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Abstract: Quantum field theory (QFT) in Rindler spacetime is a gateway to understanding unitarity
and information loss paradoxes in curved spacetime. Rindler coordinates map Minkowski spacetime
onto regions with horizons, effectively dividing accelerated observers into causally disconnected
sectors. Employing standard quantum field theory techniques and Bogoliubov transformations be-
tween Minkowski and Rindler coordinates yields entanglement between states across these causally
separated regions of spacetime. This results in a breakdown of unitarity, implying that information
regarding the entangled partner may be irretrievably lost beyond the Rindler horizon. As a conse-
quence, one has a situation of pure states evolving into mixed states. In this paper, we introduce
a novel framework for comprehending this phenomenon using a recently proposed formulation
of direct-sum quantum field theory (DQFT), which is grounded in superselection rules formulated
by the parity and time reversal (PT ) symmetry of Minkowski spacetime. In the context of DQFT
applied to Rindler spacetime, we demonstrate that each Rindler observer can, in principle, access
pure states within the horizon, thereby restoring unitarity. However, our analysis also reveals the
emergence of a thermal spectrum of Unruh radiation. This prompts a reevaluation of entanglement in
Rindler spacetime, where we propose a novel perspective on how Rindler observers may reconstruct
complementary information beyond the horizon. Furthermore, we revisit the implications of the
Reeh-Schlieder theorem within the framework of DQFT. Lastly, we underscore how our findings
contribute to ongoing efforts aimed at elucidating the role of unitarity in quantum field theory within
the context of de Sitter and black hole spacetimes.

Keywords: quantum gravity; quantum field theory; Rindler spacetime; Unruh effect

1. Introduction

Hawking’s seminal paper on black hole radiation [1] posed very concerning questions
on our understanding of gravity and quantum mechanics. The question is about the loss
of unitarity, which is an observer losing a part of the quantum information behind the
horizon, and it manifested in general into the well-known information loss paradox. The
extrapolation of the information loss paradox is Hawking radiation being independent of
what has formed the black hole. There are a few setbacks in this extrapolation, such that,
after all these years, we still do not have a consistent understanding of quantum field theory
(QFT) in curved spacetime, especially when spacetime is dynamical in nature. In particular,
since we do not yet know the consistent framework of quantum fields in a dynamical
collapse, the microscopic understanding of black hole formation is an open question. Going
to the details of Hawking’s calculation, one can decipher that the quantization is performed
in Schwarzchild spacetime, which is static in nature (the detailed assumptions in Hawking’s
derivation can be found in [2]). Soon after Hawking’s paper, Unruh’s remarkable calculation
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of QFT in Rindler spacetime [3–6] reaffirms the unitarity loss due to the ignorance of the
entangled state part beyond the Rindler horizon. Numerous attempts have been made
over the decades to resolve the problem in the context of several frameworks of quantum
gravity [7,8], which include Hawking’s last works on this subject [9]. The seminal papers
of Norma G. Sanchéz, B. Whiting and Gerard ’t Hooft have taken forward the earliest idea
of Schrödinger’s antipodal identification to resolve the unitarity and information loss
issues [10–15]. Despite all these attempts, a fundamental question one can ask here is if
one has to reanalyze the historical developments and carefully scrutinize each step of the
calculation that was performed and find if the conceptual conundrums are mere artifacts of
the way we perceive quantum theory when there are spacetime horizons. This paper is
such an attempt. In our earlier attempts we have developed the subject of QFT in curved
spacetime towards achieving unitarity using superselection rules [2,16,17], that constructs a
global Hilbert space as direct-sum of Hiblert spaces which describe parity conjugate regions
of physical space. We have shown in these papers how one can achieve unitarity (i.e., the
evolution of pure states into pure states) if one starts understanding (quantum) spacetime
with parity (P) and time reversal (T ) operations. In this paper, we address the QFT in
Rindler spacetime in the context of direct-sum QFT (QDFT) developed in [17]. We provide
further support for DQFT’s framework in uncovering the fundamental conundrums on our
understanding of quantum fields in conjunction with spacetime horizons, which is very
crucial for future endeavours for quantum gravity.

The paper is organized as follows. In Section 2, we discuss the PT symmetric formu-
lation of quantum mechanics (QM) [17,18] that splits the single-particle Hilbert space into
superselection sectors by PT operation. In Section 3 we discuss the direct-sum QFT [17]
that again builds the QFT with PT where vacuum and Fock space are constructed by
superselection rules. In Section 4, we discuss the 1 + 1 dimensional Rindler spacetime that
emerges by coordinate transformations on the Minkowski spacetime coordinates. These
coordinate transformations confine the Minkowski spacetime into four regions perceived
by constantly accelerating observers. We perform the calculations of how the Minkowski
vacuum of DQFT would lead to (thermal) particle spectrum to the Rindler observers. Still,
in our case, we show that unitarity can be maintained. In Section 5, we discuss the status of
entanglement and the ramifications for the Reeh-Shlieder theorem in DQFT. In Section 6, we
present how DQFT in Rindler spacetime leads to thermal spectrum for all Past, Future, Left,
and Right Rindler regions, but still, one can preserve the evolution of pure states into pure
states (unitarity) for every observer. In Section 7, we discuss the differences between the
Unruh radiation in standard QFT and DQFT. We also qualitatively elucidate the merits of
DQFT as an essential mechanism to get a consistent quantum theory and achieve observer
complementarity. In Section 8, we comment on the connection between DQFT in Rindler
spacetime to DQFT in curved spacetimes such as de Sitter and Schwarzchild that were
explored in earlier works [2,17]. In Section 9 we summarize the results with conceptual dis-
cussion. In Appendix A, we provide details PT symmetry in classical harmonic oscillator
and contrast with notions considered in standard QM. We highlight the crucial aspects of
building direct-sum QM. In Appendix B we provide details of Bogoliubov transformations
and the coventions we followed from [6].

Throughout the paper, we follow the natural units h̄ = c = 1 and mostly positive
metric (−,+, +, +) signature.

2. Direct-Sum Quantum Mechanics

Direct-sum QM emerges as an alternative framework that offers a fresh perspective
on quantum theory, especially in situations involving superselection rules. Unlike the
standard formulation of quantum mechanics, which assumes a single global Hilbert space
for describing the entire system, direct-sum QM decomposes the Hilbert space into a
direct-sum of sectorial Hilbert spaces associated with different superselection sectors.
Superselection sectors arise in quantum mechanics when certain observables cannot be
simultaneously measured with arbitrary precision. From the perspective of an observer,
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superselection sectors represent distinct non-superimposable physical states that cannot be
transformed into each other through local operations. Discrete spacetime transformations
such as Parity (P) and Time reversal (T ) fall into global operations. In the context of
quantum mechanics, the operation of time reversal is typically represented by an anti-
unitary operator acting on the quantum states of the system [19,20]. This operator applies a
complex conjugation operation to the wave function, effectively reversing the sign of the
time parameter. It is important to note that [21,22]:

“In QM, time is treated as a parameter where space has a status of operator. Even if
we go to QFT, time remains as a parameter. QFT combines QM and special relativity

by imposing the causality condition
[

Ô(x), Ô(y)
]

= 0 which is the commutativity of

operators for space-like distances (x− y)2
> 0. ”

In direct-sum QM, a single Hilbert space is divided into superselection sectors defined
by the combined operation of PT [2,17,18]. Here, we review direct-sum QM, where a
positive energy state is defined without reference to the arrow of time. It is worthy of
mentioning that the model presented in this paper, which is based on PT symmetry
and superselection sectors, bears some conceptual similarities to the “Two-State Vector
Formalism” (TSVF) of quantum mechanics reviewed in [23]. While the (PT ) symmetry
and superselection sectors model and the Two-State Vector Formalism (TSVF) are distinct
in their specific formulations and motivations, they share a conceptual affinity in terms of
introducing additional structure and symmetries to the Hilbert space. The TSVF’s emphasis
on time symmetry and dual-state description offers a rich perspective that might provide
useful analogies or methods for further developing and understanding our proposed PT
symmetry-based model. Exploring these connections could lead to deeper insights into the
implications and applications of superselection sectors in quantum field theory. In usual
QM (See Appendix A), a positive energy state is defined by

|Ψ⟩t = e−iEt|Ψ⟩0 (1)

with presumption on the arrow of time t : −∞→ ∞. Another equivalent way of defining a
positive energy state is

|Ψ⟩t = eiEt|Ψ⟩0 (2)

with presumption on the arrow of time t : ∞→ −∞. Without referring to the arrow time,
we can definite the positive energy state as

|Ψ⟩ = 1√
2
( |Ψ+⟩ ⊕ |Ψ−⟩) =

1√
2

(

|Ψ+⟩
|Ψ−⟩

)

