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Abstract. By numerical study of the simple bound states of light quarks, in particular the
π and K mesons, we are able to deduce fundamental quark properties. Using the “improved
staggered” discretization of QCD, the MILC Collaboration has performed a series of simulations
of these bound states, including the effects of virtual quark-antiquark pairs (“sea” quarks). From
these simulations, we have determined the masses of the up, down, and strange quarks. We find
that the up quark mass is not zero (at the 10 sigma level), putting to rest a twenty-year-old
suggestion that the up quark could be massless. Further, by studying the decays of the π and K
mesons, we are able to determine the “CKM matrix element” Vus of the Weak Interactions. The
errors on our result for Vus are comparable to the best previous determinations using alternative
theoretical approaches, and are likely to be significantly reduced by simulations now in progress.

1. Introduction
Quantum Chromodynamics (QCD) is the theory of the Strong Interactions, which are
responsible for binding quarks into protons and neutrons and holding them together in the
atomic nucleus. QCD describes quarks interacting through the exchange of gluons. At high
energy or short distances (much less than the radius of a proton), QCD becomes weakly coupled:
The coupling constant (the QCD analogue of electric charge) becomes small. This property of
QCD is called “asymptotic freedom.” Gross, Politzer, and Wilczek received the 2004 Nobel Prize
in Physics for its discovery. Short distance QCD is well described by a perturbative expansion
in the small coupling constant.

The flip side of asymptotic freedom is that QCD becomes strongly coupled at long distances
(or low energy). This is responsible for the property called “confinement”: Quarks cannot be
observed separately from their low energy bound states (hadrons). The large coupling constant
also implies that the properties of quarks in bound states cannot be studied by perturbative
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methods. Nonperturbative, numerical simulations by the methods of lattice gauge theory are
needed. Such simulations can determine the fundamental parameters of QCD (quark masses
and the coupling constant) and then predict the properties of hadrons.

The basic steps in the numerical simulations are:

1. Replace continuous space and time by a discrete set of points (the lattice), separated by lattice
spacing a.

2. Discretize the field equations of quarks and gluons on the lattice. The number of degrees of freedom
of the fields are then finite (in a finite volume).

3. Generate “typical” lattices (configurations) of gluon fields using Monte Carlo methods. The back-
effect of quarks on the gluons is included. Numerical limitations imply that the masses of the lightest
(up and down) quarks in this step (and next one) must be taken to be heavier than in the real world.

4. Compute the quark propagators through background gluon lattices (requires a sparse matrix
inversion). A “propagator” is the amplitude for a quark to move between space-time points.

5. Combine the quark propagators to find bound-state (hadron) propagators.
6. Analyze the hadron propagators to find the properties (e.g., masses) of the hadrons.
7. Extrapolate the hadronic properties to the physical regime:

(a) Extrapolate to lower masses of the up and down quarks: the “chiral extrapolation.”
(b) Extrapolate the volume of space-time → ∞: the “infinite volume extrapolation.”
(c) Extrapolate the lattice spacing a → 0: the “continuum extrapolation.”

8. Comparing some computed hadron masses to experimentally known masses determines the physical
values of the quark masses and the strong coupling constant. Once quark masses and coupling
constant are known, we can make predictions for hadronic properties such as decay amplitudes or
masses of other hadrons.

As an example, consider a π+ meson, which is made up an up (u) and an anti-down (d̄)
quark. These two quarks are called the “valence quarks” in the π+; it is their propagators
that we calculate in step 4 above. Putting the two valence quark propagators together and
averaging over gluon backgrounds computes the effects of gluon exchange between the quarks.
The exchanged gluons, in turn, can interact with virtual quark-antiquark pairs, which, by the
laws of quantum mechanics, are always popping in and out of existence in the vacuum. Such
quark-antiquark pairs are known as “sea quarks,” and they are responsible for the back-effect
of quarks on gluons mentioned in step 3 above.

Including the sea-quark effects is the step that is the most demanding of computer resources.
It requires computing the determinant (or at least the change of the determinant) of a large
matrix. For many years, the determinant was so computationally daunting that it was simply
left out: a brutalization of the theory known as the “quenched approximation.”

