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ABSTRACT

HYBRID QUANTUM SYSTEMS: COMPLEMENTARITY OF QUANTUM PRIVACY
AND ERROR-CORRECTION, AND HIGHER RANK MATRICIAL RANGES

Mike Ignatius Nelson Advisors:
University of Guelph, 2021 Dr. David W. Kribs
Dr. Bei Zeng

The idea to transmit classical bits simultaneously with quantum information over a quan-
tum channel has been explored since near the beginning of research in quantum information
theory and computation fields. The process described, which we refer to as hybrid quantum
computing, has been examined first with purely information theoretic considerations [I], and
then later demonstrated to have benefits over using independent channels [2, [3], 4, [5] [6] [7].
The subject has since lay mostly dormant, until more recent work demonstrating the exis-
tence of good hybrid quantum error codes, as well as generalized mathematical results in the

structure of error correcting codes.



In this thesis, I outline contributions to understanding criterion for the existence of
hybrid codes, natural extensions of quantum computing ideas to the hybrid case as well
as demonstrate some interesting practical examples. The thesis is organized in three |or
four] main parts. The first considers the subject of the complementary relationship between
quantum privacy and error correction in hybrid computing scenarios. Next, I extend these
ideas to the approximate cases. Finally we see the introduction of higher rank matricial
ranges as a tool to ascertain the existence of hybrid codes and benchmark the hybrid capacity

of quantum channels.
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Chapter 1

Introduction

1.1 Introduction

Quantum mechanics was a well-developed physical theory by the end of the first few decades
in the 20th century. The subject lays a fundamental understanding of the nature of the
material world in which we live. However, while this understanding is at the heart of the
technologies powering the modern information and computing age, there are unique and
powerful aspects of the theory that have long since not fully realized their possible practical
applications to information and computing. Beginning with ideas conceived in the early 1980s
[8, 9] and continuing up until the present day, quantum computing is now a major scientific,
engineering and entrepreneurial endeavour around the world. On one hand, advances in
traditional computing systems (usually, and hereafter, referred to as classical computing)
have typically depended on increasing the density of transistor circuits built into processing
units using photolithography. There is a physical limit to the gains made this way, at

which point quantum mechanical effects disrupt the principles of electronics circuits that



classical computing systems operate with. On the other hand, outside of that context,
quantum mechanical phenomena are by no means undesirable. The density of information
that a quantum system can represent and manipulate (compared to a classical one), owing
to unique physical phenomena including superposition of states and quantum entanglement,
in theory enables quantum computing processes to outperform their classical counterparts.
The advancement in capability is anticipated to better simulate inherently quantum systems
and solve hard problems like factoring integers (which has implications for security and
encryption in global communications).

That last application would inspire curiosity as to why there has not yet been a break-
down of security systems based on classical computing approaches. While a few quantum-
computing based algorithms have been developed and shown to be superior, developing an
actual quantum computer to achieve these theoretical targets is a highly non-trivial under-
taking. One of the major challenges that needs to be overcome is to protect the physical
systems that store and manipulate quantum information from disruption due to quantum
decoherence and other noise effects. Physical systems that by themselves exhibit quantum
phenomena of interest are difficult, nay impossible, to completely isolate from the interfering
environment. In fact, carrying out a computation on said system requires precise manip-
ulation of, as well as measurements to investigate, the system’s state. These very acts of
control and measurement couple the quantum system to the environment. Ultimately, quan-
tum computing units are highly susceptible to defects. It would not be possible for quantum
computing as a venture to have developed any further until a successful demonstration of
robust models of quantum computing (see Shor’s result).

Quantum error-correction thus developed as a sub-field to address the above problem.

This study is about almost as old as quantum computing itself; and to this day there is



active research into various topics in developing so-called fault tolerant quantum computers.
Quantum error-correction developed following classical analogues of preserving information
fidelity and robust computation. The underlying idea, as we will shortly see, is to add
redundant bits to the information. This redundancy provides a safeguard and increases the
likelihood that the intended quantum information is carried through a computation process.
From the perspective of a physically implemented system with a fixed size, this means giving
up some of the system’s ideal capacity in order to increase robustness against the effects of
noise. For this scheme to be successful, one needs to adequately identify and model the
noise that disrupts quantum information. Then, given a good description of what faults
occur on the system, quantum information is stored in the physical system in a suitable way.
This enables detection of what faults may have occurred in the computation process, and
subsequently a determination of what corrective actions must be taken. The way in which
quantum information is represented (or encoded) on a system in order to allow recovery from
defects is referred to as a quantum error-correcting code.

An important question arises out of the above considerations: how do we optimize the
useful capacity of a quantum computing system? Intuitively, one would expect that the
more ‘noisy’ a quantum system is, the less useful information it can robustly encode and
compute. One would be correct. This assertion can be made more precise quantitatively,
as we will later see. This consideration of the useful capacity of a quantum system is at
the heart of the main motivations and outcomes of this research thesis. More to this, are
investigations into channel capacity increases by transmitting through it classical and quan-
tum information simultaneously. Heuristically, this approach considers the ability to make
a quantum channel more useful by transmitting classical information through it, possibly

where no more quantum information could have been robustly represented because of noise



effects. The simultaneous transmission and manipulation of classical and quantum informa-
tion over a channel is referred to as Hybrid Quantum Computing. Error-correcting codes
that protect jointly classical and quantum information in a system we will refer to as hybrid
quantum error-correcting codes, or hybrid quantum codes.

Readers familiar with quantum computing will be aware that classical information is
often used in conjunction with quantum computing schemes. Protocols such as quantum
teleportation and LOCC schemes (local operations and classical communication) make use of
separate classical communication channels. In the context of quantum computing protocols,
the ability to transmit classical messages over a separate channel is largely considered trivial.
The practical advantages of overlaying classical information on a quantum channel have been
previously discussed in literature [2, 3]. These considerations, together with recent results
in finding good hybrid quantum codes have motivated further studies into the subject.

In this thesis, we outline three main research outcomes with direct applications to hybrid

quantum codes and private quantum channels.

1.2 Literature Overview and Thesis Structure

In Chapter 2, we lay down fundamental concepts and discuss some mathematical prelimi-
naries. The chapter summarizes some introductory material in quantum information science
([10] is a primary reference), and discusses private quantum channels and the complementary
map.

Chapter 3 discusses the complementary relationship between quantum error correction
and private quantum systems. In this chapter, we discuss operator algebra structures that
characterize correctable and private algebras, and thereby extend complementarity to a

framework appropriate for hybrid quantum codes. The material in this chapter was published
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in a research article here [I1].

In chapter 4, we turn our attention to quasiorthogonality of operator algebras and their
connection to quantum privacy. We introduce a notion of relative privacy and give a result
which ties that to approximate quasiorthogonality. A discussion on some practical examples
follows. This chapter is based on a published research (see [12]).

In chapter 5, we introduce a definition of the joint rank-(k : p) matricial range motivated
by its application to hybrid quantum error-correcting codes. The main result shows a lower
bound for the size of a physical system that admits hybrid error-correcting codes of given
parameters. A number of considerations following the result are given, followed by some
examples. The chapter concludes with a discussion on advantages of hybrid quantum codes.
This material was published in an article (see [13]).

Chapter 6 concludes the thesis and discusses directions for further works.



Chapter 2

Preliminaries

2.1 Quantum Information: States, Evolution and
Measurement

We begin with a review of some important fundamental concepts in quantum information.
Most of the material presented here is fairly standard; there are a number of texts that
one can refer to (see for instance [10]). The goal is to then extend these ideas to certain
generalizations, including the introduction of hybrid quantum information, which will lay
the requisite foundation for the research this thesis details.

The postulates of quantum mechanics are often presented in introductory material for
the subject. These are a mathematical axiomatization of the framework to which quantum
mechanical systems conform. I will discuss the state space, evolution and measurement of
a quantum system. These will first give us the qubit, which is the fundamental unit of

information. Then evolution operators, which describe both the noise that disrupt qubits



and the recovery operations that restore them. Finally measurement, which destructively
probes the state of a quantum system, and is essential to error-correcting procedures.

In a classical computer, the basic unit of information is a bit, which takes on one of two
values, ‘0" or ‘1’. Information is represented by an n-bit string, which takes on 2" distinct
states, for some positive integer n. Generally, processing tasks are carried out by series of
mappings between bit strings of different lengths.

The quantum computing analogue for a two-level unit of information is the qubit. While
quantum mechanics allows for more general multi-level systems, or qudits, as well as infinite-
dimensional systems, it will be sufficient to restrict our considerations to two-level systems.
I will occasionally point out where the mathematical frameworks encompass more general
multi-level quantum systems. The physical systems that quantum computers are imple-
mented on exist in collections of configurations, or states, that are prepared, manipulated
and then read-off. The first postulate tells us that the system’s state can be represented
by a unit vector in a complex Hilbert space, H. For the qubit, this is the two-dimensional
complex Hilbert space C2. The standard basis for C? is typically represented in the following

way:

0) = and |1) = :

using Dirac’s bra-ket notation. These are the counterparts of classical bits. Any complex
vector |¢)) = «|0) + S|1) represents a valid state, provided the normalization condition
|a)? 4+ |B]* = 1 is satisfied. This condition ensures that the total probability of the two
possible outcomes of a measurement in the computational basis is unity (see the discussion
on measurement below).

Two things are important to point out here. One is that the vector sum is referred to as



a linear superposition of states. The other is that measurement outcomes are not altered by
relative phases; meaning the state |¢p) = «|0) + ~v3|1) where 7 is a complex number of unit
modulus has the same measurement statistics as the state [¢) = «a|0) 4+ 5|1). However, |¢)
and |¢) are distinct as states. The differing ways in which linear operations on quantum states
add or cancel out in their relative phases, as well as operations on superpositions of states,
are two of the key aspects of quantum theory that makes it more powerful computationally
than its classical counterpart.

Just as there are strings of classical bits, one has composite systems, where multiple
qubits are represented by tensor products [¢)1) ® - - - ® |1),) which are vectors belonging to a
2"-dimensional composite Hilbert space H ® -+ - ® H.

So far, this description holds valid for quantum systems with perfect information about
the states. Physicists refer to this as a pure state. One could alternatively describe a
statistical ensemble of states, which would better represent the most general case in physical
implementations. This includes situations in which there is uncertainty in which pure state
a qubit is. The aforementioned general description is given by a density operator, which is

a linear operator of the form
p=>_ il Wy,
J

where the coefficients p; are take from some classical probability distribution, and |t);) (1] is
an outer product |1)(]1)))T of the pure state vector |1)). Mathematically, a density operator
p is a positive semi-definite Hermitian matrix with trace(p) = 1. The density operator of a
pure state satisfies the condition p = p?. For a qubit, the density operator is a 2 x 2 complex
matrix (p € Ms). For the rest of this thesis, M, is the set of all n x n matrices with complex
entries. The density matrix of a qubit is itself a vector of a 4-dimensional Hilbert space, but

we will refer to it as an element of a matrix algebra. Just as with the vectors of pure states,



the density operator of n qubits comprises tensor products of single-qubit density operators
with the form p; ® -+ ® p,,.

Following from the normalization condition, an operator U that transforms pure state
vectors is unitary, satisfying the UUT = I. Ut is the Hilbert space adjoint of the operator
U. In matrix representation, U is the transpose matrix of U with its entries conjugated.

In the density operator description of quantum systems, we consider the evolution of open
quantum systems. Closed quantum systems are completely isolated from their environment,
and undergo unitary evolution. That is to say, the state |1)) evolves to a new state U|i)
described by the action of the unitary operator U. However, more generally, we should
consider open quantum systems, which have some interaction with an environment. Suppose
the quantum system of interest is labeled S, the entire system will be a composite system
Hs @ Hpg of S together with an environment £. The composite system is closed and evolves
via unitary operators. Suppose a density matrix p = ps ® pg of the composite system
undergoes evolution described by the unitary operator U. Then p is transformed to UpUT.

Since the system S is of primary interest, we can define a map

E(ps) = tre(UpU")

that describes the evolution of just pg by the partial trace over the environment £. The map
& defined in this way has a number of properties. It is linear, which makes it valid for mixed
state density matrices. It is also a completely positive map, and preserves the trace of the
operator it acts on. Such completely positive, trace-preserving (CTPT) maps &£, which we

will generally call quantum channels, acting on a density operator p have a so-called operator



sum representation

Ep) = 3 Eipk}.

The {E;} are called Kraus operators. They act on the underlying Hilbert space of states
and satisfy the condition ), EIE; = I. Of primary interest will be channels that represent
errors affecting a state. These will be referred to as error channels, or sometimes just channels
where there is no confusion in the context. Another class of evolution operators which will
be discussed are recovery operators, which restore a disturbed quantum state to a previous
intended one, once the nature of the error operation which occurred has been determined.
A special set of unitary operators on C? that will very frequently be employed are the

Pauli operators, which in the standard bases, together with the identity operator, are :

Tensor products of these operators acting on parts of composite systems will often be encoun-
tered, and a compact notation for such is given here. Consider a system of n qubits, which is
represented on the Hilbert space H = (C?)®", which is n-fold tensor products of C?. Each of
the n qubits is represented on one of the C? in the product and an operator of the form X; is
the X operator acting on the i-qubit, and identities elsewhere: IQ I ®--- @ X; ®---® [. In
similar fashion, we can have Z; Z5, X;Y3 and so on; the notation suppresses identity operators
and tensor product symbols, with subscripts to indicate where the operators act.

Lastly, we briefly look at measurement. In quantum mechanics, specifically in the con-
text of finite-dimensional multi-level systems, a measurement operation is represented by a
Hermitian operator (A is Hermitian if AT = A.) These operators have a few special prop-

erties. They have a set of orthogonal eigenvectors which span the vector space on which
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they act, and they have non-negative eigenvalues. Any measurement operation that probes
the physical state of a system can be represented by such an operator, whose eigenvalues
label the outcomes of the measurement, and whose eigenvectors represent the corresponding
physical state obtained by the outcome. Because the eigenvectors of a measurement oper-
ator span the state space, any state vector can be written as a linear superposition (with
appropriate coefficients) of eigenstates of the measurement operator. According to the Born
interpretation, the square modulus of each coefficient, or ‘amplitude’, is proportional to the
probability that the corresponding eigenstate will be observed. Once a system is measured,
its sate is said to have ‘collapsed’ to the outcome of the measurement, and in the absence of
an evolution, subsequent measurements will yield the same outcome.

Note that the Pauli operators X, Y and Z are also Hermitian, and are indeed also mea-
surement operators for two-level systems in three different sets of basis states. The eigen-
states of the Z operator coincide with the standard basis {|0),|1)}. These are particularly
important, and are referred to as the computational basis. The Pauli group of measure-
ments is used extensively in quantum computation. I make a remark about measurement
in quantum mechanical systems. A quantum state, represented by its state vector, can be
said to describe the probability distributions of measurement outcomes for different Hermi-
tian operators. Once such a measurement takes place, and the state has collapsed to the
observed result, the information in the original state is lost: further manipulations to and
measurements of the state no longer happen according to the original state of the system.
In a significant way, information is lost when a measurement occurs to probe for some in-
formation. Because of this, in quantum information and computation, measurements have
to be chosen carefully, and carried out only when necessary. As we see in the discussion

of error correction that follows, carefully constructed measurements can obtain only some
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information which is useful in recovery procedures, while preserving the information that is

essential to a computation process.

