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Z U S A M M E N FA S S U N G

Spätestens seit der Entdeckung des Higgs-Bosons am Large Hadron Collider des CERNs ist
der Higgs-Sektor des Standardmodells der Teilchenphysik eines der zentralen Forschungsge-
biete der Hochenergiephysik. Durch mögliche Abweichungen von Messungen und theoretis-
chen Vorhersagen innerhalb dieses Sektors erhofft man sich, ein vollständigeres Verständnis
der Quantenfeldtheorien zu erhalten, die verwendet werden, um die Natur zu beschreiben.
Neben immer genauer werdenden Messungen sind daher auch Hochpräzisions-Rechnungen
notwendig, um bei Vergleichen von Messung und Vorhersage auf etwaige Abweichungen
sensitiv zu sein.

Der Fokus dieser Arbeit liegt auf präzisen Vorhersagen von Observablen innerhalb des
Higgs-Sektors.

Zum einen werden Studien der Higgsmassen-Berechnung innerhalb der minimalen super-
symmetrischen Erweiterung des Standardmodells vorgestellt, die partielle Dreischleifen-
ergebnisse beinhalten. Dafür werden verschiedene Berechnungsmethoden vorgestellt, welche
in Kombination eine genaue Vorhersage der Masse des leichten CP-geraden Higgs für be-
liebige Parameterkonfigurationen erlauben. Durch die Verwendung der in dieser Arbeit
entwickelten Ergebnisse kann die relative Unsicherheit in der Vorhersage der Masse des
leichten CP-geraden Higgs auf unter 1% reduziert werden. Da zusätzlich alle zugehöri-
gen Ergebnisse in ein öffentlich zugängliches Programm implementiert sind, können die
Resultate dieser Arbeit in weiteren Studien genutzt werden.

Darüber hinaus wird die Higgs-Produktion in Kombination mit einem Vektor-Boson am
Large Hadron Collider des CERNs untersucht. Durch die Ausnutzung einer Symmetrie der
involvierten Vektor-Bosonen kann eine besondere Observable definiert werden, durch die
sich ein Großteil der Unsicherheiten in sowohl Experiment als auch Vorhersage vermeiden
lässt. Zur Veranschaulichung wird eine Analyse durchgeführt, die zum einen die erhöhte
Sensitivität auf potentielle Abweichungen zwischen Theorie und Experiment zeigt, und
zum anderen Evidenz für die Produktion eines Higgs-Bosons in Kombination mit einem
Z-Boson durch Gluonfusion ermöglicht. Abschließend wird der aktuelle Fortschritt einer
Zweischleifenrechnung für Higgs-Z-Produktion durch Gluonfusion vorgestellt, der eine
volle Top-Quarkmassen-Abhängigkeit in den Schleifendiagrammen beinhaltet. Um die
Quarkmassen-Effekte einzubeziehen, werden innovative Rechenmethoden entwickelt und
in ein öffentlich zugängliches Programm implementiert, das breite Anwendung in der
Berechnung von Mehrschleifendiagrammen finden kann.
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A B S T R A C T

At least since the discovery of the Higgs boson at the Large Hadron Collider at CERN,
the Higgs sector of the Standard Model of particle physics has become one of the central
research areas of high energy physics. Deviations between measurement and theoretical
prediction within this sector have the potential to become a window on the quantum field
theories describing nature. Besides the increasing precision of measurements, high-precision
predictions are required to become sensitive on possible deviations.

The focus of this work is on precise predictions of observables within the Higgs sector.

On the one hand, studies of Higgs mass calculations within the context of the minimal
supersymmetric extension of the Standard Model are presented, which include partial
three-loop contributions. Different kinds of calculational methods are introduced, which,
when combined, yield a reliable prediction of the light CP-even Higgs mass for in principle
arbitrary parameter configurations. Utilizing the results of this work, the relative uncertainty
of the predicted mass of the light CP-even Higgs can be reduced below the 1% level.
Additionally, all corresponding results are implemented in an open-source program, which
allows for further studies.

Moreover, Higgs production in association with a vector boson at the Large Hadron Collider
at CERN is studied. By exploiting a symmetry connecting the final state gauge bosons, a
particular observable can be defined, that leads to the cancellation of various sources of
uncertainty in both measurement and prediction. For illustration, an experimental analysis
for this observable is performed, which demonstrates an increased sensitivity to possible
deviations between measurement and prediction, and, in addition, yields to evidence for the
production of a Higgs boson associated with a Z boson through gluon fusion. Finally, the
recent progress in the calculation of two-loop corrections to Higgs-Z production via gluon
fusion including the full top-quark mass dependence are presented. To include these quark-
mass effects, novel algebraic methods are developed and provided with an implementation
into an open-source program, that can find wide application in the calculation of multi-loop
Feynman diagrams.
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1
I N T R O D U C T I O N

The success of the Standard Model of particle physics (SM)1 at describing nature at the
smallest known scales is undoubted. Its last missing piece, the Higgs boson H, was dis-
covered by the ATLAS [2] and CMS [3] collaborations at the Large Hadron Collider (LHC)
in 2012. In light of this discovery, the Higgs sector has become of foremost interest. Until
today all measurements related to this sector are in agreement with SM predictions [4],
thus raising the importance of precision calculations and measurements to enhance the
sensitivity to potential beyond the SM (BSM) physics. This is especially relevant considering
that, despite the success of the SM in describing nature, many puzzling observations remain
which require BSM physics. For example, neutrino oscillations, the baryon asymmetry of the
universe, dark matter and dark energy, and the smallness of the Higgs boson mass cannot be
explained in the framework of the SM. As the Higgs sector is currently the least constrained
part of the SM, potential inconsistencies in predictions that contribute to this sector could
be a valuable hint towards a more complete picture of the underlying principles of BSM

physics.

Several concepts and theories have been proposed to address these open questions, of which
the extensively studied Supersymmetry (SUSY) is one.2 Many realizations of SUSY provide a
dark matter candidate, considering that dark matter is particle based, and come with an
explanation for the size of the Higgs boson mass, for example. The primary idea of SUSY

is to relate fermions and bosons by extending the Lorentz symmetry in the only possible
non-trivial way. Among all possible SUSY realizations, the simplest one is the Minimal
Supersymmetric Standard Model (MSSM) [9, 10]. It extends the SM in a minimal way to
incorporate SUSY. As a consequence, each particle of the SM is accompanied by a so-called
superpartner, whose spin is shifted by one half with respect to the SM partner. Additionally,
a second complex Higgs doublet has to be introduced in order to ensure the holomorphicity
of the superpotential. Therefore, the Higgs spectrum consists of five physical Higgs bosons.
For real parameters the spectrum is given by two neutral CP-even h and H bosons,3 the
CP-odd A boson, and two charged H± bosons. One particular feature of SUSY is that, even
at tree level, the mass of h, which could be identified as the SM Higgs, can be predicted.
Thus, the measured mass of the discovered Higgs boson at the LHC can be used as an
additional precision observable to constrain the mass spectrum of potential superpartners
or to test SUSY theories in general. To complement precise measurements of the Higgs mass,
precise predictions are needed in addition. Nonetheless, there has been no experimental

1 For a pedagogical introduction to the SM we refer the reader to Ref. [1], for example.
2 We refer the reader to Refs. [5–8] for an introduction to supersymmetric theories and the MSSM.
3 Note that the Higgs boson of the SM is denoted as H, whereas the SM-like Higgs of the MSSM is denoted as h.
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2 introduction

evidence for supersymmetric particles so far, which are thus constrained to have masses
above hundreds of GeV [11, 12].

Irrespective of specific extensions of the SM, precise theoretical predictions within the
framework of the SM are currently indispensable to stay competitive to the shrinking
measurement uncertainties and thus be sensitive to possible deviations from the SM. As state-
of-the-art-calculation techniques are pushed to their limits with cutting-edge calculations of
2→ 2 and 2→ 3 scattering processes at the two-loop level, for example, the need of either
conceptual advances within these calculations or novel algebraic approaches to at least ease
computational bottlenecks are inevitable.

In addition, observables that are sensitive to potential BSM physics effects are well suited
to complement both high-precision measurements and predictions. Furthermore, ratios,
in which similar sources of uncertainties cancel, can help to alleviate the requirement of
improved precision. Well-known examples of such observables are RK(∗) [13] and the ρ

parameter [14].

Following the aforementioned observations, this thesis is dedicated to calculations, studies,
and automatization of precision calculations in the SM and beyond. In Part I, we focus on
Higgs mass predictions in the MSSM, apply and compare different approaches to Higgs mass
calculations, and derive results, which are based on the calculation of Refs. [15,16], up to the
three-loop level. Afterwards, in Part II, we exploit a symmetry within the Higgs production
associated with a vector boson at the LHC to define and study an observable that is highly
sensitive to New-Physics phenomena. Guided by the latter idea and concerns regarding
precision when trying to expose BSM physics using state-of-the-art analyses, we develop
novel techniques that ease some bottlenecks in cutting-edge higher-order calculations. These
methods are then applied to a proof-of-principle calculation within the context of the
associated production of a Z and a Higgs boson.



Part I

T H E L I G H T C P - E V E N H I G G S M A S S I N T H E M S S M AT T H E
T H R E E - L O O P L E V E L

In this part, we focus on the mass prediction of the light CP-even Higgs h in the
MSSM, which in our studies is identified with the SM-like Higgs boson. Different
computational approaches are compared and numerical studies up to three-loop
accuracy are presented.





2
H I G G S M A S S C A L C U L AT I O N S I N T H E M S S M

With the discovery of the Higgs boson with a mass of [2, 3, 17, 18]

Mh = (125.10± 0.14)GeV , (2.1)

the SM is complete and appears to be a good description of nature around and below
the electroweak scale. However, the SM does not describe gravity and cannot account for
phenomena typically associated with dark matter, for example, or for CP-violation at the
level required to explain the observed baryon anti-baryon asymmetry. SUSY has been an
attractive proposal to address some of the deficits of the SM. As a realization of SUSY, the
the MSSM exhibits a constrained Higgs sector which, for a given set of SUSY parameters,
results in a theoretical prediction of the lightest CP-even Higgs boson mass Mh. Comparison
to the measured mass of the observed Higgs boson as quoted above provides a stringent
constraint of the MSSM. However, at tree level the mass of the lightest CP-even Higgs boson
in the MSSM is bounded by the Z-boson mass, MZ, in the decoupling limit, i.e. MA � MZ,
where MA is the mass of the CP-odd Higgs boson A:

M2
h ' v2

3
5 g2

1 + g2
2

4
cos2 2β = M2

Z cos2 2β ≤ M2
Z , (2.2)

where

v =
√

v2
u + v2

d ≈ 246 GeV , tan β =
vu

vd
, g1 =

√
5
3

g′ , g2 = g. (2.3)

g and g′ are the gauge couplings of the SU(2)L and U(1)Y, respectively. vu and vd are the
vacuum expectation values (VEV) of the two Higgs doublets (cf. Eq. (2.7)). Without large
radiative corrections to the Higgs mass, a realization of the MSSM in nature could have been
ruled out already.

During the last decades, much effort has been invested in order to calculate radiative
corrections, develop automated code to predict SUSY mass spectra, and to introduce new
calculational approaches for different mass regions of the SUSY spectra. The latter can
be divided into three categories, which will be discussed in more depth in the following
chapters.

On the one hand, there are fixed-order (FO) calculations, where loop corrections to the Higgs
mass are calculated in the full MSSM, and the perturbation series is truncated at a fixed order
of the coupling constants. If the SUSY particles have masses not too far above the electroweak

5



6 higgs mass calculations in the mssm

scale, the FO calculation typically leads to a reliable value. However, if (some of) the SUSY

particles are very heavy, the perturbative coefficients receive large logarithmic contributions,
which spoil the convergence of the perturbative series. Currently, loop corrections up to the
two-loop level are known in the on-shell scheme [19–34] and up to the three-loop level in
the DR′ scheme1 [15, 16, 24–27, 35–49]. The corresponding FO Higgs pole mass results are
available through implementations into publicly available spectrum generators [22, 50–59].
Spectrum generators are codes that calculate the mass spectrum, couplings, and observables
for a given set of SM and model dependent input parameters. The contributions of this
thesis to the FO approach are discussed in Chap. 3.

On the other hand, there are effective-field-theory (EFT) calculations, which are based on
the assumption that the SUSY particles are very heavy compared to the electroweak scale.
Integrating them out leaves the SM as an EFT. The latter retains the SUSY constraints through
so-called threshold corrections between the MSSM and the SM parameters, which are applied
at some large mass scale. The Higgs pole mass is then calculated from the SM MS parameters
after evolving them down to the electroweak scale through SM renormalization-group
equations (RGEs), thereby resumming contributions which are logarithmic in the ratio of the
SUSY and the electroweak scale. Such kinds of logarithms are denoted as large logarithms
in what follows. This procedure has been implemented through next-to-next-to-leading
logarithmic order (NNLL2 or third logarithmic order) in several publicly available pure-
EFT spectrum generators [59–61]. Resummation through fourth logarithmic order (N3LL)
has recently been achieved through the calculation of the three-loop threshold correction
for the quartic coupling λ [62], which complemented the available two-loop threshold
corrections [60, 61, 63–67]. Our contributions to the EFT approach are discussed in Chap. 4.

The FO and the EFT approach have shown that the tree-level Higgs mass given in Eq. (2.2)
indeed receives large radiative corrections. However, in order for the theoretical value of the
light CP-even Higgs mass to be compatible with the observed Higgs mass of Mh ≈ 125 GeV,
the SUSY spectrum requires TeV-scale stops (see Refs. [60,64,68–70], for example). Regarding
uncertainties, it is not clear a priori whether a FO or an EFT approach provides the most
reliable value for the Higgs mass at these mass scales. For this reason, so-called hybrid
approaches have been devised [53, 59, 68, 69, 71–74]. They combine the virtues of a FO and
an EFT calculation, and lead to a reliable value for the Higgs pole mass at arbitrary SUSY

scales in principle. Comparison to the highest available FO result shows good agreement
up to remarkably large SUSY scales of the order of 5–10 TeV [75], in accordance with earlier
comparisons of FO and EFT results [47]. Our contributions to the hybrid approach are
discussed in Chap. 5.

The aim of the first part of this thesis is to study the three-loop corrections obtained
by a FO calculation in Refs. [15, 16]. Since the latter were not included in state-of-the-art
spectrum generators before this thesis, we provide an implementation of these terms into

1 See Subsect. 3.1.2 and references therein for its definition.
2 Any N in shorthand notations like NLL corresponds to a next-to, e.g. NLL means next-to-leading logarithmic

order. In combinations with LO, i.e. leading order, NLO represents next-to-leading order.



higgs mass calculations in the mssm 7

the C++ library Himalaya [47] and use it together with the spectrum generator Flexible-

SUSY (FS) [58, 59]. With the help of Himalaya we are able to elevate the FO, the EFT, and the
hybrid approach to the three-loop level, which is needed in order to reduce the theoretical
uncertainty and be more competitive regarding the measured value of Eq. (2.1).

Before we turn to a more in-depth discussion of the approaches introduced above, we
establish notational details in the following.

Masses denoted by capital letters, such as Mx, are meant to be pole masses, whereas masses
denoted by lower case letters, such as mx, are defined to be running masses in a specific
renormalization scheme.

The set of SM MS parameters relevant to our calculation is denoted as

X̄ = {λ̄, ḡt, ḡ3, v̄} , (2.4)

where λ̄ denotes the quartic Higgs coupling, ḡt the SM top Yukawa coupling, ḡ3 the strong
gauge coupling, and v̄ the vacuum expectation value of the Higgs field in the SM.

If SUSY would be an exact symmetry, the superpartners and their corresponding SM particles
would have the same mass. As there are currently no hints for additional particles at the
mass scale of the SM particles, SUSY has to be broken when realized in nature. Without
assuming a specific SUSY breaking mechanism, cf. Refs. [76, 77], one is able to parametrize
this breaking by adding terms to the Lagrangian that explicitly break SUSY. For our studies,
the relevant parts of the MSSM Lagrangian read3

−LMSSM
soft-breaking ⊃

1
2
(

M1B̃B̃ + M2W̃W̃ + mg̃ g̃g̃ + h.c.
)

+ (yu Au)ij
(
Q̃i H2

)
Ũ∗j + (yd Ad)ij

(
H1Q̃i

)
D̃∗j

+
(
m2

Q
)

ij Q̃∗i Q̃j +
(
m2

U
)

ij Ũ∗i Ũj +
(
m2

D
)

ij D̃∗i D̃j

+ Bµ (H1H2 + h.c.) .

(2.5)

Here, B̃, referred to as bino, is the superpartner of the SM Bµ boson, W̃µ, referred to as winos,
are the superpartners of the SM Wµ bosons, and g̃, referred to as gluino, is the superpartner
of the SM gluon g. M1, M2, and mg̃ are the masses of the bino, wino, and gluino, respectively.
(yu)ij and (yd)ij are the Yukawa coupling matrices of up-type or down-type quarks in the
MSSM. The trilinear coupling matrices (Au/d)ij are soft-breaking parameters in the MSSM.
Note that we are assuming flavor diagonal matrices, i.e. (yu/d Au/d)ij = δijyu/d Au/d, with δij

being the Kronecker symbol and u/d ∈ {u, s, t}/{d, c, b}. Q̃, Ũ, and D̃ are the superpartner
fields of the quarks, referred to as squarks, containing the SU(2)L doublet squarks, the
up-type singlet squarks, and down-type singlet squarks, respectively. Their mass matrices
(m2

Q)ij contain the squared soft breaking masses mQ,i, mU,i, and mD,i for i ∈ {1, 2, 3} as

3 For a comprehensive introduction to the MSSM, we refer the reader to Refs. [6–8].



8 higgs mass calculations in the mssm

diagonal elements. Note that all gauge indices are suppressed in Eq. (2.5). Bµ is the soft
bilinear term of the µ-parameter of the Higgs potential,

VHiggs ⊃ |µ|2|H1|2 + |µ|2|H2|2 , (2.6)

where the two Higgs doublets can be decomposed as

H1 =

(
1√
2
[vd + (φ1 − iχ1)]

−φ−1

)
, H2 =

(
φ+

2
1√
2
[vu + (φ2 − iχ2)]

)
. (2.7)

φi, χi are real and φ±i are complex scalar fields. vu and vd are the VEVs of the two Higgs
doublets. Since we are interested in studies of Mh, only the fields φi are considered, which
can be converted into their mass eigenstates h and H at tree level by diagonalizing the
matrix:

Mtree =
sin 2β

2

(
M2

Z cot β + M2
A tan β −M2

Z −M2
A

−M2
Z −M2

A M2
Z tan β + M2

A cot β

)
. (2.8)

At tree level, the running sfermion masses m f̃1
≤ m f̃2

are the eigenvalues of the ith generation
squark mass matrix Mq,i,

Mq,i =

(
m2

q + m2
Q,i + ∆1 mqXq

mqXq m2
q + m2

U,i + ∆2

)
, (2.9)

with the SUSY breaking parameters mQ,i, mU,i, and mq = vu/dyq/
√

2 being the running DR′

quark mass. The ∆i in Eq. (2.9) are electroweak contributions and read

∆1 = M2
Z
(

Iq − eq sin2 θw
)

cos 2β , (2.10)

∆2 = eq M2
Z sin2 θw cos 2β , (2.11)

where Iq is the third component of the corresponding quark’s isospin, eq is its electric charge,
and θw is the weak mixing angle.

For our studies, the relevant set of MSSM parameters, renormalized in the DR′ scheme, read

Y = {yt, g3, v, mt̃1
, mt̃2

, Xt, mg̃, mq̃} , (2.12)

with

vu = v sin β , vd = v cos β , mq̃ =


 ∏

f∈{u,d,c,s,b}

2

∏
n=1

m f̃n




1/10

, (2.13)

whereas yt denotes the MSSM top Yukawa coupling, g3 the strong gauge coupling, Xt =

At − µ/ tan β the stop mixing parameter, mg̃ the gluino mass, and mq̃ the average mass of
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all squarks but the stops. Combining the latter squark masses through a geometric mean
is justified since we are only interested in studies where these masses are of comparable
size. At is the up-type trilinear coupling of the third generation. Note that, due to the SUSY

constraints, Y does not contain a separate parameter for the quartic Higgs coupling.

When mentioning the electroweak scale, we estimate its magnitude by the value of v. It is
used as a representative for SM mass scales such as the top mass m̄t = v̄ḡt/

√
2. The SUSY

scale is identified with MS, which is treated as an input parameter for our calculations. MS

is also used as a representative for MSSM mass scales such as one of the stop masses mt̃i
,

and we refer to the decoupling limit if MS � v.

Additionally, we introduce the short hand notations:

κ =
1

16π2 , xt =
Xt

MS
, sx = sin x , cx = cos x . (2.14)

If not stated differently, we follow the SUSY Les Houches Accord (SLHA) standard [78] and
use the subsequent set of SM parameters as input for numerical studies:

ᾱ
SM(5)
em (MZ) =

1
127.944

, ᾱ
SM(5)
s (MZ) = 0.1184 , MZ = 91.1876 GeV ,

GF = 1.1663787 · 10−5 GeV−2 , Me = 510.998902 keV , Mµ = 105.6583715 MeV ,

Mτ = 1.777 GeV , m̄u(2 GeV) = 2.4 MeV , m̄d(2 GeV) = 4.75 MeV ,

m̄s(2 GeV) = 104 MeV , m̄SM(4),MS
c (m̄c) = 1.27 GeV , m̄SM(5),MS

b (m̄b) = 4.18 GeV ,

Mt = 173.34 GeV ,

(2.15)

where ᾱ
SM(5)
em (MZ) and ᾱ

SM(5)
s (MZ) denote the fine-structure and strong coupling in the MS

scheme in the SM with five active quark flavours, and GF is the Fermi constant. Me, Mµ,
Mτ, and Mt denote the pole masses of the electron, muon, and tau lepton as well as top
quark, respectively. The input masses of the up, down, and strange quark are defined in the
MS scheme at the scale 2 GeV. The charm and bottom quark masses are defined in the MS

scheme at their mass scale in the SM with four and five active quark flavours, respectively.
The conversion of the SM input parameters to MSSM DR′ parameters will be discussed in
detail in Subsect. 3.1.3.

The SUSY input parameters are chosen such that the degenerate soft-breaking mass pa-
rameters are all set to MS. Furthermore, we set µ(MS) = mA(MS) = MS, tan β(MS) = 20,
At = Xt + µ/ tan β, while all other trilinear couplings are set to zero unless otherwise stated.
MS and Xt are left as free parameters. As a notational definition, we refer to the limit
mU,3 = mQ,3 = mg̃ = mq̃ = MS as the degenerate-mass case.





3
F I X E D - O R D E R A P P R O A C H

In the FO approach, also commonly known as the Feynman-diagrammatic approach, the
prediction of the mass of the CP-even neutral Higgs bosons is based on the calculation of
self-energy and tadpole Feynman diagrams involving contributions from SM particles as
well as their superpartners. Corrections emerging from different sectors, e.g. quantum chro-
modynamics (QCD) or electroweak (EW), can be incorporated order by order in couplings
and, equivalently, additional loops. The Higgs mass matrix M of the CP-even states can thus
be written as

M = Mtree −
(

Σ̂11(p2) Σ̂12(p2)

Σ̂12(p2) Σ̂22(p2)

)

︸ ︷︷ ︸
Σ̂(p2)

. (3.1)

Here, Σ̂ij are understood as the renormalized self-energy contributions to the Higgs mass
matrix (cf. Ref. [79], for example) and p2 is the external momentum. As p2 6= 0 in general,
we are interested in solving the pole mass equation

0 = det
{

p2δij −Mtree
ij + Re Σ̂(p2)ij

}
(3.2)

for p2. Since Σ̂ itself depends on p2, Eq. (3.2) has to be solved iteratively. In the decoupling
limit and considering only the real part of Σ̂ij, Eq. (3.2) simplifies to

p2 −m2,tree
h + Σ̂11(p2) = 0 , (3.3)

where m2,tree
h is given by Eq. (2.2) and is used as an initial value for p2. Solving Eq. (3.3)

iteratively yields an expression for the light CP-even Higgs pole mass

M2
h = m2,tree

h − Σ̂11(m2,tree
h ) + Σ̂′11(m

2,tree
h )Σ̂11(m2,tree

h ) + . . . , (3.4)

where the prime indicates the derivative of the self-energy with respect to the momentum
squared. The ellipsis indicates higher-order derivatives and products of self-energies. Usually,
Eq. (3.2) is solved numerically until a fixed point is found with sufficient precision.

Despite the seemingly straightforwardness, the FO approach suffers from unreliable predic-
tions if the splitting between the electroweak and the SUSY scale becomes sizable, leading to
logarithms of the form ln(v2/M2

S) that spoil the convergence of the perturbative expansion.
However, this approach is perfectly suited for SUSY scales which are of the same order as

11
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the electroweak scale and, in addition, FO calculations are an important ingredient in the
calculation of threshold corrections when using an EFT framework (cf. Chap. 4).

In this chapter, which is largely based on Refs. [47, 74], we present an implementation of the
three-loop corrections calculated in Refs. [15, 16] into the C++ library Himalaya [47]. After
a discussion how some technicalities regarding the results of Refs. [15, 16] are handled in
Subsect. 3.1.1, renormalization-scheme changing shifts are derived in Subsect. 3.1.2 that allow
for a conversion to the commonly used DR′ scheme. To provide a consistent analysis of the
three-loop results within the DR′ scheme, which was first done as part of this thesis, we
define the required input parameters in Subsect. 3.1.3. Afterwards, in Sect. 3.2, the numerical
effects including the three-loop corrections are studied by comparing to earlier results and
different codes. Further, deficits of the FO approach are emphasized. One of the central
aspects in Refs. [47, 74] is the program Himalaya, which has been developed during this
thesis. This includes the supplementary calculations to the results of Refs. [15, 16] presented
in this chapter. The interface to FlexibleSUSY was created in collaboration with A. Voigt.

3.1 higgs mass prediction at the three-loop level in the mssm

The results for the three-loop O(y4
t g4

3) corrections, i.e. N3LO, to the Higgs mass in the MSSM

have been obtained in Refs. [15, 16] in a Feynman-diagrammatic calculation of the relevant
one- and two-point functions with external Higgs fields in the limit of vanishing external
momenta, i.e. p2 = 0. The dependence of these terms on the squark and gluino masses
was approximated through asymptotic expansions, assuming various hierarchies among
the masses of the SUSY particles. The considered approximations are motivated by the
Snowmass Points and Slopes scenarios of Refs. [80, 81] and thus split into six cases:

(h3) mq̃ ≈ mt̃1
≈ mt̃2

≈ mg̃ ,

(h4) mq̃ � mt̃1
≈ mt̃2

≈ mg̃ ,

(h5) mq̃ � mt̃2
� mt̃1

≈ mg̃ ,

(h6) mq̃ � mt̃2
� mg̃ � mt̃1

,

(h6b) mq̃ ≈ mt̃2
≈ mg̃ ≈ mt̃1

,

(h9) mq̃ ≈ mt̃1
≈ mt̃2

� mg̃ .

(3.5)

Note that different expansion depths are obtained for each hierarchy, partly omitting terms
of O(X4

t ). Recently, Ref. [48] provided a calculation of the same three-loop contributions
without an expansion in different mass hierarchies. However, since these formulæ are not
publicly available, our work focuses on the results of Refs. [15, 16].

The results of Refs. [15, 16], which we refer to as the H3m result in the following, are
implemented in the program H3m. Using H3m requires the user to complement it by Feyn-

Higgs [22, 50–53, 68, 69, 82] to include full one-loop and partial two-loop corrections in the
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calculation of the light CP-even Higgs mass. Since FeynHiggs performs its calculations in
the on-shell scheme and H3m uses a modified version of the DR scheme, higher-order effects
of mixed renormalization schemes are implicitly generated during the diagonalization of
the Higgs mass matrix. These terms could potentially lead to large corrections, spoiling the
convergence of the perturbative series. Additionally, due to the restrictive implementation of
the H3m result, it was not considered in state-of-the-art spectrum generators so far. In order
to provide consistency of renormalization schemes, we reimplemented the H3m result into
the library Himalaya and made it accessible with an interface that can be used seamlessly by
spectrum generators. In the following, we describe details regarding the implementation and
the involved renormalization schemes. Afterwards, we study the impact of the three-loop
results using a consistent renormalization scheme and compare to results obtained by
different programs.

In principle one could use the corrections of O(y4
t g4

3) to obtain terms of O(y4
bg4

3). However, to
provide a consistent result the currently unknown corrections of O(y2

t y2
bg4

3) would be needed
in addition. Moreover, Ref. [47] showed that the O(y4

bg4
3) terms are negligible compared to

the O(y4
t g4

3) corrections. Hence, we do not include terms of O(y4
bg4

3) in our studies.

3.1.1 Mass hierarchy selection

A particular set of mass parameters typically matches several of the hierarchies mentioned
in Eq. (3.5). Therefore, a criterion to define one of those hierarchies as the most suitable
hierarchy is needed. Ref. [16] suggested a pragmatic definition, namely the comparison
of the various asymptotic expansions to the exact expression at the two-loop level. The
expansion which fits the exact two-loop result best is then selected. Due to instabilities of
this selection, Ref. [47] extended this criterion to also include convergence properties of each
hierarchy in a given parameter point (see also Ref. [83]). Combining both criteria, a smooth
hierarchy selection for a large parameter space can be assured. This selection algorithm is
implemented in the Himalaya library and summarized below.

