the
minimal supersymmetric model, Phys. Reports 459 (2008) 1, hep-ph/6503173.

[8] P. Draper and H. Rzehak, A Review of Higgs Mass Calculations in Supersymmetric Models,
Phys. Reports 619 (2016) 1, arXiv:1601.01890 [hep-ph].
[9] P. Fayet, Supersymmetry and Weak, Electromagnetic and Strong Interactions, Phys. Lett. B
64 (1976) 159
[10] P. Fayet, Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and

Strong Interactions, Phys. Lett. B 69 (1977) 489.

[11] P. Bechtle, K. Desch, M. Uhlenbrock and P. Wienemann, Constraining SUSY models with
Fittino using measurements before, with and beyond the LHC, Eur. Phys. ]. C 66 (2010) 215,
arXiv:0907.2589 [hep-ph].

[12] [CMS Collaboration], Supersymmetry Publications, http://cms-results.web.cern.ch/
cms-results/public-results/publications/SUS/index.html.

[13] G. Hiller and F. Kriiger, More model-independent analysis of b — s processes, Phys. Rev. D
69 (2004) 074020, hep-ph/0310219.

117


https://dx.doi.org/doi:10.1016/j.physletb.2012.08.020
https://dx.doi.org/doi:10.1016/j.physletb.2012.08.020
https://arXiv.org/abs/1207.7214
https://dx.doi.org/doi:10.1016/j.physletb.2012.08.020
https://arXiv.org/abs/1207.7235
https://dx.doi.org/doi:10.1007/JHEP08(2016)045
https://arXiv.org/abs/1606.02266
https://dx.doi.org/10.1142/9789814307505_0001
https://arXiv.org/abs/hep-ph/9709356
https://arXiv.org/abs/hep-ph/9712464
https://dx.doi.org/doi:10.1016/j.physrep.2007.10.005
https://arXiv.org/abs/hep-ph/0503173
https://dx.doi.org/doi:10.1016/j.physrep.2016.01.001
https://arXiv.org/abs/1601.01890
https://dx.doi.org/doi:10.1016/0370-2693(76)90319-1
https://dx.doi.org/doi:10.1016/0370-2693(76)90319-1
https://dx.doi.org/doi:10.1016/0370-2693(77)90852-8
https://dx.doi.org/doi:10.1140/epjc/s10052-009-1228-3
https://arXiv.org/abs/0907.2589
http://cms-results.web.cern.ch/cms-results/public-results/publications/SUS/index.html
http://cms-results.web.cern.ch/cms-results/public-results/publications/SUS/index.html
https://dx.doi.org/doi:10.1103/PhysRevD.69.074020
https://dx.doi.org/doi:10.1103/PhysRevD.69.074020
https://arXiv.org/abs/hep-ph/0310219

118

BIBLIOGRAPHY

[14] D.A. Ross and M.].G. Veltman, Neutral Currents in Neutrino Experiments, Nucl. Phys. B
95 (1975) 135.

[15] R.V. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Higgs boson mass in supersym-
metry to three loops, Phys. Rev. Lett. 100 (2008) 191602 [Phys. Rev. Lett. 101 (2008) 039901],
arxXiv:0803.0672 [hep-ph].

[16] P. Kant, R.V. Harlander, L. Mihaila and M. Steinhauser, Light MSSM Higgs boson mass
to three-loop accuracy, JHEP 1008 (2010) 104, arXiv:1005.5709 [hep-ph].

[17] G. Aad et al. [ATLAS and CMS Collaborations], Combined Measurement of the Higgs
Boson Mass in pp Collisions at \/s = 7 and 8 TeV with the ATLAS and CMS Experiments,
Phys. Rev. Lett. 114 (2015) 191803, arXiv:1503.07589 [hep-ex].

[18] M. Tanabashi et al. [Particle Data Group], Review of Particle Physics, Phys. Rev. D 98
(2018) 030001.

[19] R. Hempfling and A.H. Hoang, Two loop radiative corrections to the upper limit of the
lightest Higgs boson mass in the minimal supersymmetric model, Phys. Lett. B 331 (1994) 99,
hep-ph/9401219.

[20] S. Heinemeyer, W. Hollik and G. Weiglein, Precise prediction for the mass of the lightest
Higgs boson in the MSSM, Phys. Lett. B 440 (1998) 296, hep-ph/9807423.

[21] S. Heinemeyer, W. Hollik and G. Weiglein, QCD corrections to the masses of the neutral
CP-even Higgs bosons in the MSSM, Phys. Rev. D 68 (1998) 091701, hep-ph/9803277.

[22] S. Heinemeyer, W. Hollik and G. Weiglein, The Masses of the neutral C’P-even Higgs
bosons in the MSSM: Accurate analysis at the two loop level, Eur. Phys. ]. C 9 (1999) 343,
hep-ph/9812472.

[23] S. Heinemeyer, W. Hollik and G. Weiglein, The Mass of the lightest MSSM Higgs
boson: A Compact analytical expression at the two loop level, Phys. Lett. B 455 (1999) 179,
hep-ph/9903404.

[24] G. Degrassi, P. Slavich and F. Zwirner, On the neutral Higgs boson masses in the MSSM
for arbitrary stop mixing, Nucl. Phys. B 611 (2001) 403, hep-ph/0105096.

[25] A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the O(zx%) two loop correc-
tions to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 631 (2002) 195,
hep-ph/0112177.

[26] A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the two loop sbottom corrections to
the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 643 (2002) 79, hep-ph/0206101.

[27] A. Dedes, G. Degrassi and P. Slavich, On the two loop Yukawa corrections to the MSSM
Higgs boson masses at large tan B, Nucl. Phys. B 672 (2003) 144, hep-ph/0305127.

[28] S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the
MSSM Higgs sector at O(apas), Eur. Phys. ]. C 39 (2005) 465, hep-ph/0411114.


https://dx.doi.org/doi:10.1016/0550-3213(75)90485-X
https://dx.doi.org/doi:10.1016/0550-3213(75)90485-X
https://dx.doi.org/doi:10.1103/PhysRevLett.101.039901
https://dx.doi.org/10.1103/PhysRevLett.100.191602
https://arXiv.org/abs/0803.0672
https://dx.doi.org/doi:10.1007/JHEP08(2010)104
https://arXiv.org/abs/1005.5709
https://dx.doi.org/doi:10.1103/PhysRevLett.114.191803
https://arXiv.org/abs/1503.07589
https://dx.doi.org/doi:10.1103/PhysRevD.98.030001
https://dx.doi.org/doi:10.1103/PhysRevD.98.030001
https://dx.doi.org/doi:10.1016/0370-2693(94)90948-2
https://arXiv.org/abs/hep-ph/9401219
https://dx.doi.org/doi:10.1016/S0370-2693(98)01116-2
https://arXiv.org/abs/hep-ph/9807423
https://dx.doi.org/doi:10.1103/PhysRevD.58.091701
https://arXiv.org/abs/hep-ph/9803277
https://dx.doi.org/doi:10.1007/s100529900006
https://arXiv.org/abs/hep-ph/9812472
https://dx.doi.org/doi:10.1016/S0370-2693(99)00417-7
https://arXiv.org/abs/hep-ph/9903404
https://dx.doi.org/doi:10.1016/S0550-3213(01)00343-1
https://arXiv.org/abs/hep-ph/0105096
https://dx.doi.org/doi:10.1016/S0550-3213(02)00184-0
https://arXiv.org/abs/hep-ph/0112177
https://dx.doi.org/doi:10.1016/S0550-3213(02)00748-4
https://arXiv.org/abs/hep-ph/0206101
https://dx.doi.org/doi:10.1016/j.nuclphysb.2003.08.033
https://arXiv.org/abs/hep-ph/0305127
https://dx.doi.org/doi:10.1140/epjc/s2005-02112-6
https://arXiv.org/abs/hep-ph/0411114

BIBLIOGRAPHY

[29] S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, The Higgs sector of the
complex MSSM at two-loop order: QCD contributions, Phys. Lett. B 652 (2007) 300,
arXiv:0705.0746 [hep-ph].

[30] S. Borowka, T. Hahn, S. Heinemeyer, G. Heinrich and W. Hollik, Momentum-dependent
two-loop QCD corrections to the neutral Higgs-boson masses in the MSSM, Eur. Phys. J. C
74 (2014) 2994, arXiv:1404.7074 [hep-ph].

[31] W. Hollik and S. Pafiehr, Higgs boson masses and mixings in the complex MSSM with two-
loop top-Yukawa-coupling corrections, JHEP 1410 (2014) 171, arXiv:1409.1687 [hep-ph].

[32] S. Borowka, T. Hahn, S. Heinemeyer, G. Heinrich and W. Hollik, Renormalization scheme
dependence of the two-loop QCD corrections to the neutral Higgs-boson masses in the MSSM,
Eur. Phys. ]. C 75 (2015) 424, arXiv:1505.03133 [hep-ph].

[33] S. Paflehr and G. Weiglein, Two-loop top and bottom Yukawa corrections to the Higgs-boson
masses in the complex MSSM, Eur. Phys. |. C 78 (2018) 222, arXiv:1705.07909 [hep-ph].

[34] S. Borowka, S. Pafiehr and G. Weiglein, Complete two-loop QCD contributions to the
lightest Higgs-boson mass in the MSSM with complex parameters, Eur. Phys. ]. C 78 (2018)
576, arXiv:1802.09886 [hep-ph].

[35] S.P. Martin, Two Loop Effective Potential for a General Renormalizable Theory and Softly
Broken Supersymmetry, Phys. Rev. D 65 (2002) 116003, hep-ph/0111209.

[36] S.P. Martin, Two Loop Effective Potential for the Minimal Supersymmetric Standard Model,
Phys. Rev. D 66 (2002) 096001, hep-ph/0206136.

[37] S.P. Martin, Complete Two Loop Effective Potential Approximation to the Lightest Higgs
Scalar Boson Mass in Supersymmetry, Phys. Rev. D 67 (2003) 095012, hep-ph/0211366.

[38] A. Dedes and P. Slavich, Two loop corrections to radiative electroweak symmetry breaking in
the MSSM, Nucl. Phys. B 657 (2003) 333, hep-ph/0212132.

[39] S.P. Martin, Two loop scalar self energies in a general renormalizable theory at leading order
in gauge couplings, Phys. Rev. D 70 (2004) 016005, hep-ph/0312092.

[40] B.C. Allanach, A. Djouadi, J.L. Kneur, W. Porod and P. Slavich, Precise determination of
the neutral Higgs boson masses in the MSSM, [HEP 0409 (2004) 044, hep-ph/0406166.

[41] S.P. Martin, Strong and Yukawa two-loop contributions to Higgs scalar boson self-energies
and pole masses in supersymmetry, Phys. Rev. D 71 (2005) 016012, hep-ph/0405022.

[42] S.P. Martin, Two-loop scalar self-energies and pole masses in a general renormalizable theory
with massless gauge bosons, Phys. Rev. D 71 (2005) 116004, hep-ph/0502168.

[43] S.P. Martin, Three-loop corrections to the lightest Higgs scalar boson mass in supersymmetry,
Phys. Rev. D 75 (2007) 055005, hep-ph/0701051.