This stumbling block has now been overcome: The solution we implement involves a
discretization of the quark field equations that is very fast (“staggered quarks” [1]), the addition
of terms to the equations to reduce discretization artifacts on gluons and quarks [2] (“improved
staggered quarks”), and an efficient algorithm for computing sea-quarks effects [3].

Improved staggered quarks allow one to include sea-quark effects without losing control of
the systematic errors due to the chiral, infinite volume, and continuum extrapolations. Using
these quarks, the MILC Collaboration [4, 5] has been generating lattices including the effects of
the three relevant sea-quark “flavors”: u, d, s (up, down, strange). The project began in 1999,
but the pace of these simulations has been sped up greatly by application of SciDAC resources.
MILC makes its lattices publicly available: http://qcd.nersc.gov/

In 2003 a lattice QCD milestone was reached. MILC joined with the Fermilab, HPQCD, and
UKQCD groups to show that a wide range of simple quantities could be computed with high
accuracy (1–3% errors) in lattice QCD using the MILC lattices [6].
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2. Details of the Calculation
The computation described here is based on two sets of MILC lattices:

• “coarse” runs with lattice spacing a≈0.125 fm and a wide range of sea-quark masses, with
lowest average up and down quark mass m̂′ ∼ 10 MeV, about 3 times the physical value.

• “fine” runs with a≈0.09 fm, and lowest m̂′ ∼ 15 MeV, about 5 times the physical value.
Extensions in progress include a fine run with m̂′ ∼ 10 MeV, which is nearly half finished, and
a “super fine” set with a≈ 0.06 fm, and lowest m̂′ ∼ 10 MeV. The super fine run will begin in
earnest once the DOE QCDOC comes on line. All the above lattices have volume ≥ (2.5 fm)3

We compute valence-quark propagators with many different quark mass values for every sea-
quark mass choice. This procedure allows us to get the maximum amount of information out of
the gluon lattices, which are so expensive to generate when sea-quark back-effects are included.
At the end of the calculation, we set valence and sea mass values equal and recover the true
theory, namely “full QCD.” The valence-quark masses are called mx and my. We take the masses
of the u and d sea quarks equal, which is a good approximation; the sea-quark masses in the
simulation are called m̂′ ≡ m′

u =m′
d and m′

s. After the simulations are performed, we interpolate
m′

s to its physical value ms; while we extrapolate m̂′ to its physical value m̂ = (mu + md)/2.
For the valence-quark masses, the extrapolation/interpolation depends on which bound state

we are studying. For the π+, we could extrapolate mx → mu and my → md; in practice,
however, taking both mx and my to m̂ gives an “average” π meson, called π̂, whose mass is
very close to the π+ mass (up to electromagnetic corrections). For a K+ (K0) meson, a bound
state of a u (d) and an s̄, we extrapolate mx → mu(md) and interpolate my → ms. In the K

system, it is convenient to look first at an fictitious “average” K meson, called K̂, with mass
squared equal the average mass squared of K+ and K0. For a K̂, we extrapolate mx → m̂ and
interpolate my → ms.

The errors in the chiral extrapolations/interpolations can be controlled if we know the
functional form of the mass dependence. In the continuum, the functional form is given by
an effective field theory, called “chiral perturbation theory” (χPT). The form of the mass
dependence of many interesting quantities has been calculated; see, e.g., Ref [7].

On the lattice, the errors introduced by discretization modify the formulas of χPT. For
staggered quarks, the modified form of χPT has been worked out [8]: It is called “staggered
chiral perturbation theory” (SχPT). SχPT also gives the leading corrections from finite volume.
Further, since SχPT includes discretization errors, it helps control the extrapolation to the
continuum. We use SχPT for our fits to lattice data. All data shown below have already been
corrected for finite volume effects with SχPT.

Figures 1 and 2 present the analysis that determines the quark masses. The symbols ×, �,◦, and � show a small subset of our lattice data, with errors too small to be visible. The � and
� are π̂ points, with valence masses my = mx; while the × and ◦ are K̂ points, with my held
fixed to one of three different values, giving three sets of points for each symbol.

In Fig. 1, the dark solid lines are the result of a single SχPT fit to all the data, with confidence
level CL = 0.28. Setting valence and sea quark masses equal and extrapolating to the continuum
gives the lighter solid lines. We then adjust m′

s, the simulated mass of the strange quark, until
both the K̂ and the π̂ hit their physical masses at the same value of mx. This gives the two
dotted lines, and from them we get a determination of ms and the average u, d mass, m̂.

