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Abstract: By utilizing a generalized version of the Madelung quantum hydrodynamic framework

that incorporates noise, we derive a solution using the path integral method to investigate how

a quantum superposition of states evolves over time. This exploration seeks to comprehend the

process through which a stable quantum state emerges when fluctuations induced by the noisy

gravitational background are present. The model defines the conditions that give rise to a limited

range of interactions for the quantum potential, allowing for the existence of coarse-grained classical

descriptions at a macroscopic level. The theory uncovers the smallest attainable level of uncertainty in

an open quantum system and examines its consistency with the localized behavior observed in large-

scale classical systems. The research delves into connections and similarities alongside other theories

such as decoherence and the Copenhagen foundation of quantum mechanics. Additionally, it assesses

the potential consequences of wave function decay on the measurement of photon entanglement.

To validate the proposed theory, an experiment involving entangled photons transmitted between

detectors on the moon and Mars is discussed. Finally, the findings of the theory are applied to the

creation of larger Q-bit systems at room temperatures.

Keywords: quantum decoherence; quantum entanglement; quantum-to-classical transition; wavefunction

collapse kinetics; quantum uncertainty and relativistic locality; measure and decoherence; photon

entanglement; pre-measure existing reality; EPR paradox

1. Introduction

The notion that quantum mechanics operates as a probabilistic process can be traced
back to the research of Nelson [1] and has endured over time. However, Nelson’s hypothe-
ses ultimately fell short due to the imposition of a particular stochastic derivative with
time inversion symmetry, which limited its generality. Furthermore, the results of Nelson’s
theory do not entirely align with those of quantum mechanics, as demonstrated by Von
Neumann’s proof [2] of the impossibility of reproducing quantum mechanics with theories
based on underlying classical probabilistic variables.

The definitive resolution to this question was provided by Kleinert [3] (refer to
Appendix A), who utilized the path integral approach to establish that quantum mechan-
ics can be conceptualized as an imaginary time probabilistic process. These imaginary
time quantum fluctuations differ from the more commonly understood real-time fluctua-
tions. They result in a “reversible” pseudo-diffusion behavior, which is elucidated by the
Madelung quantum hydrodynamic model through the action of the quantum potential.

The distinguishing characteristic of quantum pseudo-diffusion is the impossibility of
defining a positive diffusion coefficient. This leads to a significant implication: the quantum
evolution within a spatially distributed system may exhibit local entropy reduction over
certain spatial domains and reversible deterministic evolution with recurrence time and
overall null entropy variation [4].
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In this study, the author investigates the quantum imaginary time stochastic process
in scenarios where real-time random fluctuations are concurrently in play, leading to
irreversible quantum evolution and possibly to decoherence and classical behavior in
large-scale systems. The goal of this work is accomplished by extending the Madelung
hydrodynamic description of quantum mechanics to its stochastic counterpart.

The primary topics are as follows:

i. Elucidating the formulation of the stochastic quantum hydrodynamic equation of
motion as a consequence of fluctuations in spacetime curvature originating from the
noisy background of gravitational waves (dark energy).

ii. Exploring the path integral approach to comprehend quantum stochastic dynamics,
which describes the progression of quantum superposition states and potentially their
transition to stable configurations.

iii. Describing stationary quantum state configurations in the presence of noise and
establishing their correspondence with standard quantum mechanical states.

iv. Defining the circumstances under which the zero noise “deterministic” case aligns
with conventional quantum mechanics.

v. Identifying the criteria that lead to the emergence of classical behavior within extensive-
scale systems.

vi. Generalizing the uncertainty principles within the context of fluctuating quantum systems.
vii. Investigating quantum entanglement, wave function decay, and the measurement process.
viii. Comparing the measurement process as defined by the stochastic quantum hydro-

dynamic model with the perspectives of decoherence theory and the Copenhagen
interpretation of quantum mechanics.

ix. Examine experiments involving entangled photons within the context of finite time
decay kinetics of wave functions.

x. Extension of quantum coherence to macroscopic distances to build a system with a
large number of Q-bits

2. The Quantum Potential Fluctuations Induced by the Background of Stochastic
Gravitational Waves

With the emergence of evidence for dark energy in the form of a gravitational back-
ground, whether of relic origin or due to the dynamics of general relativity bodies, the
quantum hydrodynamic representation offers the possibility of describing the dynamic
fluctuations in a system without the need to introduce an external environment. This
approach does not introduce divergent results that contradict established theories such as
decoherence and the Copenhagen foundation of quantum mechanics; instead, it enhances
and complements our understanding of these theories. The noise arising from spacetime
curvature ripples can be incorporated into Madelung’s quantum hydrodynamic description
by leveraging the foundational assumption of relativity, which allows us to consider the
energy associated with a spacetime curvature as virtual mass.

The Madelung quantum hydrodynamic representation transforms the Schrodinger
equation [5–7]

−iℏ∂tψ =

(
ℏ2

2m
∂i∂i − V(q)

)
ψ (1)

for the complex wave function ψ = |ψ|e− iS
ℏ into two equations of real variables: the

conservation of the mass density |ψ|2

∂t|ψ|2 + ∂i(|ψ|2
.
qi) = 0 (2)

and the motion equation for the momentum m
.
qi = pi = ∂iS,

..
qj = − 1

m

(
∂jV(q) + ∂jVqu(n)

)
(3)
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where S = − ℏ

2 ln
ψ

ψ∗ and

Vqu = − ℏ2

2m

1

|ψ|∂i∂i|ψ|. (4)

To introduce the fluctuating virtual mass due to the spacetime background, we assume
the following:

1. The virtual mass density fluctuations own the wave function ψvac and density |ψvac|2
2. The associated energy density E (of the spacetime background fluctuations) is propor-

tional to |ψvac|2
3. The virtual mass mvac is defined by the identity E = mvacc2|ψvac|2;
4. The virtual mass does not interact with the mass of the physical system (since the

gravity is sufficiently weak to be ignored).

Given that, the overall wave function ψtot reads as

ψtot
∼= ψψvac (5)

Moreover, since the virtual mass mvac is much smaller than m of the system
(i.e., mtot = mvac + m ∼= m), it follows that (4) reads as

Vqu(ntot)
= − ℏ2

2mtot
|ψ|−1|ψvac|−1∂i∂i|ψ||ψvac|

= − ℏ2

2m

(
|ψ|−1∂i∂i|ψ|+ |ψ|−1|ψvac|−1∂i|ψvac|∂i|ψ|+ |ψvac|−1∂i∂i|ψvac|

) (6)

Furthermore, given the fluctuating mass density of wavelength λ

|ψvac|2(λ) ∝ cos2 2π

λ
q (7)

related to the wave function of the mass fluctuation

ψvac(λ) ∝ ±cos
2π

λ
q, (8)

we have that the energy fluctuations due to the quantum potential read as

δEqu =
∫

V

ntot(q,t)δVqu(q,t)dV. (9)

Following the procedure described in reference [8], the energy fluctuation reads as

δEqu(λ)
∼= ℏ2

2m

(
2π

λ

)2

(10)

and, in 3D space, leads to

δEqu(λ)
∼= ℏ2

2m∑
i

(ki)
2 =

ℏ2

2m
|k|2 (11)

The outcome indicated by Equation (11) demonstrates that the energy arising from
fluctuations in the mass density of the vacuum rises in inverse proportion to the square of its
wave-length λ. Consequently, fluctuations in the quantum potential with extremely short
wavelengths (i.e., λ → 0) may result in disproportionately large energy, even when the
noise amplitudes approach zero (i.e., T → 0). This observation raises concerns about the
attainment of the deterministic zero noise limit (2)–(4) that represents quantum mechanics.

Conversely, the assurance of convergence to the deterministic limit (2)–(4) in quantum
mechanics for T → 0 stems from the improbability of uncorrelated fluctuations occurring in
increasingly shorter distances. Consequently, the necessity for convergence to conventional
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quantum mechanics for T → 0 imposes an additional condition on the spatial correlation
function of the noise, specifically as λ → 0 .

The derivation of the shape of the space correlation of noise G(λ) is a heavy stochastic
calculation [9]. A simpler and more straightforward way to calculate G(λ) is obtained by
considering the spectrum S(k) of the noise that reads as [8]

S(k) ∝ p( 2π
λ ) = exp

[
−
(

kλc

2

)2
]

. (12)

showing a not-white characteristic, with wavelength λ smaller than λc that goes fast to
zero. From (12), G(λ) reads as

G(λ) ∝

+∞∫

−∞

eikλS(k)dk ∝
π1/2

λc
exp

[
−
(

λ

λc

)2
]

. (13)

where

λc =
√

2
ℏ

(mkT)1/2
(14)

is the De Broglie length.
Equation (13) reveals that uncorrelated mass density fluctuations on increasingly

shorter distances are gradually dampened by the quantum potential. This damping effect
facilitates the achievement of conventional “deterministic” quantum mechanics for systems
with physical lengths much smaller than the de Broglie wavelength λc.

In a sufficiently general case that holds practical significance, where the mass density
noise correlation function can be reasonably assumed to be Gaussian, featuring a null
correlation time, isotropy throughout space, and independence among different coordinates,
it can be postulated in the following form:

< δn(qα ,t), δn(qβ+λ,t+τ) >=< δn(qα), δn(qβ)
>(T) G(λ)δ(τ)δαβ, (15)

where in systems of physical length L such as L
λc

≪ 1, G(λ) read as

limT→0G(λ) ∝
1

λc
exp

[
−
(

λ

λc

)2
]
∼= 1

λc

(
1 −

(
λ

λc

)2
)

∼= 1

λc
=

1

ℏ

√
mkT

2
(16)

On this ansatz, Equation (3) assumes the stochastic form [10] (see Appendix B)

..
qj(t)

= − 1

m
∂j

(
V(q) + Vqu(ρ)

)
− κ

.
qj(t)

+ κD1/2ξ(t). (17)

where [8,10]

D1/2 =

( L
λc

)(
γD

ℏ

2m

)1/2

=
√

γD
L
2

√
kT

2ℏ
(18)

where γD is a pure not-zero number [10].
It is worth noting that the probability mass density (PMD) function ρ, defined by the

Smolukowski conservation equation stemming from (17), obeys the condition limT→0ρ = |ψ|2,
since by (13) and (14), convergence to quantum mechanics is warranted.

The gravitational dark energy introduces the concept of a self-fluctuating system where
the noise is an intrinsic property that does not require the presence of an environment.

3. The Schrodinger-Langevin Equation from Stochastic Madelung
Quantum Hydrodynamics

Langevin equations, commonly utilized for depicting underlying dynamics, can be
obtained through various methods, including Poisson transformation [11] and Fock space
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formalism [12]. Exact definitions occasionally can be obtained for nonlinear chemical
kinetics and a few other issues. Alternatively, one can approach a Langevin equation
from a phenomenological standpoint, where the approximated dynamics are determined
beforehand. In this context, achieving a rigorous Langevin description can prove to be
quite challenging.

In our current study, we have the advantage of employing an exact microscopic
quantum mechanical model.

Generally, assuming for the stochastic case, the complex field is

ψ(q,t) = ρ(q,t)
1/2ei

S(q,t)
ℏ , (19)

where ρ obeys the Smolukowski conservation equation [8,13] that, near the deterministic
limit of quantum mechanics for lim L

λc
→ 0 with ρ(q,t)

1/2 → |ψ(q,t)| , reads as

∂tρ + ∂iρ
.
qi + Qdiss(q,t)

∼= ∂t|ψ(q,t)|2 + ∂i|ψ(q,t)|2
.
qi + Qdiss(q,t)

= 0 (20)

where the diffusional dissipation Qdiss(q,t)
is detailed in ref. [8]. Moreover, for lim L

λc
→ 0 of

quantum mechanics, it follows that the quantum hydrodynamic Equations (2)–(4) read as

..
qi =

1
m

d
dt ∂iS = ∂t∂iS + 1

m

(
∂i∂jS

)
∂jS = ∂i

(
∂tS + 1

m ∂jS∂jS
)

= − 1
m ∂i

(
V(q) − ℏ2

2m
1
|ψ|∂j∂j|ψ|+ κS − q1/2

j
q1/2

j
mκD1/2ξ(t)

) (21)

leading to

m∂tS + ∂iS∂iS = −
(

− ℏ2

2m
1
|ψ|∂j∂j|ψ|+ V(q)

+κS − q1/2
j

q1/2
j

mκD1/2ξ(t) + C(t)

)
(22)

that, with the help of (20) rearranged in the form

∂t|ψ| = − 1

m
∂i|ψ|∂iS − 1

2m
|ψ|∂i∂iS +

Qdiss(q,t)

2|ψ| . (23)

leads to the quantum irreversible Langevin-like equation that, for time-independent sys-
tems, reads as

−iℏ∂t|ψ| =
ℏ2

2m
∂i∂iψ −

(
V(q) + Const + κS − q1/2

i
q1/2

i
mκD1/2ξ(t) + i

Qdiss(q,t)

2|ψ|2

)
ψ (24)

Although, within the frame of the quantum hydrodynamic formalism, quantum
mechanics serves as the deterministic limit of the theory with no dissipation, it is interesting
to analyze a case when, approaching the zero-noise limit, dissipation is still important.

Close to the zero noise condition, it is possible to characterize the ability of the system
to dissipate by the semiempirical parameter α defined by the relation [10] lim L

λc
→0

κ ∼=
limT→0α 2kT

mD .
On this ansatz, (24) reads as

−iℏ∂t|ψ| =
ℏ2

2m
∂i∂iψ −

(
V(q) + α

2kT

mD
S − q1/2

i
q1/2

i
mκD1/2ξ(t) + i

Qdiss(q,t)

2|ψ|2

)
ψ (25)

from which we can see that the realization of quantum mechanics is warranted (see
Equation (17)) by the condition lim

T→0 α = 0. In this case, it can be readily seen that
Equation (24) reduces to the Schrodinger equation.
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When physical dissipation is significant at the quantum level, the parameter α remains
quite high, close to the quantum limit, such as

lim L
λc

→0α = α0. (26)

In this case, it is straightforward to see that Equation (24) converges to quantum
Brownian motion. In fact, under condition (26) and by utilizing dimensional considerations,
the following identities apply:

lim L
λc

→0
D = limT→0γD

( L
λc

)2
ℏ

2m
= limT→0γDL2 kT

4ℏ
= 0 (27)

lim L
λc

→0
κ ∼= limT→0α

2kT

mD
= α0

8ℏ

mγDL2
= f inite, (28)

lim L
λc

→0
Qdiss(q,t)

= 0. (29)

Thus, by (28) and (29) being |
Qdiss(q,t)

2|ψ|2 | << |κS|, the term i
Qdiss(q,t)

|ψ|2 can be disregarded

in (24), and for L
λc

≪ 1, it follows the conventional Langevin equation for quantum
Brownian motion

limT→0iℏ∂tψ = − ℏ2

2m
∂i∂iψ +

(
V(q) + κS − q1/2

i
q1/2

i
mκD1/2ξ(t) + C

)
ψ (30)

The emergence of the Schrödinger-Langevin equation through the stochastic extension
of the quantum hydrodynamic model is noteworthy, showcasing a precise alignment with
traditional quantum mechanics.