[44] G. Degrassi, S. Di Vita and P. Slavich, Two-loop QCD corrections to the MSSM
Higgs masses beyond the effective-potential approximation, Eur. Phys. ]. C 75 (2015) 61,

119


https://dx.doi.org/doi:10.1016/j.physletb.2007.07.030
https://arXiv.org/abs/0705.0746
https://dx.doi.org/doi:10.1140/epjc/s10052-014-2994-0
https://dx.doi.org/doi:10.1140/epjc/s10052-014-2994-0
https://arXiv.org/abs/1404.7074
https://dx.doi.org/doi:10.1007/JHEP10(2014)171
https://arXiv.org/abs/1409.1687
https://dx.doi.org/doi:10.1140/epjc/s10052-015-3648-6
https://arXiv.org/abs/1505.03133
https://dx.doi.org/doi:10.1140/epjc/s10052-018-5665-8
https://arXiv.org/abs/1705.07909
https://dx.doi.org/doi:10.1140/epjc/s10052-018-6055-y
https://dx.doi.org/doi:10.1140/epjc/s10052-018-6055-y
https://arXiv.org/abs/1802.09886
https://dx.doi.org/doi:10.1103/PhysRevD.65.116003
https://arXiv.org/abs/hep-ph/0111209
https://dx.doi.org/doi:10.1103/PhysRevD.66.096001
https://arXiv.org/abs/hep-ph/0206136
https://dx.doi.org/doi:10.1103/PhysRevD.67.095012
https://arXiv.org/abs/hep-ph/0211366
https://dx.doi.org/doi:10.1016/S0550-3213(03)00173-1
https://arXiv.org/abs/hep-ph/0212132
https://dx.doi.org/doi:10.1103/PhysRevD.70.016005
https://arXiv.org/abs/hep-ph/0312092
https://dx.doi.org/doi:10.1088/1126-6708/2004/09/044
https://arXiv.org/abs/hep-ph/0406166
https://dx.doi.org/doi:10.1103/PhysRevD.71.016012
https://arXiv.org/abs/hep-ph/0405022
https://dx.doi.org/doi:10.1103/PhysRevD.71.116004
https://arXiv.org/abs/hep-ph/0502168
https://dx.doi.org/doi:10.1103/PhysRevD.75.055005
https://arXiv.org/abs/hep-ph/0701051
https://dx.doi.org/doi:10.1140/epjc/s10052-015-3280-5

120 BIBLIOGRAPHY

arXiv:1410.3432 [hep-ph].

[45] M.D. Goodsell and F. Staub, The Higgs mass in the CP violating MSSM, NMSSM, and
beyond, Eur. Phys. ]. C 77 (2017) 46, arXiv:1604.05335 [hep-ph].

[46] S.P. Martin, Effective potential at three loops, Phys. Rev. D 96 (2017) 096005,
arxXiv:1709.02397 [hep-phl.

[47] R.V. Harlander, J. Klappert and A. Voigt, Higgs mass prediction in the MSSM at three-loop
level in a pure DR context, Eur. Phys. ]. C 77 (2017) 814, arXiv:1708.05720 [hep-ph].

[48] A.R. Fazio and E.A. Reyes R., The Lightest Higgs Boson Mass of the MSSM at Three-Loop
Accuracy, Nucl. Phys. B 942 (2019) 164, arXiv:1901.03651 [hep-ph].

[49] M.D. Goodsell and S. Pafsehr, All two-loop scalar self-energies and tadpoles in general
renormalisable field theories, arXiv:1910.02094 [hep-ph].

[50] S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: A Program for the calculation of
the masses of the neutral CP even Higgs bosons in the MSSM, Comp. Phys. Commun. 124
(2000) 76, hep-ph/9812320.

[51] G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision
predictions for the MSSM Higgs sector, Eur. Phys. |. C 28 (2003) 133, hep-ph/0212620.

[52] M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, The Higgs
Boson Masses and Mixings of the Complex MSSM in the Feynman-Diagrammatic Approach,
JHEP o702 (2007) 047, hep-ph/0611326.

[53] T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-Precision Predic-
tions for the Light CP -Even Higgs Boson Mass of the Minimal Supersymmetric Standard
Model, Phys. Rev. Lett. 112 (2014) 141801, arXiv:1312.4937 [hep-ph].

[54] B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra,
Comp. Phys. Commun. 143 (2002) 305, hep-ph/0104145.

[55] A. Djouadi, J.L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersym-
metric and Higgs particle spectrum in the MSSM, Comp. Phys. Commun. 176 (2007) 426,
hep-ph/0211331.

[56] W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays
and SUSY particle production at ete™ colliders, Comp. Phys. Commun. 153 (2003) 275,
hep-ph/0301101.

[57] W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models
beyond the MSSM, Comp. Phys. Commun. 183 (2012) 2458, arXiv:1104.1573 [hep-ph].

[58] P. Athron, J.h. Park, D. Stockinger and A. Voigt, FlexibleSUSY—A spectrum gen-
erator generator for supersymmetric models, Comp. Phys. Commun. 190 (2015) 139,
arXiv:1406.2319 [hep-ph].


https://arXiv.org/abs/1410.3432
https://dx.doi.org/doi:10.1140/epjc/s10052-016-4495-9
https://arXiv.org/abs/1604.05335
https://dx.doi.org/doi:10.1103/PhysRevD.96.096005
https://arXiv.org/abs/1709.02397
https://dx.doi.org/10.1140/epjc/s10052-017-5368-6
https://arXiv.org/abs/1708.05720
https://dx.doi.org/10.1016/j.nuclphysb.2019.03.008
https://arXiv.org/abs/1901.03651
https://arXiv.org/abs/1910.02094
https://dx.doi.org/doi:10.1016/S0010-4655(99)00364-1
https://dx.doi.org/doi:10.1016/S0010-4655(99)00364-1
https://arXiv.org/abs/hep-ph/9812320
https://dx.doi.org/doi:10.1140/epjc/s2003-01152-2
https://arXiv.org/abs/hep-ph/0212020
https://dx.doi.org/doi:10.1088/1126-6708/2007/02/047
https://arXiv.org/abs/hep-ph/0611326
https://dx.doi.org/doi:10.1103/PhysRevLett.112.141801
https://arXiv.org/abs/1312.4937
https://dx.doi.org/doi:10.1016/S0010-4655(01)00460-X
https://arXiv.org/abs/hep-ph/0104145
https://dx.doi.org/doi:10.1016/j.cpc.2006.11.009
https://arXiv.org/abs/hep-ph/0211331
https://dx.doi.org/doi:10.1016/S0010-4655(03)00222-4
https://arXiv.org/abs/hep-ph/0301101
https://dx.doi.org/doi:10.1016/j.cpc.2012.05.021
https://arXiv.org/abs/1104.1573
https://dx.doi.org/doi:10.1016/j.cpc.2014.12.020
https://arXiv.org/abs/1406.2319

BIBLIOGRAPHY

[59] P. Athron, M. Bach, D. Harries, T. Kwasnitza, ]J.-h. Park, D. Stockinger, A. Voigt,
J. Ziebell, FlexibleSUSY 2.0: Extensions to investigate the phenomenology of SUSY and
non-SUSY models, Comp. Phys. Commun. 230 (2018) 145, arXiv:1710.03760 [hep-ph].

[60] J. Pardo Vega and G. Villadoro, SusyHD: Higgs mass Determination in Supersymmetry,
JHEP 1507 (2015) 159, arXiv:1504.05200 [hep-ph].

[61] G. Lee and C.E.M. Wagner, Higgs bosons in heavy supersymmetry with an intermediate
my, Phys. Rev. D 92 (2015) 075032, arXiv:1508.00576 [hep-ph].

[62] R.V. Harlander, ]J. Klappert, A.D. Ochoa Franco and A. Voigt, The light CP-even
MSSM Higgs mass resummed to fourth logarithmic order, Eur. Phys. ]. C 78 (2018) 874,
arXiv:1807.03509 [hep-ph].

[63] P. Draper, G. Lee and C.E.M. Wagner, Precise estimates of the Higgs mass in heavy
supersymmetry, Phys. Rev. D 89 (2014) 055023, arXiv:1312.5743 [hep-ph].

[64] E. Bagnaschi, G.F. Giudice, P. Slavich and A. Strumia, Higgs Mass and Unnatural
Supersymmetry, [HEP 1409 (2014) 092, arXiv:1407.4081 [hep-ph].

[65] E. Bagnaschi, J. Pardo Vega and P. Slavich, Improved determination of the Higgs
mass in the MSSM with heavy superpartners, Eur. Phys. ]. C 77 (2017) 334,
arXiv:1703.08166 [hep-ph].

[66] E. Bagnaschi, G. Degrassi, S. Pasehr and P. Slavich, Full two-loop QCD corrections to
the Higgs mass in the MSSM with heavy superpartners, Eur. Phys. ]. C 79 (2019) 910,
arxXiv:1908.01670 [hep-ph].

[67] N. Murphy and H. Rzehak, Higgs-Boson Masses and Mixings in the MSSM with CP
Violation and Heavy SUSY Particles, arXiv:1909.00726 [hep-ph].

[68] H. Bahl and W. Hollik, Precise prediction for the light MSSM Higgs boson mass com-
bining effective field theory and fixed-order calculations, Eur. Phys. J. C 76 (2016) 499,
arxXiv:1608.01880 [hep-ph].

[69] H. Bahl, S. Heinemeyer, W. Hollik and G. Weiglein, Reconciling EFT and hy-
brid calculations of the light MSSM Higgs-boson mass, Eur. Phys. ]. C 78 (2018) 57,
arXiv:1706.00346 [hep-ph].

[70] B.C. Allanach and A. Voigt, Uncertainties in the Lightest CP Even Higgs Boson Mass
Prediction in the Minimal Supersymmetric Standard Model: Fixed Order Versus Effective
Field Theory Prediction, Eur. Phys. ]. C 78 (2018) 573, arXiv:1804.09410 [hep-ph].

[71] P. Athron, J.h. Park, T. Steudtner, D. Stockinger and A. Voigt, Precise Higgs mass
calculations in (non-)minimal supersymmetry at both high and low scales, JHEP 1701 (2017)
079, arXiv:1609.00371 [hep-ph].

[72] E Staub and W. Porod, Improved predictions for intermediate and heavy Supersymmetry in
the MSSM and beyond, Eur. Phys. ]. C 77 (2017) 338, arXiv:1703.03267 [hep-ph].

121


https://dx.doi.org/10.1016/j.cpc.2018.04.016
https://arXiv.org/abs/1710.03760
https://dx.doi.org/doi:10.1007/JHEP07(2015)159
https://arXiv.org/abs/1504.05200
https://dx.doi.org/doi:10.1103/PhysRevD.92.075032
https://arXiv.org/abs/1508.00576
https://dx.doi.org/10.1140/epjc/s10052-018-6351-6
https://arXiv.org/abs/1807.03509
https://dx.doi.org/doi:10.1103/PhysRevD.89.055023
https://arXiv.org/abs/1312.5743
https://dx.doi.org/doi:10.1007/JHEP09(2014)092
https://arXiv.org/abs/1407.4081
https://dx.doi.org/doi:10.1140/epjc/s10052-017-4885-7
https://arXiv.org/abs/1703.08166
https://dx.doi.org/doi:10.1140/epjc/s10052-019-7417-9
https://arXiv.org/abs/1908.01670
https://arXiv.org/abs/1909.00726
https://dx.doi.org/doi:10.1140/epjc/s10052-016-4354-8
https://arXiv.org/abs/1608.01880
https://dx.doi.org/doi:10.1140/epjc/s10052-018-5544-3
https://arXiv.org/abs/1706.00346
https://dx.doi.org/doi:10.1140/epjc/s10052-018-6046-z
https://arXiv.org/abs/1804.09410
https://dx.doi.org/doi:10.1007/JHEP01(2017)079
https://dx.doi.org/doi:10.1007/JHEP01(2017)079
https://arXiv.org/abs/1609.00371
https://dx.doi.org/doi:10.1140/epjc/s10052-017-4893-7
https://arXiv.org/abs/1703.03267

122

BIBLIOGRAPHY

[73] H. Bahl and W. Hollik, Precise prediction of the MSSM Higgs boson masses for low M4,
JHEP 1807 (2018) 182, arXiv:1805.00867 [hep-ph].