2.2 A Brief Summary of Quantum Error Correction

In the creation, manipulation and retention of information, there is a requirement to ensure
robustness and fault-tolerance. This is just as true for classical computing as it is essential
for quantum computing. The techniques of detecting and correcting errors in the quantum
scenario were in fact inspired by their classical counterparts. Let us briefly consider a simple
error correcting scheme for classical information.

Suppose that given a stored bit there is some probability p that the bit is reversed, or
‘flipped’. This might lead to undesired computing outcomes. A simple scheme of protection

will be to append the bit with two extra copies of itself, in the manner

0 — 000

1 —111.

This is known as a repetition code. The virtue of this scheme lies in the decreasing likelihood
of larger proportions of the bit string being affected by the described error. In a ‘majority
voting” means of detecting and correcting a possible error, a string is ascribed the value
corresponding to the most occurring bit value it contains. For instance, if one encountered
010 after transmission, then one expects the most likely correct string would be 000, and
one proceeds after the necessary correction. This scheme is not necessarily perfect for the

error. However, a straightforward calculation shows that the scheme fails with a probability
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3p? — 2p?, which is strictly less than p corresponding to the use of a single bit with no error
correction , whenever p < 0.5.

The above classical example shows a suitable code for a given noise model (a bit flip error
with probability p < 0.5) where adding redundancy (or trading off capacity) increases the
robustness of an information channel. The bit strings 000 and 111 are referred to as logical
‘0" and logical ‘1’ respectively, and show how 3 bits are effectively used to compute 1 bit due
to the likelihood of errors in transmission.

Error-correcting codes for quantum computing are developed based on the same principle,
except there are some subtleties that need to be addressed. First, the no-cloning theorem
asserts an arbitrary quantum state cannot be copied. Another is that measurement of a state
collapses it into an eigenstate of the measurement operator. Prohibition of state cloning has
ramifications on the general means in which states can be transferred and coded onto physical
systems. The measurement consideration is important because we would like to detect and
correct errors on quantum states, and not destroy them. Thus the means by which a state is
examined for errors needs to be carefully designed to make detection and correction possible,
while preserving the full linear superposition.

The three qubit bit flip code described briefly here describes how a code is constructed
in the quantum case for a similar type of noise model. The error operation is the bit flip
operator, the Pauli unitary X, and the channel is one in which with probability p a qubit
|1) is transformed to the state X|i). Restricting to the cases where majority voting would
be successful in the classical case, we assume the error affects at most one qubit at a time,
or not at all. There are then four cases that need to be distinguished. A similar type of

encoding is used, utilizing CNOT gates to achieve the encoding
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|0y — |000)

1) — [111).

By linearity of quantum operations, we can assume that the state «|0) 4+ ]1) is encoded
to a logical state represented on the physical system as «|000) + |111). Thus in spite of
no-cloning constraints we can attain a representation of a single qubit logical state on a
physical system. It is undesirable to examine the entire state at the end of the channel for
instances of qubit flips: this would cause the logical qubit to collapse to one of its basis states.
We wish to preserve the transmitted qubit, possibly for later utilization, thus a collapsing
measurement is non-ideal. We can however carry out a syndrome measurement, represented
by a pair of Hermitian operators Z;Z, and Z5Z3. 1 omit the full details here, but this will
tell as whether the first and second qubit differ (or second and third, respectively). These
outcomes will give us information about whether one of the qubits has been flipped, but will
not perturb the probability amplitudes « and [ of the original qubit that was encoded. A
successful syndrome measurement then leads to an appropriate recovery operation; flipping
any affected qubit. The error-correcting scheme is then complete. The quantum three qubit
flip code also provides an improvement given the condition p < 1/2. Reviewing this fairly
simple code allows us to demonstrate how error correction is possible in spite of a couple of
subtle considerations in the quantum case.

There is one other issue that needs addressing: the most general class of errors that can
occur on a pure state qubit is an infinite continuous set of unitary operators. This is not at

all prohibitive in constructing error-correcting codes that can correct arbitrary errors on an

14



encoded qubit. The solution is an error-correcting scheme that corrects a discrete subset of
errors that span the set of applicable unitary error operators. An example of this is the Shor
nine-qubit code [14], which protects against an arbitrary error on at most one qubit. The
Shor code can detect and correct the set of operators {I, X, Z, XZ}. A unitary operator
can be written as a sum of operators belonging to this set. Due to this, the action of an
arbitrary error E|¢) can be written as a sum of the four terms |¢), X |¢), Z|1)) and X Z|¢),
with appropriate coefficients. Measuring the error syndrome will cause the state to collapse
to one of those terms, with a corresponding syndrome value, and the appropriate correction
operation will return the state to [¢)). In this work we do not necessarily always concern
ourselves with error-correcting codes for arbitrary errors on affected qubits. However, we
will always describe error channels by some discrete set of error operators, for which some
error-correcting scheme exists.

Considering the two practical examples above illustrates the working ideas behind quan-
tum error correction. We can describe a general theory of the subject, and this will allow
further generalizations to the theory hybrid quantum error correction, and connections to
private quantum channels, as we will later see. Fundamentally, we say that for quantum
error correction to be successful, then for an error channel £ acting on an arbitrary density

operator p of a state supported on the code subspace C, we have

(Ro&)(p) =p. (2.1)

As shown, a logical system is encoded onto a larger physical one, using some suitable
encoding circuit. The encoded system of k qubits will be represented on some 2* subspace C
of the physical Hilbert space. As a vector subspace, there is projector Po onto the code. We

would like for the relevant set of error operators { E;} that there is a syndrome measurement
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identifying which error has occurred, and subsequently a recovery operation to recover the
encoded qubits. Altogether, each image of C' under the action of any FE; must be faithful
representation of C'. Additionally, every E;C' has to be completely distinguishable from
every other. These requirements are captured by the well-known Knill-Laflamme quantum

error-correcting conditions, a set of equations concisely written as

PoE'E; Py = ay; P, (2.2)

for some complex numbers {a;;}. If {|¢;)} is a set of basis vectors for the subspace C, then

the equations are alternatively written as

(G| ELElc;) = andiy. (2.3)

We note a connection between these equations and the notion of higher rank numerical
ranges [15]. Given a matrix A € M,, and positive integer k > 1, the rank-k numerical range

of A is the set of complex numbers given by

A(A) ={A € C: PAP = AP, for some rank-k projection P}.

The k =1 case captures the classical numerical range of the matrix A,

W(A) = {(DlA]), [l = 1}

When k > 2, the generalizations have interesting mathematical structures and are useful
in quantum error correction [16, [I7, [I8]. In particular, note that, by the Knill-Laflamme

equations (2.2), an error model with noise operators F; has a k-dimensional correctable code
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if and only if the rank-k numerical range of every pair EZT E; is jointly non-empty; that is,
there is a common rank-k projection (which defines the correctable code subspace) that
satisfies the condition for A;C(EZT E;) to be non-empty simultaneously for all pairs ¢, 5. This
motivates the definition of the joint rank-k numerical range Ai(A) seen in [18]. Given an

m-tuple of matrices A = (Ay, -+, Ann), Ax(A) is the following set:
{(A1,--,A\n) € C™ 2 PA;P = \; for some rank-k projector P and all j =1,---,m}.

In Chapter 5 this generalization of numerical ranges is extended further to the case of hybrid

quantum codes.

2.3 Hybrid Quantum Classical Error-Correcting
Codes

I will now turn to discussing error correcting codes for the simultaneous transmission of
classical and quantum information over a channel. This topic has had various considerations
in literature (see [I}, 19] for example), however recent constructions of good codes [20] have
motivated renewed interest and further studies in hybrid codes. The research outcomes
outlined in this thesis are largely motivated by, and center on theoretical and practical
considerations for the hybrid transmission of information.

In briefly laying down some fundamental aspects of quantum information theory in this
introductory chapter so far, the practical goal is to transmit some k-qubit quantum state
|1)). Owing to the need for error-correction, this state is encoded in some subspace, or more

generally, subsystem of the n-qubit physical system that represents the working quantum
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computer. Now, in addition to the quantum state, our objective is to recover some m-bit
classical word, which would be one element of an M = 2™ sized classical alphabet. To do this,
we will need to find a collection {C” : v = 1,--- , M}, of M correctable quantum codes to
be used over the channel. Based on v appropriately selected via some classical distribution,
we will encode our qubit using an appropriate encoding circuit for C. Transmission and
the necessary error-correcting procedure then follow.

As pointed out in [20], there are rather trivial ways of doing this. The least interesting
would be to simply use separate channels. Further, by partitioning, a KM dimensional
quantum code can transmit M words each using a K-dimensional subcode. Alternatively,
we could trade off quantum capacity for classical: say by fixing the basis states of a qubit
subsystem to designate classical words. This particular research article succeeds in demon-
strating better performing hybrid codes than these trivial constructions. Through various
approaches, they find hybrid codes based on the theory stabilizer quantum codes, which
correct errors on up to a certain number of qubit subsystems. In the relating works I outline
in this thesis, we will see a more general framework for hybrid codes: subcodes need not be
of the same dimension, or even the same qudit-type, and so on. Ultimately, we transmit
some number of qudits, together with a classical word.

For the particular case of equally sized subspace codes, one can extend the Knill-Laflamme
conditions to the hybrid case [20]. Suppose {|c)} is a set of basis vectors for one of the M
K-dimensional subspace codes C”. Three requirements need to be met. The first, differing
code basis states are distinguishable for different classical labels v # pu. Secondly, the
error operators map codes to faithful representations in the physical Hilbert space. Lastly
that there is a syndrome measurement that determines which error has occurred if any,

and also distinguishes which of the codes was transmitted before an error occurred. These
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requirements are summarized by the equations

<CZ’E]1EZ|C§L> = @Zléij(s;w; (24)

where the numbers o}, now depend on the classical labels v.

2.4 Private Quantum Channels and Complementarity

Quantum Channels

2.4.1 Private Quantum Channels

Now we look at a discussion of quantum privacy which motivates a definition for private
quantum channels.

Private channels in quantum cryptography were introduced as an analogue of the classical
one-time pad, or Vernam cypher. The objective is to transmit information over a channel
between two participants, ‘Alice’ and ‘Bob’ while mitigating the risk of an eavesdropper
‘Eve’ obtaining information about the shared message.

In the classical information scenario, Eve could copy and access the n-bit message M.
Alice avoids this by encrypting M with an n-bit preshared key K using the ‘exclusive or’
operation M @& K (bit-wise addition modulo 2). The encoded message M' = M & K is
transmitted over the channel. This process is reversible, and Bob recovers the message with
M = M' & K. Eve’s copy of the message would be M’. Given M’ intercepted over the

channel, for any alternate message M, from Alice there is a key K, such that
MO EB KO == M EB K
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Without knowledge of the specific key K, Eve obtains no information about M. The opera-
tion is aptly named the ‘one-time pad’ because Alice and Bob can only use K as a key once
to ensure the privacy of their transmission.

We now turn to the quantum privacy scheme. Alice seeks to send some n-qubit message
represented by a density matrix p, so that Eve recovers no information about the state. As is
the running theme, the quantum scenario has special features not present in classical privacy
schemes. The non-cloning theorem forbids Eve from making a copy of an arbitrary quantum
state over the channel. Further, any attempt by Eve to probe the state for information will
disturb the state, immediately informing Alice and Bob of her intrusion.

To encode, the key Alice uses specifies an element set {U;} of N reversible (unitary)
operations to operate on p, via some probability distribution p;, with > p; = 1. To account
for the most general class of reversible operations Alice can carry out, the state is appended
with an ancilla to obtain p ® p,, and the unitary applies to this composite system. The

transmitted state is

P =Ui(p® pa)U},

and Bob applies the inverse operation U; ' which he has prior knowledge of. Eve’s description

of the channel after encoding is

sz (p ® pa)U,

In order to deny Eve any information of transmitted state, her description of the encoded
message needs to be independent of p. Suppose there is some fixed density matrix py such

that for some subset S of possible messages contained in the Hilbert space H of states, we
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have

sz (p© pa)U) = 0

for any p € S. We say that ¢ is a private quantum channel for the subset S. Recall that
from an operational perspective, ® is an eavesdropper’s description of the channel over which
messages are transmitted. Bob can always recover the message with the appropriate key op-
eration, but Eve has no knowledge of what was broadcast. In this way, the channel privatizes
transmitted messages. This motivates the formal definitions of private quantum channels,
subspaces and algebras I discuss later in this thesis. A simple example of transmitting a
single qubit privately is given as follows. Given an arbitrary single qubit density operator,

one can check that

1 1
d(p) = Z(p + XpXT+YpYT 4+ ZpzT) = 31

So in this example, we have the set of single unit unitaries {/, X,Y, Z} each applied with
probability i. Eve’s description of the channel will always be %I irrespective of which density

operator was transmitted, but Bob can recover the qubit knowing which unitary was applied.

2.4.2 Complementary Quantum Channels

Suppose that a quntum system of interest is labeled A and is represented on the Hilbert space
Ha. The density matrices of the system belong to the set of linear operators on H 4, and
a quantum channel is a completely positive and trace-preserving map ® : L(H ) — L(Ha)
acting on H 4. Recall that the properties of a quantum channel were determined through
the description of open quantum systems. The Stinespring dilation theorem establishes this

[21]. Given a quantum channel @, there is a Hilbert space H¢o (with dim He < (dim H4)?),
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a state |¢¢) € He and a unitary U on ‘Hy ® He such that for all p € L(H ),

®(p) = Trc ol (p @ [Yo)Xvel|) = Trc oV (p), (2.5)

where here Tre denotes the partial trace map from L£(Ha @ He) to L(Ha), the map U(-) =
U(-)U*, and V(-) = V(-)V* is the map implemented by the isometry V : Hy — Ha ® He
defined by V|¢) = U(|¢)) @ [1h¢c)). In effect, the channel ® describes the evolution of an open
quantum system A of interest, seen connected to its environment C, and together comprise
a system that evolves via a unitary.

The complementary map ®¢ of ® essentially describes how the connected environment

He evolves: @ is defined from L(H ) to L(He) via

®(p) = TraoV (p). (2.6)

Figure below summarizes schematically how complementary maps are defined from con-

sidering open quantum systems together with their environment. We will consider a unique

Ha fa & He ®(p) € Hy

Tre

p Ulp & pc)

TTy

®“(p) € He

Figure 2.1: Complementary Maps
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way of defining the complementary channel ®¢ in this thesis. If there where some alterna-
tively defined copmlementary channel ® : L(H4) — L(Hcr) such that (p) = Trer VipVy*
and ®'(p) = Tra VipV* with Vi : Ha — Ha®Hcr, there is a partial isometry W : He — Her
such that ®'(-) = W®C(-)W*. When both Ho and Her have dimension equal to the Choi
rank of @ [], they are said to be minimal and W turns out to be a unitary operator. The
complementary channel ®¢ is unique in this sense, up to some unitary transformation.

See [22], 23, 24] for further details on complementary channels. Here we only note addi-
tionally how the Kraus operators for the two maps ®, ®¢ are related: If ® has operator-sum
representation ®(p) = > . VipV;* with Kraus operators V; € L£(H) (which are guaranteed

to exist by the Stinespring theorem), then the complementary map has representation,
O (p) =Y Tr(pV; Vi) li)],
]

where {|i)} is a canonical basis for C? identified with H¢, and d = dim Hc.