(3)

where⊕ is direct-sum operation and it makes the states |Ψ±⟩ orthogonal by construction [24].
Note that it is different from the usual summation (in the context of superposition of
states, we use usual summation for example |ψ⟩ = |ψ1⟩+ |ψ2⟩, whereas the direct-sum of
two states increases the dimensionality of the state vector). Here, |Ψ+⟩ is a positive energy
state at a position (say x) (with an arrow of time t : −∞→ ∞) while |Ψ−⟩ being a positive
energy state at a position −x (with an arrow of time t : ∞→ −∞). This structurally implies
the state (3) is an invariant state under PT symmetry, and it is governed by the direct-sum
Schrödinger equation

i
∂|Ψ⟩
∂tp

=

(

Ĥ+ 0
0 −Ĥ−

)

|Ψ⟩ (4)

where Ĥ±(x̂±, p̂±) give the full Hamiltonian of the system Ĥ = Ĥ+ ⊕ Ĥ−, which are
functions of position and momenta operators of the target space defined by
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p̂+ = −i
d

dx+
, x+ = x ≳ 0

p̂− = i
d

dx−
, x− = x ≲ 0 .

(5)

The canonical non-zero commutation relations

[x̂+, p̂+] = i, [x̂−, p̂−] = −i , (6)

and the remaining relations

[x̂+, x̂−] = [ p̂+, p̂−] = [x̂+, p̂−] = [ p̂+, x̂−] = 0 , (7)

define the Hilbert space
H = H+ ⊕H− (8)

where the component states |Ψ±⟩ of |Ψ⟩ (3) evolve inH± at the parity conjugate points in
physical space. The parity conjugate regions of physical space now define the Hilbert space
with the superselection sectorsH± where positive energy states (components of a single
state) evolve with opposite arrows of time (See [17] for further details). It is important
to note that the superselection rule here is based on PT symmetry, which is structurally
different and aesthetically similar to superselection rules applied in algebraic quantum
field theory historically. The operation direct-sum ⊕ forbids any super-position of states
among the superselection sectors defined by PT . The wave function is now defined by

⟨x|Ψ⟩ = 1
2

(

⟨x+| ⟨x−|
)

(

|Ψ+⟩
|Ψ−⟩

)

=
1
2

Ψ(x+)e
−iEt +

1
2

Ψ(x−)eiEt . (9)

The square integrabilities and probabilities in the total Hilbert space (H) as well as the
individual Hilbert spaces (H+, H−) are sum up to unity as reflected by the following equation

∫ ∞

−∞
dx⟨Ψ|Ψ⟩ = 1

2

∫ ∞

0
dx+⟨Ψ+|Ψ+⟩+

1
2

∫ 0

−∞
dx−⟨Ψ−|Ψ−⟩ = 1 . (10)

Quantum Harmonic Oscillator

We review the derivation of the wave function for the quantum harmonic oscillator
in the framework of direct-sum Schrödinger Equation (4) [18]. The Hamiltonian of the
quantum harmonic oscillator is

Ĥ =
p̂2

2
+

1
2

x̂2

=

(

p̂2
+

2
+

1
2

x̂2
+

)

⊕
(

p̂2
−
2

+
1
2

x̂2
−

) (11)

where

x̂+ =
1√
2

(

a + a†
)

, p̂+ = −i
d

dx+
= i

1√
2

(

a† − a
)

x̂− =
1√
2

(

b + b†
)

, p̂− = i
d

dx−
= −i

1√
2

(

b† − b
)

(12)

with
[

x̂+, p̂+
]

= i,
[

x̂−, p̂−
]

= −i
[

a, a†
]

=
[

b, b†
]

= 1,
[

a, b†
]

=
[

a, b
]

= 0 .
(13)

Following (9), it is straightforward to obtain the wave function for the harmonic
oscillator
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Ψn

(

x, tp

)

=
1√
2

Ψn+
(

tp, x+
)

+
1√
2

Ψn−
(

−tp, x−
)

=
1√

2n+1n!

(

1
π

)1/4[
e−

1
2 x2

+ Hn(x+)e
−iEntp + e−

1
2 x2
−Hn(x−)eiEntp

]

(14)

where Hn(z) is the Hermite Polynomial. We should interpret the wave functions Ψn±
(

±tp, x±
)

as not superposition since they correspond to superselection sectors of total Hilbert space (8). We
refer to Figure 1 about the description of our quantum harmonic oscillator where the orthogonal
states |Ψ±⟩ can be seen as PT mirror images of each other. We must note that an observer can
only measure one of the states but never simultaneously. The orthogonality of the wavefunctions
in the global Hilbert spaceH corresponding to different energy states is given by

∫ ∞

−∞
⟨Ψn|Ψm⟩dx =

∫ ∞

0
dx+⟨Ψn+|Ψm+⟩+

∫ 0

−∞
dx−⟨Ψn−|Ψm−⟩dx− = δn,m (15)

which follows from the orthogonal properties of Hermite polynomials.
The expectation value of an observable is

⟨Ψ|O|Ψ⟩ = 1
2
⟨Ψ+|O+|Ψ+⟩+

1
2
⟨Ψ−|O−|Ψ−⟩ (16)

where O is an operator corresponding to an observable that splits according to our direct-
sum rule (superselection by PT ) as

O =

(

O+ 0
0 O−

)

(17)

Figure 1. In this picture, we depict the quantum harmonic oscillator in the framework of the direct-
sum Schrödinger equation, which describes a quantum state as a direct-sum of two components in
the parity conjugate regions of physical space and are positive energy states in the opposite arrows
of time. In this picture, the two components of the quantum state are mirror images of each other
by PT . This would mean in the simple harmonic motion (quantum mechanical), if we place a “PT
mirror” at x = 0, we would be witnessing the component quantum states Ψ± as mirror images of
each other. Note that the choice of placing PT mirror at x = 0 is not special, in fact one can choose
any non-zero origin to realize the equivalent PT symmetric understanding.
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3. Direct-Sum Quantum Field Theory

According to DQFT [2,17,18], the Klein-Gordon (KG) field in 4D Minkowski spacetime
(ds2 = −dt2 + dx2) is quantized as

φ̂(x) =
1√
2

φ̂+(t, x)⊕ 1√
2

φ̂−(−t, −x)

=
1√
2

(

φ̂+ 0
0 φ̂−

) (18)

where φ±(±x) are functions of PT conjugate points in the Minkowski spacetime given by

φ̂+(x) =
∫

d3k

(2π)3/2
1

√

2|k0|

[

â(+)keik·x + â†
(+)ke−ik·x

]

φ̂−(−x) =
∫

d3k

(2π)3/2
1

√

2|k0|

[

â(−)ke−ik·x + â†
(−)keik·x

]
(19)

where k · x = −k0t + k · x. Note that in standard QFT, we expand the field operator as

φ̂(x) =
∫

d3x

(2π)3/2
1

√

2|k0|

[

âkeik·x + â†
ke−ik·x

]

(20)

which is dictated by Lorentz symmetries and the requirement of operators to commute for
space-like distances

[

φ̂(x), φ̂(y)

]

= 0, (x− y)2
> 0 (21)

which is called the causality condition. The connection between QM and QFT enters by
associating the positive energy state mode function e−ik0t (according to the arrow of time
t : −∞→ ∞) to the annihilation operator âk.