[74] R.V. Harlander, J. Klappert and A. Voigt, The light CP-even MSSM Higgs mass including
N3LO+N3LL QCD corrections, arXiv:1910.03595 [hep-ph].

[75] E.A. Reyes R. and A.R. Fazio, Comparison of the EFT Hybrid and Three-Loop Fixed-Order
Calculations of the Lightest MSSM Higgs Boson Mass, Phys. Rev. D 100 (2019) 115017,
arxXiv:1908.00693 [hep-ph].

[76] H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Reports 110 (1984) 1.

[77] G.E. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking,
Phys. Reports 322 (1999) 419, hep-ph/9801271.

[78] P.Z. Skands et al., SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay
packages, and event generators, [HEP 0407 (2004) 036, hep-ph/0311123.

[79] D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-J. Zhang, Precision corrections in the
minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3, hep-ph/9606211.

[80] B.C. Allanach et al., The Snowmass Points and Slopes: Benchmarks for SUSY Searches,
Eur. Phys. ]. C 25 (2002) 113, hep-ph/0202233.

[81] J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis: SPA convention and project,
Eur. Phys. ]. C 46 (2006) 43, hep-ph/0511344.

[82] H. Bahl, T. Hahn, S. Heinemeyer, W. Hollik, S. Pafiehr, H. Rzehak and G. Wei-
glein, Precision calculations in the MSSM Higgs-boson sector with FeynHiggs 2.14,
arXiv:1811.09073 [hep-ph].

[83] A. Pak, M. Steinhauser and N. Zerf, Supersymmetric next-to-next-to-leading or-
der corrections to Higgs boson production in gluon fusion, [HEP 1209 (2012) 118,
arXiv:1208.1588 [hep-ph].

[84] W. Siegel, Supersymmetric Dimensional Regularization via Dimensional Reduction,
Phys. Lett. B 84 (1979) 193.

[85] D. Stockinger, Regularization by dimensional reduction: consistency, quantum action princi-
ple, and supersymmetry, JHEP 0503 (2005) 076, hep-ph/0503129.

[86] W.A. Bardeen, A.]. Buras, D.W. Duke and T. Muta, Deep Inelastic Scattering Beyond the
Leading Order in Asymptotically Free Gauge Theories, Phys. Rev. D 18 (1978) 3998.

[87] S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersym-
metry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum: Phys. Rev. D 78 (2008)
039903], hep-ph/9311340.

[88] L. Jack and D.RT. Jones, Soft supersymmetry breaking and finiteness, Phys. Lett. B 333
(1994) 372, hep-ph/9405233.


https://dx.doi.org/doi:10.1007/JHEP07(2018)182
https://arXiv.org/abs/1805.00867
https://arXiv.org/abs/1910.03595
https://dx.doi.org/doi:10.1103/PhysRevD.100.115017
https://arXiv.org/abs/1908.00693
https://dx.doi.org/doi:10.1016/0370-1573(84)90008-5
https://dx.doi.org/doi:10.1016/S0370-1573(99)00042-3
https://arXiv.org/abs/hep-ph/9801271
https://dx.doi.org/doi:10.1088/1126-6708/2004/07/036
https://arXiv.org/abs/hep-ph/0311123
https://dx.doi.org/doi:10.1016/S0550-3213(96)00683-9
https://arXiv.org/abs/hep-ph/9606211
https://dx.doi.org/doi:10.1007/s10052-002-0949-3
https://arXiv.org/abs/hep-ph/0202233
https://dx.doi.org/doi:10.1140/epjc/s2005-02460-1
https://arXiv.org/abs/hep-ph/0511344
https://arXiv.org/abs/1811.09073
https://dx.doi.org/doi:10.1007/JHEP09(2012)118
https://arXiv.org/abs/1208.1588
https://dx.doi.org/doi:10.1016/0370-2693(79)90282-X
https://dx.doi.org/doi:10.1088/1126-6708/2005/03/076
https://arXiv.org/abs/hep-ph/0503129
https://dx.doi.org/doi:10.1103/PhysRevD.18.3998
https://dx.doi.org/doi:10.1103/PhysRevD.50.2282
https://dx.doi.org/10.1103/PhysRevD.78.039903
https://dx.doi.org/10.1103/PhysRevD.78.039903
https://arXiv.org/abs/hep-ph/9311340
https://dx.doi.org/doi:10.1016/0370-2693(94)90156-2
https://dx.doi.org/doi:10.1016/0370-2693(94)90156-2
https://arXiv.org/abs/hep-ph/9405233

BIBLIOGRAPHY

[89] Y. Yamada, Two loop renormalization group equations for soft SUSY breaking scalar interac-
tions: Supergraph method, Phys. Rev. D 50 (1994) 3537, hep-ph/9401241.

[90] I Jack, D.R.T. Jones, S.P. Martin, M.T. Vaughn and Y. Yamada, Decoupling of the e-scalar
mass in softly broken supersymmetry, Phys. Rev. D 50 (1994) R5481, hep-ph/9467291.

[91] D. Stockinger and J. Unger, Three-loop MSSM Higgs-boson mass predictions and requlariza-
tion by dimensional reduction, Nucl. Phys. B 935 (2018) 1, arXiv:1804.05619 [hep-ph].

[92] T. Hermann, L. Mihaila and M. Steinhauset, Three-loop anomalous dimensions for squarks
in supersymmetric QCD, Phys. Lett. B 703 (2011) 51, arXiv:1106.1060 [hep-ph].

[93] A. Bednyakov, A. Onishchenko, V. Velizhanin and O. Veretin, Two loop O(a?) MSSM
corrections to the pole masses of heavy quarks, Eur. Phys. ]. C 29 (2003) 87, hep-ph/0210258.

[94] A. Bednyakov, D.I. Kazakov and A. Sheplyakov, On the two-loop O(a?) corrections to the
pole mass of the t-quark in the MSSM, Phys. Atom. Nucl. 71 (2008) 343, hep-ph/0507139.

[95] A.V.Bednyakov, Running mass of the b-quark in QCD and SUSY QCD, Int. . Mod. Phys. A
22 (2007) 5245, arXiv:0707.0650 [hep-ph].

[96] A. Bauer, L. Mihaila and J. Salomon, Matching coefficients for as and my, to O(a?) in the
MSSM, JHEP 0902 (2009) 037, arXiv:0810.5101 [hep-ph].

[97] 1. Jack, D.R.T. Jones and A.F. Kord, Three loop soft running, benchmark points and
semiperturbative unification, Phys. Lett. B 579 (2004) 180, hep-ph/0368231.

[98] L Jack, D.R.T. Jones and A.F. Kord, Snowmass benchmark points and three-loop running,
Ann. Phys. 316 (2005) 213, hep-ph/0468128.

[99] L.N. Mihaila, J. Salomon and M. Steinhauser, Gauge Coupling Beta Functions in the Stan-
dard Model to Three Loops, Phys. Rev. Lett. 108 (2012) 151602, arXiv:1201.5868 [hep-ph].

[100] A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Anomalous dimensions of gauge fields
and gauge coupling beta-functions in the Standard Model at three loops, JHEP 1301 (2013)
017, arXiv:1210.6873 [hep-ph].

[101] A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Yukawa coupling beta-functions in the
Standard Model at three loops, Phys. Lett. B 722 (2013) 336, arXiv:1212.6829 [hep-ph].

[102] K.G. Chetyrkin and M.F. Zoller, Three-loop B-functions for top-Yukawa and the Higgs
self-interaction in the Standard Model, JHEP 1206 (2012) 033, arXiv:1205.2892 [hep-ph].

[103] A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Higgs self-coupling beta-
function in the Standard Model at three loops, Nucl. Phys. B 875 (2013) 552,
arXiv:arXiv:1303.4364 [hep-ph].

[104] M. Sperling, D. Stockinger and A. Voigt, Renormalization of vacuum expectation values in
spontaneously broken gauge theories, [HEP 1307 (2013) 132, arXiv:1305.1548 [hep-ph].

[105] M. Sperling, D. Stockinger and A. Voigt, Renormalization of vacuum expectation val-
ues in spontaneously broken gauge theories: Two-loop results, JHEP 1401 (2014) 068,

123


https://dx.doi.org/doi:10.1103/PhysRevD.50.3537
https://arXiv.org/abs/hep-ph/9401241
https://dx.doi.org/doi:10.1103/PhysRevD.50.R5481
https://arXiv.org/abs/hep-ph/9407291
https://dx.doi.org/doi:10.1016/j.nuclphysb.2018.08.005
https://arXiv.org/abs/1804.05619
https://dx.doi.org/doi:10.1016/j.physletb.2011.07.036
https://arXiv.org/abs/1106.1060
https://dx.doi.org/doi:10.1140/epjc/s2003-01178-4
https://arXiv.org/abs/hep-ph/0210258
https://dx.doi.org/doi:10.1007/s11450-008-2015-6
https://arXiv.org/abs/hep-ph/0507139
https://dx.doi.org/doi:10.1142/S0217751X07038037
https://dx.doi.org/doi:10.1142/S0217751X07038037
https://arXiv.org/abs/0707.0650
https://dx.doi.org/doi:10.1088/1126-6708/2009/02/037
https://arXiv.org/abs/0810.5101
https://dx.doi.org/doi:10.1016/j.physletb.2003.10.083
https://arXiv.org/abs/hep-ph/0308231
https://dx.doi.org/doi:10.1016/j.aop.2004.08.007
https://arXiv.org/abs/hep-ph/0408128
https://dx.doi.org/doi:10.1103/PhysRevLett.108.151602
https://arXiv.org/abs/1201.5868
https://dx.doi.org/doi:10.1007/JHEP01(2013)017
https://dx.doi.org/doi:10.1007/JHEP01(2013)017
https://arXiv.org/abs/1210.6873
https://dx.doi.org/doi:10.1016/j.physletb.2013.04.038
https://arXiv.org/abs/1212.6829
https://dx.doi.org/doi:10.1007/JHEP06(2012)033
https://arXiv.org/abs/1205.2892
https://dx.doi.org/doi:10.1016/j.nuclphysb.2013.07.015
https://arXiv.org/abs/arXiv:1303.4364
https://dx.doi.org/doi:10.1007/JHEP07(2013)132
https://arXiv.org/abs/1305.1548
https://dx.doi.org/doi:10.1007/JHEP01(2014)068

124

BIBLIOGRAPHY

arXiv:1310.7629 [hep-ph].

[106] B.C. Allanach, A. Bednyakov and R. Ruiz de Austri, Higher order corrections and unifi-
cation in the minimal supersymmetric standard model: SOFTSUSY3.5, Comp. Phys. Com-
mun. 189 (2015) 192, arXiv:1407.6130 [hep-ph].

[107] D. Kunz, L. Mihaila and N. Zerf, O(oc%) corrections to the running top-Yukawa cou-
pling and the mass of the lightest Higgs boson in the MSSM, JHEP 1412 (2014) 136,
arxXiv:1409.2297 [hep-ph].