4. The Quantum Path Integral Motion Equation in the Presence of Stochastic Noise

The Markov process (17) can be described by the Smolukowski equation for the
Markov probability transition function (PTF) [13]

P(q,q0|t+τ,t0)
=

∞∫

−∞

P(q,z|τ,t) P(z,q0|t−t0,t0)
drz. (31)

where the PTF P(q,z|τ,t) is the probability that a quantity of probability mass density (PMD)
ρ(z,t) in time interval τ is transferred to point q [13].

The conservation of the PMD shows that the PTF displaces the PMD according to the
rule [13]

ρ(q, t) =
∫

P(q, z|t, 0)ρ(z,0)d
rz (32)

Generally, for the quantum case, Equation (31) cannot be reduced to a Fokker–Planck
equation (FPE). The functional dependence of Vqu(ρ)

by ρ(q,t) and by the PTF P(q, q0|t+ τ, t0)
produces non-Gaussian terms (see Appendix C).

Nonetheless, if, at initial time, ρ(q,t0)
is stationary (e.g., quantum eigenstate) and close

to the long-time final stationary distribution ρeq, it is possible to assume that the quantum
potential is constant in time as a Hamilton potential following the approximation

Vqu = −(
ℏ2

4m
)

(
∂q∂q

(
lnρeq(q)

)
+

1

2

(
∂q

(
lnρeq(q)

))2
)

. (33)
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The quantum potential being independent by the wave function, the PMD ρ quasi-
stationary long-time solutions can be approximately described by the Fokker–Planck equation

∂tP(q, z|t, 0) + ∂iP(q, z|t, 0) · υi = 0 (34)

where

υ =
1

mκ
∂q

(
ℏ2

4m

(
∂q∂qlnρeq −

1

2

(
∂qlnρeq

)2
)
+ V(q)

)
− D

2
∂qlnρeq (35)

leading to the final equilibrium of the stationary quantum configuration

1

mκ
∂q

(
V(q) −

ℏ2

4m

(
∂q∂q

(
lnρeq(q)

)
+

1

2

(
∂q

(
lnρeq(q)

))2
))

+
D

2
∂q

(
lnρeq

)
= 0 (36)

In Appendix D, the stationary states of a harmonic oscillator obeying (36) are shown.
The results show that the quantum eigenstates are stable and maintain their shape (with a
small change in their variance) when subject to fluctuations.

4.1. Evolution of Quantum Superposition of States Submitted to Stochastic Noise

The quantum evolution of not-stationary state superpositions (not considering fast
kinetics and jumps) involves the integration of Equation (17) that, removing fast variables,
reads as

.
q = − 1

κm
∂q

(
V(q) −

ℏ2

4m

(
∂q

(
∂qlnρ

)
+

1

2

(
∂qlnρ

)2
))

+ D1/2ξ(t) (37)

By utilizing both the Smolukowski Equation (37) and the associated conservation
Equation (32) for the PMD ρ, it is possible to integrate (37) by using its second-order
discrete expansion

qk+1
∼= qk −

1

mκ
∂k

(
V(qk)

+ Vqu(ρqk ,tk)

)
∆tk −

1

mκ

d

dt
∂k

(
V(qk)

+ Vqu(ρqk ,tk)

)∆tk
2

2
+ D1/2∆Wk (38)

where
qk = q(tk)

(39)

∆tk = tk+1 − tk (40)

∆Wk = W
(tk+1)

−W
(tk)

(41)

where ∆Wk has a Gaussian zero mean and unitary variance which probability function
P(∆Wk, ∆t), for ∆tk = ∆t ∀ k, reads as

lim∆t→0P(∆Wk ,∆t) = lim∆t→0
D−1/2

(4π∆t)1/2 exp − ∆Wk
2

4∆t

= lim∆t→0
D−1/2

(4π∆t)1/2 exp − 1
4∆t

(qk+1−<qk+1>)2

D

= (4πD∆t)−1/2exp − 1
4∆t

(
qk+1−qk−<

.
qk>∆t−<

..
qk>
2 ∆t2

)2

D

(42)

where the midpoint approximation has been introduced

qk =
qk+1 + qk

2
, (43)

and where

<

.
qk >= − 1

mκ

∂

(
V(q

k
) + Vqu(ρq

k
tk)

)

∂qk

. (44)
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and

<

..
qk >= − 1

2mκ

d

dt

∂
(

V(q
k
) + Vqu(ρ(qk)

,tk)

)

∂qk

(45)

are the solutions of the deterministic problem

< qk+1 >∼=< qk > − 1

mκ
∂k

(
V(qk)

+ Vqu(ρqk ,tk)

)
∆tk −

1

mκ

d

dt
∂k

(
V(qk)

+ Vqu(ρqk ,tk)

)∆tk
2

2
. (46)

As shown in ref. [8], the PTF P(qk ,qk−1|∆t,(k−1)∆t) can be achieved after successive “u”
steps of approximation and reads as

P(qk ,qk−1|∆t,(k−1)∆t) = limu→∞P (u)
(qk ,qk−1|∆t,(k−1)∆t)

∼= (4πD∆t)−1/2e
∆t
4D [−(

.
qk−1−

<
.
qk>

(∞)+<
.
qk−1>

2 )
2

+D(∂qk
<

.
qk>

(∞)+∂qk−1
<

.
qk−1>)]

. (47)

and the PMD at the k-th instant reads as

ρ(∞)
(qk ,k∆t) =

∞∫

−∞

P (∞)
(qk ,qk−1|∆t,(k−1)∆t) ρ(qk−1,(k−1)∆t)dqk−1. (48)

leading to the velocity field

<
.
qk >

(∞)= − 1

mκ
∂qk

(
V(q

k
) −

ℏ2

4m

(
∂q∂q

(
lnρ(∞)

)
+

1

2

(
∂q

(
lnρ(∞)

))2
))

(49)

Moreover, the continuous limit of the PTF gives

P(q,q0|t−t0,0) = lim∆t→0P (∞)
(qn ,q0|n∆t,0)

= lim∆t→0

∞∫
−∞

∏
n
k=1 dqk−1P (∞)

(qk ,qk−1|∆t,(k−1)∆t)

=
q∫

q0

Dqe
[− 1

2D

n
∑

k=1
<

.
qk−1>

(∞)∆qk ]
e

− ∆t
4D [

n
∑

k=1

(
qk−qk−1

∆t )
2

−2D
∂<

.
qk−1>

(∞)

∂qk−1
+<

.
qk−1>

(∞)2
]

=


e

q∫
q0

1
2D <

.
q>dq




q∫
q0

Dqe
− 1

4D

t∫
t0

dt(
.
q

2
+<

.
q>

2
+2D∂q<

.
q>)

(50)

where <

.
qk−1 >

(∞)= 1
2

(
<

.
qk >

(∞) + <
.
qk−1 >

(∞)
)

.

The resolution of the recursive Expression (50) offers the advantage of being applicable
to nonlinear systems that are challenging to handle using conventional approaches [14–17].

4.2. General Features of Relaxation of the Quantum Superposition of States

The classical Brownian process admits the stationary long-time solution

P(q,q−∞ |t−t−∞ ,t−∞) = limt0→−∞Ne

1
D

q∫
q−∞

<
.
q>(q′

(t,t0)
)dq′

= Ne

1
D

q∫
q−∞

K(q′)dq′

(51)

where K(q) = − 1
mκ

∂V(q)

∂q , leading to solution [3]

P(q, q0|t − t0, t0) =


exp

q∫

q0

1

2D
K(q′)dq′




q∫

q0

Dqexp − 1

4D

t∫

t0

dt
(

.
q

2
+ K2(q) + 2D∂qK(q)

)
(52)
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As far as it concerns <
.
q >

(∞)
(q,t) in (50), it cannot be expressed in a closed form,

unlike (51), because it is contingent on the particular relaxation path ρ(q,t) the system follows
toward the steady state. This path is significantly influenced by the initial conditions ρ(q,t0)

,

<
.
q >(q,t0)

and, consequently, the initial time t0 at which the quantum superposition of
states is subjected to fluctuations.

In addition, from (38), we can see that qtk
depends on the exact sequence of inputs

of stochastic noise, since, in classically chaotic systems, very small differences can lead to
relevant divergences of the trajectories in a short time. Therefore, in principle, different
stationary configurations ρ(q,t=∞) (i.e., eigenstates) can be reached whenever starting from
identical superposition of states. Therefore, in classically chaotic systems, Born’s rule can
also be applied to the measurement of a single quantum state.

Even if L ≪ λc ∪ λqu, it is worth noting that, to have finite quantum lengths λc and λqu

(necessary to have the quantum stochastic dynamics) and the quantum decoupled (classical)
environment or measuring apparatus), the nonlinearity of the overall system (system–
environment) is necessary: Quantum decoherence, leading to the decay of superposition
states, is significantly promoted by the widespread classical chaotic behavior observed in
real systems.

On the other hand, a perfect linear universal system would maintain quantum correla-
tions on a global scale and would never allow quantum decoupling between the system and
the experimental apparatus performing the measure (see Section 5). It should be noted that
even the quantum decoupling of the system from the environment would be impossible, as
quantum systems function as a unified whole. Merely assuming the existence of separate
systems and environments subtly introduces a classical condition into the nature of the
overall supersystem.

Furthermore, given that the relationship (A31) and (A38) are valid only in the leading
order of approximation of

.
q (i.e., during a slow relaxation process with small amplitude

fluctuations), in instances of large fluctuations occurring on a timescale much longer than
the relaxation period of ρ(q,t)(q,t), transitions may occur that are not captured by (50),
potentially leading from a stationary eigenstate to a general superposition of states.

In this case, relaxation will follow again toward another stationary state. The PMD
ρ(q,t) (48) describes the relaxation process occurring in the time interval between two
large fluctuations rather than the system evolution toward a statistical mixture. Due to
the extended timescales associated with these jumping processes, a system comprising a
significant number of particles (or independent subsystems) undergoes a gradual relaxation
towards a statistical mixture. The statistical distribution of this mixture is dictated by the
temperature-dependent behavior of the diffusion coefficient.

5. Emerging Classical Mechanics on Large Size Systems

If the quantum potential is manually eliminated from the quantum hydrodynamic
equations of Motion (1)–(3), the classical equation of the motion is revealed [7]. Despite
the apparent validity of this approach, it is not mathematically sound, as it alters the
fundamental characteristics of the quantum hydrodynamic equations. Specifically, this
operation eliminates the stationary configurations (i.e., eigenstates), since it nullifies the
balancing force of the quantum potential against the Hamiltonian force [18], crucial for
establishing the stationary condition. Consequently, even a small quantum potential
is important and cannot be disregarded in the deterministic quantum hydrodynamic
model (2)–(4).

Conversely, in the stochastic generalization, it is permissible to accurately disregard
the quantum potential in (17) and (37) when its force is significantly inferior to the force
noise ̟, such as | 1

m ∂iVqu(ρ)| ≪ |̟(T)|, that, by using (17), leads to

| 1

m
∂iVqu(ρ)| ≪ κ

( L
λc

)√
γD

ℏ

2m
= κ

(
L
√

mkT

2ℏ

)√
γD

ℏ

2m
, (53)
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and hence, in a coarse-grained description with an elemental cell side ∆q, to

limq→∆q

∣∣∣∂iVqu(ρ)

∣∣∣≪ mκ

( L
λc

)√
γD

ℏ

2m
= mκ

√
γD

L
2

√
kT

2ℏ
, (54)

where L is the physical system length.
In addition, even if the noise ̟(q,t,T) has a zero mean, the mean of the quantum

potential fluctuations Vst(n,S)
∼= κS is not null, resulting in the emergence of the dissipative

force −κ
.
q
(t)

in (17). Consequently, the stochastic sequence of noise inputs disrupts the

coherent evolution of the quantum superposition of states. Additionally, upon closer
examination of the stochastic noise,

κ

( L
λc

)√
γD

ℏ

2m
ξ(t) (55)

we observe that is proportional to the size of the system; for L
λc

→ ∞ in macroscopic
systems, (53) is satisfied if

lim q
λc

→ L
λc

=∞

∣∣∣∣
1

m
∂iVqu(n(q))

∣∣∣∣ < ∞. (56)

To attain a comprehensive large-scale description that is entirely free from quantum
correlations, we can impose more stringent requirements.

lim q
λc

→∞

∣∣∣∣
1

m
∂iVqu(ρ(q))

∣∣∣∣ = lim q
λc

→∞

1

m

√
∂iVqu(ρ(q))

∂iVqu(ρ(q))
= 0. (57)

Therefore, by noting that, in the case of linear systems,

limq→∞Vqu(q) ∝ q2, (58)

it follows that they cannot lead to the classical mechanics on a macroscopic scale.
In general, the greater the strength of the Hamiltonian potential, the more localized

the wave function and the more pronounced the quantum potential behavior at infinity.
This observation is easily substantiated by considering the MDD.

|ψ|2 ∝ e−Pk
(q) (59)

where Pk
(q) is a polynomial of order k.

In order to establish a finite range of interaction for the quantum potential, it is
imperative that k <

3
2 . Therefore, linear systems, with k = 2, have an infinite range of

action of quantum potential.
A concrete illustration arises in the context of solids possessing a quantum lattice.