Following Ref. [16], in a first step the Higgs pole mass Mh is calculated at the two-loop
level including O(y4

t + y4
t g2

3) corrections by using the result of Ref. [24] in the form of the
associated FORTRAN code provided by the authors. We refer to this quantity as MDSZ

h in what
follows. Subsequently, for all hierarchies i that fit the given mass spectrum, Mh is calculated
again using the expanded expressions of Ref. [16] up to the two-loop level, i.e. O(y4

t + y4
t g2

3),
resulting in Mh,i. The most suited hierarchy is then defined as the value of i for which the
difference

δ2L
i =

∣∣∣MDSZ
h −Mh,i

∣∣∣ (3.6)

is minimal. However, we found that this criterion alone causes instabilities in the hierarchy
selection in regions where several hierarchies lead to similar values of δ2L

i . To refine the
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selection criterion we also take into account the quality of the convergence in the respective
hierarchies, quantified by

δconv
i =

√√√√
n

∑
j=1

(
Mh,i −M(j)

h,i

)2
. (3.7)

While Mh,i includes all available terms of the expansion in mass ratios (and mass differences),
in M(j)

h the highest terms of the expansion for the mass ratio (and mass difference) j are
dropped. We then define the best hierarchy to be the one which minimizes the quadratic
mean of Eqs. (3.6) and (3.7),

δi =

√(
δ2L

i

)2
+
(
δconv

i

)2 . (3.8)

3.1.2 H3m renormalization scheme and its relation to DR′

When calculating higher-order corrections, it is tempting to utilize the MS scheme since its
behaviour is well understood to all orders in perturbation theory. However, shifting the
dimensionality of vector bosons in supersymmetric theories and not adjusting the degrees
of freedom of their corresponding superpartners will break supersymmetry explicitly.
Therefore, Ref. [84] proposed to use a different regularization scheme called dimensional
reduction. Its mathematically consistent formulation was derived in Ref. [85]. In this scheme,
vector bosons are treated four-dimensionally whereas the extra degrees of freedom, emerging
from the analytic continuation of the space-time dimension, are introduced as so-called
ε-scalars. Complemented with modified minimal subtraction, this renormalization scheme is
called DR scheme [86]. Since the ε-scalar is unphysical, it is appealing to set its mass, mε, to
zero. Refs. [87–90] pointed out that if the mass of the ε-scalar is set to zero, inconsistencies
arise once renormalization-group running is considered, because mε will become non-
zero and contributes to the running of other parameters. Additionally, they proposed a
modification of the DR scheme that introduces finite shifts in the masses of scalar sparticles.
These shifts lead to a decoupling of mε from all β-functions. This modified DR scheme,
denoted as DR′, is most convenient for higher-order calculations in supersymmetric theories.
Note, however, that it is still unproven whether the DR or the DR′ scheme does preserve
supersymmetry to all orders in perturbation theory. Recently, checks up to three-loop order
were presented in Ref. [91] verifying that there are no ambiguities within the calculations
presented in this thesis.

Following the former definitions, the renormalization scheme used in the H3m calculation
slightly differs from the original DR scheme concerning the treatment of the ε-scalars. In
practice, an on-schell renormalization condition for the ε-scalars is imposed by setting
mε = 0. Hence, we denote the latter renormalization scheme as the H3m scheme.
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In order to seamlessly combine the three-loop result in the H3m scheme with existing
lower-order calculations, it is necessary to convert it to the more commonly used DR′

scheme, where mε completely decouples from the particle spectrum. To do that, we need to
reconstruct the mε-terms in the H3m result. This can be done by noting that, up to two-loop
O(y4

t g2
3), the analytic form of the corrections to the Higgs mass are identical in the DR, the

DR′, and the H3m scheme for mε = 0.

Since the DR′ result is independent of mε to all orders in perturbation theory, we can convert
the known two-loop O(y4

t g2
3) DR′ expression to the DR scheme by shifting the stop masses

according to Refs. [35, 90, 92]. Expanding the resulting expression to O(y4
t g4

3) generates all
mε-dependent terms up to this order in the DR scheme. From there, we can convert the
stop masses and mε to the H3m scheme, using the formulæ of Ref. [16]. This generates a
non-vanishing term at O(y4

t g4
3), which is non-zero even when the on-shell condition mε = 0

is applied. We computed the conversion terms for both the squared light CP-even Higgs
mass and the Higgs mass matrix. For mε = 0 and the squared Higgs mass, this shift reads

(∆M2
h)H3m→DR′ =

8κ3v2y4
t g4

3s4
β

m2
t̃1

m2
t̃2

∆3
12

[
−6
(
1 + lSg̃

)
m2

g̃ + 10
(
1 + lSq̃

)
m2

q̃ +
2

∑
i=1

(1 + lSt̃i
)m2

t̃i

]

×
[
(∆3

12 + ∆12X4
t )

2

∑
i=1

m2
t̃i
− 2∆3

12X2
t + 4m2

t̃1
m2

t̃2
X4

t ln
(

mt̃2

mt̃1

)]
,

(3.9)

with lSx = ln
(
Q2/m2

x
)
. Q is the renormalization scale and ∆12 = m2

t̃1
−m2

t̃2
. For the mass

matrix the shift yields

(∆M11)H3m→DR′ = Cµ2X2
t

{
m4

t̃1
− 2m2

t̃1
m2

t̃2
ln

(
m2

t̃1

m2
t̃2

)
−m4

t̃2

}
, (3.10)

(∆M12)H3m→DR′ = CµXt

{
−m4

t̃1

(
AtXt + 3m2

t̃2

)
+ 2Atm2

t̃1
m2

t̃2
Xt ln

(
m2

t̃1

m2
t̃2

)

+ Atm4
t̃2

Xt + m6
t̃1
+ 3m2

t̃1
m4

t̃2
−m6

t̃2

}
,

(3.11)

(∆M21)H3m→DR′ = (∆M12)H3m→DR′ , (3.12)

(∆M22)H3m→DR′ = C

{
∆12

[
m2

t̃1

(
A2

t X2
t + 4Atm2

t̃2
Xt −m4

t̃2

)
−m4

t̃1

(
2AtXt + m2

t̃2

)

+
(

m3
t̃2
− Atmt̃2

Xt

)2
+ m6

t̃1

]
− 2A2

t m2
t̃1

m2
t̃2

X2
t ln

(
m2

t̃1

m2
t̃2

)}
,

(3.13)

with

C =
8κ3y4

t g4
3v2s2

β

m2
t̃1

m2
t̃2

∆3
12

{
− 6(lSg̃ + 1)m2

g̃ + 10(lSq̃ + 1)m2
q̃ +

2

∑
i=1

(1 + lSt̃i
)m2

t̃i

}
. (3.14)
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The indices ij of Mij imply the corresponding matrix entry (cf. Eq. (3.1)). Adding these terms
to the H3m result provides the three-loop Higgs mass corrections in the DR′ scheme. For the
squared Higgs mass and Higgs mass matrix this transformation reads

M2
h

∣∣∣
DR′

= M2
h

∣∣∣
H3m

+ (∆M2
h)H3m→DR′ (3.15)

and

Mij

∣∣∣
DR′

= Mij

∣∣∣
H3m

+ (∆Mij)H3m→DR′ , (3.16)

respectively.

We checked that the resulting DR′ expression is renormalization-scale independent by using
the corresponding stop-mass β-functions in the DR′ scheme [92].

3.1.3 Consistent determination of the MSSM DR′ parameters

In our approach, we link the Himalaya library to FlexibleSUSY, which provides us with the
required input parameters. To produce a consistent result, the values of the input parameters
have to be provided at the correct perturbative order to be compatible with the genuine loop
corrections. As an additional free parameter, the scale at which the parameters of the SM

are converted to the MSSM has to be fixed. In order to do this, FlexibleSUSY determines the
running DR′ gauge and Yukawa couplings as well as the running vacuum expectation value
of the MSSM along the lines of Ref. [79] by setting the conversion scale to the Z-boson pole
mass MZ.

The MSSM DR′ gauge couplings g1, g2, and g3 are given in terms of the DR′ parameters
αMSSM

em (MZ) and αMSSM
s (MZ) in the MSSM as:

g1(MZ) =

√
5
3

√
4παMSSM

em (MZ)

cos θw(MZ)
, (3.17)

g2(MZ) =

√
4παMSSM

em (MZ)

sin θw(MZ)
, (3.18)

g3(MZ) =
√

4παMSSM
s (MZ) . (3.19)

The couplings αMSSM
em (MZ) and αMSSM

s (MZ) are calculated from the corresponding input
parameters as

αMSSM
em (MZ) =

ᾱ
SM(5)
em (MZ)

1− ∆αem(MZ)
, (3.20)

αMSSM
s (MZ) =

ᾱ
SM(5)
s (MZ)

1− ∆αs(MZ)
, (3.21)
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where the threshold corrections ∆αi(MZ) have the form given in Eq. (B.1) and (B.2). The DR′

weak mixing angle in the MSSM, θw, is determined at the scale MZ from the Fermi constant
GF and the Z pole mass via the relation

sin2 θw cos2 θw =
π αMSSM

em√
2M2

ZGF(1− δr)
, (3.22)

where

δr = ρ̂
Re ΣW,T(0)

M2
W

− Re ΣZ,T(M2
Z)

M2
Z

+ δVB + δ
(2)
r , (3.23)

ρ̂ =
1

1− ∆ρ̂
, ∆ρ̂ = Re

[
ΣZ,T(M2

Z)

ρ̂ M2
Z
− ΣW,T(M2

W)

M2
W

]
+ ∆ρ̂(2) . (3.24)

Here, ΣV,T(p2) denotes the transverse part of the DR′-renormalized one-loop self-energy
of the vector boson V in the MSSM. The vertex and box contributions δVB, the two-loop
contributions δ

(2)
r as well as the corrections up to two-loop (∆ρ̂(2)) to the ρ parameter are

taken from Ref. [79].

The DR′ vacuum expectation values of the up- and down-type Higgs doublets are calculated
as

vu(MZ) =
2mZ(MZ) sin β(MZ)√
3/5g2

1(MZ) + g2
2(MZ)

, (3.25)

vd(MZ) =
2mZ(MZ) cos β(MZ)√
3/5g2

1(MZ) + g2
2(MZ)

, (3.26)

where tan β(MZ) is an input parameter and mZ(MZ) is the Z boson DR′ mass in the MSSM,
which is calculated from the Z pole mass at the one-loop level as

m2
Z(MZ) = M2

Z + Re ΣZ,T(M2
Z) . (3.27)

In order to calculate the Higgs pole mass in the DR′ scheme at the three-loop level O(y4
t g4

3),
the DR′ top Yukawa coupling must be extracted from the input parameter Mt at the two-loop
level at O(g4

3). To achieve that, we make use of the known two-loop QCD corrections to the
top Yukawa coupling of Refs. [93–96], as described in the following: We calculate the DR′

Yukawa coupling yt at the scale MZ from the DR′ top mass mt and the DR′ up-type VEV vu

as

yt(MZ) =
√

2
mt(MZ)

vu(MZ)
, (3.28)
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where we relate the DR′ top mass to the top pole mass Mt at the scale MZ as

mt(MZ) = Mt + Re ΣS
t (M2

t , MZ) + Mt

[
Re ΣL

t (M2
t , MZ) + Re ΣR

t (M2
t , MZ)

+ ∆m(1),QCD
t (MZ) + ∆m(2),QCD

t (MZ)
]

,
(3.29)

where ΣS,L,R
t (p2, Q) denote the scalar (superscript S), and the left- and right-handed

parts (L, R) of the DR′ renormalized one-loop top self-energy without QCD contribu-
tions. ∆m(1),QCD

t and ∆m(2),QCD
t are the full one- and two-loop QCD corrections taken from

Refs. [93, 94] (cf. Eq. (B.3) and (B.4)).

3.2 numerical results including n
3
lo qcd corrections

FlexibleSUSY calculates the two CP-even Higgs pole masses Mh and MH by solving the
pole mass equation, introduced in Eq. (3.2), numerically at the momenta p2 = M2

h and
p2 = M2

H , respectively. At the one-loop level, FlexibleSUSY contains the full one-loop MSSM

Higgs self energy and tadpole contributions, including electroweak corrections and the
momentum dependence. At the two-loop level the known corrections of O(g2

3(y
4
t + y4

b) +

(y2
t + y2

b)
3 + y6

τ) [24–27, 38] are implemented for p2 = 0. For the three-loop level the terms of
O(y4

t g4
3) from the Himalaya package, as described in Sect. 3.1, are incorporated. They are

also only known for p2 = 0. All contributions are defined in the DR′ scheme by default.
The renormalization scale is chosen to be Q = MS =

√mt̃1
mt̃2

and the DR′parameters that
enter Eq. (3.2) are evolved from MZ to that scale by using the three-loop renormalization-
group equations of the MSSM [97, 98]. To account for the momentum dependence while
diagonalizing M, the eigenvalues for Mh and MH are inserted iteratively into Eq. (3.2) until
a fixed point for the Higgs masses is reached with sufficient precision. Note that we are only
interested in Mh.

3.2.1 Size of three-loop contributions from different sources

The three sources affecting the Higgs pole mass at O(y4
t g4

3) in the DR′ calculation within
FlexibleSUSY+Himalaya (FS+H) are

• the one-loop threshold correction of O(g2
3) to the strong coupling constant,

• the two-loop threshold correction of O(g4
3) to the top Yukawa coupling,

• the genuine three-loop contribution to the Higgs mass matrix.

In Fig. 1, the impact of these three sources on the Higgs pole mass is shown relative to
the two-loop calculation without these three corrections. The left panel shows the impact
as a function of the SUSY scale MS, and the right panel as a function of the relative stop
mixing parameter xt for the scenario defined in Chap. 2. We use the two-loop ingredients
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as reference point, i.e. g3 at tree level (g0L
3 ), yt at one loop (y1L

t ), and the genuine two loop
corrections to Mh (M2L

h ) as described above, and replace each of them separately by the
ingredients required at three-loop accuracy.
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Figure 1: Impact of different three-loop contributions on the Higgs pole mass Mh. In the left panel we show
the shift in the Higgs pole mass with respect to M2L

h (y1L
t , g0L

3 ) as a function of the SUSY scale. In the
right panel we vary the relative stop mixing parameter xt.

First, we observe that the inclusion of the one-loop threshold correction to g3, Eq. (B.2),
(blue dashed line) leads to a significant positive shift of the Higgs pole mass of around
+2.5 GeV for MS ≈ 1 TeV. For larger SUSY scales the shift increases logarithmically as is to
be expected from the logarithmic terms on the r.h.s. of Eq. (B.2). The inclusion of the full
two-loop QCD corrections to yt (green dash-dotted line) leads to a shift of similar magnitude,
but in the opposite direction. Thus, there is a significant cancellation between the three-loop
contributions from the one-loop threshold correction to g3 and the two-loop QCD corrections
to yt. The genuine three-loop contribution to the Higgs pole mass (black dotted line) is again
positive and around +2 GeV for MS ≈ 1 TeV. This is consistent with the findings of Ref. [16].
As a result, the sum of these three three-loop effects (red solid line) leads to a net positive
shift of the Higgs mass relative to the two-loop result without all these corrections.

The size of the individual three-loop contributions depends on the relative stop mixing
parameter xt, as can be seen from the right panel of Fig. 1. Between minimal (xt = 0) and
maximal stop mixing (xt ≈ ±

√
6) the size of the individual three-loop contributions changes

by 1–2 GeV. For maximal (minimal) mixing, their impact is maximal (minimal). The direction
of the shift is independent of xt.

Note that the nominal two-loop result of the original FlexibleSUSY calculation includes by
default the one-loop threshold correction to g3 and the SM QCD two-loop contributions to
the top Yukawa coupling [58, 71]. This means that the two-loop Higgs mass as evaluated by
the original FlexibleSUSY already incorporates partial three-loop contributions. Hence, the
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two-loop result of the original FlexibleSUSY does not correspond to the zero-line in Fig. 1,
but is rather close to the blue dashed line. This implies that, compared to the two-loop result
of the original FlexibleSUSY, the effect of the remaining O(y4

t g4
3) contributions in the Higgs

mass prediction is negative.

3.2.2 Scale dependence of the Higgs pole mass

To estimate the size of the missing higher-order contributions, Fig. 2 shows the renormaliza-
tion scale dependence of the one-, two-, and three-loop Higgs pole masses for the scenario
defined in Chap. 2 at xt = 0 as a function of MS. The one- and two-loop calculations
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Figure 2: Variation of the Higgs pole mass when the renormalization scale is varied by a factor two around the
scale at which Mh is calculated.

correspond to the original FlexibleSUSY calculation. In the one-loop calculation the thresh-
old corrections to g3 and yt are set to zero, and in the two-loop calculation the one-loop
threshold corrections to g3 and the two-loop QCD corrections to yt are taken into account.
The three-loop result of FlexibleSUSY+Himalaya includes all three-loop contributions at
O(y4

t g4
3) as discussed in the previous subsection, i.e. the one-loop threshold correction to g3,

the full two-loop QCD corrections to yt, and the genuine three-loop correction to the Higgs
pole mass from Himalaya. The bands show the corresponding variation of the Higgs pole
mass when the renormalization scale is varied using the three-loop renormalization-group
equations [97–103] for all parameters except for the vacuum expectation values, where
the β-functions are known only up to the two-loop level [104, 105]. In FlexibleSUSY and
FlexibleSUSY+Himalaya, the renormalizaion scale is varied in the full MSSM within the in-
terval [MS/2, 2MS]. The plot shows that the successive inclusion of higher-order corrections
reduces the scale dependence, as expected. In particular, the three-loop corrections to the
Higgs mass reduce the scale dependence by around a factor two, compared to the two-loop
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calculation. Note that the variation of the renormalization scale only serves as an indicator
of the theoretical uncertainty due to missing higher-order effects.

3.2.3 Comparison to other results

In this section, we compare the results obtained with FlexibleSUSY+Himalaya to different
MSSM spectrum generators employing the fixed-order approach. We choose the same
scenario as in Subsect. 3.2.1, where the lightest CP-even Higgs pole mass is calculated at
the scale Q = MS =

√mt̃1
mt̃2

. The results are shown in Figs. 3–4 and compared against
FlexibleSUSY and FeynHiggs. The blue dashed line corresponds to FlexibleSUSY 2.3.0 at the
two-loop level, which coincides with SOFTSUSY 3.5.1 [54,106] by construction. The green dash-
dotted line shows the Higgs mass prediction using FeynHiggs 2.14.3 (FH), which employs
the on-shell scheme, when disabling the option of large logarithms resummation [22, 50–53,
68].1 FeynHiggs 2.14.3 includes the two-loop contributions of O(g2

3(y
4
t + y4

b) + (y2
t + y2

b)
3).

We consider Fig. 3 first. The left panel shows the Higgs mass prediction as a function of
MS according to the two codes discussed above, together with the FlexibleSUSY+Himalaya

result (solid red). The stop mixing parameter Xt is set to zero. The right panel shows the
difference of these curves to the latter.
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Figure 3: Comparison of Higgs mass predictions between two- and three-loop fixed-order programs as a
function of the SUSY scale for the absolute Higgs pole mass (left) and the difference w.r.t. the three-loop
calculation (right).

The effect of the three-loop O(y4
t g4

3) terms on the fixed-order result is negative compared to
the original FlexibleSUSY calculation, as discussed in Subsect. 3.2.1, and amounts to a few

1 We use the SLHA input interface of FeynHiggs, which performs a conversion of the DR′ input parameters to the
on-shell scheme. Resummation is disabled, as it would lead to an inconsistent result in combination with the
DR′ to on-shell conversion of FeynHiggs [69]. We call FeynHiggs with the flags 42420110.
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hundred MeV up to regions of MS = 1 TeV. In addition, the MS dependence and predicted
Higgs mass are comparable among all three codes up to MS = 1 TeV. At scales above 1 TeV,
the result obtained with FeynHiggs starts to deviate from the DR′ calculations. At those SUSY

scales, the fixed-order approach suffers from large logarithmic contributions due to sizable
mass splittings, which spoil the perturbative convergence unless higher logarithmic orders
are included. Note that the behavior of the DR′ results in the few-TeV region is accidental
and based on implicit higher-order logarithms, as shown in Ref. [71], and one would expect
a similar trend as for the FeynHiggs result in principle.

Fig. 4 shows the three-loop effects as a function of Xt with MS = 2 TeV. The figure shows
that, for |Xt| . 3MS, the qualitative features of the discussion above are mostly independent
of the mixing parameter, whereupon the quantitative differences between the fixed-order
results are typically larger for non-zero stop mixing. Additionally, there is an interesting
feature of the DR′ codes, which suffer from tachyonic states introduced by positive values
of Xt and large scale splittings between v and MS. However, this can be circumvented by
inserting the absolute values of the tachyonic running masses into the loop corrections
within FlexibleSUSY. The reason for this behaviour is discussed in Subsect. 3.2.4 in more
detail.
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Figure 4: Comparison of Higgs mass predictions between two- and three-loop fixed-order programs as a function
of the relative stop mixing parameter xt for the absolute Higgs pole mass (left) and the difference w.r.t.
the three-loop calculation (right).

As the three-loop corrections were originally implemented in the H3m code, we now turn to
a comparison of our FlexibleSUSY+Himalaya implementation to H3m. We checked that our
implementation of the O(y4

t ) and O(y4
t g2

3) terms in Himalaya leads to the same numerical
results as in H3m if the same set of DR′ parameters is used as input. Since the O(y4

t g4
3) terms

of Himalaya are derived from their implementation in H3m, they also result in the same
numerical value if the same set of input parameters is given and the same mass hierarchy is
selected. But since Himalaya has a slightly more sophisticated way of choosing this hierarchy
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(see Subsect. 3.1.1), its numerical O(y4
t g4

3) contribution does occasionally differ slightly from
the one of H3m. Note that recently a different calculation of the three-loop O(y4

t g4
3) corrections

was presented in Ref. [48]. Since their result is not publicly available, we cannot compare to
those. However, Ref. [48] claims that combining their new calculation with FeynHiggs at the
two-loop level leads to similar numerical values of the light CP-even Higgs mass as obtained
by H3m.

In Fig. 5 we compare our results to the three-loop calculation presented in Ref. [107],
assuming the input parameters for the heavy sfermions scenario defined in detail in the
example directory of Ref. [108]. In the left panel the blue circles show the H3m result, including
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Figure 5: Comparison of the lightest Higgs pole mass calculated at the one-, two-, and three-loop level with
FlexibleSUSY and FlexibleSUSY+Himalaya as a function of the SUSY scale for the heavy sfermions
scenario of Ref. [107]. These plots are taken from Ref. [47].

only the terms of O(y4
t (1 + g2

3 + g4
3)), where the MSSM DR′ top mass is calculated using the

running and decoupling procedure described in Ref. [107]. The black crosses show the same
result, except that the DR′ top mass at the SUSY scale is taken from the spectrum generator
FlexibleSUSY+Himalaya. We can reproduce the latter result with FlexibleSUSY+Himalaya if
we take the same terms into account, i.e. O(y4

t (1 + g2
3 + g4

3)), see the dotted red line in Fig. 5.
The small differences between the two results are due to the fact that H3m works with on-shell
electroweak parameters, while FlexibleSUSY+Himalaya uses DR′ parameters. The inclusion
of all one-loop contributions to Mh and the momentum iteration reduces the Higgs mass
by 4–6 GeV, as shown by the red dashed line. Including all two- and three-loop corrections
which are available in FlexibleSUSY+Himalaya, i.e. O(g2

3(y
4
t + y4

b) + (y2
t + y2

b)
3 + y6

τ + y4
t g4

3),
further reduces the Higgs mass by up to 2 GeV, as shown by the red solid line. The right
panel of Fig. 5 shows again our one-, two-, and three-loop predictions obtained with Flex-

ibleSUSY and FlexibleSUSY+Himalaya. Similar to Fig. 3, we observe that the higher-order
terms lead to a lower predicted Higgs mass.
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As a final study, we compare the results obtained with FlexibleSUSY+Himalaya to the ones
presented in Figure 1 of Ref. [109]. Our results are shown in Fig. 6. As not all parameters
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Figure 6: Comparison of the lightest Higgs pole mass calculated at the one-, two-, and three-loop level with
FlexibleSUSY and FlexibleSUSY+Himalaya as a function of the lightest stop pole mass for the
benchmark point of Figure 1 of Ref. [109]. This plot is taken from Ref. [47].

in Ref. [109] are fully defined, we need to specify a value for mA and the sfermion mixing
parameters other than Xt. Hence, we set mA(MS) = MS, with Q = MS =

√mt̃1
mt̃2

, xt(MS) =

0, µ(MS) = 200 GeV, and all remaining trilinear couplings are selected to be zero. The soft-
breaking mass parameters of the left- and right-handed stops are set equal at the SUSY scale,
i.e. mQ,3(MS) = mU,3(MS), whereas all other soft-breaking sfermion mass parameters are
set to m f̃ (MS) = mQ/U,3(MS) + 1 TeV. The gaugino mass parameters are set to M1(MS) =

M2(MS) = mg̃(MS) = 1.5 TeV. Note that the bands around the calculated Higgs mass
values in Fig. 6 show the parametric uncertainty from Mt = (173.34± 0.98)GeV [110] and
ᾱ

SM(5)
s (MZ) = 0.1184± 0.0007 [111]. Again, we observe a reduction of Mh towards higher

loop order, thus leading to the opposite conclusion of a heavy SUSY spectrum in this scenario,
given the measured value for the Higgs mass as in Eq. (2.1) (cf. Figure 1 of Ref. [109]).

3.2.4 Tachyonic Higgs bosons

As observed in the previous subsection, in the fixed-order calculation the DR′ masses of
the heavy CP-even, the CP-odd, and the charged Higgs bosons can become tachyonic at the
scale Q = MZ for xt & 0. The origin of this behavior is the Bµ parameter, which becomes
negative when performing renormalization-group running to Q = MZ, as shown in the left
panel of Fig. 7. In our scenario, the value of Bµ is fixed at the SUSY scale by the DR′ CP-odd
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Figure 7: Left panel: Renormalization-group running of Bµ(Q) for different values of Xt. Right panel: Three-
loop fixed-order Higgs pole mass (blue lines) and Bµ(Q = MZ) as a function of xt (green dash-dotted
line). These plots are taken from Ref. [74].

Higgs mass mA(MS) to

Bµ(MS) =
1
2

sin[2β(MS)]m2
A(MS) ≈ 0.05M2

S , (3.30)

where we have set tan β(MS) = 20 and m2
A(MS) = M2

S in the last step. For such a large
value of tan β, the one-loop β-function of the Bµ parameter is approximately given by

βBµ ≈ 3κy2
t (Bµ + 2µAt) ≈ 3κy2

t (0.05 + 2xt) M2
S . (3.31)

From Eq. (3.31) it follows that βBµ is negative for xt < −0.025. Hence, Bµ increases during
the renormalization-group running from MS down to MZ, which is illustrated by the green
dashed line in the left panel of Fig. 7. However, if xt > −0.025 βBµ is positive so that Bµ

decreases when running to MZ and changes sign at some low scale Qtach, see green dotted
line. The value of the scale Qtach can be larger than MZ if xt and/or MS are large enough,
for example for xt > 0 and MS & 3 TeV. When this happens, the DR′ masses of the heavy
CP-even, the CP-odd, and the charged Higgs bosons are tachyonic at Q = MZ, because

m2
H(MZ) ≈ m2

H±(MZ) ≈ m2
A(MZ) =

2Bµ(MZ)

sin[2β(MZ)]
< 0 . (3.32)

In the right panel of Fig. 7 the value of Bµ(MZ) is shown as a function of xt as green
dash-dotted line for the scenario with tan β = 20 and MS = 3 TeV. The value for MS is
increased compared to our other studies for better illustration. In accordance with the
estimate above, Bµ(MZ) is in fact negative for positive values of xt, and the fixed-order
Higgs mass calculation (see blue dashed/dotted lines) involves tachyonic DR′ masses at the
electroweak scale.
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In some spectrum generators, the occurrence of heavy Higgs tachyons is bypassed by using
the pole masses of the heavy Higgs boson masses in the loop calculations at the low scale
instead of the DR′ masses. In FlexibleSUSY, on the other hand, an error is flagged by default
if DR′ tachyons appear at any scale. Optionally, FlexibleSUSY uses the absolute values of the
tachyonic masses in the loop integrals, which is done for all fixed-order calculations in this
thesis when xt > 0.

In general, the occurrence of these tachyonic states due to higher-order effects appears to
make the approach proposed in Ref. [79] of matching SM and MSSM parameters at the scale
MZ questionable. For SUSY scales above the TeV scale it might thus be advisable to perform
the matching at a larger scale to avoid tachyonic states. To our knowledge, this program
has not been pursued in all generality up to now (see Ref. [107], however). For very large
SUSY scales, the fixed-order approach is bound to fail anyway due to large logarithmic
contributions as encountered in Subsect. 3.2.3.

3.3 conclusions

In this chapter we have presented a consistent inclusion of the O(y4
t g4

3) corrections to the
light CP-even Higgs mass in the MSSM using the DR′ scheme. We reimplemented these
contributions including renormalization-scheme changing shifts in the Himalaya library to
make them accessible to state-of-the-art spectrum generators. Including all relevant three-
loop contributions of O(y4

t g4
3), the mass of the light CP-even Higgs gets negatively shifted

by approximately 1 GeV compared to a two-loop DR′ calculation. The genuine three-loop
corrections lead to an overall positive shift, whereas the two-loop threshold correction in
the top Yukawa coupling leads to a reduction of the Higgs mass prediction by about 2 GeV,
depending on the value of the stop masses and stop mixing. To indicate the remaining
theory uncertainty due to higher-order effects, we have varied the renormalization scale by
a factor of two. The results show that the inclusion of the three-loop contributions reduces
the scale uncertainty of the Higgs mass by around a factor of two. Thus, the inclusion of
the three-loop terms implemented in the Himalaya library leads to an overall improvement
compared to a two-loop prediction.

For SUSY masses above the TeV scale the fixed-order approach suffers from large logarithmic
contributions. Furthermore, such sizable scale splittings lead to running tachyonic masses
in the Higgs sector of the MSSM for positive values of Xt, when following the prescription
of [79]. To obtain a prediction of the light CP-even Higgs mass, which is comparable to the
measurement of 125 GeV [2, 3, 17, 18], SUSY spectra in the TeV range are required, however.
This observation is in accordance with the literature [60, 62, 64, 68–70]. Therefore, we will
focus on different approaches in the next chapters, which directly address the issues of
the fixed-order approach for large scale splittings between v and MS. Additionally, we
will apply proper uncertainty estimates to quantitatively compare the validity in different
parameter regions of these methods.
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Besides the FO approach, one can also employ EFT methods to calculate the SM-like Higgs
boson mass in the MSSM. One of their benefits is that these techniques allow the resummation
of large logarithmic contributions. These logarithms are only taken into account up to a
specific order when evaluating the Higgs mass in the FO approach. However, without
including higher-dimensional operators in the effective Lagrangian, contributions that are
suppressed by the heavy scale, i.e. terms of O(v2/M2

S), are not captured. The basic idea is
thus to introduce the SM as the low-energy EFT of the MSSM. Therefore, the SUSY particles
are integrated out from the full theory at specific mass scales. In the simplest case, which
we are interested in, all SUSY particles are chosen to have the mass MS =

√mt̃1
mt̃2

. The SM

Higgs self-coupling λ̄ is determined at MS by applying relations that translate the SM to the
MSSM. That is

λ̄ =
(g2 + g′2)

4
c2

2β + ∆λ , (4.1)

where ∆λ summarizes generic higher-order corrections to λ̄ which are usually denoted
as threshold corrections. The logarithms occurring in λ̄ are resummed by evolving the
Higgs self-coupling between the low- and high-energy scale, using renormalization-group
equations. As several SM parameters are involved in this running, the corresponding system
of coupled differential equations is usually solved numerically with boundary values at the
scales Mt and MS. Afterwards, the mass of the SM Higgs can be calculated as

M2
h = λ̄v̄2 . (4.2)

The aforementioned approach has already been studied up to the two-loop level in Refs. [60,
61, 63–66]. The first three-loop study has been provided in Ref. [62], which also includes
the calculation of the three-loop threshold correction to the Higgs self-coupling including
O(y4

t g4
3), as part of this thesis.