[108] P.Kant et al., H3m, https://www.ttp.kit.edu/Progdata/ttpl0/ttpl0-23/H3m-v1.3/.

[109] J.L. Feng, P. Kant, S. Profumo and D. Sanford, Three-Loop Corrections to the Higgs Boson
Mass and Implications for Supersymmetry at the LHC, Phys. Rev. Lett. 111 (2013) 131802,
arxXiv:1306.2318 [hep-ph].

[110] The ATLAS, CDF, CMS, and D0 Collaborations, First combination of Tevatron and LHC
measurements of the top-quark mass, arXiv:1403.4427 [hep-ex].

[111] S. Bethke, The 2009 World Average of w«s;, Eur. Phys. ]. C 64 (2009) 689,
arXiv:0908.1135 [hep-ph].

[112] S.P. Martin and D.G. Robertson, Higgs boson mass in the Standard Model at two-loop order
and beyond, Phys. Rev. D 9o (2014) 073010, arXiv:1407.4336 [hep-ph].

[113] S.P. Martin, Four-Loop Standard Model Effective Potential at Leading Order in QCD,
Phys. Rev. D 92 (2015) 054029, arXiv:1508.00912 [hep-ph].

[114] L.N. Mihaila, ]. Salomon and M. Steinhauser, Renormalization constants and beta functions
for the gauge couplings of the Standard Model to three-loop order, Phys. Rev. D 86 (2012)
096008, arXiv:1208.3357 [hep-ph].

[115] D. Buttazzo, G. Degrassi, PP. Giardino, G.F. Giudice, F. Sala, A. Salvio and
A. Strumia, Investigating the near-criticality of the Higgs boson, JHEP 1312 (2013) 089,
arXiv:1307.3536 [hep-ph].

[116] A.V. Bednyakov and A.E. Pikelner, Four-loop strong coupling beta-function in the Standard
Model, Phys. Lett. B 762 (2016) 151, arXiv:1508.02680 [hep-ph].

[117] K.G. Chetyrkin and M.E. Zoller, Leading QCD-induced four-loop contributions to the
B-function of the Higgs self-coupling in the SM and vacuum stability, JHEP 1606 (2016) 175,
arXiv:1604.00853 [hep-ph].

[118] S. Fanchiotti, B.A. Kniehl and A. Sirlin, Incorporation of QCD effects in basic corrections
of the electroweak theory, Phys. Rev. D 48 (1993) 307, hep-ph/9212285.

[119] K.G. Chetyrkin and M. Steinhauser, The Relation between the MS and the on-shell quark
mass at order o2, Nucl. Phys. B 573 (2000) 617, hep-ph/9911434.

[120] K. Melnikov, T. van Ritbergen, The three-loop relation between the MS and the pole quark
masses, Phys. Lett. B 482 (2000) 99, hep-ph/9912391.


https://arXiv.org/abs/1310.7629
https://dx.doi.org/doi:10.1016/j.cpc.2014.12.006
https://dx.doi.org/doi:10.1016/j.cpc.2014.12.006
https://arXiv.org/abs/1407.6130
https://dx.doi.org/doi:10.1007/JHEP12(2014)136
https://arXiv.org/abs/1409.2297
https://www.ttp.kit.edu/Progdata/ttp10/ttp10-23/H3m-v1.3/
https://dx.doi.org/doi:10.1103/PhysRevLett.111.131802
https://arXiv.org/abs/1306.2318
https://arXiv.org/abs/1403.4427
https://dx.doi.org/doi:10.1140/epjc/s10052-009-1173-1
https://arXiv.org/abs/0908.1135
https://dx.doi.org/doi:10.1103/PhysRevD.90.073010
https://arXiv.org/abs/1407.4336
https://dx.doi.org/doi:10.1103/PhysRevD.92.054029
https://arXiv.org/abs/1508.00912
https://dx.doi.org/doi:10.1103/PhysRevD.86.096008
https://dx.doi.org/doi:10.1103/PhysRevD.86.096008
https://arXiv.org/abs/1208.3357
https://dx.doi.org/doi:10.1007/JHEP12(2013)089
https://arXiv.org/abs/1307.3536
https://dx.doi.org/doi:10.1016/j.physletb.2016.09.007
https://arXiv.org/abs/1508.02680
https://dx.doi.org/doi:10.1007/JHEP06(2016)175
https://arXiv.org/abs/1604.00853
https://dx.doi.org/doi:10.1103/PhysRevD.48.307
https://arXiv.org/abs/hep-ph/9212285
https://dx.doi.org/doi:10.1016/S0550-3213(99)00784-1
https://arXiv.org/abs/hep-ph/9911434
https://dx.doi.org/10.1016/S0370-2693(00)00507-4
https://arXiv.org/abs/hep-ph/9912391

BIBLIOGRAPHY

[121] K.G. Chetyrkin, J.H. Kithn and M. Steinhauser, RunDec: A Mathematica package for
running and decoupling of the strong coupling and quark masses, Comp. Phys. Commun. 133
(2000) 43, hep-ph/0004189.

[122] G. Degrassi, S. Di Vita, ]. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori and
A. Strumia, Higgs mass and vacuum stability in the Standard Model at NNLO, J[HEP 1208
(2012) 098, arXiv:1205.6497 [hep-ph].

[123] R. Harlander, L. Mihaila and M. Steinhauser, Two-loop matching coefficients for the strong
coupling in the MSSM, Phys. Rev. D 72 (2005) 095009, hep-ph/0509048.

[124] A.V. Bednyakov, Some two-loop threshold corrections and three-loop renormalization group
analysis of the MSSM, arXiv:1009.5455 [hep-ph].

[125] S.P. Martin, Top-quark pole mass in the tadpole-free MS scheme, Phys. Rev. D 93 (2016)
094017, arXiv:1604.01134 [hep-ph].

[126] H. Bahl, S. Heinemeyer, W. Hollik and G. Weiglein, Theoretical uncertainties in the
MSSM Higgs boson mass calculation, arXiv:1912.04199 [hep-ph].

[127] S.L. Glashow, D.V. Nanopoulos and A. Yildiz, Associated Production of Higgs Bosons and
Z Particles, Phys. Rev. D 18 (1978) 1724.

[128] S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283.

[129] M. Aaboud et al. [ATLAS Collaboration], Observation of H — bb decays and V H produc-
tion with the ATLAS detector, Phys. Lett. B 786 (2018) 59, arXiv:1808.08238 [hep-ex].

[130] A.M. Sirunyan et al. [CMS Collaboration], Observation of Higgs boson decay to bottom
quarks, Phys. Rev. Lett. 121 (2018) 121801, arXiv:1808.08242 [hep-ex].

[131] D. de Florian et al. [LHC Higgs Cross Section Working Group], Handbook of LHC Higgs
Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [hep-ph].

[132] T. Aaltonen et al. [CDF and DO Collaborations], Evidence for a particle produced in
association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson
searches at the Tevatron, Phys. Rev. Lett. 109 (2012) 071804, arXiv:1207.6436 [hep-ex].

[133] M. Aaboud et al. [ATLAS Collaboration], Evidence for the H — bb decay with the ATLAS
detector, JHEP 1712 (2017) 024, arXiv:1708.03299 [hep-ex].

[134] AM. Sirunyan et al. [CMS Collaboration], Evidence for the Higgs boson decay to a bottom
quark—antiquark pair, Phys. Lett. B 780 (2018) 501, arXiv:1709.07497 [hep-ex].

[135] O. Brein, A. Djouadi and R. Harlander, NNLO QCD corrections to the Higgs-strahlung
processes at hadron colliders, Phys. Lett. B 579 (2004) 149, hep-ph/0307206.

[136] R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order o2
correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum: Nucl. Phys. B

644 (202) 403].

125


https://dx.doi.org/doi:10.1016/S0010-4655(00)00155-7
https://dx.doi.org/doi:10.1016/S0010-4655(00)00155-7
https://arXiv.org/abs/hep-ph/0004189
https://dx.doi.org/doi:10.1007/JHEP08(2012)098
https://dx.doi.org/doi:10.1007/JHEP08(2012)098
https://arXiv.org/abs/1205.6497
https://dx.doi.org/doi:10.1103/PhysRevD.72.095009
https://arXiv.org/abs/hep-ph/0509048
https://arXiv.org/abs/1009.5455
https://dx.doi.org/doi:10.1103/PhysRevD.93.094017
https://dx.doi.org/doi:10.1103/PhysRevD.93.094017
https://arXiv.org/abs/1604.01134
https://arXiv.org/abs/1912.04199
https://dx.doi.org/doi:10.1103/PhysRevD.18.1724
https://dx.doi.org/doi:10.1016/0550-3213(91)90061-2
https://dx.doi.org/doi:10.1016/j.physletb.2018.09.013
https://arXiv.org/abs/1808.08238
https://dx.doi.org/doi:10.1103/PhysRevLett.121.121801
https://arXiv.org/abs/1808.08242
https://arXiv.org/abs/1610.07922
https://dx.doi.org/doi:10.1103/PhysRevLett.109.071804
https://arXiv.org/abs/1207.6436
https://dx.doi.org/doi:10.1007/JHEP12(2017)024
https://arXiv.org/abs/1708.03299
https://dx.doi.org/doi:10.1016/j.physletb.2018.02.050
https://arXiv.org/abs/1709.07497
https://dx.doi.org/doi:10.1016/j.physletb.2003.10.112
https://arXiv.org/abs/hep-ph/0307206
https://dx.doi.org/doi:10.1016/S0550-3213(02)00814-3
https://dx.doi.org/10.1016/0550-3213(91)90064-5
https://dx.doi.org/10.1016/0550-3213(91)90064-5

126

BIBLIOGRAPHY

[137] R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron
colliders, Phys. Rev. Lett. 88 (2002) 201801, hep-ph/0201206.

[138] G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron col-
liders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003,
arXiv:1107.1164 [hep-ph].

[139] G. Ferrera, M. Grazzini and F. Tramontano, Associated ZH production at hadron
colliders: the fully differential NNLO QCD calculation, Phys. Lett. B 740 (2015) 51,
arXiv:1407.4747 [hep-ph].

[140] J.M. Campbell, R.K. Ellis and C. Williams, Associated production of a Higgs boson at
NNLO, JHEP 1606 (2016) 179, arXiv:1601.00658 [hep-ph].

[141] Y. Li, A. von Manteuffel, R M. Schabinger and H.X. Zhu, N°LO Higgs boson and Drell-
Yan production at threshold: The one-loop two-emission contribution, Phys. Rev. D 9o (2014)
053006, arXiv:1404.5839 [hep-phl.

[142] M.C. Kumar, M.K. Mandal and V. Ravindran, Associated production of Higgs
boson with vector boson at threshold N°LO in QCD, JHEP 1503 (2015) 037,
arXiv:1412.3357 [hep-ph].

[143] B.A. Kniehl, Associated Production of Higgs and Z Bosons From Gluon Fusion in Hadron
Collisions, Phys. Rev. D 42 (1990) 2253.

[144] D.A. Dicus and C. Kao, Higgs Boson - Z° Production From Gluon Fusion, Phys. Rev. D 38
(1988) 1008 [Erratum: Phys. Rev. D 42 (1990) 2412].
[145] L. Altenkamp, S. Dittmaier, R.V. Harlander, H. Rzehak and T.J.E. Zirke, Gluon-

induced Higgs-strahlung at next-to-leading order QCD, JHEP 1302 (2013) 078,
arXiv:1211.5015 [hep-ph].