To obtain mu and md separately, we continue the upper dotted line in Fig. 1 until the mass of
the K+ is reached. The region of the continuation is magnified in Fig. 2. This is an extrapolation
in the valence mass mx, with the other masses (sea masses m̂, ms and valence mass my = ms)
fixed at their physical values. The up quark mass, mu is the value of mx that gives the K+ its
experimental mass. In principle, the up and down sea quark masses should also be adjusted away
from the their average, m̂, but we cannot do this since all our simulations have m′

u = m′
d = m̂′.

However, the error introduced can be shown to be negligible.
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Figure 1. Extrapolation/interpolation of π
and K meson squared masses as a function of
valence quark mass mx divided by the strange
sea quark mass in the simulation, m′

s.

Figure 2. Blow-up of region at left
center of Fig. 1.

Figure 3. Fit and extrapolation of fπ data

The “decay constant” of the K or π meson, fK or fπ, is the “wave function at the origin”:
It determines the probability that the two quarks in the bound state are close. When they are
close, the quarks can annihilate by the Weak Interactions, ultimately producing a muon (µ)
(or electron) and a neutrino (ν). If fK and fπ are computed in QCD, then the experimentally
measured decay rates for K → µν and π → µν determine parameters of the Weak Interactions:
“CKM matrix elements” Vus and Vud. Knowing Vus, Vud and other CKM matrix elements is
crucial to testing the Standard Model of particle physics and searching for new physics.

Figure 3 shows fπ vs. the sum of valence masses mx+my, in units of r1, a known length scale.
Coarse lattice values of the quark masses have been adjusted by a calculated renormalization
constant, Zm, to correspond to those of the the fine lattices. The five sets of �’s are all coarse
lattice points with different sea quark mass m̂′; the two sets of �’s are fine lattice points with
different m̂′. The lines through the points are the results of the same SχPT fit that was shown
in Fig. 1. Data for masses and decay constants are fit simultaneously to give better numerical
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control. The dotted line is the result after extrapolating to the continuum, setting valence and
sea quark masses equal (“full QCD”) and adjusting m′

s to its physical value ms. The ◦ shows
our result for fπ after extrapolation to 2m̂, the physical value of mx + my for a π meson. The
experimental point shown assumes an alternative determination of Vud; the agreement of our
lattice result with experiment is excellent.

3. Results and Outlook
Our results for quark masses [9, 5] (in MS scheme at scale 2 GeV) and decay constants [5] are:

ms = 76(0)(3)(7)(0) MeV , mu = 1.6(0)(1)(2)(1) MeV , fπ = 129.5 ± 0.9 ± 3.6 MeV
m̂ = 2.8(0)(1)(3)(0) MeV , md = 3.9(0)(1)(4)(1) MeV , fK = 156.6 ± 1.0 ± 3.8 MeV
ms/m̂ = 27.4(1)(4)(0)(1) , mu/md = 0.41(0)(1)(0)(4) , fK/fπ = 1.210(4)(13) .

The first two errors in each case are from statistics and lattice systematics; while the
additional errors on the masses are from perturbation theory and electromagnetic effects,
respectively. The result for mu/md rules out, at the 10σ level, the possibility of mu = 0.
This puts to rest a longstanding proposal [10] that the up quark could be massless. A massless
up quark could have solved the “Strong CP Puzzle” [11]. Alternative solutions are now more
likely: e.g., the “axion” [12], a possible component of Dark Matter.

Our result for fK/fπ implies |Vus| = 0.2219(26), which is consistent with the world average
value |Vus| = 0.2200(26) [13] from alternative methods. Runs planned for the near future, as well
as those now in progress, should reduce the error on our result for |Vus|, making it significantly
more precise than the current world-average determination. Similar methods can be used to
study mesons with one heavy (charm or bottom) and one light quark. Such studies, now in
progress in collaboration with the Fermilab and HPQCD groups, promise to give a wealth of
information about other crucial CKM matrix elements.

Finally, we note that there is still a theoretical issue with the use of staggered quarks in
this context. However, the agreement of existing results with experiment, as well as a growing
body of direct studies of the issue [14], give us confidence that no fundamental problem exists.
Further studies, by us and others, are in progress.
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