This construction follows straightforwardly from direct-sum representation of
Schrödinger equation

The creation and annihilation operators satisfy

[â(+)k, â†
(+)k′ ] = [â(−)k, â†

(−)k′ ] = δ(3)
(

k− k′
)

[â(+)k, â(−)k′ ] = [â(+)k, â†
(−)k′ ] = 0 .

(22)

The above commutation relations ensure that

[

φ̂+, φ̂−
]

= 0 (23)

which is a new causality condition in the DQFT construction along with the standard
commutation of operators for space-like distances (21).

Therefore, a single quantum field of momentum k is the direct-sum of two components
evolving forward and backward in time at x and −x. The vacuum in DQFT is defined by

|0M⟩ = |0M+⟩ ⊕ |0M−⟩ =
(

|0M+⟩
|0M−⟩

)

(24)

â(+)|0M+⟩ = 0, â(−)|0M−⟩ = 0 (25)

TheFock space in DQFT is
FM = FM+ ⊕FM− (26)
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The single-particle states in Minkowski spacetime are described in direct-sum
Hilbert space

HM = HM+ ⊕HM− (27)

A principle here is that physics has to be observer-independent; the direct-sum QM
provides a universal way to define a positive energy state independent of the arrow of time.
The notion of an observer in classical physics differs from that of quantum physics. It is
also well-known that the concept of time significantly differs in QM [25]. Therefore, one
cannot align the classical observer’s clock with the notion of time in QM unless there are
causal boundaries in spacetime, which we will discuss in the next sections.

DQFT uplifts the PT (or CPT , including “charge conjugation”) at every stage. Our
discussion here is restricted to real scalar fields. Now, the two-point function and propaga-
tor (related time-ordered product) have two components because of the direct-sum split of
the vacuum (24)

⟨0|φ̂(x)φ̂
(

x′
)

|0⟩ = 1
2
⟨0+|φ̂+(x)φ̂+

(

x′
)

|0+⟩+
1
2
⟨0−|φ̂−(x)φ̂−

(

x′
)

|0−⟩

⟨0|Tφ̂(x)φ̂
(

x′
)

0|⟩ = 1
2
⟨0+|Tφ̂+(x)φ̂+

(

x′
)

|0+⟩+
1
2
⟨0−|Tφ̂−(x)φ̂−

(

x′
)

|0−⟩ ,
(28)

where T represents time ordering. All the interactions are also split to direct-sum compo-
nents. For example, consider a cubic interaction

λ

3
φ̂3 =

λ

3

(

φ̂3
+ 0
0 φ̂3

−

)

(29)

which shows that there will never be any mixing between φ̂+ and φ̂−. So, all the calculations
of standard QFT can be straightforwardly extended to DQFT. However, we do not expect
any change in the results of standard QFT because all the propagators and vertices of
standard model degrees of freedom are split into two components. According to DQFT, the
standard model vacuum and the degrees of freedom are split into two components as

|0SM⟩ =
(

|0SM+⟩
|0SM−⟩

)

|SM⟩ = 1√
2

(

|SM+⟩
|SM−⟩

)

|SM⟩ = 1√
2

(

|SM+⟩
|SM−⟩

)

(30)

where |SM⟩ and |SM⟩ represent particle and anti-particle degrees of freedom. It is impor-
tant to note that every standard model degree of freedom in DQFT is represented by two
components, which are applicable to both particle and anti-particle degrees of freedom.
Note that we still maintain the same interpretation of anti-particles as particles going
backward in time in each superselection sector. We can still describe a superposition of
particle and anti-particle degrees of freedom maintained in each superselection sector

α|SM⟩+ β|SM⟩ = 1√
2

(

α|SM+⟩+ β|SM+⟩
α|SM−⟩+ β|SM−⟩

)

(31)

Note that if we apply DQFT for the entire standard model of particle physics, we must
impose our super-selection-rule based on PT to be the same for all Fock spaces, i.e., the
parity conjugate regions are uniquely defined for the all the particle and antiparticle states
of the standard model. According to this, all the standard model interactions (either cubic
or quartic) are split into the block diagonal form

Lc ∼ O3
SM =

(

O3
SM+

0
0 O3

SM−

)

Lq ∼ O4
SM =

(

O4
SM+

0
0 O4

SM−

)

(32)

Here, OSM represents any operator in the Standard Model involving quantum fields
and their derivatives.
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DQFT is a framework that does not alter the QFT calculations in Minkowski due to the
spacetime being PT symmetric. However, extending the new understanding of spacetimes
with horizons offers a resolution to the most important conundrums. This is exactly what
we will learn in detail in the later sections.

4. DQFT In Rindler Spacetime

Rindler spacetime is a part of Minkowski spacetime in Rindler coordinates, which
restricts spacetime with a boundary (horizon). The coordinate system emerges from Lorentz,
the symmetries of Minkowski spacetime. This section particularly discusses the Rindler
spacetime in (1 + 1) dimension.

The (1 + 1) dimensional Minkowski spacetime is

ds2 = −dt2 + dz2 (33)

which is invariant under the Lorentz transformations

t→ t cosh β + z sinh β

z→ t sinh β + z cosh β
(34)

where β is the usual Lorentz factor.
We can now define spacetime regions that belong to the two superselection sectors of

global Hilbert space that are separated by the (Rindler) horizons

z2 − t2 =
1
a2 e2aξ , t2 − z2 =

1
a2 e2aη . (35)

From (35) it is obvious to define coordinate systems, which define the four observers.
Note that in our notation (ξ, η) correspond to (η, ζ) found in [4–6]. Furthermore, we
choose to have the same coordinate symbols for Left, Right, and Future Past regions of
Rindler spacetime.

z2 − t2 =
1
a2 e2aξ =⇒

{

z = 1
a eaξ cosh aη, t = 1

a eaξ sinh aη (Right Rindler)

z = − 1
a eaξ cosh aη, t = 1

a eaξ sinh aη (Left Rindler)

=⇒ ds2 = e2aξ
(

−dη2 + dξ2
)

t2 − z2 =
1
a2 e2aη =⇒

{

t = 1
a eaη cosh aξ, z = 1

a eaη sinh aξ (Future Kasner)

t = − 1
a eaη cosh aξ, z = 1

a eaη sinh aξ (Past Kasner)

=⇒ ds2 = e2aη
(

−dη2 + dξ2
)

(36)

A crucial observation we can make here is that

ds2 = e2aξ
(

−dη2 + dξ2
)

, z2 − t2 ≳ 0

ds2 = e2aη
(

−dη2 + dξ2
)

, t2 − z2 ≳ 0 .
(37)

Here ae−aξ is the proper acceleration in the Left and Right Rindler observer in the
direction of the respective Killing vectors ( ∂

∂η ) that define the arrow of time t(η) for each
observer. The Future and Past Kasner spacetime corresponds to expanding Universes in
opposite arrows of time as depicted in Figure 2. The equality z2 = t2 (i.e., in the limit
ae−aξ → ∞) defines all the Rindler horizons corresponding to Left, Right Rindler, Future,
and Past Kasner observers [4] (See Figure 2). Another crucial observation to make here is
that the nature of spacetime gets interchanged (i.e., z←→ t together with ξ ←→ η), going
from Right to Future and Left to Past Rindler regions.
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We can rewrite the whole Rindler spacetime (with all regions) in a coordinate system
defined by

U = −1
a

e−au
< 0, V =

1
a

e−av
> 0 (Right Rindler)

U =
1
a

e−au
> 0, V = −1

a
e−av

< 0 (Left Rindler)

U =
1
a

e−au
> 0, V =

1
a

e−av
> 0 (Future Kasner)

U = −1
a

e−au
< 0, V = −1

a
e−av

< 0 (Past Kasner)

(38)

where
u = η − ξ, v = η + ξ

U = t− z, V = t + z
(39)

In this coordinates (38), the transition between Left, Right, Future, and Past Rindler
observers is carried through discrete transformations on (U, V). In other words, crossing
horizons is nothing but applying discrete operations on the coordinates (U, V). This is
analogous to the context of so-called Kruskal coordinates in black hole spacetime, [2], which
we shall return to in the later section.