[146] R.V. Harlander, A. Kulesza, V. Theeuwes and T. Zirke, Soft gluon resummation for
gluon-induced Higgs Strahlung, JHEP 1411 (2014) 082, arXiv:1410.0217 [hep-ph].

[147] A.Hasselhuhn, T. Luthe and M. Steinhauser, On top quark mass effects to gg¢ — ZH at
NLO, JHEP 1701 (2017) 073, arXiv:1611.05881 [hep-ph].

[148] B. Hespel, E. Maltoni and E. Vryonidou, Higgs and Z boson associated production via gluon
fusion in the SM and the 2HDM, JHEP 1506 (2015) 065, arXiv:1503.01656 [hep-ph].

[149] D. Goncalves, F. Krauss, S. Kuttimalai and P. Maierhofer, Higgs-Strahlung: Merging the
NLO Drell-Yan and loop-induced 0 + 1 jet multiplicities, Phys. Rev. D 92 (2015) 073006,
arxXiv:1509.01597 [hep-ph].

[150] O. Brein, R. Harlander, M. Wiesemann and T. Zirke, Top-Quark Mediated Effects in
Hadronic Higgs-Strahlung, Eur. Phys. ]. C 72 (2012) 1868, arXiv:1111.0761 [hep-ph].

[151] T. Ahmed, A.H. Ajjath, L. Chen, PK. Dhani, P. Mukherjee and V. Ravindran, Po-
larised Amplitudes and Soft-Virtual Cross Sections for bb — ZH at NNLO in QCD,


https://dx.doi.org/doi:10.1103/PhysRevLett.88.201801
https://arXiv.org/abs/hep-ph/0201206
https://dx.doi.org/doi:10.1103/PhysRevLett.107.152003
https://arXiv.org/abs/1107.1164
https://dx.doi.org/doi:10.1016/j.physletb.2014.11.040
https://arXiv.org/abs/1407.4747
https://dx.doi.org/doi:10.1007/JHEP06(2016)179
https://arXiv.org/abs/1601.00658
https://dx.doi.org/doi:10.1103/PhysRevD.90.053006
https://dx.doi.org/doi:10.1103/PhysRevD.90.053006
https://arXiv.org/abs/1404.5839
https://dx.doi.org/doi:10.1007/JHEP03(2015)037
https://arXiv.org/abs/1412.3357
https://dx.doi.org/doi:10.1103/PhysRevD.42.2253
https://dx.doi.org/doi:10.1103/PhysRevD.38.1008
https://dx.doi.org/doi:10.1103/PhysRevD.38.1008
https://dx.doi.org/10.1103/PhysRevD.42.2412
https://dx.doi.org/doi:10.1007/JHEP02(2013)078
https://arXiv.org/abs/1211.5015
https://dx.doi.org/doi:10.1007/JHEP11(2014)082
https://arXiv.org/abs/1410.0217
https://dx.doi.org/doi:10.1007/JHEP01(2017)073
https://arXiv.org/abs/1611.05881
https://dx.doi.org/doi:10.1007/JHEP06(2015)065
https://arXiv.org/abs/1503.01656
https://dx.doi.org/doi:10.1103/PhysRevD.92.073006
https://arXiv.org/abs/1509.01597
https://dx.doi.org/doi:10.1140/epjc/s10052-012-1868-6
https://arXiv.org/abs/1111.0761

BIBLIOGRAPHY

arxXiv:1910.06347 [hep-ph].

[152] M.L. Ciccolini, S. Dittmaier and M. Kramer, Electroweak radiative corrections to as-
sociated WH and ZH production at hadron colliders, Phys. Rev. D 68 (2003) 073003,
hep-ph/0306234.

[153] A. Denner, S. Dittmaier, S. Kallweit and A. Miick, Electroweak corrections to Higgs-
strahlung off W/Z bosons at the Tevatron and the LHC with HAWK, JHEP 1203 (2012) 075,
arxXiv:1112.5142 [hep-ph].

[154] F. Granata, J.M. Lindert, C. Oleari and S. Pozzorini, NLO QCD+EW predictions
for HV and HV +jet production including parton-shower effects, JHEP 1709 (2017) 012,
arxXiv:1706.03522 [hep-ph].

[155] ]J. Butterworth et al., PDF4LHC recommendations for LHC Run II, |. Phys. G 43 (2016)
023001, arXiv:1510.03865 [hep-ph].

[156] W. Astill, W. Bizori, E. Re and G. Zanderighi, NNLOPS accurate associated HW production,
JHEP 1606 (2016) 154, arXiv:1603.01620 [hep-ph].

[157] W. Astill, W. Bizon, E. Re and G. Zanderighi, NNLOPS accurate associated HZ production
with H — bb decay at NLO, JHEP 1811 (2018) 157, arXiv:1804.08141 [hep-ph].

[158] J.M. Campbell, R K. Ellis and C. Williams, Vector boson pair production at the LHC,
JHEP 1107 (2011) 018, arXiv:1105.0020 [hep-ph].

[159] J.M. Campbell, RK. Ellis and W.T. Giele, A Multi-Threaded Version of MCFM,
Eur. Phys. ]. C 75 (2015) 246, arXiv:1503.06182 [physics.comp-ph].

[160] O. Brein, R.V. Harlander and T.J.E. Zirke, vh@nnlo - Higgs Strahlung at hadron colliders,
Comp. Phys. Commun. 184 (2013) 998, arXiv:1210.5347 [hep-ph].

[161] R.V. Harlander, J. Klappert, S. Liebler and L. Simon, vh@nnlo-v2: New physics in Higgs
Strahlung, JHEP 1805 (2018) 089, arXiv:1802.04817 [hep-ph].

[162] W.T. Giele and S. Keller, Determination of W boson properties at hadron colliders,
Phys. Rev. D 57 (1998) 4433, hep-ph/9704419.

[163] R.V. Harlander, J. Klappert, C. Pandini and A. Papaefstathiou, Exploiting the
WH/ZH symmetry in the search for New Physics, Eur. Phys. ]. C 78 (2018) 760,
arxiv:1804.02299 [hep-ph].

[164] C. Englert, M. McCullough and M. Spannowsky, Gluon-initiated associated production
boosts Higgs physics, Phys. Rev. D 89 (2014) 013013, arXiv:1310.4828 [hep-ph].

[165] R.V. Harlander, S. Liebler and T. Zirke, Higgs Strahlung at the Large Hadron Collider in
the 2-Higgs-Doublet Model, JHEP 1402 (2014) 023, arXiv:1307.8122 [hep-ph].

[166] S. Dittmaier et al. [LHC Higgs Cross Section Working Group], Handbook of LHC Higgs
Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [hep-ph].

127


https://arXiv.org/abs/1910.06347
https://dx.doi.org/doi:10.1103/PhysRevD.68.073003
https://arXiv.org/abs/hep-ph/0306234
https://dx.doi.org/doi:10.1007/JHEP03(2012)075
https://arXiv.org/abs/1112.5142
https://dx.doi.org/doi:10.1007/JHEP09(2017)012
https://arXiv.org/abs/1706.03522
https://dx.doi.org/doi:10.1088/0954-3899/43/2/023001
https://dx.doi.org/doi:10.1088/0954-3899/43/2/023001
https://arXiv.org/abs/1510.03865
https://dx.doi.org/doi:10.1007/JHEP06(2016)154
https://arXiv.org/abs/1603.01620
https://dx.doi.org/doi:10.1007/JHEP11(2018)157
https://arXiv.org/abs/1804.08141
https://dx.doi.org/doi:10.1007/JHEP07(2011)018
https://arXiv.org/abs/1105.0020
https://dx.doi.org/doi:10.1140/epjc/s10052-015-3461-2
https://arXiv.org/abs/1503.06182
https://dx.doi.org/doi:10.1016/j.cpc.2012.11.002
https://arXiv.org/abs/1210.5347
https://dx.doi.org/10.1007/JHEP05(2018)089
https://arXiv.org/abs/1802.04817
https://dx.doi.org/doi:10.1103/PhysRevD.57.4433
https://arXiv.org/abs/hep-ph/9704419
https://dx.doi.org/10.1140/epjc/s10052-018-6234-x
https://arXiv.org/abs/1804.02299
https://dx.doi.org/doi:10.1103/PhysRevD.89.013013
https://arXiv.org/abs/1310.4828
https://dx.doi.org/doi:10.1007/JHEP02(2014)023
https://arXiv.org/abs/1307.8122
https://arXiv.org/abs/1101.0593

128

BIBLIOGRAPHY

[167] S. Dittmaier et al. [LHC Higgs Cross Section Working Group], Handbook of LHC Higgs
Cross Sections: 2. Differential Distributions, arXiv:1201.3084 [hep-ph].

[168] S. Heinemeyer et al. [LHC Higgs Cross Section Working Group], Handbook of LHC
Higgs Cross Sections: 3. Higgs Properties, arXiv:1307.1347 [hep-ph].

[169] M. Cacciari, G.P. Salam and G. Soyez, The anti-k; jet clustering algorithm, [HEP 0804
(2008) 063, arXiv:0802.1189 [hep-ph].

[170] A. Denner, S. Dittmaier, S. Kallweit and A. Miick, HAWK 2.0: A Monte Carlo pro-
gram for Higgs production in vector-boson fusion and Higgs strahlung at hadron colliders,
Comp. Phys. Commun. 195 (2015) 161, arXiv:1412.5390 [hep-ph].

[171] A. Denner, S. Dittmaier and J.N. Lang, Renormalization of mixing angles, [JHEP 1811
(2018) 104, arXiv:1808.03466 [hep-ph].

[172] R.D. Ball et al. [NNPDF Collaboration], Parton distributions for the LHC Run II, [HEP 1504
(2015) 040, arXiv:1410.8849 [hep-ph].

[173] A.V. Manohar, P. Nason, G.P. Salam and G. Zanderighi, The Photon Content of the Proton,
JHEP 1712 (2017) 046, arXiv:1708.01256 [hep-ph].

[174] V. Bertone et al. [NNPDF Collaboration], Illuminating the photon content of the proton
within a global PDF analysis, SciPost Phys. 5 (2018) 008, arXiv:1712.07053 [hep-ph].

[175] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 : Going
Beyond, JHEP 1106 (2011) 128, arXiv:1106.0522 [hep-ph].

[176] ]. Alwall et al., The automated computation of tree-level and next-to-leading order differential
cross sections, and their matching to parton shower simulations, JHEP 1407 (2014) 079,
arxiv:1405.0301 [hep-ph].

[177] ]. Bellm et al., Herwig 7.0/Herwig++ 3.0 release note, Eur. Phys. ]. C 76 (2016) 196,
arXiv:1512.01178 [hep-ph].

[178] ]. Bellm et al., Herwig 7.1 Release Note, arXiv:1705.06919 [hep-ph].

[179] M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross
Section at Hadron Colliders Through O(al), Phys. Rev. Lett. 110 (2013) 252004,
arXiv:1303.6254 [hep-ph].

[180] M. Cacciari and G.P. Salam, Dispelling the N? myth for the k; jet-finder, Phys. Lett. B 641
(2006) 57, hep-ph/0512210.

[181] M. Cacciari, G.P. Salam and G. Soyez, Fast]et User Manual, Eur. Phys. ]. C 72 (2012)
1896, arXiv:arXiv:1111.6097 [hep-ph].

[182] J.R. Andersen et al., Les Houches 2017: Physics at TeV Colliders Standard Model Working
Group Report, , arXiv:1803.07977 [hep-ph].