We start this chapter, which is largely based on Ref. [62], by introducing the deficits of the
FO approach concerning large mass splittings and the benefits of the EFT approach in such
scenarios more formally in Sect. 4.1. Afterwards, in Sect. 4.2, we derive a third approach,
which can be interpreted as the perturbative version of the EFT approach, and summarize the
ingredients required for N3LL resummation. In Sect. 4.3, we derive the threshold corrections
to the Higgs self-coupling at the three-loop level employing the results of Refs. [15, 16].
Finally, numerical studies of the EFT approach including N3LL resummation are presented
and compared to FO calculations in Sect. 4.4. D. Ochoa provided the building blocks of the

27
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calculation presented in this chapter, which were revised in the course of this thesis. As
a central result of Ref. [62], the latter ingredients were combined with the H3m result and
implemented into Himalaya in order to perform the studies presented in Ref. [62] as part
of this thesis. The numerical studies were performed together with R. V. Harlander and A.
Voigt.

4.1 renormalization-group improvement

Before we turn to an improved treatment of large logarithms in Higgs mass calculations
in the MSSM, we describe the explicit problem of the fixed-order approach concerning
large scale splittings, which was already illustrated in Subsect. 3.2.3, more formally. The
calculational formalism and notational details are introduced, in addition. Note that we only
focus on contributions with powers of yt and g3.

In the Standard Model, the pole mass of the Higgs boson can be expressed as a series
expansion in terms of the SM couplings and logarithms. The dominant terms in the expansion
are those that involve the strong and the top Yukawa coupling. In the following, we consider
only corrections to the tree-level Higgs mass of the form O(ḡ4

t ḡ2n
3 ) with n ≥ 0, in which

case the pole mass of the Higgs boson can be expressed in terms of MS parameters as

M2
h = v̄2(Qt)

[
λ̄(Qt) + κḡ4

t (Qt)
∞

∑
n=0

n+1

∑
p=0

κn ḡ2n
3 (Qt)c

(n,p)
SM l̄p

µt

]
, (4.3)

where

l̄µt = ln
Q2

t

m̄2
t

, m̄2
t =

ḡ2
t v̄2

2
, (4.4)

with Qt being the renormalization scale. The c(n,p)
SM are pure numbers. Up to three-loop order

(n = 2), the non-logarithmic coefficients read [43, 112, 113]

c(0,0)
SM = c(1,0)

SM = 0 ,

c(2,0)
SM = −1888

9
+ 160ζ3 +

7424
45

ζ2
2 −

1024
3

Li4

(
1
2

)
− 512

9
Li2

2

(
1
2

)
− 1024

9
Li2

(
1
2

)
ζ2 ,

(4.5)

where

ζ2 =
π2

6
= 1.64493 . . . , ζ3 = 1.20206 . . . ,

Li2

(
1
2

)
= 0.582241 . . . , Li4

(
1
2

)
= 0.517479 . . . .

(4.6)
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The logarithmic coefficients (p 6= 0) can be obtained from the renormalization-group
invariance of M2

h and the RGEs of the parameters,

Q
d

dQ
x̄i(Q) = βx̄i(X̄(Q)) , (4.7)

with x̄i ∈ X̄ and Q being an arbitrary scale. The terms in the SM β-functions, which are
relevant for our discussion, read [43]

β ḡ3 = −7κḡ3
3 − 26κ2 ḡ5

3 +O(κ3) ,

β ḡt = −ḡt

[
8κḡ2

3 + 108κ2 ḡ4
3 −

(
640ζ3 −

4166
3

)
κ3 ḡ6

3 +O(κ4)

]
,

βλ̄ = −κḡ4
t

[
12 + 64κḡ2

3 + 8
(

133
3
− 16ζ3

)
κ2 ḡ4

3 − 16616.3κ3 ḡ6
3 +O(κ4)

]
.

(4.8)

In the MSSM one can write an analogous expression for the light CP-even Higgs boson mass
in terms of the MSSM parameters Y. Neglecting sub-leading terms of O(v2/M2

S), one obtains
an expansion in the decoupling limit, which reads

M2
h = M2

Z cos2 2β + κv2(Qt)y4
t (Qt)s4

β

∞

∑
n=0

n+1

∑
p=0

κng2n
3 (Qt)c

(n,p)
MSSM(Y(Qt)) lp

µt , (4.9)

with

lµt = ln
Q2

t

m2
t

, m2
t =

y2
t v2

u
2

. (4.10)

The coefficients c(n,p)
MSSM have been calculated analytically through n = 1 and can be extracted

from Refs. [24, 35–37]. The result for n = 2 is contained in the H3m result by Ref. [15, 16],
which was calculated neglecting contributions of O(v2/M2

S), in terms of mass hierarchies.
The coefficients c(n,p)

MSSM contain logarithmic contributions of the form ltS ≡ ln(mt/MS), which
spoil the convergence properties of Eq. (4.9) if MS � mt regardless of the choice of Qt. These
type of logarithms are called large logarithms when a sizable scale splitting between the SM

and its superpartners is apparent. The impact of these logarithms on Mh is shown in the
previous chapter explicitly, for example. Note that one usually evolves the running MSSM

parameters perturbatively in addition, see, e.g., Ref. [79]. However, the further usage of RGEs
does not change the discussion about the problems of a fixed-order calculation for large
scale splittings introduced above.

In a fixed-order calculation, the perturbative expansion is truncated at finite order in κ.
Keeping terms through order κN , we denote this result as

M2
h,FO,N(Qt) . (4.11)
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Eq. (4.11) with N = 3 is essential for the extraction of the three-loop correction of λ̄ as shown
in Sect. 4.3.

In addition to the fixed-order approach there exists a different technique called EFT ap-
proach [63]. The idea of the EFT calculation consists of two steps. First, heavy (i.e. SUSY)
particles are integrated out and are thus decoupled from the SM. As a result, one obtains
relations between the parameters of the effective theory (the SM) and the full theory (the
MSSM) of the form

x̄i(Q) = fi(Y(Q), Q) . (4.12)

In particular, one obtains a relation between λ̄ and the MSSM parameters, which means that
the Higgs mass in the SM, given by Eq. (4.3), is fixed in terms of the parameters Y. The fi

in Eq. (4.12) are known as perturbative expansions, neglecting terms of O(v2/M2
S). They

depend explicitly on the renormalization scale QS in the form of ln(QS/MS). Therefore, if
Eq. (4.12) is employed at the scale QS ∼ MS, no large logarithms appear in the matching.
For our purpose, the relevant threshold corrections of Eq. (4.12) take the form

λ̄ =
M2

Z
v2 cos2 2β + κy4

t s4
β(∆λ)y4

t
+ κ2y4

t g2
3s4

β(∆λ)y4
t g2

3
+ κ3y4

t g4
3s4

β(∆λ)y4
t g4

3
+O(κ4) ,

ḡ3 = g3

(
1 + κg2

3(∆g3)g2
3
+ κ2g4

3(∆g3)g4
3
+O(κ4)

)
,

ḡt = ytsβ

(
1 + κg2

3(∆yt)g2
3
+ κ2g4

3(∆yt)g4
3
+O(κ4)

)
,

v̄ = v +O(κ) ,

(4.13)

where the perturbative coefficients (∆yi) can be found in Refs. [62, 64, 93, 94]. Explicit
expressions for these threshold corrections are given in Subsect. 4.3.2 for the degenerate-
mass case. Their dependence on the renormalization scale Q, indicated in Eq. (4.12), is
suppressed here.

Secondly, we apply RGEs to resum logarithmic contributions. Therefore, it is convenient
to introduce two scales as boundary conditions, QS and Qt, which are chosen such that
large logarithms do not occur. Starting with numerical values of Y(QS ∼ MS) obtained by a
spectrum generator, Eq. (4.12) is used to provide numerical values for the MS SM parameters
x̄i(QS). Afterwards, one solves the SM MS RGEs of Eq. (4.7) numerically to evolve the x̄i(QS)

down to Qt ∼ Mt. In solving the RGEs numerically, one effectively resums large logarithms
of the form ltS. This is in contrast to the fixed-order calculation, where these large logarithms
appear explicitly in M2

h up to a fixed order. The x̄i(Qt) are then inserted into Eq. (4.3) in
order to calculate M2

h up to terms of O(v2/M2
S). We denote this result as

M2
h,EFT(Qt, QS) . (4.14)

The only fixed-order logarithms involved in this result are of the form ln(QS/MS) from
Eq. (4.12), and ln(Qt/m̄t) from Eq. (4.3). They can be made small by choosing QS ∼ MS
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and Qt ∼ Mt, respectively. Due to the improvement regarding the used RGEs, we denote
this procedure as renormalization-group improvement. The renormalization-group improved
Higgs mass calculation produces reliable results for sizable scale splittings, where terms
of O(v2/M2

S) can be neglected. However, for scenarios in which MS is of the same order
as v, the fixed-order approach, which usually includes these contributions of O(v2/M2

S), is
preferable.

4.2 re-expanding the eft calculation and ingredients for n
3
ll accuracy

The perturbative version of the EFT approach described in Sect. 4.1 would be to start with
Eq. (4.3) and first set the scale at which the matching to the MSSM is performed to QS ∼ MS.
It would be more convenient, however, to perform RGE running within the SM to QS but
for our calculations this is not required. By setting the renormalization scale to QS, large
logarithms of the form ln(Q2

S/m̄t
2) are generated:

M2
h = v̄2(QS)

[
λ̄(QS) + κȳ4

t (QS)
∞

∑
n=0

n+1

∑
p=0

κn ḡ2n
3 (QS)c

(n,p)
SM ln

(
Q2

S

m̄2
t

)p ]
. (4.15)

Subsequently, one expresses the x̄i(QS) by the Y(QS) through Eq. (4.12). This last step only
introduces small logarithms of the form ln(QS/MS). Re-expanding in κ and keeping terms
through order κN , this result is denoted as

M2
h,EFT,N(QS) . (4.16)

Obviously, the following formal relation applies:

M2
h,EFT(QS, QS) = M2

h,EFT,N(QS) +O(κN+1) (4.17)

if the same order of the threshold corrections, the same values for Y(QS), and the same
SM expression for M2

h are used in deriving the results on both sides of this equation. Note,
however, that M2

h,EFT,N does not profit from renormalization-group improvement. We also
have

M2
h,FO,N(QS) = M2

h,EFT,N(QS) , (4.18)

with the fixed-order result of Eq. (4.11), when expanding in κ to O(κN) and setting Qt = QS.
This relation is used in the next section to extract the three-loop threshold correction for the
quartic Higgs coupling λ̄(QS).

In this chapter we aim for a calculation of the light CP-even Higgs pole mass of the
MSSM in the decoupling limit including the fixed-order through O(y4

t g4
3) (N3LO), as well as

resummation in ḡ4
t ḡ2n

3 through fourth logarithmic order (N3LL), while neglecting all terms
of O(v2/M2

S). This calculation requires to include
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• the four-loop β-function for λ̄ to order κ4 ḡ4
t ḡ6

3 ,

• the three-loop β-function for ḡt to order κ3 ḡt ḡ6
3 ,

• the two-loop β-function for ḡ3 to order κ2 ḡ5
3 ,

• the three-loop threshold correction for λ̄ to order κ3 ḡ4
t ḡ4

3 ,

• the two-loop threshold correction for ḡt to order κ2 ḡt ḡ4
3 ,

• the one-loop threshold correction for ḡ3 to order κḡ3
3 ,

• the three-loop SM contributions to the Higgs mass, Eq. (4.3), to order κ3 ḡ4
t ḡ4

3 .

Note that our identification of the logarithmic order refers to the required order of the β-
function of the SM-Higgs self-coupling λ̄. Specifically, our NnLL terms involve the β-function
to O(ḡ4

t ḡ2n
3 ).

Until recently, all of the necessary expressions were known, except for the three-loop
threshold correction for λ̄ to O(ḡ4

t ḡ4
3). The latter was calculated in Ref. [62] as a part of this

thesis. In the next section, we show details of this derivation utilizing the H3m result.

4.3 extraction of the higgs self-coupling at O(y4
t g4

3)

This section describes how we use the formalism introduced in Sect. 4.1 and 4.2 to calculate
the three-loop contributions to λ̄ at O(y4

t g4
3).

4.3.1 Extraction procedure

Using Eqs. (4.3), (4.5), (4.8), (4.13), and setting Qt = QS, the three-loop result for M2
h,EFT,3(QS)

including terms up to O(y4
t g4

3) can be written in the following form:

M2
h,EFT,3(QS) = M2

h,EFT,2(QS)

+ κ3v2y4
t g4

3s4
β

{
368 l3

St +
[
80 + 96(∆g3)g2

3
+ 192(∆yt)g2

3

]
l2
St

−
[
64ζ3 +

1028
3

+ 32(∆g3)g2
3
+ 256(∆yt)g2

3

− 36(∆yt)
2
g2

3
− 24(∆yt)g4

3

]
lSt

+ 32(∆yt)g2
3
− 42(∆yt)

2
g2

3
− 12(∆yt)g4

3
+ (∆λ)y4

t g4
3
+ c(2,0)

SM

}
,

(4.19)

where lSt = ln(Q2
S/m2

t ) and, as before, the QS dependence of yt, g3, ∆yt, ∆g3, and ∆λ

is suppressed. Until recently, the only unknown term on the r.h.s. of Eq. (4.19) was the
three-loop threshold correction for the quartic Higgs coupling (∆λ)y4

t g4
3
, which we calculate
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in the following. Assuming that the three-loop fixed-order result M2
h,FO,3(QS) is known, we

can insert (4.19) into Eq. (4.18) and solve for the unknown threshold correction:

M2
h,FO,3(QS)−M2

h,EFT,3(QS)

∣∣∣∣
(∆λ)y4

t g4
3
=0

= κ3v2y4
t g4

3s4
β(∆λ)y4

t g4
3

. (4.20)

Note that all large logarithms lSt cancel on the l.h.s. of Eq. (4.20). Thus, we may write
Eq. (4.20) as

κ3v2y4
t g4

3s4
β(∆λ)y4

t g4
3
= M2

h,FO,3(QS)−M2
h,EFT,2(QS)− ∆M2

h,3(QS) , (4.21)

where

∆M2
h,3(QS) = κ3v2y4

t g4
3s4

β

[
32(∆yt)g2

3
− 42(∆yt)

2
g2

3
− 12(∆yt)g4

3
+ c(2,0)

SM

]
. (4.22)

The threshold correction (∆λ)y4
t g4

3
obtained in this way is defined in the MS scheme and

expressed in terms of the MSSM DR′ parameters yt and g3, in accordance with Eq. (4.13).
Inverting the threshold corrections for yt and g3,

g3 = ḡ3

{
1− κḡ2

3(∆g3)g2
3
− κ2 ḡ4

3

[
(∆g3)g4

3
− 3(∆g3)

2
g2

3

]
+O(κ3)

}
,

ytsβ = ḡt

{
1− κḡ2

3(∆yt)g2
3
− κ2 ḡ4

3

[
(∆yt)g4

3
− 2(∆g3)g2

3
(∆yt)g2

3
− (∆yt)

2
g2

3

]
+O(κ3)

}
,

(4.23)

it can also be expressed in terms of SM MS parameters according to

λ̄ =
M2

Z
v̄2 cos2 2β + κḡ4

t (∆λ)ḡ4
t
+ κ2 ḡ4

t ḡ2
3(∆λ)ḡ4

t ḡ2
3
+ κ3 ḡ4

t ḡ4
3(∆λ)ḡ4

t ḡ4
3
+O(κ4) , (4.24)

where

(∆λ)ḡ4
t
= (∆λ)y4

t
,

(∆λ)ḡ4
t ḡ2

3
= (∆λ)y4

t g2
3
− 4(∆λ)y4

t
(∆yt)g2

3
,

(∆λ)ḡ4
t ḡ4

3
= (∆λ)y4

t g4
3
+ (δλ)y4

t g4
3

,

(4.25)

and

(δλ)y4
t g4

3
= −(∆λ)y4

t g2
3

[
2(∆g3)g2

3
+ 4(∆yt)g2

3

]

+ (∆λ)y4
t

[
10(∆yt)

2
g2

3
− 4(∆yt)g4

3
+ 8(∆yt)g2

3
(∆g3)g2

3

]
.

(4.26)

Eq. (4.20) shows how the three-loop threshold correction for the quartic Higgs coupling can
be extracted from the three-loop fixed-order result for the MSSM Higgs mass. The latter has
been calculated in Refs. [15, 16] in the form of a set of expansions around various limiting
cases for the SUSY masses (cf. Eq. (3.5)). In all of the different expansions, terms of O(v2/M2

S)

have been neglected. Since the H3m result was obtained in a scheme that differs from the
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commonly used DR′ scheme, the shift presented in Eq. (3.9) has to be applied to Eq. (4.20) in
order to receive a consistent result.

With Eq. (4.20) we are able to extract the three-loop threshold correction for the quartic
Higgs coupling expressed in terms of the H3m hierarchies defined in Eq. (3.5) taken from
Ref. [16]. We denote this result as (∆λH3m)y4

t g4
3

in what follows. Using renormalization-group
invariance, we can improve on the logarithmic part of (∆λH3m)y4

t g4
3

by replacing their hierarchy
dependence with general MSSM particle masses. This can be done by deriving logarithmic
terms of the form ln(Q2/M2

S) by requiring that

Q
d

dQ

[
M2

h,FO,2(Q) + ∆M2
h,3(Q) + κ3v2y4

t (Q)g4
3(Q)s4

β(∆λ(Q))y4
t g4

3

]
= 0 +O(κ4) , (4.27)

with ∆M2
h,3 from Eq. (4.22), and using the three-loop MSSM β-functions [97, 98]. We refer

to the corresponding threshold correction, which includes the exact mass dependence of
the logarithmic terms, reconstructed in this way as (∆λEFT)y4

t g4
3
. Note that only the non-

logarithmic term of the fixed-order three-loop result of Ref. [16] enters this result. Of course,
expanding (∆λEFT)y4

t g4
3

in terms of the H3m hierarchies up to the appropriate orders, we
recover (∆λH3m)y4

t g4
3

as defined above.

4.3.2 Result in the degenerate-mass case

Since we have made the xt dependence explicit in our result and we neglect all but the
leading terms in y2

t ∝ m2
t , we can set mt̃1

= mt̃2
= MS in our expressions.

Using the degenerate-mass limit, the expression for (∆λ)y4
t g4

3
is simple enough to be quoted

here. In this case, the threshold corrections for the top Yukawa coupling, defined by Eq. (4.13),
are given by

(∆yt)g2
3
= −4

3
(−1 + lSS + xt) , (4.28)

(∆yt)g4
3
=

2099− 1748lSS + 372l2
SS

54
+
−416 + 32lSS

27
xt , (4.29)

where lSS = ln(Q2
S/M2

S) and the one-loop threshold correction of the strong coupling,

(∆g3)g2
3
= −1

2
− 2lSS , (4.30)

is used. Following Eq. (4.22), this leads to a subtraction term

∆M2
h,3(QS) = κ3v2y4

t g4
3s4

β

[
− 2

(
2243− 2228lSS + 708l2

SS
)

9

− 2 (−1312 + 736lSS) xt

9
− 224x2

t
3

+ c(2,0)
SM

]
,

(4.31)
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with c(2,0)
SM from Eq. (4.5). Using the h3 hierarchy of H3m, where all SUSY masses are assumed

to be of comparable size and the expansion is performed in the mass differences, the H3m

result for the degenerate-mass case reads

M2
h,FO,3

∣∣∣
lSt=0

=
8

27
κ3v2y4

t g4
3s4

β

[
− 1246− 2132lSS + 1326l2

SS − 504l3
SS − 1926ζ3

+ 216lSSζ3

+ xt
(
−2776 + 400lSS − 1464l2

SS + 1908ζ3
)

+ x2
t
(
3678− 6lSS + 126l2

SS − 1485ζ3
)

+ x3
t
(
2722 + 20lSS + 108l2

SS − 2259ζ3
) ]

+O(x4
t ) .

(4.32)

Note that in the expansion of the h3 hierarchy, higher orders of xt are not included in the
H3m result. The shift to convert from the H3m to the DR′ scheme as defined by Eq. (3.9) is

(∆M2
h)H3m→DR′ = 16κ3v2y4

t g4
3s4

β (1 + lSS)
(

6− 6x2
t + x4

t

)
. (4.33)

Combining Eqs. (4.31)–(4.33) according to Eq. (4.20), we obtain

(∆λ(QS))y4
t g4

3
=

1
27

{
6082− 27832lSS + 14856l2

SS − 4032l3
SS

− 15408ζ3 + 1728lSSζ3 − 27c(2,0)
SM

+ xt
[
7616lSS − 11712l2

SS + 32(−940 + 477ζ3)
]

+ x2
t
[
28848− 2640lSS + 1008l2

SS − 11880ζ3
]

+ x3
t
[
160lSS + 864l2

SS + 8(2722− 2259ζ3)
] }

+O(x4
t )

(4.34)

for the threshold correction in terms of DR′ parameters.

If one re-expresses the one- and two-loop corrections in terms of SM MS parameters, the
following shift must be added to Eq. (4.34) in the degenerate-mass case,

(δλ(QS))y4
t g4

3
=

1
27

[
26916lSS − 18816l2

SS − 5904l3
SS

− xt
(
−3744 + 14016lSS + 18816l2

SS
)

− x2
t
(
29652− 5424lSS − 9936l2

SS
)

− x3
t
(
−6768− 13152lSS − 2688l2

SS
) ]

+O(x4
t ) .

(4.35)

To obtain Eq. (4.35) we used the threshold corrections

(∆λ)y4
t
= −6lSS + 6x2

t −
x4

t
2

(4.36)
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and

(∆λ)y4
t g2

3
= −4

3

{
4
[
6lSS + 3l2

SS + 6 (1 + lSS) xt − (3 + 6lSS) x2
t − (1 + 2lSS) x3

t
]
+ x4

t

}
(4.37)

in accordance with Eq. (4.23), (4.25), and (4.26).

4.3.3 Extraction uncertainty

In order to combine the three-loop threshold correction of (∆λ)y4
t g4

3
with existing EFT codes

such as HSSUSY [59] or SusyHD [60], where the one- and two-loop corrections are expressed in
terms of SM MS parameters, we extended the functionality of Himalaya to provide (∆λEFT)y4

t g4
3

by implementing Eq. (4.20), including the conversion from the H3m to the DR′ scheme. In
addition, we included the shift of Eq. (4.26) that converts the parameters in the threshold
correction from the DR′ to the MS scheme.

When using the H3m result for the extraction of (∆λ)y4
t g4

3
, it is important to provide an

uncertainty estimate due to missing higher-order terms regarding the expansions of Eq. (3.5).
We employ two largely complementary ways to estimate this uncertainty, referring to the
expansion and the xt uncertainty, respectively.

Concerning the expansion uncertainty, we proceed as follows. As described in Subsect. 4.3.1,
within the DR′ scheme, there are two possible extractions of the threshold correction for
the quartic Higgs coupling. Both of them use the hierarchy expansions of H3m for the non-
logarithmic terms. However, while (∆λH3m)y4

t g4
3

uses these expansions also for the logarithmic
terms, (∆λEFT)y4

t g4
3

contains their exact mass dependence, derived from renormalization-
group invariance. We thus use the difference of (∆λEFT)y4

t g4
3

to (∆λH3m)y4
t g4

3
at the scale

QS as an uncertainty estimate regarding the hierarchy expansion of the non-logarithmic
contribution:

δexp = κ3y4
t g4

3s4
β

∣∣∣(∆λH3m)y4
t g4

3
− (∆λEFT)y4

t g4
3

∣∣∣ . (4.38)

For the xt uncertainty, on the other hand, we consider the conversion term (δλ)y4
t g4

3
defined

in Eq. (4.26), whose mass dependence is known exactly. Since the main source of uncertainty
occurs for large mixing, we determine the highest power nmax of xt taken into account in
the specific H3m hierarchy, and use the size of the terms of order xn

t with nmax < n ≤ 4 in
the non-logarithmic part of (δλ)y4

t g4
3

as uncertainty estimate, labeled δxt . Note that powers
higher than x4

t cannot appear in (∆λ)y4
t g4

3
when the result is expressed in terms of the MSSM

top Yukawa coupling. The reason is that the one-loop correction (∆λ)y4
t

contains no terms
with xn>4

t , and up to the three-loop level the involved (s)quarks, gluons, and gluinos do
not introduce any additional xt-dependence. To be specific, let us again consider the limit
of degenerate MSSM mass parameters. In this case, H3m uses the h3 hierarchy defined in
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Eq. (3.5), which includes only terms through x3
t though. The uncertainty is thus estimated

with the help of the non-logarithmic terms of order x4
t in (δλ)y4

t g4
3
, given by

δxt =
5735
27

κ3y4
t g4

3s4
β x4

t . (4.39)

We combine these two uncertainties linearly and define the total uncertainty due to the
hierarchy expansions as

δ
(

κ3y4
t g4

3s4
β(∆λEFT)y4

t g4
3

)
= δxt + δexp. (4.40)

Note that for cases in which δxt = 0, δexp still serves as an estimate for the uncertainty
regarding the expansions of the H3m result.

After the derivation of (∆λEFT)y4
t g4

3
and the definition of its uncertainty, all ingredients for

a consistent calculation of the light CP-even Higgs mass including N3LL corrections are
known. Therefore, we close this chapter by discussing the impact of (∆λEFT)y4

t g4
3

by including
it into the EFT code HSSUSY, which then fulfills all requirements introduced in Sect. 4.2. In
the following we will only use (∆λEFT)y4

t g4
3

for the determination of (∆λ)ḡ4
t ḡ4

3
.

4.4 numerical results including n
3
ll qcd corrections

To study the numerical impact of the three-loop threshold correction (∆λ)ḡ4
t ḡ4

3
on the value

of the light CP-even MSSM Higgs mass, we link Himalaya to HSSUSY, a spectrum generator
from the FlexibleSUSY package that follows the EFT approach outlined in Sect. 4.1. It assumes
a high-scale MSSM scenario, where the quartic Higgs coupling of the SM is evaluated at
the SUSY scale QS = MS by the matching to the MSSM. The scenario assumes that all
SUSY particles have masses around MS and the SM is the appropriate EFT below that
scale. In the original version of HSSUSY, the quartic Higgs coupling is determined using
the two-loop expressions of O(ḡ2

3(ḡ2
t + ḡ2

b)
2 + (ḡ2

t + ḡ2
b)

3 + ḡ2
τ(ḡ2

b + ḡ2
τ)

2) from Refs. [64,65]1,
thereby ignoring terms of O(v2/M2

S). The known three- and four-loop SM MS β-functions of
Refs. [101,103,113–117] are used to evolve the SM parameters to the electroweak scale, where
the gauge and Yukawa couplings as well as the Higgs VEV are extracted from the known low-
energy observables at full one-loop level plus the known two- and three-loop QCD corrections
of Refs. [118–121]. The Higgs pole mass is calculated by default at the scale Qt = Mt

at the full one-loop level with additional two-, three-, and four-loop SM corrections of
O(ḡ2

3(ḡ4
t + ḡ4

b)+ (ḡ2
t + ḡ2

b)
3 + ḡ6

τ), O(ḡ8
t + ḡ6

t ḡ2
3 + ḡ4

t ḡ4
3), and O(ḡ4

t ḡ6
3) from Refs. [112,113,122].

Thus, by including (∆λ)ḡ4
t ḡ4

3
in the calculation, HSSUSY provides a resummed Higgs mass

prediction in the decoupling limit of the MSSM through N3LO+N3LL at O(ḡ4
t ḡ4

3), including
the full NLO+NLL and the NNLO+NNLL result at O(ḡ2

3(ḡ4
t + ḡ4

b) + (ḡ2
t + ḡ2

b)
3 + ḡ6

τ).

1 We thank Thomas Kwasnitza for making the two-loop yb corrections in HSSUSY publicly available.
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Figure 8: Comparison of the three-loop HSSUSY (EFT) calculation with lower order EFT and fixed-order MSSM
calculations from the FlexibleSUSY package as a function of the SUSY scale.

In Fig. 8 the effect of (∆λ)ḡ4
t ḡ4

3
on the pure EFT calculation of HSSUSY is shown as a function

of the SUSY scale MS for the scenario defined in Chap. 2. The upper row shows a scenario
with vanishing stop mixing, xt(QS) = 0, the lower row shows one with maximal stop
mixing, xt(QS) = −

√
6. The left column of Fig. 8 displays the value of the calculated SM-like

Higgs boson mass for these two scenarios. The blue dashed line and the blue solid line
show the two- and three-loop fixed-order calculations of FlexibleSUSY 2.3.0 and Flexib-

leSUSY 2.3.0+Himalaya 2.0.1, respectively. The black dotted, dashed, and red solid line
depict the EFT calculations of HSSUSY with λ̄(QS) calculated at the one-, two-, and three-loop
level, respectively. Here, ∆λ1L and ∆λ2L denote all available one- and two-loop corrections,
respectively, and ∆λ3L = (∆λ)ḡ4

t ḡ4
3
. For comparison, the orange horizontal band shows the

current experimental value for the Higgs mass, see Eq. (2.1). As was already observed for
example in Refs. [59, 70, 71], we find that in the range MS ≥ 1 TeV the fixed-order and the
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EFT calculations deviate by several GeV. This is to be expected, because the EFT calculation
resums the large logarithmic corrections in contrast to the fixed-order calculation and the
terms of O(v2/M2

S) become negligible for MS being above a few TeV [59, 69, 72, 74].2

As the black dashed and solid red line are hardly distinguishable in these plots, we show the
shift relative to the one- and two-loop calculations of HSSUSY in the right column of Fig. 8.
The gray band in the lower right panel of Fig. 8 corresponds to the theoretical uncertainty
on the result due to the hierarchy expansions of the H3m result, evaluated according to
Eq. (4.40). It amounts to more than 100% of the central shift for maximal mixing. For xt = 0,
this uncertainty is zero, see Eq. (4.39), because we also set QS = MS. This is consistent with
the fact that in this case, the degenerate-mass limit of the H3m result is exact. The red band
shows the EFT uncertainty as defined in Refs. [60, 64, 70], estimating effects from missing
terms of O(v2/M2

S). We see that the impact of (∆λ)ḡ4
t ḡ4

3
is largely negative with respect to

the two-loop threshold correction, ∆λ2L, and may reduce the Higgs mass by up to 0.6 GeV
for maximal mixing when considering all values in the grey uncertainty band. For zero stop
mixing, the shift is significantly smaller (. 20 MeV).
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Figure 9: Comparison of the three-loop HSSUSY (EFT) calculation with lower order EFT and fixed-order MSSM
calculations from the FlexibleSUSY package as a function of the relative stop mixing.