Figure 2. In this picture, we depict the Left, Right (z2 ≳ t2) and Future Past (t2 ≳ z2) regions of
Rindler spacetime in the plane of Minkowski coordinates (t, z). The curved lines in the Left and
Right regions depict a constant acceleration ae−aξ where the arrow of time in the Left goes in the
direction η : ∞ → −∞ whereas, in the Right, it is η : −∞ → ∞. Future and Past Rindler wedges
represent degenerate Kasner Universes where the arrows indicate changing z : ∓∞→ ±∞, which
means η : ∓∞ → ±∞. The Fuzzy colored lines represent the Rindler Horizons for Left (Yellow),
Right (Green), Future (Cyan), and Past (Pink).

4.1. DQFT in Right and Left Rindler Spacetime

Given this configuration, we first derive how DQFT vacuum (24) would look to the
Left and Right Rindler regions where the arrow of time (the direction of the uniformly
accelerated observer) in each other’s is opposite.
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According to DQFT, we split the KG field operator into the direct-sum components cor-
responding to parity conjugate regions of physical spacetime. Thus, in the regions z > |t|,
we can write the KG operator in Minkowski and Rindler spacetimes as

φ̂ =
1√
2

(

φ̂+ ⊕ φ̂−
)

=
1√
2

(

φ̂+ 0
0 φ̂−

)

∣

∣

∣

∣

∣

z2≳t2 Minkowski

=
1√
2

(

φ̂R ⊕ φ̂L

)

=
1√
2

(

φ̂R 0
0 φ̂L

)

,

(40)

where the subscripts L, R represent field operators expressed in the Left Rindler and the
Right Rindler coordinates, respectively. From the definitions of the Right and Left Rindler
coordinates (36) we can notice that they cover the parity conjugate regions z and −z with
arrows of time η : −∞ → ∞ (which imply t : −∞ → ∞) and η : ∞ → −∞ (which imply
t : ∞ → −∞) respectively. We can clearly notice here that the Left and Right Rindler
wedges are PT mirror of each other. Since we express our field operators in Minkowski as
direct-sum two components which are PT mirrors of each other, we thus map φ̂+ → φ̂R

and φ̂− → φ̂L and evaluate the respective Bogoliubov coefficients. This is because the
arrow of time in the Right Rindler wedge η : −∞→ ∞ coincides with the arrow of time in
the Minkowski vacuum |0M+⟩ (24). Similarly, the arrow of time in the Left Rindler wedge
coincides with the arrow of time in the Minkowski vacuum |0M−⟩ (24). Remember that in
our construction, flipping the arrow of time is associated with going to a parity conjugate
region. We construct local Hilbert space or Fock space associated with parity conjugate
regions of physical space. This is the reason why we decompose the field operators as
written in (40).

Following (40) we obtain

φ̂+ =
∫

dk

(2π)1/2
1

√

2|k|

[

ĉ(+)ke−ikt+ikz + ĉ†
(+)keikt−ikz

]

=
∫

dp

(2π)1/2
1

√

2|p|

[

ĉR pe−ipη+ipξ + ĉ†
R peipη−ipξ

]

φ̂− =
∫

dk

(2π)1/2
1

√

2|k|

[

ĉ(−)keikt−ikz + â†
(−)ke−ikt+ikz

]

=
∫

dp

(2π)1/2
1

√

2|p|

[

ĉL peipη−ipξ + ĉ†
L pe−ipη+ipξ

]

(41)

Here
(

ĉ±, ĉ†
±
)

satisfy the canonical commutation relations similar to (22). All the
operators corresponding to the Fock space of the Left Rindler commute with the Fock space
operators of the Right Rindler spacetime.

Recall that the Minkowski vacuum is

ĉk|0⟩ =
(

ĉ(+)k 0
0 ĉ(−)k

)(

|0+⟩
|0−⟩

)

= 0 =⇒ ⟨0|ĉ†
k ĉk|0⟩ = 0 . (42)

whereas the Rindler vacuum is

ĉA p|0A⟩ =
(

ĉL p 0
0 ĉR p

)(

|0L⟩
|0R⟩

)

= 0 . (43)

Here, the subscript A denotes the Left and Right Rindler spacetime spanned by
coordinates satisfying z2 − t2 ≳ 0. Following Appendix B we can deduce
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(

ĉRp

ĉ†
Rp

)

=
∫

dk

(

αR
kp βR

kp

βR∗
kp αR∗

kp

)(

ĉ(+)k

ĉ†
(+)k

)

(44)

and
(

ĉLp

ĉ†
Lp

)

=
∫

dk

(

αL
kp βL

kp

βL∗
kp αL∗

kp

)(

ĉ(−)k

ĉ†
(−)k

)

(45)

The above relations imply the particle number density for each Rindler observer in
the Minkowski vacuum is non-zero. This means

⟨NA⟩ = ⟨0|ĉ†
A p ĉA p|0⟩ = ⟨0−|ĉ†

R p ĉR p|0−⟩Θ(z) + ⟨0+|ĉ†
L p ĉL p|0+⟩Θ(−z)

= Θ(z)
∫

dk|βR
kp|2 + Θ(−z)

∫

dk|βL
kp|2 .

(46)

It is important to keep in mind that a single state in Rindler spacetime satisfying
z2 − t2 ≳ 0 is the direct-sum of two components

|φA⟩ =
1√
2
(|φL⟩ ⊕ |φR⟩) =

1√
2

(

|φL⟩
|φR⟩

)

(47)

where |φA⟩ = φ̂A|0A⟩, |φL⟩ = φ̂L|0L⟩ and |φR⟩ = φ̂R|0R⟩. The two components states
|φL/R⟩ belong to superselection sectors of total Hilbert space where a single state |φA⟩ is
defined. Thus, the Hilbert space of a single particle state becomes

HA = HL ⊕HR , (48)

whereas the Fock space of QFT in Rindler spacetime (that covers z2 ≳ t2) becomes

FA = FL ⊕FR (49)

Once more, recall that the arrow of time is not the same in the Left and Right Rindler
spacetime. We can see it as a thumb rule to apply the superselection rule for Hilbert space
whenever we see a change in the arrow of time in the target space.

The Bogoliubov coefficients can be can be calculated as follows using the mathematical
tequniques described in [6]

αR
kp =

√

Ω

ω
B(ω, Ω), αL

kp =

√

Ω

ω
B∗(ω, Ω)

βR
kp =

√

Ω

ω
B(−ω, Ω), βL

kp =

√

Ω

ω
B∗(−ω, Ω)

(50)

where ω = |k|, Ω = |p| and

B(ω, Ω) =
1

2πa
exp

[

iΩ

a
ln
∣

∣

∣

ω

a

∣

∣

∣+
πΩ

2a
sign

(ω

a

)

]

Γ

(

− iΩ

a

)

(51)

The mean density of particles that Left and Right Rindler observers perceive is obtained as

nL
Ω =

∫ ∞

0
dω
∣

∣

∣βL
kp

∣

∣

∣

2
=
[

exp
(

2πΩ

a

)

− 1
]−1

nR
Ω =

∫ ∞

0
dω
∣

∣

∣βR
kp

∣

∣

∣

2
=
[

exp
(

2πΩ

a

)

− 1
]−1

(52)

Thus, comparing the above expressions with the Bose-Einstein distribution

n(Ω) =
[

exp
(

E

T

)

− 1

]−1

(53)
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we get the temperature associated with these particles as

TR =
a

2π
(54)

4.2. DQFT in Past and Future Rindler Spacetime

We can easily deduce from (36) that the definitions of time and space get swapped
from Right or Left (z2 ≳ t2) to Future or Past (t2 ≳ z2) Rindler spacetimes. In the Future
Rindler wedge, z : −∞ → ∞ represents the direction of the Killing vector. Whereas
in the Past Rindler Wedge, we have z : ∞ → −∞ denoting the direction of the Killing
vector z ∂

∂t + t ∂
∂z .