[183] W.H. Furry, A Symmetry Theorem in the Positron Theory, Phys. Rev. 51 (1937) 125.


https://arXiv.org/abs/1201.3084
https://arXiv.org/abs/1307.1347
https://dx.doi.org/doi:10.1088/1126-6708/2008/04/063
https://dx.doi.org/doi:10.1088/1126-6708/2008/04/063
https://arXiv.org/abs/0802.1189
https://dx.doi.org/doi:10.1016/j.cpc.2015.04.021
https://arXiv.org/abs/1412.5390
https://dx.doi.org/doi:10.1007/JHEP11(2018)104
https://dx.doi.org/doi:10.1007/JHEP11(2018)104
https://arXiv.org/abs/1808.03466
https://dx.doi.org/doi:10.1007/JHEP04(2015)040
https://dx.doi.org/doi:10.1007/JHEP04(2015)040
https://arXiv.org/abs/1410.8849
https://dx.doi.org/doi:10.1007/JHEP12(2017)046
https://arXiv.org/abs/1708.01256
https://dx.doi.org/doi:10.21468/SciPostPhys.5.1.008
https://arXiv.org/abs/1712.07053
https://dx.doi.org/doi:10.1007/JHEP06(2011)128
https://arXiv.org/abs/1106.0522
https://dx.doi.org/doi:10.1007/JHEP07(2014)079
https://arXiv.org/abs/1405.0301
https://dx.doi.org/doi:10.1140/epjc/s10052-016-4018-8
https://arXiv.org/abs/1512.01178
https://arXiv.org/abs/1705.06919
https://dx.doi.org/doi:10.1103/PhysRevLett.110.252004
https://arXiv.org/abs/1303.6254
https://dx.doi.org/doi:10.1016/j.physletb.2006.08.037
https://dx.doi.org/doi:10.1016/j.physletb.2006.08.037
https://arXiv.org/abs/hep-ph/0512210
https://dx.doi.org/doi:10.1140/epjc/s10052-012-1896-2
https://dx.doi.org/doi:10.1140/epjc/s10052-012-1896-2
https://arXiv.org/abs/arXiv:1111.6097
https://arXiv.org/abs/1803.07977
https://dx.doi.org/doi:10.1103/PhysRev.51.125

BIBLIOGRAPHY

[184] L.D. Landau, On the angular momentum of a system of two photons,
Dokl. Akad. Nauk SSSR 60 (1948) 207.

[185] C.N. Yang, Selection Rules for the Dematerialization of a Particle Into Two Photons,
Phys. Rev. 77 (1950) 242.

[186] P. Nogueira, Automatic Feynman graph generation, . Comp. Phys. 105 (1993) 279.

[187] R. Harlander, T. Seidensticker and M. Steinhauser, Corrections of O(aws) to the decay of
the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125, hep-ph/9712228.

[188] T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman
diagrams, hep-ph/9905298.

[189] J.A.M. Vermaseren, New features of FORM, math-ph/0010025.

[190] T. van Ritbergen, A.N. Schellekens and J.A.M. Vermaseren, Group theory factors for
Feynman diagrams, Int. . Mod. Phys. A 14 (1999) 41, hep-ph/9802376.

[191] L. Chen, A prescription for projectors to compute helicity amplitudes in D dimensions,
arXiv:1904.00705 [hep-ph].

[192] C.G. Bollini and J.J. Giambiagi, Dimensional Renormalization: The Number of Dimensions

as a Regularizing Parameter, Nuovo Cim. 12B (1972) 20.

[193] G. 't Hooft and M.].G. Veltman, Regularization and Renormalization of Gauge Fields,
Nucl. Phys. B 44 (1972) 189.

[194] S. Moch, J.A.M. Vermaseren and A. Vogt, On 75 in higher-order QCD calculations and
the NNLO evolution of the polarized valence distribution, Phys. Lett. B 748 (2015) 432,
arXiv:1506.04517 [hep-ph].

[195] D.A. Akyeampong and R. Delbourgo, Dimensional regularization, abnormal amplitudes
and anomalies, Nuovo Cim. 17A (1973) 578.

[196] S.A. Larin and J.A.M. Vermaseren, The a? corrections to the Bjorken sum rule for polarized
electroproduction and to the Gross-Llewellyn Smith sum rule, Phys. Lett. B 259 (1991) 345.

[197] S.A. Larin, The Renormalization of the axial anomaly in dimensional regularization,
Phys. Lett. B 303 (1993) 113, hep-ph/9302240.

[198] E.B. Zijlstra and W.L. van Neerven, Order a2 correction to the structure function F3(x, Q?)
in deep inelastic neutrino - hadron scattering, Phys. Lett. B 297 (1992) 377.

[199] C. Anastasiou and K. Melnikov, Pseudoscalar Higgs boson production at hadron colliders
in NNLO QCD, Phys. Rev. D 67 (2003) 037501, hep-ph/6208115.

[200] S.A. Larin, EV. Tkachov, ].A.M. Vermaseren, The FORM version of MINCER, 1991.

[201] M. Steinhauser, MATAD: a program package for the computation of massive tadpoles,
Comp. Phys. Commun. 134 (2001) 335, hep-ph/0009029.

129


https://dx.doi.org/doi:10.1016/B978-0-08-010586-4.50070-5
https://dx.doi.org/doi:10.1103/PhysRev.77.242
https://dx.doi.org/doi:10.1006/jcph.1993.1074
https://dx.doi.org/doi:10.1016/S0370-2693(98)00220-2
https://arXiv.org/abs/hep-ph/9712228
https://arXiv.org/abs/hep-ph/9905298
https://arXiv.org/abs/math-ph/0010025
https://dx.doi.org/doi:10.1142/S0217751X99000038
https://arXiv.org/abs/hep-ph/9802376
https://arXiv.org/abs/1904.00705
https://dx.doi.org/doi:10.1007/BF02895558
https://dx.doi.org/doi:10.1016/0550-3213(72)90279-9
https://dx.doi.org/doi:10.1016/j.physletb.2015.07.027
https://arXiv.org/abs/1506.04517
https://dx.doi.org/doi:10.1007/BF02786835
https://dx.doi.org/doi:10.1016/0370-2693(91)90839-I
https://dx.doi.org/doi:10.1016/0370-2693(93)90053-K
https://arXiv.org/abs/hep-ph/9302240
https://dx.doi.org/doi:10.1016/0370-2693(92)91277-G
https://dx.doi.org/doi:10.1103/PhysRevD.67.037501
https://arXiv.org/abs/hep-ph/0208115
https://dx.doi.org/10.1016/S0010-4655(00)00204-6
https://arXiv.org/abs/hep-ph/0009029

130

BIBLIOGRAPHY

[202] M. Prausa, Towards Light Quark Mass Effects in Higgs Production and Decay at Next-to-
Next-to-Leading Order, https://dx.doi.org/doi:10.18154/RWTH-2018-224331.

[203] J. Klappert and F. Lange, Reconstructing Rational Functions with FireFly,
Comp. Phys. Commun. 247 (2020) 106951, arXiv:1904.00009 [cs.SC].

[204] EV. Tkachov, A theorem on analytical calculability of 4-loop renormalization group functions,
Phys. Lett. B 100 (1981) 65.

[205] K.G. Chetyrkin, EV. Tkachov, Integration By Parts: The algorithm to calculate beta functions
in four loops, Nucl. Phys. B 192 (1981) 159.

[206] A.V. Smirnov and A.V. Petukhov, The Number of Master Integrals is Finite,
Lett. Math. Phys. 97 (2011) 37, arXiv:1004.4199 [hep-th].

[207] S.G. Gorishny, S.A. Larin, L.R. Surguladze, E.V. Tkachov, Mincer: Program for multiloop
calculations in quantum field theory for the Schoonschip system, Comp. Phys. Commun. 55

(1989) 381.

[208] D.J. Broadhurst, Three loop on-shell charge renormalization without integration: AgD to
four loops, Z. Phys. C 54 (1992) 599.

[209] K. Melnikov, T. van Ritbergen, Three-Loop Slope of the Dirac Form Factor and the 1S Lamb
Shift in Hydrogen, Phys. Rev. Lett. 84 (2000) 1673, hep-ph/9911277.

[210] K. Melnikov, T. van Ritbergen, The three-loop on-shell renormalization of QCD and QED,
Nucl. Phys. B 591 (2000) 515, hep-ph/0005131.

[211] RIN. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction,
arxXiv:1212.2685 [hep-ph].

[212] RN. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals,
J. Phys. Conf. Ser. 523 (2014) 012059, arXiv:1310.1145 [hep-ph].

[213] S. Laporta, High-precision calculation of multi-loop Feynman integrals by difference equations,
Int. ]. Mod. Phys. A 15 (2000) 5087, hep-ph/0102033.

[214] C. Anastasiou, A. Lazopoulos, Automatic Integral Reduction for Higher Order Perturbative
Calculations, JHEP 0407 (2004) 046, hep-ph/0404258.

[215] A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 0810 (2008) 107,
arxiv:0807.3243 [hep-ph].

[216] A.V. Smirnov, V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by
parts relations, Comp. Phys. Commun. 184 (2013) 2820, arXiv:1302.5885 [hep-ph].

[217] A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction,
Comp. Phys. Commun. 189 (2015) 182, arXiv:1408.2372 [hep-ph].

[218] A.V. Smirnov, ES. Chukharev, FIRE6: Feynman Integral REduction with Modular Arith-
metic, Comp. Phys. Commun. 247 (2020) 106877, arXiv:1901.07808 [hep-ph].


https://dx.doi.org/doi:10.18154/RWTH-2018-224331
https://dx.doi.org/doi:10.1016/j.cpc.2019.106951
https://arXiv.org/abs/1904.00009
https://dx.doi.org/10.1016/0370-2693(81)90288-4
https://dx.doi.org/10.1016/0550-3213(81)90199-1
https://dx.doi.org/doi:10.1007/s11005-010-0450-0
https://arXiv.org/abs/1004.4199
https://dx.doi.org/10.1016/0010-4655(89)90134-3
https://dx.doi.org/10.1016/0010-4655(89)90134-3
https://dx.doi.org/10.1007/BF01559486
https://dx.doi.org/10.1103/PhysRevLett.84.1673
https://arXiv.org/abs/hep-ph/9911277
https://dx.doi.org/10.1016/S0550-3213(00)00526-5
https://arXiv.org/abs/hep-ph/0005131
https://arXiv.org/abs/1212.2685
https://dx.doi.org/10.1088/1742-6596/523/1/012059
https://arXiv.org/abs/1310.1145
https://dx.doi.org/10.1016/S0217-751X(00)00215-7
https://arXiv.org/abs/hep-ph/0102033
https://dx.doi.org/10.1088/1126-6708/2004/07/046
https://arXiv.org/abs/hep-ph/0404258
https://dx.doi.org/10.1088/1126-6708/2008/10/107
https://arXiv.org/abs/0807.3243
https://dx.doi.org/10.1016/j.cpc.2013.06.016
https://arXiv.org/abs/1302.5885
https://dx.doi.org/10.1016/j.cpc.2014.11.024
https://arXiv.org/abs/1408.2372
https://dx.doi.org/10.1016/j.cpc.2019.106877
https://arXiv.org/abs/1901.07808

BIBLIOGRAPHY

[219] C. Studerus, Reduze - Feynman Integral Reduction in C++, Comp. Phys. Commun. 181
(2010) 1293, arXiv:0912.2546 [physics.comp-ph].