In this chapter, we have reviewed some fundamental aspects of quantum information,
discussed complementary channels and introduced hybrid quantum error correction for the
simultaneous transmission of classical and quantum information. We may now proceed to
present research outcomes that make up this thesis. Further definitions and introductions

will be made where needed.
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Chapter 3

Quantum Complementarity and

Operator Structuers

3.1 Introduction

In the previous chapter, we briefly presented quantum error correction, quantum privacy and
complementary quantum channels. Quantum complementarity is the inherent relationship
between privacy and correction via complementary channels. A quantum code is correctable
for a quantum channel if and only if it is private for the channel’s complementary map
[25]. In this text, we will make this assertion more formal for the context of the operator
algebra structures that encompass hybrid codes. Before proceeding, we can give a heuristic
discussion of the concept, building on the practical motivations for the formal definitions of
quantum correction and quantum privacy discussed in Chapter 2.

The goal of a quantum error-correcting code is ideally to recover an arbitrary quantum

state (density matrix) supported on the code by some appropriate procedure, after the effects
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of a noisy channel. In effect (refer to Figure , if we suppose Alice prepared a state p
and transmitted it through a channel described by @, there is always some operation Bob
could carry out on ®(p) to recover p in the ideal case. If this were possible for an arbitrary
p, then in some sense the information represented by p is intact in ®(p), even if ®(p) is not
exactly p. This information could not have ‘leaked’ into the environment, whose perspective
we saw as being described by the channel’s complementary map ®“(p). Another way of
saying this is that quantum information of an arbitrary state cannot both be represented
on ®(p) and ®“(p): that would manifestly be a violation of the no-cloning theorem. This
is precisely the idea behind quantum privacy: the quantum information of p is private for
the complementary map ®“(p). This thus leads us to the statement of complementarity
presented in the opening paragraph of this section.

This linkage of two fundamental topics in quantum information has more recently [26]
been extended to the complementarity of appropriate notions of correctable operator alge-
bras [27, 28] and private subsystems and algebras [29, 30, 31} [32], 33|, 34 35, 136, 37, 26],
and to a setting that embraces descriptions of hybrid classical and quantum information
[38, [T, 2, 3], 4, 5], 20] [7]. Historically, quantum error correction is more developed than the
theory of private quantum codes and algebras, with origins going back over two decades to
the beginnings of modern quantum information science [39] [40} 41| [42], 43|, 44]. The comple-
mentarity relationship suggests that developments in one field could at the least influence
progress in the other. Of particular interest here, we note how completely positive map
multiplicative domain structures and techniques [45] have been used to describe traditional
quantum error correcting (subspace and subsystem) codes in terms of operator structures
associated with quantum channels [46] 47, [48].

There are three main goals of the discussion in this chapter. First, the description of
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error correcting codes for a quantum channel in the framework of multiplicative domains is
extended to the context of finite-dimensional algebras. Hereafter, by ‘algebra’ we mean a
C*-algebra, which is a Banach Algebra with a *-operation that satisfies the properties of the
Hermitian Adjoint of operators on a Hilbert space (see [49] or further discussion). The next
step is to describe codes and algebras private to a given quantum channel through the null
spaces of particular operators. By relating these to corresponding multiplicative domains,
quantum complementarity is cast in terms of operator algebras. In the last part, we consider
the special case of algebras privatized to a quantum state, and give dimension inequalities
that compare correctable algebras with their complementary private algebras.

A more detailed organization of the chapter is given here. We start with needed back-
ground material on complementary channels, and extend the discussion of correctability of
errors and privacy in the introductory chapter to correctable and private algebras. A new
simple proof of perfect complementarity is given. In section 3, quantum error correction
in terms of multiplicative domains is extended to algebras. Following that, we identify ap-
propriate null spaces that describe private algebra, and explicitly show the complementary
relationship between the two structures. The special case of unital channels (channels that
preserve the identity) is considered, showing its particular features. The penultimate sec-
tion is a quantitative comparison of pairs of correctable and private algebras in terms of
inequalities relating their dimensions.

The contents of this chapter are adapted from research findings co-authored and published
with various collaborators [11]. All authors made contributions to the preparation and review

of the original manuscript.
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3.2 Complementary Channels and Correctable vs

Private Algebras

The notation used is fairly standard, as we have introduced in the second chapter. In this
section we introduce further requisite preliminary notions: correctable and private operator
algebras based on the formulation from [26]. We shall work with finite-dimensional Hilbert
spaces H, where the sets of linear, trace class, and bounded operators coincide: L(H) =

T(H) = B(H), and so for ease of presentation we use L(H) to denote these sets.

3.2.1 Correctable Algebras

The general framework for error correction, which generalizes standard quantum error correc-
tion and is called “operator algebra quantum error correction” (OAQEC) [27, 28] 50], when
applied to the finite-dimensional case makes use of the structure theory for finite-dimensional
von Neumann algebras (or equivalently, C*-algebras). Specifically, codes are identified with
algebras that up to unitarily equivalence can be decomposed as A = @y (I, ® M, ), where
M, is the set of n x n complex matrices. An OAQEC code is described as follows in each of
the Schrodinger and Heisenberg pictures for quantum dynamics. We shall use the notation

®T for the dual map of ® defined via the trace inner product: Tr(®(p)X) = Tr(p ®T(X)).

Definition 3.2.1. Let ‘H be a (finite-dimensional) Hilbert space and let () be a projection
on H. Given a channel ® : L(H) — L(H), a von Neumann subalgebra A C L(QH) is

correctable for ® with respect to Q if there exists a channel R : L(H¢) — A such that
Po ol o R = idy, (3.1)
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where Pg is the compression map Pg(-) = Q(-)Q. When @ = I we simply say A is cor-

rectable for .

The case of standard (Knill-Laflamme) error correction is captured with algebras A =
PeL(H)Pe, where C is a subspace of H and Q = P.. When C = H4 ® Hp has some
tensor decomposition, correctable algebras A = Pe(14 ® L(Hp)) e are “operator subsystem
codes” [51], 52] when dimHp > 1 and classical codes when dimHp = 1. Algebras A
comprised of direct sums give mixtures of these various possibilities and allow for hybrid
classical and quantum information encodings [27), 28 38]. Such an algebra, with direct sum
decomposition as above, is correctable for & with respect to its unit projection if and only
if for all density operators a,(f) and probability distributions py, there is a channel R on H

and density operators a,(cl)/ such that
(Ro®) (Zpk oy ®0k ) Zpk W ®O’k N. (3.2)

3.2.2 Private Algebras

In Chapter 2 we introduced quantum privacy and motivated the its formal definition. What
follows here is a more general notion of “private algebras” (see [26] and references therein),

a notion most cleanly presented in the Heisenberg picture of quantum mechanics.

Definition 3.2.2. Let H be a (finite-dimensional) Hilbert space and let Q) be a projection on
H. Given a channel ® : L(H) — L(H), a von Neumann subalgebra A C L(QH) is private

for & with respect to @ if
Poo®(L(H)) CA ={X € LQH)|[X,A] =0VAc A}. (3.3)
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When Q = I we simply say A is private for ®.

This definition is motivated by the notion of an “operator private subsystem” [32], [37]:
Suppose we have H = (Ha®@Hp) D (Ha@Hp)* and a channel ® on H. Then the subsystem
B is called an operator private subsystem for ® if ® o P = (¥ ® Tr) o P, for some channel
U L(Ha) — L(H), where Pe(-) = Pe(-)Pe with Pe the projection of H onto C' = H 4 Q@ Hp.
One can check through direct calculation and application of the dual map relation that this
is equivalent to: Po o ®T(L(H)) C L(HA) ® Ip = (14 ® L(Hp))'; in other words, that the
algebra A = Iy ® L(Hp) is private for & with respect to .

As articulated in [26], use of the “private” terminology is motivated by the fact that
any information stored in the operator private subsystem B completely decoheres under
the action of . From the Heisenberg perspective, observables on the output system evolve
under ® to observables having the same measurement statistics with respect to the subsystem
B. For more general private subalgebras though, not all information about observables in
the algebra A is lost under the action of ®, just the quantum information: more precisely,
the only obtainable information about A after an application of the channel is the classical
information contained in its centre Z(A4) = AN.A". We recover the original notion of privacy
when A is a von Neumann algebra factor (Z(A) = CI), and factors of type I specifically
correspond to operator private subsystems. The above definition allows for more general

private scenarios as depicted by more general algebras.

3.2.3 Complementarity for Perfect Correction and Privacy

We conclude this section by presenting a simple new proof of complementarity between
quantum error correction and privacy in the ideal (¢ = 0) case of perfect correction and

privacy. We first recall the testable conditions for correctable algebras derived in [27), 2§],
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which in turn built upon the central Knill-Laflamme conditions for standard [43] and operator

[52, 51] quantum error correction.

Theorem 3.2.3. Let H be a Hilbert space and let Q) be a projection on H. Given a channel
O : L(H) — L(H), an algebra A C L(QH) is correctable for & with respect to Q if and only
if

QVV,Q,X]=0 VX €A, Vij (3.4)

The approximate version of the following proposition was established via dilation theory
techniques separately in the finite ([25]) and infinite ([26]) dimensional cases. A new proof
of the result is presented below for the ideal case. This proof is different in that it makes

use of Kraus operator representations and the relevant operator structures.

Proposition 3.2.4. Let A be a subalgebra of L(QH), for some Hilbert space H and projec-
tion Q. Let ® be a channel on H with complementary channel ®°. Then A is correctable

for ® with respect to Q if and only if A is private for ® with respect to Q.

Proof. Suppose first that A is correctable for ® with respect to ). Then Egs. (3.4) hold. So

welet pe L(H), Y € L(He), and X € A, and compute two identities as follows:

Tr(Q(@) (Y)QXp) = Tr(YO©(QXpQ))
= (Y (X QX V)i

= Y Tr(pQV;ViQX) Tr(Y|i)]),

.3
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and,

TH(XQ(C) (Y)Qp) = Tr(XQ(@) (Y)Qp)
= Te((8°)(Y)QpXQ)
= TH(YeC(QpXQ))
= T (Y( X TQeX Q) i)

= ) Tr(pXQV;ViQ) Tr(Y]i)j]),

i3

from which we can conclude from Egs. that these two quantities are equal. As X,Y p
were arbitrary, it follows that [Pg o (®9)1(Y), X] = 0 for all X € A and hence A is private
for ®¢ with respect to Q.

For the converse direction, suppose that A is private for ®¢ with respect to Q. Then

Pg o (P)(L(He)) C A, and so for all X € A, p € L(H), Y € L(Hc) we have
THQ(OCY (Y)QXp) = THX Q(@C) (V)Qp).

and hence from the above calculations that

D Te(pQVViQX)(GIY [)) = > Tr(pX QV;ViQ) (Y [i).
i,J

i7j

To conclude the proof, we now fix a pair ig, jo and apply this identity with Y = [jo)(io| to

obtain

Tr(pQV; Vi QX) = Tr(pX QV; Vi Q).

which holds for all p and X. Thus it follows that [QVV;,Q, X] = 0 for all X € A, and
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hence by Lemma we have that A is correctable for ® with respect to ), and the result

follows. u

3.3 Complementary Operator Structures

Operator structures have previously been identified that describe quantum error correction;
for instance, multiplicative domains for channels and certain generalizations of them were
shown to characterize operator and standard quantum error correction as part of the early
expanded work on subsystem codes [40], 47]. Below we shall briefly review these structures
and then extend the correspondence to OAQEC.

First though, we will identify operator structures that characterize private (subspaces,
subsystems, and) algebras. We begin with a simple observation of an elementary connection
between the null space of a quantum channel and the sets of states that it privatizes. Let
® be a channel from M, to M,, and let S be the null space of ®. If p; and p, are n x n
density matrices, then ®(p;) = ®(ps) if and only if p; — ps € S. This observation suggests

that nullspaces of channels can be used to describe privacy, and indeed this is the case.

Lemma 3.3.1. Let H be a Hilbert space and let Q be a projection on H. Given a channel

O : L(H) = L(H) with ®(p) = . VipV}*, the following commutants inside L(H) coincide:
{QV7ViQY, = ((ker(@7 0 Pg)) ™)’ (35)

where orthogonality is with respect to the trace inner product.
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Proof. By direct calculation using the form of the complementary map, we have
(970 Po)(X) = 29(QXQ) = > Te(XQV;V;Q) [i)j|.
i,J

Hence, ker(®¢ o Pg) = (Span{QV}*ViQ}i,ﬂL' -

Theorem 3.3.2. Let A be a subalgebra of L(QH), for some Hilbert space H and projection
Q € L(H). Let ® be a channel on H with complementary channel ®°. Then A is private

for ® with respect to Q if and only if A is contained inside ((ker(® o Pg))*)'.

Proof. This can be proved by combining Theorem |3.2.3], Proposition and Lemma|3.3.1],

as well as the fact (see chapter 6 of [23]) that (®¢)¢ is isometrically equivalent to ®. O

We can explicitly connect these private structures with the corresponding structures
from error correction, the subject of which we now turn. For brevity we shall consider the

correctable/private (QQ = I) case.
Definition 3.3.3. The multiplicative domain, M(®), of a channel ® : L(H) — L(H) is
the set (in fact an algebra) given by:

M(®) = {A € L(H): P(AX) = B(A)D(X): D(XA) = B(X)D(A) VX,

where X is taken from L(H). The multiplicative domain is the largest set on which the
restriction of ® is a x-homomorphism (i.e., a representation,).
Given a subalgebra A C L(H) and a representation w : A — L(H) (that is, w is linear,

T(AB) = m(A)n(B) and 7(A)* = w(A*) for all A, B € A), we may also define generalized
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multiplicative domains as follows:
M (P)={AeA: P(AX) =7m(A)P(X); P(XA) =P(X)1(A) VX € L(H)}.

The following quantum error correction result was established for subsystem codes in
[47], and here we show that it extends to OAQEC. Our proof is built on techniques from

[47] and error correction constructions from [27, 28§].

Theorem 3.3.4. Let A be a subalgebra of L(H) and let ® be a channel on L(H). Then A

is correctable for ® if and only if A = M (®) for some representation © : A — L(H).

Proof. First suppose A = M (®). So P(AX) = n(A)P(X) for all A € A and X € L(H),
m(AB) = m(A)n(B) and 7(A)* = w(A*) for all A, B € A. Then, since ® is trace-preserving,
we have

Tr(AX) = Te(®(AX)) = Tr(m(A)B(X)) = Tr(df (r(4))X)

for all X € £(H) and hence ®T(7(A)) = A for all A € A.

Now, let A € A and observe since 7 is a homomorphism and ®'(7(A)) = A, we have

O (r(A)m(A%)) — ADT(n(A%)) — O(r(A))A* + AA*
= AAT — AA* — AAT 4 AAY

= 0.

However, observe this quantity is also equal to (recalling ®'(Y) = > V*Y'V; and T is unital

since ® is trace-preserving) the following sum when fully expanded:

D (Virm(A) — AV (Vim(A) — AV = (Vim(A) — AV (n(AM)V; — VAY).

3 3
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Hence, it follows that each term in this sum is 0, and so we must have (also using the fact
that A is a self-adjoint set)

Vim(A) = AV and w(A)V; = V;A.