When examining phenomena at intermolecular distances characterized by linear interac-
tions, the quantum behavior becomes apparent (as seen in phenomena like X-ray diffrac-
tion). However, when investigating the macroscopic properties, a transition to classical
behavior occurs. This shift is attributed to the Lennard-Jones potential, which goes to zero
at infinity, resulting in a finite quantum range of interaction (see (60)–(62)). In such cases,
classical behavior emerges, exemplified by low-frequency acoustic waves with wavelengths
much larger than the linear range of interatomic distances. For instance, when particles
interact through the Lennard-Jones potential, the long-distance wave function is given
by [19]

limr→∞|ψ| ∝ a−1/2 1

r
, (60)
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the quantum potential reads as

limr→∞Vqu(ρ)
∼= limq→∞

ℏ2

2m

1

|ψ|∂r∂r|ψ| =
1

r2
=

ℏ2

m
a|ψ|2. (61)

leading to the quantum force

limr→∞ − ∂rVqu(ρ) = limq→∞
ℏ2

2m
∂r

1

|ψ|∂r∂r|ψ| =
ℏ2

2m
∂rr∂r∂r

1

r
= −2

ℏ2

m

1

r3
= 0, (62)

So that, by (53) and (57), the macroscopic classical behavior may manifest [20,21] in a
phase with adequate sparsity. It is noteworthy that, in Equation (61), the quantum po-
tential underpins the hard sphere potential within the “pseudopotential Hamiltonian
model” of the Gross–Pitaevskii equation [22,23], where a

4π denotes the boson–boson s-wave
scattering length.

By recognizing that, to meet Condition (57), we can appropriately demand that

∞∫

0

r−1| 1

m
∂iVqu(ρ(q))

|(r,θ,ϕ)dr < ∞ ∀θ, ϕ, (63)

we can determine the distance λqu at which the quantum potential is effective [20,21] by
the formula

λqu =

λc

∞∫
0

r−1|∂iVqu(ρ)|(r,θ,ϕ)dr

|∂iVqu(ρ)|(r=λc ,θ,ϕ)
= λc Iqu. (64)

where Iqu reads

Iqu =

∞∫
0

r−1|∂iVqu(ρ)|(r,θ,ϕ)dr

|∂iVqu(ρ)|(r=λc ,θ,ϕ)
. (65)

5.1. Lindemann Constant for Quantum Lattice-to-Classical Fluid Transition

For a L-J gas and its condensed liquid phase, the distance of quantum potential
interaction λqu reads as

λqu
∼= r0(1 + ε)

(
1 +

1

3

(
λc

d

)4
)

(66)

where r0(1 + ε) is the distance up to which the L-J force is linear (ε = ∆
r0

) and where r0 is
the molecular equilibrium position.

An empirical validation of practical significance of the quantum potential interaction
length is observed during the quantum-to-classical transition in a crystalline solid at
melting point. During this transition, the system shifts from a quantum lattice state to a
fluid, amorphous classical phase.

If we make the assumption that, within the quantum lattice, the atomic wave func-
tion (around the equilibrium distance) has a smaller extent than the quantum potential
interaction distance, then it can be deduced that, at the melting point, its variance equals
λqu − r0.

Therefore, the Lindemann constant LC =

{
wave function variance
at transition

}

r0
[24] reads as

LC =
λqu−r0

r0
, and it can be theoretically calculated, since

λqu ≈ r0

(
(1 + ε) +

1

3

(
λc

r0(1 + ε)

)3
)

≈ r0

(
(1 + ε) +

1

3

(
λc

r0

)3
)

(67)
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that, being typically ε ≈ 0.05 ÷ 0.1 and λc
r0

≈ 0.8, leads to

LC =
λqu − r0

r0
≈ 0.217 ÷ 0.267. (68)

A more precise assessment, employing the potential well approximation for molecular
interactions [20,21], results in λqu

∼= 1.2357 r0 and yields a value for the Lindemann constant
LC = 0.2357 that aligns closely with the measured values, falling within the range of 0.2 to
0.25 [24].

5.2. Fluid–Superfluid 4He Transition

Since the de Broglie distance λc is a function of temperature, its influence on the
fluid–superfluid transition in monomolecular liquids at very low temperatures, such as for
4He, can be detected. The treatment of this case is detailed in ref. [20,21], where, for the
4He–4He interaction, the potential well is assumed to be

V(r) → ∞ 0 ≤ r ≤ σ. (69)

V(r) = −1.23 × 10−22 J σ ≤ r ≤ σ + 2∆ (70)

V(r)= 0 σ + 2∆ < r. (71)

where ∆ = 1.54 × 10−10 m and where σ + ∆ = 3.7 × 10−10 m is the mean 4He – 4He
atomic distance.

By posing that, at the superfluid transition, the de Broglie length progressively reaches
the 4He – 4He atomic distance, being in the length interval

σ < λc < σ + 2∆, (72)

we have, for λc < σ, that the ratio of superfluid/normal 4He density is approximately null,
while, for λc ≈ σ + 2∆, we have almost 100% superfluid 4He. Therefore, at the condition

λc =
√

2
ℏ

(mkTλc
)1/2

= σ + ∆, (73)

when the superfluid/normal 4He density ratio is 50%, it follows that the temperature T50%

for the 4He mass of m4He = 6.6 × 10−27kg reads as

T50% =
2ℏ2

mk

(
1

σ + ∆

)2

=
2 × 1.113 × 10−68

6.6 × 10−27 × 1.38 × 10−23

(
1

1.3 × 10−19

)
= 1.92 ◦K (74)

which agrees well with the experimental data in ref. [25] of approximately 1.95 ◦K.
On the other hand, since, by (72) for λc = σ + 2∆, all the couples of 4He fall into the

quantum state, the superfluid ratio of 100% is reached at the temperature

T100% ≈ 2ℏ2

mk

(
1

σ + 2∆

)2

= 0.92 ◦K (75)

well agreeing with the experimental data in ref. [25] of approximately 1.0 ◦K.
Moreover, by utilizing the superfluid ratio of 38% at the λ-point of 4He, the transition

temperature Tλ reads as

Tλ ≈ 2ℏ2

mk

(
1

σ + 0, 76∆

)2

= 2.20 ◦K (76)
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in good agreement with the measured 4He superfluid transition temperature of 2.17 ◦K.
As a concluding observation, it is noteworthy to mention that there are two methods

for establishing macroscopic quantum behavior. The first method entails reducing the
temperature, thereby effectively augmenting the de Broglie length. The second method
involves intensifying the strength of the Hamiltonian interaction among the particles within
the system.

With regard to the latter, it is crucial to highlight that the restricted potency of the
Hamiltonian interaction over extended distances serves as the pivotal factor enabling the
manifestation of classical behavior. In the analysis of systems dictated by a quadratic or
more potent Hamiltonian potential, the interaction range linked to the quantum potential
becomes infinite, as depicted in Equation (96). Consequently, attaining a classical phase
becomes unachievable, irrespective of the system’s size being λqu = ∞.

In this specific scenario, we exclusively witness the full realization of classical behavior
on a macroscopic scale in systems characterized by interactions that are sufficiently feeble,
even weaker than linear interactions, which exhibit classical chaos. In such instances, the
quantum potential is incapable of exerting its nonlocal influence over substantial distances.

Hence, classical mechanics arises as a decoherent result of quantum mechanics in the
presence of fluctuating spacetime.

5.3. The Coarse-Grained Approach

The PMD current Jj = ρ
.
qj reads as

Jj = ρ
.
qj = −ρ

(
mL2

4α ∂j

(
V + Vqu

)
+ ̟

)

= −ρ
(

1
mκ ∂j

(
V + Vqu

)
+ D1/2

jk ξk(t)

) . (77)

The macroscopic behavior can be derived through the discrete coarse-grained spatial
representation of Equation (77), utilizing local cells with a side length of l, where the mass
density dxj for the j-th cell is expressed as

dxj = −mL2

4α
D′

jmx(m)

(
DmkVk +Dqu

mk
Vqu

k

)
dt +D′′

jkx(k)Φ(k)dWk(t) (78)

where
xj = l3ρ(qj ,t)

, (79)

Vk = V(qk)
, (80)

Vquk
= Vqu(ρ(qk)

), (81)

Φk = Φ(qk ,t), (82)

where
liml→0l−6Φj, Φk = ̟(qj)

, ̟(qk)(T)
G(l(k−j)). (83)

where G(k−j) is the correlation length of the noise, where the matrices D, D′ and D′′, as

well as Dqu, correspond to the discrete derivatives ∂
∂qk

at the j-th point.

In general, the quantum potential interaction arising from the k-th cell is contingent
upon the magnitude of the Hamiltonian potential V(q).

In a system comprising a large number of particles, configuring the side length l to
match the mean intermolecular distance L allows the attainment of a classic phase. This
condition is met when L significantly surpasses the quantum potential length of interaction
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λqu, which, as per Equation (64), is also contingent upon the de Broglie length. Typically,
the Lennard-Jones potential (62) yields

lim q
λqu

→ L
λqu

=∞
−

∂Vqu(ρ)

∂q
≈ 2

ℏ2

mλqu
3

1
(

q
λqu

)3
≈ kT

ℏ

√
mkT

2
Iqu

1
(

q
λqu

)3
= 0, (84)

This results in the nullification of the interaction of the quantum potential originating
from the k-th cell with the adjacent cells, rendering Dqu

mk diagonal. Consequently, the
quantum effects are restricted to each individual molecule cell domain.

In classical systems where L ≫ λc ∪ λqu, the correlation length of the noise reads
as G(k−j) ∝ δkj, resulting in spatially uncorrelated fluctuations in macroscopic systems.
Conversely, in systems with interactions stronger than linear with λqu → ∞ , where the
quantum potential of each cell extends its influence to others, quantum characteristics
manifest in the coarse-grained description. As detailed in Section 5.2, employing the
quantum stochastic hydrodynamic model (SQHM) allows the derivation of descriptions
for dense phases where quantum effects become apparent on the macroscopic scale.

5.4. Measurement Process and the Finite Distance of Quantum Entanglement

Throughout the process of measurement, consisting of a “deterministic” conventional
quantum interaction between the sensing component of the experimental setup and the
system being measured, the interaction ceases when the experimental apparatus is moved
far away from the system, well beyond the distances λc and λqu.

The interpretation and handling of the “interaction output” are subsequently man-
aged by the measuring apparatus, typically involving a classical, irreversible procedure
characterized by a clear arrow of time. This procedure ultimately yields the macroscopic
measurement result.

Nonetheless, the phenomenon of decoherence plays a pivotal role in the measurement
process. It allows for the emergence of a large-scale classical framework that ensures
genuine quantum isolation between the experimental setup and the system, both before
and after the measurement event.

This quantum-isolated state, both initially and finally, is essential for determining the
conclusion of the measurement and for gathering statistical data from a set of independent
repeated measurements.

It is worth emphasizing that, within the framework of the SQHM, the standard
condition of moving the measured system to an infinite distance before and after the mea-
surement is not sufficient to guarantee the independence of the system and the measuring
apparatus if either λc = ∞ or λq = ∞.

5.5. Minimum Measurement Uncertainty of Quantum Systems in Fluctuating
Spacetime Backgrounds

Any quantum theory striving to elucidate the evolution of a physical system across
various orders of magnitude in size must inherently provide an explanation for the tran-
sition from quantum mechanical properties to the emergent classical behavior observed
at larger scales. The fundamental distinctions between the two descriptions lie in the
minimum uncertainty principle of quantum mechanics and the finite speed of propagation
of interactions and information in local classical relativistic mechanics.

If, at a specific distance Lq, which is smaller than λc, a system completely adheres
to the conventional principles of quantum mechanics, where its subparts lack distinct
identities, then, for an independent observer to gather information about the system, he
must be positioned at a distance at least as far as Lq from the observed system, both before
and after the process (refer to Appendix E).
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Hence, owing to the finite speed of propagation of interactions and information, the
execution of the process cannot be completed within a time shorter than

∆τmin >
Lq

c
∝

λc

c
∝

2ℏ

(2mc2kT)1/2
. (85)

Furthermore, considering the Gaussian noise (18) with the diffusion coefficient pro-
portional to kT, it follows that the mean value of the energy fluctuation is δE(T) =

kT
2 for

degree of freedom. Therefore, a nonrelativistic (mc2
>> kT) scalar structureless particle of

mass m has an energy variance ∆E

∆E ≈ (< (mc2 + δE(T))
2 − (mc2)

2
>)

1/2 ∼= (< (mc2)
2
+ 2mc2 kT

2 − (mc2)
2
>)

1/2

∼= (mc2kT)
1/2

(86)

from which it follows that

∆E∆t >
(mc2kT)

1/2
λc

c
) ∝

√
2ℏ, (87)

It is worth noting that the product ∆E∆τ remains constant, as the increase in energy
variance precisely compensates for the corresponding decrease in the minimum acquisition
time ∆τ. This holds true due to the growth following the square root of T. The same
outcome is attained when establishing the uncertainty relations between the position and
momentum of a particle with mass m.

Moreover, if, as the external (quantum disentangled) measuring system, we can acquire
information about the spatial position of a particle with precision

∆L > Lq. (88)

the variance ∆p of its momentum (pµ pµ)
1/2 = mc due to the fluctuations in the low-velocity

limit mc2
>> kT/ reads as

∆p ≈ (< (mc +
δE(T)

c
)

2

− (mc)2
>)

1/2

∼= (mkT)1/2. (89)

leading to uncertainty relation

∆L∆p > Lq(mkT)1/2
∝
√

2ℏ (90)

Moreover, by (90), the uncertainty condition

∆L∆p > Lq(2mkT)1/2 =
ℏ

2
. (91)

or

∆E∆t >
(2mc2kT)

1/2Lq

c
=

ℏ

2
. (92)

requires that Lq = λc

2
√

2
represents the physical length below which quantum entanglement

is fully effective, and it denotes the minimum distance—both initial and final—between the
system and the measuring apparatus. Regarding the theoretical minimum uncertainty of
nonrelativistic quantum mechanics (i.e., c → ∞ ), which is obtainable from the minimum
uncertainty (91) and (92) in the limit of zero noise ( λc → ∞ ), it follows that

∆τmin =
λc

2c
√

2
undefined (93)
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∆E ∼= (mc2kT)
1/2

=
√

2
ℏc

λc
undefined, (94)

Lq =
λc

2
√

2
→ ∞ (95)

∆p ∼= (mkT)1/2 ∼=
√

2ℏ

λc
→ 0 (96)

but the uncertainty relations

∆E∆t >
ℏ

2
(97)

∆L∆p > Lq(mkT)1/2 =
ℏ

2
(98)

remain finite and constitute the minimum uncertainty of the quantum deterministic limit.
It is interesting to note that, in the relativistic limit, the minimum acquisition time of

measure in the conventional quantum limit reads as

∆τmin =
Lq

c
→ ∞. (99)

The output (99) shows that it is not possible to carry out any measurement in the
deterministic fully quantum mechanical global system, since its duration is infinite.