In Fig. 9, the Higgs mass prediction is shown as a function of the relative stop-mixing
parameter xt for the scenario defined in Chap. 2 with MS = 5 TeV, where both the fixed-
order and the EFT approach can accommodate for the experimentally observed value of Mh,
Eq. (2.1), as long as |xt| is sufficiently large. The right panel shows again the difference of
the three-loop calculation of HSSUSY with respect to the one- and two-loop calculations. In
accordance with Fig. 8, we find that the shift induced by including (∆λ)ḡ4

t ḡ4
3

is negative by
trend, and below about 200 MeV for xt > −2. Below that value, the effects could be of order

2 The magnitude of the terms of O(v2/M2
S) is discussed quantitatively in Subsect. 5.2.1.
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1 GeV, but the uncertainty of our approximation grows to about 100% in this case, because
the x4

t term is not included in the hierarchy expansion of the H3m result for this scenario.

To estimate the maximal effect that (∆λ)ḡ4
t ḡ4

3
can have on the Higgs mass prediction, the blue

band of Fig. 10 shows the variation of Mh when the SUSY mass parameters mQ,3, mU,3, mD,3,
and mg̃ are varied simultaneously and independently within the interval [MS/

√
2,
√

2MS]

as a function of MS, including the uncertainty δ((∆λEFT)ḡ4
t ḡ4

3
).3 The hatched region marks

the range of SUSY scales where the lightest running stop mass is below 1 TeV for at least
one of the scanned points. In this case, the EFT may not be applicable. For zero stop mixing
(left panel), we find that (∆λ)ḡ4

t ḡ4
3

can have an effect up to ≈ −150 MeV for MS ≥ 1 TeV. In
the region where mt̃1

> 1 TeV, the correction reduces to −130 MeV at most. The three-loop
correction decreases for larger SUSY scales, mainly due to the fact that the SM couplings
become smaller. For maximal stop mixing, xt = −

√
6, the effect of the three-loop correction

is significantly larger, and can reach −1.25 GeV for mt̃1
& 1 TeV. The correction becomes

particularly large when the soft-breaking stop-mass parameters mQ,3 and mU,3 become small.
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Figure 10: Variation of Mh when the SUSY mass parameters are varied within the interval [MS/
√

2,
√

2MS]

in HSSUSY. The left panel shows Xt = 0 and the right panel Xt = −
√

6MS. The blue band shows the
maximal variation of Mh when the three-loop correction (∆λ)ḡ4

t ḡ4
3
± δ((∆λEFT)y4

t g4
3
) is included, with

respect to the two-loop calculation. In the hatched region there is mt̃1
(MS) ≤ 1 TeV for at least one of

the scanned parameter points.

3 The choice of the interval [MS/
√

2,
√

2MS] ensures that for all scanned points there exists a suitable mass
hierarchy which fits the parameter point with a moderate uncertainty (∆λEFT)ḡ4

t ḡ4
3
. In the scanned parameter

region, the most frequently chosen hierarchy is h3.
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4.5 conclusions

In this chapter, we have introduced an alternative method to the FO approach to calculate
the light CP-even Higgs mass in the MSSM, namely the EFT approach. The improvement
employing renormalization-group equations leads to a resummation of large logarithms,
which is desirable when sizable scale splittings between v and MS arise. However, for
regions in which contributions of O(v2/M2

S) become significant, the EFT approach turns
out to be unreliable.

To provide a study in this framework including N3LL resummation, we derived a result for
the quartic Higgs coupling from the known three-loop corrections to the light CP-even Higgs
mass of Refs. [15,16]. The latter is provided both in terms of DR′ and MS parameters through
its implementation into the public Himalaya library. This should facilitate its inclusion
into spectrum generators which implement the EFT approach. In addition, an uncertainty
estimate is provided to account for missing higher order terms in the mass-hierarchy
expansions.

Combining Himalaya and HSSUSY, our numerical analysis shows that the three-loop cor-
rection tends to be negative and may decrease the predicted Higgs pole mass by up to
0.6 GeV for maximal stop mixing. In scenarios with zero stop mixing, the shift is signifi-
cantly smaller, dropping to about −25 MeV for SUSY mass parameters of around 1 TeV. For
non-degenerate spectra with mt̃1

& 1 TeV, the three-loop correction can be of the same size
and reach up to −1.25 GeV for low stop masses in scenarios where a suitable mass hierarchy
exists. In scenarios where no such hierarchy exists, the correction may be significantly larger,
accompanied by a large expansion uncertainty. Due to the minor impact of the three-loop
contribution of O(y4

t g4
3) on the Higgs mass and its uncertainty, importance is raised towards

the inclusion of the missing electroweak contributions at the two-loop level, which have not
yet been calculated.

Although the EFT approach yields reliable results for multi-TeV scales, missing terms of
O(v2/M2

S) could be important at intermediate scales between a few hundred GeV and the
low TeV range. However, at these scales the FO approach tends to become inaccurate as well.
In order to account for a reliable prediction of the light CP-even Higgs mass at arbitrary
scales, the so-called hybrid approach has been developed in Refs. [53, 68]. It combines the
virtues of both the FO and the EFT approach. To overcome the deficits of the EFT and the FO

approach, we provide a prescription to elevate the hybrid approach to the three-loop level
in the next chapter.





5
H Y B R I D A P P R O A C H

As seen in the previous chapters, the FO approach, on the one hand, yields reliable results if
the masses of the SM and MSSM particles are of comparable size, and the EFT approach, on
the other hand, yields reliable results if the mass splitting between the SM particles and their
SUSY partners becomes sizable. However, it is unclear which of both approaches is the most
suited one for intermediate SUSY scales ranging from a few hundred GeV up to a few TeV.
Therefore, Refs. [53, 68] proposed a combined approach, which includes both contributions
of O(v2/M2

S) and renormalization-group improvement. In practice, such a combination
is tedious as one has to provide full perturbative control over all required intermediate
pieces. However, if applied properly, one achieves a prediction for the light CP-even Higgs
mass, which is in principle reliable for arbitrary mass splittings within the theory. In this
chapter, we only focus on the simplest mass hierarchy, where the mass spectrum of the SUSY

particles is given at a common scale MS.

In Sect. 5.1, we summarize different combination approaches known in the literature and
outline our procedure to obtain a result including N3LO and N3LL contributions, where
we incorporate full one-loop, O(y4

t g2
3 + y6

t ) two-loop, and O(y4
t g4

3) three-loop corrections.
Afterwards, in Sect. 5.2, we study the numerical impact of our hybrid approach, quantize the
magnitude of the O(v2/M2

S) terms, and provide an uncertainty estimate. The required parts
for a proper combination are implemented into the Himalaya library. This chapter is largely
based on Ref. [74], where the way to combine the available results has been developed
in the course of this thesis. This includes the implementation of the required parts into
Himalaya, which are essential for all presented studies in this chapter. In collaboration with
R. V. Harlander and A. Voigt, we studied the numerical impact of our combined result.

5.1 combination approaches

So far, two approaches to combine FO and EFT results in the context of the light CP-even
Higgs mass have been pursued in the literature:

• Subtraction approach: In this approach, the squared Higgs pole mass is written as

(Msubtr
h )2 = (MFO

h )2 − (Mlogs
h )2 + (Mres

h )2, (5.1)

where (MFO
h )2 denotes the fixed-order result, (Mlogs

h )2 are the large logarithmic fixed-
order corrections, and (Mres

h )2 are the resummed logarithmic corrections.

43
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An advantage of this approach is that existing fixed-order results can be used and
different effective theories can be considered in a straightforward way. The generaliza-
tion of this approach to models beyond the MSSM is non-trivial, because it requires
model-specific FO and EFT loop calculations.

This approach is implemented into FeynHiggs at the two-loop level, see for example [53,
68, 69].

• FlexibleEFTHiggs approach [59,71,72]: The matching condition in this approach reads

(MSM
h )2 = (MMSSM

h )2 , (5.2)

where MSM
h denotes the Higgs pole mass as a function of SM MS parameters, and

MMSSM
h is the Higgs pole mass calculated in the MSSM in the DR′ scheme. The MS and

DR′ parameters appearing in Eq. (5.2) depend on the renormalization scale QS, which
is set close to the SUSY scale. In this way, the SM quartic Higgs coupling is determined
in the MS scheme at the scale QS, which is then evolved down to the electroweak scale
using SM RGEs in order to evaluate the Higgs pole mass from it.

Due to the simplicity of the matching condition (5.2), this approach can be generalized
to other models in a rather straightforward way. However, the extension of this
approach to the two-loop level is non-trivial with regards to the proper cancellation of
potentially large logarithmic corrections in the matching.

The FlexibleEFTHiggs approach is implemented at one-loop level into FlexibleSUSY [59,
71], and at two-loop level into SARAH/SPheno [72].1

In this thesis, we adopt a hybrid scheme that is similar to the subtraction approach of
Eq. (5.1). However, we work in the DR′ scheme and include three-loop QCD corrections,
when combining the FO and EFT results. In our framework, the light CP-even Higgs pole
mass is calculated as

(Mhyb
h )2 = (MEFT

h )2 + ∆v , (5.3)

where MEFT
h denotes the three-loop EFT result of FlexibleSUSY/HSSUSY+Himalaya [62] pre-

sented in Chap. 4. It resums large logarithms of O(y4
t g4

3) to N3LL, while others are resummed
to NNLL. Its fixed-order expansion would reproduce the full fixed-order result in the limit
v2/M2

S → 0, including the known two-loop corrections in the gaugeless limit and the three-
loop terms of O(y4

t g4
3) from Himalaya [15, 16, 47]. ∆v supplies the terms that are suppressed

by powers of v2/M2
S as MS � v at fixed order up to the two-loop level, i.e. at O(y6

t + y4
t g2

3)

for the two-loop part. We separate ∆v into a tree-level plus one-loop and a two-loop part,

∆v = ∆0L+1L
v + ∆2L

v . (5.4)

1 Note that in the implementation of the FlexibleEFTHiggs approach in SARAH/SPheno, large higher-order logarith-
mic corrections are induced at the matching scale. As a result, SARAH/SPheno resums large logarithms only up
to (including) the leading-logarithmic level.
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The first term on the r.h.s. of Eq. (5.4) is extracted from the FlexibleEFTHiggs result imple-
mented in FlexibleSUSY and the second term from the two-loop contributions implemented
into the Himalaya library, as described in what follows. The tree-level and one-loop contri-
bution ∆0L+1L

v is obtained by taking the difference between the one-loop FlexibleEFTHiggs
result MFEFT

h and the one-loop pure EFT result obtained from HSSUSY as

∆0L+1L
v =

[
(MFEFT

h )2 − (MEFT
h )2]

0L+1L . (5.5)

Due to the structure of the FlexibleEFTHiggs calculation, this difference contains all tree-
level and one-loop SUSY contributions of higher order in v2/M2

S, and formally two-loop
non-logarithmic electroweak SUSY terms (see below). In particular, large logarithmic cor-
rections as well as two-loop non-electroweak SUSY contributions are absent. The two-loop
contribution ∆2L

v is obtained by

∆2L
v = ∆2L

O(y4
t g2

3+y6
t )
− ∆2L

O(y4
t g2

3+y6
t )

∣∣∣
v2�M2

S

. (5.6)

The terms on the r.h.s. of Eq. (5.6) represent the difference between the two-loop fixed-
order contribution O(y4

t g2
3 + y6

t ) calculated with Himalaya, and the same two-loop FO

contribution where all O(v2/M2
S) terms are neglected. This difference thus contains all two-

loop O(v2/M2
S) terms at O(y4

t g2
3 + y6

t ). Large logarithmic as well as non-electroweak three-
loop corrections of order (v2/M2

S)
0 are absent. To ensure this cancellation, the momentum

iteration for the first term on the r.h.s. of Eq. (5.6) is only performed once as shown in
Eq. (3.4), whereas the second term on the r.h.s. of Eq. (5.6) is derived as in Sect. 4.2.
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Following the prescription of the previous section, we present numerical studies for our
hybrid approach in this section. First, we investigate the size of terms of O(v2/M2

S) in
Subsect. 5.2.1 as a function of the SUSY scale MS, which is followed by the definition of our
uncertainty estimate in Subsect. 5.2.2. Afterwards, in Subsect. 5.2.3–5.2.2, we discuss our
hybrid approach in comparison to a pure FO and EFT calculation.

5.2.1 Size of the O(v2/M2
S) terms

The main advantage of the hybrid approach is the inclusion of O(v2/M2
S) terms into the

EFT result. To estimate at which scales these terms ∆v can be neglected, we study their effect
on the Higgs pole mass as a function of the SUSY scale in this section. For convenience we
define the (non-squared) contribution of these terms as

∆̄v = ∆̄0L+1L
v + ∆̄2L

v , (5.7)
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∆̄0L+1L
v =

[
(MEFT

h )2 + ∆0L+1L
v

]1/2
−MEFT

h , (5.8)

∆̄2L
v =

[
(MEFT

h )2 + ∆0L+1L
v + ∆2L

v

]1/2
−
[
(MEFT

h )2 + ∆0L+1L
v

]1/2
. (5.9)

Setting the input to the scenario defined in Chap. 2, we find that the O(v2/M2
S) terms can
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Figure 11: Size of the O(v2/M2
S) terms as a function of MS for different stop-mixing parameters Xt. The

data of these plots is taken from Ref. [74].

be sizable below MS . 0.5 TeV, while they are small as long as MS & 1 TeV, see Fig. 11.
Specifically, we find for MS & 1 TeV

xt = 0 : |∆̄v| . 0.10 GeV , (5.10)

xt = −
√

6 : |∆̄v| . 0.15 GeV , (5.11)

xt =
√

6 : |∆̄v| . 0.25 GeV . (5.12)
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Other values of tan β lead to similar observations.

The sign and the order of magnitude of these results are in agreement with the contribution
of higher-dimensional operators as presented in Ref. [65]. Since the remaining uncertainty
on the light CP-even Higgs pole mass is dominated by the uncertainty induced by the
extraction of the running top Yukawa coupling, which has been estimated to be between
0.2–0.6 GeV [60, 65, 70, 115], we conclude that for MS & 1 TeV the O(v2/M2

S) terms are
negligible and the EFT approach leads to a more precise value of the Higgs pole mass than
the fixed-order result. This confirms the transition region of Mequal

S = 1.0–1.3 TeV estimated
in Ref. [70].

5.2.2 Uncertainty estimate

We estimate the uncertainty of the hybrid result conservatively by taking the minimum
uncertainty of the FO and EFT results for each parameter point:

∆Mhyb
h = min

{
∆MFO

h , ∆MEFT
h
}

. (5.13)

The uncertainty of the three-loop fixed-order calculation, ∆MFO
h , is estimated by:

• variation of the renormalization scale QS at which the Higgs pole mass is calculated
(∆(QS)MFO

h ),

• in-/exclusion of the two-loop threshold correction for the strong gauge coupling g3 in
the MSSM [96, 123, 124] (∆(g3)MFO

h ),

Thus, ∆MFO
h yields

∆MFO
h = ∆(QS)MFO

h + ∆(g3)MFO
h , (5.14)

with

∆(QS)MFO
h = max

QS∈[MS/2,2MS]

∣∣MFO
h (QS)−MFO

h (MS)
∣∣ , (5.15)

∆(g3)MFO
h =

∣∣∣MFO
h (g1L

3 )−MFO
h (g2L

3 )
∣∣∣ . (5.16)

The uncertainty of the three-loop EFT calculation, ∆MEFT
h , is estimated by:

• variation of the renormalization scale Qt at which the Higgs pole mass is calculated
(∆(Qt)MEFT

h ),

• variation of the renormalization scale QS at which the MSSM is matched to the SM

(∆(QS)MEFT
h ),

• in-/exclusion of the four-loop QCD threshold correction for the SM top Yukawa
coupling [125] (∆(ySM

t )MEFT
h ),
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• estimation of the effect of O(v2/M2
S) terms from the quartic Higgs coupling along the

lines of Refs. [60, 64, 70] (∆(v2/M2
S)MEFT

h ).2

Hence, by combining these sources of uncertainty linearly ∆MEFT
h yields

∆MEFT
h = ∆(Qt)MEFT

h + ∆(QS)MEFT
h + ∆(ySM

t )MEFT
h + ∆(v2/M2

S)MEFT
h , (5.17)

with

∆(Qt)MEFT
h = max

Q∈[Mt/2,2Mt]

∣∣MEFT
h (Q)−MEFT

h (Mt)
∣∣ , (5.18)

∆(QS)MEFT
h = 0.5 GeV , (5.19)

∆(ySM
t )MEFT

h =
∣∣∣MEFT

h (ySM,3L
t )−MEFT

h (ySM,4L
t )

∣∣∣ , (5.20)

∆(v2/M2
S)MEFT

h =
∣∣MEFT

h −MEFT
h (v2/M2

S)
∣∣ . (5.21)

The matching-scale uncertainty ∆(QS)MEFT
h has been estimated in Ref. [60, 64, 70]. It was

found that for scenarios as those considered here, the uncertainty does not exceed 0.5 GeV
for MS & 1 TeV. Rather than extending the procedure of Ref. [60,64,70] to N3LL which would
involve the logarithmic terms at N4LO, we conservatively associate this maximal value of
0.5 GeV to the matching-scale uncertainty, independently of MS.

5.2.3 Convergence for high SUSY scales

Convergence properties of our hybrid result to the pure FO or EFT calculation, depending
on the scale MS, can be used as a check for our calculation. Therefore, in Fig. 12, we compare
the hybrid result defined in Eq. (5.3) (red solid line) with the three-loop DR′ fixed-order
calculation MFO

h of FlexibleSUSY+Himalaya [47] (blue dashed line) and the three-loop EFT

result MEFT
h of HSSUSY+Himalaya [62] (black dash-dotted line), which resums large logarithms

through N3LO. The red band indicates our uncertainty estimate as defined in Sect. 5.2.2.
Note that we only include O(y6

t + y4
t g2

3) contributions at the two-loop level.

Since ∆v → 0 for MS → ∞, the hybrid curve converges towards the EFT curve in this limit.
Note that in the scenario with xt = −

√
6 for values of MS below ∼ 600 GeV, no suitable

mass hierarchy is available in Himalaya. The three-loop fixed-order contribution is set to
zero in this case, which means that the EFT curve and the hybrid calculation is formally
consistent only at the two-loop level for lower scales. On the other hand, for MS → MZ one
may expect the hybrid curve to converge towards the three-loop fixed-order curve. However,
we find a finite offset at low energies of up to ∼ 0.5 GeV for xt = 0 and ∼ 1.5 GeV for
xt = −

√
6. This offset results from higher order O(v2/M2

S) terms, which are not suppressed
in the low MS region. The origin of these will be investigated in the following subsection.

2 MEFT
h (v2/M2

S) of Eq. (5.21) is obtained by scaling the individual terms in the one-loop threshold correction ∆λ1L

for the quartic coupling by factors of the order (1 + v2/M2
S).
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Figure 12: Comparison of the three-loop FO, EFT, and hybrid results as functions of MS. The red band shows
our uncertainty estimate. The data of these plots is taken from Ref. [74].

In Fig. 13 a comparison of the hybrid results with the three-loop FO and EFT results is
shown as a function of xt for the degenerate-mass scenario with tan β = 20 and MS = 3 TeV,
where the MSSM value of the Higgs pole mass can be in agreement with the experimentally
measured value. As our derivation of the ∆v terms from above suggests, we find agreement
of the hybrid result with the EFT within 0.5 GeV for such a large SUSY scale. The largest
deviations of 0.5 GeV occur in the region |xt| > 3, while in the region |xt| < 3 the deviation
is smaller than 0.1 GeV. However, the latter region suffers from a problematic feature of
the fixed-order calculation, which is the occurrence of tachyonic DR′ masses of the heavy
CP-even, the CP-odd, and the charged Higgs bosons at the electroweak scale for xt > 0 as
already discussed in Chap. 3. The kink at ∼ xt = 0 of the FO curve is due to the replacement
of the tachyonic running masses by their absolut values, which leads to a discontinuous
transition.
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Figure 13: Comparison of the three-loop FO, EFT, and hybrid results as functions of Xt/MS. The red band
shows our uncertainty estimate. The data of these plots is taken from Ref. [74].

Our combined uncertainty as defined by Eq. (5.13) is shown as the red band in Figures 12–13.
In the studied scenario, the uncertainty is nearly constant and around ∆Mhyb

h ≈ 1 GeV. Very
rarely it happens that the central value of the approach (EFT or FO) that determines the
hybrid uncertainty through Eq. (5.13) is not itself contained in the resulting uncertainty
band. In this case, we widen the band correspondingly.

As shown in Fig. 12, for SUSY scales below 1–2 TeV, the fixed-order uncertainty defined by
Eq. (5.14) is the smaller of the two on the r.h.s. of Eq. (5.13). Due to the occurrence of large
logarithmic loop corrections, ∆MFO

h becomes larger when MS is increased and reaches about
∆MFO

h ≈ 1 GeV for MS ≈ 1 TeV. A larger uncertainty of up to ∆MFO
h ≈ 1.5 GeV occurs only

for xt = −
√

6 around MS ≈ 0.6 TeV, where a hierarchy switch occurs in the three-loop
fixed-order result of Himalaya.

The EFT uncertainty as defined by Eq. (5.17) is composed as follows. ∆(Qt)MEFT
h is approxi-

mately independent of the SUSY scale and amounts to about 0.2 GeV whereas the uncertainty
∆(ySM

t )MEFT
h from the extraction of the SM top Yukawa coupling amounts to approximately

0.1 GeV and increases slightly with the SUSY scale. For SUSY scales above 1–2 TeV, the total
uncertainty of the EFT calculation ∆MEFT

h is dominated by these two contributions and
∆(QS)MEFT

h , while amounting to slightly less than 1 GeV. In contrast, ∆(v2/M2
S)MEFT

h is negligi-
ble at these scales. This is in agreement with the results from Subsect. 5.2.1, where it was
found that the O(v2/M2

S) terms are below 0.25 GeV for MS & 1 TeV. Finally, we find that
the extraction uncertainty |δxt + δexp| of the three-loop threshold correction λ̄ introduced
in the previous chapter is below 2 MeV for the degenerate-mass scenarios considered here
with MS & 1 TeV, and is thus negligible.
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Quite generally, the SUSY scale Mequal
S , where both the FO and the EFT calculation have the

same uncertainty, is between MS & 1–2 TeV, which is in agreement with the findings in
Refs. [70, 126].

5.2.4 Convergence for low SUSY scales

As described in Refs. [59, 71], the FlexibleEFTHiggs calculation implemented in FlexibleSUSY

since version 2.0.0 includes all one-loop contributions and resums all large logarithmic
corrections at the next-to-leading logarithmic level. When compared to the one-loop fixed-
order DR′ result of FlexibleSUSY, one finds splendid agreement in the limit MS → MZ if
tan β → 1 and xt = 0, corresponding to scenarios where incomplete higher-order effects
gathered by both calculations, e.g. through momentum iteration, are small. The first row
in Tab. 1 shows a scenario with tan β = 3, MS = MZ, and xt = 0, where both results agree
within 5 MeV (0.01%). When increasing tan β, the two-loop differences between the two

Table 1: Comparison of the one-loop FlexibleEFTHiggs and n-loop fixed-order DR′ Higgs pole mass with
FlexibleSUSY.

n tan β MS xt MFEFT
h MFS

h (MFEFT
h −MFS

h )

1 3 MZ 0 57.584 GeV 57.590 GeV −0.005 GeV
1 20 MZ 0 88.725 GeV 88.636 GeV +0.089 GeV
1 20 Mt 0 95.612 GeV 95.999 GeV −0.387 GeV
1 20 200 GeV 0 96.733 GeV 97.378 GeV −0.645 GeV
1 20 500 GeV 0 105.489 GeV 107.059 GeV −1.570 GeV
2 20 500 GeV 0 105.489 GeV 105.411 GeV −0.078 GeV

Higgs mass values become more sizable, increasing to 0.089 GeV (0.1%) for tan β = 20, see
the second row of Tab. 1. There are several sources of such tan β-dependent higher-order
terms in both calculations: In the fixed-order calculation, for example, an iteration over
the squared momentum p2 is used to find the solution of Eq. (3.2). This iteration leads to
higher-order SUSY contributions of O(yn

t ym
b v2/M2

S) (n + m ≥ 6) which increase with tan β,
for example, due to the increasing bottom Yukawa coupling yb. In the FlexibleEFTHiggs
approach such terms are absent because p2-terms are taken into account only at the one-loop
level, and thus no momentum iteration needs to be performed. However, in the Flexible-
EFTHiggs calculation other tan β-dependent higher-order terms are generated. These arise,
for example, by inserting the one-loop threshold corrections for the MSSM DR′ electroweak
gauge couplings g1 and g2 into the tree-level term m2,tree

h on the r.h.s. of Eq. (5.2) in order to
express the quartic Higgs coupling of the SM in terms of SM MS gauge couplings:

(MMSSM
h )2 = m2,tree

h + ∆1L(mMSSM
h )2 , (5.22)

m2,tree
h = v2

( 3
5 g2

1 + g2
2
)

4
c2

2β

[
1 +

(
3
5

g2
1 + g2

2

)
(c2

2β − 1)
v2

4m2
A

]
+O

(
v4

m4
A

)
. (5.23)
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Since the tree-level MSSM DR′ Higgs mass mtree
h initially depends on g2

1, g2
2, and c2β, the

insertion of the threshold corrections generates two-loop terms, which are of electroweak
order O(gn

1 gm
2 c2k

2βv2/m2
A) and depend on tan β. Note that these are just two of several

possible sources for incomplete higher-order tan β-dependent terms by which the two
formally one-loop approximations differ.

When the SUSY scale is increased to MS = Mt (third row in Tab. 1), renormalization-group
effects arise, because the scale at which the running couplings are extracted (Q = MZ) is no
longer identical to the scale where the Higgs pole mass is calculated (Q = MS = Mt). While
in FlexibleEFTHiggs the SM RGEs are used to evolve the running couplings from MZ → Mt,
the fixed-order calculation uses MSSM RGEs. This increases the difference between the
two results to −0.387 GeV (−0.4%) in our example. For larger SUSY scales, this difference
increases further, as shown in the fourth and fifth rows of Tab. 1 for MS = 200 GeV and
MS = 500 GeV, respectively. For these scales, logarithmic corrections of the form ln(MS/Mt)

occur, which get resummed in the FlexibleEFTHiggs calculation, but not in the fixed-order
one. In the latter, the inclusion of two-loop corrections must account for this difference. In
fact, when two-loop corrections are included in the fixed-order calculation, see the bottom
row of Tab. 1, the difference is reduced again to −0.078 GeV (−0.07%).

This analysis shows that one cannot expect perfect agreement between the FlexibleEFTHiggs
and the fixed-order results at low SUSY scales MS . 200 GeV, even though both calculations
are formally consistent at their respective accuracy level. Since the FlexibleEFTHiggs result is
part of our hybrid scheme defined in Eq. (5.3)–(5.6), the described deviation translates into a
non-convergence of Mhyb

h towards the three-loop fixed-order result at low SUSY scales in
Fig. 12.

5.3 conclusions

In this chapter, we presented a hybrid calculation of the light CP-even Higgs pole mass in
the MSSM by combining FO and EFT results in the DR′ scheme up to three-loop accuracy. To
be exact, beyond the relevant two-loop FO corrections and the corresponding resummation
of large logarithms through NNLL, our result includes the three-loop FO corrections and
the resummation through N3LL w.r.t. the strong coupling. This hybrid result is in principle
reliable at arbitrary SUSY scales.

The size of terms of O(v2/M2
S) was estimated by comparing our hybrid calculation with the

EFT calculation. We find that these terms are smaller than 0.25 GeV as long as MS & 1 TeV,
which is the region where the degenerate-mass scenarios can be compatible with the
experimental value for the Higgs mass [64]. Combining this with the fact that for MS & 1.0–
1.3 TeV the EFT calculation has a smaller uncertainty than the FO calculation (see also
Ref. [70, 126]), we conclude that an EFT calculation provides an excellent approximation in
the MSSM for degenerate-mass scenarios, when neglecting terms of O(v2/M2

S).
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The estimated uncertainty of our hybrid result is below 1 GeV in most of the relevant
parameter space. Since we use the three-loop results of Ref. [15, 16] for the FO Higgs mass,
which are based on approximations in various SUSY mass hierarchies, the uncertainty
becomes a bit larger in specific regions of the SUSY parameter space, where none of the
available approximations matches. The same holds for split SUSY spectra, where the EFT

results used in our calculation become inaccurate.

Overall, we have studied the FO, the EFT, and the hybrid approach and discussed their
benefits and drawbacks concerning different parameter regions in the previous three chap-
ters. Using the implementation of all required parts into the Himalaya library, which has
been accomplished as part of this thesis, we were able to elevate all three approaches to the
three-loop level in the DR′ scheme. In addition, Himalaya facilitates the inclusion of these
three-loop contributions into spectrum generators.





Part II

H I G G S S T R A H L U N G I N T H E S TA N D A R D M O D E L A N D
B E Y O N D

This part is focused on the Higgs-Strahlung process at the LHC. It is one of
the four most relevant production channels of the Higgs at the LHC and, in
addition, provides unique features that could help detecting potential New-
Physics phenomena. Specifically, we exploit a relation between the final state
gauge bosons to study a particular observable based on ratios of inclusive and
differential production cross sections. Further, we discuss recent progress in the
inclusion of quark-mass effects to a process that can be found exclusively in
Higgs production associated with a Z boson using novel algebraic techniques.
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The relevance of Higgs production associated with a vector boson V, where V ∈ {Z, W±},
was first described in Ref. [127]. This process is also commonly denoted as Higgs Strahlung.
Although it has a lower cross section at hadron colliders compared to other Higgs production
channels like gluon fusion (gg→ H, cf. [128]), its additional final state particles originating
from the decay of the associated vector boson are able to yield clean signatures in a detector.
The discovery of the Higgs-Strahlung process has been achieved in combination with the
discovery of the Higgs boson decaying into a pair of bottom quarks [129, 130]. The latter
yields a perfect agreement with SM predictions within the given uncertainties. Although the
Higgs boson decays prevalently into bottom quarks [131], its signature is contaminated by
the dominating background of gg→ bb̄ events and only the unstable vector bosons allowed
for a discovery. The V boson decays that are of foremost interest can be categorized into
three channels:

• 0-lepton channel: Z → νν ,

• 1-lepton channel: W → `ν ,

• 2-lepton channel: Z → `` ,

where ` denotes a charged lepton and ν a neutrino. The leptonic decay modes lead to
clean signatures that can be efficiently triggered on, while rejecting most of the mutli-jet
backgrounds. Already at the Tevatron the CDF and D0 collaborations reported an excess
of events in VH associated production in the mass range of 120–135 GeV, with a global
significance of 3.1σ [132], just four days before the Higgs boson was discovered at the
LHC [2, 3]. Further evidence for VH production was announced by ATLAS and CMS in
Refs. [133, 134] before its discovery was announced in Refs. [129, 130].