)

Multiply the first equation on the right by V; and the second equation on the left by V;* to
obtain

AV?V; = Vi A = ViVA,

and thus we have shown that A C {V;*V;}’ and A is correctable for ®.
For the converse implication, assume that A C {V;*V;}'. Let R = ®(I) = }_, ViV;*; notice
that

(AR =Y VAVV,Vi =3 VVIVAVS = R(A), (3.6)

.3 1,J

and so ®(A) commutes with any power of R for all A € A. Next, observe that

Q(A)D(X) =D VAVVXV: = ViV Y V;AXV; = RO(AX) (3.7)
i J

]

and similarly,

O(X)D(A) = B(XA)R. (3.8)

If R is invertible, we then obtain
P(AX) = R'P(A)D(X) = RV2P(A)R2D(X);

and,

D(XA) = P(X)P(A)R = d(X)RV2D(A)RV2.
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Defining 7(A) = R™Y/2®(A)R™/? we see that the above can be written as

D(AX) = 1(A)B(X) and B(XA) = B(X)r(A),

and we note that for any A, B € A,

m(A)n(B) = R™Y*®(A)R'®(B)R™/?
= R_l/QCD(A)(I)(B)R_?’/Z
= R_1/2CI’(AB)R_1/2

= m(AB)

where we have used the fact that ®(B) commutes with all powers of R and that ®(A)®(B) =
O(AB)R. It follows that A = M, (®P) as required.

If R is not invertible, we note that ker(R) = N;ker(V;*) and so if R|¢) = 0, then
QX)) = >, ViXV¥Y) = 0 and (@|®(X) = > .(¢|ViXV;* = 0 as well. Hence, if we
write V = ker(R) and split H = V+ @ V, according to this decomposition R = Q @ 0 with
@ invertible, and ®(X) = ¥(X) & 0. Hence, returning to Eq. we see that it can be
written as

(VAW (X)) ©0 = (QU(AX)) ®0,

and if we multiply by Q! @ 0 we get

(Q'U(AV (X)) D0 =T(AX)D0

36



and hence

RYO(A)D(X) = B(AX)

where R™ is the pseudo-inverse of R. Similarly, we can do the same for Eq. (3.8) and let
7(A) = (RT)120(A)(RY)~/2 to get the desired result that A = M, (®), and this completes

the proof. n

Remark 3.3.5. Observe from the start of the above proof that any correctable algebra for
® is contained in the range of ®. (This was also observed from a different perspective in

[28].) We will use this fact in the next section.

Example 3.3.6. As an illustration of this correspondence, consider a 4-qubit channel ® that
models noise given by the possibility of independent bit flips on the first three qubits, and so
® has four Kraus operators (normalized with probabilities) I, X; = X ® I ® [ ® I, and Xj,
X3 similarly defined with X the Pauli bit flip operator (X]0) = |1), X|1) = |0)). Consider
the orthogonal single-qubit subspaces Cy = span{|0000), |1111)}, C; = span{|0001), |1110)}.
Each of these subspaces is easily seen to be individually correctable for ®, but more than
this, one can check that the hybrid algebra code defined by the subspaces, namely A =
L(Cy) & L(Cy), is correctable for ®. The theorem tells us therefore that the code algebra
coincides with a generalized multiplicative domain for ®, 4 = M, (®), and indeed, the
proof also gives a recipe for constructing the representation: in this case, the representation
m: A — L(H) is implemented by the four Kraus operators { P, Pe, X;,7 = 1,2,3}, where

C = Cl D CQ and PCZ. = lecXZ*

Combining the previous result with Theorem|3.3.2] the complementary operator structure

relationship is revealed as follows.
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Corollary 3.3.7. Let ® be a channel on L(H), and let © be a representation associated with

a correctable algebra for ® (or equivalently a private algebra for ®¢ ). Then we have
M (®) = ((ker(®)) "),

Proof. The forward inclusion follows from Theorem [3.3.2] and the opposite inclusion follows

from the second half of the proof of Theorem [3.3.4] n

Remark 3.3.8. The simplest illustration of this relationship comes from the extreme case
of a correctable/private pair, the case with ® = id the identity channel on L(H). Here
dY(p) = Tr(p) is the completely depolarizing channel, 7 = id, Q = I, and M(®) =
L(H). Moreover, ker ®° is the operator subspace of trace-zero matrices, which is the trace-
orthogonal complement of the identity operator I, and hence (ker ®“)* is the set of scalar
multiples of the identity, with commutant equal to £(#) as given by the result. For the
example above, the specific form of the complement is not as straightforward, nevertheless
the result yields information on it; namely, in that case ker ®° can be explicitly computed
via the relation £(Cy) ® L(C;) = ((ker ®)+)".

We further note it would be interesting to extend this result to the general projection
() case. This should be possible but there are some technical issues to overcome on how to

define the multiplicative domains in that case.

3.3.1 The Special Case of Unital Channels

We finish this section by continuing the analysis in the distinguished special case of unital
channels (®(/) = I). Many physically relevant channels satisfy this extra condition, such

as the previous example. The relevant structures, in particular the multiplicative domains,
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have an especially nice characterization.
If & : A — Bis a completely positive and unital map between two algebras, then Choi

[45] proved that M(®) has the following internal description:

M(@) = {A € A: DA D(A) = B(A™A), D(A)D(A)* = B(AA")}.

When trace preservation is added, so ®(p) = >, VipV;* is a unital channel, the fixed point
theory for such maps [53] can be built upon to prove [54, [46, 48] that M(®) is equal to the

commutant of the operators V;*V}, it encodes all unitarily correctable algebras for ®, written

as UCC(®), and the unital channel ® acts as a recovery operation; in terms of operator

structures this is stated as:

M(®) = UCC (@) = {V'V;} = Fix (d' 0 ®).

We can thus state the following result based on the above.

Corollary 3.3.9. If ®(p) = >, VipV;* is a unital channel, then

M(®) = {VV;} = (ker()")"

It is clear that the null space of a channel and its multiplicative domain cannot both be

large. This relationship can thus be quantified by the following result in the unital case.

Corollary 3.3.10. Let ® be a unital quantum channel on L(H). Then

dim(M(®)) + dim(ker(®)) < (dim H)?
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with equality if and only if ®f o ® is a projection.

Proof. From the discussion above we know X € M(®) if and only if X is an eigenvector
of T o & corresponding to the eigenvalue one. Similarly X € ker(®) if and only if X is
an eigenvector of ®f o ® corresponding to the eigenvalue zero. The inequality follows from
this. The inequality becomes an equality if and only if all of the eigenvalues of the positive

semidefinite operator ®o® are zero and one, which occurs if and only if ® is a projection. [

We note that since M(®) is a unital von Neumann subalgebra of some M,,, the projection
onto M(®) would be the trace-preserving conditional expectation onto M(®), which is the

unique channel ® 4 satisfying:
1. D4(A)=A VAe A
2. DYy(A1XAy) = A1 Py(X)Ay VA, Ay e A, VX € M,

Among all unital quantum channels with a particular multiplicative domain A, the trace-
preserving conditional expectation onto A has the largest possible nullspace.
We conclude this section by deriving some relations on the behaviour of the complemen-

tary channel and a channel’s multiplicative domain in the unital case.

Proposition 3.3.11. Let ® be a unital channel on L(H). Then for all X € L(H) and
A e M(®), we have
PO(AX) = Y (X A).

Proof. We have A € M(®) if and only if AV*V, = V*V;A for all i,j. So Tr(AXV*V;) =

Tr(XV;V;A) = Tr(XAV*V;), and hence

OU(AX) =Y Tr(AXVVy)[i)i] = Y Te(XAVVy)[i)j] = 97 (X A).

ij %)
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This result has some interesting consequences.

Corollary 3.3.12. Let ® be a unital channel on L(H). If M(®) is a von Neumann algebra

factor then ®¢(M(®)) = CI.

Proof. Suppose A € M(®) with tr(A) = 0. Since M(®) is a von Neumann algebra factor and
hence isomorphic to a matrix algebra, there exists X,Y € M(®) such that A = XY —Y X
and thus ®¢(A4) = ®¢(XY) — ®“(Y X) = 0. Since every element of M(®) is the sum of a

trace zero element of M(®) and a multiple of the identity, the result follows. O

Corollary 3.3.13. Let ® be a unital channel. Then the set ®°(M(®)) commutes with the

set PC(M(DY)).
Proof. Let A € M(®) and X € M(®%). Then from the previous result and the multiplica-

tive domain definition, we have ®°(A)®Y(X) = ®¢(AX) = d¢(XA) = oY (X)dC(4). O

Remark 3.3.14. Regarding the generalized multiplicative domains, in the case that ® is a
unital channel, we have M(®) = {V;*V;}'. Hence in this case, all generalized multiplicative
domains associated with unital subalgebras lie inside the actual multiplicative domain. Also
note that if ®(p) = Y, VipVi* is a channel such that the V; = (dim H)~Y/2U;, with {U;} a
set of unitaries that are mutually orthogonal in the trace inner product, then of course @ is

unital. But also observe that ®¢ is unital as well:

- OV 3 2
In particular, in the above results the roles of ® and ®“ can be interchanged.
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An interesting example of this arises when & is the conditional expectation onto the
diagonal matrices. In this case, ®° = & which means that ®(M(P)) = P°(M(P)) =
PC(M(®)) must be contained in an abelian subalgebra by Corollary [3.3.13f An easy
calculation show that this is indeed the case with ®(M(P)) being the algebra of diagonal

matrices.

3.4 Operator Algebra Inequalities and the Correction

vs Privacy Trade-Off

In this section we build on the analysis above to further quantify complementarity, through
inequalities determined by the sizes of the relevant operator algebras corrected or privatized
by channels. To simplify the presentation we shall use matrix notation for the algebras and
we will focus on the original basic notion of privacy, where an algebra is mapped to a single
state: Given a channel ® : M, — M,, and subalgebra A, we suppose there is a density

operator p such that
O(A)=Tr(A)p VAeA

In such a situation, we shall say A is privatized to a state by ®.

Up to unitary equivalence our algebras, say contained in M,,, have the form
A= (@é\f:l_fmk ® Mnk) @ Ox,
with >, mgng + K = n. The commutant of A is, up to the same unitary similarity,
A = (@&l My, @ I,) & M.
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Note that

ANA = (&;L,Cly, ® I,,) ® Ok

and that the dimension of this algebra (as an operator space) is

dim(ANA) = N.

Finally, we note that A has a largest central projection Py; up to the same unitary similarity
as before,

Py= (®p_1 Iy, @ L) @ O

This projection satisfies: P4A = AP, = A for all A € A. Note that A is a unital algebra if
and only if P4 = [, if and only if K = 0. We shall also focus on the unital algebra case in
this section.

The next two results refer to the notion of quasiorthogonal algebras. We point the reader

to [37] for more on the notion and its connections with privacy.

Definition 3.4.1. Two unital subalgebras A,B C M, are said to be quasiorthogonal if
Tr(AB) = n~ ' Tr(A) Tr(B) for all A€ A and all B € B.

Lemma 3.4.2. An algebra B is privatized to a state by ® if and only if

Tr(BO'(X)) = Tr(B) Tr(pX)

for all X € M,, and for oll B € B. If B is unital, this is equivalent to the quasiorthogonality

of B and range(®T).

Proof. The first statement is trivial. For the second, if I € B, then ®(I) = np and so p =

n~t®(I). Hence we have Tr(B®'(X)) = n ! Tr(B) Tr(®(1)X) = n* Tr(B) Tr(®1(X)). O

43



Recall in the previous section we saw that a correctable algebra for ® must lie in the range
of ®'. The example of ® 4, the trace-preserving conditional expectation onto a unital algebra
A is instructive. Since ® 4 = <I>f4, the range of <I>f4 is A which clearly is a correctable algebra
for ® 4 as a subalgebra of its fixed point set. It was noted by Petz that two subalgebras A
and B are quasiorthogonal if and only if ®4(B) is a multiple of the identity for all B € B
[55, Theorem 3]. Hence a unital algebra B will be privatized by ® 4 if and only if it is
quasiorthogonal to A. This observation coupled with Lemma [3.4.2] gives us the following

characterization of correctable/privatized algebra pairs.

Theorem 3.4.3. Let A and B be unital subalgebras of M,. Then there exists a quantum

channel that corrects A and privatizes B to a state if and only if A and B are quasiorthogonal.
We can thus prove the following.

Corollary 3.4.4. Suppose A is a correctable algebra for a channel ® : M,, — M,,, and B is

a unital algebra privatized to a state by ®. Then
dim(A)dim(B) < n®.

Proof. Since A and B are quasiorthogonal by Theorem [3.4.3] for all A € A and B € B,
we have Tr(AB) = n~ ' Tr(A) Tr(B). Let {A;}%, and {B;}%2, be orthonormal bases (in
the trace inner product) for A, B respectively. Next form the set {AiBj}‘i;-’iﬁ which has

dydy = dim(A) dim(B) elements and observe that

=n"'Tr(A;A) Tr(B; B))

-1
=N 6ik§jl
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and so {AiBj}Z;’fl is a set of mutually orthogonal matrices in M,,, and so must have dimen-

sion at most n2. [

Example 3.4.5. As a simple example of a channel and algebras that saturate this inequality,
consider an N-qubit system (so n = 2V) and noise given by a channel ® that completely
depolarizes the first k qubits and leaves the final N — k qubits untouched. In this case, we
have a correctable (noiseless in fact) algebra A that is unitarily equivalent to My~ and a
private algebra B that is privatized to the maximally mixed state of the first £ qubits and is

unitarily equivalent to Mayr. Here we thus have: dim(A)dim(B) = 22V-k22%k = 22N — 2,

Remark 3.4.6. Theorem suggests a way to quantify the complementarity relations of
two subalgebras. Indeed, in [56], a quantity (¢(.A, B)) was defined for two unital subalgebras
of a matrix algebra in terms of the trace of the composition of conditional expectations onto
each of the subalgebras. It follows that 1 < ¢(A,B) < min{dim(.A),dim(B)}. Moreover,
A and B are quasiorthogonal if and only if ¢(A,B) = 1. Now using this quantity one
can measure how far away two subalgebras are from being quasiorthogonal. Via Theorem
[3.4.3] this allows us to see quantitatively how far away a pair of subalgebras are from being

complementary to each other, and we suggest this warrants further investigation.
The following example illustrates the need for the unitality condition in Corollary [3.4.4]

Example 3.4.7. Let ® : M3 — M;3 be the channel whose Kraus operators are
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which acts by
a b c a b 0

de fl|d etio
g h i 0 0 0

Observe that the algebra A = M, & 0 is correctable for ®, since on this algebra, ® acts as

the identity. Moreover, B = 0 & M, is private for this algebra, since

000 000
P:10 a b|—=(@+d |0 1 0

0 ¢ d 000

Both A and B are of dimension 4, and so we have dim(A)dim(B) = 16 £ 9.
We next relate the commutants of correctable/private algebra pairs.
Corollary 3.4.8. If A and B are unital algebras correctable and privatized to a state by
® . M,, — M,, respectively, then
dim(B) < dim(A’) and dim(A) < dim(B').
Proof. The result follows from the theorem above and the fact that unital algebras satisfy
n? < dim(A) dim(A"). O

Note that Example [3.4.7 again serves as a reminder that unitality is necessary: in that
example, dim(A’) = dim(B’) = 3 while dim(A) = dim(B) = 4.
We can also make a statement on the internal structures of correctable and private algebra

pairs.
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Corollary 3.4.9. Suppose A and B are unital algebras correctable and privatized to a state

by ® respectively. The following are true:

1. If A contains a mazimal abelian subalgebra, then B cannot, unless A is itself a mazimal

abelian subalgebra, in which case so is B.

2. If B contains a maximal abelian subalgebra, then A cannot, unless B is itself a mazximal

abelian subalgebra, in which case so is A.