Moreover, by increasing the temperature we can localize the system in a domain
of smaller physical length ∆L satisfying the choice (88). Nevertheless, the minimum
uncertainty (98) in the context of quantum mechanics remains unchanged in the limit.

Given that nonlocality is restricted to domains with a physical length on the order of
λc

2
√

2
and information about a quantum system cannot be transmitted faster than the speed of

light (as violating the uncertainty principle), local realism is affirmed in the realm of coarse-
grained macroscopic physics, where the domains of order λc

3 reduce to a point. Meanwhile,
the paradox of “spooky action at a distance” is confined to microscopic distances (smaller
than λc

2
√

2
), where quantum mechanics in the low-velocity limit are fully assumed.

It is crucial to note that, in the low-velocity limit of quantum mechanics, the conditions
c → ∞ and λc → ∞ are implicitly incorporated into the theory, resulting in the (apparent)
instantaneous transmission of an interaction at an infinite distance.

It is also noteworthy that, in the presence of noise, the measurement indeterminacy

experiences a relativistic correction, given that ∆E ∼= (mc2kT
(

1 + kT
4mc2

)
)

1/2
leads to the

minimum uncertainty in a quantum system, subjected to gravitational background noise
(T > 0 ), which reads as

∆E∆t >
ℏ

2

(
1 +

kT

4mc2

)1/2

(100)

and

∆L∆p >
ℏ

2

(
1 +

kT

4mc2

)1/2

. (101)

The relativistic correction can become significant for light particles (with m → 0),
but in the realm of conventional quantum mechanics for T = 0, the uncertainty relations
remain unchanged.

5.6. The Noisy Quantum Hydrodynamic Theoryl and the Decoherence Approach

In the framework of the SQHM, ensuring statistically reproducible measurement pro-
cesses and guaranteeing the complete independence of the measuring apparatus from the
measured system (free from quantum potential coupling both before and after the measure-
ment) necessitates a global system with a finite length of quantum potential interaction.
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In this scenario, the SQHM suggests that, given the finite speed of light and informa-
tion transmission, it becomes feasible to conduct the measurement within a finite time inter-
val. As a result, having the finite length of a quantum potential interaction, the subsequent
decoherence become essential prerequisites for the execution of the measurement process.

The decoherence theory [26–31] does not aim to address the measurement problem or
the collapse of the wave function. Its focus lies in elucidating the transition of a system to
the statistical mixture of states, brought about by the leakage of quantum entanglement
with the environment. Additionally, while the decoherence process may be prolonged
for a microscopic system, the decoherence time τd for macroscopic systems composed
of n microscopic quantum elements can be very short ∝

τd
n . However, in the context of

decoherence theory, the superposition of states within the global universal wave function
persists, maintaining its global coherence.

This puzzle finds a logical resolution through the solution proposed by Poincaré,
recently extended to quantum systems [4]. The solution elucidates that irreversible phe-
nomena can manifest in a globally reversible system due to an exceedingly long recurrence
time (far surpassing the lifespan of the universe). The global quantum system locally emu-
lates classical behavior, indistinguishable from that of a large-scale classical universe, as the
recurrence time significantly exceeds the lifetime of the universe. For instance, Boltzmann’s
calculated recurrence time for a single cubic centimeter of gas to revert to its initial state
spans many trillions of digits, dwarfing the thirteen-digit timespan of the universe.

In the context of Madelung’s approach, the Wigner distribution and the quantum
hydrodynamic theory are closely connected and do not contradict each other [7]. However,
the interpretation of the global system as classical or quantum in nature is ultimately a
matter of interpretation. Essentially, we cannot determine whether the noise from the
environment is truly random or pseudorandom. In computer simulations, it is widely
accepted that any algorithm generating noise will actually produce pseudorandom outputs,
but this distinction is not critical when describing irreversible phenomena.

The theory of decoherence can explain macroscopic behavior as a result of dissipative
quantum dynamics, but it cannot determine the conditions that allow for a truly classical
global system.

In contrast, the SQHM approach offers a criterion for the shift from quantum dynamics
to classical dynamics at a suitable macroscopic scale, eliminating the requirement for an
external environment. Furthermore, the SQHM demonstrates the potential for a classical
global system within a self-fluctuating spacetime, characterized by background curvature
fluctuations aligning with the quantum gravitational portrayal of the universe. In this
context, gravity is viewed as a source of global decoherence [32,33].

From a conceptual standpoint, the SQHM theory addresses the problematic issue
of spontaneous entropy reduction in the global quantum reversible system, which is
necessary for the system to return to its initial state, as required by the recurrence theorem.
Furthermore, since quantum pseudo-diffusion evolution [34] shows that entropic and
antientropic processes occur simultaneously in different regions of a quantum system, the
question of why spontaneous antientropic processes are not observed anywhere and at any
time in the universe remains unsolved in the context of decoherence theory.

In relation to this aspect, it is important to clarify that, when the environment size
is considered infinite, the recurrence time is pushed beyond infinity. This can be easily
demonstrated by examining what are known as free Gaussian coherent states. These
states are obtained as the limit of eigenstates of harmonic oscillators when the quadratic
coefficient of the potential approaches zero, which is equivalent to increasing the size of the
system to infinity.

While we can observe the emergence of antientropic behavior in the harmonic Gaus-
sian states after half of the oscillating period time has passed, this behavior is never
observed in the coherent states, because their period of oscillation extends to infinity.
Consequently, the expansion of the environment to infinity is a tricky mathematical proce-
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dure that eliminates the unavoidable antientropic behavior of conventional (deterministic)
quantum mechanics, which contradicts physical evidence.

5.7. The SQHM and the Copenhagen Foundations of Quantum Mechanics

The path integral solution of the SQHM (50) is specific and applies to the small noise
limit before the occurrence of a significant fluctuation. It characterizes the “microscopic
stage” of the decoherence process at the de Broglie physical length scale.

Furthermore, the SQHM characterizes quantum-to-classical transition through the utiliza-
tion of two physical lengths, λc and λqu, treating quantum mechanics as the asymptotic behav-
ior for limλc → ∞ . As a result, it provides additional insights into the measurement process.

While the measurement process can be asymptotically described as a quantum inter-
action between the system and the measurement apparatus, marginal decoherence effects
persist during its realization, attributed to

i. need for real decoupling at the initial and final state of the measure between the
system and the measuring apparatus and

ii. utilization of classical experimental equipment for the collection and treatment of data.

The marginal decoherence is ignored or disregarded, because the classical equipment
is mistakenly assumed to be decoupled at infinity, while the assumption of a perfect global
quantum interaction (which extends itself at infinity, such as limλc → ∞ and limλqu → ∞ )
does not allow the realization of such conditions.

To describe the decoherence due to external apparatus Vext, the SQHM reads as

.
pj = −∂j

(
V + Vext + Vqu(n)

)
− mκ

.
qj + m̟j. (102)

where
Vext = 0 for t < t0 ∪ t > t0 + ∆τ (103)

In principle, marginal decoherence, characterized by a time constant τd, could influence
the measurement if τd is comparable to the measurement duration time ∆τ. The absence
of marginal effects is considered in the analysis as a specific instance, namely, when the
measurement is sufficiently fast, such as ∆τ

τd
→ 0 .

From a broader perspective, the SQHM reveals that the steady state following relax-
ation is contingent upon the system’s initial configuration:

|ψ(q,t) >= ∑
n

ane
En(t−t0)

ℏ |ψn(q) > (104)

at moment t0, enabling the system to potentially attain any eigenstate within the superposition.
Considering that the quantum superposition of energy eigenstates exhibits a cyclic

evolution, characterized by a recurrence time T, the probability of relaxation to the i-th
energy eigenstate in the SQHM model can be expressed as follows:

P(ψ → ψi) = limN→∞

Ni

N
(105)

where N is the total number of time intervals ∆t = T
N centered around the instants t0j (with

0 ≤ t0j
< T and j = 1, . . . , N) in which the system is initially submitted to fluctuations,

and Ni is the number of times the i-th energy eigenstate is reached in the final steady state.
Moreover, since the eigenstates are stable and stationary, it also follows that the

transition probability between the k-th and the i-th eigenstates reads as

P(ψk → ψi) = limN→∞

Ni

N
= δki (106)

Since the finite quantum lengths λc and λqu, allowing quantum decoupling between
the system and the measuring apparatus, necessarily implies “marginal decoherence”, it
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follows that the output of the measure is produced in a finite time lapse (larger than ∆τmin

of (85)) due to the wave function decay time.
Regarding the Copenhagen interpretation of quantum mechanics, the measurement

is a process that triggers the collapse of the wave function, and the result (e.g., the energy
value En for the state (104)) is delineated by the transition probability given by

P̃(ψ → ψi) =
|ai|2

jmax

∑
j=1

|aj|2
, (107)

That, for the i-th eigenstate, reads as

P̃(ψk → ψi) = δki, (108)

To analyze the interconnection between the wavefunction decay and the wavefunction
collapse, we assume, as a starting point, that they are different phenomena and have
independent realizations.

In the first instance, we can assume that the wavefunction decay (with characteristic
time τd) occurs first and then the wavefunction collapses (with characteristic time τc) during
the measurement process. Without loss of generality, we can assume ∆τmin ≤ τd ≪ τc ≪
∆τ, and therefore, in this case, we obtain

lim τd
∆τ →0

P(tot)
(ψ→ψn) = ∑

i
P(ψ→ψi)

P̃(ψi→ψn)

=

(
∑
i

limN→∞
Ni
N

)
δin = limN→∞

Nn
N

. (109)

On the other hand, for the Copenhagen interpretation, the measure on a quantum
state with ∆τ ≫ τc by (107)–(109), it follows that

P̃(ψ → ψn) =
|an|2
t

∑
k=1

|ak|2
= lim τc

∆τ →0P(tot)(ψ → ψn) = limN→∞

Nn

N
(110)

The outputs (109) and (110) show that the wavefunction collapse beyond the duration
of the wavefunction decay is ineffective for the output of the measure. Furthermore, we
can infer that, since after the wavefunction decays, the system has already reached its final
steady eigenstate, and the wavefunction collapse does not occur at all since it does not
affect the eigenstates.

Therefore, we can shorten the measure duration ∆τ up to the wavefunction decay
time τd without changing the result (109) for the measure, leading to the relation

P̃(ψ → ψn) =
|an|2
t

∑
k=1

|ak|2
= limN→∞

Nn

N
(111)

On the other hand, by considering in the second instance that the wavefunction col-
lapse τc is much shorter than the wavefunction decoherence, such as ∆τmin ≤ τc ≪ τd ≪ ∆τ
(i.e., τd

τc
→ ∞ ), the output reads as

lim τd
∆τ →0

P(tot)
(ψ→ψn) = P̃(ψ→ψi)

P(ψi→ψn)

=


∑

i

|ai |2
t

∑
k=1

|ak |2



(

limN→∞
Nn
N

)
= ∑

i

|ai |2
t

∑
k=1

|ak |2
δin = |an |2

t
∑

k=1
|ak |2

, (112)
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showing that the wave function decay, due to the marginal decoherence, does not impact
the measurement, even if it might proceed beyond the wave function collapse. More
precisely, we can affirm that, since the wavefunction decay does not affect the eigenstates,
it does not occur at all after the wavefunction collapse.

Therefore, both the wavefunction collapse and the wavefunction decoherence occur
together only during the time of the measure ∆τ > ∆τmin. In the case of (112), we might
shorten the measure duration time ∆τ to τc, as the wavefunction decay finishes at the end
of the measure, Identities (105) and (112) also lead to

P(tot)(ψ → ψn) =
|an|2
t

∑
k=1

|ak|2
= limN→∞

Nn

N
(113)

The proof of (113) can be validated by the numerical output of the motion Equation (37).
The SQHM through Identity (113) furnishes the linkage between the collapse and the

decay of the wave function generated by the marginal decoherence, possibly showing that
they are the same phenomenon.

5.8. Stochastic Quantum Hydrodynamics, EPR Paradox and Completeness of Quantum Mechanics

Several unresolved facets persist within quantum theories. The EPR paradox [35] and
the completeness of quantum mechanics represent fundamental aspects that do not find a
clear placement within a comprehensive theoretical framework.

The Copenhagen interpretation assumes quantum theory as a closed system, requir-
ing acceptance of its probabilistic foundations regardless of the validity of the princi-
ple of causality. A notable challenge to this perspective was presented by the Einstein–
Podolsky–Rosen objection, articulated in a renowned paper [35], which argued the EPR
paradox analytically.

It is therefore noteworthy to consider the perspective of the SQHM concerning these
irreconcilable aspects. Initially, the SQHM highlights that quantum theory, despite its
mathematical precision, remains incomplete with respect to its foundational postulates.
Specifically, the SQHM underscores that the measurement process is not explicated within
the deterministic “Hamiltonian” framework of standard quantum mechanics. Instead,
it manifests as a phenomenon comprehensively described within the framework of a
quantum stochastic generalized approach.

The SQHM reveals that quantum mechanics represents the deterministic (zero noise)
limit of a broader stochastic theory. From this standpoint, quantum mechanics defines the
deterministic evolution of the “probabilistic wave”. Moreover, the SQHM suggests that
the term “probabilistic” is inaccurately introduced, arising from the inherent probabilistic
nature of the measurement process, as the standard quantum mechanics itself cannot fully
describe its output. Given the capacity of the SQHM to describe both wavefunction decay
and the measurement process, thereby achieving a comprehensive quantum theory, the
term “state wave” is a more appropriate substitute for the expression “probabilistic wave”.
The SQHM theory restores the principle of determinism into the quantum theory, leading to
a deterministic evolution of a “state wave”, explaining the probabilistic output coming from
the fluctuations of the gravitational background. This acknowledges a curved spacetime
characterized by stochastic fluctuations in both curvature and geodesic distance.

Furthermore, it is noteworthy to observe that the SQHM addresses the lingering ques-
tion of preexisting reality before measurement. In contrast, the Copenhagen interpretation
posits that only the measurement process allows the system to decay into a stable state,
establishing a persistent reality over time. Consequently, it remains indeterminate within
this framework whether a persistent reality exists prior to measurement.