Thus, according to Figure 2 we expand the scalar field operator in Minkowski, Future
and Past Rindler spacetimes as

φ̂ =
1√
2

(

φ̂+ ⊕ φ̂−
)

=
1√
2

(

φ̂+ 0
0 φ̂−

)

∣

∣

∣

∣

∣

t≳|z|Minkowski

=
1√
2

(

φ̂F+ ⊕ φ̂F−
)

=
1√
2

(

φ̂F+ 0
0 φ̂F−

)

(55)

and

φ̂ =
1√
2

(

φ̂+ ⊕ φ̂−
)

=
1√
2

(

φ̂+ 0
0 φ̂−

)

∣

∣

∣

∣

∣

t≲−|z|Minkowski

=
1√
2

(

φ̂P+ ⊕ φ̂P−
)

=
1√
2

(

φ̂P+ 0
0 φ̂P−

)

(56)

where

φ̂+ =
∫

dk

(2π)1/2
1

√

2|k|

[

ĉ(+)ke−ikt+ikz + ĉ†
(+)keikt−ikz

]

=
∫

dp

(2π)1/2
1

√

2|p|

[

ĉ(K+)pe−ipη+ipξ + ĉ†
(K+)peipη−ipξ

]

= φ̂K+

φ̂− =
∫

dk

(2π)1/2
1

√

2|k|

[

ĉ(−)keikt−ikz + ĉ†
(−)ke−ikt+ikz

]

=
∫

dp

(2π)1/2
1

√

2|p|

[

ĉ(K−)peipη−ipξ + ĉ†
(K−)pe−ipη+ipξ

]

= φ̂K−

(57)

The Bogoliubov transformations are given by
(

ĉ(K+)p

ĉ†
(K+)p

)

=
∫

dk

(

αK+
kp βK+

kp

βK+∗
kp αK+∗

kp

)(

ĉ(+)k

ĉ†
(+)k

)

(58)

and
(

ĉ(K−)p
ĉ†
(K−)p

)

=
∫

dk

(

αK−
kp βK−

kp

βK−∗
kp αK−∗

kp

)(

ĉ(−)k

ĉ†
(−)k

)

(59)

where K = F for t ≳ |z| and K = P for t ≲ −|z|. Here
(

ĉ(K±), ĉ†
(K±)

)

satisfy the commu-
tation relations similar to (22). All the operators corresponding to the Fock space of the
Future Rindler commute with the Fock space operators of the Past Rindler spacetime.

The Bogoliubov coefficients can be computed straightforwardly using the standard
methods described in [6], and they are given by
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αK+
kp =

√

Ω

ω
B∗(ω, Ω), αK−

kp =

√

Ω

ω
B(ω, Ω)

βK+
kp =

√

Ω

ω
B∗(−ω, Ω), βK−

kp =

√

Ω

ω
B(−ω, Ω)

(60)

From the above expansion of the field operator in the Future and Past regions, we can
deduce that the respective Hilbert spaces are split by

HF = HF+ ⊕HF−, HP = HP+ ⊕HP− (61)

which is analogous to the direct-sum split of Hilbert space in Minkowski spacetime (27).
The mean density of particles in the Future and Past Rindler spacetime can be obtained in
analogous way to (52) as below

nK
Ω =

1
2

∫ ∞

0
dω
[∣

∣

∣βK+
kp

∣

∣

∣

2
+
∣

∣

∣βK−
kp

∣

∣

∣

2]
=
[

exp
(

2πΩ

a

)

− 1
]−1

(62)

Since the Future and Past Kasner regions (See Figure 2) are separated by horizons,
and the Killing vectors are in opposite directions, we must apply the superselection rule
and the Hilbert spacesHF, HP are the superselection sectors of total Hilbert space of the
regions t2 ≳ z2. Whenever we encounter Horizons, the concept of time changes on either
side of the Horizons; thus, one must combine Hilbert spaces with superselection rules. One
can, in principle, extend this concept to dynamical spacetimes, but here, our discussion
is restricted to Rindler spacetime. The picture is analogous to QFT in the context of black
holes and de Sitter spacetimes, too [2,17]. We can notice that the Left and Right Rindler
regions are separated by horizons with Future and Past Rindler regions (See Figure 2). The
total Hilbert space of the entire Rindler spacetime is

Htotal = (HL ⊕HR)⊕ (HF ⊕HP) . (63)

Once more, the thumb rule to construct superselection sectors of Hilbert space is when we
encounter regions of spacetime related by discrete transformations, which we can see from (38).

5. Entanglement and Reeh-Shlieder Theorem in DQFT

Reeh-Schlieder (RS) theorem [26] is an important element of QFT, which tells us about
the vacuum structure of Minkowski spacetime [27,28]. The theorem tells us that one can
prepare a set of local operators in a sub-region and act on the vacuum (given by (64)) to
approximate any arbitrary state in the total Hilbert space of the Minkowski spacetime

|Ψ⟩RS = φ̂1(x1)φ̂2(x1) · · · φ̂n(xn)|0⟩ (64)

where xi denote the spacetime in a sub-region and φ̂i(xi) is a local operator in that region.
This means that any sub-region in Minkowski spacetime is highly dense, and any two
sub-regions of Minkowski spacetime are highly entangled.

The proof of the RS theorem can be found in [29], which we state here briefly. If the
theorem is wrong, then one must find a state χ orthogonal to the state (64) in the total
Hilbert space of Minkowski spacetime, i.e.,

⟨χ|Ψ⟩RS = 0 . (65)

However, (65) can be satisfied if the Hilbert space of Minkowski spacetime contains
superselection sectors [27]. The vectors in superselection sectors are orthogonal, and there
cannot be any superposition between their states.

In the DQFT, Hilbert space of Minkowski spacetime is split into superselection sectors
by the parity conjugate regions of physical space (See (27)). Also, the vacuum of Minkowski
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spacetime is split into direct-sum components as in (24). Now, if construct a state with a set
of local operators acting on vacuum |0+⟩

|Ψ⟩RS = φ̂1+(x1)φ̂2+(x1) · · · φ̂n+(xn)|0+⟩ (66)

has an orthogonal state in the Hilbert spaceHM given by

|χ−⟩ = χ̂−|0−⟩, ⟨χ−|Ψ⟩RS = 0 . (67)

This may seem to disprove the RS theorem, but it is not surprising because not having
superselection sectors is a pre-condition for the applicability of the RS theorem [27]. Thus,
the RS theorem is still valid separately inHM+ andHM−, the superselection sectors of total
Hilbert space (27). Further meaning of this to the entanglement in Minkowski spacetime is
discussed in the following sub-section.

6. Entanglement in DQFT and Rindler Spacetime: Thermal Radiation and Purity

The RS theorem in DQFT means that any entanglement of sub-regions in Minkowski
spacetime has PT components. Since parity conjugate regions of physical space are super-
selection sectors, any entanglement in spacetime is split into two superselection sectors.

This means the following: let us consider a pure (maximally entangled) state |ψ12⟩ =
|φ1⟩ ⊗ |φ2⟩ ∈ H1 ⊗H2 which means square of the density matrix satisfies the property
of idempotence

ρ = |ψ12⟩⟨ψ12|, ρ2
12 = ρ12 (68)

But the reduced density matrix of the states |φ1⟩ and |φ2⟩ are not idempotent

ρ1 = Tr2ρ12 ̸= ρ2
1, ρ2 = Tr1ρ12 ̸= ρ2

2 , (69)

because of which the states |φ1⟩ and |φ2⟩ are the mixed states of Hilbert spacesH1 andH2
respectively. This means the state |ψ12⟩ is non-factorizable, i.e.,

|ψ12⟩ = ∑
mn

cmn|φ1⟩ ⊗ |φ2⟩ (70)

where cmn ̸= cmcn with |φ1⟩ = ∑m cm|φm1⟩ and |φ2⟩ = ∑n cn|φn2⟩. Since every state in
DQFT is direct-sum of the two components, we have

|ψ12⟩ =
1√
2

∑
m,n

cmn(|φm1+⟩ ⊗ |φn2+⟩)⊕
1√
2

∑
m,n

cmn(|φm1−⟩ ⊗ |φn2−⟩)

=
1√
2

(

∑ cmn|φm1+⟩ ⊗ |φn2+⟩
∑ cmn|φm1−⟩ ⊗ |φn2−⟩

)

=
1√
2

(

|ψ12+⟩
|ψ12−⟩

)
(71)

The density matrix of pure state |ψ12⟩ = |φ1⟩ ⊗ |φ2⟩ becomes a direct-sum of two pure
state density matrices

ρ =
1
2

ρ+ ⊕
1
2

ρ− =
1
2

ρ2
+ ⊕

1
2

ρ2
− = ρ2 , (72)

where ρ± = |ψ12±⟩⟨ψ12±|. Let us apply a similar scheme to Left/Right Rindler spacetime,
where a quantum state is expressed as direct-sum of Left and Right Rindler spacetime
(defined by z2 ≳ t2) belonging to the Hilbert space (48).