Proof. This follows from the observation that the commutant of an algebra containing a
maximal abelian subalgebra is abelian, and has dimension less than n, while the dimension
of A itself is greater than n. The inequality in Corollary and a consideration of the

equality condition, give the result. O]

Further recall from above that all unital correctable algebras A satisty A C {V;*V;}’, and
hence {V;*V;}" C A’. Hence, the smallest possible commutant we can put on the right side
of the inequality from Corollary is dim({V;*V;}"), giving us the following result. (And
recall by the von Neumann double commutant theorem, {V;*V;}" is equal to the algebra

generated by the operators V;*V}.)

Corollary 3.4.10. If B is a unital algebra privatized to a state by @, then

dim(B) < dim({V;"V;}").

Remark 3.4.11. We see then that, at least for unital algebras and privatizing to states,
these inequalities exhibit an explicit and concrete trade-off between privacy and correction:
if a large algebra is correctable for @, the size of the largest privatized algebra is constrained

to be small, and vice-versa.
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Recalling the Kraus operator description of ®¢, we finish by analyzing what happens for

the complement when A is correctable for ®.

Proposition 3.4.12. If A is correctable for ®, then
rank(CI>0|A) < dim(ANA).

Proof. We have that ®°(A);; = Tr(V;V;A); using the fact that A = QAQ where Q is the

largest central projection in A, the above becomes
Tr(ViViQAQ) = Tr(QV[ViQA);

recalling the previous section, QV;'V;Q € A'. If A is unitarily equivalent to (@évzlfmk ®
Mnk) @ 0x then A’ is unitarily equivalent to (@{leMmk ® Ink) @ Mg, and so for any A
we have that A is unitarily equivalent to (@év:l[mk ® Ak) ® O and QV;ViQ is unitarily
equivalent to (®p_ 1V( ) ® I,,,) ® 0k; and so

N

TH(QV; ViQA) = ((@k Ve A) @ oK) =" Tr(A) (V).

k=1

Hence

CA):ZEj-<ZTr Ap) Tx(V, ) ZTr Ap) Ay,
,J

where Ay =3, Tr( )Eﬂ Clearly, N = dim(A N A’) and is obviously an upper bound

on the dimension of the range of ®“(A). O

Remark 3.4.13. Considering the general notion of privacy from [26], note that the only

information preserved from a private algebra is the information stored in AN A’; as this is
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an abelian and hence unitarily diagonalizable algebra, all the information can be considered
as simply classical probabilities by reading off the diagonal, and so no genuine quantum
information survives. By the analysis in Proposition [3.4.12] we see that if A is correctable
for ®, all of A\ (AN A) is sent to 0, and the image of A under ®¢ depends only on a
compression of A to AN A". Hence, by the reasoning in the paper [26], this counts as

privatization: only classical information from the diagonal can survive.

3.5 Chapter Outlook

In this chapter, we have presented quantum complementarity in a new light: by appropri-
ate operator structures, the complementary relationship between correctable algebras and
private algebras was demonstrated. This in turn offers an extension of subject of comple-
mentarity to the context of hybrid quantum information. It is precisely these algebras and
codes that describe the structure of hybrid quantum codes. As we will see in Chapter 5,
implementations of hybrid codes that have been demonstrated in previous literature are
particular cases of these algebra structures.

What followed considered dimensions of private and correctable algebras, and gave di-
mension inequalities that examine the trade-off between correction and privacy in the par-
ticular case of algebras privatized to quantum states. This analysis could be taken further;
these inequalities could be considered for privatization to more general algebras. The finite-
dimensional case is more pertinent to quantum information, however correctable and private
algebras have beep identified for general infinite-dimensional (von Neumann) algebras, and
extending the presented results to that setting could be an interesting direction for future

work.
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Chapter 4

Approximately Private Hybrid
Quantum Channels and Approximate

Quasiorthogonality of Algebras

4.1 Introduction

In the previous chapter, we presented a framework that captured the complementarity of
quantum error correction and quantum privacy for the setting of hybrid codes. Because both
subjects are connected by the bridge that is complementarity, advancements in the theory
of quantum privacy can provide advancements for error-correction, and vice versa. This
chapter ventures over to the quantum privacy side of that bridge.

Relevant to this study and its motivation, are mutually unbiased bases. Expressed in
quantum information terms, two bases sets of a Hilbert space are mutually unbiased if a state

prepared in any one element of one of the bases gives equal probabilities of all outcomes if
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a measurement is made in the other bases. This property has applications in a number
of quantum information protocols, including quantum key distribution and the detection
quantum entanglement. We see then that constructions of mutually unbiased bases are
very useful, but there is an unresolved problem surrounding the existence of such: it is
not known in general the maximum number of such bases if the dimension of the Hilbert
space is not an integer power of a prime number. The basic case is in two dimensions,
where there are no more than three mutually unbiased bases. Note for instance, that the
eigenvectors of the Pauli X, Y, and Z operators are three sets of mutually unbiased bases.
There are however constructions that can saturate quantum systems of arbitrary sizes if
conditions are relaxed so we only require that bases sets are approximately unbiased, in
some appropriate sense. We study approximate orthogonality between operator algebras
that were originally motivated by mutually unbiased bases, and lay a theoretical framework
for its connection to approximate quantum privacy (which we introduce). This chapter lays
some groundwork for understanding deep connections between quantum error-correction,
quantum privacy, quasiorthogonal algebras and approximately mutually unbiased bases, and
their various applications in quantum information.

The notion of quasiorthogonality for operator algebras arose from the study of modified
forms of orthogonality for algebras and their relative behaviours in a variety of settings in
finite-dimensional quantum information. Primarily motivated by mutually unbiased bases
(MUB) constructions [57, 58, 59, 60, [61] and their associated commutative algebras initially,
over the past decade the work expanded to the non-commutative setting [62], 55, 63, (64 65,
66]. The study of approximate quasiorthogonality was initiated by introducing a measure of
orthogonality between two algebras based on joint properties of their conditional expectation

channels, and investigating results on the approximate version for some special cases [50].
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From a different direction, still with quantum information motivation, it has recently
been recognized that there are connections between the study of quasiorthogonal operator
algebras and work in quantum privacy; specifically, on the topic of what are variously known
as private quantum channels or codes, decoherence-full or private subspaces and subsystems,
and private algebras [29] [30] 32, 311, 25 33, 34], 35, 26]. In particular, for a number of special
cases of channels or algebras, quasiorthogonality has been linked with certain quantum pri-
vacy properties in those cases [37, [36] [I1], all suggesting a deeper more general link between
the topics.

In this chapter, we establish the first general result that ties together approximate qua-
siorthogonality of operator algebras with approximate privacy for quantum codes presented
as algebras. This involves identification of an appropriate notion of relative quantum privacy,
with natural assumptions on the algebras and private quantum codes considered. Of poten-
tial peripheral interest, this gives a new approach for computing the measure of orthogonality
in terms of Choi matrices and Kraus operators for the conditional expectation channels of
the associated algebras. We also present examples drawn from the framework for hybrid
classical and quantum information theory, from studies of private quantum subsystems, and
from work on approximate MUB constructions.

This chapter is organized as follows. The next section includes preliminary material and
the derivation of our approach to compute the orthogonality measure. In the third section
we define relative approximate privacy of two algebras and present our main result and its
proof. The fourth section contains examples and we conclude with a brief outlook discussion.

The contents of this chapter are adapted from research findings co-authored and published
with various collaborators [12]. All authors made contributions to the preparation and review

of the original manuscript.
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4.2 A Measure of Quasiorthogonality of Algebras

Let M, (C) be the set of n x n complex matrices. In all of what follows, A, B C M, (C) are
unital *-algebras (or finite-dimensional C*-algebras [49)); that is, I,, € A, if A € A so is A*,
and A is closed under linear combinations and matrix multiplication, and the same is true
for B. We refer to the algebra of scalar multiples of the identity CI,, as the trivial algebra.
Given such A, B we denote by €4, £ the (unique) trace-preserving, unital conditional
expectations onto A and B respectively. That is, €4 : M,(C) — M, (C) (and similarly for

Eg) is the linear map uniquely characterized by the following conditions:
1. Eq(A)=Aforall Ac A
2. £4(X) = 0 whenever X >0
3. EA(A1 X Ag) = A1EA(X) A, for all Ay, Ay € A and X € M, (C)
4. Tr(E4(X)) = Tr(X) for all X € M, (C).

We refer to £4 as the conditional expectation channel for A, reflecting standardized use of
the term quantum channel to describe completely positive trace-preserving maps.

We now define the key notion of quasiorthogonal algebras, noting the early literature on
the subject sometimes referred to the notion as ‘orthogonal’ or ‘complementary’. (We use
the ‘quasi’ prefix as in [56] as it avoids possible confusion with other quantum information

notions that use these terms.)

Definition 4.2.1. Two unital x-algebras A, B are quasiorthogonal if they satisfy any one

of the following equivalent conditions:

L Tr((A-"27 (B -8B ) =0forall Ac A BeB

n n
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2. Tr(AB) = w forall Ac A, BeB
3. Ea(B) =B for all B € Band E5(A) = T, forall A € A

The ideal notion of quantum privacy (the case € = 0 in the definition of the next section)

we consider is given as follows.

Definition 4.2.2. Given a unital quantum channel ® : M, (C) — M, (C), we say a unital

x-algebra A is private for ® whenever

for all A € A.

Remark 4.2.3. Notice that the third condition from Definition {.2.1] asserts that if A
and B are quasiorthogonal then the conditional expectation onto the one algebra privatizes
the other. The simplest example of this phenomena can be seen in the extreme case with
A = M, and ® = D,, is the ‘complete depolarizing’ channel, D, (X) = n~'Tr(X)I,, which is
the conditional expectation channel onto the trivial algebra B = CI,,. Observe also in this
case that A and B are quasiorthogonal, which is a simple special case of our main result
below.

More general notions of private algebras have been considered in the literature, often with
different nomenclature as well, such as private quantum channels, decoherence-full or private
subspaces and subsystems, and private algebras [29], 30, 32], 311, 25| 33}, 135, 34}, 26, 37, 36]. The
distinguished special case we consider here captures many of the most naturally occurring
examples from these settings, in addition to, as we shall see, allowing us to establish a tight

connection with quasiorthogonality in the approximate case.
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In [56], Weiner introduced the following quantitative measure of orthogonality for alge-

bras. We will focus on this notion for the rest of the section.

Definition 4.2.4. For A, B C M,(C) unital x-algebras, the measure of orthogonality be-
tween them is given by

Q(A, B) := Tr(TxTp) (4.1)
where T4 is the (any) matrix representation of €4 acting on the vector space M, (C).

We shall make use of the explicit forms of our matrix representations so let us introduce
notation {|i) : 1 < i < n} for a fixed orthonormal basis for C", and then E;; = |i)(j| for the
corresponding set of matrix units of M,,, which themselves form an orthonormal basis in the
trace inner product; (A, B) = Tr(B*A), A, B € M,. We will then work with the ‘natural
representation’” Ty [67] for a given linear map ® : M,(C) — M, (C), which is the matrix

representation for ® on M,2(C) = M, (C) ® M,(C) defined by the basis {E;; ® Ej; }; that is,

To = Y (B(Ew), Eyj)Ex © Ej.

i’j’k’l

On the other hand, we can consider the Choi matrix [68] for @, given by

Cq> = Z Eij X (I)(Ew)

1,5=1

Using the expansion ®(E;;) = Zk,l(q)(Eij)v Ex)Ex, we see that Cp and Tg have the same
matrix coefficients up to the (unitarily implemented) permutation that sends E;; ® Ej —
Ei, @ Ej.

Hence, if we denote by C'4 the Choi matrix of £ 4, and similarly for C'z, then this discussion

leads to the following observation.
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Proposition 4.2.5. Given x-algebras A and B, we have

We shall make use of the following internal description of the Choi matrix for a conditional

expectation. Recall that if A is a matrix, A is its complex conjugate matrix.

Lemma 4.2.6. Let A C M, (C) be a *-algebra and let {A;}5, be any orthonormal basis for

A in the trace inner product. Then we have

di
Ca=)» A®A (4.3)

=1

Proof. We first extend {4}, to an orthonormal basis on the full matrix space by appending

the elements of {A; }?i]dl. We claim that

d1 2_dy n
Y ARA+ Y AIAT =) E;®E; (4.4)
i=1 j=1

i,j=1

To see why this is so, observe that for all X € M,,(C),

dl ng—dl
(Tr ®id) <(XT L)) _A®A+ > Are Af))
=1

j=1
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n?—d;
= ZTr (XTA)A + > Tr(XTAL)Af
=1 7j=1
n?—d;
= ZTr (XADA + ) Te(XAS)AS
=1 7=1

n?2—d;
—Z<XA > A+ Y <X A > AL

=1 J=1

=X

Y

since {A;} U{Aj} forms an orthonormal basis for M, (C). If we denote B = Z?;l A @A+
Z;i;dl A_]-L®A]-L, then we observe that the property encoded above is (Tr ®id) (XT®1,)B) =
X, which uniquely characterizes B as the Choi matrix of the identity map [67], and so
B=>7"_ B ®id(Ey) =31, Eij ® Eij, as claimed.

Now, we recall that C'y = (id ® &4) (Z” L\ Eij @ Eij) and so by Eq. we can

equivalently say that

da n?—d;
Cu=(id@Es)(B) = A @ EalA) + L@ Ea(AD).
i=1 =1
Since E4(A) = A for all A € A, and E4(A}) = 0 for each A, the result follows. O

This leads to the following 2-norm type characterization of Q(A, B).

Corollary 4.2.7. Let A, B C M,,(C) be unital x-algebras. Then the measure of orthogonality
may equivalently be expressed as:
dy,d2
B) =) ITe(A:B))P, (4.5)
ij=1

for any orthonormal bases {A;}™, {Bj};lil for A and B respectively.
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Proof. We apply the formulas of Egs. (4.2]) and (4.3) to obtain:

d1,d2 dy,d2
QA,B) = > Tr((A® A)(B; @ By)) = Y |Te(A:B))P,
i,j=1 t,j=1
as required. O]

We have stated that Q(A, B) is a measure of orthogonality. This is most explicitly seen
through the following elementary observation of Weiner [56]. We give an alternate simple

proof based on the descriptions derived here.

Proposition 4.2.8. Let A, B C M, (C) be unital x-algebras. Then A and B are quasiorthog-

onal to one another if and only if Q(A,B) = 1.

Proof. Let {A;}%,, {Bj}?il be orthonormal bases for A, B respectively, and suppose A; =

By = \/iﬁln (which is possible since both algebras are unital), so that Tr(A4;) = Tr(B;) =0

forall 1 <i<dy, 1 <7 <ds.
Then if A and B are quasiorthogonal, and using the fact that A;, B; are traceless for

1,7 # 1, we have

d1 dQ dl d2
: —~ 1
QUAB) = Y |Tr(AB) =) E|T1"(Ai)|2!T1"(Bj)|2
ij=1 ij=1
1, Tr(1,) m Tr([.

1 e
|l Ty

Conversely, keeping our orthonormal bases for A and B, suppose that
dy,da

Q(A,B) =) |Te(A;B))|* = 1.

i,j=1
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Then, since Ay = By = \/iﬁ]n, we have

L+ > |Te(A4B)) =1,
(4,5)#(1,1)

and so Tr(A;B;) = 0 except when (7, 7) = (1,1).

n

Thus, for any A = %]n + Zf;2 a;A;in Aand B= T8 4 Z;lil b;B; in B, we have

Tr(A)Tr(B)
To(AB) = ——L5=—Tu(L,) + > aibTe(A;B;)
(4,9)#(1,1)
1
= —Tr(A)Tr(B),
n
which is one of the equivalent conditions for quasiorthogonality. m

Remark 4.2.9. Note that evidently for A, B unital x-algebras, Q(A,B) > 1 since both
algebras contain \/iﬁln. So quasiorthogonality corresponds to the case where () is minimized,

and this naturally leads to the following definition.