At this juncture, the SQHM introduces a subtle innovation: the world is capable of self-
decay through macroscopic-scale decoherence, resulting in stable macroscopic eigenstates.
These states, being stable with respect to fluctuations, establish a persistent reality that
exists prior to measurement.
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Regarding the EPR paradox, the SQHM demonstrates that, in a perfect quantum
deterministic universe, achieving two completely decoupled parts of the system is not
feasible. Instead, this condition can only be realized within a classical system—a self-
fluctuating quantum system with finite distances, where the interaction of the quantum
potential extends.

In summary, the SQHM reveals the following key points:

i. Classical reality emerges at the macroscopic level, persisting as a preexisting reality
before measurement.

ii. The measurement process is feasible in a classical macroscopic world, because we can
have independent systems, namely the system and the measuring apparatus.

iii. Determinism is acknowledged within standard quantum mechanics under the condi-
tion of zero noise.

iv. Locality and causality are achieved at the macroscopic scale, where quantum nonlocal
domains condense to punctual domains.

v. The maximum light speed of the propagation of information aligns with
quantum uncertainty.

Moreover, if we consider the SQHM as a complete theory, it should be capable of
elucidating the “hidden variable” theory of Bohm that endeavors to restore the determinism
of quantum mechanics by introducing the concept of a pilot wave. The fundamental concept
posits that, in addition to the particles themselves, there exists a “guidance” or influence
from the pilot wave function that dictates the behavior of the particles. Although this pilot
wave function is not directly observable, it does impact the measurement probabilities of
the particles.

On the other hand, the SQHM posits that quantum mechanics represents the deter-
ministic limit of a broader quantum stochastic theory. In a perfect quantum universe, the
measurement process cannot be executed. Furthermore, measurement becomes feasible
in a macroscopically classical universe generated through quantum decoherence induced
by the fluctuating gravitational background. While the Bohm theory attributes the in-
determinacy of the measurement process to the undeterminable pilot wave, the SQHM
attributes it to the fluctuating gravitational background (difficult to determine due to its
predominantly early-generation nature during the Big Bang and the weak force of gravity).
This indeterminacy is compounded by the inherently chaotic nature of the classical law of
motion, further contributing to the uncertainty of measurement outcomes.

6. Measurement of Photon Entanglement on Large Distances

Once we establish a unified theory where quantum mechanics governs at the micro-
scopic level, classical physics prevails at the macroscopic scale and fluctuations seamlessly
coexist, we understand how the range of effectiveness of quantum entanglement is impor-
tant in obtaining the classical independence of two distinct systems, as discussed in the
EPR paradox. Therefore, it is of paramount importance to test the theoretical predictions in
measures on entangled photons, since the length of effectiveness of their quantum potential
extends itself at macroscopic distances (see Section 6.1) typical of the macroscopic world.

As the time of wave function decay plays a crucial role in the measuring process, the
output of quantum entanglement experiments is necessarily influenced by this. While it
is challenging to precisely measure the time it takes for information to transfer itself via
entangled photons in a laboratory, this parameter can be more accurately controlled in
experiments conducted over planetary distances (see Figure 1).
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Figure 1. Schematic illustration of the experimental setup.

SQHM theory aligns with the idea that relativistic causality and quantum nonlocality
are compatible, a concept that is already supported by relativistic quantum field theory.
To check this, we analyze the output of two entangled photon experiments traveling in
opposite directions in the state

|ψ >=
1√
2
|H1, H2 > +eiϕ|V1, V2 >, (114)

where V and H are vertical and horizontal polarizations, respectively, and φ is a constant
phase coefficient. Photons “one” and “two” impact polarizers Pa (Alice) and Pb(Bob) with
polarization axes positioned at angles α and β relative to the horizontal axis, respectively.
For our purpose, we can assume φ = 0.

The probability that photon “two” also passes through Bob’s polarizer is P(α, β) =
1
2 cos2(α − β).

As widely held by the majority of the scientific community in quantum mechanics
physics, when photon “one” passes through polarizer Pa with its axes at an angle of α, the
state of photon “two” instantaneously collapses to a linear polarized state at the same angle
α, resulting in the combined state |α1, α2 >= |α1 > |α2 >. In the context of the SQHM,
we posit that the collapse is not instantaneous, and following the Copenhagen quantum
mechanics standpoint, we assert rigorously that the state of photon “two” is not defined
before its measurement at the polarizer Pb.

Therefore, after photon “one” passes through polarizer Pa, from the standpoint of
SQHM, we assume that the combined state is |α1, S >= |α1 > |QP1, S2 >, where the
state |QP1, S2 > represents the state of photon “two” in the interaction with the residual
quantum potential field QP1 generated by photon “one” at polarizer Pa. When the residual
part of the two entangled photons |QP1, S2 > also passes through Bob’s polarizer, it makes
the transition |QP1, S2 >→ |β2 > with probability P(α, β) = 1

2 cos2(α − β).
Since, in the SQHM, the wave function collapse is not instantaneous but takes a finite time

interval, we designate these time intervals as ∆t1 and ∆t2 for the two photons, respectively.
Furthermore, we posit that the measurement interval τm commences upon the detec-

tion of the first entangled photon by the polarizer photon counter system (at time t1) and
concludes when the second entangled photon is detected at the second polarizer photon
counter system (at time t2 = t1 + τm). Additionally, we presume that the detection of each
photon promptly occurs upon the completion of its wavefunction collapse.

The optimal approach for conducting the experiment involves maximizing the sep-
aration distance, denoted as L, between the two polarizer photon counter systems. To
meet this condition, we can contemplate situating the photon source on Earth, positioning
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the first polarizer photon counter system on the moon and situating the second system
on Mars.

For instance, let us consider a scenario where the moon, Earth and Mars are aligned. In
this case, it follows that the distance L between the two polarizer photon counter systems

is determined by L = De−ma +De−mo, from which we obtain that t1 = De−mo
c + ∆t1 and

t2 = De−ma
c + ∆t2, where the Earth–Mars and Earth–moon distances are denoted as De−ma

and De−mo, respectively.
To determine the modality by which the quantum potential transfers the information

of the first photon measure to the second photon, we assume that

i. The quantum potential interaction propagates at the speed of light;
ii. The quantum potential has a spatial extension equal to the physical length λqu.

At the time t = 0, the first photon arrives and interacts at the moon polarizer; at time
t1 = ∆t1, its wavefunction decays at the final measured state, the second photon arrives on

Mars at t = De−ma−De−mo
c , and the quantum potential signal generated by the first photon

interaction (at t = 0) reaches the second polarizer on Mars at the time

t =
De−mo +De−ma

c
. (115)

In addition, at the time

t2 =
De−ma −De−mo

c
+ ∆t2 (116)

The second photon on Mars decays to its final state and is measured.
Thus, assuming no superluminal transmission of information, it follows that

t2 =
1

c
(De−ma −De−mo) + ∆t2 >

1

c
(De−mo +De−ma) (117)

and therefore,

∆t2 >
2De−mo

c
∼= 2.55s. (118)

where De−ma−De−mo
c must be measured by utilizing parallel nonentangled photons.

Moreover, in order for the two photons to be quantum entangled, it must also hold that

λqu > 2De−mo + c∆t1. (119)

The value λqu in (119) can be obtained by knowing the spectral composition of the
photon (see Appendix F). In this case, when photon “one” interacts with the polarizer on
the moon, it is still entangled with photon “two” traveling toward Mars.

In this scenario, photons “one” and “two” form a single quantum system that interacts
with the polarizer on the moon when photon “one” reaches it. After interacting with the
polarizer on the moon, photon “two” travels to Mars, carrying in its quantum potential the
information about the polarization of photon “one”. At this point, we essentially have an
“entangled interaction” of the two photons with the first polarizer.

Equation (118) has been derived by assuming that the decay of photon “two” to the
final measured state begins upon its arrival at the polarizer on Mars and that the quantum
potential effect, resulting from photon “one”, starts to affect photon “two” after its arrival
at the polarizer on Mars (but not during its travel), since it is assumed that the quantum
potential interaction does not travel faster than light.

It is worth mentioning that the quantum entanglement in the low-velocity limit of
quantum mechanics may be superluminal, since, in that limit, the velocity of light goes to
infinity, but that is not so for the photon dynamics.
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However, if

∆t2 <
2De−mo

c
∼= 2.55s. (120)

this implies that the photon wave function’s decay on Mars, leading to the polarizer photon
counter interaction, takes place prior to the arrival of the quantum potential interaction
(information) from the first photon detection on the moon. If the measurement output
adheres to the quantum correlation law, this contravenes relativistic local causality.

Furthermore, to detect the entangled interaction of photons with the moon polarizer, a
counter experiment can be conducted by enclosing the moon polarizer detector in a Faraday
cage (approximately 300 m long), with a diaphragm that closes as soon as the photon enters
the cage and before it reaches the moon polarizer. The closure of the diaphragm forces the
two-photon system to interact with the macroscopic environment before interacting with
the moon polarizer. As a result, the photons should decay into decoherent states before
their detection and show stochastic polarization states.

6.1. The Quantum Potential Range of Photon Interactions

Given the photon wavefunction,

ψ =
∫

bk|ψk|cos[kµqµ]d4k =
∫

Akcos[(kq − ωt)]dk (121)

With Gaussian spectrum Ak ∝ e−
(k−k0)

2

2∆k , the quantum correlation length

λqu = λc

qmax∫
0

q−1
∣∣∣∂q

(
∂q∂q |ψ|
|ψ|

)∣∣∣
(r,θ,ϕ)

dq

∣∣∣∂q

(
∂q∂q |ψ|
|ψ|

)∣∣∣
(q=λc ,θ,ϕ)

(122)

reads as (see Appendix F)

λqu = 2λc

∞∫
0

x−1| (−∆k4x)| (x,θ,ϕ)
dx

| (−∆k4x)| (x=λc ,θ,ϕ)

= 1
2

∞∫
0

dx = ∞

(123)

The same result is obtained if we use the superposition of the two photon fields in
calculating the quantum coherence length λqu.

This output allows the possibility that the two entangled photons undergo an “en-
tangled interaction” when interacting with the first polarizer on the moon, generating the
“synchronized decay” at the second polarizer on Mars.

6.2. Discussion

The SQHM theory is in line with the concept that relativistic causality and quantum
nonlocality can coexist, a notion already substantiated by the relativistic quantum field the-
ory. It elucidates the synchronization of photon polarization separated by a large distance
without necessitating faster-than-light arguments. This is accomplished by leveraging the
infinite length of the interaction provided by the quantum potential, which effectively
binds the two photons into a unique quantum system.

The quantum potential, with its extensive range of interaction λqu = ∞, establishes
a connection between both photons, one situated on the moon and the other traveling
towards Mars. At the first photon interaction with the polarizer, the quantum potential
changes and will influence the evolution of the other photon and its interaction at the
second polarizer. This connection allows for the synchronization of both final states. There
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is no concealed mechanism at play that involves the two entangled photons, even when
they are separated by a distance greater than the de Broglie length λc.

For the SQHM, there exists a state wave before the measurement is conducted by the
polarizers. This state wave comprises two entangled photons, giving rise to an aggregate
quantum potential. Subsequently, when the measurement occurs, the polarizers alter this
state wave, resulting in the production of the polarized state as an output.

If, for any reason, the polarizers at both ends become desynchronized for a duration
longer than the wave function decay time of the photon upon which the initial polarizer
is applied, the SQHM theory anticipates that the measurement of the first photon will
influence the second photon, regardless of the temporary desynchronization of the polariz-
ers. According to SQHM, this correlation will endure, as it is inherently embedded in the
quantum potential, even if the polarizers remain unsynchronized for a period surpassing
the collapse of the wave function of the initial photon.

The polarization detection of two quantum-entangled photons is a specific measure-
ment process conducted at two separate moments in time. During the first measurement,
only a portion of the quantum system is affected (and destroyed) and not the entire system.
However, during this initial measurement, the “two-photon system” transitions into the
measured state as it interacts with the polarizer. Subsequently, when the second photon is
detected on Mars, its quantum state is found to be coherent with the one measured at the
first photon.

The underlying challenge lies in understanding how the information, which may also
be encoded within the quantum potential, can effectively transmit from the first photon
to the second photon as the second photon travels towards Mars. If information does
not propagate faster than the light speed, it becomes difficult to explain how the second
photon’s wave function collapses before the quantum potential energy manages to reach
the second polarizer. Therefore, in this case, the second photon’s wavefunction decay time
will result in a detection delay time relative to the arrival of a nonentangled photon that
was simultaneously launched from Earth. In this context, the time of application of the first
polarizer is possibly defined by another nonentangled photon simultaneously launched
from Earth to the moon.

7. Extending Quantum Coherence to Obtain a Large Number of Entangled Q-Bits

If we examine the two quantum coherence lengths, denoted as λc and λqu, we can
develop methodologies to extend quantum coherence over macroscopic distances and
achieve a system of a large number of Q-bits. The first proposed approach, advocated
by λc, involves lowering the temperature, a method already in use but one that imposes
significant constraints on the maintenance of quantum computers. A more intriguing
possibility arises from analyzing λqu, where an extension of the effective range of quantum
potential can be utilized to enhance the physical dimensions of the Q-bit system.

One initial insight gleaned from this analysis is that extending the linear range of in-
terparticle interactions as much as possible can enhance the system size at which quantum
behavior remains observable. Furthermore, given that the quantum potential distance of
interaction becomes larger as the Hamiltonian interparticle interaction strengthens, we can
extend the range of quantum potential interactions by reducing the spatial dimensions
of intermolecular interactions. This can be achieved through materials composed of two-
dimensional structures, such as graphene, or linear one-dimensional ones, as found in
polymers. Notably, the superconducting phase of polymers may endure even at relatively
high temperatures. In light of the stochastic quantum hydrodynamic theory, supercon-
ducting polymer research appears to be more promising in achieving room temperature
quantum computers. The use of linear systems for Q-bits can also gain advantage by the
utilization of photon fields, since λqu is infinite among entangled photons.

It is worth highlighting that the SQHM itself can serve as a potential source for rapid
Q-bits simulations capable of obviating the necessity for the physical instantiation of
Q-bit systems.
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8. Conclusions

The SQHM presents a framework for characterizing the behavior of quantum systems
in a physical vacuum, incorporating a fluctuating metric. This model posits that the spatial
noise spectrum is non-white, featuring a correlation function defined by the de Broglie
characteristic length. Consequently, effective quantum entanglement emerges, persisting in
systems where the physical length is significantly smaller than this characteristic length.