From the theoretical perspective, representative types of Feynman diagrams for VH produc-
tion in the SM are depicted in Fig. 14. One distinguishes between the Drell-Yan (DY) type

q

q̄

V

H

V ∗

g

g

Z

H

q Z∗

g

g

Z

H

q

b

b̄

Z

H

Figure 14: Representative Feynman diagrams for VH production at hadron colliders. The first diagram from
the left depicts the DY process, the second and third the gluon-initiated non-DY ZH production, and the
fourth the non-DY initial bb̄ ZH production.
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processes (left diagram of Fig. 14) and non-DY type processes (second, third, and fourth
diagram from the left of Fig. 14), where the latter type only exist for ZH production. Note
that the gluon-initiated process is already loop induced. The inclusive cross section of VH
production is thus decomposed as:

σVH = σVH
DY + σVH

non-DY , (6.1)

where, by definition, the DY component can be factorized as

σVH
DY =

∫
dq2 σV(q2)

dΓV∗→VH

dq2 + ∆σVH
EW , (6.2)

with σV being the production cross section of a V boson via the DY process and Γ is the
decay rate of V to the VH final state. In Eqs. (6.1) and (6.2), the electroweak corrections ∆σVH

EW

are understood to be fully attributed to σVH
DY , i.e. σVH

non-DY does not receive any electroweak
corrections by definition.

At LO in perturbation theory, one can relate the DY-like terms for WH and ZH production
by changing external parameters like the gauge boson mass, the gauge coupling, or the
parton distribution function (PDF), all of which can be determined independently through
other processes. The effect of higher orders on this similarity between the DY components
is studied in Chap. 7. In addition, it is plausible that any New Physics respects the gauge
symmetry between the W and the Z boson, and thus preserves the relation between the DY-
components for WH and ZH production. For example, in a general 2-Higgs-Doublet-Model
(2HDM), whose Higgs sector is comparable to the MSSM, the ratio of the DY components for
WH and ZH production is the same as in the SM.

In the non-DY term of Eq. (6.1) (σVH
non-DY) the dominant contribution in the SM is due to the

gluon-initiated process gg → ZH, denoted by σgg. The latter is well-defined considering
QCD only since it is separately finite and gauge invariant to all orders of perturbation
theory. Despite the fact that in the SM the bb̄-initiated contributions, denoted by σbb̄, are tiny
compared to σZH

DY or σgg, they may become important in BSM theories. Note that in σbb̄ the
bb̄-DY component is not included. None of the non-DY processes have a correspondence in
WH production in the SM. Therefore, we assume σWH

non-DY = 0 throughout this thesis.

The current theoretical precision is quite different for the two components of Eq. (6.1). While
σVH

DY is known through NNLO QCD [135–140], i.e. O(α2
s ), and results at threshold are even

known up to N3LO QCD [141, 142], the current theory prediction for the total inclusive
cross section of σgg is based on the full LO calculation, which is also of O(α2

s ) [143, 144].
At this order, σgg amounts to about 6% of the total ZH cross section for MH = 125 GeV in
proton-proton (pp) collisions at a center of mass energy

√
s = 13 TeV. A full calculation of

the relevant NLO corrections, i.e. O(α3
s ), is not yet available, but in Chap. 8 we present recent
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progress on the inclusion of quark-mass effects. However, assuming that it depends only
weakly on the top-quark mass, the NLO K-factor,

K =
σNLO

gg (Mt → ∞, Mb = 0)

σLO
gg (Mt → ∞, Mb = 0)

, (6.3)

has been found to be of the order of two, which increases the gluon-induced contribution to
the total cross section accordingly [145, 146]. Higher-order terms in 1/Mt were evaluated
in Ref. [147], but their validity is restricted to an invariant mass MZH of the ZH system of
MZH < 2Mt. Concerning differential distributions, the amplitudes for 2- and 3-parton final
states including the full quark-mass dependence have been merged in order to obtain a
reliable prediction at large transverse momenta of the Higgs boson [148, 149].

For associated ZH production, additional contributions to the DY process at O(α2
s ) exist,

where a Z boson couples to a closed top- or bottom-quark loop. Their impact on the inclusive
cross section is below 1% [150]. The extra non-DY component σbb̄, which is known up to
O(α2

s ) in massless QCD [151], is about three orders of magnitude smaller compared to σZH
DY .

For σVH
DY , also electroweak corrections are known [152–154], while they are unavailable for any

non-DY contribution in the SM at the time of this writing. As a consequence, the estimated
theoretical accuracy due to scale variation for the DY-like component is at the sub-percent
level, while it reaches up to about 25% for σgg at NLO. Including NLL resummation, this
reduces to about 7% [146]. The PDF uncertainties are at the 2% and 4% level for the DY and the
σgg component, respectively, employing the PDF4LHC15_100 [155] PDF sets. Implementations
including NNLO with parton shower matching have been presented in Refs. [156, 157].

For illustration, Fig. 15 depicts the DY and non-DY contributions in the SM for ZH production

√
s = 13 TeV , MH = 125 GeV , Mt = 173 GeV , PDF4LHC15_nnlo_100
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Figure 15: Transverse-momentum (left) and invariant-mass distribution (right) of ZH production at the LHC
in the SM divided into their contributions.
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including up to O(α2
s ) corrections as distributions of transverse momentum of the Higgs,

pH
T , and invariant mass of the ZH system MZH. The latter two are defined as:

pH
T = pH sin θ , M2

ZH =
(

pZ + pH
)2

, (6.4)

where px is the four-momentum of particle x and the polar angle θ is defined as in Ref. [133].
Fig. 15 is obtained by utilizing MCFM [140, 158, 159] for the DY and vh@nnlo [160, 161] for the
non-DY component. Note that only LO QCD contributions for σbb̄ are included.

To set the contribution of WH and ZH production into perspective, Fig. 16 shows the same
kinematical distributions as Fig. 15, but compares the complete differential cross section, i.e.
the combination of DY and non-DY components, of the different final state vector bosons.
The results are obtained with MCFM at O(α2

s ). Adding the W+H and W−H results into
approximately twice the contribution of ZH production. Additionally, the similarity of
the DY components is evident, whereas the non-DY components in ZH production are
subleading, but visible around the top-quark threshold.
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Figure 16: Comparison of complete VH contributions to transverse momentum (left) and invariant mass
distributions (right) at the LHC including O(α2

s ) corrections.
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As already pointed out in the previous chapter, the DY processes in VH production provide
many similarities, whereas the non-DY-type contributions are exclusively present for the
ZH final state. This raises the question if there is a way of exploiting the symmetry of
DY induced production to be sensitive to any non-DY processes, which might hint to
New-Physics phenomena.1

Within this chapter, we try to answer this question by simulating a state-of-the-art analysis
used in the discovery of the H → bb̄ decay. In Sect. 7.1 we start by motivating a particular
ratio and present the effect of different extensions of the SM on the latter. Afterwards, in
Sect. 7.2, a modified ratio is defined, that allows for an extraction of any non-DY type contri-
butions by relating measured quantities to theoretical predictions. In Sect. 7.3 more focus is
given to possible sources of theoretical uncertainties, which leads to a rough uncertainty
estimate. This insight is followed in Sect. 7.4 by mimicking the analysis performed in the
H → bb̄ discovery to estimate the significance of any non-DY contributions. These findings
are then projected to the High-Luminosity-LHC (HL-LHC). The studies of this chapter are
based on Ref. [163], to which A. Papaefstathiou provided the Monte-Carlo simulation. Here,
we present an updated analysis using the results recently published in Ref. [129].

7.1 motivation

The gluon-initiated component reveals some interesting features which makes it particularly
suited as a probe for New Physics. First of all, it is loop induced, which introduces a peculiar
sensitivity to currently unknown particles that might couple the initial-state gluons to the ZH
final state. Secondly, the dominant contribution in the SM is due to top-quark loops, which
lead to a characteristic threshold structure in various kinematical distributions of the cross
section. The application of appropriate cuts thus allows for enriching the ZH production
with gluon-initiated events, as pointed out in Ref. [164]. Through the box diagrams of Fig. 14

the cross section also receives a dependence on the top Yukawa coupling, which is amplified
by the fact that the box diagrams interfere destructively with the triangle diagrams of Fig. 14.
Another interesting feature which appears in many BSM models are s-channel contributions
due to additional Higgs bosons [165]. They either add to the triangle-component of σgg, or

1 We note that, at the level of the actual DY process of virtual V production, pp → V∗, the symmetry between
V = W and V = Z has been used before as an alternative way to measure the W-boson mass at hadron
colliders [162].
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they occur in the non-DY-type process σbb̄. Many of such New-Physics effects on σgg as well
as σbb̄ can be investigated with the help of the program vh@nnlo [160, 161].

Deviations from the SM, like modified Yukawa couplings, new colored particles, or an
extended Higgs sector, are thus likely to manifest themselves in the ZH final state through
the gluon- or bb̄-initiated component of the cross section. Apart from direct measurements,
these effects could be enhanced if one considers a suitable observable. An appropriate choice
might be given by the ratio

RZH
DY ≡

σZH

σZH
DY

≡ RZH
DY (x) =

dσZH/dx
dσZH

DY /dx
(7.1)

for a distribution in a specific kinematic variable x. For illustration, Fig. 17 shows the impact
of New Physics (a non-SM-Yukawa coupling in this case) on Eq. (7.1) for x = pH

T . Indeed,
this observable exhibits a significant dependence on New-Physics effects. Note that the local
minimum at pH

T ∼ 230 GeV for yt = 2 yt,SM is an effect from the box-triangle interference. As
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Figure 17: The pH
T spectrum (left) of the Higgs boson produced through the gg- and bb̄-processes for different

values of the top and bottom Yukawa couplings and their impact on RZH
DY (right).

input for all numerical studies, we set

√
s = 13 TeV , MH = 125 GeV , Mt = 173 GeV , (7.2)

and use the PDF4LHC15_mc PDF sets [155] with αs(MZ) = 0.118 unless otherwise stated.

In addition to pH
T , we find that the invariant mass MZH of the ZH system is particularly

well suited, since it reveals distinct features that allow to identify various New-Physics
models, especially when normalized to the DY-like ZH contribution. Examples for modified
Yukawa couplings are shown in Fig. 18, which include the effect of both σgg and σbb̄, the
latter of which becomes relevant in scenarios with enhanced bottom Yukawa coupling.
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Experimentally, the invariant mass for the MZH system may be difficult to access, and other
observables such as the pH

T spectrum may be more advantageous. However, the general idea
of Eq. (7.1) is independent of the choice of x and the optimal observable is best determined
within an experimental analysis where all the systematic uncertainties are available.
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Figure 18: The invariant mass spectrum (left) of the Higgs boson produced through the gg- and bb̄-processes
for different values of the top and bottom Yukawa couplings and their impact on RZH

DY (right).

As already pointed out in Ref. [164], the contribution of σgg to the total cross section
is typically rather small in the kinematical region below the top-quark threshold. The
distribution above 2Mt, on the other hand, distinctly reflects the impact of New Physics.
Specifically, this region crucially depends on the top Yukawa coupling, as shown in Fig. 18.
In addition, new heavy particles which contribute to the effective ggZH coupling might also
reveal extra threshold structures in Eq. (7.1) as a function of the invariant mass, as shown
using the example of a vector-like top-quark partner T in the left panel of Fig. 19. Additional
Higgs bosons which contribute through s-channel exchange lead to further features in this
spectrum, see the right panel of Fig. 18, which shows RZH

DY for a 2HDM.2 The peak structure
is dominated by the bb̄→ ZH process in this case (see also Refs. [161, 163]).

7.2 extraction of non-drell-yan contributions from data

The high accuracy to which the DY component is known theoretically suggests a simple
comparison of the experimentally determined ZH rate to the theoretical prediction of its DY

component in order to extract the non-DY part:

σZH
non-DY

σZH
DY

= RZH
DY − 1 =

σZH

σZH
DY

− 1 , (7.3)

2 Details of the implementation of these models can be found in Ref. [161] and the references therein.
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Figure 19: Impact on RZH
DY of a vector-like top partner T for different mixing angles (left) and a pseudoscalar

Higgs boson of the 2HDM (right).

with the DY-like cross section, σZH
DY , taken from theory, and the full ZH cross section σZH

from experiment. Such an experiment/theory comparison suffers from potential systematic
uncertainties though, due to detector simulation, unfolding, and the like.

Here, we propose to analyze the data from Higgs Strahlung by making use of a very specific
feature for this process which has been alluded to in Chap. 6, namely, the similarity between
the ZH and the WH process. For this purpose, we define the double ratio

RZW
R =

σZH/σWH

σZH
DY /σWH ≡

RZW

RZW
DY

. (7.4)

Obviously, if all quantities are evaluated theoretically, it is RZW
R = RZH

DY , cf. Eq. (7.1). Here,
however, we suggest to take the numerator RZW = σZH/σWH of the double ratio in Eq. (7.4)
from measured data. Despite the different final states for ZH and WH production, we expect
that a number of systematic experimental uncertainties cancel, in particular if the parameters
of the analyses for ZH and WH are aligned as much as possible. We focus more on these
uncertainties in Sect. 7.4.

The denominator of Eq. (7.4), on the other hand, referred to as the DY ratio in what follows,
can be calculated within the SM with rather high precision, as will be discussed in Sect. 7.3.
In addition, it can hardly be affected by any New-Physics effects, because of the strong
theoretical and experimental constraints on the electroweak gauge couplings (cf. Refs. [4,
131, 166–168]).

We note that the comparison of WH to ZH as a probe for New Physics has been first
suggested in Ref. [165], where the 2HDM was considered as an example at the level of
total cross sections, partly with boosted topology. Here, we provide a much more elaborate
investigation of that proposal, on the basis of differential quantities and including an
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estimate of the expected experimental uncertainty through the analysis of a simulated event
sample.

7.3 theory prediction and sources of uncertainty of the drell-yan ratio

Before turning to the details of a full analysis, we study different contributions to the
theory prediction of RZW

DY and their corresponding uncertainties in this section. Hence, we
compare different orders in perturbation theory for QCD, electroweak, and initial photon
contributions and their impact on RZW

DY for the fully inclusive as well as the fiducial cross
section. In addition, scale variations are used to estimate missing higher-order corrections.
The studied processes can be summarized as follows:

• pp→ ZH → `+`− + bb̄ ,

• pp→W−H → `−ν̄` + bb̄ ,

• pp→W+H → `+ν` + bb̄ ,

where only the DY part for pp → ZH is included. We define the fiducial cross section
according to the cuts proposed in Ref. [131], namely

p`T > 15 GeV , η` < 2.5 , pν
T > 15 GeV , 75 GeV < m`` < 105 GeV , (7.5)

where p`T and η` are the transverse momentum and rapidity of a charged lepton, respectively.
pν

T is the transverse momentum of the neutrino associated with W±H production and m`` is
the invariant mass of a charged lepton pair. The cut on m`` only applies to ZH production,
of course. As we also consider the decay of the Higgs boson into a pair of b quarks, all jets
are clustered according to the anti-kT jet algorithm [169] with distance parameter R = 0.4.
The two jets emerging from the b quark pair have to satisfy the cuts

pb-jet
T > 25 GeV , |ηb-jet| < 2.5 . (7.6)

Note that the clustering of jets is only considered in studies with MCFM since jet-clustering
algorithms are not implemented in HAWK [153, 170, 171].

The renormalization (QR) and factorization scale (QF) are equally chosen to the invariant
mass of the VH system for MCFM and to the sum of the pole masses of MV and MH for HAWK:

MCFM : Q = QR = QF = MVH , HAWK : Q = QR = QF = MV + MH . (7.7)

qcd contributions . To quantify the higher-order QCD effects to RZW
DY for both the

total and the differential cross section we utilize MCFM. As PDFs we choose the NNPDF30 [172]
sets with αs(MZ) = 0.118 and consider all contributions up to NNLO, i.e. O(α2

s ). The final
state leptons are selected as electrons and their corresponding neutrino.
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At the level of the total cross section, RZW
DY receives corrections of only 0.2% at NLO, while

the NNLO corrections on top of that are at the per-mill level. This is quite remarkable as the
NLO corrections on the numerator and denominator in that ratio amount to 16%. The NNLO

corrections amount to less than 1% on top of that.

As a function of MVH, the NLO corrections on the DY-ratio are at or below the 1% level
without jet clustering, as shown in Fig. 20. Including NNLO contributions, the impact on the
DY-ratio is below the 1% level in relation to the NLO result. This holds for both the fully
inclusive as well as the fiducial cross section. Therefore, we neglect the NNLO corrections
to the DY process in the following and estimate the uncertainty due to uncalculated QCD

corrections to be less than 1% for the NLO prediction.
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Figure 20: QCD corrections to the ratio RZW
DY for (left) W = W+ and (right) W = W− as a function of the

VH invariant mass. The lines in the upper parts of the plots show the LO, NLO, and NNLO QCD result.
The lower parts show the ratio of the NLO to the LO result.

Applying jet clustering with the anti-kT algorithm, the discussion from above does not
change qualitatively. Comparing NNLO and NLO QCD corrections results to a comparable
impact on RZW

DY as without jet clustering, see Fig. 21. Note that the total cross section remains
unaffected by employing the anti-kT algorithm. As we give just a rough estimate on the
theoretical uncertainty incorporating QCD corrections, we do not include the effect of jet
clustering in our uncertainty estimate and postpone it to a more comprehensive analysis.

PDF uncertainties for the QCD contributions and scale variations have been estimated in
Ref. [163], resulting in uncertainties that are almost constant over the studied invariant mass
spectrum and below 1% at NLO, when the scales QR = QF were varied by a factor of two.
This low uncertainty is due to cancellations within RZW

DY when assuming that the individual
uncertainties are fully correlated between the ZH and the WH process. This assumption is
justified from the identical form of the DY-like QCD corrections.
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Figure 21: Effects of jet clustering for QCD corrections to the ratio RZW
DY for (left) W = W+ and (right)

W = W− as a function of the VH invariant mass. The lines in the upper parts of the plots show the
NLO and NNLO QCD result. The lower parts show the ratio of the NNLO to the NLO result.

electroweak contributions . Due to the different electric charge of W and Z
bosons and their different decay patterns, one may expect a larger sensitivity of the ratio
RZW

DY to electroweak corrections in comparison to the QCD effects. Indeed, employing HAWK to
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Figure 22: Electroweak corrections to the ratio RZW
DY for (left) W = W+ and (right) W = W− as a function of

the VH invariant mass. The lines in the upper parts of the plots show the LO, NLO electroweak result.
The lower parts show the ratio of NLO to LO.

study these effects, we find that they amount up to about 5% on RZW
DY without considering

recombination of final-state leptons, see Fig. 22. Compared to the QCD corrections, the
electroweak effects on RZW

DY show a stronger dependence on MVH , albeit in a continuous and
monotonous way.
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incoming photon corrections . An additional electroweak contribution is due
to photon-induced processes, γq → qVH, referred to as σγ in what follows. Although σγ

amounts to at most about 7% to the inclusive VH production cross section, its effect on the
MVH distribution of the ZH/WH ratio reaches the 20% level at MVH = 600 GeV, as illustrated
in Fig. 23 using the LUXqed17_plus_PDF4LHC15 PDF set [173]. Recent theoretical progress in
the determination of the photon PDFs [173] allows us to neglect this source of uncertainty
in our analysis, because the uncertainty on σγ has been reduced significantly [174]. The
inclusion of both NLO EW and photon-induced corrections is usually performed by adding
correction factors δx, x ∈ {EW, γ} to the tree-level DY cross section σ0 as σ0(1 + δEW +

δγ) [153]. δγ is understood to be the correction factor for photon-induced contributions. A
variation of the electroweak factorization scale by a factor of two around the central value of
MV + MH changes δEW + δγ by less than 4% and would thus be invisible in Fig. 22 and 23.
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Figure 23: Incoming photon corrections to the ratio RZW
DY for (left) W = W+ and (right) W = W− as a

function of the VH invariant mass. The lines in the upper parts of the plots show the LO and LO
with incoming γ corrections. The lower parts show the ratio of photon-induced corrections to the LO
contribution.

7.4 numerical results

In this section, we study the double ratio defined in Eq. (7.4) and provide a rough estimate
of the uncertainty on RZW

R by combining the theoretical uncertainty on RZW
DY with the

experimental one on RZW through

(
δRZW

R

RZW
R

)2

=

(
δRZW

DY

RZW
DY

)2

th
+

(
δRZW

RZW

)2

exp
, (7.8)
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where the subscripts indicate that the first term is obtained through a theoretical calculation
and the second through an experimental measurement. The quadratic sum of theoretical
and experimental uncertainties is justified by the low level of correlation between the two.
We assume total integrated luminosities for pp collisions at

√
s = 13 TeV of (a) L = 36.1 fb−1,

(b) L = 300 fb−1, and (c) L = 3000 fb−1, corresponding to (a) the ATLAS luminosity un-
derlying the analysis of Ref. [133], (b) the end of LHC run 3, and (c) the future HL-LHC

run.

We begin by outlining the details of our event simulation and their respective analysis in
Subsect. 7.4.1. In Subsect. 7.4.2 and 7.4.3 we study the impact of our analysis on RZW

R and
estimate the experimental uncertainty of Eq. (7.8). Afterwards, in Subsect. 7.4.4 and 7.4.5, we
turn to a quantitative study of RZW

R including rough uncertainty estimates for Eq. (7.8) and
provide a significance to detect the gluon-initiated ZH production process.

7.4.1 Outline of the simulation and analysis

We construct a hadron-level simulation, including decays of the vector bosons and the Higgs
boson. As in Subsect. 7.3, we consider leptonic decays of the vector bosons,

W+ → `+ν` , W− → `−ν̄` , Z → `+`− , (7.9)

where ` ∈ {e, µ}, and Higgs boson decays to bb̄ pairs. The parton-level events for signal and
backgrounds are generated at NLO QCD using MadGraph5_aMC@NLO [175, 176] for all samples,
except for gluon-induced ZH production which is generated at leading order. To take into
account the NLO QCD corrections on gg→ ZH, we apply a global K-factor of K = 2 [145,147].
For all samples, we employ the PDF4LHC15_nlo_mc PDF set [155]. Parton showering as well
as hadronization and modeling of the underlying event is performed within the general-
purpose Monte-Carlo event generator HERWIG 7 [177, 178]. Since electroweak corrections
largely cancel in the double ratio RZW

R , they can be neglected in our event simulation.

As background processes we consider pp→ tt̄, pp→W±bb̄, pp→ Zbb̄ and single top pro-
duction. In this simplified phenomenological analysis, we do not consider any backgrounds
of jets emerging from u, d, and s quarks, or gluons, which are mis-identified as b-jets, nor
those coming from mis-identified leptons. These events are expected to be sub-dominant
with respect to the irreducible backgrounds, as is indeed the case in Ref. [133], for example.
To approximately take into account the NNLO corrections on the pp→ tt̄ background, we
apply a global K-factor of K = 1.2 [179].

Jets are reconstructed employing the anti-kT algorithm, implemented in the FastJet pack-
age [180, 181] with distance parameter R = 0.4. The jet transverse momentum is required to
be larger than 20 GeV for central jets, i.e. |η| < 2.5, and larger than 30 GeV for forward jets, i.e.
2.5 < |η| < 5. Selected central jets are labeled as b-tagged if a b-hadron is found within the
jet. A b-tagging efficiency of 70% is considered, flat over the transverse momentum of the
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jets, to reproduce the efficiency of the experimental b-tagging algorithm of Ref. [133]. The
leading b-jet is required to have a transverse momentum larger than 45 GeV. The missing
transverse energy, Emiss

T , is taken as the negative sum of transverse momenta of all visible
particles. Electrons and muons are subject to isolation criteria by requiring the scalar sum of
the transverse momenta of tracks in R = 0.2 around them to be less than one tenth of their
transverse momentum:

∑
R< 0.2

ptracks
T < 0.1 p`T . (7.10)

The 13 TeV ATLAS analysis of Ref. [133] considered three event selections, corresponding to
the Z → νν̄, the W → `ν, and the Z → `` channels. In our analysis, we only consider the 1-
and 2-lepton channel. All selections require exactly two b-tagged central jets, used to define
the invariant mass Mbb̄. For the W → `ν selections, events with more than three central and
forward jets are discarded.

In order to suppress top-quark-related background in the W → `ν analysis, we set a cut (see
below) on the reconstructed top-quark mass mtop. The latter is calculated as follows. First,
the neutrino four-momentum is reconstructed by assuming that its transverse component is
equal to the missing transverse momentum, pν

T = Emiss
T , and then the quadratic equation

(pν + p`)2 = M2
W (7.11)

is solved for the z-component pν
z . Afterwards, the two resulting solutions are used to

construct two possible W four-momenta.3 These two W four-momenta are then combined
with the four-momentum of one of the b-jet candidates, and out of those combinations the
one with an invariant mass mtop closest to the top mass of Mt = 173 GeV is selected. A cut
on mtop combined with an additional cut on the invariant mass of the bb̄ system reduces
the background originating from V + bb̄ signatures that emerge from tt̄ and single top
productions significantly [133].

Further requirements on the 1- and 2-lepton channels are as follows:

Z → `` :
Exactly two same-flavor leptons with pT > 7 GeV and |η| < 2.5, of which at least one
has pT > 25 GeV are required. Due to charge misidentification of electrons, only for
muons an opposite charge is mandatory. The invariant mass of the two leptons is
restricted to 81 GeV < m`` < 101 GeV and the transverse momentum of the Z needs to
be larger than 150 GeV.

W → `ν :
Exactly one lepton with pT > 25 GeV and |η| < 2.5 is required. The transverse
momentum of the W boson has to be greater than 150 GeV and the transverse missing

3 In the case of a negative discriminant in the quadratic equation, the Emiss
T vector is rescaled such that the

discriminant becomes zero. The rescaling factor on the two Emiss
T vector components is chosen to be the same.
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energy is enforced to be Emiss
T > 30 GeV in the electron sub-channel. Finally, cuts on the

invariant mass of the bb̄ system and the reconstructed top mass are set to mbb̄ > 75 GeV
or mtop ≤ 225 GeV.

The events passing the selection cuts are subject to a dijet-mass analysis, following closely that
of Ref. [133], where the boosted-decision-tree discriminant (labeled BDTVH in Ref. [133]) of
the multivariate analysis is replaced by the invariant mass of the b-tagged jets. This results
in ten signal regions, shown in the second and third rows of Tab. 12 in Ref. [133]. In our
analysis, only signal regions with pV

T > 150 GeV are included. We have further applied the
requirement 110 GeV ≤ mbb̄ ≤ 140 GeV, which efficiently selects events containing H → bb̄.
The expected number of events predicted by the Monte-Carlo level analysis at the selection
level are similar to those of Ref. [133].

7.4.2 Impact of the hadron-level analysis on the Drell-Yan ratio

To estimate the impact of the hadron-level analysis on the DY ratio defined in Eq. (7.1), Fig. 24

compares the hadron-level prediction of the ratio RZW
DY after analysis cuts to the parton-level

prediction. The parton-level prediction is obtained from the truth-level W and Higgs boson
momenta, whereas the hadron-level curve is constructed through the combination of the
reconstructed four-momenta of the W boson and the Higgs boson. For the W boson, a
random choice is made between the two solutions for the z-component of the neutrino
momentum. Fig. 24 shows that this ratio is only moderately affected by the analysis and can
be thus calculated fairly reliably within perturbation theory for the inclusive cross section. It
is conceivable that the analysis could be modified appropriately to preserve more closely
the parton-level form of RZW

DY .
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Figure 24: Comparison of the hadron-level to the parton-level analysis on RZW
DY . The data is taken from [163].
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7.4.3 Calculation of experimental uncertainties

The experimental ratio RZW is evaluated from

RZW =
dNZH

dNWH =
dN`` − dN``

bkg

dN` − dN`
bkg

, (7.12)

where dNX and dNX
bkg, with X ∈ {`, ``}, represent the total number of events and the

number of background events per bin, with an Xbb̄ final state, respectively. The uncertainty
due to background subtraction will be included in the estimate of the overall systematic
uncertainty. The statistical uncertainty on RZW originating from the expected total number
of collected event samples is given by

(
δRZW

RZW

)2

stat.
=

(
∂RZW

∂(dN``)

)2

δ(dN``)2 +

(
∂RZW

∂(dN`)

)2

δ(dN`)2 . (7.13)

If we assume the expected number of events in each bin to be large enough, then dNX is
Gaussian-distributed with uncertainty δ(dNX) =

√
dNX, yielding:

(
δRZW

RZW

)2

stat.
=

dN``

(dN`` − dN``
bkg)

2
+

dN`

(dN` − dN`
bkg)

2
. (7.14)

We define the systematic uncertainty on RZW to include all uncertainties that contribute to
its experimental measurement. A precise determination of these systematics would require
a comprehensive experimental analysis that takes into account all the correlations between
the different contributing components. In this work, however, we content ourselves with
an estimate of the uncertainty derived from the separate ZH and WH signal strengths
of Eq. (7.15), presented in the ATLAS analysis of Ref. [129] which uses the same cuts as
Ref. [133]:

µZH = 1.20+0.23
−0.23(stat.)+0.23

−0.20(syst.) ,

µWH = 1.08+0.27
−0.27(stat.)+0.38

−0.34(syst.) .
(7.15)

The systematic uncertainty of these results includes all sources of experimental nature,
related to the background- and signal-Monte-Carlo simulation and data-driven estimates,
and to the finite size of the simulated samples.

We assume that the (symmetrized) systematic uncertainties (δµVH)syst. can be propagated
directly to the experimental ratio defined by Eq. (7.12), and thus to the double ratio by

(
δRZW

R

RZW
R

)2

syst.
= (δµZH)

2
syst. + (δµWH)

2
syst. − 2 pZW (δµZH)syst.(δµWH)syst.

= 0.046 + 0.130− 0.155 pZW ,

(7.16)
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where pZW parameterizes the correlation of the systematic uncertainties between ZH and
WH production. In the next section, we present results for RZW

R assuming different values of
pZW and luminosities for integrated quantities.

7.4.4 Semi-inclusive results

Tab. 2 shows the results for no correlation (pZW = 0), 50% correlation (pZW = 0.5), and
full correlation (pZW = 1) for different luminosities and kinematic regions.4 The statistical

Table 2: Numerical results for the double ratio RZW
R and the associated statistical and systematic uncertainties,

obtained by mimicking the analysis of Ref. [133]. We assume that restricting MVH does not effect the
systematic uncertainty.

stat. (L/fb−1) syst. (pZW)
RZW

R 36.1 300 3000 0 0.5 1

all MVH 1.49 ±0.90 ±0.31 ±0.10 ±0.63 ±0.47 ±0.22
restricted MVH 1.55 ±1.08 ±0.38 ±0.12 ±0.63 ±0.47 ±0.22

uncertainty is evaluated for three values of the integrated luminosity (L = 36.1, 300, and
3000 fb−1). From the hadron-level selection described in Subsect. 7.4.1, it has been found that
the analysis of Ref. [133] favors events with MVH & 350 GeV. Furthermore, we find that, in
the present analysis, the gluon-induced ZH production process contributes substantially
up to MVH ∼ 650 GeV. Therefore, we also present results where the events are restricted to
350 GeV < MVH < 650 GeV in the second line of Tab. 2. Note that only the signal regions
with pV

T > 150 GeV are included. Beyond enhancing the gg→ ZH process contribution, this
also ensures that the 1-lepton and 2-lepton analyses select similar phase space regions so
as to facilitate the cancellation of systematic uncertainties in the ratio. Due to the present
rudimentary treatment of systematic uncertainties, these are only considered inclusively,
and thus assumed unchanged by this restriction on the MVH range. Future experimental
analyses, which exhibit information on the correlations between systematics, should be able
to provide a more differential estimation.