Let us consider a (maximally) entangled pure state in Rindler spacetime (z2 − t2 ≳ 0)
|ψLR⟩ = |φA1⟩ ⊗ |φA2⟩ ∈ HA1 ⊗HA2 which according to (71) becomes a direct-sum of two
pure state components in Left Rindler and Right Rindler spacetime.

|ψLR⟩ =
1√
2

(

|φR1⟩ ⊗ |φR2⟩
|φL1⟩ ⊗ |φL2⟩

)

(73)
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The Left and Right Rindler spacetimes are separated by Horizons. According to DQFT
in Rindler spacetime, the horizon separates a pure state into two pure state components of
the superselection sectors, each accessed by observers on either side.

Most importantly, any observer can reconstruct the state behind the horizon by ac-
cessing the pure state component within his/her horizon. This means the Right observer
accesses the pure state |φR1⟩ ⊗ |φR2⟩, entanglement between the components that evolve
forward in time. In contrast, the pure state beyond the Horizon of Right Rindler spacetime
is nothing but entanglement between the component states evolving backward in time
(|φL1⟩ ⊗ |φL2⟩) in the Left Rindler region. This implies that the Right and Left Rindler
observers share complementary information in the form of pure states. In other words,
both Left and Right observers do not have any unitarity loss but, at the same time, can
reconstruct information beyond the horizon by observing the complete set of states within
the horizon. This is exactly what we can call entanglement with purity.

We can build a similar outcome when we include the Future and Past Kasner parts
of Rindler spacetime (See Figure 2). A quantum state in the entire Rindler spacetime is a
direct-sum of 4 components.

|φ⟩
∣

∣

∣

All Rindler
=

1√
2
(|φL⟩ ⊕ |φR⟩)⊕

1√
2
(|φF⟩ ⊕ |φP⟩) (74)

This is because the relation between different regions of Rindler spacetime is discrete
transformations (38), and all 4 regions are separated by horizons. Thus, all 4 regions must
build superselection sectors for Hilbert or Fock space. From (74), it is straightforward to
see how an entangled pair (pure state) can split into 4-component entangled pairs, which
are again the pure states of sectorial Hilbert spaces.

A natural question occurs here: what happens when a state evolves from one super-
selection sector to another superselection sector? First of all, such an evolution has to be

described by discrete operators (38) on the full state |φ⟩
∣

∣

∣

All Rindler
and when we do that

when a component evolves from Right to Future, we by construction allow a complemen-
tary state from Past to Right. This means a flow of information that keeps the pure states
pure in all regions of Rindler spacetime. This happens thanks to our direct-sum split of
Hilbert space by discrete spacetime operations.

Thus, from (A13), the Minkowski vacuum of DQFT (for the regions z2 ≳ t2) can be
expressed as excitations of Rindler vacuums as

|0M⟩ =
(

|0M+⟩
|0M−⟩

)

=













∏p
1

√

|αR
kp |

exp

[

−
(

βR
kp

2αR
kp

)

ĉ†
Rp ĉ†

R(−p)

]

|0R⟩

∏p
1

√

|αL
kp |

exp

[

−
(

βL
kp

2αL
kp

)

ĉ†
Lp ĉ†

L(−p)

]

|0L⟩













(75)

This means the entangled (component) pairs (of opposite 3 momenta) in the Left and
Right are related by direct-sum (because horizon or discrete transformation (38) separates
them). Similarly, for t2 ≳ z2 we obtain

|0M⟩ =
(

|0M+⟩
|0M−⟩

)

=













∏p
1

√

|αK+
kp |

exp

[

−
(

βK+
kp

2αK+
kp

)

ĉ†
(K+)p ĉ†

(K+) (−p)

]

|0K+⟩

∏p
1

√

|αK−
kp |

exp

[

−
(

βK−
kp

2αK−
kp

)

ĉ†
(K−)p ĉ†

(K−)(−p)

]

|0K−⟩













(76)

Thus, in every region of Rindler spacetime, the Minkowski vacuum is replaced by pairs
of entangled components. The direct-sum of all these components represents the entangled
structure of the entire Rindler spacetime, which is a totally new picture in comparison
with [4] where unitarity is not maintained in each Rindler region like in our case.
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7. Differences between Unruh Radiation in Standard QFT and DQFT

In standard quantum field theory, the derivation of Unruh radiation involves consid-
ering the behavior of a quantum field in the presence of the Rindler horizon. The field
is quantized using standard techniques, and the resulting vacuum state for an inertial
observer is equivalent to a thermal state for an accelerated observer. This thermal spectrum
of particles, known as Unruh radiation, emerges due to the horizon’s presence and the
observer’s acceleration.

In contrast, DQFT introduces a new framework for understanding quantum field
theory in the context of horizons and superselection rules. In DQFT, the Hilbert space is
decomposed into a direct-sum of sectorial Hilbert spaces associated with different regions
of spacetimes separated by Horizons.

The application of DQFT to the problem of Unruh radiation yields intriguing dif-
ferences compared to standard QFT. Rather than considering a single vacuum state that
evolves into a thermal state for accelerated observers, DQFT introduces the concept of pure
states within the horizon for each Rindler observer. These pure states restore unitarity
while simultaneously giving rise to a thermal spectrum of Unruh radiation.

Moreover, DQFT offers a new understanding of entanglement in Rindler spacetime. It
suggests that Rindler observers can access complementary information beyond the horizon,
challenging conventional notions of causality and information loss. The reinterpretation of
the Reeh-Schlieder theorem within the framework of DQFT further underscores the novel
insights this approach provides.

8. Entanglement with Purity: An Essential Element for Unitarity Problem with
Curved Spacetime

This section draws analogies between DQFT in Rindler spacetime and DQFT in de
Sitter and Schwarzchild spacetime earlier formulated in [2,17]. We establish why DQFT is
an essential element to understand a consistent QFT in curved spacetime that keeps the
elements of entanglement but recovers pure states evolving into pure states even when the
regions of spacetime are separated by horizons.

Spacetime horizons are where gravity and QM mechanics act together. The Unruh
effect is important in understanding quantum fields in curved spacetime. The best examples
are de Sitter and Schwarzschild’s black hole, where we can find a perfect analogy with
Rindler spacetime.

8.1. DQFT in Schwarzchild Spacetime versus Rindler Spacetime

Let us start with Schwarzschild black hole spacetime, which is usually written as

ds2 = −
(

1− 2GM

r

)

dt2 +
1

(

1− 2GM
r

)dr2 + r2dΩ2 . (77)

where dΩ2 = dθ2 + sin2 θdϕ2 is the angular part of the metric. Schwarzchild spacetime
is static (for r ≳ 2GM) and cosmological (for r ≲ 2 GM) [30] (See also further discussion
and extended list of references in [31,32]). Thus, the horizon in Schwarzschild spacetime
is a boundary:

1. That separates cosmological and static spacetime
2. Where the Parity conjugate points on the Horizon

(θ, ϕ)
∣

∣

∣

r=2GM
and (π − θ, π + ϕ)

∣

∣

∣

r=2
GM are space-like separated.