Nonlocal quantum interactions may extend beyond the de Broglie length, reaching a
finite distance in nonlinear weakly bonded systems. The dynamics of such systems can be
described by the Schrodinger-Langevin equation, deviating from the deterministic bounds
of quantum mechanics.

As the physical length of the system increases, classical physics may predominate
when the scale surpasses the range of interaction of the quantum potential. The long-
distance characteristics of the quantum potential govern the existence of a coarse-grained
classical large-scale description.

The SQHM further elucidates that the minimum uncertainty during the measurement
process tends to approach the quantum uncertainty relations in the absence of noise. The
principle of minimum uncertainty holds when interactions and information propagate
no faster than the speed of light, aligning with the relativistic macroscopic locality and
nonlocal quantum interactions at the microscale.

The SQHM posits that the interaction between a quantum system and the gravita-
tional background induces a gradual loss of coherence, resulting in classical-like behavior
and outcomes nearly identical to those predicted by the decoherence approach. A key
distinction lies in the self-generation of fluctuations in the SQHM, intrinsic to the spacetime
characteristics originating at the Big Bang, without the reliance on an external environment.
Within the SQHM framework, weak quantum potentials fail to sustain coherence in the
presence of fluctuations as a drag force emerges, leading to decoherence.

This phenomenon is observable in macroscopic systems, such as those comprised
of molecules and atoms interacting through long-range weak potentials, as seen in the
Lennard-Jones gas phase. In such scenarios, the impacts of decoherence become more
pronounced, and the quantum characteristics of the system become increasingly challeng-
ing to discern as the system’s size and complexity grow. The SQHM offers a valuable
framework for comprehending the intricate interplay between quantum mechanics and
classical behavior in such systems.

The stochastic quantum hydrodynamic model proposes that classical mechanics can
manifest in a quantum system when the physical length of the system far exceeds the range
of interaction of the quantum potential λqu.

When the eigenstates of a quantum system experience fluctuations, their stationary
configurations undergo slight perturbations but persist as stationary and are closely aligned
with those predicted by quantum mechanics. However, when the system evolves in a super-
position of states, fluctuations induce the relaxation of the superposition to the stationary
configuration of one of the eigenstates composing the superposition. This results in the
emergence of classical mechanics on a large scale, influenced by the temperature depen-
dence of the de Broglie length, as observed in phenomena like the 4He fluid–superfluid
transition. Additionally, this classical emergence is influenced by the extension of the
quantum potential range of interactions, as seen in events such as the solid–fluid transition
occurring at the melting point of the crystal lattice.

The model offers a comprehensive path integral solution that can be derived in a
recursive manner. Additionally, it encompasses conventional quantum mechanics as the
deterministic limit of the theory.

In accordance with the stochastic quantum hydrodynamic model, decoherence is
deemed essential for a quantum measurement to transpire within finite time intervals,
playing a role in the execution, data collection and management of the measuring appa-
ratus. The model posits that the wavefunction collapse phenomenon in the Copenhagen
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interpretation of quantum mechanics may align with the concept of wavefunction decay.
This decay process is characterized by unique kinetics and occurs within a finite timespan.

With the premise that wavefunction decay occurs within a finite timeframe during the
measurement process, a thought experiment is conducted to scrutinize the measurement
of the photon entanglement. The SQHM posits the existence of an underlying wave state
prior to the polarizer measurements. This preexisting wave state consists of two entangled
photons, which give rise to an aggregate quantum potential. When a measurement takes
place, the polarizers modify this preexisting wave state, resulting in the emergence of
polarized states as the outcome. According to the SQHM framework, the process of
polarization detection for two quantum-entangled photons occurs over two distinct steps.
During the first one, only a portion of the quantum system is affected. However, during the
first part of the measurement, the “two-photon system” transitions into the measured state
as it interacts with the polarizer. Consequently, when the second photon is detected on
Mars, its quantum state is found to be coherent with the state measured for the first photon.
The quantum hydrodynamic approach posits that the information encoded within the
quantum potential can effectively transfer from the first photon to the second one, resulting
in a delay of the second photon’s detection due to its prolonged wavefunction decay time.

The model reveals that canonical quantum mechanics is applicable only in a perfectly
static universal spacetime. In real-world scenarios, due to fluctuations in the spacetime
background caused by the Big Bang and other cosmological sources, the quantum evolution
of mass densities encounters a resistance force while traveling through spacetime with
oscillating metrics. This phenomenon shows some analogy to the effect observed with the
Higgs Boson, where its field imparts inertia to elementary particles as they move through it.

The description offered by the stochastic quantum hydrodynamic theory envisions
a situation where classical mechanics emerges on a macroscopic scale within a spacetime
characterized by fluctuations in the curvature. This portrayal seamlessly aligns with the
quantum gravitational representation of the cosmos, where gravity serves as the catalyst
for universal decoherence.

The model shows that, if reversible quantum mechanics are realized in a static vacuum,
the measurement process cannot take a finite time to occur.
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Appendix A. Quantum Mechanics as an Imaginary Time Stochastic Process

The Schrödinger equation

iℏ∂tψ = − ℏ2

2m
∂i∂iψ + U(q)ψ (A1)

in the quantum integral path representation is equivalent to the FPE [3] that, in the unidi-
mensional case, reads as

∂tP(q,t| qa ,ta) = −∂qK(q)P(q,t| qa ,ta) + D∂q∂qP(q,t| qa ,ta) . (A2)

where the solution

P(q,t| qa ,ta) =

√
Ps(q)

Ps(qa)

v∫

qa

Dq exp

[
− 1

2D

∫ t

ta

dt

(
1

2

.
q

2
(t) +

1

2
K(q) + DK′

(q)

)]
, (A3)
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with
Ps(q) = P(q, q−∞|t − t−∞, t−∞)

= limt0→−∞N exp 1
D

q∫
q−∞

<
.
q >(q′

(t,t0)
) dq′ = N exp 1

D

q∫
q−∞

K(q′)dq′ , (A4)

and
K′

(q) = ∂qK(q), (A5)

lead to the imaginary time τ = it evolution amplitude

ψ(q,t) = ψ(q,0)

∫
Dq exp

[
− 1

ℏ

∫ −iτ

0
dτ

(
M

2

.
q

2
(τ) + V(q(τ))

)]
=

√
Ps(qa)

Ps(q)
P(q,t| qa ,ta). (A6)

By comparing (A6) with (A2), we can see that the quantum particle subject to the potential

V(q) =
m

2
K2

(q)
+

ℏ

2
∂qK(q). (A7)

is equivalent to the Brownian particle of mass m subject to friction with coefficient β = κm,
obeying the stochastic motion equation

.
q = − 1

β
∂qU(q) + D1/2ξ(t) (A8)

where

∂qU(q) = −mκK(q) and where D =
ℏ

2m
.

The pseudo-diffusional evolution of the quantum mass density |ψ|2 described by the
imaginary time stochastic process (A8) [3] (i.e., deterministic) quantum hydrodynamic
formalism is described by the motion of particle density n(q,t) = |ψ|2(q,t) with the velocity
.
qi =

1
m ∂iS(q,t) governed by the following equations [5–7]:

∂tn(q,t) + ∂i(n(q,t)
.
q) = 0, (A9)

.
qi =

1

m
∂iS(q,t) =

pi

m
(A10)

pi = −∂i(H + Vqu), ) (A11)

where, for a nonrelativistic particle in an external potential,

H =
pi pi

2m
+ V(q) (A12)

and

S =

t∫

t0

dt(
pi pi

2m
− V(q) − Vqu), (A13)

where Vqu is the quantum pseudopotential that reads as

Vqu = −(
ℏ2

2m
)n−1/2∂i∂in

1/2. (A14)
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Expression (A14) leads to the motion equation

.
q = 1

m
∂S
∂qi

= 1
m

t∫
t0

(∂i
pi pi
2m −∇

(
V(q) − Vqu

)
)dt

= − 1
m

t∫
t0

∂i

(
V(q) − Vqu

)
dt = − 1

m

t∫
t0

∂
∂qi

(
V(q) +

ℏ2

2m n−1/2∂i∂in
1/2
)

dt

(A15)

and to the stationary equilibrium condition (
.
q = 0)

− 1

m

t∫

t0

dt(∂i

(
V(q) − Vqu

)
) = 0 (A16)

that, by using (A14), reads as

∂i

(
V(q) +

ℏ2

2m
n−1/2∂i∂in

1/2

)
= 0. (A17)

By comparing the expansive term ℏ2

2m ∂i

(
n−1/2∂i∂in

1/2
)

in (A17), for example, with

the chemical diffusion described by the Fick equation, we can observe that the quantum
imaginary stochastic process (A8) gives rise to a “pseudo-diffusional” process propelled by
the quantum potential

Vqu(n)
∝ n−1/2∂i∂in

1/2 = ∂i∂ilnn − 1

2
(∂ilnn)(∂ilnn) (A18)

whereas irreversible chemical diffusion is driven by the potential V(n) ∝ lnn. The funda-
mental distinction between the two lies in the fact that, in the latter case, the diffusion
coefficient can be defined positive, whereas, for the former case, it cannot.

Both the (real time) thermal stochastic process and the quantum (imaginary time)
stochastic process show that stationary states (i.e.,

.
q = 0) occur when the force of the

driving potential, which accounts for the effect of the fluctuations, exactly counterbalances,
point by point, the one given by the Hamiltonian potential V(q).

The further basic difference between the two is that, in the quantum case, more than
one stationary state can possibly exist (i.e., the quantum eigenstates).

Therefore, beyond the analogy, the two processes have fundamental differences.
For instance, the quantum “imaginary time” diffusion, concerning the mass distribu-

tion of Gaussian state, leads to the “ballistic” expansion with the variance ∆q2 following
the time law

∆q2 ∝ t2, (A19)

while the spreading of the same initial mass distribution, submitted to thermal fluctuations,
follows the thermal expansion with the law

∆q2 ∝ t. (A20)

Notably, the “real-time” stochastic dynamics are dissipative, while the “imaginary
time” stochastic dynamics of quantum mechanics are reversible and “deterministic”. The
ballistic behavior of the Gaussian wavefunction (A19) can be obtained from the limit of a
particle in a harmonic potential in the limit of zero amplitude [11].

This dissipative-to-conservative switching of characteristics from the real to the imag-
inary time stochastic process is analogous to the rheology of elastic solids, where the
real elastic constants describe conservative elastic dynamics while the imaginary elastic
constants account for the viscous dissipative behavior.
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In the quantum deterministic evolution, there is no loss of information with reversible
dynamics; the superposition of states (with their complex configuration) is maintained over
time and never relaxes to a simpler (higher entropy) stationary configuration.

Appendix B. Stochastic Generalization of the Madelung Quantum

Hydrodynamic Model

In the presence of curvature fluctuations, the mass distribution density (MDD) |ψ|2 = ñ
becomes a stochastic function that we can ideally pose ñ = n + δn, where δn is the fluctuat-
ing part, and n is the regular part that obeys the limit condition

limT→0ñ = limT→0n = |ψ|2. (A21)

The characteristics of the Madelung quantum potential that, in the presence of stochas-
tic noise, fluctuates can be derived by generally posing that it is composed of the regular
part Vqu(n) (to be defined) plus the fluctuating part Vst, such as

Vqu(ñ)
= − ℏ2

2m
ñ−1/2∂i∂iñ

1/2 = Vqu(ñ) + Vst. (A22)

where the stochastic part of the quantum potential Vst leads to the force noise

−∂iVst = m̟(q,t,T). (A23)

where the noise correlation function reads as

lim
T→0

< ̟(qα ,t), ̟(qβ+λ,t+τ) > = lim
T→0

< ̟(qα), ̟(qβ)
>(T) G(λ)δ(τ)δαβ

≈
<̟(qα) ,̟(qβ)

>(T)

λc
δ(τ)δαβ

(A24)

with
lim
T→0

< ̟(qα), ̟(qβ)
>(T)= 0 (A25)

In addition, the regular part Vqu(ñ) for microscopic systems ( L
λc

≪ 1), without loss of
generality, can be rearranged as

Vqu(ñ) = − ℏ2

2m

(
ñ−1/2∂i∂iñ1/2

)
= − ℏ2

2m

1

ρ1/2
∂i∂iρ

1/2 + ∆V = Vqu(ρ)
+ ∆V (A26)

where ρ(q,t) is the probability mass density function (PMD) associated with the stochastic
process that, in the deterministic limit, obeys the condition limT→0ρ(q,t) = limT→0ñ =

limT→0n = |ψ|2.
Given the quantum hydrodynamic equation of motion (3) for the fluctuating MDD

ñ = n + δn,
..
qi = − 1

m ∂i

(
V(q) + Vqu(ñ)

) (A27)

we can rearrange it as

..
qj = − 1

m
∂j

(
V(q) + Vqu(ρ)

+
ℏ2

2m

(
1

ρ1/2
∂i∂iρ

1/2 − 1

ñ1/2
∂i∂iñ

1/2

))
(A28)

The term

∂j

(
1

ρ1/2
∂i∂iρ

1/2 − 1

ñ1/2
∂i∂iñ

1/2

)
(A29)
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that, in the deterministic case, is null, since

lim L
λc

→0 or T→0
ñ = lim L

λc
→0 or T→0

(n + δn) = n ≡ ρ, (A30)

generates an additional acceleration in the motion Equation (A28), which close to the
stationary condition (

.
q → 0), can be developed in the series approximation and reads as

∂j

(
1

ρ1/2
∂i∂iρ

1/2 − 1

ñ1/2
∂i∂iñ

1/2

)
∼= A0j

+ A1j

.
q + . . . + Anj

.
q

n
+ O(

L
λc

). (A31)

Moreover, since near the limiting condition (A30), we can pose

lim L
λc

→0ñ(q) = lim L
λc

→0n(q) + δn(q,t)
∼= ρ(q) + ε(q)δn(t), (A32)

with lim L
λc

→0ε(q) = 1 and where ε(q) is smooth with ∂2ε1/2

∂qβ∂qβ
finite (since λc ≫ L 6= 0), it

follows that

lim L
λc

→0∂j

(
1

ρ1/2 ∂i∂iρ
1/2 − 1

ñ1/2 ∂i∂iñ
1/2
)

∼= lim L
λc

→0∂j

(
1

ρ1/2 ∂i∂iρ
1/2 − 1

ρ1/2 ∂i∂iρ
1/2
(

1 +
ε(q)δn(t)