As expected, at luminosities that are projected for the HL-LHC (3000 fb−1) the statistical
uncertainty decreases significantly. Further studies on the correlation of systematics and
a more tailored analysis would help to decrease the systematic uncertainty as well. The
restriction on the invariant mass of the VH system only affects the statistical uncertainty
mildly.

4 An earlier version of these results, based on lower statistics of our simulation, has been presented in Ref. [182]
and with full statistics in [163].
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From the numbers of Tab. 2, one may evaluate the significance s to which the non-DY

component can be observed through

s/σ =
σZH

non-DY

δσZH
non-DY

=
RZW

R − 1
δRZW

R
=

RZW
R − 1√

(δRZW
R )2

stat. + (δRZW
R )2

syst.

. (7.17)

For L = 3000 fb−1, we thus find that the gluon-initiated component for ZH production as
predicted by the SM gives only a 2.2σ effect for the restricted MVH sample assuming full
correlation of the systematic uncertainties between ZH and WH production. In case the
systematic uncertainties can be decreased down to half the current value, the significance
increases to 3.4σ. Note that these projected significances are slightly improved in comparison
to Ref. [163] due to the reduced systematic uncertainty of Ref. [129]. Considering the fact
that New-Physics models typically enhance the gluon-initiated component, a dedicated
experimental analysis which is tailored to isolate this component and optimized for the
ZH/WH ratio measurement therefore seems appealing.

Let us close this section by comparing these results to the direct extraction of the non-
DY component from RZH

DY as sketched at the beginning of Sect. 7.2. In this case and for
L = 3000 fb−1, the statistical and systematic uncertainty is given by

(
δRZH

DY

)
stat.

= 0.14
(

RZH
DY − 1

)
and

(
δRZH

DY

)
syst.

= RZH
DY (δµZH)syst. , (7.18)

respectively, if we follow the analogous reasoning as above. Using our central value for
the double ratio in the restricted-MVH region for RZH

DY , this leads to a signal significance
of 1.6σ. Assuming that the systematic uncertainty can be reduced by a factor of two, the
significance for RZH

DY 6= 1 increases to 3σ. Comparing this to RZW
R , we find that the direct

measurement of RZH
DY is competitive as long as the correlation between the systematic ZH

and WH uncertainties is smaller than about 85%, i.e. roughly the value of pZW where the
correlation term in Eq. (7.16) cancels (δµWH)syst.. At this point it is important to keep in
mind that, as argued at the beginning of Sect. 7.2, we also expect significant contributions
to the uncertainty from the theoretical input to RZH

DY , while they should be negligible for
RZH

R . This means that already a significantly lower ZH/WH correlation should lead to an
improved extraction of the non-DY contribution by using the double ratio RZW

R .

7.4.5 Differential results

In this section, we turn to differential results of RZW
R using the MVH distribution. Fig. 25a

demonstrates how an experimental measurement would look like, assuming that a gluon-
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initiated ZH production exists in the measurement at the level of the SM prediction. The
double ratio RZW

R is then given by:

RZW
R = 1 +

dNZH
gg

dNZH
DY

(7.19)

Fig. 25a also shows the theoretical parton-level distribution as blue dashes, where no cuts are
applied. The theoretical prediction and experimental expectation are in good agreement in
this range of invariant masses of the VH system. Note that the ATLAS analysis of Ref. [133]
was not constructed to detect the gg→ ZH component. It is thus conceivable that an analysis
can be devised to increase its contribution to the total ZH production with respect to the
parton-level prediction. Fig. 25b shows the resulting fractional uncertainties originating from

√
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Figure 25: (a): Hadron-level result of the differential double ratio RZW
R in comparison to the parton-level

result. The size of the uncertainty bars indicates the total theoretical and statistical uncertainty as given
by Eq. (7.8). (b): Theoretical uncertainty (upper panel) and experimental uncertainty (lower panel) as
defined by Eq. (7.8). The data is taken from [163].

theory or data statistics as a function of the VH-system’s invariant mass. The upper panel
shows the theoretical uncertainty, i.e. the first term in Eq. (7.8), obtained by considering the
scale and PDF variations after applying the hadron-level analysis. In the lower panel, the
error bars show the total uncertainty as dictated by Eq. (7.8), i.e. the combination of the
theoretical and statistical uncertainties for an integrated luminosity of L = 3000 fb−1, but
excluding experimental systematic uncertainties. We refrain from assessing the latter as
their differential behavior would be challenging to predict at this stage. It is evident that the
statistical uncertainty originating from the equivalent data sample size for an integrated
luminosity of L = 3000 fb−1, dNX, dominates over the theoretical uncertainty.
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7.5 conclusions

In this chapter, we investigated New-Physics effects in the gluon-initiated Higgs-Strahlung
process and demonstrated that the ZH invariant mass distribution provides a particularly
sensitive probe for physics beyond the SM. While the invariant-mass distribution below the
tt̄ threshold, MZH < 2Mt, remains rather unperturbed and thus may serve as a gauge for
the experimental data, all New-Physics effects studied here can be clearly identified, and to
a large extent even distinguished, by the kinematic region above that threshold. Recall that
the low-MZH region is also under fairly good theoretical control due to existing higher-order
perturbative calculations in the large-Mt limit [147].

Mimicking the phenomenological analysis of Ref. [133] at the hadronic level, we find that
the SM σgg component can be established at the ∼ 3.4σ-level at the HL-LHC by comparing
the experimental data to the theory prediction for the ratio of DY-like ZH production to WH
production in the one- and two-lepton channels. We found that the estimate of systematic
uncertainties becomes the limiting factor for the measurement, highlighting the importance
of a detailed investigation of systematic effects, and potentially an optimization of the
experimental analysis towards the extraction of this ratio from data. However, including the
zero-lepton channel and optimizing the current analyses for the gg→ ZH process would
most likely allow to reveal an O(5σ)-level signal.

Nonetheless, in order to uniquely establish New-Physics effects from this method, the
theoretical control of the gg→ ZH component needs to be increased further, for example
by including SM top-mass effects at NLO QCD. Therefore, the next chapter is dedicated to
achieve progress on incorporating quark-mass effects at NLO QCD for gluon-induced ZH
production. Additionally, novel algebraic techniques and their implementation are presented,
which ease the computational complexity of comparable calculations.
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The two-loop QCD corrections to the gluon-induced ZH production have been calculated in
Refs. [145, 147] in the limit of an infinitly heavy top-quark mass while setting the bottom-
quark mass to zero. Using these approximations, it was shown that the two-loop results
enhance the gluon-initiated process by roughly 100% and lead to a K-factor of K ≈ 2 [145,
147]. However, following the analysis of the previous chapter, these approximations are not
sufficient if one tries to search for New-Physics effects using the double ratio defined in
Eq. (7.4) due to theoretical uncertainties. Therefore, we summarize the progress achieved
within this thesis in the calculation of the NLO QCD, i.e. O(α3

s ), corrections incorporating
quark-mass effects in this chapter.

For a full NLO QCD calculation, which is part of the hadronic N3LO calculation, real and
virtual corrections that contribute to O(α3

s ) are needed. Thus, the required ingredients are:

1. Leading-order (one-loop) amplitude A1L(αs) with a gg initial state, where AnL depicts
the amplitude at n-loop level,

2. Interference of the one-loop amplitude with its virtual corrections at the two-loop
level,

A∗1L(αs) · A2L(α
2
s ) , (8.1)

3. Real corrections at the one-loop level with qq̄, qg, q̄g, and gg initial states.

Within the scope of this thesis, we only focus on virtual contributions and exclude any
one-particle-reducible two-loop subgraphs. At the current stage, we do not aim for a
complete result including renormalization and the calculation of master integrals, but rather
concentrate on the reduction of integrals occurring in the amplitude to a set of master
integrals (cf. Sect. 8.5) by keeping intermediate steps as general as possible.

The remainder of this chapter is structured as follows. We start by summarizing the setup of
the calculation followed by a brief interlude of finite-field-interpolation techniques, which
have been developed during this thesis and are essential for this calculation. This chapter is
closed with an overview of recent progress, which includes an almost complete reduction to
a set of master integrals. We stress again that the results obtained in this chapter are still
incomplete at the time of this writing and that we only aim to provide a proof-of-principle
study concerning the reduction of Feynman integrals of comparable complexity using
functional-interpolation techniques over finite fields.

77
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8.1 feynman diagrams and gauge choice

The LO contribution to gluon-induced ZH production is already loop induced and, in a
general Rξ gauge, three classes of Feynman diagrams, shown in Fig. 26, contribute. On the
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Figure 26: The three classes of Feynman diagrams that contribute to the LO amplitude of gluon-induced ZH
production. Fig. 26a and Fig. 26b differ by the intermediate particle, which can be a virtual Z boson, Z∗,
or a Goldstone boson φZ. The loop mediator is a quark labeled q.

one hand, there are one-particle reducible diagrams (Fig. 26a and 26b), in which a triangle
quark loop mediates between the incoming gluons and either a virtual Z boson, Z∗, or a
neutral Goldstone boson φZ. On the other hand, different types of box-quark loops (Fig. 26c)
contribute in addition. Since diagrams like Fig. 26b and 26c involve the quark Yukawa
coupling, only heavy quarks have to be considered for these contributions. For diagrams
like Fig. 26a one also needs to only contemplate third-generation quarks due to Furry’s
theorem [183], which leads to a cancellation of the vector coupling in the sum of diagrams.
Additionally, the axial-vector coupling vanishes when summing over mass-degenerate
isospin doublets.

To further simplify the calculation, as done e.g. in Ref. [145], one can utilize the consequence
of the Landau-Yang theorem [184, 185], which forbids the decay of a massive spin-1 vector
particle into two massless spin-1 vector particles. More precisely, the vertex function V
describing Fig. 26a,

Vµ1µ2µ3 =

µ1

µ2

µ3 , (8.2)
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vanishes to all orders in perturbation theory, when contracted with its corresponding
polarization vectors. Thus, by noting that the sum over the polarization modes of the Z
boson is the same as its propagator in Landau gauge, ξZ = 0, all contributions of diagrams
like Fig. 26a vanish. For internal gluons, emerging at the two-loop level, we use the Feynman
gauge, ξg = 1.

The virtual NLO QCD contributions of interest for this work are two-loop diagrams based
on Fig. 26. A few representative diagrams of the latter are depicted in Fig. 27. To generate all

g

g

Z

H

q Z∗

(a)

g

g

Z

H

q
φZ

(b)

g

g

Z

H

q

(c)

g

g

Z

H

q

(d)

Figure 27: Representative Feynman diagrams that contribute to the two-loop virtual corrections of gluon-
induced ZH production.

possible diagrams, we utilize the qgraf package [186]. The latter does not only generate all
Feynman diagrams, but also calculates the required symmetry factors and signs associated
with closed fermion loops. Removing diagrams that involve Z propagators, the number
of diagrams generated by qgraf at the one-loop level is eleven and increases to 188 at the
two-loop level only considering contributions of O(αs) and O(α2

s ), respectively.

After all Feynman diagrams have been obtained, the Feynman rules have to be inserted. We
employ the tool q2e [187, 188] for this task. q2e splits the diagrams into a QCD-color factor,
which will be later processed by the FORM [189] package color [190], and a part dependent on
the momenta. Since the color factorization is impossible for diagrams that contain four-gluon
vertices, we use the well known technique of introducing an auxiliary scalar particle σ.1 The
Feynman rule of the four-gluon vertex can be constructed by the sum

=
σ

+ σ + σ , (8.3)

1 For the Feynman rules of σ we refer to App. A.
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which obviously increases the number of Feynman diagrams, but the color factor can be
factorized. Note that in the 188 diagrams at the two-loop level additional contributions due
to the σ particle are already included.

8.2 amplitude and tensor reduction

To write down the generic form of the amplitude for the gluon-induced ZH production, we
choose the gluon momenta, qµ1

1 and qµ2
2 , as well as the momentum of the Z boson, qµ3

3 , as
incoming. Their polarization vectors are labeled as εa

µ1
(q1), εb

µ2
(q2), and εµ3(q3) for the two

gluons and the Z boson, respectively. The amplitude of interest can be written as

iA = εa
µ1
(q1)ε

b
µ2
(q2)εµ3(q3)δ

ab ∑
q

IqT µ1µ2µ3 , (8.4)

where we sum over the color indices a, b = 1, . . . , 8, and quark flavors q. Iq = ± 1
2 is the third

component of the weak isospin of the quark q and T µ1µ2µ3 is a polarization tensor, which
will be derived below. The kinematic invariants of this process are defined as

s = (q1 + q2)
2 , t = (q1 + q3)

2 , u = (q2 + q3)
2 , z = q2

3 , h = (q1 + q2 + q3)
2 , (8.5)

where z = M2
Z and h = M2

H. In addition, momentum conservation leads to the identity

s + t + u = z + h . (8.6)

As already mentioned in Sect. 8.1, as a consequence of charge-conjugation invariance, the
Z boson couples only axially to the internal quark loops. As a result, any contribution
from a mass-degenerate weak isodoublet of quarks vanishes. Thus, we consider only third
generation quarks, namely the top and bottom quark. Their mass is labeled as Mq with
q ∈ {t, b}.

The polarization tensor is uniquely defined by the external vector bosons and can be
decomposed into a basis of Lorentz structures and scalar form factors. Note, however,
that there exist further methods in the literature like Ref. [191], for example, which use
projections onto physical helicity states.

For three external vector bosons, of which one contributes only with an axial coupling, and
one scalar, we can specify four different kinds of Lorentz structures as building blocks for
the polarization tensor T µ1µ2µ3 ,

εµ1µ2µ3qi , gµiµj εµkq1q2q3 , q
µj
i εµkµlqnqm , q

µj
i qµl

k εµmqnqoqp , (8.7)
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where the indices i, j, k, l, m, n, o, p ∈ {1, 2, 3} are mapped such that the Levi-Civita symbol
does not vanish. Note that we use the shorthand notation

ενq1q2q3 = ενµρσq1,µq2,ρq3,σ (8.8)

with ε0123 = +1. All possible non-zero index combinations lead to three terms for the
first, three terms for the second, 27 terms for the third, and 27 terms for the fourth Lorentz
structure of Eq. (8.7). These 60 structures are accompanied with scalar form factors ã1, . . . , ã60.
However, one can exploit symmetry relations between these ãi ≡ ãi(t, u, z, h, M2

q) to further
reduce the size of the form-factor basis. To remove redundancies, we first utilize the Schouten
identity in four dimensions,

gα[βεγδρσ] = 0 , (8.9)

and re-combine the coefficients of the remaining Lorentz structures, which are linear
combinations of ãi and kinematic invariants, to new form factors labeled ai afterwards.
Applying Eq. (8.9) iteratively leads to the following decomposition of the polarization tensor
T µ1µ2µ3 :

T µ1µ2µ3 = a1(t, u)εµ1µ2µ3q1 + a2(t, u)εµ1µ2µ3q2 + a3(t, u)εµ1µ2µ3q3 + a4(t, u)gµ1µ2 εµ3q1q2q3

+ εµ2µ3q1q2
[
a5(t, u)qµ1

1 + a6(t, u)qµ1
2 + a7(t, u)qµ1

3

]

+ εµ2µ3q1q3
[
a8(t, u)qµ1

1 + a9(t, u)qµ1
2

]

+ εµ2µ3q2q3
[
a10(t, u)qµ1

1 + a11(t, u)qµ1
2 + a12(t, u)qµ1

3

]

+ εµ1µ3q1q2
[
a13(t, u)qµ2

1 + a14(t, u)qµ2
2 + a15(t, u)qµ2

3

]

+ εµ1µ3q1q3
[
a16(t, u)qµ2

1 + a17(t, u)qµ2
2 + a18(t, u)qµ2

3

]

+ εµ1µ3q2q3
[
a19(t, u)qµ2

1 + a20(t, u)qµ2
2

]

+ qµ3
3 [a21(t, u)εµ1µ2q2q3 + a22(t, u)εµ1µ2q1q3 ]

+ a23(t, u)qµ1
1 qµ2

2 εµ3q1q2q3

+ qµ1
1 εµ3q1q2q3

[
a24(t, u)qµ2

1 + a25(t, u)qµ2
3

]

+ qµ2
2 εµ3q1q2q3

[
a26(t, u)qµ1

2 + a27(t, u)qµ1
3

]

+ a28(t, u)qµ1
3 qµ3

3 εµ2q1q2q3 + a29(t, u)qµ2
3 qµ3

3 εµ1q1q2q3 .

(8.10)

Note that we have suppressed the dependence of the ai on the squared masses of the Z
boson, the Higgs boson, and the quark.

In addition, we impose Bose symmetry for the incoming gluons,

T µ1µ2µ3 = T µ2µ1µ3

∣∣∣
q1↔q2

, (8.11)
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which reveals the following set of identities for the remaining form factors:

a2(t, u) = −a1(u, t) , a3(t, u) = −a3(u, t) ,

a4(t, u) = −a4(u, t) , a13(t, u) = −a6(u, t) ,

a14(t, u) = −a5(u, t) , a15(t, u) = −a7(u, t) ,

a16(t, u) = a11(u, t) , a17(t, u) = a10(u, t) ,

a18(t, u) = a12(u, t) , a19(t, u) = a9(u, t) ,

a20(t, u) = a8(u, t) , a22(t, u) = −a21(u, t) ,

a23(t, u) = −a23(u, t) , a26(t, u) = −a24(u, t) ,

a27(t, u) = −a25(u, t) , a29(t, u) = −a28(u, t) .

(8.12)

Hence, the total number of form factors reduces to 16, including permutations of t and u.

Finally, by employing gauge invariance with respect to the gluons,

q1,µ1 εb
µ2
(q2)εµ3(q3)T µ1µ2µ3 = εa

µ1
(q1)q2,µ2 εµ3(q3)T µ1µ2µ3 = 0 , (8.13)

we can establish a minimal basis of form factors for our calculation. The additional con-
straints given by Eq. (8.13) can be summarized as:

a4(t, u) = 2
a3(t, u)

s
, a6(t, u) = −2

a2(t, u)
s

+ a7(t, u)
z− t

s
,

a9(t, u) = −2
a3(t, u)

s
, a11(t, u) = a12(t, u)

z− t
s

,

a13(t, u) = 2
a2(u, t)

s
− a7(u, t)

z− u
s

, a16(t, u) = a12(u, t)
z− u

s
,

a19(t, u) = 2
a3(t, u)

s
.

(8.14)

For convenience, we relabel the physical form factors occurring in Eq. (8.14) as follows,

2
a2(t, u)

s
= f1(t, u) , a7 = − f2 , a12 = f3 , 2

a3

s
= f4 , (8.15)

where we have dropped the t and u dependence of f2,3,4 for simplicity. The remaining ai

that do not contribute to Eq. (8.13) due to transversality conditions for the vector bosons,

q1 · εa(q1) = q2 · εb(q2) = q3 · ε(q3) = 0 , (8.16)
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are relabeled as ai = fi. Hence, the polarization tensor has the decomposition

T µ1µ2µ3 =
[ s

2
εµ1µ2µ3q2 − qµ1

2 εµ2µ3q1q2
]

f1(t, u)−
[ s

2
εµ1µ2µ3q1 − qµ2

1 εµ1µ3q1q2
]

f1(u, t)

+

[
qµ1

3 +
z− t

s
qµ1

2

]
εµ2µ3q2ν [q1,ν f2(t, u) + q3,ν f3(t, u)]

+

[
qµ2

3 +
z− u

s
qµ2

1

]
εµ1µ3q1ν [q2,ν f2(u, t) + q3,ν f3(u, t)]

+
[ s

2
εµ1µ2µ3q3 − qµ1

2 εµ2µ3q1q3 + qµ2
1 εµ1µ3q2q3 + gµ1µ2 εµ3q1q2q3

]
f4(u, t)

+ qµ1
1 εµ2µ3q1q2 f5(t, u)− qµ2

2 εµ1µ3q1q2 f5(u, t)

+ qµ1
1 εµ2µ3q1q3 f8(t, u) + qµ2

2 εµ1µ3q2q3 f8(u, t)

+ qµ1
1 εµ2µ3q2q3 f10(t, u) + qµ2

2 εµ1µ3q1q3 f10(u, t)

+ qµ3
3 [εµ1µ2q2q3 f21(t, u)− εµ1µ2q1q3 f21(u, t)]

+ qµ1
1 qµ2

2 εµ3q1q2q3 f23(t, u)

+ qµ1
1 qµ2

1 εµ3q1q2q3 f24(t, u)− qµ1
2 qµ2

2 εµ3q1q2q3 f24(u, t)

+ qµ1
1 qµ2

3 εµ3q1q2q3 f25(t, u)− qµ2
2 qµ1

3 εµ3q1q2q3 f25(u, t)

+ qµ1
3 qµ3

3 εµ2q1q2q3 f28(t, u)− qµ2
3 qµ3

3 εµ1q1q2q3 f28(u, t) ,

(8.17)

where gauge invariance and Bose symmetry with respect to the gluons is manifest. Eq. (8.17)
is in accordance with the findings of Ref. [143], but includes additional terms which were
dropped in the latter due to the transversality conditions for the vector bosons.

In order to compute the form factors that contribute to the cross section, f1,...,4, we need to
construct projectors to isolate each fi. In full generality, a form factor f j can be obtained by
applying a projector pj,µ1 ...µn with n Lorentz indices as

f j = pj,µ1 ...µnT µ1 ...µn , (8.18)

where T µ1 ...µn is given by

T µ1...µn = ∑
j

tµ1 ...µn
j f j (8.19)

and tµ1 ...µn
j is a generic Lorentz structure accompanied by the corresponding form factor f j.

The projectors pj,µ1...µn can be obtained with

pj,µ1 ...µn = ∑
k

tk,µ1,...,µn t−1
jk , (8.20)

where the matrix tjk is defined as

tjk = tµ1,...,µn
j tk,µ1,...,µn . (8.21)
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For our calculation, we have to obtain projectors for the four physical form factors f1,...,4.
Therefore, we start by calculating the matrix tjk for all 22 structures given in Eq. (8.17). The
entries of tjk are rational functions in the kinematic invariants defined in Eq. (8.5). Using
the ti basis of Eq. (8.17) as defined by Eq. (8.19), we find that f10 and f23 result to zero after
contracting with any ti thus being removed from tjk. Additionally, the structures of f8, f24,
and f25 can only be used to project to a combination of these three Lorentz structures. Since
we are not interested in any of the latter, we remove them from tjk as well. Finally, for
the inversion of tjk, we only need to consider the remaining 13 ti, namely t1,...,9,14,15,21,22.
Note that we have suppressed the Lorentz indicies of the ti in this paragraph. We get a
total amount of 169 nonzero entries of t−1

jk , which are calculated by utilizing finite-field-
interpolation techniques combined with the rational-reconstruction method (cf. Subsect. 8.5.3
and Subsect. 8.5.4). Instead of using explicit projectors for f1,...,4, we pursue a more general
approach, in which just one projector (pµ1µ2µ3) with generic coefficients (ci) is used:

pµ1µ2µ3 =
9

∑
k=1

cktk,µ1µ2µ3 + c14t14,µ1µ2µ3 + c15t15,µ1µ2µ3 + c21t21,µ1µ2µ3 + c22t22,µ1µ2µ3 . (8.22)

Therefore, we only get one expression for the whole amplitude containing the full set of
relevant Feynman integrals. The explicit results can be found in App. B.2.

Considering only QCD corrections, the form factors themselves can be written as a perturba-
tive series in the strong coupling constant αs as

fi(t, u) = αs∆ f 1L
i (t, u) + α2

s ∆ f 2L
i (t, u) +O(α3

s ) , (8.23)

where ∆ f nL
i (t, u) is the n-loop correction to the form factor fi.

In addition to the isolation of the form factors, we also have to consider the color structure
of the amplitude. As already shown in Eq. (8.4), the only color tensor with two indices in
the adjoint representation is the Kronecker symbol δab. This factor can be projected out by

pab =
δab

NA
, (8.24)

where NA = N2
C − 1 = 8 is the dimension of the adjoint representation.

Both projectors, pµ1µ2µ3 and pab, have been implemented in a FORM-code.

Utilizing the procedures described in the next sections, inserting explicit expressions for
ci, and choosing unitary gauge, we find agreement with the result of Ref. [143] for T µ1µ2µ3

at the one-loop level. Note that due to the usage of Eq. (8.9) in four dimensions terms
proportional to ε, which arise in d = 4− 2ε dimensions, might not be captured by the tensor
decomposition of Ref. [143]. However, the set of integrals over loop momenta, which we are
aiming for, should remain unaffected. We have checked this by using all 60 possible Lorentz
structures of Eq. (8.7) as a basis in d dimensions, constructed projectors, and extracted the
integrals from the amplitude.
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8.3 treatment of γ5

As we utilize dimensional regularization [192, 193] in our calculation to perform the analytic
continuation of the SM to a non-integer number d = 4− 2ε of space-time dimensions, we
have to take care of genuinely four-dimensional objects, like the Levi-Civita symbol,

εµ1µ2µ3µ4 , ε0123 = +1 , (8.25)

and the fifth Dirac matrix γ5,

γ5 = iγ0γ1γ2γ3 =
i

4!
εµ1µ2µ3µ4 γµ1 γµ2 γµ3 γµ4 . (8.26)

To deal with these objects in d dimensions, we need to define a prescription. In the literature
quite a few approaches have been suggested [194], to which we refer the reader. Our focus is
based on the prescription developed in Refs. [195–198], where we will treat the Levi-Civita
symbol merely as a symbol with d-dimensional indices. In this scheme, also referred to as
the Larin scheme, the axial-vector matrix is continued enforcing a specific order of the two
Dirac matrices by

γµγ5 =
i

3!
εµµ1µ2µ3 γµ1 γµ2 γµ3 . (8.27)

As an alternative one can also use

γ5 =
i

4!
εµ1µ2µ3µ4 γµ1 γµ2 γµ3 γµ4 , (8.28)

when the axial-vector matrix is replaced by its symmetric Hermitian counterpart [199]

γµγ5 →
1
2
(
γµγ5 − γ5γµ

)
. (8.29)

Both replacements lead in our calculation to products of two Levi-Civita symbols, which are
evaluated in terms of the d-dimensional metric tensor gµ

ν as

εµ1µ2µ3µ4 εµ5µ6µ7µ8 =

∣∣∣∣∣∣∣∣∣∣

gµ1
µ5 gµ1

µ6 gµ1
µ7 gµ1

µ8

gµ2
µ5 gµ2

µ6 gµ2
µ7 gµ2

µ8

gµ3
µ5 gµ3

µ6 gµ3
µ7 gµ3

µ8

gµ4
µ5 gµ4

µ6 gµ4
µ7 gµ4

µ8

∣∣∣∣∣∣∣∣∣∣

. (8.30)

We have implemented both prescriptions, Eq. (8.27) and Eq. (8.28) with Eq. (8.29), into a
FORM-code following the steps summarized in Ref. [194]. In practice, traces in which a γ5

occurs will be rewritten as

Tr
(
γµ1 γµ2 . . . γµγ5

)
, (8.31)
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using the cyclicity of the trace, and either Eq. (8.27) or Eq. (8.28) with Eq. (8.29) are used
to replace γ5. Afterwards, d-dimensional trace identities for the Dirac matrices are used
followed by an evaluation of products of Levi-Civita symbols as given by Eq. (8.30). We have
checked that our implementation yields the same result for both replacements.

Note that the prescription discussed above comes with a caveat, namely the violation
of the axial Ward identity. However, the latter can be addressed by including additional
renormalization factors that restore this identity as studied in Ref. [197], for example. Since
we only present preliminary results in this chapter, we do not cover a proper renormalization
in the our calculation and focus on the reduction to master integrals in Sect. 8.5 instead.

8.4 topologies

As a next step, all occurring Feynman diagrams are mapped onto a smaller number of
generic user-defined topologies with the tool exp [187, 188]. The required topologies by exp

are depicted in Fig. 28, where we do not distinguish different mass distributions at this
point. exp outputs FORM files, which are further processed with a modified version of the
FORM code originating from MINCER [200] and MATAD [201] to evaluate traces of Dirac matrices,
where, in addition, γ5 is treated as described in Sect. 8.3.

After all traces have been evaluated, four-momentum conservation has to be inserted, the
tensor reduction has to be performed, and the scalar Feynman integrals have to be rewritten
in a form that is suitable for further processing. This procedure has to be performed for
each topology. Note that our setup is partly based on code developed in Ref. [202] and
modified to be applicable to 2→ 2 scattering processes. To express occurring integrals over
loop momenta to a commonly used notation, we want to rewrite them as scalar functions of
the form

F(id; d, {qj}, {Mi}, {ai}) =
∫

l1,...,lL

1
Pa1

1 · · · PaN
N

, (8.32)

where L is the number of loops, id is an identifier that specifies the topology, and the inverse
propagators P1, . . . , PN are given by Pi = k2

i − M2
i + i0 in Minkowski space. We denote

the set of integrals with the same id as an integral family. Mi denotes the mass of the ith

propagating particle with momentum ki, of which the latter is a linear combination of loop
momenta lj and external momenta qj. Each integral measure is defined as

∫

l
≡
∫ ddl

(2π)d . (8.33)

The scalar function F depends on the space-time dimension d, the set of masses {Mi}, the
set of external momenta {qj}, and the propagator powers {ai} that take integer values.
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Figure 28: The 24 required topologies for gg→ ZH by exp at the two-loop level. The upper left incoming line
carries momentum q1, the lower left incoming line q2, and the upper right incoming line q3.

For a given value of L and number of external momenta E, N can be calculated by

N = EL +
L (L + 1)

2
, (8.34)

which is the number of possible scalar products involving at least one loop momentum.
These scalar products are used internally to express any occurring numerator structure in
terms of functions F. For our two-loop calculation, we have L = 2 and E = 3, which leads to
N = 9. Seven of the nine propagators are determined by the momentum flowing through
the lines of each topology and the mass distribution. The remaining two are fixed as scalar
products of external and loop momenta that are linearly independent with respect to the
propagators dictated by the respective topology. We have automatized this procedure by
first assigning a momentum flow through each line of a topology that respects momentum
conservation at each vertex. Afterwards, the two extra propagators have to be specified. Any
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possible scalar product is thus considered and tested whether it fulfills the criterion to be
linearly independent with respect to the already fixed ones.