Quantizing a scalar field in Schwarzschild spacetime requires a new set of coordinates
called Kruskal-Szekeres, defined by and depicted in Figure 3.
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U = −κ−1e−κũ
< 0, V = κ−1eκṽ

> 0 (Region I)

U = κ−1e−κũ
> 0, V = −κ−1eκṽ

< 0 (Region II)

U = κ−1e−κũ
> 0, V = κ−1eκṽ

> 0 (Region III)

U = −κ−1e−κũ
< 0, V = −κ−1e−κṽ

< 0 (Region IV)

(78)

where κ = 1
4GM is the surface gravity term. Here ũ = t− r∗ and ṽ = t− r∗ where r∗ being

the so-called tortoise coordinate [33]. We can draw an analogy of these coordinates with
the Rindler case (38) (ignoring the (θ, ϕ) part of the metric).

Figure 3. This is a conformal diagram of Schwarzschild black hole spacetime that represents a
quantum field in DQFT formulation. Here every point in yellow shaded region represents (θ, ϕ)

whereas the green shaded region represents (π − θ, π + ϕ). Regions I and II represent the exterior
static metric r ≳ 2 GM where, whereas Regions III and IV represent the interior Scharzchild metric. All
these regions are to be interpreted quantum mechanically to depict a quantum field in superselection
sectors. The red lines in the diagram are identified, and they represent the singularity at r = 0. A
quantum state in the entire region is a direct-sum of 4-components |φtotal⟩ = 1√

2
(|φI⟩ ⊕ |φI I⟩) ⊕

1√
2
(|φI I I⟩ ⊕ |φIV⟩).

In Figure 3, we depict the conformal diagram of Schwarzchild spacetime where
components of a quantum state evolve in superselection sectors of the total Hilbert space.
Further details and the purity of Hawking radiation can be found in [2]. The important
message here is what we witness in the context of DQFT in Rindler spacetime is analogous
to what we get in the context of DQFT in Schwarzschild spacetime (near r ≈ 2 GM).
According to this new hypothesis, quantum mechanically, Region III and Region IV of
Figure 3 represent the entire interior of the Schwarzschild black hole, and there is no white
hole. Similarly, Regions I and II represent the parity conjugate regions in the exterior of the
Schwarzchild black hole, and there is no parallel universe. It is important to note that this
is a completely quantum-mechanical description of spacetime. Once more, the concept of
time in classical and quantum physics is not the same; “time” is a parameter in quantum
theory. Given this, we obtain a maximally entangled state that becomes a direct-sum of
two components, which become pure states in the black hole’s exterior and interior. Let us
consider an entangled state, which is a pure state in the entire Hilbert space of (quantum)
black hole spacetime (depicted in Figure 3). According to the DQFT superselection rule,
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the horizon separates the pure state into two pure states of the superselection sectors, as
we see below

|ψ̃12⟩ = ∑
m,n

c̃mn|φ̃m1⟩ ⊗ |φ̃n2⟩ =
1√
2

∑
m,n

c̃mn

(

|φ̃ext
m1⟩ ⊗ φ̃ext

n2 ⟩
)

⊕
(

|φ̃int
m1⟩ ⊗ φ̃int

n2 ⟩
)

(79)

where c̃mn ̸= c̃n c̃m, the superscripts “ext” mean field component for r ≳ 2 GM whereas “int”
mean field component for r ≲ 2 GM.

DQFT construction in black hole spacetime preserves observer complementarity and
unitarity similar to Rindler spacetime. We drew here similarities between (quantum) black
hole spacetime and (quantum) Rindler spacetime. Of course, differences exist because hori-
zons in curved spacetime involve gravitational backreaction between interior and exterior
states, unveiling the true nature of quantum gravity, which is worked out in detail in [2].

8.2. DQFT in Rindler Spacetime versus De Sitter Spacetime

The importance of de Sitter (dS) spacetime is vast in cosmology; perfect examples are
early Universe inflationary cosmology and late-time dark energy [34,35].

We start with the dS metric in the flat Friedman-Lemaître-Robertson-Walker (FLRW)
coordinates

ds2 = −dt2 + e2Htdx2 =
1

H2τ2

(

−dτ2 + dx2
)

, (80)

which has the discrete symmetries

(τ, x)←→ (−τ, −x) (81)

similar to the PT symmetry of Minkowski spacetime. It is often considered the metric
(80) describes an expanding Universe for τ < 0, but the expanding Universe is charac-
terized by the scale factor growth, not by the coordinate time. We can notice this in the
following equation

a(t) = eHt =⇒ Expanding Universe =⇒
{

H > 0 t : −∞→ ∞

H < 0 t : ∞→ −∞
(82)

Remember that H → −H (the Hubble parameter H = ȧ
a of de Sitter space) is the

symmetry of de Sitter space (because curvature invariants are functions of H2, for example,
Ricci scalar R = 12H2). There are two arrows of time to characterize the expansion. In
analogy, there are two arrows of time to define the positive energy state in standard QM as
discussed in Section 2. Direct-sum quantum theory always combines the arrows of time
with two parity conjugate regions to form superselection sectors.

We can rewrite the metric (80) in the static coordinates (ts, r) as [33,36]

ds2 = −
(

1− H2r2
)

dt2
s +

1
(1− H2r2)

dr2 + r2dΩ2

=
1

H2
(

1− ŨṼ
)2

(

−4dŨdṼ +
(

1 + Ũ Ṽ
)2

dΩ2
) (83)

where r =
∣

∣

1
H

∣

∣

1+Ũ Ṽ
1−ŨṼ and ṼŨ = −e2Hts . The relation between the flat FLRW (80) and (83) is

just a simple coordinate change [33,36].

r = r f eHt, e−2Hts = e−2Ht − H2r2
f , (84)

where r f is the radial coordinate of flat FLRW dS (80) and the angular coordinates Ω ≡ (θ, ϕ)
remain the same in both metrics.

It is customary to consider in the literature [36] that (80) covers only half of the
dS space. But taking into account the symmetry (81), dS in flat FLRW coordinates can cover
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the entire dS space where different regions are joined by discrete transformations. We can
see this through four regions of dS spacetime (See Figure 4) that the metric (83) represents
and how they are related by discrete coordinate transformations.

U = −e−Hū
< 0, V = eHv̄

> 0 (Region I)

U = e−Hū
> 0, V = −eHv̄

< 0 (Region II)

U = e−Hū
> 0, V = eHv̄

> 0 (Region III)

U = −e−Hū
< 0, V = −e−Hv̄

< 0 (Region IV)

(85)

where ū = t− r̃∗ and v̄ = t + r̃∗ with r̃∗ = tanh−1(Hrs). Figure 4 summarizes the DQFT
description of dS spacetime, whose details can be found in [17]. We can again see an analogy
of these coordinates (85) with the Rindler case (38) (ignoring the (θ, ϕ) part of the metric).

We can compare all (38), (78), and (85), and we can notice the similar structure despite
the spacetimes being so different. We can also equivalently compare Figures 2–4 and deduce
the universal features of the presence of horizons in both flat and curved spacetimes. This
gives a universal picture of Rindler spacetime’s importance in understanding quantum
fields in curved spacetime. Unitary QFT in curved spacetime is the first step toward
consistent quantum gravity. In this paper, we proposed a novel foundation for consistent
quantum theory that can resolve the unitarity problem in the presence of spacetime horizons.
Of course, there is still a long way to go for the full formulation of QFT in curved spacetime
to address questions like S−matrix and scattering amplitudes, which are challenging
subjects of investigation. All of this can be built successfully once the tenets of quantum
theory, such as unitarity, are achieved. So, our attempt here is only to achieve unitarity. It
is worth recalling that the DQFT construction of quantum fields in curved spacetime [17]
has been successfully applied to inflationary quantum fluctuations that explained long-
standing CMB anomalies with 650 times more effectively than the standard inflation [18].
Thus, the theory we develop here has the needed observational evidence to move forward.