2ρ

))

∼= δn(t)∂j

(
− 1

ρ1/2 ∂i∂i
ε(q)

2ρ1/2

)
, (A33)

Moreover, given that at the stationary condition (i.e., <
.
q >= lim∆t→∞

1
∆t

t ∆t
2∫

t− ∆t
2

.
q(q,τ)dτ =

0), it holds

n(q)(T=0) = limT→0 < ñ(q) >= limT→0lim∆t→∞
1

∆t

t ∆t
2∫

t− ∆t
2

ñ(q,τ)dτ

= ñ(q)(T=0) + limT→0lim∆t→∞
1

∆t

t ∆t
2∫

t− ∆t
2

δn(t)dτ

∼= n(q)(T=0) + limT→0 < δn(t) >(T)

, (A34)

and thus
limT→0 or L

λc
→0 < δn(t) >(T)= 0, (A35)

the mean < A0j
>, by (A33), reads as

lim L
λc

→0 < A0j
> = lim L

λc
→0lim .

q→0 < ∂j

(
1

ρ1/2 ∂i∂iρ
1/2 − 1

ñ1/2 ∂i∂iñ
1/2
)
>

∼= lim L
λc

→0 < δn(t) > ∂j

(
− 1

ρ1/2 ∂i∂i
ε(q)

2ρ1/2

)
= 0

. (A36)

Therefore, the general form of the stochastic term A0 with zero mean noise, with null
correlation time (see (A24)), reads as

A0j
= mκDj

1/2ξ(t). (A37)
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Therefore, at the leading order in
.
q, sufficiently close to the deterministic limit of

quantum mechanics ( L
λc

≪ 1), for the isotropic case Di = D∀i, we obtain that

− ℏ2

2m ∂j

(
1

ρ1/2 ∂i∂iρ
1/2 − 1

ñ1/2 ∂i∂iñ
1/2
)

∼= mκDj
1/2ξ(t) + A1jk

.
qk + O

(
( L

λc
)

2
)

∼=
(

∂jmκDi
1/2ξ(t)qi + ∂kκjkS

)
+ O

(
( L

λc
)

2
)

∼= ∂j

(
mκDi

1/2ξ(t)qi + κS
)
+ O

(
( L

λc
)

2
)

∼= ∂j

(
mκD1/2ξ(t)q

1/2
i

q1/2
i

+ κS
)
+ O

(
( L

λc
)

2
)

(A38)

The first-order approximation (A38) allows us to write (A27) as the Markovian process

..
qj(t)

= −κ
.
qj(t)

− 1

m
∂j

(
V(q) + Vqu(ρ)

)
+ κD1/2ξ(t). (A39)

where

ρ(q,t) =

+∞∫

−∞

N(q,p,t)d
3 p, (A40)

where

N (q,
.
q, t) =

∫
P(q,

.
q, z,

.
z, |t, 0)N(z,

.
z,0)d

3zd3 .
z (A41)

where P(q,
.
q, z,

.
z, |t, 0) is the probability transition function of the Smolukowski conserva-

tion equation

P(q, p, q0, p0|
(
t′ + τ − t0

)
, t0) =

∞∫

−∞

P(q, p, q′, p′|τ, t′)P(q′, p′, q0, p0|t′ − t0, t0)d
3q′d3 p′ (A42)

of the Markovian process (A39).
Moreover, by comparing (A27) in the form

..
qi = − 1

m
∂i

(
V(q) + Vqu(ñ) + Vst

)
= − 1

m
∂i

(
V(q) + Vqu(ρ)

+ ∆V + Vst

)
(A43)

with (A39), it follows that

∆V =
ℏ2

2m

(
1

ρ1/2
∂i∂iρ

1/2 −
(

1

ñ1/2
∂i∂iñ1/2

))
∼= κS (A44)

and that
Vst = q1/2

i q1/2
i

κD1/2ξα(t). (A45)

Generally, it must be observed that the validity of (A39) is not general, since, as shown
in refs. [14–17], the friction coefficient β = mκ is never constant, but only in the case of a
linear harmonic oscillator.

In addition, since to have quantum decoupling with the environment, nonlinear
interaction is necessary (see relations (57) and (58)), actually, the linear case with the β

constant cannot be rigorously assumed, except for the case β = 0 that corresponds to the
deterministic limit of the theory, namely, conventional quantum mechanics.

Appendix C. The Markovian Noise Approximation in the Presence of the

Quantum Potential

Once the infinitesimal (dark) gravitational fluctuations have broken the quantum
coherence on a cosmological scale (e.g., for baryonic particles with mass m ∼ 10−(30÷27)Kg, it

is enough a temperature of T ≫ 10−40 4ℏ2

mk
◦K ∼ 10−100◦K to have λc ≪ 1020m), it follows that

the resulting universe can acquire the classical behavior and can be divided into quantum
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decoupled subparts (in weak gravity regions with low curvature, since Newtonian gravity
is sufficiently feeble for satisfying condition (54)). In this context, we can postulate the
existence of the classical environment.

Thus, for a mesoscale quantum system in contact with a classical environment, it is
possible to consider the stochastic process

.
qi =

p

m
, (A46)

.
pj = −∂j

(
V(q) + Vqu(ρ)

+
ℏ2

2m

(
1

ρ1/2
∂i∂iρ

1/2 − 1

ñ1/2
∂i∂iñ

1/2

))
, (A47)

In the presence of the quantum potential, the evolution of the stochastic MDD ñ(q,t)

from the initial configuration, determined by (38), depends on the exact random sequence
of the force inputs of the Markovian noise.

The probabilistic phase space mass density N(q,p,t) of the Smolukowski equation

P(q, p, q0, p0|
(
t′ + τ − t0

)
, t0) =

∞∫

−∞

P(q, p, q′, p′|τ, t′)P(q′, p′, q0, p0|t′ − t0, t0)d
3q′d3 p′, (A48)

for the Markovian process (A47), is somehow indefinite, since the quantum potential, being
nonlocal, also depends on N(q,p,t) at the subsequent instants (see (50)–(53).

Even if the connection (A31)

lim L
λc

→0 − ℏ2

2m ∂j

(
1

ρ1/2 ∂i∂iρ
1/2 − 1

ñ1/2 ∂i∂i ñ
1/2
)

∼= mκDj
1/2ξ(t) + A1jk

.
qk + O

(
( L

λc
)

2
)

∼=
(

∂jmκDi
1/2ξ(t)qi + ∂kκjkS

)
+ O

(
( L

λc
)

2
)

∼= ∂j

(
mκD1/2ξ(t)q

1/2
i

q1/2
i

+ κS
)
+ O

(
( L

λc
)

2
)

∼= mκD1/2ξ(t) + ∂jκS

, (A49)

between the stochastic function ñ(q,t) and the distribution ρ(q,t) =
∫
N (q, p, t)d3 p cannot be

generally defined, in the small noise approximation, it introduces the linkage between ñ(q,t)

and ρ through
.
qα(ρ)

and leads to the motion equation

.
pi = −mκ

.
qj(t)

− ∂i

(
V(q) + Vqu(ρ)

)
+ mκD1/2ξ(t) (A50)

where Vqu(ρ)
in (A50) is a function of the PMD ρ(q,t) instead of the MDD ñ(q,t).

It is worth mentioning that the applicability of (A50) is not general, but it is strictly
subjected to the condition of being applied to small-scale systems with L

λc
≪ 1 that, being

close to the quantum deterministic condition, admit stationary states (the fluctuating
homology of the quantum eigenstates with <

.
qα >= 0). In this case, for sufficiently slow

kinetics (i.e., close to the stationary condition <
.
qα >→ 0 ), it is possible to assume that the

collection of all possible MDDs ñ(q,t) approximately reproduces the PMD ρ(q,t).
Furthermore, it is useful to note that by using the method of Pontryagin [13], the

Smolukowski equation can be transformed into the differential conservation equation for
the PTF P(q, z|τ, t):

∂tP(q,z|t,0) + ∂iP(q,z|t,0)V = 0, (A51)

In the stochastic case, (A51) is the analogous of (2) as a conservation equation.
It is noteworthy that in the classical case (i.e., Vqu(n)

= const = 0), the Gaussian character
of the PTF is warranted by the property that the cumulants are higher than two [13]

C(n)
im1...mn

= limτ→0
1

τ

∫
(yi − qi)(ym1

− qm1) . . . (ymn − qmn )P(y,q|τ,t)d
3hy (A52)



Symmetry 2023, 15, 2210 34 of 41

and are null in the current

P(q,z|t,0)Vi = −P(q,z|t,0)
1
β ∂i

(
V(q) + Vqu(P(q,q0 |t+τ,t0))

)
− 1

2 ∂mDimP(q,z|t,0)

+ . . . + 1
n!

∞

∑
n=2

∂m1
. . . ∂mn C

(n)
im1...mn

P(q,z|t,0)
(A53)

This condition is satisfied in classical problems, since the continuity of the Hamiltonian
potential leads to velocities that remain finite as τ → 0 , leading to a nonzero contribution

just for the first term (yi−qi)
τ .

In the quantum case, since the quantum potential depends on the derivatives of
ñ
(q,t)

= n
(q,t)

+ δn ≈ |ψ|2 + δ and since, in macroscopic systems L
λc

≫ 1, the spatial correlation
function of noise G(λ) (16) tends to the delta-function δ(λ) (i.e., white noise spectrum),
very high spikes of quantum force are possible on very close points (yi − qi) as τ → 0 .
This behavior can give finite nonzero contributions even in the limit of infinitesimal time
intervals. In this case, in the limit of τ → 0 , cumulants higher than two contribute to the
probability transition function P(y, q|τ, t).

Such spiking quantum potential contributions grow as a function of L
λc

for L
λc

≫ 1 we
may have jumping processes N (q, p, t).

Given the conservation Equation (A51) for the phase space density

∂N (q,p,t)
∂t + ∂N (q,p,t)Vi

∂xi

=
∂N(q,p,t)

∂t +
∂N(q,p,t)

.
xi

∂xi
+

∂


 1

2

∂C
(1)
im

N(q,p,t)
∂xm

+...+ 1
n!

∞

∑
n=2

∂nC
(n)
im...l

N(q,p,t)
∂xm ...∂xl




∂xi

= ∂N
∂t − ∂N .

qα
∂qα

− ∂N .
pβ

∂pβ
+

∂




1
2

∂C
(1)
im

N(q,p,t)
∂xm

+...+ 1
n!

∞

∑
n=2

∂nC
(n)
im...l

N(q,p,t)

∂xm . . . ∂xl︸ ︷︷ ︸
n−terms




∂xi
= 0

(A54)

and

Vi =

( .
Q
.
P

)
=

.
xi − 1

2P(x,z|t,0)

∂DimP(x,z|t,0)
∂xm

+ . . . + 1
n!P(x,z|t,0)

∞

∑
h=2

∂kC
(k)
im...l P(x,z|t,0)

∂xm . . . ∂xl︸ ︷︷ ︸
(2k−terms)

(A55)

.
xi =




.
qβ

.
p = m

..
qα(t)


 =




.
qβ

− ∂(V(q)+Vqu)
∂qα


 (A56)

.
xi =

( .
qβ

.
p = m

..
qα(t)

)
=

(
pβ/m

− ∂(V(q)+Vqu)
∂qα

+ Dp
1/2ξα(t)

)
(A57)

where

Vqu = − ℏ2

2m

1

ρ1/2
∂γ∂γρ1/2, (A58)

ρ(q,t) =
∫

N (q, p, t)d3h p, (A59)
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by integrating it over the momenta, we obtain

∂t

∫
N d3h p − ∂α

∫
N .

qαd3h p− <
.
p >(q,t) β

∞∫
−∞

∂N
∂pβ

d3h p

+
∫

∂




1
2

∂C
(1)
im

N(q,p,t)
∂xm

+...+ 1
n!

∞

∑
n=2

∂nC
(n)
im...l

N(q,p,t)

∂xm . . . ∂xl︸ ︷︷ ︸
n−terms




∂xi
d3h p = 0

(A60)

that, with the condition limp→∞N(q,p,t) = 0 and by posing

<
.
qα >=

∫
N .

qαd3h p

∫
N d3h p

, (A61)

leads to

∂tn − ∂αn <
.
qα >= −

∫
∂




1
2

∂C
(1)
im N(q,p,t)

∂xm
+ . . . + 1

n!

∞

∑
n=2

∂nC
(n)
im...l N(q,p,t)

∂xm . . . ∂xl︸ ︷︷ ︸
n−terms




∂xi
d3h p (A62)

where C
(1)
im = p

(
0 0

0 D̃δαβ

)
, so that (A62) can be rearranged as

∂tn =<
.
qα > ∂αn > +n∂α <

.
qα > +Qdiss(q,t)

− (A63)

where

Qdiss(q,t)
=
∫




0

∂




1
2

∂D̃δαχN(q,p,t)
∂pχ

+...+ 1
n!

∞

∑
h=2

∂kC
(k)
αχ...ε N(q,p,t)

∂pχ . . . ∂pε︸ ︷︷ ︸
(k−terms)




∂pα




d3h p

=
∫

∂
∂pα




0

1
2

∂D̃N(q,p,t)

∂pα
+ . . . + 1

n!

∞

∑
h=2

∂kC
(k)
αχ...εN(q,p,t)

∂pχ . . . ∂pε︸ ︷︷ ︸
(k−terms)


d3h p

(A64)

describes the compressibility of the mass density distribution as a consequence of dissipation.