Definition 4.2.10. Let A, B C M, (C) be unital x-algebras, and let € > 0. If
QA B) <1+k,

then we say A and B are e-quasiorthogonal. If for some € > 0 the algebras A and B are

e-quasiorthogonal, then we say they are approrimately quasiorthogonal.
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4.3 Approximate Relative Quantum Privacy and
Relation to Approximately Quasiorthogonal

Algebras

We shall consider the following notion of approximate privacy below. First recall the
2-norm of an operator is ||A|ls = (Tr(A*A4))z, and so (A, A) = ||A|j2. Also ||®|, =

SUD| x||,=1 || P(X)]|2 for linear maps ®.

Definition 4.3.1. Let A, B C M, (C) be unital x-algebras, and let ¢ > 0. Then we say B is
e-private relative to A if

(€4 —Da) o Eslla < e, (4.6)

where D,, : M, (C) — M, (C) is the complete depolarizing channel. If for some € > 0 the

algebra B is e-private relative to A, then we say B is approzximately private relative to A.

Remark 4.3.2. We are motivated to consider the 2-norm here as it is fairly standard in
physically motivated quantum information settings, in addition to the description of @) as a
particular 2-norm derived in Corollary 4.2.7, We also note that our e-private language is in

the spirit of terminology used in the context of approximate privacy previously (e.g. [25]).
We now state and prove our main result.

Theorem 4.3.3. Let A, B C M, (C) be unital x-algebras with at least one of the algebras

non-trivial. Then the following conditions are equivalent:
(1) A and B are approximately quasiorthogonal.

(ii) A is approzimately private relative to B.

60



(131) B 1is approzimately private relative to A.

max

Proof. Let € > 0, and given the vector space dimensions of 4 and B, define d}* =
max(dim A, dim B). As with the notation used above, we pick orthonormal bases {4},
and {Bj};.lil with A) = B, = \/Lﬁfn. (Note that of course d; < d3%*, j = 1,2.) We will also
choose the basis so that A; = A} for each 7, and similarly for B;.

We will first prove that B (respectively A) is e-private relative to A (respectively relative

to B) whenever

Q(A,B) <1+¢€,

dmax

where € = €*( — 1)~ thus showing () implies both (ii) and ().

To this end, observe that if

QAB) =1+ > |Tr(A4B))) <1+¢,
(6,5)#(1,1)

then it follows that for each j # 1, we have

Z]TrAB Z|A2,B W<€

Next, we extend {A4; } *, to an orthonormal basis for the full matrix space by appending

elements {AL} % and express each B; in terms of this basis:

n2—d;

B; [ +ZbﬂA + Z cinAi

By orthonormality of our basis we have |b;;|*> = |Tr(AfB;)|> = |Tr(A;B;)|? for all 4, j, and
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hence for all j # 1,
dy

Z ‘bﬁ|2 S 6/.
=2

Now we apply €4 to Bj, using its decomposition above and noting that (B;, I,,) = Tr(B;) =0

and E4(A3) = 0, to obtain E4(B;) = Z?iz b;iA;. Hence by orthonormality of the A; we have:

di
Tr(
1€a(B;) — f I3 = szﬂA 5= [bisl* < €.
=2

Finally, we pick an arbitrary B € B and decompose it as B = Tr(B [ + Z =0 ¢ B

Observe that || B[5 > 3=, |¢;|*. Then applying €4 we get

£(B) Tr(B)

d2

= Z c;€a(Bj)
=2

Thus we have

T(B

(I€a(B) —

” ZCJEA
< <Z|cj|usA<BJ> 9%
< (2l (2 lIEaB))lia)

< ||Bll3(dz — 1)¢

< €%||BJj3.

As B € B was arbitrary, it follows that |[(E4 — D,,) o Egll2 < €, and so B is e-private
relative to A. An analogous proof works to show A is e-private relative to B.

We complete the proof by proving both (ii) and (i7i) imply (7); specifically we will show

62



that B being e-private relative to A and A being e-private relative to B both imply that

Q(A,B) <1+¢€,

where €’ = (d%%° — 1)e2.

To this end, suppose that B is e-private relative to A, and so for all B € B,

1€4(B) —

Tr(B
B polle < elB1l

As each B; is traceless and has 2-norm equal to 1, we have ||E4(B;)|l2 < e. So if we write

(again using (Bj, I,,) = 0),

di

By = (B, A)Ai+ Y (B, ADAL,

1=2 k

then we have E4(B;) = S0, (B;, A;) A; and so

1€4(B ||2—Z| AP < €.

Finally, it follows that

QAB) = 1+ Y
i;élj;él

- 1+22 ZZ]

< 1+(d2—1)

Similarly, Q(A,B) < 1+ (d; — 1)¢* whenever A is e-private relative to B, and the result
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follows. O

Commutants of algebras often arise in physical applications; that is, the unital algebra
A ={X : XA = AX VA € A} defined by any algebra A. It is natural to ask whether
approximately quasiorthogonality and privacy of algebras corresponds to the same for their
commutants. While in general this is not true even in the ideal (e = 0) case, there is a
situation in which these properties can be linked: as shown in [69, 56], if algebras A, B C
M, are quasiorthogonal, then their commutants A’, B’ are quasiorthogonal if and only if
dim(A) dim(B) = n?.

Motivated by this, we obtain a similar result below in the approximate setting. First we
recall a special class of algebras. Note that a unital *-subalgebra A C M, up to unitary

equivalence, is always of the form

where n = Y, nymy (note that here dim A = >~ n}) with commutant

A" = @x(1ny, @ My, (C)) € M.

A is called homogeneously balanced if the ratios ny/my, are independent of k. It follows easily
that A is homogeneously balanced if and only if so is A’, and there are many algebras that
satisfy this condition (see [56] for more discussion and examples). For subalgebras of this

special form Theorem has an interesting application.

Corollary 4.3.4. Let A, B C M, (C) be two homogeneously balanced unital subalgebras such

that dim(A) dim(B) = n?. Then A, B are approzimately quasiorthogonal if and only if A, B
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are approximately private relative to each other if and only if A", B' are approzimately qua-

siorthogonal if and only if A', B’ are approximately private relative to each other.

Proof. For homogeneously balanced subalgebras A, B, we have the following relation from

[56]:

QAL B) = dim(A)dim(B) @A B).

With the assumption dim(A)dim(B) = n?, the assertions of the corollary follow directly

Theorem [4.3.3] m

4.4 Examples

In this section we apply Theorem to examples drawn from different quantum informa-

tion settings.

Example 4.4.1. We first present an example fashioned for illustrative purposes, one that
also arises in the context of hybrid quantum information memories, processing, and error
correction 38 27, 28] [50% Bl 20, [7].

Consider the algebra A = My @& My C M, of matrices of the form

with Ay, Ay € M,. From a hybrid classical-quantum information perspective, 4 can encode

two separate qubits, each with its own classical address.
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Additionally, take B to be the unital x-algebra of matrices inside M, of the form

0 U kily kU
B =FkIy+ ks =

us 0 kU™ kil
for complex numbers ki, ko and some fixed unitary U € M;. One can verify that A is
quasiorthogonal to B, equivalently, Q(A, B) = 1.
In the specific case that U = o,, the Pauli bit-flip matrix, we now obtain an algebra C
from B by assuming B is exposed to some unitary noise V', implemented by the conjugation
C=VBV* BeBandC €(C,soC=VBV*. The unitary is chosen to reflect minimal noise

exposure, in that the unitary is a small perturbation of the identity, V = e”, where

6 0 00

0 -6 0 0
T:

0 0 00

0O 0 00

for some fixed 0 < § << 1.
Then computing Q(A, C) using our characterization from Corollary and Mathemat-

ica software, we find that
1
Q(AC) = §(COSh4(5 + cosh 20).

Thus we may apply the theorem above to quantify the approximate privacy of A and C in
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the following way: for any € > 0 satisfying,
9 1
e>7 §(COSh45 +cosh20) — 1,

we have Q(A,C) <1+ - yielding e-privacy as in the theorem. Note that we have used

T =1

d35* = 8, since A and C have dimensions 8 and 2 respectively.

Example 4.4.2. In [34] the first example of a private quantum subsystem [29] 30, 32}, [31]
was discovered such that no private subspaces existed for the given channel, and error-
correction complementarity [25, B35, 26] failed. This example motivated further work and
generalizations, including a framing of it in terms of operator algebra language [37, 36].
With the algebra perspective we can apply the theorem above to that example.

Here we take A = /A4 to be the algebra of diagonal matrices inside M, with respect to a

given basis. Then let B = U*(Iy ® My)U, where U is the unitary

Sl =
[\
]
—_
e}

Then one can check that we have Q(A, B) = 1; indeed, this can be seen directly through

an application of Corollary or as a consequence of the results from [35]. Now consider
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the subalgebra C = V*(Iy ® M,)V defined with the modified unitary V = Ue®, where

5§ 0 00
0 -6 00
T = :
0 0 00
0 0 00

for some 0 < § << 1. Hence, C = (e7)*B(eT).
With a choice of basis for the subalgebras and making use of Corollary again, we

can compute

1
QUA.C) = 7 (¢ + )%,
Then, for some suitable choice of €(d) we have

€(0)”
3 Y

Q(AC) <1+

and by the theorem we have that A is e-private relative to C (and vice-versa). Note that in

max 4

this case, d3g* =

Example 4.4.3. Another example of quasiorthogonal subalgebras for which we can study
the approximate case comes from the study of mutually unbiased bases (MUB) [57, 58, [59]
60, ©61].

MUB are useful in many quantum information protocols because of their defining prop-
erty. Specifically, two orthonormal basis {|¢;)} and {|¢x)} of C* are mutually unbiased if for
alli,k=1,...,n,

(iloe)] = —=.

B
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There is a maximal abelian subalgebra (MASA) [49] denoted A, (and similarly A,) in M,
associated with each basis in the following way: A, = span{P,, : 1 < i < n} is the linear
span of the orthonomal projectors Py, = |1;)}v¢;| € M, onto the one-dimensional vector
subspaces span{|¢;)} = C|¢;). The subalgebras A, A, are quasiorthogonal if and only if

the bases are mutually unbiased. This can be checked using the fact that

Tr(P¢iP¢k> = ‘<¢2‘¢k>|2

and the criterion for quasiorthogonality, Q(Ay, A,) = 1 using Corollary for instance.
The maximum number of MUB in an arbitrary dimension is not known in general (they
are known for cases where the dimension is a power of a prime). Here we exploit the concept
of “approximate” mutually unbiased bases as discussed in [70] [71].
Given an € > 0, we call a system of n? + n vectors in C" which are the elements of n + 1
orthonormal bases By = {¢r1, - ,Yrn}t of C" where k& = 0,1,2,--- ,n e-approximately

mutually unbiased bases if

1+e€
|<¢k,i7¢j,l>|2§ o

for every 0 < k, Il <mn,k#1,1<1,j <n.
One such construction, from [70], asserts the existence of a system of approximately

MUBs with an inequality of the following type:

L

(Bl vor)| < (2 + O(n*10)> no2.

N

Using the above expression and the measure of orthogonality given in Corollary [£.2.7], one

sees that the associated MASAs are approximately private and quasiorthogonal for some e.
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In the 4-dimensional (two-qubit) case, for instance, one has

(il )| < 1+ A4),

where A(4) is some O(47%) expression. Thus cach pair of MASAs is e-private whenever

3A(4) < €.

4.5 QOutlook

We have explicitly linked approximate quasiorthogonality of operator algebras with an ap-
propriate notion of approximate relative privacy for the algebras, determined by the actions
of their conditional expectation channels. We focused on unital algebras and the notion of
quantum privacy defined by privatizing to the identity operator as this includes many natu-
ral examples and it kept the technical issues manageable. That said, we expect it should be
possible to extend this result to more general algebras and more general notions of privacy,
for instance as has been accomplished for quantum error correction [50] and private quantum
codes [26]. Additionally, it could be interesting mathematically to extend the result to the
setting of operator systems (self-adjoint, unital operator spaces [72]), though the physical
motivation provided by the connection with quantum privacy might be lost. We also wonder
if this work could help to generate new constructions of approximate MUB or be applied
to the study of SIC-POVM’s [70, [71] through focus on the commutative algebra case of our

result. We leave these and other investigations to be pursued elsewhere.
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Chapter 5

Higher Rank Matricial Ranges and

Hybrid Quantum Error Correction

5.1 Introduction

The present chapter introduces certain generalizations of the numerical range of a matrix,
which is a useful mathematical object in quantum information because of its connection to
quantum error correction. For appropriately defined numerical ranges of the operators of a
quantum channel, error-correcting codes exist if and only if the particular numerical ranges
are non-empty. This is an alternative and mathematically equivalent statement of condi-
tions for error-correction presented in equations and 2.3] Motivated by the overarching
theme of hybrid quantum error correcting codes, joint rank matricial ranges are introduced.
The primary result given in this chapter is an inequality that characterizes the existence of
candidate hybrid codes for an error channel given just parameters of the code. This per-

spective is helpful for insights it can give about codes for an error channel, depending on
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how well the channel is described. For instance, we could potentially say something about
error-correction given just the number of error operators, even if we do not know what they
are. Following is an elucidation of their application to hybrid quantum error correction,
and a brief section at the end that explores the practical advantages of hybrid codes. The
contents of this chapter are adapted from research findings co-authored and published with
various collaborators [13].

For more than a decade, numerical range tools and techniques have been applied to
problems in quantum error correction, starting with the study of higher-rank numerical
ranges [I7, [16] and broadening and deepening to joint higher-rank numerical ranges and
beyond [73, [74] [75] [76, 77, [78, [I8, [79]. These efforts have made contributions to coding
theory in quantum error correction and have also grown into mathematical investigations of
interest in their own right. In this chapter, we expand on this approach to introduce and
study a higher rank matricial range motivated both by recent hybrid coding theory advances
[20, [7] and the operator algebra framework for hybrid classical and quantum error correction
[27,28]. Our primary initial focus here is on a basic problem for the matricial ranges, namely,
how big does a Hilbert space need to be to guarantee the existence of a non-empty matricial
range of a given type, without any information on the operators and matrices outside of how
many of them there are. As such, we generalize a fundamental result from quantum error
correction [44] 18] to the hybrid error correction setting.

The theory of quantum error correction (QEC) originated at the interface between quan-
tum theory and coding theory in classical information transmission and is at the heart of
designing those fault-tolerant architectures [39, 40] [41] 42] 43]. Tt was recognized early on
during these investigations that the simultaneous transmission of both quantum and classical

information over a quantum channel could also be considered, most cleanly articulated in op-
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erator algebra language in [38]. More recently, but still over a decade ago, the framework of
“operator algebra quantum error correction” (OAQEC) [27, 28] was introduced. Motivated
by a number of considerations, including a generalization of the operator quantum error
correction approach [52) 5] to infinite-dimensional Hilbert space [50], it was also recognized
that the OAQEC approach could provide a framework for error correction of hybrid classical
and quantum information, though this specific line of investigation remained dormant for
lack of motivating applications at the time. Moving to the present time and over the past
few years, advantages in addressing the tasks of transmitting both quantum and classical
information together compared to independent solutions have been discovered, from both
information theoretic and coding theoretic points of view [1I, 2l B, [4 5] 6, 20] [7]. Addition-
ally it is felt that these hybrid codes may find applications in physical descriptions of joint
classical-quantum systems, in view of near-future available quantum computing devices [80]
and the so-called Noisy Intermediate-Scale Quantum (NISQ) era of computing [81].