Figure 4. Conformal diagram of de Sitter spacetime (in static coordinates) depicting the quantum
states evolving in DQFT. Here also every point in yellow shaded region represents (θ, ϕ) whereas the
green shaded region represents (π − θ, π + ϕ). The curvature of spacetime is constant everywhere
as dS is maximally symmetric in nature. Analogous to Schwarzschild spacetime, a quantum state
in the entire region is a direct-sum of 4-components |φtotal⟩ = 1√

2
(|φI⟩ ⊕ |φI I⟩)⊕ 1√

2
(|φI I I⟩ ⊕ |φIV⟩)

which leads to unitarity in dS spacetime.
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9. Conclusions and Outlook

In theoretical physics, the nature of information and its conservation within the
universe remains a deeply intriguing question. Traditionally, it is believed that an observer’s
universe contains all possible information about events occurring within it, adhering to
the principle of unitarity. Unitarity ensures that the evolution of a closed quantum system
is governed by unitary operators, preserving the total information content over time.
However, challenges to this notion arise in contexts involving horizons, such as black holes
or cosmological event horizons, where the fate of information becomes ambiguous. For
instance, the black hole information paradox raises questions about whether information
falling into a black hole is irrevocably lost or can be recovered, suggesting a potential
breach of unitarity.

In this study, we have investigated the implications of PT symmetry in the context
of Rindler spacetime and its effects on the perception of thermal radiation by Rindler
observers. Our findings suggest a novel perspective on the nature of the thermal radiation
detected by such observers. Traditionally, the thermal radiation perceived by a Rindler
observer is considered to be in a mixed state. This arises due to the Rindler horizon,
which effectively partitions the spacetime into causally disconnected regions, leading to
a loss of information about the state beyond the horizon. This approach leverages the
inherent symmetry properties of spacetime, suggesting that the entanglement between
states on either side of the Rindler horizon is not fundamentally lost but redistributed by
discrete transformations.

In this paper, we have explored how direct-sum quantum field theory (DQFT) provides
a robust framework for maintaining unitarity, even in the presence of such horizons. By
decomposing the Hilbert space into a direct sum of sectorial Hilbert spaces, each associated
with different superselection sectors, DQFT allows for a more nuanced understanding of
information conservation. Interestingly, the DQFT mechanism of information reconstruc-
tion is not confined to Rindler spacetime alone. Similar principles can be applied to dS
and Schwarzschild spacetimes. In dS and black hole spacetimes, where horizons introduce
analogous challenges (similar to Rindler spacetime) in maintaining unitarity. The DQFT
framework could allow information retrieval beyond the horizons by the rules of spiliting
Hilbert or Fock spacetime into superselection sectors.

This study highlights a unifying theme in the treatment of horizons across different
spacetimes. The superselection rules based on discrete transformations offer a powerful
tool to preserve unitarity in the sectorial regions of spacetime separated by horizons. This
perspective enriches our understanding of quantum field theory in uniformly accelerated
frames. It has potential implications for broader contexts, such as black hole thermodynam-
ics and the study of cosmological horizons. Further research in this direction may uncover
deeper insights into the nature of spacetime symmetries and their role in the fundamental
structure of quantum mechanics and gravity (quantum gravity).

Our findings suggest that within DQFT, each observer can access pure states within
their respective horizons, restoring unitarity and ensuring that information is not lost. This
approach reconciles the principles of unitarity with the observed phenomena, offering a
potential resolution to long-standing paradoxes in theoretical physics.

By applying DQFT, we demonstrate that information does not leak beyond the confines
of the observable universe. Still, rather, it is encoded in a way that respects the unitarity
of quantum mechanics. In conclusion, the direct-sum quantum field theory provides a
promising mechanism for maintaining unitarity. It addresses the challenges posed by
horizons and supports the notion that the universe, as observed by any observer, retains all
information about its events.
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Appendix A. On the PT Symmetry of Classical and Quantum Harmonic Oscillator

In this section, we discuss some basic details of our understanding of classical and
quantum harmonic oscillators. From a physics point of view, quantum physics is superior
to classical physics, but in reality and historically, we built quantum physics with a lot of
input from classical physics. This section is organized in the space spirit.

The Lagrangian of classical Harmonic oscillator is

Lm =
1
2

m

(

dqm

dt

)2

− mω̃2q2
m

2
=

p2
m

2m
− mω̃2q2

m

2
(A1)

where (pm , qm) are the momentum and position of the particle with mass m. The symmetry
of the Lagrangian is

(pm, qm)←→ ( p̄m, q̄m) (A2)

where

p̄m =
dq̄m

dt̄
, q̄m = −qm, t̄ = −t . (A3)

The symmetry (A2) indicates that one can consider space and time in terms of (qm, t)
or (q̄m, t̄), the physics is invariant under which set of coordinates we choose. This is nothing
but classical PT symmetry. This should imply the construction of Schrödinger equation
should not also depend on what coordinates we choose, i.e.,

i
∂|Ψ⟩

∂t
= E|Ψ⟩ (A4)

should be equivalent to

i
∂|Ψ⟩

∂t̄
= −i

∂|Ψ⟩
∂t

= E|Ψ⟩ (A5)

This should imply if (A4) defines a positive energy state with respect to an arrow
of time t : −∞ → ∞, which should be the same as (A5) defining a positive energy state
with respect to an opposite arrow of time t : ∞→ −∞. Thus, two definitions of a positive
energy state depend on how we perceive an arrow of time. This happens because the
standard Schrödinger equation is a first-order differential equation in time. In contrast,
the equation of motion of the classical harmonic oscillator is second-order in time. The
direct-sum (4) restores the PT symmetry. By unifying P and T , the definition of a positive
energy state becomes disconnected from the arrow of time. A positive energy state now has
two components at parity conjugate points that evolve with the opposite arrows of time.

Appendix B. Bogoliubov Transformations

In this section, we write down the general rules of Bogoliubov transformations [6]

when one expresses the field operators in two different basis (uk, u∗) and
(

ūp, ū∗p
)

as linear

combinations of each other with the respective creation and annihilation operators
(

ak, a†
k

)

and
(

bp, b†
p

)

.
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uk =
∫

dp
(

αkpūp + β∗kpū∗p
)

ūp =
∫

dp
(

α∗kpuk − β∗kpu∗k
)

, (A6)

which follows from the Klein-Gordan inner product

( f , g) = i
∫

Σ
dΣ(∂tc f g∗ − ∂tc g f ∗) (A7)

where Σ is the spacelike Cauchy slice at time tc. Here
(

αkp, βkp

)

are the Bogoliubov
coefficients which satisfy the following constraints dictated from canonical commutation
relations

∫

dp
(

α∗kpαkp − β∗kpβkp

)

= 1
∫

dp
(

αkpαkp − βkpβkp

)

= 0 .
(A8)

From the Bogoliubov transformations (A6), we can easily deduce the relation between
the corresponding creation and annihilation operators as

(

b̂p

b̂†
p

)

=
∫

dk

(

αkp βkp

β∗kp α∗kp

)

(

âk

â†
k

)

(A9)

We can define here two vacuums with respect to the two sets of annihilation operators

ak|0a⟩ = 0, bp|0b⟩ = 0 . (A10)

The Bogoliubov transformations (A9) imply

bk|0b⟩ =
∫

dk
(

αkpak + βkpa†
k

)

|0b⟩ = 0 (A11)

This implies

ak|0⟩b = −
βkp

αkp
a†

k|0⟩b (A12)

The solution to this equation [37] can be obtained by turning it into a differential equa-

tion by substitution of ak = ∂
∂a†

k

that complies with the non-commutativity
[

ak, a†
k

]

= 1.

Thus we obtain

|0b⟩ = ∏
p

1
√

|αkp|
exp

[

−
(

βkp

2α∗kp

)

a†
ka†
−k

]

|0a⟩ (A13)

The physical meaning of (A13) is that the vacuum |0b⟩ appears to be excitation of
vacuum |0a⟩ with pairs of particles with opposite 3-momenta (due to isotropy of spacetime
is assumed here [6]).

We can compute the number density of b-particles in the vacuum |0a⟩ as

Nb = ⟨0a|b†
pbp|0a⟩ =

∫

dk|βkp|2 . (A14)
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