After all propagators have been fixed, FORM code is generated that includes specific re-
placement rules obtained by considering all kinds of scalar products completed to squares.
These rules can then map any occurring numerator structure to functions F by raising and
lowering the propagator powers ai. Finally, all functions F are gathered as a list which can
be further processed by different approaches. Here, we only focus on integration-by-parts
(IBP) reductions introduced in the next section.

8.5 reduction to master integrals

After expressing amplitudes as a sum of scalar integrals, usually a huge number of integrals
has to be computed. For the two-loop contributions of gluon-induced ZH productions,
roughly 15000 scalar integrals occur in the amplitude. Luckily, not all of these integrals are
linearly independent and they can thus be reduced to a smaller number of so-called master
integrals.

In Subsect. 8.5.1 integration-by-parts identities are introduced, which are used for the
reduction of single integral families to a set of master integrals. Subsect. 8.5.2 discusses
so-called sector relations, which, in addition, can be used to identify integral relations
among different integral families. However, when performed fully algebraically, the IBP

approach tends to become unfeasible for cutting edge calculations. Therefore, in Subsect. 8.5.3
and Subsect. 8.5.4, novel techniques developed within this thesis and partly published in
Ref. [203] are presented, which perform the reduction fully numerically over so-called finite
fields multiple times and process these evaluations by functional-interpolation algorithms.
Their benefits over conventional approaches, several optimizations, and hybrid algorithms
are discussed in Subsect. 8.5.5. These techniques are applied in Subsect. 8.5.6 to reduce the
two-loop integrals occurring in the amplitude of gg→ ZH.

8.5.1 Integration-by-parts identities

In 1981, Chetyrkin and Tkachov [204, 205] observed that by inserting the scalar product of
a derivative with respect to a loop momentum and another momentum into Eq. (8.32) the
corresponding integral vanishes in dimensional regularization:

∫

l1,...,lL

∂

∂lµ
i

(
q̃µ

j
1

Pa1
1 · · · PaN

N

)
= 0 , (8.35)
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where q̃µ
j can either be another loop momentum or an external momentum. These identities

can be used to derive relations among integrals of different sets of {ai} within the same
integral family by explicitly evaluating the derivative,

0 = ∑
n

cnF(id; d, {qj}, {Mi}, {a(n)i }) . (8.36)

The coefficients in these relations, cn, are in general rational functions in d, {Mi}, and {qj}.
For a given integral family, this leads in total to L(L + E) of such identities that are denoted
as IBP identities or relations.

After all relations for a given integral family are found, one is able to express the scalar
integrals occurring in an amplitude by a smaller subset of linearly independent integrals.
This procedure is called reduction and the elements of the set of linearly independent
integrals are known as master integrals. Since there is no unique definition of the term
master integral, a reduction algorithm has to specify some kind of order among the different
integrals. Usually, one chooses an order in which the master integrals are the easiest ones to
evaluate. Note, in addition, that the number of master integrals is finite [206]. Therefore, the
master integrals build a basis for a finite dimensional vector space of scalar integrals.

Currently, two different procedures employing IBP identities for a reduction to master inte-
grals exist in the literature. One of these two methods tries to find recursion relations, which
express an integral by easier integrals. This strategy has been successfully applied to contri-
butions for massless propagator-type diagrams [200,205,207], massive tadpoles [201,208], and
on-shell propagators [120, 209, 210] at the three-loop level. Usually, such recursion relations
have to be found manually, which makes them less attractive for sufficiently complicated
calculations. However, once these recursions are found, the reduction is straightforward.
A general algorithm to find these relations has been published in Refs. [211, 212], which,
unfortunately, tends to become slow for complicated cases. Additionally, even if recursion
relations can be found, their application can often become slow due to their complexity.

A different approach was presented by Laporta in 2001 [213]. By inserting different integer
values of ai in the Eq. (8.36), one obtains a homogenous system of equations of integrals.
One can solve this system by Gaussian elimination and since it is homogenous, all integrals
are expressed by master integrals. As straightforward this algorithm might seem, one major
drawback is that one has to build huge systems of equations for state-of-the-art calculations,
which become expensive to solve both in terms of memory and runtime. Within this thesis,
we address this drawback by interpolation techniques (cf. Subsect. 8.5.5). There exist several
public implementations of the Laporta algorithm, AIR [214], FIRE [215–218], Reduze [219,220],
and Kira [221, 222]. As the IBP relations are linear, the solution strategies thus only involve
addition, subtraction, multiplication, and division. Additionally, the coefficients of the
master integrals are rational functions in d, {Mi}, and {qj}. This feature is of particular
interest as will be discussed in Subsect. 8.5.5 in more detail.
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For more details on IBP reductions, we refer the reader to Refs. [223, 224] for a general
overview.

8.5.2 Sector relations

In addition to relations among integrals belonging to the same integral family, there also
exist relations among integrals of different integral families, which are called sector relations.

The sector S of a scalar integral given in the form of Eq. (8.32) is represented as the index set
of positive ai, i.e. {i|ai > 0}. A subset of the latter represents a different sector, that is called
a subsector of S. One can interpret the concept of a sector and subsector also graphically,
in which one draws a generic diagram for the sector S, where its subsector is obtained by
shrinking its missing propagator to a point. Additionally, integral families that are related
just by crossing of external legs can be identified.

For illustration, let us consider the full sectors of two integral families shown on the
left-hand side of Fig. 29. The subsector S1 = {1, 2, 3, 4, 5} of family F1 and the subsector

F1

1

46

7

5

2

3

F2

1 2

5

6
7

3

4

Figure 29: Sector relations between the two integral families F1 and F2. The red lines denote propagators not
present in the considered subsectors.

S2 = {2, 3, 4, 5, 7} of family F2 have isomorphic graphs, see right hand side of Fig. 29.
Therefore, any integral belonging to S1 of family F1 can always be expressed as a linear
combination of integrals belonging to sector S2 and family F2 and subsectors of S2 or vice
versa. These types of mappings are called sector relations.

Sector relations can help to relate master integrals belonging to different integral families,
thus reducing the total number of master integrals. Further, the total number of integrals
that have to be reduced in the first place can also be decreased. A particular application are
Feynman integrals that belong to mirrored topologies, which can be mapped to each other.

We utilize the tool Reduze 2 [220] for the detection of sector relations and apply them as
FORM identities in our calculation.
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8.5.3 Interpolation of multivariate rational functions over finite fields

As the complexity of state-of-the-art multi-loop calculations pushes conventional computer
algebra systems (CAS) like Fermat [225] to their limits, a different approach that is actively
studied in Computer Science since decades, attracted the attention of physicist in the last
years [203, 226–229]. It is known under the name of functional interpolation, where the main
goal is to interpolate the function of interest, i.e. getting a functional prescription from a set
of numerical data, also called probes, rather than performing all steps algebraically with a
CAS. Usually, no knowledge is provided from the function of interest, which is thus called
black box. The evaluation of the black box can be easily parallelized since, in practice, each
probe can be computed independently. In the context of IBP reductions this method was
proposed in Ref. [226] and further applied to scattering amplitudes in Ref. [227], where
the occurring functions are multivariate rational functions in kinematic invariants and the
space-time dimension d with numerical coefficients in Q.

Rather than over Q, functional interpolations are usually performed over so-called finite
fields, i.e. fields Zp with characteristic p, where p is a prime. Hence, all calculations are
carried out with module p avoiding number swell and reducing the memory footprint. The
multiplicative inverse in Zp is unique and can be determined using the Extended Euclidean
Algorithm [230].

Since the performance of these interpolations is crucially dependent on the used algorithms,
in this section we present a new algorithm developed within this thesis and partly published
in Ref. [203], that is capable of interpolating sparse, i.e. functions where the majority of
monomial coefficients is zero, and dense functions, i.e. functions where the majority of
monomial coefficients is non-zero, requiring a minimal number of black-box probes. Our
algorithm is based on Ref. [231].

To fix the notation, we start by defining multivariate polynomials as follows. Given a set of n
variables ~z = (z1, . . . , zn) and an n-dimensional multi-index α = (α[1], . . . , α[n]) containing
integers α[i] ≥ 0, we define a monomial ~z α as

~z α ≡
n

∏
i=1

zα[i]
i (8.37)

with a degree d of

d =
n

∑
i=1

α[i] . (8.38)

A polynomial f , which is an element in the polynomial ring Zp[~z] of variables ~z, is defined
as

f (~z) =
T

∑
j=1

cαj~z
αj , (8.39)
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where T is the number of non-zero terms. The coefficients cαj are elements of Zp correspond-
ing to different multi-indices αj.

Rational functions can be constructed by combining two polynomials. Given two polyno-
mials P, Q ∈ Zp[~z], we define a rational function f ∈ Zp(~z), where Zp(~z) is the field of
rational functions in the variables ~z, as the ratio of P and Q:

f (~z) =
P(~z)
Q(~z)

=
∑Tn

i=1 nαi~z
αi

∑Td
j=1 dβ j~z

β j
. (8.40)

The Tn (Td) non-zero coefficients nαi (dβ j) are elements in the field Zp corresponding to
multi-indices αi (βi).

In order to provide a unique normalization of Eq. (8.40), we define the lowest degree
coefficient in the denominator to be equal to one. If several monomials contribute to the
lowest degree dmin, we choose to define that coefficient of the monomial ~z α to be equal to
one, whose multi-index α is the smallest in a colexicographical order, e.g.

(1, 1, 0) < (1, 0, 1) < (0, 1, 1) , (8.41)

for d = 2.

Our algorithm for multivariate rational-function interpolation is based on Ref. [231], which
performs only a univariate interpolation of an auxiliary rational function, whose monomial
coefficients are multivariate polynomials and are thus processed by multivariate polynomial
interpolation [232–239].2 Note that there are further algorithms worth mentioning [240–246],
but none of them fulfills our performance goal.

In order to build the auxiliary rational function f̃ of a rational function f (z1, . . . , zn), one
starts by introducing a homogenization variable t as [247]

f̃ (t~z) = f (tz1, . . . , tzn) . (8.42)

f̃ can be interpreted as a univariate rational function in t, whose monomial coefficients are
multivariate polynomials in ~z. In addition, we can set one of the zi to one and obtain its
functional dependence by homogenizing with respect to the corresponding power of t, after
the interpolation of the remaining monomials in zj was successful.

Due to potentially missing constants, which are needed for normalization, and cancellations
in t, we cannot ensure that an unambiguous normalization can be found for arbitrary
rational functions f̃ . Therefore, as proposed in Ref. [231], a variable shift~s = (s1, . . . , sn) is
introduced such that

f̃ (t~z)→ f̂ (~z) ≡ f̂ (t~z +~s) = f (t + s1, tz2 + s2, . . . , tzn + sn) , (8.43)

2 For a review of polynomial interpolation techniques, we refer the reader to Ref. [203], for example.
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where we have set z1 = 1. Applying~s as in Eq. (8.43) should lead to a constant term in the
numerator or denominator, i.e. the coefficient of α[i] = 0 ∀ i or β[i] = 0 ∀ i is non-zero, which
can be used as a unique normalization. Ref. [231] proposed to shift all occurring variables
by random si. However, this prescription will lead to a much denser function f̂ that has to
be interpolated.

Therefore, in Ref. [203], we made the proposal to first scan different combinations of possible
shifts~s and choose the one, which shifts only a minimal subset of variables, but leads to a
constant term in either numerator or denominator. The additional probes needed for this
scan are in most cases negligible compared to the full interpolation.

As already outlined above, the general idea is to first interpolate only a rational function
univariately in t and then proceed with multivariate polynomial interpolation for each
coefficient of monomials in t. This is done as follows. In the first run, we fix a randomized
set ~y 1 of values, ~y 1 = {1, y2,1, y3,1, . . . , yn,1}, that is called anchor points3 to replace the zi.
Then, we use randomized values for t and interpolate the t dependence using Thiele‘s
interpolation formula [249], which expresses f̂ as a continued fraction

τ(t) = b0 + (t− t1)


b1 + (t− t2)

(
b2 + (t− t3)

(
· · ·+ t− tN

bN

)−1
)−1



−1

, (8.44)

where t1, . . . , tN+1 are distinct elements in Zp. The coefficients b1, . . . , bN can be obtained
recursively by numerical evaluations of the rational function f̂ at t1, . . . , tN+1 for the chosen
values of zi as

bi ≡ bi,i , (8.45)

bi,j =
ti+1 − tj

bi,j−1 − bj−1
, (8.46)

bi,0 = f (ti+1) . (8.47)

The termination criterion is reached if one finds the agreement

τ(ti) = f̂ (ti + s1, tiy2,1 + s2, . . . , tiyn,1 + sn) . (8.48)

f̂ is now a function of t with numerical coefficients, which themselves are multivariate
polynomials in zi, evaluated at ~y 1 and incorporating effects of the used shift~s. Note that
zeros can occur in the denominators of Eq. (8.46) by randomizing the values of t with a
probability bounded by the Zippel-Schwartz lemma (cf. Eq. (8.52)) [232, 250]. In addition,
Eq. (8.44) is not the only method for rational function interpolation. One can also utilize the
Extended Euclidean Algorithm as shown in Refs. [230, 251].

3 Additional probes are evaluated as combinations of powers of these anchor points to utilize the structure of
shifted Vandermonde systems (cf. Refs. [203, 233, 235, 248]).
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Ref. [231] proposes a sparse approach in which the univariate interpolation of f̂ in t is
calculated densely and the multivariate polynomial interpolation is only performed for
the highest degree of t at first. Note that the latter is unaffected by the shift~s. Afterwards,
one proceeds with the next-to-highest degree by using the stored coefficients obtained by
Eq. (8.44) and numerically subtracts the effects of~s originating from the higher degrees in t.
If the stored values are not sufficient to complete the polynomial interpolation, new dense
interpolations in t are performed. This procedure will be applied until the lowest non-zero
degree is reached by decreasing the degree of t and proceeding as described above.

There are two major disadvantages of this algorithm. First, Eq. (8.44) does not scale optimally
in the number of black-box probes required to terminate. Secondly, if the rational function
is not sparse, a huge number of avoidable black-box probes is requested. These two points
could be avoided by:

1. Interpolating all coefficients of degrees of t simultaneously and thus partly densely,
i.e. including effects of~s;

2. Removing already interpolated multivariate polynomials from the interpolation in t
by subtracting their evaluations from additional black-box probes. This procedure is
similar to the pruning technique invented in Refs. [237,238] for multivariate polynomial
interpolation.

To illustrate the benefits of these modifications, let us first assume a dense case. A multivari-
ate polynomial with n variables of only degree i, i.e. the coefficient of ti, has Ti non-zero
coefficients, where Ti can be calculated by

Ti =

(
n + i

i

)
−
(

n + i− 1
i− 1

)
for i > 0 . (8.49)

Thus, lower values of i lead to a lower value of Ti and therefore require less black-box probes
for the interpolation than higher degrees. Since we are currently assuming a completely
dense case, even the effect of~s does not alter the total number of required probes. Guided
by this observation, for each obtained probe, our proposal is now the following:

1. Build a system of equations as

∑
i

nu,i(~y)ti − f̂ (~y)∑
j

du,j(~y)tj = f̂ (~y)∑
j

ds,j(~y)tj −∑
i

ns,i(~y)ti, (8.50)

where the subscripts s and u denote the solved and unsolved coefficients, respectively,
after one interpolation with Eq. (8.44) is performed. The polynomials nx,i(~z) and dx,i(~z)
with x ∈ {s, u} are built by monomials defined by Eq. (8.40) and fulfill Eq. (8.38) such
that their degree is equal to i. Note that at least one usage of Thiele‘s interpolation
formula is required to determine the occurring degrees of numerator and denominator
in t. The coefficient of either ds,0 or ns,0, known after the first interpolation with
Eq. (8.44), will serve as normalization and is thus set to one;
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2. Solve the system of Eq. (8.50) if possible and interpolate all polynomial coefficients
nu,i(~z) and du,i(~z) including the effects of~s;

3. Whenever one polynomial in either numerator or denominator is interpolated success-
fully, decrease the size of the system of equations defined in Eq. (8.50) by inserting
values ~y for the already interpolated functions ns,i(~z) or ds,i(~z) and setting the corre-
sponding nu,i or du,i to zero;

4. When all interpolations terminated, remove the effect of the shift~s from ns,i(~z) and
ds,i(~z) degree by degree starting from the highest occurring degree in numerator and
denominator, respectively.

Using this prescription, no avoidable probes are requested for dense rational functions and
one needs exactly one probe for each monomial. However, for sparse functions this approach
generates a huge number of unneeded probes, which is also not optimal. Therefore, we
propose a small modification by basically combining the benefits of both dense and sparse
prescriptions to a hybrid algorithm that scales at most with the maximum number of
possible non-zero terms but, in addition, exploits the sparsity of rational functions.

In practice, the main modifications are with regards to point 2, 3, and 4 of the algorithm
mentioned above and are as follows:

2. Solve the system of Eq. (8.50) if possible and interpolate all polynomial coefficients
nu,i(~z) and du,i(~z) including the effects of ~s. For illustration, we only focus on the
numerator in the following, since the procedure is analogous for the denominator.
Let dn,max be the maximum degree of the numerator. If nu,dn,max(~z) can be interpolated
with less probes than the next lower degree, abort the interpolation of the latter and
redo it from scratch by removing the effects of~s originating from nu,dn,max(~z) and using
stored values. If additional probes are requested, subtract the effect of ~s from the
result obtained by solving Eq. (8.50). Proceed in the same manner with all remaining
polynomials;

3. Whenever one polynomial in either numerator or denominator is interpolated success-
fully, decrease the size of the system of equations defined in Eq. (8.50) by inserting
values ~y for the already interpolated functions ns,i(~z) or ds,i(~z) and setting the corre-
sponding nu,i or du,i to zero. If a polynomial is interpolated without the effects of~s,
the latter have to be added to Eq. (8.50) to provide consistent results;

4. After all interpolations terminated, remove the effect of the shift~s from all remaining
polynomials that are interpolated including effects of~s.

This algorithm cures the problem of requiring avoidable black-box probes for dense and
sparse functions, but comes with additional computational work, that has to be done in
exchange, by starting some interpolations from scratch. However, we observe that the
computational effort of the interpolation is usually only a fraction of the time spent to
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evaluate the required black-box probes. Hence, reducing the required number of the latter
seems to be more important for our applications.

We have implemented this hybrid algorithm in the publicly available general purpose multi-
variate rational-function reconstruction4 library FireFly in combination with a multivariate
polynomial-interpolation algorithm, which is based on the sparse/dense racing prescription
of Ref. [236]. To our knowledge, FireFly is the first open-source implementation of multi-
variate rational-function interpolation. A different approach, assuming dense functions, is
implemented in the code of Ref. [229], however.

As the interpolation is performed over finite fields, there is a non-zero chance that the
interpolated function is incorrect. One source of potential errors is the interpolation of
multivariate polynomials. Zippel proved that if the anchor points are chosen uniformly
randomly from a field Zp, the probability that the interpolation of a black box f with n
variables, degree D, and non-zero terms T fails is less than [233]

nD2T2

p
. (8.51)

It is based on the Zippel-Schwartz lemma [232, 250]

Pr[ f (~y) = 0] ≤ D
|S| , (8.52)

which provides a bound on the probability (Pr) that a polynomial f of total degree D
evaluates to zero when selecting ~y independently and uniformly randomly from a subset S
of a field F. The Zippel-Schwartz lemma provides an estimate of the probability of hitting
zeroes in Eq. (8.46) in addition.

8.5.4 Rational reconstruction

After a successful interpolation over a finite field, we need to promote the monomial
coefficients back to the field of rational numbers Q. Generally, there is no inversion of the
mapping from rational numbers to elements in a finite field, but one can use a method called
rational reconstruction (RR). This method is based on the Extended Euclidean Algorithm [230]
and the first algorithm to perform this task was described by Wang in 1981 [252].

This RR algorithm leads to a guess for a rational number a = n/d from its image e,

e = a mod m , (8.53)

where n, d, and m > e ≥ 0 are integers. The algorithm will succeed if |n|, |d| ≤
√

m/2 and
the value of a is then unique [253]. However, the successful application of Wang‘s algorithm
does not guarantee that a is the correct number in Q, because the unique guess can differ

4 See Subsect. 8.5.4 for a definition of the term reconstruction.
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for different moduli m. Additionally, the strict bound of
√

m/2 could lead to failures of the
RR when one restricts m to be a machine-size integer, i.e. a 64-bit integer on modern CPUs.

Both problems can be solved by the Chinese Remainder Theorem (CRT) [230]. This theorem
states that for a set of coprime moduli mi > 1 and images ei = a mod mi, there exists one
and only one integer 0 ≤ x < m1 ·m2 · · ·mk such that

x ≡ e1 mod m1 ,

x ≡ e2 mod m2 ,
...

x ≡ ek mod mk ,

(8.54)

and the remainder of the Euclidean divisor of x by mi is ei for every i. In the context of
functional interpolations over finite fields this leads to a possible combination of multiple
interpolations over fields of coprime characteristic, from which we determine a new x that
fulfills the definition from Eq. (8.54) and apply the RR to x with the module m1 ·m2 · · ·mk.
When Wang‘s algorithm results to the same number a in two consecutive prime fields after
applying the CRT, we assume its guess as correct. We proceed for any monomial coefficient
with this strategy until we obtain a guess for each of them. Afterwards, the whole function
will be evaluated at randomized points and compared to the corresponding black-box
probes. When both results coincide, we terminate the interpolation and RR and return the
obtained result.

Note that the algorithm by Wang is not optimal for arbitrary n and d, because it will
only succeed if both |n| and |d| are smaller than

√
m/2. In Ref. [254] it was observed that

the successful guess of the rational number comes together with a huge quotient in the
Euclidean Algorithm. Ref. [254] modifies Wang‘s algorithm to be sensitive to these cases
and it is called Maximal Quotient Rational Reconstruction. It comes with the caveat, that it
can only be proven to return a unique solution if |n||d| ≤ √m/3, but performs much better
in the average case, because large quotients from random input are rare.

To benefit from the advantages of both algorithms, we proposed in Ref. [203] to race them,
i.e. run both algorithms sequentially and consider a guess for a, when either of the two
succeeded.

The algorithms presented in this subsection are implemented as part of this thesis in the
FireFly library [203]. The major part of the development has been done in the course of
this thesis, while F. Lange implemented some parts of the interface to Kira. In a physical
context FireFly has been successfully applied to calculate the results presented in Ref. [255],
which were not obtainable with conventional methods. Further calculations have been
completed using similar interpolation techniques implemented in private codes and should
be mentioned here [256–264].
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In the next subsection, we discuss how IBP reductions can benefit from the techniques
implemented in the FireFly library in combination with the reduction program Kira. Note
that the general prescriptions are in principle independent of the reduction program.

8.5.5 Integration-by-parts reductions over finite fields

The usage of finite fields as part of the Laporta algorithm has already been proposed in
2008 by Kauers [265]. Here, one replaces all occurring variables by elements in finite fields
and solves the system of equations generated by Eq. (8.36) numerically. In general, this
approach is orders of magnitude faster than solving the system algebraically. One of the first
applications of this observation was realized in Ref. [266] by first performing the forward
elimination over finite fields and removing linearly dependent equations before the actual
algebraic reduction. When also performing the back substitution, the master integrals can
be identified in addition and one is also able to select only those equations that suffice to
reduce a requested subset of integrals. The latter procedure is implemented in Kira [221].

In 2014 von Manteuffel and Schabinger proposed in Ref. [226] that one should be able
to solve the IBP system several times over finite fields and use the results to interpolate
the master integral coefficients in principle. In 2016, they presented the first IBP reduction
completed only with finite-field interpolation techniques in Ref. [256]. Recently, three more
calculations were concluded [260, 261, 263]. All of them are one-scale problems and, thus,
one variable problems. In January 2019 FIRE6 was published as first public implementation
of the Laporta algorithm using interpolation techniques over a finite field [218]. However,
it is currently bound to handle at most two scales. The first application to multivariate
reductions of, in principle, arbitrarily many variables was presented in Ref. [203] as part of
this thesis. A first step towards a full multivariate calculation using interpolation techniques
has been performed in Ref. [267]. A combined approach of interpolation and algebraic
results within the IBP reduction context has been presented in Ref. [268].

For our work, we combine the interpolation and reconstruction techniques of the FireFly

library with the IBP reduction code Kira. The latter provides us with an already built-
in solver pyRed, which is used to solve the system of equations over a finite field. This
procedure is performed multiple times over different prime fields, where we extract the
numerical values provided by pyRed and feed them to FireFly in order to perform the
interpolation and rational reconstruction. Additionally, two integral selections are performed.
After the forward elimination not all of the initially required linearly independent equations
are needed anymore for the back substitution in general. Therefore, we only select those
equations that are required for the reduction of the requested integrals. The same selection is
also performed in the algebraic calculation with Kira. The second selection only accepts the
coefficients of the master integrals for the requested integrals. In a conventional approach,
where all computational tasks are performed algebraically, the latter selection does not
provide any benefit as the reduction is already completed at this point. However, in our
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interpolation approach, this additional selection allows us to omit the interpolation of
potentially difficult rational functions that are not required to get the desired result [203].

To illustrate the benefits of the rational-function-interpolation technique for IBP reductions,
we consider the topology depicted in Fig. 30, which appears to be the most difficult topology
for single top production at the two-loop level. We compare runtime and memory usage

q22 = 0 l1 − l2 + q3

M1

l1 − l2 + q3 − q2

M2l2

l1

M1

l1 + q3 q23 = M2
1

q21 = 0 q1 − l2 q4 − l1 q24 = 0

Figure 30: A non-planar double box which occurs, e.g., in single top production. Double lines indicate massive
propagators.

of both the conventional fully algebraic approach implemented in Kira 1.2 and Kira 1.2

in combination with the interpolation techniques of FireFly 1.3.4 for different values of s.
The latter is defined as the absolute value of the sum of all negative powers of a topology:

s ≡
#prop.

∑
i=1

θ

(
1
2
− ai

)
|ai| , (8.55)

where θ(x) is the Heaviside step function. Usually, an integral with higher s is regarded
as more difficult than an integral with lower s. The powers ai are the same as defined in
Eq. (8.35). The results are shown in Tab. 3. It is obvious that the interpolation approach is

Table 3: Runtime and memory usage for Kira 1.2 and Kira with FireFly for the reduction of the topology
depicted in Fig. 30. M1 is set to one. The runtime does not include the creation of the system of equations.
These tests were run on a computer with two Intel Xeon Gold 6138 and 768 GiB of RAM.

Kira 1.2 Kira with FireFly

s Runtime Memory usage Runtime CPU time for pyRed Memory usage

1 4 min 7.6 GiB 1 min 21 s 99 % 1.2 GiB

2 1 h 53 min 33 GiB 35 min 8 s 99 % 4.1 GiB

3 18 h 28 min 102 GiB 5 h 39 min 97 % 19 GiB

not only faster by factors up to ∼ 3, it also uses only a fraction of the memory required by
the conventional approach. In addition, the CPU time is dominated by probing the black
box with pyRed and not by the interpolation itself. This fact motivates two different types of
optimizations:



100 towards quark-mass effects in gluon-induced Z H production at nlo qcd

1. Decrease the number of operations within the system solver, e.g. by reducing the
overhead that comes with the solution of a system at a given parameter point. This
can be achieved, for example, by solving the system for several points in a vectorized
manner on one thread. However, this runtime improvement comes with the cost of a
larger memory footprint since more systems of equations have to be kept in memory
at the same time. In our studies we observe improvements regarding runtime up to a
factor of ≈ 3.

2. In our studies, the forward elimination with pyRed takes almost 90% of the total run-
time for one probe. Thus, performing the forward elimination algebraically with Kira,
which is usually significantly faster than the back substitution, and only calculating
the back substitution numerically can also help by further reducing the black-box
evaluation time [203]. Note, however, that the functions within the system of equa-
tions become larger after the forward elimination. Thus, a fast parser, as for example
implemented in FireFly, that evaluates the occurring functions, is crucial to be com-
petitive. We have studied different IBP reductions up to three scales and could observe
runtime improvements of up to an order of magnitude using this hybrid approach
that combines algebraic and interpolation techniques. However, if the functions that
occur after the forward elimination become too complicated to be parsed reasonably
fast, the proposed hybrid approach becomes slower than calculating both forward
elimination and back substitution numerically.

In the next section, we apply the interpolation techniques introduced in the previous three
subsections to the reduction of the integrals occurring in gluon-induced ZH production at
the two-loop level considering QCD corrections.

8.5.6 Reduction of two-loop integrals for gluon-induced ZH production

After applying sector relations, the required integral families reduce to the topologies T1,
T2b, T2c, T3a, T4a, T4b, T4c, T4d, T7, T8a, T10a, T10c, and T10d as depicted in Fig. 28 for
different mass distributions. The number of integrals to be reduced also decreases to roughly
2000, where redundant integrals that can be obtained by the crossing of the incoming gluons
have already been dropped.

We only aim to reduce the 2000 integrals occurring in the amplitude instead of performing
a full reduction up to given bounds of s, which could be useful for the calculation of
the master integrals. However, this would further complicate the reduction significantly.
Therefore, for each integral family, we pass the list of integrals to Kira and combine it with
FireFly for the reduction. The coefficients of the master integrals are rational functions of
the five scales s, t, h, z, and Mq and the space-time dimension d. By setting one scale to
one, whose dependence can be reconstructed by dimensional analysis afterwards, the to be
determined coefficients depend on five variables. A first scan of the auxiliary functions f̂ for
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each integral family revealed maximum degrees around 160, which for five variables would
lead to a dense bound of roughly 1.9 · 109 possible monomials following Eq. (8.49). For this
number even the interpolation technique could possibly become not feasible anymore and
could suffer from probabilistic chances of incorrect interpolations as estimated by Eq. (8.51).
Therefore, we fix the mass of the quark q occurring in the loops by a ratio to the Z mass.
Within the scope of this thesis, we only focus on the top quark and fix Mt to

M2
t =

18
5

z ≈
(

173
91

)2

z . (8.56)

Afterwards, we choose z to be the variable that is set to one. Using this ratio the reduction
simplifies significantly by decreasing the possible number of monomials by two orders of
magnitude and thus to be bounded by roughly 6 · 107. Note, however, that the substitution
imposed by Eq. (8.56) leads to larger rational numbers as coefficients of each monomial,
thus requiring more prime fields than without this replacement.