[220] A. von Manteuffel, C. Studerus, Reduze 2 - Distributed Feynman Integral Reduction,
arxiv:1201.4330 [hep-ph].

[221] P. Maierhofer, J. Usovitsch, P. Uwer, Kira - A Feynman Integral Reduction Program,
Comp. Phys. Commun. 230 (2018) 99, arXiv:1705.05610 [hep-ph].

[222] P. Maierhofer, J. Usovitsch, Kira 1.2 Release Notes, arXiv:1812.01491 [hep-ph].

[223] A.G. Grozin, Integration by parts: An introduction, Int. ]. Mod. Phys. A 26 (2011) 2807,
arxXiv:1104.3993 [hep-ph].

[224] A.V. Kotikov, S. Teber, Multi-Loop Techniques for Massless Feynman Diagram Calculations,
Phys. Part. Nuclei 50 (2019) 1, arXiv:1805.05109 [hep-th].

[225] R.H. Lewis, Fermat: A Computer Algebra System for Polynomial and Matrix Computation,
http://home.bway.net/lewis/.

[226] A. von Manteuffel, R.M. Schabinger, A novel approach to integration by parts reduction,
Phys. Lett. B 744 (2015) 101, arXiv:1406.4513 [hep-ph].

[227] T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction,
JHEP 1612 (2016) 030, arXiv:1608.01902 [hep-ph].

[228] G. Laurentis and D. Maitre, Extracting analytical one-loop amplitudes from numerical
evaluations, JHEP 1907 (2019) 123, arXiv:1904.04067 [hep-ph].

[229] T. Peraro, FiniteFlow: multivariate functional reconstruction using finite fields and dataflow
graphs, JHEP 1907 (2019) 031, arXiv:1905.08019 [hep-ph].

[230] J. von zur Gathen, ]J. Gerhard, Modern Computer Algebra, third ed., Cambridge Univer-
sity Press, 2013.

[231] A. Cuyt, W.-s. Lee, Sparse interpolation of multivariate rational functions,
Theor. Comp. Sci. 412 (2011) 1445.

[232] R. Zippel, Probabilistic algorithms for sparse polynomials, Symbolic Algebraic Comp. EU-
ROSAM 1979 (1979) 216.

[233] R. Zippel, Interpolating Polynomials from their Values, |. Symb. Comp. 9 (1990) 375.

[234] M. Ben-Or, P. Tiwari, A Deterministic Algorithm for Sparse Multivariate Polynomial
Interpolation, Proc. ACM Symp. Theory Comp. 20 (1988) 301.

[235] E. Kaltofen, Lakshman Y., Improved Sparse Multivariate Polynomial Interpolation Algo-
rithms, Symbolic Algebraic Comp. ISSAC 1988 (1989) 467.

[236] E.Kaltofen, Lakshman Y.N., J.-M. Wiley, Modular Rational Sparse Multivariate Polynomial
Interpolation, Proc. Int. Symp. Symbolic Algebraic Comp. 1990 (1990) 135.

131


https://dx.doi.org/10.1016/j.cpc.2010.03.012
https://dx.doi.org/10.1016/j.cpc.2010.03.012
https://arXiv.org/abs/0912.2546
https://arXiv.org/abs/1201.4330
https://dx.doi.org/10.1016/j.cpc.2018.04.012
https://arXiv.org/abs/1705.05610
https://arXiv.org/abs/1812.01491
https://dx.doi.org/10.1142/S0217751X11053687
https://arXiv.org/abs/1104.3993
https://dx.doi.org/10.1134/S1063779619010039
https://arXiv.org/abs/1805.05109
http://home.bway.net/lewis/
https://dx.doi.org/10.1016/j.physletb.2015.03.029
https://arXiv.org/abs/1406.4513
https://dx.doi.org/10.1007/JHEP12(2016)030
https://arXiv.org/abs/1608.01902
https://dx.doi.org/doi:10.1007/JHEP07(2019)123
https://arXiv.org/abs/1904.04067
https://dx.doi.org/doi:10.1007/JHEP07(2019)031
https://arXiv.org/abs/1905.08019
https://dx.doi.org/10.1016/j.tcs.2010.11.050
https://dx.doi.org/10.1007/3-540-09519-5_73
https://dx.doi.org/10.1007/3-540-09519-5_73
https://dx.doi.org/10.1016/S0747-7171(08)80018-1
https://dx.doi.org/10.1145/62212.62241
https://dx.doi.org/10.1007/3-540-51084-2_44
https://dx.doi.org/10.1145/96877.96912

132

BIBLIOGRAPHY

[237] E. Kaltofen, W.-s. Lee, A.A. Lobo, Early Termination in Ben-Or/Tiwari Sparse Interpolation
and a Hybrid of Zippel’s Algorithm, Proc. Int. Symp. Symbolic Algebraic Comp. 2000 (2000)
192.

[238] E. Kaltofen, W.-s. Lee, Early termination in sparse interpolation algorithms,
J. Symb. Comp. 36 (2003) 365.

[239] S.M.M. Javadi, M. Monagan, Parallel Sparse Polynomial Interpolation over Finite Fields,
Proc. Int. Workshop Parallel Symbolic Comp. 4 (2010) 160.

[240] E. Kaltofen, B.M. Trager, Computing with Polynomials Given by Black Boxes for Their
Evaluations: Greatest Common Divisors, Factorization, Separation of Numerators and Denom-
inators, J. Symb. Comp. 9 (1990) 301.

[241] E. Kaltofen, Z. Yang, On Exact and Approximate Interpolation of Sparse Rational Functions,
Proc. Int. Symp. Symbolic Algebraic Comp. 2007 (2007) 203.

[242] D.Y. Grigoriev, M. Karpinski, M.E. Singer, Interpolation of Sparse Rational Functions
Without Knowing Bounds on Exponents, Proc. Symp. Foundations Comp. Sci. 31 (1990) 840.

[243] D.Y. Grigoriev, M. Karpinski, Algorithms for Sparse Rational Interpolation, Proc. Int. Symp.
Symbolic Algebraic Comp. 1991 (1991) 7.

[244] D. Grigoriev, M. Karpinski, M.E. Singer, Computational Complexity of Sparse Rational
Interpolation, SIAM ]. Comp. 23 (1994) 1.

[245] J. de Kleine, M. Monagan, A. Wittkopf, Algorithms for the Non-monic Case of the Sparse
Modular GCD Algorithm, Proc. Int. Symp. Symbolic Algebraic Comp. 2005 (2005) 124.

[246] Q.-L. Huang, X.-S. Gao, Sparse Rational Function Interpolation with Finitely Many
Values for the Coefficients, Math. Aspects Comp. Information Sci. 2017 (2017) 227,
arXiv:1706.00914 [cs.SC].

[247] A. Diaz, E. Kaltofen, Foxsox: A System for Manipulating Symbolic Objects in Black Box
Representation, Proc. Int. Symp. Symbolic Algebraic Comp. 1998 (1998) 30.

[248] J. Hu, M. Monagan, A Fast Parallel Sparse Polynomial GCD Algorithm, Proc. Int. Symp.
Symbolic Algebraic Comp. 2016 (2016) 271.

[249] M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions With Formulas,
Graphs, and Mathematical Tables, first ed., Dover Publications, 1964.

[250] J.T. Schwartz, Fast Probabilistic Algorithms for Verification of Polynomial Identities,
J. ACM 27 (1980) 701.

[251] S. Khodadad, M. Monagan, Fast Rational Function Reconstruction, Proc. Int. Symp.
Symbolic Algebraic Comp. 2006 (2006) 184.

[252] PS. Wang, A p-adic Algorithm for Univariate Partial Fractions, Proc. ACM Symp. Symbolic
Algebraic Comp. 1981 (1981) 212.


https://dx.doi.org/10.1145/345542.345629
https://dx.doi.org/10.1145/345542.345629
https://dx.doi.org/10.1016/S0747-7171(03)00088-9
https://dx.doi.org/10.1145/1837210.1837233
https://dx.doi.org/10.1016/S0747-7171(08)80015-6
https://dx.doi.org/10.1145/1277548.1277577
https://dx.doi.org/10.1109/FSCS.1990.89616
https://dx.doi.org/10.1145/120694.120696
https://dx.doi.org/10.1145/120694.120696
https://dx.doi.org/10.1137/S0097539791194069
https://dx.doi.org/10.1145/1073884.1073903
https://dx.doi.org/10.1007/978-3-319-72453-9_16
https://arXiv.org/abs/1706.00914
https://dx.doi.org/10.1145/281508.281538
https://dx.doi.org/10.1145/2930889.2930903
https://dx.doi.org/10.1145/2930889.2930903
https://dx.doi.org/10.1145/322217.322225
https://dx.doi.org/10.1145/1145768.1145801
https://dx.doi.org/10.1145/1145768.1145801
https://dx.doi.org/10.1145/800206.806398
https://dx.doi.org/10.1145/800206.806398

BIBLIOGRAPHY

[253] P.S. Wang, M.].T. Guy, ].H. Davenport, P-adic Reconstruction of Rational Numbers, ACM
SIGSAM Bulletin 16, 2 (1982) 2.

[254] M. Monagan, Maximal Quotient Rational Reconstruction: An Almost Optimal Algorithm
for Rational Reconstruction, Proc. Int. Symp. Symbolic Algebraic Comp. 2004 (2004) 243.

[255] ]J. Artz, R.V. Harlander, F. Lange, T. Neumann and M. Prausa, Results and techniques
for higher order calculations within the gradient-flow formalism, [HEP 1906 (2019) 121
[Erratum: JHEP 1910 (2019) 032], arXiv:1905.00882 [hep-lat].

[256] A. von Manteuffel, R.M. Schabinger, Quark and gluon form factors to four-loop order in
QCD: the NJ% contributions, Phys. Rev. D 95 (2017) 034030, arXiv:1611.00795 [hep-ph].

[257] S. Badger, C. Brennum-Hansen, H.B. Hartanto, T. Peraro, Analytic helicity ampli-
tudes for two-loop five-gluon scattering: the single-minus case, JHEP 1901 (2019) 186,
arXiv:1811.11699 [hep-ph].

[258] S. Abreu, ]J. Dormans, F. Febres Cordero, H. Ita, B. Page, Analytic Form of Planar
Two-Loop Five-Gluon Scattering Amplitudes in QCD, Phys. Rev. Lett. 122 (2019) 082002,
arxiv:1812.04586 [hep-ph].

[259] RN. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Four-loop quark
form  factor with quartic fundamental colour factor, JHEP 1902 (2019) 172,
arXiv:1901.02898 [hep-ph].

[260] J.M. Henn, T. Peraro, M. Stahlhofen and P. Wasser, Matter dependence of the four-loop cusp
anomalous dimension, Phys. Rev. Lett. 122 (2019) 201602, arXiv:1901.03693 [hep-ph].

[261] A. von Manteuffel, R M. Schabinger, Quark and gluon form factors in four loop QCD: the
N} and Ngy Ny contributions, Phys. Rev. D 99 (2019) 094014, arXiv:1902.08208 [hep-ph].

[262] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Analytic Form
of the Planar Two-Loop Five-Parton Scattering Amplitudes in QCD, JHEP 1905 (2019) 084,
arxXiv:1904.00945 [hep-ph].

[263] A. von Manteuffel, RM. Schabinger, Planar master integrals for four-loop form factors,
JHEP 1905 (2019) 073, arXiv:1903.06171 [hep-ph].