This chapter is organized as follows. In the next section we introduce the joint higher
rank matricial ranges and we prove the Hilbert space dimension bound result. The subse-
quent section considers a special case that connects the investigation with hybrid quantum
error correction; specifically, for a noisy quantum channel, our formulation of the joint higher
rank matricial ranges for the channel’s error or “Kraus” operators leads to the conclusion
that a hybrid quantum error correcting code exists for the channel if and only if one of these
joint matricial ranges associated with the operators is non-empty. As a consequence of the
general Hilbert space dimension bound result we establish generalizations of a fundamental
early result in the theory of QEC [44 [18] to the hybrid setting. In the penultimate sec-
tion we explore how hybrid error correction could provide advantages over usual quantum

error correction based on this analysis. We consider a number of examples throughout the
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presentation and we conclude with a brief future outlook discussion.

5.2 Higher Rank Matricial Ranges

We introduce a definition of joint rank-(k : p) matricial ranges motivated by their application
to hybrid quantum error-correcting codes. What follows generalizes the definition of joint
rank-k matricial ranges introduced in Chapter 2, which have implications for error-correcting
in quantum computing. This section focuses on more mathematical considerations and a
presentation of the main theorem and its proof; their relevance to quantum computing is
detailed in the section that follows. First is a definition of a mathematical instrument that

the chapter centres on.

Definition 5.2.1. Given positive integers m,n,p, k, K > 1, (K usually being related to k
and p), let Pk be the set of nx K rank-K partial isometry matrices, so V*V = [ for V € P,
and let D, be the set of diagonal matrices inside the set of p X p complex matrices M,,. Define

the joint rank (k : p)-matricial range of an m-tuple of matrices A = (A4y,...,A,,) € M* by
Aep)(A) = {(Dy, ..., Dyy) € DI : IV € Py, such that VAV = D; @ Iy for j = 1,...,m}.

Observe that when p = 1, Ay (A) becomes the rank-k (joint when m > 2) numerical
range considered in [17, [16] [73] [74) [75], [76], 77, 18, [79] and discussed in Chapter 2. Thus
Ay (A) = Ap(A). As we will later see, A is related to the description of a noise operation
to which quantum channels are subject. The contents of a matricial range defined in the
manner above characterizes the existence of error-correcting codes for a particular description

of noise.

Remark 5.2.2. We first discuss two reductions that we can make without loss of generality.
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1.

il.

Every matrix A € M,, has a Hermitian decomposition A = Ay +iA,, with Ay, Ay € H,,
the set of n x n Hermitian matrices. A simple calculation shows that V*(A; 4+iA4y)V =
D; ® I if and only if V*(A4;)V = Re(D; ® I,), if and only if V*(A2)V = Im(D; ® I,).
What is of interest, is that the matricial range of A is non-empty. Since the above shows
non-emptiness of matricial ranges of Hermitian parts implies same for the operators

themselves we only need to consider Ay, (A) for A € H"

n

where H" is the set of

m-~tuples of n x n Hermitian matrices.

Furthermore, suppose T = (t;;) € M,, is a real invertible matrix, and (c1,...,¢n) €

R, Let A = (Ay,..., A,), where for j =1,...,m,

Aj = Z tgyjAg + Cj[n-

(=1

Then one readily shows that (Dy,..., Dy) € Agy(A) if and only if (Dy,...,D,,) €
A(k;p)(A), where Dj =Yy tejDetcily for j =1,...,m. So, the geometry of A (A)

is completely determined by A (A).

Now, we can choose a suitable T = (¢;;) and (ci,...,¢y) so that {1211, A, I} is
linearly independent, and A,.; = --- = A,, = 0,. Then the character of A(k;p)(A) is

completely determined by A(k:p)([ll, LAY,

Hence, in what follows, we always assume that {A;,..., A, I,} is a linearly independent
set of Hermitian matrices. Often, simpler error models, such as the completely depolarizing
channel for a single qubit will comprise a set of operators with this character. In some more

interesting cases, it is helpful to make this reduction.

The result we prove below is a generalization of the main result from [44], which applies

to the p = 1 case in our notation. One should note that p = 1 signifies a reduction from
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hybrid quantum error correction, to standard quantum error correction. This result was
also proved in [I§] via a matrix theoretic approach and we make use of this in our proof.
The following lemma states the original result as it was presented in [I8] using the present

notation.

Lemma 5.2.3. Let A = (Ay,...,A,) € H and let m > 1 and k > 1. If

n > (k—1)(m+1)?%

then A(kzl)(A) 7é @

It is not hard to see that if (a1,...,am) € Apy(A), then (aily, ..., anl,) € App(A).
Thus a straightforward generalization of Lemma provides that if n > (kp—1)(m +1)2,
then Agy(A) # 0; hence Agp)(A) # 0. This connection between Ag,(A) and Ay (A) will
be utilized in the proof of the theorem that follows. As discussed in [44], these inequalities
quantify the capacities of quantum systems for error-correcting codes of given parameters.
The need to optimize lower bounds on system sizes further motivates the result that is
provided below. The following theorem thus gives an improvement on the naive bound

above.

Theorem 5.2.1. Let A = (Ay,...,An) € H" and let m,p > 1 and k > 1. If

n>(m+1)((m+1)(k—1)+k(p—1)),

then A(k:p) (A) 7'é @

Proof. The proof proceeds by induction on the parameter p. When p = 1, we have (m +

D((m+1)(k—=1)+k(p—1)) = (k — 1)(m + 1)?, and the result follows from Lemma[5.2.3|
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Now suppose p > 1. We first assume for »r = p — 1 the inequality in the theorem holds for
r in place of p, and and that it implies we can find an n x rk matrix U, and r x r diagonal

matrices D;,, 1 < 5 < m such that U:U, = I,;, and

UrA;U, =D, ® I,

for all 1 <7 < m. That is to say:

n>(mA+1)((m+ 1)k =1 +k(r—1)) = Agay(A) #0.

Note that (m + 1)((m + 1)(k — 1) + k(p — 1)) > (k — 1)(m + 1)?, since p > 1. Thus by
an application of Lemma [5.2.3| as a result on joint rank-k matricial ranges, there exists an
n X k matrix U; and scalars d;, 1 < j < m such that UyU; = I, and U} A;U;, = d,;1}, for all
1 < j <m (as discussed in [I§]).

Let U be a unitary matrix whose first £ columns span a vector subspace containing the
column spaces of Uy, A Uy, ..., AU, Then by simple counting ¢ < (m + 1)k. Further, one

has U*A,;U = B; ® C; for some matrices B; € M, for j =1,...,m, and C; € M,,_;, where

n—0>m+1)((m+1)(k—=1)+k(p—2)).

By the induction assumption, A(p—1)(C1, ..., Cp,) is non-empty, say, containing an m-tuple
of diagonal matrices (Djy, ..., Djn) € M)*,. So, we can find an n x (k — 1)(m + 1)* matrix
U, such that Uy A;Us = Djy @ I, for j = 1,...,m. Thus, there is V = [U;|Us] € M,, pi, such

that V*V = I, and V*A;V = d;I;, ® Djy ® Iy, for j =1,...,m. Hence, Ay (A) #0. O

Remarks 5.2.4. Some observations that can be made from the theorem and proof discussion
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are pointed out in the following remarks:

1.

ii.

1il.

1v.

Let n(k,m) (respectively, n(k : p,m)) be the minimum number such that for all
n > n(k,m) (respectively, n(k : p,m)), we have Ay(A) # ) (respectively, we have
Ay (A) # 0) for all A € H*. Clearly, we have n(kp, m) > n(k : p,m) > kp. These

inequalities relate constructions of hybrid codes from standard quantum error correct-

ing codes discussed in [20]. In Example5.3.1]and [5.3.3] we will see that sometimes the

lower bound can be attained.

The lower bound (m+1)((m+1)(k—1)+k(p—1)) > n(k : p,m) in Theorem is
not optimal. The same proof shows that n(k : p,m) < n(k,m) + (m + 1)k(p — 1). So,
if we can lower the bound for n(k, m), then we can lower the bound for n(k : p,m).
For example, since n(k, 1) = 2k — 1 [16] and n(k,2) = 3k — 2 [I§], we have n(k : p,1) <
2pk — 1 and n(k : p,2) < 3pk — 2. We also note that using Fan and Pall’s interlacing

theorem [82], one can show that n(k:p,1) = (p+ 1)k — 1.

In the proof of Theorem [5.2.1] suppose U A;U; has leading k x k submatrix equal to
a;11;. Then we can find a unitary X such that X*A,X = (B;(,g))lgmgz with Bg) = a;ly,
B%) = Ogx,r and Bg’) is k x s with s < mk. That is why we can induct on the leading

(n—s) x (n—s) matrices. Of course, we can have some savings if s < mk at any step.

Also, when m = 1, it does not matter whether we want D; ® I}, or C; ® I, for diagonal
D; or general Hermitian C;. We can diagonalize C;. Note that if n = (p + 1)k — 1,
then the set Ay (A) is unique if the eigenvalues of A are distinct. It should be
possible to say more if there are repeated eigenvalues, and in that case one can lower

the requirement of n > (p + 1)k — 1.
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v. When {4;,...,A,,} is a commuting family, then A, + ¢4, is normal for any p < q.

The results in [83] might be useful to study this further.

vi. One could also study a more general class of matricial ranges in which Definition [5.2.1]
would be viewed as a special case; namely, the definition could be broadened to allow
for arbitrary p x p matrices in the m-tuples of A, (A), removing the diagonal matrix
restriction. One can generalize Theorem and obtain other interesting results; see

Section 5.

5.3 Application to Hybrid Quantum Error Correction

In quantum information, a quantum channel corresponds to a completely positive and trace
preserving (CPTP) linear map ® : M,, — M,. By the structure theory of such maps [6§],

there is a finite set Fq,--- € M, with Z]. EYE; = I, such that for all p € M,,
®(p) = > E;pE;. (5.1)
J

These operators are typically referred to as the Kraus operators for ® [10], and the minimal
number of operators E; required for this operator-sum form of ® is called the Choi rank of
®, as it is equal to the rank of the Choi matrix for ® [68]. In the context of quantum error
correction, F; are viewed as the error operators for the physical noise model described by ®.

The OAQEC framework [27], 28] relies on the structure theory for finite-dimensional von
Neumann algebras (equivalently C*-algebras) when applied to the finite-dimensional setting
[49]. Specifically, codes are characterized by such algebras, which up to unitary equivalence
can be uniquely written as A = @®;(I,,,, ® M,,,). Any M, with n; > 1 can encode quantum

information; which when m; = 1 corresponds to a standard (subspace) error-correcting
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code [39] 140, 41, 42, 43] and when m; > 1 corresponds to an operator quantum error-
correcting subsystem code [52, [51]. If there is more than one summand in the matrix algebra
decomposition for A, then the algebra is a hybrid of classical and quantum codes. It has been
known for some time that algebras can be used to encode hybrid information in this way [38],
and OAQEC provides a framework to study hybrid error correction in depth. Of particular
interest here, we draw attention to the recent advance in coding theory for hybrid error-
correcting codes [20], in which explicit constructions have been derived for a distinguished
special case of OAQEC discussed in more detail below.

In the Schrodinger picture for quantum dynamics, an OAQEC code is explicitly described
as follows: A is correctable for @ if there is a CPTP map R such that for all density operators

pi € M,,, 0, € M,,, and probability distributions p;, there are density operators o, such that

RO(I) <sz Uz®pz> sz ®pl

This condition is perhaps more cleanly phrased in the corresponding Heisenberg picture as

follows: A is correctable for @ if there is a channel R such that for all X € A,
(Pao @' o RN (X) = X,

where @ is the Hilbert-Schmidt dual map (i.e., Tr(X®(p)) = Tr(®7(X)p)) and Pu(-) =
Py(-)P4 with P4 the unit projection of A.
From [27, 28], we have the following useful operational characterization of correctable

algebras in terms of the Kraus operators for the channel:
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Lemma 5.3.1. An algebra A is correctable for a channel ®(p) = >, EipE; if and only if

[PEE;P,X] =0 VX € A, (5.2)

where P is the unit projection of A.

In other words, A is correctable for ® if and only if the operators PE;E; P belong to the
commutant PA'P = PA" = A'P. Applied to the familiar case of standard quantum error
correction, with A = My, for some k, we recover the famous Knill-Laflamme conditions [43]:
{PEfE;P}, ; C CP. The result applied to the case A = I, ® M, yields the testable condi-
tions from operator quantum error correction [52, 51]: {PE;E;P};; C M,, ® I;;. Anything
else involves direct sums and has a hybrid classical-quantum interpretation as noted above.

We next turn to the distinguished special hybrid case noted above. First some additional
notation: we shall assume all our channels act on a Hilbert space H of dimension n > 1,
and so we may identify H = C" and let {|e;)} be the canonical orthonormal basis. Our
algebras A then are subalgebras of the set of all linear operators £(#) on #H, which in turn
is identified with M,, through matrix representations in the basis |e;). We shall go back and
forth between these operator and matrix perspectives as convenient.

As in [20], consider the case that A = ®,.4, with each A, = M; for some fixed k > 1.
Let us apply the conditions of Eq. to such algebras. Let P. be the (rank k) projection
of H onto the support of A,, so that the P, project onto mutually orthogonal subspaces and
P =) P, is the unit projection of A = &, P,L(H)P,. Observe here the commutant of A

satisfies: PA'P = ¢,CP,. Thus by Lemma [5.3.1} it follows that A is correctable for & if
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and only if for all 4, j there are scalars )\g-) such that
PEE;P =Y \J'P, (5.3)
which is equivalent to the equations:
PEE;P, =6, \)P,  Vr,s. (5.4)

Indeed, these are precisely the conditions derived in [20] (see Theorem 4 of [20]).

For what follows, let V,, 1 < r < p be mutually orthogonal k-dimensional subspaces of
C" and P, the orthogonal projection of C™ onto V,, for 1 < r < p. Following [20], we say
that {V, : 1 < i < p} is a hybrid (k : p) quantum error correcting code for the quantum
channel ® if for all 7, 7 and all r there exist scalars )\Z) such that Egs. are satisfied.

Consideration of the matricial ranges defined above is motivated by the following fact,

which can be readily verified from Eqs. (5.4)).
Lemma 5.3.2. A quantum channel ® as defined in Fq. has a hybrid error correcting

code of dimensions (k : p) if and only if

ANy (EYEy, ESEs, ... EYE,) # 0.

T

We note that given a rank-kp projection, with say P = Y. |e;Xe;|, and diagonal matri-
ces D; that make A;.,) nonempty, we may define the desired projections for 1 < r < p, by

k
=3 lee-nrriXer—1ykril-

Theorem 5.3.3. Let ® be a quantum channel as defined in Eq. with Choi rank equal
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to c. Then ® has a hybrid error correcting code of dimensions (k : p) if

dimH > (k= 1) + k(p —1)).

Proof. Suppose {Ei, ..., E.} is a minimal set of Kraus operators that implement ® as in
(5.1). For 1 < j <l <e, let Fjy = 1(E:E, + E;E;) and Fy; = 5 (EfE; — EfE;). Also, let
Fjj = EfE; for 1 < j < c. Since Z§=1 ErE; = I, the operator subspace span{Fj, : 1 <
J, £ < c} has a basis {Ag = 1I,...,A,} with m < ¢ — 1. The result now follows from an

application of Theorem [5.2.1] ]

Theorem is useful if we have no information about the E!s, except the number c. If
the E’s are given, we may get a hybrid code even when n is lower than the bound given in
Theorem or . The saving can come from two sources: 1) The subspace spanned
by {E;E; : 1 <4,j < ¢} can have dimension (over R) smaller than ¢* in particular when
restricted to the code, or 2) the operators {E;E;} have some specific structures. We give

some examples to demonstrate this.