Using Kira in combination with FireFly and the setup described in the previous paragraphs,
we were able to reduce the integral families affiliated with the topologies T1, T2c, T3a, T4a,
T4b, T4c, T4d, T7, T8a, T10a, T10c, and T10d. The most complicated ones are those belonging
to T2b and T2c, where both reductions are of comparable complexity, but differ in the black-
box evaluation time. The most complicated coefficient of the master integrals of T2c has a
maximum degree of 166 in the numerator and 163 in the denominator leading to a dense
bound of almost 6.5 · 107 possible monomials. Fortunately, only 1.2 · 107 of them are non-
zero. In total 1.1 · 108 black-box probes and twelve prime fields were needed to complete
the reduction of this integral family using 80 threads on two Intel Xeon Gold 6138. The
reduction filled 240 GiB of memory and was completed in one and a half month, where each
black-box probe took on average 3.8 s. We applied the non-hybrid approach without any
vectorization of black-box probes.

The only missing reduction is currently the one belonging to topology T2b. The maximum
degrees of numerator and denominator are comparable to the one of T2c, but the black-box
probe takes on average 4.7 s and would therefore run considerably longer than T2c. However,
it is conceivable that the reduction of T2b could also be completed, taking additional time.

Since we applied the relation of Eq. (8.56), the full reduction has also to be computed
again for the bottom quark with a suitable replacement of Mb or in the limit of Mb = 0.
Further, the missing one-particle-reducible two-loop diagrams, the contributions of real
radiation, and the calculation of all master integrals have to be considered. Therefore, a
lot of additional work has to be done in order to receive the result for the cross section
of gluon-induced ZH production at NLO QCD incorporating quark-mass effects. However,
the technical improvements developed within this thesis strongly support the feasibility of
calculations with similar complexity. Additionally, we observed that some kinematical parts
and parts related to the space-time dimension d can possibly be factorized, which would
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lead to much simpler rational functions to be interpolated. We are currently working on an
algorithm for FireFly that detects factorizable polynomials automatically for this purpose.

8.6 conclusions and outlook

In this chapter, we have presented recent progress on the calculation of NLO QCD contribu-
tions to gluon-induced ZH production, where we are aiming to incorporate full quark-mass
dependence. The computational steps required to obtain the amplitude were summarized
and occurring integrals were prepared for further processing. We achieved an almost com-
plete reduction of the involved Feynman integrals to a set of roughly 500 master integrals
by imposing a relation between the top-quark mass and the Z-boson mass. The reduction
has been computed employing the Kira program in combination with the functional-
interpolation-library FireFly developed within the scope of this thesis. The techniques
and algorithms implemented in FireFly allow to ease the computational bottleneck of
cutting-edge calculations like the one presented in this chapter. Additionally, various other
applications like the calculation of projector coefficients can be achieved efficiently using
the interpolation approach instead of a fully algebraic computation. As further algorithmic
optimizations, e.g. polynomial factorization, promise to make the interpolation technique
even more efficient, we are certain that calculations of similar complexity as gluon-initiated
ZH production can be completed employing the techniques implemented into the FireFly

library.

In order to obtain a complete result at NLO QCD, all master integrals have still to be
evaluated and the missing integral family has to be reduced. In addition, renormalization
has to be performed and the real radiation together with the reducible two-loop subgraphs
have to be evaluated. Fortunately, the latter two parts consist only of one-loop diagrams,
whose integral structure is well-known.

As the current implementation of FireFly into Kira is private, it would be a great benefit if
their combination becomes publicly available. Therefore, we are currently working together
with the Kira authors to provide an open-source code. However, this work is beyond the
scope of this thesis.
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A
C O N V E N T I O N S A N D F E Y N M A N R U L E S

In this appendix, we summarize notational conventions and introduce all momentum space
Feynman rules required in this thesis.

Throughout this work, we use natural units, i.e. h̄ = c = 1. Therefore, masses, momenta,
and energies are expressed in electronvolts (eV) and distances and time in eV−1.

We define the metric tensor of a four-dimensional Minkowski space-time in the mostly
minus convention, i.e.

g = diag(1,−1,−1,−1) . (A.1)

Hence, scalar products of four-dimensional vectors in Minkowski space are given by

a · b ≡ aµbµ ≡ a0b0 −~a ·~b . (A.2)

The Feynman rules required in this thesis are the ones of QCD in Feynman gauge, the
Yukawa coupling of the Higgs boson to a quark, the coupling of the Z boson to a pair of
quarks, the coupling of the neutral Goldstone boson to a quark pair, and the coupling of the
Z to the Higgs boson. For the propagator of the Z boson, we impose Landau gauge. The
mass of the quark is denoted as Mq, its electric charge in units of the elementary electric
charge as eq, and its third component of the isospin as Iq. θw is the weak mixing angle, g is
the coupling constant of the weak interaction, and g3 is the coupling constant of the strong
interaction. The momenta are assumed to be incoming and labeled as p for the propagators.
All used Feynman rules are listed in the following equations:

g: a, µ b, ν = −i
gµνδab

p2 + i0
(A.3)

ghost (c): a b = i
δab

p2 + i0
(A.4)

q: i j = i
(/p + Mq)δij

p2 −M2
q + i0

(A.5)

σ: α, β, a γ, δ, b = iδabgαδgβγ (A.6)

Z: µ ν = −i
gµν − pµ pν/p2

p2 −M2
Z + i0

(A.7)

φZ: a b =
i

p2 + i0
(A.8)
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ggg:

a, µ, p1

b, ν, p2

c, λ, p3 =

−g3 f abc
[

gµν(p1 − p2)
λ

+ gνλ(p2 − p3)
µ

+ gλµ(p3 − p1)
ν
]

(A.9)

gggg:

a, µ

d, ρ

b, ν

c, λ

=

−ig2
3

[
f abe f cde

(
gµλgνρ − gµρgνλ

)

+ f ace f bde
(

gµνgλρ − gµρgνλ
)

+ f ade f cbe
(

gµλgνρ − gµνgρλ
) ]

(A.10)

ggσ:

a, µ

b, ν

c, α, β =
g3√

2
f abc

(
gµαgνβ − gµβgνα

)
(A.11)

cc̄g:

b

c, p

a, µ = g3 f abc pµ (A.12)

qq̄g:

i

j

a, µ = −ig3γµTa
ji (A.13)

qq̄H:

i

j

= −i
Mqδji

v
(A.14)

qq̄φZ:

i

j

= −2
Iq Mq

v
γ5 (A.15)
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qq̄Z:

i

j

µ = i
g

cos θw
γµ

(
Iq

2
− eq sin2 θw

Iq

2
γ5

)
(A.16)

ZHZ:

µ

ν = i
g

cos θw
MZgµν (A.17)

HφZZ:

p1, H

p2, φZ

µ =
g

2 cos θw
(p2 − p1)µ (A.18)

In this thesis, all Feynman diagrams have been created with TikZ-Feynman [269].





B
E X P L I C I T F O R M U L Æ

In this appendix, we list some formulæ required by some chapters in this work.

b.1 threshold corrections

The following threshold corrections required in Subsect. 3.1.3 are used to relate the SM input
parameters of gauge couplings and the top quark pole mass to running DR′ parameters. The
terms for the gauge couplings read:

∆αem(MZ) =
αem

2π

(
1
3
− 16

9
ln
(

mt

MZ

)
− 4

9

6

∑
i=1

ln
(

mũi

MZ

)
− 1

9

6

∑
i=1

ln
(md̃i

MZ

)

− 4
3

2

∑
i=1

ln
(mχ̃+

i

MZ

)
− 1

3

6

∑
i=1

ln
(

mẽi

MZ

)
− 1

3
ln
(

mH+

MZ

))
, (B.1)

∆αs(MZ) =
αs

2π

[
1
2
− 2 ln

(
mg̃

MZ

)
− 2

3
ln
(

mt

MZ

)

− 1
6

6

∑
i=1

(
ln
(

mũi

MZ

)
+ ln

(md̃i

MZ

))]
. (B.2)

χ̃+
i is the ith positively charged chargino, and ũi (d̃i) label the up-(down-)type squarks of

the ith generation. Consequently, ẽi labels the slepton of the ith generation.

The terms required in the extraction of the top quark mass in the DR′ scheme read:

∆m(1),QCD
t = − αs

4π
CF

[(
mg̃m2

t̃1
s2θt

mt(m2
t̃1
−m2

g̃)
−

mg̃m2
t̃2

s2θt

mt(m2
t̃2
−m2

g̃)
+

m4
t̃1

2(m2
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−m2

g̃)
2
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+

m4
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2(m2
t̃2
−m2

g̃)
2
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m2
t̃2

m2
t̃2
−m2
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+ 1

)
ln
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Q2

)

+

(
−

mg̃m2
t̃1

s2θt

mt(m2
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m4
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2
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)
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t̃2
s2θt
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t̃2
−m2
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−

m4
t̃2
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2
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m2
t̃2
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]
, (B.3)
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∆m(2),QCD
t =

(
∆m(1),QCD

t

)2
− ∆m(2),dec

t . (B.4)

In Eq. (B.3), it is CF = 4/3 and s2θt , where θt is the stop mixing angle given by

sin(2θt) = 2
Xtmt

m2
t̃1
−m2

t̃2

. (B.5)

The two-loop term ∆m(2),dec
t is given in Ref. [93] for general stop, sbottom, and gluino

masses.

b.2 projector coefficients

To obtain the form factors f1(t, u), . . . , f4(t, u)1 as defined by Eq. (8.17), the following set of
projector coefficients is used:

c1,1 = 4d−1
1 D2,1∆2

tzz
(
− 4D2,2s3z3 + D3,1∆3

tz∆3
uz − 4D3,2∆tz∆uzs2z2

+ D5,1∆2
tz∆2

uzsz
)

, (B.6)

c1,2 = −4d−1
1 D2,1∆tz∆uzz

(
D3,3∆3

tz∆3
uz − 4D3,4s3z3 + 2D4,1∆tz∆uzs2z2

+ D5,2∆2
tz∆2

uzsz
)

, (B.7)

c1,3 = 4d−1
1 D2

1,1D2,3∆tzs2(z(∆uz + s)− ∆uzt)3 , (B.8)

c1,4 = −4d−1
1 D2

1,2D2
1,1∆2

tzs2z(−D1,2∆tz∆uz − 2sz)(D2,4∆tz∆uz + D2,5sz) , (B.9)

c1,5 = −4d−1
1 D2,1∆tzsz

{
sz
[
2D1,1sz

(
D3,5∆tz∆uz − 2D3,6sz

)
+ D6,1∆2

tz∆2
uz
]

− D5,3∆3
tz∆3

uz
}

, (B.10)

c1,6 = 4d−1
1 D2

1,2D1,1s2z
(

D1,2∆tz∆uz + 2sz
)(

D3,7∆2
tz∆2

uz + D4,2∆tz∆uzsz

− 2D3,8s2z2) , (B.11)

c1,7 = −4d−1
1 D2

1,2D1,1∆tzsz
(
− D1,2∆tz∆uz − 2sz

)(
2D2,2∆2

tz∆2
uz + 2D2,2s2z2

+ D3,9∆tz∆uzsz
)

, (B.12)

c1,8 = 4d−1
1 D1,2D2,1∆tz∆uzz

(
4D2

1,1D2,6s3z3 + D4,3∆3
tz∆3

uz + 2D4,4∆2
tz∆2

uzsz

− 2D4,5∆tz∆uzs2z2) , (B.13)

c1,9 = 4d−1
1 D1,2D2,1∆2

tzz
(
4D2,7s3z3 + D4,6∆3

tz∆3
uz + D5,4∆2

tz∆2
uzsz

− 2D5,5∆tz∆uzs2z2) , (B.14)

c1,14 = 2d−1
1 D1,2D2

1,1∆tz∆uzs
{

sz
[
D4,7∆2

tz∆2
uz − 4sz

(
D3,6sz + D3,10∆tz∆uz

)]

+ D3,11∆3
tz∆3

uz
}

, (B.15)

c1,15 = 2d−1
1 D1,2D2

1,1∆2
tzs
{

sz
[
D4,8∆2

tz∆2
uz + 2sz(D4,9∆tz∆uz + 2sz

)]

+ D3,11∆3
tz∆3

uz
}

, (B.16)

c1,21 = 2
c1,14

∆uz
, (B.17)

1 Note that f1(u, t), . . . , f4(u, t) can be obtained by the replacement t↔ u.
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c1,22 = 2
c1,15

∆tz
, (B.18)

c2,1 = −4d−1
2 D2,1∆tzz

[
∆uzt− z

(
∆uz + s

)]2

×
{

sz
[
sz
(
4D1,1sz + D4,11∆tz∆uz

)
+ D5,6∆2

tz∆2
uz
]
− D5,7∆3

tz∆3
uz
}

×
{

sz
[
D5,8∆2

tz∆2
uz − 4sz

(
D3,12∆tz∆uz + D3,8sz

)]
− D4,10∆3

tz∆3
uz
}

, (B.19)

c2,2 = −4d−1
2 D2,1∆uzz

[
∆uzt− z

(
∆uz + s

)]2

×
{

sz
[
2D1,1sz

(
D3,13∆tz∆uz − 2D3,6sz

)
+ D6,1∆2

tz∆2
uz
]
− D5,3∆3

tz∆3
uz
}

×
{

sz
[
D5,8∆2

tz∆2
uz − 4sz

(
D3,12∆tz∆uz + D3,8sz

)]
− D4,10∆3

tz∆3
uz
}

, (B.20)

c2,3 = −4d−1
2 D2,1sz

[
∆uzt− z

(
∆uz + s

)]2

×
(
4D4,12∆tz∆uzs2z2 − 4D4,13s3z3 − D6,2∆3

tz∆3
uz + D6,3∆2

tz∆2
uzsz

)

×
{

sz
[
D5,8∆2

tz∆2
uz − 4sz

(
D3,12∆tz∆uz + D3,8sz

)]
− D4,10∆3

tz∆3
uz
}

, (B.21)

c2,4 = 4d−1
2 D2

1,2D2
1,1∆tzs2z

[
∆uzt− z

(
∆uz + s

)]2(D1,2∆tz∆uz + 2sz
)2

×
(

D2,8sz + D3,14∆tz∆uz
)[

sz
(
2D3,8sz− D4,14∆tz∆uz

)
+ D3,11∆2

tz∆2
uz
]

, (B.22)

c2,5 = 2d−1
2 D2,1sz

(
2D5,9∆2

tz∆2
uzs2z2 − 4D5,10∆tz∆uzs3z3 + D6,4∆4

tz∆4
uz

+ D7,1∆3
tz∆3

uzsz + 8D1,3D2
1,1s4z4)

×
{

D4,10∆4
tz∆4

uz + s2z2[4sz
(

D3,16∆tz∆uz − D3,8sz
)
+ D5,11∆2

tz∆2
uz
]

− D5,12sz∆3
tz∆3

uz
}

, (B.23)

c2,6 = −2d−1
2 D2

1,2D1,1∆uzs2z
[
z
(
∆uz + s

)
− ∆uzt

](
D1,2∆tz∆uz + 2sz

)2

×
(

D4,15∆2
tz∆2

uz + 2D4,16s2z2 − D5,13∆tz∆uzsz
)

×
[
sz
(
2D3,8sz− D4,14∆tz∆uz

)
+ D3,11∆2

tz∆2
uz
]

, (B.24)

c2,7 = −4d−1
2 D2

1,2D1,1sz
[
∆uzt− z

(
∆uz + s

)]2(D1,2∆tz∆uz + 2sz
)2

×
(

D2,9∆tz∆uzsz + D3,15∆2
tz∆2

uz − 2D1,1s2z2)

×
[
sz
(

D4,14∆tz∆uz − 2D3,8sz
)
− D3,11∆2

tz∆2
uz
]

, (B.25)

c2,8 = −4d−1
2 D1,2D2,1∆uzz

[
∆uzt− z

(
∆uz + s

)]2

×
(
4D2

1,1D2,10s3z3 + D5,14∆3
tz∆3

uz + D5,15∆2
tz∆2

uzsz + 2D5,16∆tz∆uzs2z2)

×
{

sz
[
D5,8∆2

tz∆2
uz − 4sz

(
D3,12∆tz∆uz + D3,8sz

)]
− D4,10∆3

tz∆3
uz
}

, (B.26)

c2,9 = 2d−1
2 D1,2D2,1∆tzz

{
D4,10∆4

tz∆4
uz

+ s2z2[4sz
(

D3,16∆tz∆uz − D3,8sz
)
+ D5,11∆2

tz∆2
uz
]
− szD5,12∆3

tz∆3
uz
}

×
{

2D1,1s2z2[2sz
(
2D3,14sz + D4,17∆tz∆uz

)
+ D5,17∆2

uz∆2
tz
]

− D6,5sz∆3
tz∆3

uz + D5,18∆4
tz∆4

uz
}

, (B.27)

c2,14 = 2d−1
2 D1,2D2

1,1∆uzs
[
∆uzt− z

(
∆uz + s

)]2

×
{

sz
[
D5,19∆2

tz∆2
uz − 2sz

(
2D2,11sz + D4,18∆tz∆uz

)]
+ D3,11∆3

tz∆3
uz
}

×
{

sz
[
D5,8∆2

tz∆2
uz − 4sz

(
D3,12∆tz∆uz + D3,8sz

)]
− D4,10∆3

tz∆3
uz
}

, (B.28)

c2,15 = −2d−1
2 D1,2D2

1,1∆tzs
[
∆uzt− z

(
∆uz + s

)]2

×
{

sz
[
D5,8∆2

tz∆2
uz − 4sz

(
D3,12∆tz∆uz + D3,8sz

)]
− D4,10∆3

tz∆3
uz
}
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×
{

sz
[
D5,20∆2

tz∆2
uz + 2sz

(
D4,19∆tz∆uz + 2D3,17sz

)]
− D3,11∆3

tz∆3
uz
}

, (B.29)

c2,21 = 2
c2,14

∆uz
, (B.30)

c2,22 = 2
c2,15

∆tz
, (B.31)

c3,1 = 4d−1
3 D1,1∆2

tz
[
z
(
∆uz + s

)
− ∆uzt

]3(D2,4∆tz∆uz + D2,5sz
)

, (B.32)

c3,2 = 4d−1
3
(
∆tz∆uz − sz

)3(D3,18∆2
tz∆2

uz − D4,20∆tz∆uzsz + 2D3,8s2z2) , (B.33)

c3,3 = 4d−1
3 D1,1∆tzs

[
z
(
∆uz + s

)
− ∆uzt

]3(− D2,8sz− D3,14∆tz∆uz
)

, (B.34)

c3,4 = 4d−1
3 D2

1,1D2,3∆2
tzs2[z

(
∆uz + s

)
− ∆uzt

]3 , (B.35)

c3,5 = 2d−1
3 ∆tzs

[
∆uzt− z

(
∆uz + s

)]2(D4,15∆2
tz∆2

uz + 2D4,16s2z2

− D5,13∆tz∆uzsz
)

, (B.36)

c3,6 = −2d−1
3 s2[∆uzt− z

(
∆uz + s

)]2(D2
1,2D2,13∆2

tz∆2
uz + 2D4,21s2z2

− D5,21∆tz∆uzsz
)

, (B.37)

c3,7 = −4d−1
3 D1,1∆tzs

[
z
(
∆uz + s

)
− ∆uzt

]3(2sz− D2,7∆tz∆uz
)

, (B.38)

c3,8 = −4d−1
3 D1,1

(
∆tz∆uz − sz

)3(D3,19∆2
tz∆2

uz − 2D3,20∆tz∆uzsz + 2D3,8s2z2) , (B.39)

c3,9 = −2d−1
3 ∆2

tz
(
∆tz∆uz − sz

)2(D4,22∆2
tz∆2

uz − D5,22∆tz∆uzsz + 2D5,23s2z2) , (B.40)

c3,14 = −2d−1
3 D2

1,1D2,3∆tz∆uzs2[z
(
∆uz + s

)
− ∆uzt

]3 , (B.41)

c3,15 = −c3,14
∆tz

∆uz
, (B.42)

c3,21 = 2
c3,14

∆uz
, (B.43)

c3,22 = −2
c3,14

∆uz
, (B.44)

c4,1 = 4d−1
4 ∆tz

(
2D2,2∆2

tz∆2
uz + 2D2,2s2z2 + D3,9∆tz∆uzsz

)
, (B.45)

c4,2 = −c4,1
∆uz

∆tz
, (B.46)

c4,3 = −4d−1
4 s
[
sz
(

D2,9∆tz∆uz − 2D1,1sz
)
+ D3,21∆2

tz∆2
uz
]

, (B.47)

c4,4 = −4d−1
4 D1,1∆tzs2(2sz− D2,7∆tz∆uz

)
, (B.48)

c4,5 = −c4,3 , (B.49)

c4,6 = −c4,4
∆uz

∆tz
, (B.50)

c4,7 = d−1
4 s
(
− 4D2,12∆2

tz∆2
uz − 8D2,7s2z2 + 4D3,22∆tz∆uzsz

)
, (B.51)

c4,8 = 4d−1
4 ∆uz

[
D3,23∆2

tz∆2
uz + sz

(
D3,24∆tz∆uz + 2D3,25sz

)]
, (B.52)

c4,9 = −c4,8
∆tz

∆uz
, (B.53)

c4,14 = −2c4,4
∆uz

∆tz
, (B.54)

c4,15 =
c4,4

2
, (B.55)

c4,21 = − c4,4

∆tz
, (B.56)
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c4,22 =
c4,4

∆tz
, (B.57)

where ci,j is coefficient j corresponding to tj defined by Eq. (8.22) to obtain the form factor fi.
The denominators d1, . . . , d4 are given by

d1 = D1,2D2
1,1D2,1s3z

{
D4,10∆4

tz∆4
uz

+ s2z2[4sz
(

D3,16∆tz∆uz − D3,8sz
)
+ D5,11∆2

tz∆2
uz
]
− D5,12sz∆3

tz∆3
uz
}

, (B.58)

d2 = D1,2D2
1,1D2,1s2z

[
∆uzt− z

(
∆uz + s

)]2

×
{

sz
[
D5,8∆2

tz∆2
uz − 4sz

(
D3,26∆tz∆uz + D3,8sz

)]
− D4,10∆3

tz∆3
uz
}

×
{

D4,10∆4
tz∆4

uz + s2z2[4sz
(

D3,16∆tz∆uz − D3,8sz
)
+ D5,11∆2

tz∆2
uz
]

− D5,12sz∆3
tz∆3

uz
}

, (B.59)

d3 = −D2
1,1s
(
∆tz∆uz − sz

)4[sz
(
2D3,8sz− D4,14∆tz∆uz

)
+ D3,11∆2

tz∆2
uz
]

, (B.60)

d4 = D2
1,1s2[sz

(
D4,23∆2

tz∆2
uz + D4,24∆tz∆uzsz− 2D3,8s2z2)+ D3,11∆3

tz∆3
uz
]

. (B.61)

Additionally, we use the following auxiliary functions

D1,1 = d− 3 , (B.62)

D1,2 = d− 4 , (B.63)

D1,3 = d− 5 , (B.64)

D2,1 = d2 − 7d + 12 , (B.65)

D2,2 = d2 − 5d + 5 , (B.66)

D2,3 = d2 − 6d + 4 , (B.67)

D2,4 = −2d2 + 11d− 10 , (B.68)

D2,5 = d2 − 6d + 6 , (B.69)

D2,6 = d2 − 7d + 8 , (B.70)

D2,7 = d2 − 5d + 6 , (B.71)

D2,8 = d2 − 8d + 14 , (B.72)

D2,9 = 2d2 − 11d + 14 , (B.73)

D2,10 = d2 − 7d + 10 , (B.74)

D2,11 = d2 − 8d + 15 , (B.75)

D2,12 = 3d2 − 15d + 16 , (B.76)

D2,13 = 2d2 − 7d + 8 , (B.77)

D3,1 = −5d3 + 47d2 − 132d + 100 , (B.78)

D3,2 = d3 − 12d2 + 40d− 35 , (B.79)

D3,3 = 3d3 − 31d2 + 100d− 100 , (B.80)

D3,4 = d3 − 9d2 + 25d− 21 , (B.81)

D3,5 = 5d3 − 50d2 + 152d− 134 , (B.82)
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D3,6 = d3 − 10d2 + 30d− 25 , (B.83)

D3,7 = −2d3 + 22d2 − 73d + 70 , (B.84)

D3,8 = d3 − 10d2 + 30d− 26 , (B.85)

D3,9 = −d3 + 4d2 + d− 8 , (B.86)

D3,10 = −3d3 + 30d2 − 91d + 79 , (B.87)

D3,11 = 4d3 − 39d2 + 116d− 100 , (B.88)

D3,12 = −3d3 + 31d2 − 99d + 96 , (B.89)

D3,13 = 5d3 − 50d2 + 152d− 134 , (B.90)

D3,14 = d3 − 10d2 + 31d− 30 , (B.91)

D3,15 = d3 − 9d2 + 25d− 20 , (B.92)

D3,16 = 4d3 − 41d2 + 129d− 122 , (B.93)

D3,17 = d3 − 11d2 + 38d− 41 , (B.94)

D3,18 = 2d3 − 22d2 + 73d− 70 , (B.95)

D3,19 = d3 − 12d2 + 42d− 40 , (B.96)

D3,20 = d3 − 11d2 + 38d− 40 , (B.97)

D3,21 = d3 − 9d2 + 25d− 20 , (B.98)

D3,22 = d3 − 3d2 − 6d + 16 , (B.99)

D3,23 = d3 − 7d2 + 15d− 10 , (B.100)

D3,24 = −3d3 + 24d2 − 60d + 46 , (B.101)

D3,25 = d3 − 9d2 + 26d− 24 , (B.102)

D3,26 = −3d3 + 31d2 − 99d + 96 , (B.103)

D4,1 = d4 − 8d3 + 12d2 + 32d− 70 , (B.104)

D4,2 = d4 − 9d3 + 17d2 + 28d− 70 , (B.105)

D4,3 = −2d4 + 27d3 − 133d2 + 278d− 200 , (B.106)

D4,4 = 3d4 − 39d3 + 185d2 − 380d + 282 , (B.107)

D4,5 = 4d4 − 52d3 + 241d2 − 476d + 338 , (B.108)

D4,6 = −2d4 + 28d3 − 139d2 + 286d− 200 , (B.109)

D4,7 = d4 − 23d3 + 161d2 − 424d + 348 , (B.110)

D4,8 = −3d4 + 31d3 − 99d2 + 88d + 28 , (B.111)

D4,9 = d4 − 12d3 + 48d2 − 70d + 18 , (B.112)

D4,10 = 4d4 − 55d3 + 272d2 − 564d + 400 , (B.113)

D4,11 = 4d4 − 54d3 + 264d2 − 564d + 452 , (B.114)

D4,12 = 2d4 − 27d3 + 132d2 − 278d + 213 , (B.115)

D4,13 = d4 − 14d3 + 71d2 − 155d + 123 , (B.116)

D4,14 = d4 − 8d3 + 8d2 + 52d− 88 , (B.117)
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D4,17 = d4 − 17d3 + 99d2 − 234d + 190 , (B.118)

D4,18 = −2d4 + 25d3 − 112d2 + 218d− 162 , (B.119)

D4,19 = d4 − 19d3 + 124d2 − 330d + 302 , (B.120)

D4,15 = 2d4 − 21d3 + 72d2 − 86d + 20 , (B.121)

D4,16 = d4 − 11d3 + 39d2 − 48d + 10 , (B.122)

D4,20 = d4 − 9d3 + 17d2 + 28d− 70 , (B.123)

D4,21 = d4 − 12d3 + 50d2 − 86d + 52 , (B.124)

D4,22 = 2d4 − 25d3 + 116d2 − 232d + 160 , (B.125)

D4,23 = −d4 + 4d3 + 31d2 − 168d + 188 , (B.126)

D4,24 = d4 − 6d3 − 12d2 + 112d− 140 , (B.127)

D5,1 = d5 − 14d4 + 84d3 − 281d2 + 496d− 316 , (B.128)

D5,2 = d5 − 16d4 + 92d3 − 219d2 + 160d + 60 , (B.129)

D5,3 = 2d5 − 36d4 + 248d3 − 811d2 + 1244d− 700 , (B.130)

D5,4 = d5 − 10d4 + 16d3 + 116d2 − 432d + 388 , (B.131)

D5,5 = d5 − 14d4 + 70d3 − 143d2 + 86d + 30 , (B.132)

D5,6 = d5 − 26d4 + 228d3 − 899d2 + 1644d− 1140 , (B.133)

D5,7 = 2d5 − 35d4 + 236d3 − 763d2 + 1180d− 700 , (B.134)

D5,8 = d5 − 12d4 + 32d3 + 98d2 − 528d + 552 , (B.135)

D5,9 = d5 − 110d3 + 679d2 − 1488d + 1080 , (B.136)

D5,10 = d5 − 13d4 + 62d3 − 138d2 + 158d− 96 , (B.137)

D5,11 = d5 − 12d4 + 20d3 + 222d2 − 924d + 936 , (B.138)

D5,12 = d5 − 8d4 − 23d3 + 370d2 − 1092d + 952 , (B.139)

D5,13 = d5 − 12d4 + 52d3 − 108d2 + 130d− 88 , (B.140)

D5,14 = d5 − 16d4 + 98d3 − 285d2 + 390d− 200 , (B.141)

D5,16 = 2d5 − 33d4 + 210d3 − 645d2 + 956d− 546 , (B.142)

D5,15 = −3d5 + 46d4 − 274d3 + 790d2 − 1096d + 580 , (B.143)

D5,17 = d5 − 16d4 + 102d3 − 326d2 + 516d− 312 , (B.144)

D5,18 = 2d5 − 31d4 + 186d3 − 538d2 + 748d− 400 , (B.145)

D5,19 = d5 − 19d4 + 131d3 − 407d2 + 568d− 292 , (B.146)

D5,20 = d5 − 17d4 + 123d3 − 469d2 + 904d− 668 , (B.147)

D5,21 = d5 − 12d4 + 48d3 − 62d2 − 36d + 104 , (B.148)

D5,22 = d5 − 10d4 + 24d3 + 46d2 − 244d + 232 , (B.149)

D5,23 = d5 − 14d4 + 72d3 − 164d2 + 150d− 28 , (B.150)

D6,1 = d6 − 17d5 + 104d4 − 250d3 + 41d2 + 684d− 692 , (B.151)

D6,2 = d6 − 18d5 + 127d4 − 441d3 + 767d2 − 580d + 100 , (B.152)
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D6,3 = d6 − 21d5 + 170d4 − 674d3 + 1357d2 − 1264d + 380 , (B.153)

D6,4 = −2d6 + 35d5 − 238d4 + 786d3 − 1278d2 + 904d− 200 , (B.154)

D6,5 = d6 − 14d5 + 70d4 − 134d3 − 14d2 + 364d− 344 , (B.155)

D7,1 = d7 − 20d6 + 166d5 − 770d4 + 2294d3 − 4608d2 + 5656d− 3008 , (B.156)

and the short-hand notation ∆xy ≡ x − y. Note that in Di,j the i indicates the maximum
degree of the space-time dimension d in the corresponding coefficient.
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