[264] S. Badger et al., Analytic form of the full two-loop five-gluon all-plus helicity amplitude,
Phys. Rev. Lett. 123 (2019) 071601, arXiv:1905.03733 [hep-ph].

[265] M. Kauers, Fast solvers for dense linear systems, Nucl. Phys. Proc. Suppl. 183 (2008) 245.

[266] P. Kant, Finding Linear Dependencies in Integration-By-Parts Equations: A Monte Carlo
Approach, Comp. Phys. Commun. 185 (2014) 1473, arXiv:1309.7287 [hep-ph].

[267] H.B. Hartanto, S. Badger, C. Bronnum-Hansen and T. Peraro, A numerical evaluation of
planar two-loop helicity amplitudes for a W-boson plus four partons, JHEP 1909 (2019) 119,
arxXiv:1906.11862 [hep-ph].

133


https://dx.doi.org/10.1145/1089292.1089293
https://dx.doi.org/10.1145/1089292.1089293
https://dx.doi.org/10.1145/1005285.1005321
https://dx.doi.org/10.1007/JHEP06(2019)121
https://dx.doi.org/doi:10.1007/JHEP06(2019)121, 10.1007/JHEP10(2019)032
https://arXiv.org/abs/1905.00882
https://dx.doi.org/10.1103/PhysRevD.95.034030
https://arXiv.org/abs/1611.00795
https://dx.doi.org/10.1007/JHEP01(2019)186
https://arXiv.org/abs/1811.11699
https://dx.doi.org/10.1103/PhysRevLett.122.082002
https://arXiv.org/abs/1812.04586
https://dx.doi.org/doi:10.1007/JHEP02(2019)172
https://arXiv.org/abs/1901.02898
https://dx.doi.org/doi:10.1103/PhysRevLett.122.201602
https://arXiv.org/abs/1901.03693
https://dx.doi.org/10.1103/PhysRevD.99.094014
https://arXiv.org/abs/1902.08208
https://dx.doi.org/doi:10.1007/JHEP05(2019)084
https://arXiv.org/abs/1904.00945
https://dx.doi.org/10.1007/JHEP05(2019)073
https://arXiv.org/abs/1903.06171
https://dx.doi.org/doi:10.1103/PhysRevLett.123.071601
https://arXiv.org/abs/1905.03733
https://dx.doi.org/10.1016/j.nuclphysbps.2008.09.111
https://dx.doi.org/10.1016/j.cpc.2014.01.017
https://arXiv.org/abs/1309.7287
https://dx.doi.org/doi:10.1007/JHEP09(2019)119
https://arXiv.org/abs/1906.11862

134 BIBLIOGRAPHY

[268] D. Bendle, J. Boehm, W. Decker, A. Georgoudis, FJ. Pfreundt, M. Rahn, P. Wasser
and Y. Zhang, Integration-by-parts reductions of Feynman integrals using Singular and
GPI-Space, arXiv:1908.04301 [hep-th].

[269] J. Ellis, TikZ-Feynman: Feynman diagrams with TikZ, Comp. Phys. Commun. 210 (2017)
103, arXiv:1601.05437 [hep-ph].


https://arXiv.org/abs/1908.04301
https://dx.doi.org/10.1016/j.cpc.2016.08.019
https://dx.doi.org/10.1016/j.cpc.2016.08.019
https://arXiv.org/abs/1601.05437

DANKSAGUNG

Zuallererst gilt mein Dank Prof. Robert Harlander, der mir die Promotion in seiner Ar-
beitsgruppe erméglicht hat. Die wissenschaftliche Zusammenarbeit, die hervorrangende
Betreuung und die Moglichkeit, auch eigenen Projekten nachzugehen, haben mich sehr

bereichert.
Bei Prof. Michael Kramer bedanke ich mich fiir die Ubernahme des Zweitgutachtens.

Fiir das Fiihren von hilfreichen Diskussionen, die angenehme Arbeitsatmosphére und das
Korrekturlesen meiner Arbeit bedanke ich mich herzlich bei Benjamin Summ und Fabian
Lange. In diesem Zuge bin ich auch Dr. Alexander Voigt fiir die Zusammenarbeit und
Unterstiitzung sehr dankbar. Aufierdem danke ich Dr. Mario Prausa fiir die niitzlichen
Diskussionen gerade zu Beginn dieser Arbeit.

Dr. Andreas Papaefstathiou danke ich fiir das Bereitstellen der Monte-Carlo-Daten, die in

dieser Arbeit verwendet wurden.

Grofler Dank gilt allen Personen, die mich wihrend dieser Arbeit abseits der Physik begleitet
und unterstiitzt haben. Besonders fiir den Riickhalt durch meine Mutter Michaela, meinen
Grofsvater Ewald und meiner Partnerin Katrin bin ich sehr dankbar. Ich danke zudem all
meinen Freunden, die mich auf diesem Weg begleitet und unterstiitzt haben. Insbesondere
gilt dies fiir Benjamin, der mich in die Kunst des schwedischen Basketballs eingefiihrt hat,
und Nina, die mich speziell in der Anfangsphase dieser Arbeit bestarkt hat.

In liebevoller Erinnerung an Klaus, Sabine und Klare.

135






EIDESSTATTLICHE ERKLARUNG

Ich, Jonas Klappert, erkldre hiermit, dass diese Dissertation und die darin dargelegten
Inhalte die eigenen sind und selbststindig, als Ergebnis der eigenen origindren Forschung,
generiert wurden.

Hiermit erkldre ich an Eides statt

1. Diese Arbeit wurde vollstandig oder grofstenteils in der Phase als Doktorand dieser

Fakultdt und Universitdt angefertigt;

2. Sofern irgendein Bestandteil dieser Dissertation zuvor fiir einen akademischen Ab-
schluss oder eine andere Qualifikation an dieser oder einer anderen Institution ver-

wendet wurde, wurde diesklar angezeigt;

3. Wenn immer andere eigene- oder Veroffentlichungen Dritter herangezogen wurden,

wurden diese klar benannt;

4. Wenn aus anderen eigenen- oder Veroffentlichungen Dritter zitiert wurde, wurde stets
die Quelle hierfiir angegeben. Diese Dissertation ist vollstindig meine eigene Arbeit,
mit der Ausnahme solcher Zitate;

5. Alle wesentlichen Quellen von Unterstiitzung wurden benannt;

6. Wenn immer ein Teil dieser Dissertation auf der Zusammenarbeit mit anderen basiert,
wurde von mir klar gekennzeichnet, was von anderen und was von mir selbst erarbeitet

wurde;
7. Ein Teil oder Teile dieser Arbeit wurden zuvor verotffentlicht und zwar in:

DK1] R.V. Harlander, J. Klappert and A. Voigt, Higgs mass prediction in the MSSM at three-loop
level in a pure DR context, Eur. Phys. ]. C 77 (2017) 814, arXiv:1708.05720 [hep-ph].

[UK3] R.V. Harlander, J. Klappert, C. Pandini and A. Papaefstathiou, Exploiting the WH/ZH
symmetry in the search for New Physics, Eur. Phys. ]. C 78 (2018) 760, arXiv:1804.02299
[hep-ph].

DK4] R.V. Harlander, J. Klappert, A. D. Ochoa Franco and A. Voigt, The light CP-even

MSSM Higgs mass resummed to fourth logarithmic order, Eur. Phys. ]J. C 78 (2018) 874,
arxXiv:1807.03509 [hep-ph].

DKs5] J. Klappert and F. Lange, Reconstructing Rational Functions with FireFly, Comp. Phys. Com-
mun. 247 (2020) 106951, arXiv:1904.00009 [cs.SC].

[JK6] R.V. Harlander, J. Klappert and A. Voigt, The light CP-even MSSM Higgs mass including
N3LO+N3LL QCD corrections, arXiv:1910.03595 [hep-ph].

137


https://dx.doi.org/10.1140/epjc/s10052-017-5368-6
https://arXiv.org/abs/1708.05720
https://dx.doi.org/10.1140/epjc/s10052-018-6234-x
http://arXiv.org/abs/1804.02299
http://arXiv.org/abs/1804.02299
https://dx.doi.org/10.1140/epjc/s10052-018-6351-6
https://arXiv.org/abs/1807.03509
https://dx.doi.org/10.1016/j.cpc.2019.106951
https://dx.doi.org/10.1016/j.cpc.2019.106951
https://arXiv.org/abs/1904.00009
https://arXiv.org/abs/1910.03595

	1 Introduction
	 The light CP-even Higgs mass in the MSSM at the three-loop level
	2 Higgs mass calculations in the MSSM
	3 Fixed-order approach
	3.1 Higgs mass prediction at the three-loop level in the MSSM
	3.1.1 Mass hierarchy selection
	3.1.2 H3m renormalization scheme and its relation to .9plus.9minus.910.95.9DR
	3.1.3 Consistent determination of the MSSM .9plus.9minus.910.95.9DR parameters

	3.2 Numerical results including N3LO QCD corrections
	3.2.1 Size of three-loop contributions from different sources
	3.2.2 Scale dependence of the Higgs pole mass
	3.2.3 Comparison to other results
	3.2.4 Tachyonic Higgs bosons

	3.3 Conclusions

	4 Effective-Field-Theory approach
	4.1 Renormalization-group improvement
	4.2 Re-expanding the EFT calculation and ingredients for N3LL accuracy
	4.3 Extraction of the Higgs self-coupling at O(yt4g34)
	4.3.1 Extraction procedure
	4.3.2 Result in the degenerate-mass case
	4.3.3 Extraction uncertainty

	4.4 Numerical results including N3LL QCD corrections
	4.5 Conclusions

	5 Hybrid approach
	5.1 Combination approaches
	5.2 Numerical results including N3LO+N3LL QCD corrections
	5.2.1 Size of the O(v2/MS2) terms
	5.2.2 Uncertainty estimate
	5.2.3 Convergence for high .9plus.9minus.910.95.9SUSY scales
	5.2.4 Convergence for low .9plus.9minus.910.95.9SUSY scales

	5.3 Conclusions


	 Higgs Strahlung in the Standard Model and beyond
	6 Measurement and theory prediction of VH production
	7 Higgs-Strahlung as a probe for New Physics
	7.1 Motivation
	7.2 Extraction of non-Drell-Yan contributions from data
	7.3 Theory prediction and sources of uncertainty of the Drell-Yan ratio
	7.4 Numerical results
	7.4.1 Outline of the simulation and analysis
	7.4.2 Impact of the hadron-level analysis on the Drell-Yan ratio
	7.4.3 Calculation of experimental uncertainties
	7.4.4 Semi-inclusive results
	7.4.5 Differential results

	7.5 Conclusions

	8 Towards quark-mass effects in gluon-induced ZH production at NLO QCD
	8.1 Feynman diagrams and gauge choice
	8.2 Amplitude and tensor reduction
	8.3 Treatment of 5
	8.4 Topologies
	8.5 Reduction to master integrals
	8.5.1 Integration-by-parts identities
	8.5.2 Sector relations
	8.5.3 Interpolation of multivariate rational functions over finite fields
	8.5.4 Rational reconstruction
	8.5.5 Integration-by-parts reductions over finite fields
	8.5.6 Reduction of two-loop integrals for gluon-induced ZH production

	8.6 Conclusions and Outlook


	 Appendices
	A Conventions and Feynman rules
	B Explicit formulæ
	B.1 Threshold corrections
	B.2 Projector coefficients

	Bibliography
	Danksagung
	Eidesstattliche Erklärung