Example 5.3.1. Consider the error model on a three-qubit system

O(p) = p(XopXs2) + (1 = p)p,

where Xo = I ® X ® I and X is the Pauli bit flip operator and 0 < p < 1 is some
fixed probability. It is not hard to see that the codes C; = span{]|000),|001)} and Cy =
span {|100), |101)} together form a correctable hybrid code for . One would seek to examine

the matricial range

A(k:p) (EikEla ETE% E;Ela E;(E?) = A(k:p) ([7 X27 X27 I)
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By the above reduction to linearly independent sets of Kraus operators, we would be inter-
ested in the geometry of Ay (X2). Since X5 is unitarily similar to Iy @ —I4, Aoy (Xs) =

{diag(1, —1)}. Thus, for this example, we have m = 1,k =4,p = 2,n = 8 and ¢ = 2.

Example 5.3.2. Consider the quantum channel on a three-qubit system given by

®(p) = pop + P XPpX O 4 oY P pY S 4y 7589757

where po, . .., ps are probabilities summing to 1 and X®* = X @ X ® X etc, with the Pauli
matrices X,Y, Z.
In this case the relevant operators E}E; form the 3-tuple (X®? Y®3 Z®3) and we set

m =3, k =4,p = 1. Defining a partial isometry V : C* — C? @ C?> ® C? by

V' =1000)(00| 4 |011)(01] 4 |101)(10| 4 |110)(11],

one can verify that V*V = I and

VHXP YD ZBW = (09® 11,0, @ I, [, ® 1)

- (047047-[4>'

Therefore, Ay(X®3, Y3, Z®3) £ (). However, A4.0)(X®3, Y3, Z93) = () because X®* and

Y®3 do not commute.

Example 5.3.3. Extend the previous example to a four-qubit system given by

U(p) = pop + pr X pXEY 4 pY SpY @4 4 pa 794 p 794,
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where py, ..., ps3 are probabilities summing to 1.
In this case the relevant operators E}E; form the 3-tuple (X®* Y®4 Z®4) and we set

m = 3. We are going to show that there is a unitary matrix U € Mg such that

U'X®*U =Dx®1;, UY?U=Dy®Il;, UZ%U =D, Iy, (5.5)

for some diagonal matrices Dy, Dy, Dz € M. Hence, we will have A(y.q)(X®4 Y4, Z94) £
(). In this case, k = 4,p = 4 and n = 16 = kp. Thus, the smallest possible n is also achieved.
For J = <j1j2]3j4) € {0, 1}4, let |J> = ’j1j2j3j4> and |J‘ = Z?:l jz Since Y;L’J> =

(—=D)IX,]J), we have

Xy([J) + XalJ)) = |J) + XulJ)
Xu(|J) = XulJ)) = —=(|J) = XulJ))
|.]) + X4|J) if |J] is even
Yi(|J) + XalJ)) = (5.6)

—(|J) + X,4|J)) if |J| is odd

—(|J) — X4|J)) if |J]| is even

Yi(lJ) = XulJ)) =

(|J) — X4|J)) if |J] is odd
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Define a unitary matrix U = %[ul -+~ u16] with columns given by

uy =(]0000) 4 [1111)) 4 (J0011) 4 [1100)),  ug =(|0000) — |[1111)) + (J0011) — |1100)),
uy =(J0000) + [1111)) — (|0011) + [1100)),  wsp =(|0000) — [1111)) — (|0011) — [1100)),
uz =(|0101) 4 [1010)) 4 (]0110) 4 [1001)),  wy; =(|0101) — |1010)) + (|0110) — |1001)),
uy =(]0101) 4 [1010)) — (]0110) +|1001)),  wyp =(|0101) — |1010)) — (J0110) — [1001)),
us =(J0001) + [1110)) + (J0010) + [1101)),  wy3 =(|0001) — [1110)) + (]0010) — |1101)),
ug =(J0001) + |1110)) — (|0010) + |1101)), w4 =(|0001) — |1110)) — (|0010) — [1101)),
uz =(]0100) + [1011)) + (J0111) + [1000)),  us5 =(|0100) — |1011)) + (J0111) — [1000)),

us =(]0100) + [1011)) — (JO111) + [1000)),  wuye =(|0100) — |1011)) — (J0111) — |1000)).

Since, Zy = X4Y4, by (5.6]), we have (5.5 with

Dyx = diag(1,1,—1,—1), Dy =diag(1,—1,—1,1) and Dy = diag(1,—1,1,—1). (5.7)

Remark 5.3.4. More generally, one can consider the class of correlation channels studied in
[84], which has error operators X®" Y Z®" normalized with probability coefficients. It is
proved there that when n is odd, Agn—1 (X®", Y Z®") =£ (). Thus n qubit codewords encode
(n—1) data qubits when n is odd. When n is even, it follows that Agn—2 (X ®* Y™ Z®7) =£ ().
Using a proof similar to the above example, we can show that Agn-2.4 (X®",Y®" Z9") =
{(Dx,Dy,Dz)}, with Dx, Dy, Dy given by (5.7). It has been proven in [84] that for n
even, Agn—1 (X®" Y Z%") = (). Actually, we can show that A, (X®" Y®" Z9") = () for
all k£ > 2772, Therefore, we can encode at most n — 2 qubits. Using the hybrid code, we can
get 2 additional classical bits. Very recently, this scheme has been implemented using IBM’s

quantum computing framework qiskit [85].
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5.4 Exploring Advantages of Hybrid Quantum Error
Correction

A straightforward way to form hybrid codes is to use quantum codes to directly transmit
classical information. However, it is impractical since quantum resources are more expen-
sive than classical resources. Thus, realistically, hybrid codes are more interesting when
the simultaneous transmission of classical information and quantum information do possess
advantages. One of such situations is, with a fixed set of operators A, hybrid quantum error
correcting codes exist but the corresponding quantum codes do not exist for the same system

dimension n, i.e. Ay (A) # 0 and Agy(A) = 0.

Proposition 5.4.1. Suppose A is an n X n Hermitian matrix with eigenvalues a; > as >

-++>a,. Then

Akp(A> = {t P Qn1—kp <t< ak;p}

A(kp)<A) - {(tla s 7tp) tag < t[z] < Apt1—(p—i+1)k for 1 <1< p} )

where here, £ > fg) > - -+ > t},) is a rearrangement of ¢, t5,--- ¢, in decreasing order.

Proof. The first statement follows from [16]. For the second, by a result of Fan and Pall [82],
by > by -+ > b, are the eigenvalues of U* AU for some n x m matrix U satisfying U*U = [,
if and only if

aizbizan—m+i V1§Z§m7

from which the result follows. O
Remark 5.4.1. (i) If we require the components (Z1,...,%,) in Agp)(A) to be in decreasing
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order, then the “ordered” Ay (A) is convex.
(17) Agp(A) = [@n+1-kp, arp) is obtained by taking the convex hull of the eigenvalues of A
after deleting the (n — kp+ 1) largest and smallest eigenvalues. The following proposition is

a generalization of this result.

Proposition 5.4.2. Suppose A; = diag(ai,da,...,a},) for i = 1,...,m with o’ € R. Let

a; = (aj,a3,...,a7") for j =1,...,n. For S C {1,...,n}, let Xg = conv{a; : j € S}. Then

YRR

for every 1 < k <n,

A(A) CN{Xs:Sc{1,2,....n}, |S|=n—k+1}. (5.8)

Proof. 1t suffices to prove that Ay(A) C Xg for S ={1,2,...,n —k + 1}. Suppose we have

X = (1,Z2...,Zm) € Ag(A). Then there exists a rank k projection P such that PA,P = x; P

fori =1,...,m. Consider the subspace W = span{ey, ..., e,_+1}. Then there exists a unit
vector w = (wy, ..., w,)" € R" such that Pw = w. Therefore, for 1 <i < m,
n—k+1
_ * _ * _ * ok _ 2 4/
T, = ;,Ww =x,Ww'Pw =w'PA,Pw = w"Aw = Z lw;|aj".
j=1
Hence, x = Z?;f“ lw;|?a; € Xs. O

By the result in [76], equality holds in (5.8) for m = 1,2. For m > 2, Ax(A) may not be

convex and equality may not hold.
Proposition 5.4.3. Let A;, 1 < i < m be as given in Proposition [5.4.2l Then we have:
(1) It n > (m+ 1)k —m, then Ax(A) # (). The bound (m+ 1)k —m is best possible; i.e., if

n < (m+ 1)k —m, there exist real diagonal matrices Ay, ..., A,, such that Ax(A) = (.
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(2) If n > p((m+ 1)k —m), then Ay (A) # 0.

Proof. The statement (1) follows from Tverberg’s Theorem [86] and Proposition[5.4.2] (Also,
see Example [5.4.3])

For (2), note that if n > p((m + 1)k — m), we can decompose each A; = EB?ZIA{ with
Al e M,,, and n; > (m + 1)k —m. Then, by the result in 1), Aw(Al, ... Al) # 0 and the

result follows. O

Remark 5.4.2. By the above proposition, for p((m + 1)k —m) <n < (m + 1)kp — m, we

can construct Ay, ..., Ay, such that Ay,(A) =0 and Ay (A) # 0.

Example 5.4.3. Suppose p((m + 1)k —m) < n < (m + 1)kp — m. We are going to show

that there exist Ay, ..., A,, such that Ag,(A) =0 and A (A) # 0.

n
Let r =
et r {kp—l
if and only if n = (m + 1)(kp — 1). Define for 1 <4 < min{r,m}, A; = diag(a}, ds,...,a’),

’r'n

}, the greatest integer < k n T Then 1 <r<(m+1)andr=m+1
where a/ = 1 for (i—1)(kp—1)41 < j < i(kp—1) and a/ = 0 otherwise. Then, by Proposition

5.4.2] Ayy(A) = 0. Since n > p((m + 1)k —m), by Proposition [5.4.3] Aw.p)(A) # 0. O

5.5 Outlook

As mentioned in Remark 2.5 (vi), one can further extend the definition of Ay, (A) and
consider (B, ..., By,) € M} such that V*A;V = B;® I}, for some n x pk matrix V satisfying
V*V = I, without requiring B, ..., B,, to be diagonal matrices as in Definition 2.1. We
can then use the recent results and techniques in [79] to show that this set is non-empty
if n is sufficiently large. This generalization also has a potential implication to the study
of quantum error correcting codes. In particular, one may use random qubits to do the

encoding and protect the data bits in the quantum error correction process.
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It has been proved that transmitting classical and quantum information simultaneously
provides advantages from an information-theoretic perspective [1]. Practical hybrid classical-
quantum error correcting codes built on the mathematical techniques introduced here that
achieve these advantages could benefit various quantum communication tasks. Communi-
cation protocols based on such hybrid codes are expected to enhance the communication
security or increase channel capacities. We leave these lines of investigation for future stud-

ies.
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Chapter 6

Conclusion

This thesis has presented an exploration of three published research projects with strong
connections between them. All the parts are motivated by the study of hybrid quantum error
correcting codes, which has formed the umbrella of the present work. Chapter 1 gave a broad
introduction and motivation for the entirety of the text, and Chapter 2 presented the broadest
fundamental concepts: the tenets of quantum information, quantum error correction, hybrid
quantum codes, quantum privacy and complementary quantum channels.

The first of the research exposition chapters centered on the complementarity of quantum
privacy and quantum error correction. Key to this chapter, is the insight that either theory
gives a potentially deeper understanding of the other. Section 3 of this chapter expanded
on complementarity between correctable and private algebras. This needed to be done in
terms of relevant operator structures. In practical terms, hybrid codes are encoded on such
structures, later explained in more detail in Chapter 5. Emerging features of a special
subclass of channels, unital channels, were also explored. The last part before concluding

quantitatively compared the trade-off between privacy and correction in terms of inequalities
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relating their dimensions. The chapter concluded with a brief outlook.

The second expository chapter, the fourth of this thesis, primarily explicitly linked ap-
proximate quasiorthogonality of operator algebras with an appropriate notion of approximate
privacy of algebras, this notion being newly defined in a natural, well-motived way. The class
of unital algebras were of particular focus, as well as quantum privacy defined by privatizing
to the identity operator. This particular example is practically relevant, and as well makes
the analysis technically tractable. Nevertheless, it is hoped that the results can appropriately
be extended to more general algebras and quantum privacy settings. These generalizations
have been realized in the related contexts of private quantum codes [26] and quantum error
correction [50]. A few examples were presented. Of particular note, was an example relating
back to constructions of approximately mutually unbiased bases. Speculatively, this work
may be applied to further the constructions of such approximate MUBS, and potentially also
to the study of SIC-POVM’s [70), [71].

Chapter 5 introduced a definition of the joint higher rank matricial range, a high-order
generalization of the numerical ranges of matrices, motivated by their application to the
study of hybrid quantum error correcting codes. A chief outcome of that research was
to give a dimensional inequality that qualifies the existence of a hybrid error correcting
code of given parameters for a given quantum channel. A mentioned in the chapter, such
examinations of the capacities of quantum channels have previously been considered. The
present work provides an initial result applicable to hybrid quantum codes. Admittedly, as
mentioned in the remarks following the proof of the main theorem, and demonstrated with
examples, the bound given is not an optimal one. There is a possibility of improving this
bound in various contexts, either through understanding the structure of particular channels

of interest, or potentially further developing a general result. Note here that the type of
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hybrid codes considered in Chapter 5, and the manner in which the matricial ranges are
defined, are related. Advances in explicit constructions of hybrid codes with advantageous
parameters [20] served as a primary motivation for this work. These codes are a special case
of the operator algebra structures discussed in chapters 3 and 5. The definition of A can be
further extended to accommodate more complex hybrid code structures not captured here.

The benefits of simultaneously transmitting quantum and classical information have been
previously been demonstrated in literature [I], primarily from an information-theoretic per-
spective. The final part of the chapter examined this briefly. This author, together with
collaborators, hope that these mathematical explorations assist in laying down a foundation
that provides techniques for investigating the existence of hybrid codes, and constructing
such codes. Further success will have applications in various aspects of quantum informa-
tion and computation.

In the final part of this manuscript, some thoughts on potentially signifiant research works
are shared. Recently, the theory of quantum error correction, and especially the framework
of OAQEC, has been found to be closely related to the realization of the holographic principle
in the AdS/CFT correspondence in various ways [87, 88|, 89, 90, OT], ©92]. Of particular note,
Almbheiri, Dong and Harlow interpret the complex dictionary in AdS/CFT as the encoding
operations of certain operator algebra quantum error correcting codes, and bulk local oper-
ators are logical operators for these error correcting codes [87]. Concurrently, holographic
methods have inspired new approaches for code design from a geometric perspective [92].
Potentially, some of the theoretical explorations of the works detailed in the research works
this thesis includes could potentially have some meaning in these realms of high energy
physics. What, perhaps, does complementarity, and the view of quantum error correction in

terms of privacy of its complementary channel, mean for explorations in quantum gravity?
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Also, looking on works in chapter 5, the approaches that have been applied to the study of
hybrid quantum error correcting codes could have some meaning for the connection between

quantum error correction and the ongoing search for a theory of quantum gravity.
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