Appendix D. Harmonic Oscillator Eigenstates in Fluctuating Spacetime

In the case of linear systems

V(q) =
mω2

2
q2, (A65)

the equilibrium condition, referring to the stationary configuration of the eigenstates,
leads to

ℏ2

4m
∂q

(
∂q∂qlnρ(q) +

1

2

(
∂qlnρ(q)

)2
)
= mκ

D

2
∂qlnρ + mω2q (A66)
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that is satisfied by the solution ρ = ρ0exp
[
− q2

∆q2

]
, where ρ0(q) is defined by the relation

ℏ2

4m2
∂q

(
∂q∂q

(
lnρ0 −

q2

∆q2

)
+

1

2

(
∂q

(
lnρ0 −

q2

∆q2

))2
)

= κ
D

2
∂q

(
lnρ0 −

q2

∆q2

)
+ ω2q. (A67)

For the fundamental eigenstate

limT→0ρ0
1/2exp

[
− q2

2∆q2

]
=

(
1

4π

mω

ℏ

)1/4

exp

[
− q2

2∆q0
2

]
(A68)

from (A67), it follows that

1

∆q2
= − m2

2ℏ2
κD +

mω

ℏ

√
1 +

( m

2ℏω
κD
)2

(A69)

which is close to the quantum mechanical state (i.e., D → 0 , κ → 0 with ω ≫ m
ℏ

κD), leads to

1

∆q2
∼= mω

ℏ
− m2

2ℏ2
κD +

1

8

m3

ℏ3ω
(κD)2 ∼= mω

ℏ
− m2

2ℏ2
κD ∼= mω

ℏ

(
1 − α

kT

ℏω

)
. (A70)

and to the distribution

ρeq = ρ0exp

[
−mω

ℏ

(
1 − α

kT

ℏω

)
q2

]
(A71)

where

ρ0 =

[
1

4π

mω

ℏ

(
1 − α

kT

ℏω

)]1/2

. (A72)

From (A71) and (A72) it can be observed that, within the limit of small fluctuations,
the mass density distribution of the fundamental eigenstate does not lose its Gaussian form
but gains a small increase in its variance following the law

∆q2 = ∆q2
0

(
1 + α

kT

ℏω

)
(A73)

where

∆q0
2 =

(
ℏ

mω

)
. (A74)

The result (A71) satisfies the condition initially stated.
Moreover, in the presence of fluctuation, the energy E0 of the fundamental stationary

state reads as

E0 =< ψ0|H|ψ0 > =
∞∫

−∞

ρ(q,t)

[
m
2

.
q

2
+ mω2

2 q2 + Vqu

]
dq

=
∞∫

−∞

ρ(q,t)

[
mω2

2 q2 + Vqu

]
dq

=
∞∫

−∞

ρ(q,t)

[
mω2

2 q2 − mω2

2

(
1 − α kT

ℏω

)
q2 + (n + 1

2 )ℏω
]
dq

=
∞∫

−∞

ρ(q,t)

[
α ωmkT

2ℏ q2 + ℏω
2

]
dq

= ℏω
2 + α ωmkT

2ℏ

∞∫
−∞

q2
(

mω
πℏ

)1/2
exp
[
−
(

mω
ℏ

− 2αmkT
ℏ2

)
q2
]
dq

= ℏω
2 + α ωmkT

2ℏ

(
1

1+α kT
ℏω

)
∆q2

∼= ℏω+αkT
2

, (A75)

showing an energy increase of αkT directly connected to the dissipation parameter α.
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As far as it concerns the energy variance of the fundamental stationary state

∆E0 =< ψ0|(E − E0)
2|ψ0 >

1/2, (A76)

in the presence of fluctuation, it reads as

(
∆E

0

)2
=

∞∫
−∞

ρ(q,t)

[(
m
2

.
q

2
+ mω2

2 q2 + Vqu

)
−
(
ℏω+αkT

2

)]2
dq

=
∞∫

−∞

ρ(q,t)

[
α ωmkT

2ℏ q2 − αkT
2

]2
dq

=
(

αkT
2

)2 ∞∫
−∞

ρ(q,t)

[
ωm
ℏ

q2 − 1
2

]2
dq =

(
αkT

2

)2
(
−1 + ωm

ℏ

∞∫
−∞

ρ(q,t)

(
2q2 + ωm

ℏ
q4
)
dq

)

∼=
(

αkT
2

)2
(
−1 + 1 +

(
ωm
ℏ

)2
∞∫

−∞

ρ(q,t)q
4dq

)
∼= 3

8

(
αkT

2

)2

. (A77)

which allows us to measure the dissipation parameter α by the formula

α ∼= 2

√
8

3

∆E
0

kT
. (A78)

For higher eigenstates the eigenvalues of the Hamiltonian read as

Ej
∼= (j +

1

2
)ℏω −

(
1 + ∆j

)αkT

2
(A79)

where

∆j =
∆q2

(
∆q2

j − ∆q2
j−1

) − 1 (A80)

where ∆q2
j is the wave function variance of the j-th eigenstate, and ∆q2 is the variance of the

fundamental eigenstate.
It is noteworthy that the parameter α can also be experimentally evaluated by measur-

ing the energy gap ∆Ej = Ej − Ej−1 between eigenstates through the relation

α ∼= 2
∆q2

(
∆q2

j − ∆q2
j−1

)
ℏω −

(
Ej+1 − Ej

)

kT
(A81)

Appendix E. Quantum Decoupling of the Measuring Apparatus at the Initial and

Final Times

The preparation of the experimental measurement needs, at the initial state, that
the system and the apparatus are decoupled. This is commonly assumed by posing the
two systems at infinity with the tacit assumption that no interaction at all exists between
them. Nonetheless, since the fully quantum supersystem acts as a whole (i.e., λc → ∞ ), the
nonlocal quantum potential interaction acts everywhere, even at infinite distance. Thus, the
decoupling between the measuring apparatus and the system cannot be strictly assumed in
a perfect quantum supersystem. Conversely, given that the quantum potential can acquire
a finite range of interaction in sufficiently weakly bounded macroscopic systems in the
presence of random noise, the initial decoupling can actually be possible. Thus, it follows
that large-scale decoherence is necessary for performing the process of measurement.
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Appendix F. The Nonlocal Quantum Potential Length of Interaction of the Photon

To calculate the length λqu of the nonlocal quantum interaction of the photon, which
wavefunction reads

ψ =
∫

bk|ψk|cos[kµqµ]d4k =
∫

Akcos[(kq − ωt)]dk, (A82)

we observe that the Klein-Gordon equation for the photon can be rearranged as

pµ pµ = ∂µS ∂µS = ℏ
2 ∂µ∂µ|ψ|

|ψ| = mVqu (A83)

From (A83), we see that the quantum properties for the photon are contained in
the term

ℏ
2 ∂µ∂µ|ψ|

|ψ| (A84)

Moreover, since the quantum potential length of interaction is independent of multi-
plicative constants, along the direction of propagation of the photon, it reads as

λqu = λc

xmax∫
0

x−1

∣∣∣∣∣ ∂x

( (
∂q∂q− 1

c2 ∂t∂t

)
|ψ|

|ψ|

)∣∣∣∣∣
(x)

dx

∣∣∣∣∣ ∂x

( (
∂q∂q− 1

c2 ∂t∂t

)
|ψ|

|ψ|

)∣∣∣∣∣
(x=λc)

(A85)

λqu = λc

xmax∫
0

x−1

∣∣∣∣∣∣∣∣
∂x




(
∂q∂q− 1

c2 ∂t∂t

)√(∫
Akcos(kq−ωt)dk

)(∫
A∗

kcos(kq−ωt)dk

)

√(∫
Akcos(kq−ωt)dk

)(∫
A∗

kcos(kq−ωt)

)




∣∣∣∣∣∣∣∣
(x)

dx

∣∣∣∣∣∣∣∣
∂x




(
∂q∂q− 1

c2 ∂t∂t

)√(∫
Akcos(kq−ωt)

)(∫
A∗

kcos(kq−ωt)

)

√(∫
Akcos(kq−ωt)

)(∫
A∗

kcos(kq−ωt)

)




∣∣∣∣∣∣∣∣
(x=λc)

(A86)

where x = q − ct. Furthermore, for the Gaussian spectrum Ak ∝ e
− (k−k0)

2

2∆k2 , it follows that

λqu = λc

xmax∫
0

x−1

∣∣∣∣∣∣∣∣∣

∂x




(
∂q∂q− 1

c2 ∂t∂t

)

∫ e

− (k−k0)
2

2∆k2 cos(kq−ωt)dk





∫ e

− (k−k0)
2

2∆k2 cos(kq−ωt)dk







∣∣∣∣∣∣∣∣∣
(x)

dx

∣∣∣∣∣∣∣∣∣

∂x




(
∂q∂q− 1

c2 ∂t∂t

)

∫ e

− (k−k0)
2

2∆k2 cos(kq−ωt)dk





∫ e

− (k−k0)
2

2∆k2 cos(kq−ωt)dk







∣∣∣∣∣∣∣∣∣
(x=λc)

. (A87)
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λqu = λc

xmax∫
0

x−1

∣∣∣∣∣∣∣∣∣

∂x




(
∂q∂q− 1

c2 ∂t∂t

)

∫ e

− (k−k0)
2

2∆k2 cos(kx)dk





∫ e

− (k−k0)
2

2∆k2 cos(kx)dk







∣∣∣∣∣∣∣∣∣
(x)

dx

∣∣∣∣∣∣∣∣∣

∂x




(
∂q∂q− 1

c2 ∂t∂t

)

∫ e

− (k−k0)
2

2∆k2 cos(kx)dk





∫ e

− (k−k0)
2

2∆k2 cos(kx)dk







∣∣∣∣∣∣∣∣∣
(x=λc)

(A88)

λqu = λc

xmax∫
0

x−1

∣∣∣∣∣∣
∂x



(

∂q∂q− 1
c2 ∂t∂t

)
e−

∆k2(q−ct)2

2 eik0(q−ct)

e−
∆k2(q−ct)2

2 eik0(q−ct)




∣∣∣∣∣∣
(x)

dx

∣∣∣∣∣∣
∂x



(

∂q∂q− 1
c2 ∂t∂t

)
e−

∆k2(q−ct)2

2 eik0(q−ct)

e−
∆k2(q−ct)2

2 eik0(q−ct)




∣∣∣∣∣∣
(x=λc)

(A89)

λqu = λc

xmax∫
0

x−1

∣∣∣∣∣∣∣∣∣∣∣∣

∂x




∂q

(
e−

∆k2(q−ct)2

2 ∂qeik0(q−ct)

)

e−
∆k2(q−ct)2

2 eik0(q−ct)

+
∂q

(
eik0(q−ct)∂qe−

∆k2(q−ct)2

2

)

e−
∆k2(q−ct)2

2 eik0(q−ct)

− 1
c2

∂t

(
e−

∆k2(q−ct)2

2 ∂te
ik0(q−ct)

)

e−
∆k2(q−ct)2

2 eik0(q−ct)

− 1
c2

∂t

(
eik0(kq−ωt)∂te

− ∆k2(q−ct)2

2

)

e−
∆k2(q−ct)2

2 eik0(q−ct)




∣∣∣∣∣∣∣∣∣∣∣∣
(x)

dx

∣∣∣∣∣∣
∂x



(

∂q∂q− 1
c2 ∂t∂t

)
e−

∆k2(q−ct)2

2 eik0(q−ct)

e−
∆k2(q−ct)2

2 eik0(q−ct)




∣∣∣∣∣∣
(x=λc)
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λqu = λc

xmax∫
0

x−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x




(
−ik0eik0(q−ct)∆k2(q−ct)e−

∆k2(q−ct)2

2

)

e−
∆k2(q−ct)2

2 eik0(q−ct)

−

(
e−

∆k2(q−ct)2

2 k0
2eik0(q−ct)

)

e−
∆k2(q−ct)2

2 eik0(q−ct)

+

(
−ik0eik0(q−ct)∆k2(q−ct)e−

∆k2(q−ct)2

2

)

e−
∆k2(q−ct)2

2 eik0(q−ct)

+

(
eik0(q−ct)

(
∆k4(q−ct)2

e−
∆k2(q−ct)2

2 +∆k2e−
∆k2(q−ct)2

2

))

e−
∆k2(q−ct)2

2 eik0(q−ct)

− 1
c2

∂t

(
e−

∆k2(q−ct)2

2 ∂te
ik0(q−ct)

)

e−
∆k2(q−ct)2

2 eik0(q−ct)

− 1
c2

∂t

(
eik0(q−ct)∂te

− ∆k2(q−ct)2

2

)

e−
∆k2(q−ct)2

2 eik0(q−ct)




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(x)

dx

∣∣∣∣∣∣
∂x



(

∂q∂q− 1
c2 ∂t∂t

)
e−

∆k2(q−ct)2

2 eik0(q−ct)

e−
∆k2(kq−ωt)2

2 eik0(q−ct)




∣∣∣∣∣∣
(x=λc)

(A91)

λqu = λc

xmax∫
0

x−1

∣∣∣∣∣∣∣∣
∂x




−2ik0∆k2(q − ct)− k0
2 + ∆k4(q − ct)2 + ∆k2

+ 2
c2

(
ick0eik0(q−ct)∂te

− ∆k2(q−ct)2

2

)

e−
∆k2(q−ct)2

2 eik0(q−ct)

+ k0
2 − 1

c2

(
eik0(q−ct)∂t∂te

− ∆k2(q−ct)2

2

)

e−
∆k2(q−ct)2

2 eik0(q−ct)




∣∣∣∣∣∣∣∣
(x)

dx

∣∣∣∣∣∣
∂x



(

∂q∂q− 1
c2 ∂t∂t

)
e−

∆k2(kq−ωt)2

2 eik0(kq−ωt)

e−
∆k2(kq−ωt)2

2 eik0(kq−ωt)




∣∣∣∣∣∣
(x=λc)

(A92)
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λqu = λc

xmax∫
0

x−1

∣∣∣∣∣ ∂x

(
−2ik0∆k2(q − ct)− k0

2 + ∆k4(q − ct)2 + ∆k2

+2ik0∆k2(q − ct) + k0
2 + ∆k2 + ∆k4(q − ct)2

)∣∣∣∣∣
(x)

dx

∣∣∣∣∣∣
∂x



(

∂q∂q− 1
c2 ∂t∂t

)
e−

∆k2(q−ct)2

2 eik0(q−ct)

e−
∆k2(q−ct)2

2 eik0(q−ct)




∣∣∣∣∣∣
(x=λc)

(A93)

λqu = λc

2
xmax∫
0

x−1
∣∣∣ ∂x

(
∆k4(q − ct)2 + ∆k2

)∣∣∣
(x)

dx

∣∣∣ ∂x

(
∆k4(q − ct)2 + ∆k2

)∣∣∣
(x=λc)

(A94)

λqu = λc

2
xmax∫

0

x−1| 2∆k4(q−ct)| (x)
dx

| 2∆k4(q−ct)| (x=λc)

= 2λc

∞∫
0

x−1| (−2∆k4x)| (x)
dx

| (−2∆k4x)| (x=λc)

= 1
∆k4

∞∫
0

2∆k4dx = 2
∞∫
0

dx = ∞

(A95)

Considering the superposition of the two photon fields, the results (A95) do not change.
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